

Proton24 Compiler. Development Suite.

 2

Rosetta Technologies and Crownhill Associates reserve the right to make changes to the
products contained in this publication in order to improve design, performance or reliability.
Except for the limited warranty covering a physical CD-ROM and/or Hardware License key
supplied with this publication as provided in the End-User License agreement, the information
and material content of this publication are provided “as is” without warranty of any kind
express or implied including without limitation any warranty concerning the accuracy adequacy
or completeness of such information or material or the results to be obtained from using such
information or material. Neither Crownhill Associates Limited or Rosetta Technologies or the
author shall be responsible for any claims attributable to errors omissions or other inaccuracies
in the information or materials contained in this publication and in no event shall Crownhill
Associates or the author be liable for direct indirect or special incidental or consequential
damages arising out of the use of such information or material. Neither Crownhill or the author
convey any license under any patent or other right, and make no representation that the circuits
are free of patent infringement. Charts and schedules contained herein reflect representative
operating parameters, and may vary depending upon a user’s specific application.

All terms mentioned in this manual that are known to be trademarks or service marks have
been appropriately marked. Use of a term in this publication should not be regarded as
affecting the validity of any trademark.

PICmicro™ is a trade name of Microchip Technologies Inc. www.microchip.com

Proton™ is a trade name of Rosetta Technologies and Crownhill Associates Ltd.
www.crownhill.co.uk

Proton24™ is a trade name of Rosetta Technologies and Crownhill Associates Ltd.
www.crownhill.co.uk

EPIC™ is a trade name of microEngineering Labs Inc. www.microengineeringlabs.com

The Proton IDE was written by David Barker of Mecanique www.mecanique.co.uk

Proteus VSM © Copyright Labcenter Electronics Ltd www.labcenter.co.uk

Title image by Amie Reynolds.

Web URLs correct at time of publication.

The Proton compiler and documentation is written by Les Johnson.

If you should find any anomalies or omission in this document, please contact us, as we
appreciate your assistance in improving our products and services.

First published by Crownhill Associates Limited, Cambridge, England, 2012.

Proton24 Compiler. Development Suite.

 3

Introduction
The Proton24 compiler was written with simplicity and flexibility in mind. Using BASIC, which is
almost certainly the easiest programming language around, you can now produce extremely
powerful applications for your microcontroller without having to learn the relative complexity of
assembler, or wade through the potential gibberish that is C.

The Proton IDE provides a seamless development environment, which allows you to write and
compile your code within the same Windows environment, and by using a compatible pro-
grammer, just one key press allows you to program and verify the resulting code.

The Proton24 compiler allows several devices without requiring a USB key. The supported free
devices are: PIC24EP128MC202, PIC24FJ64GA002, PIC24FJ64GA004, PIC24HJ128GP502,
PIC24F04KL101, and dsPIC33FJ128GP802. These will be increased in time, and the most
popular devices on the market will be added as free devices.

Contact Details
For your convenience we have set up a web site www.protonbasic.co.uk, where there is a
section for users of the Proton24 compiler, to discuss the compiler, and provide self help with
programs written for Proton24 BASIC, or download sample programs. The web site is well
worth a visit now and then, either to learn a bit about how other peoples code works or to re-
quest help should you encounter any problems with programs that you have written.

Should you need to get in touch with us for any reason our details are as follows: -

Postal
Crownhill Associates Limited.
Old Station Yard,
Station Road,
Wilburton,
Ely,
Cambridgeshire.
CB6 3PZ.

Telephone
(+44) 01353 749990

Fax
(+44) 01353 749991

Email
sales@crownhill.co.uk

Web Sites
http://www.crownhill.co.uk
http://www.protonbasic.co.uk

Proton24 Compiler. Development Suite.

 4

Table of Contents.

Proton24 Compiler Overview ... 12

Identifiers ...12

Line Labels ...12

Ports and other SFRs ...13
PPS_Input (pPin, pFunction) ... 13
PPS_Output(pPin, pFunction) .. 14
PPS_Lock().. 14
PPS_UnLock().. 14

Numeric Representations ...15

Quoted String of Characters ...15

Standard Variables ..16

32-bit and 64-bit Floating Point Maths...19
Floating Point To Integer Rounding ... 22
Floating Point Exception Flags... 23

Aliases..24
Finer points of variable handling.. 26

Symbols ...29

Creating and using Arrays ..30
Finer points of array variables. .. 35

Creating and using String variables ...36

Procedures ...43
Parameters.. 43
Local Variable and Label Names .. 44
Return Variable.. 44

A Typical Flat BASIC Program Layout ..48

A Typical Procedural BASIC Program Layout ..49

General Format ...50

Line Continuation Character '_' ...50

Creating and using Code Memory Tables ...51

String Comparisons ...53

Relational Operators ..56

Boolean Logic Operators ..57

Proton24 Compiler. Development Suite.

 5

Math Operators.. 58

Abs ... 72

fAbs .. 73

dAbs ... 74

Acos.. 75

dAcos .. 76

Asin... 77

dAsin... 78

Atan .. 79

dAtan .. 80

Atan2 .. 81

dAtan2 .. 82

Ceil ... 83

dCeil.. 84

Cos ... 85

dCos.. 86

Dcd ... 87

Dig '?'... 87

Exp ... 88

dExp ... 89

Floor ... 90

dFloor.. 91

fRound .. 92

dRound ... 93

ISin ... 94

ICos .. 95

Isqr... 96

Log ... 97

dLog.. 98

Log10.. 99

dLog10...100

Modf ..101

Modd..102

Ncd ..103

Pow..104

Proton24 Compiler. Development Suite.

 6

dPow..105

Rev '@'...106

Sin ...107

dSin ...108

Sqr...109

dSqr...110

Tan ..111

dTan ..112

Compiler Commands and Directives .. 113

Adin ...117

Asm..EndAsm..119

Box ..120

Branch ...123

BranchL..125

Break ...126

Bstart ...128

Bstop ...129

Brestart ..129

BusAck ...129

BusNack ...129

Busin..130

Busout..133

Button..137

Call ..139

Cdata ...140

Circle..143

Clear ..146

ClearBit ..147

ClearPin..148

Cls ...150

Config ..152

Continue...157

Counter ..158

cPtr8, cPtr16, cPtr32, cPtr64...159

Cread8, Cread16, Cread32, Cread64 ...161

Proton24 Compiler. Development Suite.

 7

Cursor ..163

Dec ..165

Declare...166
Misc Declares. ... 166
Adin Declares. ... 168
Busin - Busout Declares.. 169
Hbusin - Hbusout Declares.. 169
USART1 Declares for Hserin, Hserout, Hrsin and Hrsout. ... 170
USART2 Declares for use with Hrsin2, Hserin2, Hrsout2 and Hserout2. ... 171
USART3 Declares for use with Hrsin3, Hserin3, Hrsout3 and Hserout3. ... 172
USART4 Declares for use with Hrsin4, Hserin4, Hrsout4 and Hserout4. ... 173
Hpwm Declares.. 173
Alphanumeric (Hitachi HD44780) LCD Print Declares. .. 174
Graphic LCD Declares. .. 176
KS0108 Graphic LCD specific Declares. .. 176
Toshiba T6963C Graphic LCD specific Declares. .. 177
ILI9320 Colour Graphic LCD specific Declares. .. 179
ADS7846 Touch Screen controller Declares. ... 180
Keypad Declare.. 180
Rsin - Rsout Declares. .. 180
Serin - Serout Declare. ... 182
Shin - Shout Declare. ... 183
Stack Declares. .. 183
Oscillator Frequency Declare. .. 184

DelayCs ..187

DelayMs ...188

DelayUs..189

Device ..190

Dig...191

Dim..192
Creating Code Memory Tables using Dim ... 196
Creating variables in Y RAM .. 196
Creating variables in DMA RAM ... 197

Do...Loop..199

DTMFout ..201

Edata ...202

End ..207

Eread ...208

Ewrite...209

For...Next...Step..210

Freqout ..212

GetBit...214

GetPin ..215

Gosub ..216

GoTo..217

Proton24 Compiler. Development Suite.

