

Crownhill Associates
smart electronic solutions

 1
Crownhill Associates Limited 2005 - All Rights Reserved Version 1.0 2005-16-11

Disclaimer

Crownhill reserves the right to make changes to the products contained in this
publication in order to improve design, performance or reliability. Neither
Crownhill Associates Limited or the author shall be responsible for any claims
attributable to errors omissions or other inaccuracies in the information or ma-
terials contained in this publication and in no event shall Crownhill Associates
or the author be liable for direct indirect or special incidental or consequential
damages arising out of the use of such information or material. Neither Crown-
hill or the author convey any license under any patent or other right, and make
no representation that the circuits are free of patent infringement. Charts and
schedules contained herein reflect representative operating parameters, and
may vary depending upon a user’s specific application.

All terms mentioned in this document that are known to be trademarks or ser-
vice marks have been appropriately marked. Use of a term in this publication
should not be regarded as affecting the validity of any trademark.

PICmicrotm is a trade name of Microchip Technologies Inc.
PROTONtm is a trade name of Crownhill Associates Ltd.

Web url’s are correct at the time of publication

Written by Les Johnson.

 2
Crownhill Associates Limited 2005 - All Rights Reserved Version 1.0 2005-16-11

Wave File Player

ast Christmas I described a project that played polyphonic music based
upon midi files, and this Christmas I’m staying with the audio theme and de-
scribing how to construct a Wave File player that can read standard PC files
from a Multi-Media Card (MMC), formatted with FAT16. And all this using only
a handful of common components.

Audio feedback can enhance an, otherwise, ordinary application, or it can be
the primary purpose of the application itself. Either way, this project is a joy to
build, and great fun to use. With results that far exceed it’s simplicity.

The circuit is remarkably straightforward, and the main part is shown below: -

Microcontroller section.

Because MMC devices must operate at 3.3 Volts, an LM3940 Low Dropout Lin-
ear regulator is used to reduce the voltage to a safe level. However, this poses
problems with interfacing to the PICmicrotm which is operating at 5 Volts. The
inputs of the MMC device. i.e. CS, SDI, and CLK would be damaged if they were
supplied with the raw 5 Volts output produced by the PICmicro’s I/O lines.
Therefore resistors R1 to R6 act as potential dividers, ensuring that the MMC
only sees approx 2.7 Volts.

The output from the MMC (SDO) is not quite TTL level and could pose a prob-
lem for the PICmicrotm in registering a high input, therefore R7 helps lift its
voltage.

+5 Volts in

C5
15pF

C4
15pF

8MHz
Crystal

VDD

20

MCLR

OSC1

OSC2

VSS

IC2
PIC18F252

RC0

RC2

RC3

RC5

RC4

VSS

15

11

16

14

8 19

10

9

13

RB0
RB1
RB2
RB3
RB4
RB5
RB6
RB7

1

28

27

26

25

24

23

22

21

PWM OUT

To LED 1

To LED 2
To LED 3

To LED 4
To LED 5

To LED 6
To LED 7

To LED 8

R1
1k5Ω

R3
1k5Ω

R5
1k5Ω

R2
3k3Ω

R4
3k3Ω

R6
3k3Ω

+3.3 Volts (pin 5)

CS (pin 1)
SDI (pin 2)
CLK (pin 4)

GND (pin 6)

SDO (pin 3)

MMC ADAPTER

5V 3.3VIN OUT

GND

IC1
LM3940

+3.3V

GND

O
n

-B
o

ar
d

10
0n

F
 C

ap
ac

ito
r

R7
10kΩ

+5 Volts In

GND +3.3 Volts Out

LM3940
Pinouts

C1
100nF

C3
10uF

C2
100nF

From LDR
2 RA0

 3
Crownhill Associates Limited 2005 - All Rights Reserved Version 1.0 2005-16-11

The PICmicrotm circuit is a conventional setup and uses an 8MHz crystal or
resonator, but the firmware implements the internal x4 PLL, which means that
it’s actually running at 32MHz, which is 8mips (Million Instructions Per Sec-
ond).

