
Version 1.0.3.1 Page | 1

P-RTOS

REAL TIME OPERATING SYSTEM

FOR

PROTON DEVELOPMENT SYSTEM

Version 1.0.3.1 Page | 2

TABLE OF CONTENTS

INTRODUCTION ... 4

Why should I use RTOS? ... 4

RTOS FUNDAMENTALS .. 5

Some basic definitions .. 5

Structure of a Task .. 6

Task States .. 6

Real Life Example .. 7

INSTALLATION & FILE LOCATIONS .. 10

Installation .. 10

File Locations .. 10

Uninstalling P-RTOS .. 10

REFERENCE .. 11

RTOS Services.. 12

Context switching services ... 12

Non-Context Switching Services ... 14

Additional User Services ... 22

Clear_Serial_Buffer ... 22

OS_HRSOut ... 22

OS_WaitTxBuffer .. 22

OS_HRSIn .. 22

OS_WaitRXBuffer .. 23

Init_Usart_Interrupt ... 23

OSCycTmrRunning .. 23

OSTaskStopped ... 23

OSTimedOut ... 23

User Macros .. 24

OS hooks ... 24

Error Codes ... 24

Configuration .. 25

OSTASKS_COUNT .. 25

OSPRIO_COUNT .. 25

OSENABLE_Interrupts ... 25

OSENABLE_TIMER ... 25

OSENABLE_TIMEOUTS .. 25

Version 1.0.3.1 Page | 3

OSISR_USER_HOOK .. 25

OSISR_USER_HOOK_INIT .. 26

OSTICK_SOURCE ... 26

OSTIMER_PRESCALE ... 26

OSTIMER_PRELOAD .. 26

OSTICK_CTR_SIZE .. 26

OSENABLE_CYCLIC_TIMERS .. 26

OSENABLE_EVENTS ... 27

OSEVENTS_COUNT ... 27

OSENABLE_MESSAGES ... 27

OSENABLE_SEMAPHORES .. 27

OSENABLE_EVENT_FLAGS .. 27

OSEVENT_FLAGS ... 27

OSENABLE_BUFFERED_SERIN ... 27

OSENABLE_BUFFERED_SEROUT ... 28

OSSERIN_BUFFER_SIZE ... 28

OSSEROUT_BUFFER_SIZE.. 28

OSSER_ERROR_EVENT .. 28

WHAT'S GOING ON INSIDE... 29

Control Blocks ... 29

Task Control Block .. 29

Event Control Block .. 30

Dispatch List .. 30

Events ... 30

Using Events with Interrupts .. 30

Reserved Words .. 31

Version 1.0.3.1 Page | 4

INTRODUCTION

RTOS is a Real Time Operating System designed and written specifically in PDS Basic. The system uses co-

operative as opposed to pre-emptive scheduling which means that the application code you write has to

voluntarily release back to the operating system at appropriate times.

Writing code for a RTOS requires a different mindset from that used when writing a single threaded

application. However, once you have come to terms with this approach you will find that quite complex real

time systems can be developed quickly using the services of the operating system.

WHY SHOULD I USE RTOS?

RTOS can give you the potential opportunity to squeeze more from your PIC than you might expect from your

current single threaded application. For example, how often do your programs spend time polling for an input

or an event. If you could have the Operating System tell you when an event has taken place you could use that

polling time to do other things. This applies equally well to delays. By using RTOS you can write programs

which appears to be doing many things all apparently at the time.

Some of this can be achieved in a single threaded program by using interrupts but by using RTOS together with

interrupts you will be able to quickly develop responsive applications which are easy to maintain,

Version 1.0.3.1 Page | 5

RTOS FUNDAMENTALS

This section describes the fundamentals of the RTOS citing simple examples written using the PDS RTOS

syntax.

A typical program written in PDS Basic would use a looping main program calling subroutines from the main

loop. Time critical functions would be handled separately by interrupts. This is fine for simple programs but as

the programs become more complex the timing and interactions between the main loop background and the

interrupt driven foreground become increasingly more difficult to predict and debug.

RTOS gives you an alternative approach to this where your program is divided up into a number of smaller well

defined functions or tasks which can communicate with each other and which are managed by a single central

scheduler.

SOME BASIC DEFINITIONS

The fundamental building block of RTOS are Tasks. Tasks are a discrete set of instructions that will perform a

recognised function, e.g. Process a keypad entry, write to a display device, output to a peripheral or port etc.

It can be considered in effect a small program in its own right which runs within the main program. Most of

the functionality of a RTOS based program will be implemented in Tasks.

In RTOS a Task can have a Priority which determines its order of precedence with respect to other tasks. Thus

you can ensure your most time critical tasks get serviced in a timely manner.

Interrupts are events which occur in hardware which cause the program to stop what it was doing and vector

to a set of instructions (the Interrupt service routine ISR) which are written to respond to the interrupt. As

soon as these instructions have been executed the control is returned to the main program at the point where

it was interrupted.

A Context Switch occurs when one task is Suspended and another task is Started or Resumed. This is core

functionality to a RTOS. In the PDS RTOS the action of suspending is co-operative. This means that your tasks

must be written in a way that it will Yield back to RTOS in a timely manner. If the task fails to Yield back the

system will fail as the non-yielding task will run to the exclusion of all the others.

Tasks can call for a Delay which will suspend the task until the delay period has expired and will then resume

from where it left off. This is similar to the DelaymS or DelayuS functions in PDS except that during the delay

the processor can be assigned another task until that delay period is up. In practice it is most likely that delays

will be defined in the mS or 10s of milliseconds as delays in the low microseconds would make context

switching very inefficient.

An Event is the occurrence of something such as a serial data receipt, or an error has occurred or a long

calculation or process has completed. An event can be almost anything and can be raised (Signalled) by any

part of the program at any time. When a task waits on an event it can assign a Timeout so that the task can be

released from being stuck waiting for an event which isn’t going to happen for some reason.

Inter-task Communication provides a means for tasks to communicate with other tasks. PDS RTOS supports

Semaphores, Messages and Event Flags. (Currently only Semaphores and Messages are implemented).

Semaphores can take 2 forms, Binary and Counting Semaphore. A binary semaphore can be used to signal

actions like a button has been pressed or a value is ready to be processed. The task waiting on the event will

then suspend until the event occurs when it will run. A counting semaphore can carry a value typically it could

be used to indicate the number of bytes in an input buffer. When the value of a counting semaphore has

Version 1.0.3.1 Page | 6

reached zero it is "not signalled". Messages require both sender (Signaller) and receiver (Waiting Task) to

have knowledge of the size and type of data to be shared. The signalled event itself only contains a pointer to

the message being passed.

There are a number of other features which are part of PDS RTOS but these will be covered later. However,

there is one important aspect that it is important to appreciate before we get into more detail. In a multi

tasking environment such as RTOS it is quite conceivable that two tasks could make a call to the same function.

This requires that the function can be used simultaneously by more than one task without corrupting its data.

PDS does not naturally generate re-entrant code and you will have to write any functions which require re-

entrancy with great care or protect the situation from occurring. However with PDS RTOS’s co-operative

scheduling or through the use of events this problem can be circumvented.