 8

HbStart...218

HbStop ...219

HbRestart ...219

HbusAck ...219

HbusNack ...219

Hbusin..220

Hbusout ...223

High...227

Hpwm ..229

Hrsin, Hrsin2, Hrsin3, Hrsin4 ..230

Hrsout, Hrsout2, Hrsout3, Hrsout4..238

HrsoutLn, Hrsout2Ln, Hrsout3Ln, Hrsout4Ln ..244

Hserin, Hserin2, Hserin3, Hserin4 ...245

Hserout, Hserout2, Hserout3, Hserout4...250

HseroutLn, Hserout2Ln, Hserout3Ln, Hserout4Ln ...254

HSerial1_ChangeBaud..255

HSerial2_ChangeBaud..256

HSerial3_ChangeBaud..257

HSerial4_ChangeBaud..258

I2Cin ..259

I2Cout..261

If..Then..ElseIf..Else..EndIf ..264

Include...266

Inc ...268

Inkey ...269

Input..270

Isr, EndIsr ..272

LCDread ...276

LCDwrite ..278

Len ..281

Left$..283

Line..285

LineTo..288

LoadBit...289

LookDown ..290

LookDownL...291

Proton24 Compiler. Development Suite.

 9

LookUp...292

LookUpL ...293

Low..294

Mid$...296

On GoTo...298

On Gosub ...300

Output..302

Oread...303

Owrite ..307

Pixel ...309

Plot ..310

Pop ..313

Pot...315

Print ...316
Using a KS0108 Graphic LCD... 321
Using a Toshiba T6963 Graphic LCD .. 324
Using an ILI9320 320x240 pixel Colour Graphic LCD ... 327

Ptr8, Ptr16, Ptr32, Ptr64...331

PulseIn ...334

PulseOut...335

Push...336

Pwm...340

Random..341

RCin ...342

Repeat...Until ..344

Return..345

Right$..346

Rol ...348

Ror...350

Rsin ...352

Rsout ...357

RsoutLn..362

Seed ..363

Select..Case..EndSelect ..364

Servo ...366

SetBit ...368

SetPin...369

Proton24 Compiler. Development Suite.

 10

Set...371

Shin ...372

Shout ...374

Sleep..376

Sound ..377

Stop ...378

Strn..379

Str$..380

Swap..382

Symbol ...383

Toggle..384

ToLower ...385

ToUpper ...387

Touch_Active ..389

Touch_Read..391

Touch_HotSpot ...393

Toshiba_Command..395

Toshiba_UDG..398

UnPlot ..400

Val ...401

AddressOf...403

While...Wend ..404

Using the Preprocessor ..405

Preprocessor Directives..405

Conditional Directives ($ifdef, $ifndef, $if, $endif, $else and $elseif)408

Proton24 Compiler. Development Suite.

 11

Proton IDE Overview ... 412

Menu Bar..413

Main Toolbar...414

Edit Toolbar ..415

Code Explorer ...417

Results View ...418

Editor Options ...420

Highlighter Options..422

Compile and Program Options ..424

Installing a Programmer...425

Creating a custom Programmer Entry..426

IDE Plugins ...428

ASCII Table ..429

Hex View ..429

Assembler Window ..430

Assembler Main Toolbar ...431

Assembler Editor Options ...432

Serial Communicator..433

Serial Communicator Main Toolbar..434

Protected Proton24 Compiler Words ... 438

Proton24 Compiler. Development Suite.

 12

Proton24 Compiler Overview
This manual is not intended to give details about individual microcontroller devices, therefore,
for further information visit the Microchip™ website at www.microchip.com, and download the
multitude of datasheets and application notes available.

Most PIC24® and dsPIC33® devices have analogue comparators and ADCs etc. When these
devices first power up, the pin is set to analogue mode, which makes the pin functions work in
a strange manner. To change the pins to digital, the appropriate SFRs (Special Function Regis-
ters) must be manipulated near the front of your BASIC program, or before any of the pins are
accessed. The SFRs in question do have a commonality between devices, however, there are
sometimes subtle differences, therefore, always read the datasheet for the device being used.

The compiler attempts to make all pins digital by manipulating the required SFRs before the
user’s program starts. This is accomplished within each device’s “.def” file. However, this is not
foolproof and some peripherals may slip through. Users are requested to inform the forum if
any extra SFRs are required for a particular device, and these will be added in a later update of
the compiler.

All of the microcontroller’s pins are set to inputs on power-up. Once again, always read the
datasheets to become familiar with the particular device being used.

Devices containing PPS (Peripheral Pin Sharing) have the ability to choose the pins used by
certain peripherals. There are dedicated SFRs for PPS that must be manipulated correctly oth-
erwise the peripheral in question will not work. See the ports section of this manual

Identifiers
An identifier is a technical term for a name. Identifiers are used for line labels, variable names,
and constant aliases. An identifier is any sequence of letters, digits, and underscores, although
it must not start with a digit. Identifiers are not case sensitive, therefore label, LABEL, and Label
are all treated as equivalent. Identifiers have a maximum length of 100 characters. Any identi-
fier that breaks the 100 character limit will cause a syntax error message.

Line Labels
In order to mark statements that the program may wish to reference with the GoTo, Call, or
Gosub commands, the compiler uses line labels. Unlike many older BASICs, the compiler does
not allow or require line numbers and doesn’t require that each line be labelled. Instead, any
line may start with a line label, which is simply an identifier followed by a colon ':'.

Label:
 Print "Hello World"
 GoTo Label

Proton24 Compiler. Development Suite.

 13

Ports and other SFRs
All of the microcontroller's SFRs (Special Function Registers), including the ports, can be ac-
cessed just like any other variable. This means that they can be read from, written to, or used in
expressions directly.

 PORTB = %0101010101010101 ' Write value to PORTB

 Var1 = MyWord * PORTB ' Multiply variable MyWord with contents of PORTB

Remember, unlike the 8-bit microcontroller's, PIC24® and dsPIC33® devices have 16-bit wide
ports and SFRs.

One thing that can affect the operation of a port when used for a peripheral is PPS (Peripheral
Pin Select). Most of the newer PIC24® and dsPIC33® devices have PPS which means that
there is not a dedicated pin for a specific peripheral. i.e. the USART, and its pins must be des-
ignated before the peripheral can be used. The subject of PPS is too detailed for this manual,
however, Microchip™ have several reference manuals that cover the use of PPS. "PIC24F®
Family Reference Manual - Sect 12 - I/O" being one of them and has the file title "39711b.pdf".
It is very important to read the device's datasheet and understand the operation of PPS in order
for a peripheral to work correctly.

Within this manual there are several examples that use the line of code:

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

The above code designates pin RB14 (PORTB.14) for use as the TX pin for USART1.

The compiler has helper macros built in for Peripheral Pin Select, these are PPS_Input,
PPS_Output, PPS_Unlock, and PPS_Lock. The macros and the related defines can be found
within each device's .def file, located within the compiler's Def directory. Below, is a brief expla-
nation of the macros, but this is not a substitute for reading the device's datasheet.

The PPS (Peripheral Pin Select) feature provides a method of enabling the user's peripheral set
selection and their placement on a wide range of I/O pins. By increasing the pinout options
available on a particular device, users can better tailor the microcontroller to their application,
rather than trimming the application to fit the device.