The MMC socket used is the adapter PCB available from Crownhill Associates
Ltd, but a standard MMC socket will suffice.

The audio output is via the Hardware PWM (Pulse Width Modulation) pin (RC2)
acting as a simple 8-bit DAC (Digital to Analogue Converter). However this
needs low pass filtering and amplifying before it’s of any use. This is accom-
plished by the circuit below: -

Amplifier section.

Resistor R8 and capacitor C6 form a very crude single pole low pass filter with
a cut off frequency of approximately 7KHz. This is calculated by the equation:

Where F is in Hz, R is in Ohms, and C is in Farads. This can further be simpli-
fied because 2 x π is a known quantity of approx 6.28, so the equation now
looks like:

Plugging the values from the above circuit into the equation gives us:

Which produces a cut off frequency of 7.2084Hz or 7.2KHz.

1

(2 x π) x (R x C)
Frequency =

1

6.28 x (R x C)
Frequency =

1

6.28 x (47000 x 0.00000047)
Frequency =

+5 Volts

-

+

4

6

5

2

3

C9
100uF

C7
100nF

C6
4n7

VR1
10kΩ

IC3
LM386

SPKR
8Ω

R8
47kΩ

R9
10Ω

C8
47nF

From RC2

 4
Crownhill Associates Limited 2005 - All Rights Reserved Version 1.0 2005-16-11

The low pass filter actually performs two tasks, first it smoothes the pulses
produced by the PWM, into a waveform that more resembles a sine wave. It
also removes the top frequency components that cannot be resolved correctly
with such a crude 8-bit DAC, and would otherwise cause the audio to be ex-
tremely noisy.

The amplifier is our old friend the LM386. This is ideal for our circuit because
it’s readily available, and capable of operating from a 5 Volts power supply. As
with the microcontroller section, it’s a standard circuit taken straight out of the
data sheet. Note that C8 and R9 are optional.

The circuit can easily be built on the PROTON Development board MK2, as
shown below: -

The picture above shows the WAV player without the MMC adapter obscuring
some of the wiring. The following picture shows the player with the MMC
adapter in place.

100uF

100nF

4.7nF
10uF

3.3KΩ

100nF

S
P

E
A

K
E

R

RC3 RC0RC4
RC5RC2

+

+

 5
Crownhill Associates Limited 2005 - All Rights Reserved Version 1.0 2005-16-11

SDI - Serial Data In to the card.
SDO - Serial Data out from the card.
CLK - Clock signal to the card.
CS - Card Enable. Sometimes named CE.
GND - Ground (0 Volts).
VDD - +3.3 Volts in to the card.

The MMC adapter’s pinouts are shown right.

CS
SDI / DATAIN
SDO / DATAOUT
CLK
+3.3 Volts
0 Volts6

5
4

3
2

1

 6
Crownhill Associates Limited 2005 - All Rights Reserved Version 1.0 2005-16-11

Preparing the MMC.
There’s not a great deal else to say about the circuit, so before we proceed to
the software, we’ll prepare the MMC and format it as FAT16. This can be done
from Windows and doesn’t require any special software.

Place the MMC into a reader connected to the PC and click on START (located
on the taskbar), and choose RUN from the menu:

Within the RUN ‘Open’ window, type CMD then press OK:

This will open the command prompt window. At the prompt, enter the com-
mand:

Format I: /FS:FAT

 7
Crownhill Associates Limited 2005 - All Rights Reserved Version 1.0 2005-16-11

And press the ENTER key:

Note that drive I: is the MMC disk on my PC, but it may not be on yours, there-
fore always check before committing to Format as it will destroy any informa-
tion present on the Drive. Check twice, Format once!

After pressing the ENTER key once again, the disk will be formatted and a
summary of the results will be shown:

The screen above was a format performed on a 32Mb MMC device. Note that
the summary will change for different size MMCs.