STRUCTURE OF A TASK

Typically a task is a piece of code which will perform an operation within the program repeatedly. A task in

PDS RTOS would look like this:

UsefulTask:

 Repeat

 ‘Do something useful

 OS_Yield ‘Context Switch

 Forever

This code will perform its operation and then Yield to the operating system. RTOS will then decide when to

run it again. If there are no other tasks to run it will return to the original task. (Note the expression Forever is

a macro for “Until 1=0”) . In a co-operative RTOS every task must make a call back to the operating at least

once in its loop. OS_Yield is one of a number of mechanisms for relinquishing control back to the operating

system.

 In its simplest form a multitasking program could comprise just 2 or more tasks each taking their turn to run in

a Round-Robin sequence. This is of limited use and is functionally equivalent to a single threaded program

running in a main loop. However, RTOS allows Tasks to be assigned a priority which means you can ensure

that the processor is always executing the most import task at any point in time.

Clearly, if all your tasks were assigned the highest priority you would be back to running a round-robin single

loop system again but in real life applications, tasks only need to run when a specific event occurs. E.g. User

entered data or a switch has changed state. When such actions occur the task which needs to respond to that

action must run. The quicker the response needed then the higher the priority assigned to the task. This is

where a multitasking RTOS starts to show significant advantages over the traditional single threaded structure.

TASK STATES

A Task can assume a number of states:

Dormant Task not created

Pending Task created but not started

Delayed Task has been started but is suspended for a period

Waiting Task has been started and is waiting an event

Ready Task has been started and is ready or eligible to run

Running Task is the current active task

Version 1.0.3.1 Page | 7

Tasks have to be registered or Created in RTOS before they can be used. Details including the state of each

task are held by RTOS in Task control blocks (TCBs). Before a task is created the TCB state will be Dormant.

When a task is first created its state will be Pending. This means the task has been registered but has not yet

been started. Once started the task can have 4 states; Delayed meaning it is waiting for a certain number of

operating ticks, Waiting means it is waiting for an event to occur, Ready means its waiting to be run by the

scheduler. When a task is finally called by the scheduler its state will be Running.

 REAL LIFE EXAMPLE

Let’s look at a very basic example of a real program written for RTOS. This code has been written simply to

test the RTOS and does nothing useful except demonstrate some of the features of RTOS.

Device 18F452

Optimiser_Level = 3

Xtal = 20

Bootloader = Off

All_Digital = True

Create_Coff = On

Include "RTOS Defines.inc"

$define OSTASKS_COUNT 6 ' Maximum Task count is 256

$define OSPRIO_COUNT 8 ' Number of priority levels

$define OSENABLE_TIMER True ' Enables timer service

$define OSENABLE_TIMEOUTS True ' allow timeouts for events and counters

$define OSTICK_SOURCE T1 ' T0, T1, EXT

$define OSTIMER_PRESCALE Off ' Pre-scale value or off

$define OSTIMER_PRELOAD $3CB0 ' Preload value $D8E0

$define OSTICK_CTR_SIZE 2 ' Size of OS Tick Counter (bytes) (must be 1, 2 or 4 max)

$define OSENABLE_CYCLIC_TIMERS True ' allow cyclic timers to be created

$define OSENABLE_EVENTS True ' Enables Events

$define OSEVENTS_COUNT 2 ' Max number of events

$define OSENABLE_MESSAGES False ' Event Messages enabled

$define OSENABLE_SEMAPHORES True ' Event Semaphores enabled

$define OSENABLE_EVENT_FLAGS False ' Event Flags enabled

$define OSEVENT_FLAGS 1 ' Max Event flags supported

The code above sets up RTOS and defines which RTOS features are to be turned on. These features are

described in the chapter on CONFIURATION.

GoTo Start

Include "RTOS Vars.inc"

Include "RTOS Macros.Inc"

Include "RTOS Main.bas"

These includes are the RTOS operating code.

Dim Ctr As Word

Symbol T_Count = OSTCBP(1)

Symbol T_LEDOut = OSTCBP(2)

Symbol T_OSCOut = OSTCBP(4)

Symbol T_Delayed = OSTCBP(5)

Symbol T_BinSem = OSTCBP(6)

Symbol E_LedCtrl = OSECBP(1)

We are going to need to register 5 tasks and one event for this application. Each task will be assigned a unique
ID which we have aliased to meaningful names derived from the tasks to which they refer. Below are the
actual tasks which make up the application.

CountTsk:

Repeat

 Inc Ctr

 If Ctr = $1FF Then OSSignalBinSem E_LedCtrl

 if Ctr = $2FF then Ctr = 0

 OS_Yield

Forever

LEDOut:

Version 1.0.3.1 Page | 8

Repeat

 PORTD = Ctr & $3F

 OS_Yield

Forever

OSCOut:

Repeat

 PORTC = Ctr & $0F

 OS_Yield

Forever

DelayedTask:

Repeat

 Toggle PORTA.5

 OSStartTask T_OSCOut

 OS_Delay 2

 Toggle PORTA.5

 OSStopTask T_OSCOut

 OS_Delay 10

 OS_Replace DelayedTask2, 3

Forever

DelayedTask2:

Repeat

 Toggle PORTA.5

 OSStartTask T_OSCOut

 OS_Delay 1

 Toggle PORTA.5

 OSStopTask T_OSCOut

 OS_Delay 20

 OS_Replace DelayedTask, 2

Forever

BinSemTask:

Repeat

 OS_WaitBinSem E_LedCtrl,OSNO_TIMEOUT

 OS_Delay 1

 OSStartTask T_LEDOut

 OS_Delay 1

 OSStopTask T_LEDOut

Forever

All the tasks are very basic and are there just to demonstrate some activity in each task.

CountTsk increments a counter, CTR, and when it's reaches $1FF it signals an event. It then continues counting
until it reaches $2FF when it resets to 0. Every iteration of CountTsk will Yield back to RTOS.

LEDOut and OSCOut simply output the bottom 4 bits of the counter, CTR to PortD and PortC respectively.

DelayedTask and DelayedTask2 both do the same thing but with different timings and are written to
demonstrate the operation of the TaskReplace function. They toggle a bit on PORTA and start the OSCOut
task, delay and then stop OSCOut task Delay again then swap with each other and change priorities at the
same time.

BinSemTask waits on a binary semaphore. When that semaphore is signalled (by CountTsk) it delays 1 tick
then starts the LEDOut Task for one OS Tick then stops it. As the CountTsk is operating completely
asynchronously from the OS Tick source BinSemTask could be signalled at any time relative to the next OS Tick.
By implementing a Delay before starting the LEDOut task we can be sure that the LEDOut task will run for a full
OS Tick.

Now we get to the main program.

Start:

TRISA = %000000 ' All Port A Outputs

TRISB = %00000000 '

TRISD = %00000000 ' All port D pins output

TRISC = %11000000 ' Set port C to output

Ctr = $0000 ' reset ctr

OSInit ' Initialise RTOS

OSCreateTask T_Count, CountTsk, 3

OSCreateTask T_LEDOut, LEDOut, 3

OSCreateTask T_OSCOut, OSCOut, 3

OSCreateTask T_Delayed, DelayedTask, 3

OSCreateTask T_BinSem, BinSemTask, 3

OSCreateBinSem E_LedCtrl, 0

Version 1.0.3.1 Page | 9

OSStartTask T_LEDOut '

OSStartTask T_Count '

OSStartTask T_Delayed '

OSStartTask T_BinSem '

Repeat

 OSSched ' run scheduler continuously

Forever

After setting up the ports, we have to initialise the RTOS before we can do anything else. Next we register the

tasks we want to run with RTOS by calling OSCreateTask with the TaskName and the priority at which we want

it to run. (Note we haven't registered DelayedTask2 as this will occupy the same task control block as

DelayedTask.) Next we register the Event we want to use with OSCreateEvent and set its initial value.