The PPS feature operates over a fixed subset of digital I/O pins. Users may independently map
the input and/or output of any one of many digital peripherals to any one of these I/O pins. PPS
is performed in software and generally does not require the device to be reprogrammed. Op-
tional hardware safeguards are included that prevent accidental or spurious changes to the pe-
ripheral mapping once it has been established.

Example.

PPS_Output(cOut_Pin_RP35, cOut_Fn_U1TX) ' Map UART1 TX pin to RP35
PPS_Input(cIn_Pin_RPI34, cIn_Fn_U1RX) ' Map UART1 RX pin to RPI34

PPS_Input (pPin, pFunction)
The PPS_Input macro assigns a given pin as input by configuring register RPINRx.

Not all devices use the same values for assigning pins to PPS, therefore, the parameters to use
within the macros can be found in each device's .def file.

Proton24 Compiler. Development Suite.

 14

PPS_Output(pPin, pFunction)
The PPS_Output macro assigns a given pin as output by configuring register RPORx.

Not all devices use the same values for assigning pins to PPS, therefore, the parameters to use
within the macros can be found in each device's .def file.

PPS_Lock()
The PPS_Lock macro performs the locking sequence for PPS assignment.

Note that this is only required if the IOL1WAY_OFF fuse setting is not preset within the device's
configs. The compiler defaults to not requiring the PPS_Lock macro when manipulating PPS.

PPS_UnLock()
The PPS_Unlock macro performs the unlocking sequence for PPS assignment.

Note that this is only required if the IOL1WAY_OFF fuse setting is not preset within the device's
configs. The compiler defaults to not requiring the PPS_Lock macro when manipulating PPS.

Proton24 Compiler. Development Suite.

 15

Numeric Representations
The compiler recognises several different numeric representations: -

 Binary is prefixed by %. i.e. %01000101
 Hexadecimal is prefixed by $ or 0x. i.e. $0A or 0x0A
 Character byte is surrounded by quotes. i.e. "a" represents a value of 97
 Decimal values need no prefix.
 Floating point is created by using a decimal point. i.e. 3.14

Quoted String of Characters
A Quoted String of Characters contains one or more characters (maximum 8192) and is delim-
ited by double quotes. Such as "Hello World"

The compiler also supports a subset of C language type formatters within a quoted string of
characters. These are: -

\a Bell (alert) character $07
\b Backspace character $08
\f Form feed character $0C
\n New line character $0A
\r Carriage return character $0D
\t Horizontal tab character $09
\v Vertical tab character $0B
\\ Backslash $5C
\" Double quote character $22

Example: -

Print "\"Hello World\"\n\r"

Quoted strings of characters are usually treated as a list of individual character values, and are
used by commands such as Print, Rsout, Busout, Ewrite etc. And of course, String variables.

Null Terminated
Null is a term used in computer languages for zero. So a null terminated string is a collection of
characters followed by a zero in order to signify the end of characters. For example, the string
of characters "Hello", would be stored as: -

"H", "e", "l", "l" ,"o", 0

Notice that the terminating null is the value 0 not the character "0".

Proton24 Compiler. Development Suite.

 16

Standard Variables
Variables are where temporary data is stored in a BASIC program. They are created using the
Dim keyword. Because X RAM space on micrcontrollers can be somewhat limited, choosing
the right size variable for a specific task is important. Variables may be Bits, Bytes, Words,
Dwords , SBytes, SWords, SDwords, Floats or Double.

Space for each variable is automatically allocated in the microcontroller's X RAM area. The
format for creating a variable is as follows: -

 Dim Name as Size

Name is any identifier, (excluding keywords). Size is Bit, Byte, Word, Dword, SByte, SWord,
SDword or Float. Some examples of creating variables are: -

 Dim Cat as Bit ' Create a single bit variable (0 or 1)
 Dim Dog as Byte ' Create an 8-bit unsigned variable (0 to 255)
 Dim Rat as Word ' Create a 16-bit unsigned variable (0 to 65535)
 Dim Lrg_Rat as Dword ' Create a 32-bit unsigned variable (0 to
 ' 4294967295)

 Dim sDog as SByte ' Create an 8-bit signed variable (-128 to +127)
 Dim sRat as SWord ' Create a 16-bit signed variable (-32768 to +32767)
 Dim sLrg_Rat as SDword ' Create a 32-bit signed variable (-2147483648 to
 ' +2147483647)
 Dim Pointy_Rat as Float ' Create a 32-bit floating point variable
 Dim Pointy_Lrg_Rat as Double ' Create a 64-bit floating point variable

The number of variables available depends on the amount of RAM on a particular device and
the size of the variables within the BASIC program. The compiler will reserve RAM for its own
use and may also create additional (System) variables for use when calculating expressions, or
more complex command structures.

Intuitive Variable Handling.
The compiler handles its System variables intuitively, in that it only creates those that it re-
quires. Each of the compiler's built in library subroutines i.e. Print, Rsout etc, may require a
certain amount of System RAM as internal variables.

The compiler will increase its System RAM requirements as programs get larger, or more com-
plex structures are used, such as complex expressions, inline commands used in conditions,
Boolean logic used etc. However, with the limited RAM space available on some devices, every
byte counts.

There are certain reserved words that cannot be used as variable names, these are the system
variables used by the compiler.

The following reserved words should not be used as variable names, as the compiler will create
these names when required: -

PP0, PP0H, PP1, PP1H, PP2, PP2H, PP3, PP3H, PP4, PP4H, PP5, PP5H, PP6, PP6H,
PP7, PP7H, PP8, PP9H, GEN, GENH, GEN2, GEN2H, PRTA1, PRTA1H, PRTA2, PRTA2H,
PINM1, PINM1H, PINM2, PINM2H, BPF, BPFH.

However, if a compiler system variable is to be brought into the BASIC program for a specific
reason, the reserved variables can be used, but must always be declared as a Word type.

Proton24 Compiler. Development Suite.

 17

RAM space required.
Each type of variable requires differing amounts of RAM memory for its allocation. The list be-
low illustrates this.

 Double Requires 8 bytes of RAM.
 Float Requires 4 bytes of RAM.
 Dword Requires 4 bytes of RAM.
 SDword Requires 4 bytes of RAM.
 Word Requires 2 bytes of RAM.
 SWord Requires 2 bytes of RAM.
 Byte Requires 1 byte of RAM.
 SByte Requires 1 byte of RAM.
 Bit Requires 1 byte of RAM for every 8 Bit variables created.

Each type of variable may hold a different minimum and maximum value.

• Bit type variables may hold a 0 or a 1. These are created 8 at a time, therefore declaring
a single Bit type variable in a program will not save RAM space, but it will save code
space, because Bit type variables produce the most efficient use of code for compari-
sons etc.

• Byte type variables may hold an unsigned value from 0 to 255, and are the usual work

horses of most programs. Code produced for Byte sized variables is very low compared
to signed or unsigned Word, DWord or Float types, and should be chosen if the pro-
gram requires faster, or more efficient operation.

• SByte type variables may hold a 2's complemented signed value from -128 to +127.

Code produced for SByte sized variables is very low compared to SWord, Float, or
SDword types, and should be chosen if the program requires faster, or more efficient
operation. However, code produced is usually larger for signed variables than unsigned
types.

• Word type variables may hold an unsigned value from 0 to 65535, which is usually large

enough for most applications. It still uses more memory than an 8-bit byte variable, but
not nearly as much as a Dword or SDword type.

• SWord type variables may hold a 2's complemented signed value from -32768 to

+32767, which is usually large enough for most applications. SWord type variables will
use more code space for expressions and comparisons, therefore, only use signed vari-
ables when required.