 8
Crownhill Associates Limited 2005 - All Rights Reserved Version 1.0 2005-16-11

You can close down the CMD.EXE window, as the disk now has a FAT16 for-
mat.

We now need a file placed on the MMC in order to play it later. You will find the
file TEST.WAV within the folder that accompanies this document. Copy it from
the folder and paste it to the MMC using Windows Explorer.

When producing your own WAV files, make sure that they’re sampled at 8-bits
mono. The sample rate for now is 22.05KHz, but this can be changed later.

That’s the MMC setup, so we’ll now take a look at the firmware that makes it
all happen. In other words, the clever bit!

 9
Crownhill Associates Limited 2005 - All Rights Reserved Version 1.0 2005-16-11

The clever bit.
At the heart of the software are a collection of subroutines and macros that
read standard FAT16 files from the MMC. These routines are located in the in-
clude file WAV_FAT16_READ_MMC.INC.

The FAT16 read routines are too complex to explain in this article, so I’ll simply
run through the use of them. The code has plenty of comments for the more
inquisitive user to follow.

The first routine called is FAT_INIT. This initialises the MMC in SPI mode and
reads the BPB (BIOS Parameter Block), which is located in the first sector of
MMC. It then locates the FAT (File Allocation Table) that contains the file
names etc. FAT_INIT will return with the bit variable FAT_RESPONSE holding
0 if the MMC cannot be read correctly.

In order to open a file for reading, the macro FAT_OPEN_FILE is used. This
takes the filename as a parameter, either as a Quoted String of Characters, or
as another string containing the filename, the string can be a code memory
string or a RAM string: -

FAT_OPEN_FILE "TEST.WAV"
or
FAT_OPEN_FILE FILENAME_STRING

File names must contain less that 8 characters, not including the extension.

FAT16 name format is actually 11 characters in length, 8 characters for the
name and three for the extension. So that the filename TEST.WAV is actually
stored on the MMC as “TEST<space><space><space><space>WAV”. The dot be-
tween the name and the extension is purely for human convenience. The
FAT_OPEN_FILE subroutine takes the conventional filename containing the
dot and re-creates the correct format used by FAT16.

As with FAT_INIT, the bit variable FAT_RESPONSE will return holding 0 if the
file was not found, or couldn’t be opened for any reason.

Once the file has been located on the drive, each sector is read into a buffer. A
sector is 512 bytes in length, and to play a WAV file seamlessly we need two
buffers. The buffers are filled by two subroutines, namely
FAT_READ_SECTOR1 and FAT_READ_SECTOR2. FAT_READ_SECTOR1
places the sector into buffer SECTOR_BUFFER1, and FAT_READ_SECTOR2
places the sector into buffer SECTOR_BUFFER2.

When the End Of File is reached, bit variable FAT_RESPONSE will hold 0.

 10
Crownhill Associates Limited 2005 - All Rights Reserved Version 1.0 2005-16-11

There’s another subroutine and macro within the include file that lists the root
directory of the MMC. This is named FAT_LIST_DIR.

Upon calling it, the string variable FAT_INTERNAL_FILENAME will be filled
with a filename, and dword variable FAT_FILESIZE will hold the size of the file
in bytes.

Continually calling FAT_LIST_DIR will sequentially return each filename that
can be found, until the byte variable LIST_RESPONSE holds the value 0 to sig-
nify the End Of Directory.

Repeat
FAT_LIST_DIR ' Read a single filename into string FAT_INTERNAL_FILENAME
If LIST_RESPONSE = 1 Then Hrsout _INTERNAL_FILENAME, " ",_
 Dec FAT_FILESIZE, 13 ' Display the filename and its size
Until LIST_RESPONSE = 0 ' Until the end of the directory is found
' Display the amount of free space on the drive (in kB)
Hrsout "\r\r", Dec FAT_FREESPACE, " kB Free\r\r"

The dword variable FAT_FREESPACE will also return holding the amount of
free bytes on the drive.