We then start each of the tasks in turn and finally and perhaps the most important bit we start and repeatedly

call the scheduler.

The image below shows the program in operation.

The yellow trace shows the 10mS
ticks from the operating system

The cyan trace shows OSCOut
task being controlled by
DelayedTask and DelayedTask2.
The longer pulse is DelayedTask
while the shorter is DelayedTask2

The magenta trace is the BinSem
task starting and stopping the
LEDOut task for 1 tick each time
the counter hits $1FF.

You can see the BinSem Task running apparently at the same time as the Delayed Task showing the

multitasking nature of the RTOS. To achieve this the tasks which are running concurrently must be on the

same priority where they will alternate in a round robin sequence.

Note - there are periods when no tasks are running and the RTOS is idling waiting for another task to run. In a

conventional polled system this idle time would not be available but with RTOS you can use this time for other

tasks when required.

IMPORTANT:

When a task is started or resumed by the operating system the only register you can assume is correct is the

program counter. Therefore, when a task relinquishes control it should ensure that any working data is saved

before relinquishing or that it only relinquishes control at a point in the routine where it is safe to do so.

Version 1.0.3.1 Page | 10

INSTALLATION & FILE LOCATIONS

P-RTOS comprises a set of include files which are distributed as a plug-in installation. They can be downloaded

from the PDS Forum or from the Amicus18 site.

INSTALLATION

Download and save P-RTOS Installation Proton.zip (PDS) or P-RTOS Installation.zip (Amicus).

Run the installation executable.

FILE LOCATIONS

Once the install program has run the P-RTOS files will be installed as shown below:

Amicus File Locations:

Directory:

Win 7 installations c:\Program Files (x86)\AmicusIDE\Includes\P-RTOS

XP Installations c:\Program Files\AmicusIDE\Includes\P-RTOS

Files: Amicus18_Timers.inc

 P-RTOS Defines.inc

 P-RTOS HUSART.bas

 P-RTOS Macros.inc

 P-RTOS Main.bas

 P-RTOS Vars.inc

PDS File Locations:

Directory:

Win7 installations c:\Program Files (x86)\ProtonIDE\PDS\Includes\P-RTOS

XP Installations c: \Program Files\ProtonIDE\PDS\Includes\P-RTOS

Files: P-RTOS Defines.inc

 P-RTOS HUSART.bas

 P-RTOS Macros.inc

 P-RTOS Main.bas

 P-RTOS TimerDefs.inc

 P-RTOS Timers.inc

 P-RTOS Vars.inc

UNINSTALLING P-RTOS

To un-install P-RTOS from the Proton or Amicus IDE choose View, Plugin, Uninstall and select the P-RTOS

menu item. This will uninstall the above files and remove the subdirectory providing there are no other files in

that directory.

Version 1.0.3.1 Page | 11

REFERENCE

PDS RTOS uses a co-operative scheduler which requires that certain rules must be obeyed when writing

applications to run under RTOS. Ignoring these rules will stop RTOS working.

EVERY TASK MUST HAVE A CONTEXT SWITCH

PDS RTOS tasks must have at least one context switch. RTOS calls which will execute a context switch are

identified from other calls by the prefix "OS_". Non-context switching calls are prefixed just with "OS" i.e.

there is no underscore. Here is an example of a correctly constructed task.

MyTask:

Repeat

 Do something...

 OS_Delay 10

Forever

Here MyTask uses a context switch which will switch back to the OS through OS_Delay. The OS will then run

MyTask again after 10 OS ticks. Note the Repeat - Forever construct. All tasks should be written as an infinite

loop. The Forever keyword is an RTOS macro which equates to 'Until 1 = 0'.

Here are some examples of Task constructs which will fail under RTOS.

UncontrolledTask:

 Toggle PORTD.0

This task, once started, will not pass control back to RTOS and the application will continue to execute

whatever instructions follow.

GreedyTask:

Repeat

 Toggle PORTD.0

Forever

This task, once started, will continually loop but, as it never calls a context switch, control will never be

returned to the OS and no other tasks will run.

CONTEXT SWITCHES CAN ONLY OCCUR IN TASKS

The only state that is saved when Context switching in RTOS is the program counter. It is not good practice to

context switch from a subroutine called from a task because of the issues of possible re-entrancy and context

saving. Always wait until the function has returned back to the task before context switching.

MANAGE YOUR OWN VARIABLES

You should design your task so that it specifically saves any working variables that it needs when it resumes.

Alternatively write your task so that it context switches at a point where there is no need for any working

variables to be saved.

Version 1.0.3.1 Page | 12

RTOS SERVICES

The following details all the user calls which can be made to RTOS. All services are accessed via a macro to

maintain a consistent calling interface.

CONTEXT SWITCHING SERVICES

All context switching services are prefixed with OS_. These calls should only ever be made from within a task

and will return control to the scheduler.

OS_DELAY

Syntax: OS_Delay DelayTicks

Description: Stops the current Task and returns to scheduler which will resume the task after DelayTicks

of the OS. A DelayTicks of 0 will have the same effect as calling OS_STOP although this is not

the most efficient method of stopping a task.

Parameters: DelayTicks Word size variable

Requires: OSENABLE_TIMER services to be set true.

OS_DESTROY

Syntax: OS_Destroy

Description: Destroys the current task and returns to the scheduler. Removes the record of the task in

RTOS leaving the Task Control block to which it was assigned free to be used by another task.

You will have to call OSCreateTask before this task can be used again.

Parameters: None

OS_REPLACE

Syntax: OS_Replace TaskPtr, Priority

Description: Replaces the current task with the task specified at the priority specified and returns to the

scheduler. The new task will occupy the same Task Control Block as the existing task and so

will have the same TaskID.

Parameters: TaskPtr: Pointer to the New task to replace current task. (The Label of the new Task).

Priority: The priority to be assigned to the new task.

OS_SETPRIO

Syntax: OS_SetPrio Priority

Description: Changes the priority of the current task to the Priority level defined and returns to the

scheduler. If more than one task exists at the new priority level this task will added into the

list of tasks at the new priority.

Version 1.0.3.1 Page | 13

Parameters: Priority: Byte variable defining the priority. Ranging from 0 (OSHIGHEST_PRIO) through to

OSPRIORITY_COUNT -1 (OSLOWEST_PRIO)

OS_STOP

Syntax: OS_Stop

Description: Stops the current task and returns to the scheduler. The task can only be restarted from

OSStartTask when the task will resume from its last program counter position.

Parameters: none

OS_WAITBINSEM

Syntax: OS_WaitBinSem EventID, TimeOut

Description: Suspends task until the binary semaphore referenced in EventID has been signalled or the

Timeout has elapsed. If the Event is already signalled when the wait is called the Task will

continue without context switching. If the wait times out the Task will be resumed with the

timeout flag set. If the Event is signalled, the Task will be resumed with the timeout flag

cleared.

 This function can only be called after the referenced event has been created.

Parameters: EventID: Pointer to the associated event control block

Timeout: a byte variable specifying the number of OS Ticks before timing out. Set to

OSNO_TIMEOUT to wait indefinitely.