• Dword type variables may hold an unsigned value from 0 to 4294967295 making this

the largest of the variable family types. This comes at a price however, as Dword calcu-
lations and comparisons will use more code space within the microcontroller Use this
type of variable sparingly, and only when necessary.

• SDword type variables may hold a 2's complemented signed value from -2147483648 to

+2147483647, also making this the largest of the variable family types. This comes at a
price however, as SDword expressions and comparisons will use more code space than
a regular Dword type. Use this type of variable sparingly, and only when necessary.

Proton24 Compiler. Development Suite.

 18

• Float type variables may theoretically hold a value from -1e37 to +1e38, but because of

the 32-bit architecture of the compiler, a maximum and minimum value should be
thought of as -2147483646.999 to +2147483646.999 making this one of the most versa-
tile of the variable family types. However, more so than Dword types, this comes at a
price because 32-bit floating point expressions and comparisons will use more code
space within the microcontroller. Use this type of variable sparingly, and only when
strictly necessary. Smaller floating point values usually offer more accuracy.

• Double type variables may hold a value larger than Float types, and with some extra

accuracy, but because of the 32-bit architecture of the compiler, a maximum and mini-
mum value should be thought of as -2147483646.999 to +2147483646.999 making this
one of the most versatile of the variable family types. However, more so than Dword and
Float types, this comes at a price because 64-bit floating point expressions and com-
parisons will use more code space within the microcontroller. Use this type of variable
sparingly, and only when strictly necessary. Smaller floating point values usually offer
more accuracy.

Notes.
The final RAM usage will also encompass the microcontroller’s stack size, therefore, even if the
BASIC program only declares 4 Byte variables, the final RAM count will be 124. 120 bytes for
the default stack size and 4 bytes for variable usage. If handled interrupts are used, the stack
size will increase due to context saving and restoring requirements.

See also : Aliases, Arrays, Dim, Symbol, Floating Point Math.

Proton24 Compiler. Development Suite.

 19

32-bit and 64-bit Floating Point Maths
The Proton24 compiler performs single precision (32-bit) IEEE754 Floating Point calculations
and double precision (64-bit) IEEE754 Floating Point calculations.

Declaring a variable as Float or Double will enable 32-bit or 64-bit floating point calculations on
that variable.

 Dim MyFloat as Float
 Dim MyDouble as Double

To create a floating point constant, add a decimal point. Especially if the value is a whole num-
ber.

 Symbol PI = 3.14 ' Create an obvious floating point constant

 Symbol FlNum = 5.0 ' Create a floating point value of a whole number

Note.
It is important to remember that floating point arithmetic is not the ultimate in accuracy, it is
merely a means of compressing a complex or large value into a small space (4 bytes in the
case of 32-bit Floats, and 8 bytes in the case of 64-bit Doubles), in essence, it is an approxima-
tion of a value. Perfectly adequate results can usually be obtained from correct scaling of inte-
ger variables, with an increase in speed and a saving of RAM and code space. 32-bit and 64-bit
floating point math is quite microcontroller intensive since the microcontroller is only a 16-bit
processor. It also consumes quite large amounts of RAM, and code space for its operation,
therefore always use floating point sparingly, and only when strictly necessary.

Unlike Proton for 8-bit microcontrollers, which uses a modified floating point format, Proton24
uses the IEEE754 standard.

An IEEE754 single precision float variable has three components: a sign bit telling whether the
number is positive or negative, an exponent giving its order of magnitude, and a mantissa
specifying the actual digits of the number. Below is the bit layout:

For 32-bit Float:
 seeeeeeeemmmmmmmmmmmmmmmmmmmmmmm meaning
31 0 bit number

For 64-bit Double:
 seeeeeeeeeeeeeeeemmmmmmmmmmmmmmmmmmmmmmm.... meaning
63 0 bit number

s = sign bit, e = exponent, m = mantissa

Proton24 Compiler. Development Suite.

 20

32-bit Floating Point Example Programs.

' Multiply two floating point values
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim MyFloat as Float
 Symbol FlNum = 1.234 ' Create a floating point constant value

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 MyFloat = FlNum * 10
 Hrsout Dec MyFloat, 13
 Stop

' Add two floating point variables
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim MyFloat as Float
 Dim MyFloat1 as Float
 Dim MyFloat2 as Float

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 MyFloat1 = 1.23
 MyFloat2 = 1000.1
 MyFloat = MyFloat1 + MyFloat2
 HrsoutLn Dec MyFloat
 Stop

' A digital volt meter, using the on-board 10-bit ADC
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Declare Adin_Tad = cFRC ' RC OSC chosen
 Declare Adin_Delay = 10 ' Allow 10us sample time

Dim wRaw as Word
 Dim fVolts as Float
 Symbol Quanta = 3.3 / 1024 ' Calculate the quantising value for 10-bits

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 AD1CON2 = 0 ' +Vref = AVdd, -Vref = AVss
 AD1PCFGbits_PCFG0 = 0 ' Analogue input on AN0
 While
 wRaw = Adin 0
 fVolts = wRaw * Quanta
 HrsoutLn Dec2 fVolts, "V"
 DelayMs 300
 Wend

Proton24 Compiler. Development Suite.

 21

64-bit Floating Point Example Programs.

' Multiply two 64-bit floating point values
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim MyDouble as Double
 Symbol FlNum = 1.234 ' Create a floating point constant value

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 MyDouble = FlNum * 10
 Hrsout Dec MyDouble, 13
 Stop

' Add two 64-bit floating point variables
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim MyDouble as Double
 Dim MyDouble 1 as Double
 Dim MyDouble 2 as Double

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 MyDouble1 = 1.23
 MyDouble2 = 1000.1
 MyDouble = MyDouble1 + MyDouble2
 HrsoutLn Dec MyDouble
 Stop

' A digital volt meter, using the on-board 10-bit ADC
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Declare Adin_Tad = cFRC ' RC OSC chosen
 Declare Adin_Delay = 10 ' Allow 10us sample time

Dim wRaw as Word
 Dim fVolts as Double
 Symbol Quanta = 3.3 / 1024 ' Calculate the quantising value for 10-bits

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 AD1CON2 = 0 ' +Vref = AVdd, -Vref = AVss
 AD1PCFGbits_PCFG0 = 0 ' Analogue input on AN0
 While
 wRaw = Adin 0
 fVolts = wRaw * Quanta
 HrsoutLn Dec2 fVolts, "V"
 DelayMs 300
 Wend

Proton24 Compiler. Development Suite.

 22

Notes.
Any expression that contains a floating point variable or constant will always be calculated as a
floating point, even if the expression also contains integer constants or variables. The same
applies for Doubles. If an expression has a mix of 32-bit floats and 64-bit doubles, the it will be
carried out as 64-bit Double.

If the assignment variable is an integer variable, but the expression is of a floating point nature,
then the floating point result will be converted into an integer.

 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim MyDword as Dword
 Dim MyFloat as Float
 Symbol cPI = 3.14

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 MyFloat = 10
'
' Float calculation with result 13.14, reduced to integer 13
'
 MyDword = MyFloat + cPI
 HrsoutLn Dec MyDword ' Display the integer result 13

Floating Point To Integer Rounding
Assigning a 32-bit or 64-bit floating point variable to an integer type will be truncated to the lowest value
by default. For example:

MyFloat = 3.9
MyDword = MyFloat

The variable MyDword will hold the value of 3.

Proton24 Compiler. Development Suite.

 23

Floating Point Exception Flags
The floating point exception flags are accessible from within the BASIC program via the system variable
_FP_FLAGS.