WAV player main code.
Being able to read a WAV file is only the beginning of being able to play it with
any acceptable audio quality. At first, simply reading the file and outputting it
directly to a DAC (Digital to Analogue Converter) was tried. This worked to a
point, but it was extremely noisy and had gaps in the sound. This was due to
the access of the file from the MMC device.

The files on a FAT formatted drive, be it FAT12, FAT16 or FAT32, are seg-
mented into clusters, which contain 1 to 32 sectors depending on the size of
the disk. Each time the sector is accessed, the software must first calculate
where the cluster is located, then which sector of the cluster is to be accessed.
This all takes processor time that produced the gaps experienced in the output
sound.

What’s required is a mechanism to read a sector from the MMC while another
is being played, so that there’s never a gap between accessing. The following
code listing does just that.

 11
Crownhill Associates Limited 2005 - All Rights Reserved Version 1.0 2005-16-11

' Read a file from a Multi Media Card (MMC) formatted as FAT16
' And play a 22.050KHz WAV file using an interrupt driven double buffer
'
' The PICmicro's Hardware PWM is used as an 8-bit DAC for the audio output
'
' For 18F devices only using version 3.1.7 onwards of the PROTON+ compiler
'
OPTIMISER_LEVEL = 6
Device = 18F252
REMINDERS = OFF
XTAL = 8 ' Set the initial frequency to 8MHz
PLL_REQ = TRUE ' Multiply it by 4 to make 32MHz operating frequency

' Point the hardware interrupt vector to "DOUBLE_BUFFER_INTERRUPT"
ON_HARDWARE_INTERRUPT Goto DOUBLE_BUFFER_INTERRUPT
' Create a WORD variable from the TMR1L\H registers
Symbol TIMER1 = TMR1L.Word
Symbol TMR1IF = PIR1.0 ' Timer1 interrupt overflow flag
Symbol GIE = INTCON.7 ' Global interrupts Enable\Disable

Dim BUSY_PLAYING_BUFFER as Bit
Dim USE_BUFFER2 as Bit
Dim LOAD_BUFFER1 as Bit
Dim LOAD_BUFFER2 as Bit
Dim PLAY_BUFFER as Bit
Dim BUFFER_POSITION as Word SYSTEM

Dim FILE_NUMBER as Byte
Dim FILE_SELECT as Word
Dim AMOUNT_OF_FILES as Byte

Dim FSR0 as FSR0L.Word ' Create a word variable from registers FSR0L\H
Dim FSR2 as FSR2L.Word ' Create a word variable from registers FSR2L\H

Symbol TRUE = 1
Symbol FALSE = 0
'
'---
'
Delayms 200 ' Wait for things to stabilise
ALL_DIGITAL = TRUE ' Set PORTA and PORTE to all digital
'
' Load the MMC FAT16 WAV file reading subroutines into memory
'
Include "WAV_READ_MMC.INC"