Requires: OSENABLE_EVENTS and OSENABLE_SEMAPHORES to be set to true.

OS_WAITEFLAG

Syntax:

Description: Not implemented yet.

Parameters:

OS_WAITMSG

Syntax: OS_WaitMsg EventID, Timeout, (PMessage)

Description: Suspends the current task until the message is signalled by another task or the timeout has

elapsed. A message could be any variable type so it is necessary that both sender and

receiver tasks expect the same data type and size. When signalled will return with a pointer

to the start of the message in PMessage. If the timeout has elapsed it will return with the

Timeout flag set. The value returned in PMessage will be undefined. Set Timeout to

OSNO_TIMEOUT to wait indefinitely.

 As PDS doesn't recognise pointers as a data type you would typically use the SFR registers to

indirectly address the message.

Version 1.0.3.1 Page | 14

 This function can only be called after the referenced event has been created.

Parameters: EventID: Pointer to the associated event control block.

Timeout: a byte variable specifying the number of OS Ticks before timing out. Set to

OSNO_TIMEOUT to wait indefinitely.

Message Pointer Placeholder for the returned pointer.

Requires: OSENABLE_EVENTS and OSENABLE_MESSAGES to be set to true.

OS_WAITSEM

Syntax: OS_WaitSem EventID, Timeout

Description: Suspends the current task until the counting semaphore referenced in EventID has been

signalled or the timeout has been elapsed. If the semaphore value is 0 it remains waiting and

returns to the scheduler . If the semaphore is non-zero it will decrement the semaphore

value and continue without context switching. If the timeout expires before the semaphore

value has reached zero continue execution with the timeout flag set. Set timeout to

OSNO_TIMEOUT to wait indefinitely.

 This function can only be called after the referenced event has been created.

Parameters: EventID: Pointer to the associated event control block.

Timeout: a byte variable specifying the number of OS Ticks before timing out. Set to

OSNO_TIMEOUT to wait indefinitely.

Requires: OSENABLE_EVENTS and OSENABLE_SEMAPHORES to be set to true.

OS_YIELD

Syntax: OS_Yield

Description: Unconditionally Yields to the scheduler. If no other task is waiting to run will resume at next

instruction after OS_Yield.

Parameters: None

NON-CONTEXT SWITCHING SERVICES

The following calls to RTOS do not initiate a context switch. In general these can be called from anywhere in

your application.

OSCREATEBINSEM

Syntax: OSCreateBinSem EventID, BinSem

Description: Assign an Event Control Block to a binary semaphore and set its initial value. (True or False)

Parameters: EventID: Pointer to the associated event control block.

BinSem: Initial values assigned to the binary semaphore (True or False)

Version 1.0.3.1 Page | 15

OSCREATECYCTMR

Syntax: OSCreateCycTmr TmrTaskPtr, TaskID, Delay, Period, Mode

Description: Assign a Task Control Block to a Cyclic timer. Cyclic Timers are structured like conventional

subroutines, starting with a start address and finishing with a Return.

Parameters: TmrTaskPtr: Start Address of the Cyclic Timer code.

TaskID: Pointer to the associated Task Control Block

Delay: Initial delay in OS Ticks before calling the task for the first time.

Period: The time in OS Ticks between successive calls of the Cyclic timer

Mode: The timer can have one of 2 modes operating mode, OSCT_ONE_SHOT and

OSCT_CONTINUOUS. If you don't want the Timer to start when you have created it And

OSCT_DONT_START_CYCTMR with your chosen mode.

OSCREATEEFLAG

Syntax:

Description: Not Implemented.

Parameters:

OSCREATEMSG

Syntax: OSCreateMsg EventID, PMessage

Description: Assigns an Event Control Block to a Message Event and allocates the Message Pointer. If the

message is to be signalled immediately the PMessage should point to an existing message

otherwise set the PMessage to 0.

Parameters: EventID: Pointer to the associated event control block.

PMessage: Pointer to the message

OSCREATESEM

Syntax: OSCreateSem EventID, Sem

Description: Assign an Event Control Block to a counting semaphore and set its initial value.

Parameters: EventID: Pointer to the associated event control block.

Sem: Byte - Initial value assigned to the semaphore count.

Requirements: OSENABLE_EVENTS and OSENABLE_SEMAPHORES

OSCREATETASK

Syntax: OSCreateTask TaskPtr, Priority

Description: Assign a task control block to a the task defined in TaskPtr.

Version 1.0.3.1 Page | 16

Parameters: TaskPtr: Address of the task you wish to assign. This would normally be the Label at the start

of the task.

Priority: Byte Variable defining the priority you wish the task to run at. The value must lie

between OSHIGHEST_PRIO and OSLOWEST_PRIO.

OSDESTROYCYCTMR

Syntax: OSDestroyCycTmr TaskID

Description: Destroys the Cyclic timer task identified by TaskID. Removes the reference to the cyclic timer

leaving the Task Control block to which it was assigned free to be used by another task. You

will have to call OSCreateCycTmr before this Cyclic Timer can be used again.

Parameters: TaskID: Pointer to the associated Task Control Block for the timer.

OSDESTROYTASK

Syntax: OSDestroyTask TaskID

Description: Destroys the task identified by TaskID. Removes the notification of the task in RTOS leaving

the Task Control block to which it was assigned free to be used by another task. You will

have to call OSCreateTask before this task can be used again.

Parameters: TaskID: Pointer to the associated Task Control Block for the Task.

OSGETPRIO

Syntax: OSGetPrio

Description: Returns the priority of the active task.

Parameters: None

OSGETPRIOTASK

Syntax: OSGetPrioTask TaskID

Description: Returns the priority of the task defined in TaskID.

Parameters: TaskID: Pointer to task control block of the referenced task

OSGETSTATE

Syntax: OSGetState

Description: Returns the state of the current task, always OSTCB_TASK_RUNNING. Included for

completeness only

Parameters: None

Version 1.0.3.1 Page | 17

OSGETSTATETASK

Syntax: OSGetStateTask TaskID

Description: Returns the state of the task identified by TaskID. Possible values are:

OSTCB_DESTROYED Destroyed or uninitialised

OSTCB_TASK_STOPPED Task Stopped

OSTCB_TASK_DELAYED Delayed n OSTicks

OSTCB_TASK_WAITING Waiting on an event

OSTCB_TASK_WAITING_TO Waiting and event with a timeout

OSTCB_TASK_ELIGABLE Ready to run

OSTCB_TASK_RUNNING Running

Parameters: TaskID: Pointer to task control block of the referenced task

OSGETTICKS

Syntax: OSGetTicks

Description: Returns the current system timer in ticks.

The size of the return value will be determined by OSTICK_CTR_SIZE

Parameters: None

OSINIT

Syntax: OSInit

Description: This function must be called before calling any other RTOS functions. It initialises the RTOS

setting up the task and event control blocks and starting the timer and events if necessary.

OSInit relies on a number of configuration settings which you must define prior to calling

OSInit. These are described more fully in the Configuration chapter.

Parameters: None

OSQUEUE_EVENT

Syntax: OSQueue_Event EventID&Type, {AddrLow, AddrHigh}

Description: This function will add a Signal event to a queue for processing when the scheduler next runs.

It is designed to be used in interrupt routines where you need to keep the time spent in the

interrupt to a minimum. For more information see "Using Events with Interrupts".