The exceptions are:

_FP_FLAGS.1 ' Floating point overflow
_FP_FLAGS.2 ' Floating point underflow
_FP_FLAGS.3 ' Floating point divide by zero
_FP_FLAGS.5 ' Domain error exception

The exception bits can be aliased for more readability within the program:

Symbol FpOverflow = _FP_FLAGS.1 ' Floating point overflow
 Symbol FpUnderFlow = _FP_FLAGS.2 ' Floating point underflow
 Symbol FpDiv0 = _FP_FLAGS.3 ' Floating point divide by zero
 Symbol FpDomainError = _FP_FLAGS.5 ' Domain error exception

After an exception is detected and handled in the program, the exception bit should be cleared so that
new exceptions can be detected, however, exceptions can be ignored because new operations are not
affected by old exceptions.

See also : Dim, Symbol, Aliases, Arrays.

Proton24 Compiler. Development Suite.

 24

Aliases
The Symbol directive is the primary method of creating an alias, however Dim can be used to
create an alias to a variable. This is extremely useful for accessing the separate parts of a vari-
able.

 Dim Fido as Dog ' Fido is another name for Dog
 Dim Mouse as Rat.LowByte ' Mouse is the first byte (low byte) of word Rat
 Dim Tail as Rat.HighByte ' Tail is the second byte(high byte) of word Rat
 Dim Flea as Dog.0 ' Flea is bit-0 of Dog, which is aliased to Fido

There are modifiers that may also be used with variables. These are HighByte, LowByte,
Byte0, Byte1, Byte2, Byte3, Word0, Word1, HighSByte, LowSByte, SByte0, SByte1,
SByte2, SByte3, SWord0, and SWord1,

Word0, Word1, Byte2, Byte3, SWord0, SWord1, SByte2, and SByte3 may only be used in
conjunction with 32-bit Dword or SDword type variables.

HighByte and Byte1 are one and the same thing, when used with a Word or SWord type vari-
able, they refer to the unsigned High byte of a Word or SWord type variable: -

 Dim MyWord as Word ' Create an unsigned Word variable
 Dim MyWord_Hi as MyWord.HighByte
' MyWord_Hi now represents the unsigned high byte of variable MyWord

Variable MyWord_Hi is now accessed as a Byte sized type, but any reference to it actually al-
ters the high byte of MyWord.

HighSByte and SByte1 are one and the same thing, when used with a Word or SWord type
variable, they refer to the signed High byte of a Word or SWord type variable: -

 Dim MyWord as SWord ' Create a signed Word variable
 Dim MyWord_Hi as MyWord.SByte1
' MyWord_Hi now represents the signed high byte of variable MyWord

Variable MyWord_Hi is now accessed as an SByte sized type, but any reference to it actually
alters the high byte of MyWord.

However, if Byte1 is used in conjunction with a Dword type variable, it will extract the second
byte. HighByte will still extract the high byte of the variable, as will Byte3. If SByte1 is used in
conjunction with an SDword type variable, it will extract the signed second byte. HighSByte
will still extract the signed high byte of the variable, as will SByte3.

The same is true of LowByte, Byte0, LowSByte and SByte0, but they refer to the unsigned or
signed Low Byte of a Word or SWord type variable: -

 Dim MyWord as Word ' Create an unsigned Word variable
 Dim MyWord_Lo as MyWord.LowByte
' MyWord_Lo now represents the low byte of variable MyWord

Variable MyWord_Lo is now accessed as a Byte sized type, but any reference to it actually al-
ters the low byte of MyWord.

Proton24 Compiler. Development Suite.

 25

The modifier Byte2 will extract the 3rd unsigned byte from a 32-bit Dword or SDword type
variable as an alias. Likewise Byte3 will extract the unsigned high byte of a 32-bit variable.

 Dim Dwd as Dword ' Create a 32-bit unsigned variable named Dwd
 Dim Part1 as Dwd.Byte0 ' Alias unsigned Part1 to the low byte of Dwd
 Dim Part2 as Dwd.Byte1 ' Alias unsigned Part2 to the 2nd byte of Dwd
 Dim Part3 as Dwd.Byte2 ' Alias unsigned Part3 to the 3rd byte of Dwd
 Dim Part4 as Dwd.Byte3 ' Alias unsigned Part3 to the high 4th byte of Dwd

The modifier SByte2 will extract the 3rd signed byte from a 32-bit Dword or SDword type vari-
able as an alias. Likewise SByte3 will extract the signed high byte of a 32-bit variable.

 Dim sDwd as SDword ' Create a 32-bit signed variable named sDwd
 Dim sPart1 as sDwd.SByte0 ' Alias signed Part1 to the low byte of sDwd
 Dim sPart2 as sDwd.SByte1 ' Alias signed Part2 to the 2nd byte of sDwd
 Dim sPart3 as sDwd.SByte2 ' Alias signed Part3 to the 3rd byte of sDwd
 Dim sPart4 as sDwd.SByte3 ' Alias signed Part3 to the 4th byte of sDwd

The Word0 and Word1 modifiers extract the unsigned low word and high word of a Dword or
SDword type variable, and is used the same as the Byten modifiers.

 Dim Dwd as Dword ' Create a 32-bit unsigned variable named Dwd
 Dim Part1 as Dwd.Word0 ' Alias unsigned Part1 to the low word of Dwd
 Dim Part2 as Dwd.Word1 ' Alias unsigned Part2 to the high word of Dwd

The SWord0 and SWord1 modifiers extract the signed low word and high word of a Dword or
SDword type variable, and is used the same as the SByten modifiers.

 Dim sDwd as SDword ' Create a 32-bit signed variable named sDwd
 Dim sPart1 as sDwd.SWord0 ' Alias Part1 to the low word of sDwd
 Dim sPart2 as sDwd.SWord1 ' Alias Part2 to the high word of sDwd

Proton24 Compiler. Development Suite.

 26

Finer points of variable handling.
Word and SWord type variables have a low byte and a high byte. The high byte may be ac-
cessed by simply adding the letter H to the end of the variable's name. For example: -

 Dim MyWord as Word

Will produce the assembler code: -

 MyWord: .space 2
.def MyWord
 .val MyWord
 .scl 2
 .size 2
 .type 016
.endef
.set MyWordH, n

This is only really useful when assembler routines are being implemented, such as: -

 Mov.b #1,W0
 Mov.b WREG, MyWordH ' Load the high byte of MyWord with 1

Dword, SDWord and Float type variables have a low, mid1, mid2, and high byte. The high
byte may be accessed by using Byte0, Byte1, Byte2, or Byte3. For example: -

 Dim MyDword as Dword

To access the high byte of variable MyDword, use: -

 MyDword.Byte3 = 1

The same is true of all the alias modifiers such as SWord0, Word0 etc...

Casting a variable from signed to unsigned and vice-versa is also possible using the modifiers.
For example:

 Dim sMyDword as SDword ' Create a 32-bit signed variable

 sMyDword.Byte3 = 1 ' Load the unsigned high byte with the value 1
 sMyDword.SByte0 = -1 ' Load the signed low byte with the value -1
 sMyDword.SWord0 = 128 ' Load signed low and mid1 bytes with 128

Notes.
The final RAM usage will also encompass the microcontroller’s stack size, therefore, even if the
BASIC program only declares 4 Byte variables, the final RAM count will be 84. 80 bytes for the
default stack size and 4 bytes for variable usage. If handled interrupts are used, the stack size
will increase due to context saving and restoring requirements.

Proton24 Compiler. Development Suite.

 27

RAM locations for variables is allocated automatically within the microcontroller because the
PIC24® and dsPIC33® range of devices have specific requirements concerning RAM address-
ing. Which are:

 16-bit variables must be located on a 16-bit RAM address boundary.
 32-bit and 64-bit variables must be placed on a 16-bit RAM address boundary, but

should be placed on a 32-bit RAM address, if possible, for more efficiency with some
mnemonics.