Goto MAIN_PROGRAM ' Jump over the interrupt subroutine

 12
Crownhill Associates Limited 2005 - All Rights Reserved Version 1.0 2005-16-11

'---
'
' Timer1 hardware interrupt handler to play from two buffers
' and output via the hardware PWM port
'
' Input : PLAY_BUFFER = TRUE (1) if the interrupt is to start reading
' and outputting the buffer
' Output : None
' Notes : Uses registers FSR2L\H as a buffer pointer for fast access
'
DOUBLE_BUFFER_INTERRUPT:
' Load Timer1 with a value to trigger interrupt for a 22.05KHz sample file
TIMER1 = 65186
If PLAY_BUFFER = True Then ' Is the file to be played ?
If USE_BUFFER2 = True Then ' Yes. So are we reading from buffer 2 ?
FSR2 = Varptr SECTOR_BUFFER2 ' Yes. So point FSR2L\H to SECTOR_BUFFER2
Else ' Otherwise.. Play from buffer 1
FSR2 = Varptr SECTOR_BUFFER1 ' And point FSR2L\H to SECTOR_BUFFER1
Endif
FSR2 = FSR2 + BUFFER_POSITION ' Add the buffer position to FSR2L\H
' Load bits 4 and 5 of CCP1CON with bits 0 and 1 of INDF2
CCP1CON = CCP1CON & %11001111
WREG = INDF2 << 4
WREG = WREG & %00110000
CCP1CON = CCP1CON | WREG
' Load CCPR1L with the remaining 6 Most Significant bits shifted into place
CCPR1L = INDF2 >> 2
Inc BUFFER_POSITION ' Move up the buffer
If BUFFER_POSITION.9 = 1 Then ' End of buffer reached ? (i.e. 512)
' Yes. So clear BUFFER_POSITION. The low byte is already clear
BUFFER_POSITION.HighByte = 0
Btg USE_BUFFER2 ' and use the other buffer
BUSY_PLAYING_BUFFER = False ' Indicate playing stopped, buffer needs loading
Else ' Otherwise...
Bra $ + 2 ' \ Waste 3 cycles to balance the timing of the interrupt
Nop ' /
Endif
Endif
Clear TMR1IF ' Clear the Timer1 interrupt flag
Retfie FAST ' Exit the interrupt, restoring WREG, STATUS and BSR
'
'---
' The main program loop starts here
MAIN_PROGRAM:
Input PORTC.2 ' Disable the HPWM output while things are being setup
Clear ' Clear all RAM before starting
'
' Initialise the MMC and the FAT16 system
'
Repeat
FAT_INIT ' Read the FAT root and extract the info from it
' Keep reading the root until the MMC card initialises
Until FAT_RESPONSE = True

 13
Crownhill Associates Limited 2005 - All Rights Reserved Version 1.0 2005-16-11

'
' Setup a Timer1 overflow hardware interrupt
'
T1CON = %00000001 ' Turn on Timer1, 16-bit, prescaler = 1:1
PIR1 = %00000000 ' Clear the Timer1 interrupt flag
PIE1 = %00000001 ' Enable Timer1 as a peripheral interrupt source
TIMER1 = 0 ' Clear Timer1
INTCON = %11000000 ' Enable Global and Peripheral interrupts
'
' Setup the Hardware PWM generator for 88KHz frequency
' at approx 8-bits resolution using a 32MHz oscillator
'
T2CON = %00000100 ' Turn on Timer2 with a Prescaler value of 1:1
' Set PWM frequency to 88KHz with 8.5 bits of resolution
PR2 = 89
CCPR1L = 0 ' Reset the CCPR1L register
' Turn on PWM Module 1 by setting bits 2 and 3 of CCP1CON
CCP1CON = %00001100
AMOUNT_OF_FILES = Lread NUMBER_OF_FILES' Find out how many files there are
FILE_SELECT = FILE_NAMES_TABLE ' Pre-select the first file in LDATA table
While 1 = 1 ' Create an infinite loop
FAT_OPEN_FILE [FILE_SELECT]' Open a file for reading
If FAT_RESPONSE = True Then ' Only proceed if the file was found
' Discard the first sector containing the WAV file's header info
Gosub FAT_READ_SECTOR1
Gosub FAT_READ_SECTOR1 ' Pre-Read a sector into the first buffer
Gosub FAT_READ_SECTOR2 ' Pre-Read a sector into the second buffer
BUFFER_POSITION = 0 ' Make sure the buffer position is 0
' Force a "no sector read" situation to start with
BUSY_PLAYING_BUFFER = True
USE_BUFFER2 = False ' Start with playing from SECTOR_BUFFER1
Output PORTC.2 ' Enable PORTC.2 (CCP1) as output for PWM
PLAY_BUFFER = True ' Enable the buffer playing interrupt
While 1 = 1 ' Create a loop to read the file into the buffers
If BUSY_PLAYING_BUFFER = False Then ' Does buffer require loading from MMC ?
If USE_BUFFER2 = False Then ' Yes. So is it buffer 2 being played ?
Gosub FAT_READ_SECTOR2 ' No. So load buffer 2
Else ' Otherwise...
Gosub FAT_READ_SECTOR1 ' Load buffer 1
Endif
' Indicate to the interrupt that the buffer has been loaded
BUSY_PLAYING_BUFFER = True
' Exit play loop if the End Of File is reached
If FAT_RESPONSE = False Then Break
Endif
Wend
Input PORTC.2 ' Disable the HPWM output while another file is being setup
PLAY_BUFFER = False ' Disable the buffer playing interrupt
Endif
Inc FILE_NUMBER ' Increment the file counter
If FILE_NUMBER > AMOUNT_OF_FILES Then ' Have we reached the last file ?
FILE_NUMBER = 0 ' Yes. So reset the file counter