Parameters: EventID&Type: a byte parameter which contains the Event ID in the lower 5 bits of the byte

and the event type in the upper 2 bits.

 The event type can be: OSCNTSEMEVNT, OSBINSEMEVNT, OSMSGEVNT, OSEFLAGEVNT and

should be OR'ed with the Event ID.

 AddrHigh, AddrLow If a Message event or EFlag event two additional bytes are used to

carry the address of the message or EFlag.

Version 1.0.3.1 Page | 18

OSREADMSG

Syntax: OSReadMsg EventID

Description: Returns a pointer to the current message. Returns 0 if there is no message This function has

no effect on the Message Events.

Parameters: EventID: Pointer to the associated event control block.

OSREADBINSEM

Syntax: OSReadBinSem EventID

Description: Returns the value (True or False) of the BinSem identified by EventID. This function has no

effect on the binary semaphore.

Parameters: EventID: Pointer to the associated event control block.

OSREADSEM

Syntax: OSReadSem EventID

Description: Returns the value $0 ..$FF of the counting semaphore specified in EventID. This function has

no effect on the binary semaphores

Parameters: EventID: Pointer to the associated event control block.

OSRESETCYCTMR

Syntax: OSResetCycTmr TaskID

Description: Resets the Cyclic timer specified in TaskID to its initial conditions after OSCreateCycTmr. This

means that the timer will start with the defined initial delay.

Parameters: TaskID: Pointer to task control block of the referenced task:

OSSCHED

Syntax: OSched

Description: Runs the highest priority eligible task. This function must be called continuously from your

main program to continue multitasking. It must be called after OSInit.

 Typically your main program would call OSSched like this:

 Repeat

 OSSched

Forever

Every time a task yields it will return to the main program which should call OSSched. If the

main program stops calling OSSched then multitasking will cease.

Parameters: None

Version 1.0.3.1 Page | 19

OSSETPRIO

Syntax: OSSetPrio Priority

Description: Changes the priority of the current task.

Parameters: Priority: Byte variable defining the new priority (0 is highest priority)

OSSETPRIOTASK

Syntax: OSSetPrioTask TaskID, Priority

Description: Changes the priority assigned to the task identified in TaskID.

Parameters: TaskID: Pointer to task control block of the referenced task

Priority: Byte variable defining the new priority.

 OSSETTICKS

Syntax: OSSetTicks TickValue

Description: Initialises the value of the OS Tick Counter to TickValue

Parameters: TickValue: Byte, Word or DWord depending on OS_TICK_SIZE

OSSIGNALBINSEM

Syntax: OSSignalBinSem EventID

Description: Signals a binary semaphore. If one or more tasks are waiting this semaphore the highest

priority t ask waiting will be made eligible to run. The task will run when it becomes the

highest priority eligible task.

Parameters: EventID: Pointer to the associated event control block.

OSSIGNALMSG

Syntax: OSSignalMsg EventID, PMessage

Description: Signals a message is ready to be read by any waiting task. The message address passed in

PMessage.

Parameters: EventID: Pointer to the associated event control block.

PMessage: Pointer to the Message.

Version 1.0.3.1 Page | 20

OSSIGNALSEM

Syntax: OSSignalSem EventID

Description: Increments a counting semaphore. If one or more tasks are waiting this semaphore the

highest priority t ask waiting will be made eligible to run. The task will run when it becomes

the highest priority eligible task.

Parameters: EventID: Pointer to the associated event control block.

OSSTARTCYCTMR

Syntax: OSStartCycTmr TaskID

Description: Starts a cyclic timer. If the timer has never been run since it was created or reset then the it

will start with the initial delay. If the timer had previously been run it will start with the

period value.

Parameters: TaskID: Pointer to task control block of the referenced task

OSSTARTTASK

Syntax: OSStartTask TaskID

Description: Starts a dormant or stopped task identified by TaskID

Parameters: TaskID: Pointer to task control block of the referenced task

OSSTOPCYCTMR

Syntax: OSStopCycTmr TaskID

Description: Stops a Cyclic Timer identified by TaskID

Parameters: TaskID: Pointer to task control block of the referenced task

OSSTOPTASK

Syntax: OSStopTask TaskID

Description: Makes a task identified by TaskID ineligible.

Parameters: TaskID: Pointer to task control block of the referenced task

Version 1.0.3.1 Page | 21

OSTRYBINSEM

Syntax: OSTryBinSem EventID

Description: Behaves like OS_WaitBinSem but does not context switch from the current task.

As it doesn't context switch it can be used outside a task. Typically this would be used in a

ISR to handle an external event.

Parameters: EventID: Pointer to the associated event control block.

OSTRYMSG

Syntax: OSTryMsg EventID

Description: Behaves like OS_WaitMsg but does not context switch from the current task.

As it doesn't context switch it can be used outside a task.

Parameters: EventID: Pointer to the associated event control block.

OSTRYSEM

Syntax: OSTrySem EventID

Description: Behaves like OS_WaitSem but does not context switch from the current task.

As it doesn't context switch it can be used outside a task. Typically this would be used in an

ISR to handle outgoing data.

Parameters: EventID: Pointer to the associated event control block.

Version 1.0.3.1 Page | 22

ADDITIONAL USER SERVICES

The following services will be available if enabled by the relevant Option.

CLEAR_SERIAL_BUFFER

Syntax: Clear_Serial_Buffer

Description: Disables USART interrupts, clears the serial receive and transmitter buffers to zero and re-

enables USART Interrupts.

Requires: Buffered serial in must be enabled ($define OSENABLE_BUFFERED_SERIN) and optionally

buffered serial out ($define OSENABLE_BUFFERED_SEROUT)

OS_HRSOUT

Syntax: OS_HRSOut Item

Description: This is a context switching function which combines the PDS HRSOut command with

OS_WaitTxBuffer to make a single inline command. Use is as if you were using the standard
PDS HRSOut command but limited to only one Item. If the output buffer contains data when
this function is called it will return to the OS until such time that the buffer is empty.

Parameters: A constant, variable or string list. All modifiers are supported.

Requires: Buffered serial out must be enabled ($define OSENABLE_BUFFERED_SEROUT)

OS_WAITTXBUFFER

Syntax: OS_WaitTxBuffer

Description: Waits current task until the Tx Buffer is empty. This would normally be used before calling

HRSOut when there is a possibility that the USART is still transmitting data. If you can be
confident that there is room in the Tx buffer for the data you wish to send this can be
skipped.

Requires: Buffered serial out must be enabled ($define OSENABLE_BUFFERED_SEROUT)

OS_HRSIN

Syntax: OS_HRSIn (Timeout, Item)

Description: This is a context switching function which combines the PDS HRSIn command with

OS_WaitRxBuffer to make a single in line command. Use it in a similar way you would with
HRSIn with the following exceptions:

 Only the second format of the PDS command is supported
 Timeout label and Parity label are not supported.
 Timeout is not an optional parameter, use OSNO_TIMEOUT if not required.
 Only one variable is supported. All modifiers are supported.
 Wait for sequence and Skip are not supported.
 This function will return to the OS until a character has been received in the input buffer.

Requires: Buffered serial in must be enabled ($define OSENABLE_BUFFERED_SERIN)

Version 1.0.3.1 Page | 23

OS_WAITRXBUFFER

Syntax: OS_WaitRxBuffer (Timeout)

Description: Waits current task until the Rx Buffer contains at least one byte of data or the timeout period

has elapsed. This would normally be used before calling HRSIn so that you only continue
when data is there to be processed. If a timeout has been specified test the OSTIMEDOUT
flag for timeout.