 8-bit variables can be located on an 8-bit,16-bit or 32-bit RAM address boundary.

Therefore, the order of variable placements is:

 The microcontroller's 16-bit stack is located before all variables are placed.
 The compiler's 16-bit system variables are placed.
 Word variables are placed.
 Dword variables are placed.
 Float variables are placed.
 Double variables are placed.
 Byte variables are placed.
 Word Arrays are placed.
 Dword Arrays are placed.
 Float Arrays are placed.
 Byte Arrays are placed.
 String variables are placed.

The logic behind the variable placements is because of the microcontroller’s near and far RAM.

The first 8192 bytes of RAM are considered "near" RAM, while space above that is considered
"far" RAM. By default, the compiler sets all user variables to near RAM. However, when near
RAM space is full, the compiler will place variables in far RAM (above 8192).

The special significance of near versus far to the compiler is that near RAM accesses are en-
coded in only one mnemonic using direct addressing, while accesses to variables in far RAM
require two to three mnemonics using indirect addressing.

Standard variables are used more commonly within a BASIC program, therefore should reside
in near RAM for efficiency. Arrays and Strings are generally accessed indirectly anyway, there-
fore, it is usually of little consequence if they reside in near or far RAM.

Proton24 Compiler. Development Suite.

 28

The PIC24® and dsPIC33® range of devices have 16 WREG SFRs (Special Function Regis-
ters), each 16-bits wide. These are invaluable assets when the fastest possible speed is re-
quired by a program’s routines or procedures. However, the compiler needs certain WREG
SFRs for its own use, as does the microcontroller itself. Below is a rough list of the compiler's
and microcontroller's WREG use.

 WREG0, WREG1, WREG2 and WREG3 are used internally by the compiler for its
mathematical expressions, as well as comparisons. These WREGs should be consid-
ered as volatile and never used for storage of data for more than a brief length of time.

 WREG6, WREG7 and WREG8 are sometimes used as parameter storage for the com-

piler's commands.

 WREG12 and WREG13 are used for array indexing.

 WREG14 is the microcontroller's Frame Pointer. As such, it must not be accessed di-
rectly unless the user is fully aware of the ramifications.

 WREG15 is the microcontroller's Stack Pointer. As such, it must not be accessed directly

unless the user is fully aware of the ramifications.

A WREG SFR can be used in a BASIC program just the same as any user defined variable. For
example:

 WREG0 = 12345

Note that the WREG SFRs are each 16-bits wide, but they can be sliced by the .Byte0 and
.Byte1 directives, just as a user variable can be:

 WREG0.Byte0 = 12
 WREG0.Byte1 = 34

Proton24 Compiler. Development Suite.

 29

Symbols
The Symbol directive provides a method for aliasing variables and/or constants. Symbol can-
not be used to create a variable. Constants declared using Symbol do not use any RAM within
the microcontroller.

 Symbol cCat = 123
 Symbol cTiger = cCat ' cTiger now holds the value of cCat
 Symbol cMouse = 1
 Symbol cTigOuse = cTiger + cMouse ' Add cTiger to cMouse to make cTigOuse

Floating point constants may also be created using Symbol by simply adding a decimal point to
a value.

 Symbol PI = 3.14 ' Create a floating point constant named PI
 Symbol FlNum = 5.0 ' Create a floating point constant holding the value 5

Floating point constant can also be created using expressions.

 ' Create a floating point constant holding the result of the expression
 Symbol Quanta = 3.3 / 1024

If a variable or SFR's name is used in a constant expression then the variable's or SFR's ad-
dress will be substituted, not the value held in the variable or SFR: -

 Symbol MyCon = (PORTB + 1) ' MyCon will hold the value 715 (714+1)

Symbol is also useful for aliasing Ports and SFRs (Special Function Registers): -

 Symbol LED = PORTA.1 ' LED now references bit-1 of PORTA
 Symbol OSCFAIL = INTCON1.1' OSCFAIL now refers to bit-1 of INTCON1 SFR

Proton24 Compiler. Development Suite.

 30

Creating and using Arrays
The Proton24 compiler supports multi part Byte, Word, Dword, SByte, SWord, SDword and
Float variable arrays. An array is a group of variables of the same size (8-bits, 16-bits or 32-bits
wide), sharing a single name, but split into numbered cells, called elements.

An array is defined using the following syntax: -

 Dim Name[length] as Byte
 Dim Name[length] as Word
 Dim Name[length] as Dword
 Dim Name[length] as SByte
 Dim Name[length] as SWord
 Dim Name[length] as SDword
 Dim Name[length] as Float

where Name is the variable's given name, and the new argument, [length], informs the com-
piler how many elements you want the array to contain. For example: -

 Dim MyArray[10] as Byte ' Create a 10 element unsigned byte array.
 Dim MyArray[10] as Word ' Create a 10 element unsigned word array.
 Dim MyArray[10] as Dword ' Create a 10 element unsigned dword array.
 Dim sMyArray[10] as SByte ' Create a 10 element signed byte array.
 Dim sMyArray[10] as SWord ' Create a 10 element signed word array.
 Dim sMyArray[10] as SDword ' Create a 10 element signed dword array.
 Dim fMyArray[10] as Float ' Create a 10 element floating point array.

Arrays may have up to 65535 elements.

Once an array is created, its elements may be accessed numerically. Numbering starts at 0 and
ends at n-1. For example: -

 MyArray[3] = 57
 Hrsout "MyArray[3] = ", Dec MyArray[3], 13

The above example will access the fourth element in the Byte array and display "MyArray[3] =
57" on the serial terminal. The true flexibility of arrays is that the index value itself may be a
variable. For example: -

 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 Dim Index as Byte ' Create a Byte variable.

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 For Index = 0 to 9 ' Repeat with Index= 0,1,2...9
 MyArray[Index] = Index * 10 ' Write to each element of the array.
 Next
 For Index = 0 to 9 ' Repeat with Index= 0,1,2...9
 HrsoutLn Dec MyArray[Index] ' Show the contents of each element.
 DelayMs 500 ' Wait long enough to view the values
 Next

Proton24 Compiler. Development Suite.

 31

If the previous program is run, 10 values will be displayed, counting from 0 to 90 i.e. Index * 10.

A word of caution regarding arrays: If you're familiar with interpreted BASICs and have used
their arrays, you may have run into the "subscript out of range" error. Subscript is simply an-
other term for the index value. It is considered "out-of range" when it exceeds the maximum
value for the size of the array.

For example, in the previous example, MyArray is a 10-element array. Allowable index values
are 0 through 9. If your program exceeds this range, the compiler will not respond with an error
message. Instead, it will access the next RAM location past the end of the array.

If you are not careful about this, it can cause all sorts of subtle anomalies, as previously loaded
variables are overwritten. It's up to the programmer (you!) to prevent this from happening.

Even more flexibility is allowed with arrays because the index value may also be an expression.

 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 Dim Index as Byte ' Create a Byte variable.
 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 For Index = 0 to 8 ' Repeat with Index= 0,1,2...8
 MyArray[Index + 1] = Index * 10 ' Write to each element of array
 Next
 For Index = 0 to 8 ' Repeat with Index= 0,1,2...8
 Hrsout Dec MyArray[Index + 1], 13 ' Show the contents of elements
 DelayMs 500 ' Wait long enough to view the values
 Next

The expression within the square braces should be kept simple, and arrays are not allowed as
part of the expression.