 14
Crownhill Associates Limited 2005 - All Rights Reserved Version 1.0 2005-16-11

FILE_SELECT = FILE_NAMES_TABLE ' Select the first file in the table
Else ' Otherwise...
' Point to the next file label in the LDATA table
FILE_SELECT = FILE_SELECT + 13
Endif
Delayms 500 ' Delay between files being played
Wend
'
'---
'
' File name data
'
NUMBER_OF_FILES: LDATA 1
FILE_NAMES_TABLE: LDATA "TEST .WAV",0

The above code is centred around a high priority TIMER 1 hardware interrupt.
The interrupt will trigger whenever the 16-bit timer registers, TMR1L and
TRM1H, overflow from 65535 to 0. Within the interrupt, a 512 byte buffer held
in RAM is scanned, and it’s contents are sent to the Hardware PWM module
(Pulse Width Modulation).

Indirect register pair FSR2L and FSR2H are used as buffer pointers and are in-
cremented every iteration of the interrupt. However, if we were to simply wait
for timer 1 to overflow on its own accord, the interrupt would trigger far too
slowly and the WAV file would sound garbled. Therefore within the interrupt we
preload timer 1 with a value that will trigger the interrupt more quickly the
next time round: -

TIMER1 = 65186

The value loaded into TIMER1 will require changing for different sampled WAV
files. The value above, as with the code, is for a WAV file sampled at a standard
rate of 22.050KHz.

The hardware PWM registers CCP1CON and CCPR1L require loading with the
8-bit duty value read from the buffer, however, because the Least Significant
Bits of the duty value must be loaded into bits 4 and 5 of the CCP1CON regis-
ter, we cannot simply load the registers with the value directly. Instead, a se-
ries of SHIFTing, ANDing, and ORing, is used to isolate the first 2 bits of the 8-
bit value and place them into bits 4 and 5 of CCP1CON: -

CCP1CON = CCP1CON & %11001111
WREG = INDF2 << 4
WREG = WREG & %00110000
CCP1CON = CCP1CON | WREG

Then the 6 Most significant bits of the original value are shifteded right by two
positions and placed into the CCPR1L register.

CCPR1L = INDF2 >> 2

 15
Crownhill Associates Limited 2005 - All Rights Reserved Version 1.0 2005-16-11

The rest of the interrupt increments the buffer and decides whether another
buffer should be played, and which one: -

Inc BUFFER_POSITION ' Move up the buffer
If BUFFER_POSITION.9 = 1 Then ' End of buffer reached ? (i.e. 512)
 ' Yes. So clear BUFFER_POSITION. The low byte is already clear
 BUFFER_POSITION.HighByte = 0
 Btg USE_BUFFER2 ' and use the other buffer
 BUSY_PLAYING_BUFFER = False ' Indicate play stopped, buffer needs loading
Else ' Otherwise...
 Bra $ + 2 ' \ Waste 3 cycles interrupt
 Nop ' / to balance the timing of the
Endif

Variable BUFFER_POSITION, as expected, holds the position within the buffer
being played. When it reaches 512 another buffer requires playing, which is in-
dicated by bit variable BUSY_PLAYING_BUFFER. The buffer to play from is in-
dicated by variable USE_BUFFER2. The BRA $ + 2 and NOP mnemonics are
there simply to balance the interrupt in order to give a more even time period.