Parameter: Timeout value specified in OS Ticks or OSNO_TIMEOUT.

Requires: Buffered serial in must be enabled ($define OSENABLE_BUFFERED_SERIN)

INIT_USART_INTERRUPT

Syntax: Init_Usart_Interrupt

Description: This will set up the interrupts for the USART. It will set interrupt to high Priority, create the

RxCharEv event and RxErrEv event if required, and clear the receive buffer. This will be
automatically called by the RTOS Init function if buffered serial in is enabled. If buffered
serial out is enabled the routine will additionally clear the Tx ready interrupt and clear the
transmit Buffer.

 Note. The user must set the USART baud rate and I/O register settings in the application's

initialisation routines.

Requires: Buffered serial in must be enabled ($define OSENABLE_BUFFERED_SERIN)

and optionally buffered serial out ($define OSENABLE_BUFFERED_SEROUT)

OSCYCTMRRUNNING

Syntax: OSCycTmrRunning TaskID

Description: Returns True is Cyclic Timer referenced in TaskID is running.

Requires: OSENABLE_CYCLIC_TIMERS to be enabled. ($define OSENABLE_CYCLIC_TIMERS True)

OSTASKSTOPPED

Syntax: OSTaskStopped TaskID

Description: Returns true if Task defined by TaskID is running, False if task is stopped

OSTIMEDOUT

syntax: OSTimedOut

Description: True if current task has timed out. Valid after calling OS_WaitSem, OS_WaitBinSem or

OS_WaitMsg.

Requires: OSENABLE_EVENTS to be enabled ($define OSENABLE_EVENTS True)

Version 1.0.3.1 Page | 24

USER MACROS

This section describes some additional macros which are provided to simplify usage.

OSTCBP(X) Returns a pointer value to a specific Task Control Block (TCB) within the TCB array. Use this

to create an alias to a TCB.

E.g. Symbol MyTaskPtr = OSTCBP(3)

 OSCreateTask MyTaskPtr, MyTask

OSECBP(X) Returns a pointer value to a specific Event Control Block (ECB) within the ECB array.

OSEFCBP(X) Returns a pointer value to a specific Event Flag Control Block (EFCB)

 Note - In all the above macros ensure that X does not exceed the number of Tasks, Events or

Event Flags set in the Configuration settings

Forever Returns 1 = 0 - use this for endless Repeat loops.

OS HOOKS

The following hooks and return labels should be used when writing user ISR routines:

OSTICK_ISR_ISR This is the label the OS will jump to if the OSTICK_SOURCE is set to ext.

OSTICK_ISR_RTN This label should be used at the end of your TICK ISR. E.g. Goto OSTICK_ISR_RTN

 See also configuration setting OSTICK_SOURCE

OSUSER_ISR _RTN This return label should be used at the end of your USER ISR. E.g. GoTo OSUSER_ISR_RTN

 See also configuration setting OSISR_USER_HOOK

ERROR CODES

The following error codes are returned in RTOS. The error code will be returned in OSRESULT after calling any

OS function.

OSNOERR Function successful

OSCREATEERR An error occurred while attempting to create a Task, Event or Cyclic Timer.

OSEVENTERR An error occurred while attempting to Wait or signal and event.

OSPRIOERR An error occurred while attempting to change the priority of a task

OSTASKERR An error occurred while attempting to start, stop replace or destroy a task.

OSCYCTMRERR An error occurred while attempting using a Cyclic timer function.

Version 1.0.3.1 Page | 25

CONFIGURATION

PDS RTOS provides a number of configuration options which you can use to tailor the RTOS features to suit
your requirements and minimise the size of your program.

These settings use the PDS pre-processor commands and should be placed at the beginning of your main
program.

OSTASKS_COUNT

Syntax: $define OSTASKS_COUNT N (where N is an integer between 0 and 32)

Description: Sets the maximum number of tasks supported. RTOS will allocate 8 bytes of RAM per task up

to a maximum of 32 tasks (256 bytes). If OSTASKS_COUNT is not defined it will default to 4
tasks.

OSPRIO_COUNT

 Syntax: $define OSPRIO_COUNT N (where N is an integer between 0 and 15)

Description: Sets the number of priority levels supported. RTOS will allocate 3 bytes of RAM for each

priority level up to a maximum of 16 levels (48 bytes). If OSPRIO_COUNT is not defined it will
default to 4 priority levels.

OSENABLE_INTERRUPTS

Syntax $define OSENABLE_INTERRUPTS True/False

Description: OSENABLE_INTERRUPTS must be set true if you are using Timer services OSENABLE_TIMER,

OSENABLE_TIMEOUTS), RTOS USART service (OSENABLE_BUFFER_SERIN) or a User define ISR
(OSISR_USER_HOOK).

OSENABLE_TIMER

Syntax: $define OSENABLE_TIMER True/False

Description: Enables the RTOS timer services. Timer services are required to use Delays, Timeouts or

Cyclic Timers. If not defined OSENABLE_TIMER will default to False.

 This option must be set true to use any of the following options:
 OSENABLE_TIMEOUTS, OSTICK_SOURCE, OSTIMER_PRESCALE, OSTIMER_PRLOAD,

OSTICK_CTR_SIZE, OSENABLE_CYCLIC_TIMERS.

OSENABLE_TIMEOUTS

 Syntax: $define OSENABLE_TIMEOUTS True/False

Description: Enables timeouts to be used on OS_Wait... calls. If not defined will OSENABLE_TIOMEOUTS

will default to False.

OSISR_USER_HOOK

Syntax: $define OSISR_USER_HOOK ISR Label

Description: Used to define a label to a user defined Interrupt Subroutine to handle additional sources of

interrupt. E.g. Keyboard entry or switch contact etc. When an interrupt is received RTOS will
perform a context save and Jump to the label defined in OSISR_USER_HOOK. The ISR must

Version 1.0.3.1 Page | 26

return to RTOS by jumping to OSISR_RTN. Typically the user ISR should clear the interrupt
save any necessary data and signal an event which RTOS will use to trigger the appropriate
task to processes the event.

OSISR_USER_HOOK_INIT

Syntax: OSISR_USER_HOOK_INIT ISRInit Label

Description: Used to define a user defined initialisation subroutine for the User interrupt service routine

see OSISR_USR_HOOK.

OSTICK_SOURCE

Syntax: $define OSTICK_SOURCE T0/T1/EXT

Description: Defines the tick source for RTOS. OSTICK_SOURCE values of T0 or T1 will define the tick

source as Timer0 or Timer1. To configure the timers use OSTIMER_PRESCALE and
OSTIMER_PRELOAD.

 Setting the OSTICK_SOURCE value to EXT enables an external interrupt source to be the RTOS

Tick Source. This will bypass the RTOS tick timer initialisation and interrupt handling and use

instead user defined initialisation and interrupt service routine. During RTOS initialisation

RTOS will call a user defined a initialisation routine OSTICK_EXT_INIT. On interrupt RTOS will

perform a context save and jump to OSTICK_EXT_ISR. This ISR should jump back to

OSTICK_ISR_RTN.