Using Arrays in Expressions.
Of course, arrays are allowed within expressions themselves. For example: -

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 Dim Index as Byte ' Create a Byte variable.
 Dim MyByte as Byte ' Create another Byte variable
 Dim MyResult as Byte ' Create a variable to hold result of expression
 Index = 5 ' And Index now holds the value 5
 MyByte = 10 ' Variable MyByte now holds the value 10
 MyArray[Index] = 20 ' Load the 6th element of MyArray with value 20
 MyResult = (MyByte * MyArray[Index]) / 20 ' Do a simple expression
 Hrsout Dec MyResult, 13 ' Display result of expression

The previous example will display 10 on the LCD, because the expression reads as: -

 (10 * 20) / 20

MyByte holds a value of 10, MyArray[Index] holds a value of 20, these two variables are multi-
plied together which will yield 200, then they're divided by the constant 20 to produce a result of
10.

Proton24 Compiler. Development Suite.

 32

Byte Arrays as Strings
Byte arrays may also be used as simple strings in certain commands, because after all, a string
is simply a byte array used to store text.

For this, the Str modifier is used.

Some of the commands that support the Str modifier are: -

Busout - Busin
Hbusout - Hbusin
Hrsout - Hrsin
Owrite - Oread
Rsout - Rsin
Serout - Serin
Shout - Shin
Print

The Str modifier works in two ways, it outputs data from a pre-declared array in commands that
send data i.e. Rsout, Print etc, and loads data into an array, in commands that input informa-
tion i.e. Rsin, Serin etc. The following examples illustrate the Str modifier in each compatible
command.

Using Str with the Busin and Busout commands.

Refer to the sections explaining the Busin and Busout commands.

Using Str with the Hbusin and Hbusout commands.

Refer to the sections explaining the Hbusin and Hbusout commands.

Using Str with the Rsin command.

 Dim Array1[10] as Byte ' Create a 10-byte array named Array1
 Rsin Str Array1 ' Load 10 bytes of data directly into Array1

Using Str with the Rsout command.

 Dim Array1[10] as Byte ' Create a 10-byte array named Array1
 Rsout Str Array1 ' Send 10 bytes of data directly from Array1

Using Str with the Hrsin and Hrsout commands.

Refer to the sections explaining the Hrsout and Hrsin commands.

Proton24 Compiler. Development Suite.

 33

Using Str with the Shout command.

 Symbol DTA = PORTA.0 ' Alias the two lines for the Shout command
 Symbol CLK = PORTA.1
 Dim Array1[10] as Byte ' Create a 10-byte array named Array1
' Send 10 bytes of data from Array1
 Shout DTA, CLK, MsbFirst, [Str Array1]

Using Str with the Shin command.

 Symbol DTA = PORTA.0 ' Alias the two lines for the Shin command
 Symbol CLK = PORTA.1
 Dim Array1[10] as Byte ' Create a 10-byte array named Array1
' Load 10 bytes of data directly into Array1
 Shin DTA, CLK, MsbPre, [Str Array1]

Using Str with the Print command.

 Dim Array1[10] as Byte ' Create a 10-byte array named Array1
 Print Str Array1 ' Send 10 bytes of data directly from Array1

Using Str with the Serout and Serin commands.

Refer to the sections explaining the Serin and Serout commands.

Using Str with the Oread and Owrite commands.

Refer to the sections explaining the Oread and Owrite commands.

The Str modifier has two forms for variable-width and fixed-width data, shown below: -

Str ByteArray ASCII string from ByteArray until byte = 0 (null terminated).

Or array length is reached.

Str ByteArray\n ASCII string consisting of n bytes from ByteArray.

Null terminated means that a zero (null) is placed at the end of the string of ASCII characters to
signal that the string has finished.

The example below is the variable-width form of the Str modifier: -

 Dim MyArray[5] as Byte ' Create a 5 element array
 MyArray[0] = "A" ' Fill the array with ASCII
 MyArray[1] = "B"
 MyArray[2] = "C"
 MyArray[3] = "D"
 MyArray[4] = 0 ' Add the null Terminator
 Print Str MyArray ' Display the string

The code above displays "ABCD" on the LCD. In this form, the Str formatter displays each
character contained in the byte array until it finds a character that is equal to 0 (value 0, not
ASCII "0"). Note: If the byte array does not end with 0 (null), the compiler will read and

Proton24 Compiler. Development Suite.

 34

output all RAM register contents until it cycles through all RAM locations for the declared length
of the byte array.

For example, the same code as before without a null terminator is: -

 Dim MyArray[4] as Byte ' Create a 4 element array
 MyArray[0] = "A" ' Fill the array with ASCII
 MyArray[1] = "B"
 MyArray[2] = "C"
 MyArray[3] = "D"
 Print Str MyArray ' Display the string

The code above will display the whole of the array, because the array was declared with only
four elements, and each element was filled with an ASCII character i.e. "ABCD".

To specify a fixed-width format for the Str modifier, use the form Str MyArray\n; where MyArray
is the byte array and n is the number of characters to display, or transmit. Changing the Print
line in the examples above to: -

 Print Str MyArray \ 2

would display "AB" on the LCD.

Str is not only used as a modifier, it is also a command, and is used for initially filling an array
with data. The above examples may be re-written as: -

 Dim MyArray[5] as Byte ' Create a 5 element array
 Str MyArray = "ABCD", 0 ' Fill array with ASCII, and null terminate it
 Print Str MyArray ' Display the string

Strings may also be copied into other strings: -

 Dim String1[5] as Byte ' Create a 5 element array
 Dim String2[5] as Byte ' Create another 5 element array
 Str String1 = "ABCD", 0 ' Fill array with ASCII, and null terminate it
 Str String2 = "EFGH", 0 ' Fill other array with ASCII, null terminate it
 Str String1 = Str String2 ' Copy String2 into String1
 Print Str String1 ' Display the string

The above example will display "EFGH", because String1 has been overwritten by String2.

Using the Str command with Busout, Hbusout, Shout, and Owrite differs from using it with
commands Serout, Print, Hrsout, and Rsout in that, the latter commands are used more for
dealing with text, or ASCII data, therefore these are null terminated.

The Hbusout, Busout, Shout, and Owrite commands are not commonly used for sending
ASCII data, and are more inclined to send standard 8-bit bytes. Thus, a null terminator would
cut short a string of byte data, if one of the values happened to be a 0. So these commands will
output data until the length of the array is reached, or a fixed length terminator is used i.e.
MyArray\n.

Proton24 Compiler. Development Suite.

 35

Finer points of array variables.
When an array is created, the compiler creates each of its elements as an independent variable
that has the same width and sign as the parent array. For example:

 Dim MyByteArray[10] as Byte

Will also produce 10 separate variables named:

MyByteArray_0
MyByteArray_1
MyByteArray_2
MyByteArray_3
MyByteArray_4
MyByteArray_5
MyByteArray_6
MyByteArray_7
MyByteArray_8
MyByteArray_9

Notice the underscore after the name of the array, and preceding the element’s positional value
within the array. Each of these elements is an unsigned Byte variable in its own right, and can
be accessed collectively or independently. The same principle applies to all array types sup-
ported by the compiler.

Note that this differs from Proton for 8-bit devices in that the separation between the array
name and the element number is a hash '# 'in Proton 8-bit, but this is not allowed in the 16-bit
assembler, therefore, they are underscores in Proton24.

Block Array Assigning
One array can be loaded into another array by issuing the names of the arrays but without the
square brackets. For example:

Dim SourceArray[10] as Byte = 1,2,3,4,5,6,7,8,9,10
Dim DestArray[10] as Byte

DestArray = SourceArray ' Copy the contents of SourceArray into DestArray

If different type arrays are used as the assignment or the source, truncation or extrapolation will
take place. If the assignment array has fewer elements than the source array, only the ele-
ments that will fit into the assignment array will be copied.