As you can see, it’s quite a complex mechanism, but uses only a few com-
mands that operate very quickly, which is just as it should be within an inter-
rupt handler.

HPWM as an 8-bit DAC
The Hardware PWM module is a poor substitute for a real DAC (Digital to Ana-
logue Converter), but is adequate for this application, and produces quite a
clean output.

Calculating the operating frequency for the PWM depends on the sample rate of
the WAV file being played. The frequency of the PWM should be at least 4 times
the sample rate in order to reduce aliasing problems. Therefore, a WAV file
sampled at 22.05KHz should be played using a PWM frequency of at least
88KHz.

Calculating the frequency and resolution of the PWM is simple enough, if not a
little long winded. The frequency is governed by TIMER2 through its registers
T2CON and PR2. Register T2CON enables the timer and sets its prescaler and
postscaler, while register PR2 alters its frequency.

To calculate the value to be loaded into PR2: -

PR2 = (32MHz / ((4 * TMR2 prescale value) * 88.2KHz)) - 1.

We'll use a 1:1 prescale ratio value for TMR2, which makes the calculation: -

(4 * 1) * 88,200 = 352,800
32,000,000 / 152,000 = 90.70
90.70 - 1 = 89.70

 16
Crownhill Associates Limited 2005 - All Rights Reserved Version 1.0 2005-16-11

Resolution =
log (2)

log()FOSC
FPWM

bits

We can’t load a fractional value into an 8-bit register, so we’ll round down
(truncate) to the nearest integer and load 89 into PR2, and accept the small
amount of error produced.

The catch with the HPWM module is that as frequency increases, so resolution
decreases.

To calculate the resolution for a given frequency, we use the equation below:

This shows how to find the maximum PWM resolution (in bits) for a given PWM
frequency with our selected oscillator frequency.

The firmware operates at 32MHz, so we need to calculate:-

Log (32MHz/88.2KHz) / Log(2) to find our maximum resolution in bits: -

Log (32,000,000/88,200) = 2.559
Log(2) = 0.301

So the maximum resolution is found to be 2.559/0.301 = 8.5 bits. This is close
enough to 8 bits of resolution, and again, we accept the small amount of error.

We now have all the pieces of information required to produce the correct fre-
quency for our DAC, and the BASIC code enabling us to put the pieces together
is shown below: -

PR2 = 89 ' Set PWM Period to approx 88.2KHz
T2CON = %00000100 ' Timer2 ON with a 1:1 prescale ratio
CCP1CON = %00001100 ' Mode select = PWM 1
CCPR1L = 0 ' Reset the CCPR1L register

Notice that register CCP1CON is loaded with a binary value of 00001100,
which sets bits 2 and 3. These are named CCP1M3 and CCP1M2, and config-
ure the MSSP’s PWM 1 mode. Bit 2 of register T2CON is set to start timer 2,
while bits 1 and 0 are left clear for a prescaler ratio of 1:1. Finally, register
CCPR1L is cleared in order to set the duty cycle to 0.

The PWM module is now running but will not produce any pulses until it’s port
is set as an output.

 17
Crownhill Associates Limited 2005 - All Rights Reserved Version 1.0 2005-16-11

The name/s of the file/s to play are stored in and LDATA table at the end of the
BASIC code, along with the amount of files to play: -

NUMBER_OF_FILES: LDATA 1
FILE_NAMES_TABLE: LDATA "TEST .WAV",0

In the case of the example listed earlier, there is only 1 file named TEST.WAV.
Notice how the name is padded with spaces, this is not required for the file
reading subroutines, but is required to keep the table even, if more files are
added.