OSTIMER_PRESCALE

Syntax: $define OSTIMER_PRESCALE Off/0..7

Description: This parameter allows you to choose a Timer Pre-scale value. For Timer0 the value can range

from 0 to 7 and for Timer1 the value can range from 0 to 3. If undefined OSTIMER_PRESCALE
will default to Off.

OSTIMER_PRELOAD

Syntax: $define OSTIMER_PRELOAD $NNNN

Description: This parameter is the value loaded into Timer 0 or Timer 1 when the OSTICK_SOURCE is T0 or

T1. If this define is omitted and T0 or T1 is selected a compile error will be reported.

OSTICK_CTR_SIZE

Syntax: $define OSTICK_CTR_SIZE 1/2/4

Description: The tick counter increments for each RTOS tick and rolls over back to 0 on overflow. The tick

counter can be a byte(1), word(2) or double word (4). If not defined OSTICK_CTR_SIZE will
default to byte size.

OSENABLE_CYCLIC_TIMERS

Syntax: $define OSENABLE_CYCLIC_TIMERS True/False

Description: Enables cyclic timers to be used. If not defined OSENABLE_CYCLIC_TIMERS will default to

False.

Version 1.0.3.1 Page | 27

OSENABLE_EVENTS

 Syntax: $define OSENABLE_EVENTS True/False

Description: Enables the RTOS Events services. Event services are required to support semaphores, event

flags and messages. If not defined OSENABLE_EVENTS will default to False.

 This option must be set true to use any of the following services:
 OSENABLE_MESSAGES, OSENABLE_SEMAPHORES and OSENABLE_EVENT_FLAGS.

OSEVENTS_COUNT

Syntax: $define OSEVENTS_COUNT N

Description: Sets the maximum number of events supported. RTOS will allocate 2/3 bytes of RAM per

event depending on the event types are enabled up to a maximum of 32 events (64/96
bytes). If OSEVENTS_COUNT is not defined it will default to 4 events.

OSENABLE_MESSAGES

Syntax: $define OSENABLE_MESSAGES True/False

Description: Enables Message services to be supported. If not defined OSENABLE_MESSAGES will default

to False.

OSENABLE_SEMAPHORES

Syntax: $define OSENABLE_SEMAPHORES True/False

Description: Enables binary and counting Semaphore services to be supported. If not defined

OSENABLE_SEMAPHORES will default to False.

OSENABLE_EVENT_FLAGS

Syntax: $define OSENABLE_EVENT_FLAGS True/False

Description: Enables Event flag services to be supported. If not defined OSENABLE_EVENT_FLAGS will

default to False.

OSEVENT_FLAGS

 Syntax: $define OSEVENT_FLAGS N

Description: Defines the number of event flags supported. Each event flag requires one byte of RAM. If

not defined and OSENABLE_EVENTS is True OSEVENT_FLAGS will default to 2.

OSENABLE_BUFFERED_SERIN

Syntax: $define OSENABLE_BUFFERED_SERIN

Description: Introduces a buffered serial input function to RTOS using the hardware USART. Received
characters are placed in a buffer and a RxCharEv counting semaphore event is raised. The
value of the semaphore contains the number of received bytes in the buffer.

 You can access these characters using the PDS HRSIn command. There are 2 ways you can

use this command. To read the whole buffer without context switching put HRSIn in a loop
reading the buffer until OSTRYSEM RxCharEv returns 0. Alternatively to context switch back

Version 1.0.3.1 Page | 28

on each read use OS_WaitTRxBuffer. If no other task has a higher priority RTOS will return to
this task until the receive buffer is empty. See also OS_HRSIn.

 When enabled, buffered serial in will create a new Event (RxCharEv) which will occupy the

last slot in the Event Control block. If OSSER_ENABLE_ERROR is enabled an additional event
will be created (RxErrEv). If buffered serial out is not enabled, the error event will occupy the
last but one slot in the event control block. If buffered serial out is enabled, the error event
will occupy the second from last slot in the event control block. When determining the size
of the event control block you must remember to include these additional events.

 Important: when used in this configuration HRSIn does not support the PDS HRSIn timeout

function, instead call OS_WAITSEM RxCharEv with a timeout value. The OSTimedOut flag will
return true if the event has timed out.

OSENABLE_BUFFERED_SEROUT

Syntax: $Define OSENABLE_BUFFERED_SEROUT

Description: Introduces a buffered serial out function to RTOS using the Hardware USART. You can use

the PDS HRSOut function to load the buffer which will be emptied automatically by RTOS at
the rate dictated by the USART TX Baud rate.

 Be careful not to place more characters into the buffer than can be accommodated by the

buffer. If you need to send strings of data which are longer that the buffer size break up the
string and use repeated HRSOut commands, each command being preceded by a
OS_WaitTxBuffer. See also OS_HRSOut.

 When enabled, buffered serial out will create a new Event (TxEmptyEv) which will occupy the

penultimate slot in the Event control block.

OSSERIN_BUFFER_SIZE

Syntax: $define OSSERIN_BUFFER_SIZE N

Description: Defines the buffer size in bytes for the incoming serial data. Must not exceed 256 bytes.

Defaults to 64 bytes. OSSERIN_BUFFER_SIZE will reserve N bytes at the top of RAM for the

buffer.

OSSEROUT_BUFFER_SIZE

Syntax: $define OSSEROUT_BUFFER_SIZE N

Description: Defines the buffer size in bytes for the outgoing serial data. Must not exceed 256 bytes.

Defaults to 64 bytes. OSSEROUT_BUFFER_SIZE will reserve N bytes at the top of RAM for the

buffer.

OSSER_ERROR_EVENT

Syntax: $define OSSER_ERROR_EVENT

Description: When serial receive errors occur if this Option is not defined the error flags will be cleared
automatically, no receive event will be generated and the incoming data will be effectively
ignored. If this option is defined the error flags will not be cleared and a RxCharErr event
will be signalled.

 To use this function you will need to add a task which waits on this event.

Version 1.0.3.1 Page | 29

WHAT'S GOING ON INSIDE

This section is written to give you an outline of what the RTOS is doing internally.

CONTROL BLOCKS

Core to the operation of the RTOS are control blocks. These hold the data associated with tasks and events.

TASK CONTROL BLOCK

The task control block (TCB) is a block of 8 bytes. TCBs are held in a byte array. Each TCB looks like this...

 7 6 5 4 3 2 1 0

TASK ID STATE PRIORITY Task State and Priority

 + 1 DELAY (OSTicks) or EVENTID LS of a Delay or a Waiting EVENT id

+ 2 DELAY (OSTicks) or TIMEOUT MS of a Delay or Timeout in OS Ticks

+ 3 EVENT FLAG MASK Not implement at present

+ 4 PROGRAM COUNTER LSB LS address of next instruction

+ 5 PROGRAM COUNTER MSB MS address of next instruction

+ 6 PREV TASK ID Pointer to Previous task at this priority

+ 7 NEXT TASK ID Pointer to Next task at this priority

 STATE can have the following values:
 Ready $00 Task is ready to run
 Delay $10 Waiting 'N' OS Ticks
 Event $20 Waiting an Event forever
 Event w/to $30 Waiting an Event with a timeout
 CycTmrOff $40 Cyclic timer stopped
 CycTmrOn $50 Cyclic Timer running
 Pending $C0 Task stopped
 Dormant $FX Task not present - deleted

 PRIORITY can have any value between 0 (Highest) to OSPRIO_COUNT (Lowest)

 Program Counter When a task Yields to the OS, the Program Counter in the TCB holds the

address of the next instruction to be executed when the task is next run.