The continuous loop that follows is triggered by the interrupt to load a sector
into a buffer by flags BUSY_PLAYING_BUFFER and USE_BUFFER2. If the flag
BUSY_PLAYING_BUFFER is false, then a buffer requires loading and the pro-
gram looks to the flag USE_BUFFER2 in order to see which one. i.e. buffer 1 or
buffer 2. Each buffer load also checks for the End Of File, and if found, exits,
incrementing the file counting variable FILE_NUMBER. If this variable is found
to be greater than the amount of files to play, it is reset and the first file is
played again.

The program looks and sounds complex, but is essentially a state machine that
performs a task at a given signal. Some of the signals are triggered by the inter-
rupt for the main program to follow, and some are triggered by the main pro-
gram for the interrupt to follow. I’m sure it could be simplified, but in its cur-
rent state it works smoothly and perfectly, and still leaves plenty of time in the
main program for optional extras. The previous example can be found accom-
panying this article as is named SIMPLE_WAV_PLAY.

Optional extras.
Another variation of the firmware plays all the files from the MMC device with-
out knowing their names. It also auto detects one of 4 different sample rates by
reading the header of the WAV file, which is stored in the first 47 bytes of the
first sector of the file. This program can also be found with the accompanying
files and is named AUTO_WAV_PLAY. As well as all that, it also has the capa-
bilities of illuminating LEDs in sympathy with the WAV file being played, some-
what similar to a VU meter. For this, 8 LEDs need to be attached to PORTB, as
shown in the diagram below: -

D8
GREEN

D7
GREEN

D6
GREEN

D5
YELLOW

D4
YELLOW

D3
RED

D2
RED

D1
RED

R11
330Ω

R10
330Ω

R12
330Ω

R13
330Ω

R14
330Ω

R15
330Ω

R16
330Ω

R17
330Ω

From RB7
From RB6

From RB5
From RB4

From RB3
From RB3

From RB1

From RB0

 18
Crownhill Associates Limited 2005 - All Rights Reserved Version 1.0 2005-16-11

Another variation of the firmware allows one or more WAV files to be played
from an external trigger. i.e. an LDR (Light Dependant Resistor). For this, the
circuit below can be used: -

The program for the light sensor is named PUT_THAT_LIGHT_OUT.BAS.

Improvements.
As mentioned earlier, the PICmicro’s Hardware PWM module isn’t an ideal
DAC, and a better option would be a simple R2R ladder network (shown below),
or better still an 8-bit DAC chip, such as the DAC0800. Either of these would
improve the SNR (Signal to Noise Ratio) of the output sound.

R2R DAC (Digital to Analogue Converter)

R19
1kΩ

LDR

To RA0

+5 Volts

R18
50kΩ

R1
20k

R2
20k

R3
20k

R4
20k

R5
20k

R6
20k

R7
20k

R16
10k

R15
10k

R14
10k

R13
10k

R12
10k

R11
10k

R10
10k

R9
10k

Voltage
Out

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0

R8
20k

 19
Crownhill Associates Limited 2005 - All Rights Reserved Version 1.0 2005-16-11

Another option would be to use an active low pass filter instead of the simple
RC circuit shown. A 4 pole Butterworth circuit based upon a dual op-amp
would produce far superior results than those obtained at present.

Approx 10KHz Low Pass Butterworth filter.

Both the above options would improve the sound quality but at the expense of
more complexity.

Improvements could also be carried out in software, for example 10-bit sample
WAV files, or stereo WAV files are well within the capabilities of the software
with a few changes. Keeping with the stereo approach, one channel could carry
audio while the other channel could carry a time-line signal for controlling mo-
tors, lights etc at specific places in the WAV file being played. The possibilities
are nearly endless.

Have fun!

Les Johnson.

-

+
7

6

5
-

+

4

8

1

2

3

C3
2n2F

C1
10nF

C2
1nF C4

1nF

R1
2K7Ω

R2
10KΩ R3

4K7Ω
R4

24KΩ
U1a

U1b

LM358
+5V

From
DAC

To
Amp