 Tasks which share the same priority level will execute on a round robin basis. The TCBs for

these tasks form a linked list using the PREV and NEXT task IDs.

Version 1.0.3.1 Page | 30

EVENT CONTROL BLOCK

The event control block(ECB) is a block of 2 or 3 bytes depending on the which specific event options have
been enabled.

 7 6 5 4 3 2 1 0

EVENTID SIGNALLED TYPE Signalled state and Event Type

 + 1 SEM VAL, MSG PTR or EFLG PTR Semaphore value or pointers to Msg or EFlag

+ 2 MSG PTR MSB MS of a Delay or Timeout in OS Ticks

 The event type field can carry the following codes:
 Message $01 The event is a Message event
 Counting $02 The event is a counting semaphore
 Binary $03 The event is a Binary semaphore
 Event Flag $04 The event is a EFlags event (Currently not implemented)

 The event Signalled field has the following states:
 Not signalled $00
 Signalled $FF

DISPATCH LIST

The dispatch list is an array of bytes, OS_PRIO_COUNT deep. The array is ordered in priority representing

priority level 0 through OSPRIO_COUNT. Each location holds the TaskID of the next task to be run or $FF if no

task is to run. The scheduler runs through each location starting at 0 until it finds a TaskID. It makes this task

the Active Task and updates the dispatch list at the current priority with the next task to run if any. This is

done by scanning the Task Control blocks for a Ready state task at the current priority.

FIRST TASK IN and LAST TASK IN are 2 additional arrays which hold the TaskIDs of the first task and most recent

task respectively added at that priority. It is used to maintain the order of tasks sharing the same priority so

that an equitable Round Robin scheme operates.

EVENTS

 An event has to be created before it can be used. When a task calls a Wait on a semaphore or message it can

do one of 2 things: If the event has already been signalled the task will continue without context switching. If

it hasn't been signalled the task will context switch. For Events to operate correctly when a waiting task is

signalled it is necessary to call the Wait again in order that it can process the event as a signalled Event. This

means the task will resume at the Wait instruction as it is now signalled whereas in all other cases of Yielding

the task will resume at the instruction following the yield.

USING EVENTS WITH INTERRUPTS

Any part of the system can signal an event which will normally be registered immediately unless called from an

interrupt service routine (ISR). In order to keep the ISR as short as possible and to prevent the corruption of

data, events should be placed in an events queue which will be processed next time the scheduler runs.

The RTOS Macro provided for this is OSQueue_Event.

Version 1.0.3.1 Page | 31

However, it may be preferable to build this function into your own ISR so below are the details necessary to

update the Event queue directly:

Variables used:

EVNTQ Array of byte The event queue

EVNTQ_IN Byte Index into the queue of the most recent event added

EVNTQ_OUT Index into the queue of the most recent event extracted

Counting and Binary semaphores use a single byte, Message events and event flags use 2 additional bytes to

carry the address of the message.

Event Queue First Byte

B7 B6 B5 B4 B3 B2 B1 B0

Event Type X Event ID

 B6-Bt Event Type

 00 Counting Semaphore Symbol OSCNTSEMEVNT

 01 Binary Semaphore Symbol OSBINSEMEVNT

 10 Message Semaphore Symbol OSMSGEVNT

 11 Event Flags Symbol OSEFLAGEVNT

 B4-B0 Event ID

Event Queue second and third bytes (Message and EFlag Events only)

 Second byte LS byte of address

 Third Byte MS byte of address.

Example code:

 Dim EVNT_FSR0 As FSR0L.Word

 ' Save FSR0 before entering this code...

 EVNT_FSR0 = VarPtr EVNTQ ' Put address of Start of EVNTQ in FSR0

 Inc EVNTQ_IN ' Increment In pointer to next slot

 If EVNTQ_IN >= SizeOf (EVNTQ) then EVNTQ_IN = 0 ' reset to 0 if overrun

 EVNT_FSR0 = EVNT_FSR0 + EVNTQ_IN ' Add pointer in to EVNTQ start address

 INDF0 = EventID | EventType ' Load EVNTQ with signalled EventID and type

 ' If message or eflag event type repeat for the 2 additional bytes.

 ' Restore FSR0 after this code...

RESERVED WORDS

Below is a list of protected words that P-RTOS uses internally. Be sure not to use any of these words as variable

or label names, otherwise errors will be produced.

In general all variables or names starting with OS and _OS

Forever, TCBs, ECBs, EFCBs, labels beginning with t_, e_ (incomplete)

	Introduction
	Why should I use RTOS?

	RTOS Fundamentals
	Some basic definitions
	Structure of a Task
	Task States
	Real Life Example

	Installation & File Locations
	Installation
	File Locations
	Uninstalling P-RTOS

	Reference
	Every task must have A context switch
	Context switches can only occur IN tasks
	Manage your own Variables
	RTOS Services
	Context switching services
	OS_Delay
	OS_Destroy
	OS_Replace
	OS_SetPrio
	OS_Stop
	OS_WaitBinSem
	OS_WaitEFlag
	OS_WaitMsg
	OS_WaitSem
	OS_Yield

	Non-Context Switching Services
	OSCreateBinSem
	OSCreateCycTmr
	OSCreateEFlag
	OSCreateMsg
	OSCreateSem
	OSCreateTask
	OSDestroyCycTmr
	OSDestroyTask
	OSGetPrio
	OSGetPrioTask
	OSGetState
	OSGetStateTask
	OSGetTicks
	OSInit
	OSQueue_Event
	OSReadMsg
	OSReadBinSem
	OSReadSem
	OSResetCycTmr
	OSSched
	OSSetPrio
	OSSetPrioTask
	OSSetTicks
	OSSignalBinSem
	OSSignalMsg
	OSSignalSem
	OSStartCycTmr
	OSStartTask
	OSStopCycTmr
	OSStopTask
	OSTryBinSem
	OSTryMsg
	OSTrySem

	Additional User Services
	Clear_Serial_Buffer
	OS_HRSOut
	OS_WaitTxBuffer
	OS_HRSIn
	OS_WaitRXBuffer
	Init_Usart_Interrupt
	OSCycTmrRunning
	OSTaskStopped
	OSTimedOut

	User Macros
	OS hooks
	Error Codes
	Configuration
	OSTASKS_COUNT
	OSPRIO_COUNT
	OSENABLE_Interrupts
	OSENABLE_TIMER
	OSENABLE_TIMEOUTS
	OSISR_USER_HOOK
	OSISR_USER_HOOK_INIT
	OSTICK_SOURCE
	OSTIMER_PRESCALE
	OSTIMER_PRELOAD
	OSTICK_CTR_SIZE
	OSENABLE_CYCLIC_TIMERS
	OSENABLE_EVENTS
	OSEVENTS_COUNT
	OSENABLE_MESSAGES
	OSENABLE_SEMAPHORES
	OSENABLE_EVENT_FLAGS
	OSEVENT_FLAGS
	OSENABLE_BUFFERED_SERIN
	OSENABLE_BUFFERED_SEROUT
	OSSERIN_BUFFER_SIZE
	OSSEROUT_BUFFER_SIZE
	OSSER_ERROR_EVENT

	What's Going on Inside
	Control Blocks
	Task Control Block
	Event Control Block

	Dispatch List
	Events
	Using Events with Interrupts

	Reserved Words