Proton24 Compiler. Development Suite.

 36

Creating and using String variables
A string variable is essentially a byte array that is terminated by a null (represented by 0). A
string is intended to hold only ASCII characters.

The syntax to create a string is : -

 Dim String Name as String * String Length

String Name can be any valid variable name. See Dim .
String Length can be any value up to 8192, allowing up to 8192 characters to be stored.

The line of code below will create a String named ST that can hold 20 characters: -

 Dim MyString as String * 20

Two or more strings can be concatenated (linked together) by using the plus (+) operator: -

 Device = 24FJ64GA002
 Declare Xtal = 16
'
' Create three strings capable of holding 20 characters
'
 Dim DestString as String * 20
 Dim SourceString1 as String * 20
 Dim SourceString2 as String * 20

 SourceString1 = "Hello " ' Load String SourceString1 with the text Hello
' Load String SourceString2 with the text World
 SourceString2 = "World"
' Add both Source Strings together. Place result into String DestString
 DestString = SourceString1 + SourceString2

The String DestString now contains the text "Hello World".

The Destination String itself can be added to if it is placed as one of the variables in the addi-
tion expression. For example, the above code could be written as: -

 Device = 24FJ64GA002
 Declare Xtal = 16

 Dim DestString as String * 20 ' Create a String for 20 characters
 Dim SourceString as String * 20 ' Create another String for 20 characters

 DestString = "Hello " ' Pre-load String DestString with the text Hello
 SourceString = "World" ' Load String SourceString with the text World
' Concatenate DestString with SourceString
 DestString = DestString + SourceString
 Print DestString ' Display the result which is "Hello World"

Proton24 Compiler. Development Suite.

 37

Note that Strings cannot be subtracted, multiplied or divided, and cannot be used as part of a
standard expression otherwise a syntax error will be produced.

It's not only other strings that can be added to a string, the functions Cstr, Estr, Mid$, Left$,
Right$, Str$, ToUpper, and ToLower can also be used as one of variables to concatenate.

A few examples of using these functions are shown below: -

Cstr Example
' Use Cstr function to place a code memory string into a RAM String variable

 Device 24FJ64GA002
 Declare Xtal = 16

 Dim DestString as String * 20 ' Create a String for 20 characters
 Dim SourceString as String * 20 ' Create another String
 Dim CodeStr as Code = "World",0

SourceString = "Hello " ' Load the string with characters
 DestString = SourceString + Cstr CodeStr ' Concatenate the string
 Print DestString ' Display the result which is "Hello World"

The above example is really only for demonstration because if a Label name is placed as one
of the parameters in a string concatenation, an automatic (more efficient) Cstr operation will be
carried out. Therefore the above example should be written as: -

More efficient Example of above code
' Place a code memory string into a String variable more efficiently than
' using Cstr

 Device 24FJ64GA002
 Declare Xtal = 16

 Dim DestString as String * 20 ' Create a String for 20 characters
 Dim SourceString as String * 20 ' Create another String
 Dim CodeStr as Code = "World",0

SourceString = "Hello " ' Load the string with characters
 DestString = SourceString + CodeStr ' Concatenate the string
 Print DestString ' Display the result which is "Hello World"

Proton24 Compiler. Development Suite.

 38

A null terminated string of characters held in Data (on-board eeprom) memory can also be
loaded or concatenated to a string by using the Estr function: -

Estr Example
' Use the Estr function in order to place a
' Data memory string into a String variable
' Remember to place Edata before the main code
' so it is recognised as a constant value

 Device 24F08KL200 ' Choose a device with on-board eeprom
 Declare Xtal = 16

 Dim DestString as String * 20 ' Create a String for 20 characters
 Dim SourceString as String * 20 ' Create another String
Data_Str Edata "World",0 ' Create a string in Data memory

 SourceString = "Hello " ' Load the string with characters
 DestString = SourceString + Estr Data_Str ' Concatenate the strings
 Print DestString ' Display the result which is "Hello World"

Proton24 Compiler. Development Suite.

 39

Converting an integer or floating point value into a string is accomplished by using the Str$
function: -

Str$ Example
' Use the Str$ function in order to concatenate
'an integer value into a String variable
 Device 24FJ64GA002
 Declare Xtal = 16
 Dim DestString as String * 30 ' Create a String
 Dim SourceString as String * 20 ' Create another String
 Dim MyWord as Word ' Create a Word variable

 MyWord = 1234 ' Load the Word variable with a value
 SourceString = "Value = " ' Load the string with characters
 DestString = SourceString + Str$(Dec MyWord) ' Concatenate the string
 Print DestString ' Display the result which is "Value = 1234"

Left$ Example
' Copy 5 characters from the left of SourceString
' and add to a quoted character string
 Device 24FJ64GA002
 Declare Xtal = 16
 Dim SourceString as String * 20 ' Create a String
 Dim DestString as String * 20 ' Create another String

 SourceString = "Hello World" ' Load the source string with characters
 DestString = Left$(SourceString, 5) + " World"
 Print DestString ' Display the result which is "Hello World"

Right$ Example
' Copy 5 characters from the right of SourceString
' and add to a quoted character string
 Device 24FJ64GA002
 Declare Xtal = 16
 Dim SourceString as String * 20 ' Create a String
 Dim DestString as String * 20 ' Create another String

 SourceString = "Hello World" ' Load the source string with characters
 DestString = "Hello " + Right$(SourceString, 5)
 Print DestString ' Display the result which is "Hello World"

Mid$ Example
' Copy 5 characters from position 4 of SourceString
' and add to quoted character strings
 Device 24FJ64GA002
 Declare Xtal = 16
 Dim SourceString as String * 20 ' Create a String
 Dim DestString as String * 20 ' Create another String

 SourceString = "Hello World" ' Load the source string with characters
 DestString = "Hel" + Mid$(SourceString, 4, 5) + "rld"
 Print DestString ' Display the result which is "Hello World"

Proton24 Compiler. Development Suite.

 40

Converting a string into uppercase or lowercase is accomplished by the functions ToUpper and
ToLower: -

ToUpper Example
' Convert the characters in SourceString to upper case

 Device 24FJ64GA002
 Declare Xtal = 16
 Dim SourceString as String * 20 ' Create a String
 Dim DestString as String * 20 ' Create another String

 SourceString = "hello world" ' Load source with lowercase characters
 DestString = ToUpper(SourceString)
 Print DestString ' Display the result which is "HELLO WORLD"

ToLower Example
' Convert the characters in SourceString to lower case

 Device 24FJ64GA002
 Declare Xtal = 16
 Dim SourceString as String * 20 ' Create a String
 Dim DestString as String * 20 ' Create another String

 SourceString = "HELLO WORLD" ' Load the string with uppercase characters
 DestString = ToLower(SourceString)
 Print DestString ' Display the result which is "hello world"

Loading a String Indirectly
If the Source String is a signed or unsigned Byte, Word, Float or an Array variable, the value
contained within the variable is used as a pointer to the start of the Source String's address in
RAM.

Example
' Copy SourceString into DestString using a pointer to SourceString

 Device 24FJ64GA002
 Declare Xtal = 16
 Dim SourceString as String * 20 ' Create a String
 Dim DestString as String * 20 ' Create another String
'
' Create a Word variable to hold the address of SourceString
'
 Dim StringAddr as Word

 SourceString = "Hello World" ' Load the source string with characters
'
' Locate the start address of SourceString in RAM
'
 StringAddr = AddressOf(SourceString)
 DestString = StringAddr ' Source string into the destination string
 Print DestString ' Display the result, which will be "Hello"

Proton24 Compiler. Development Suite.

 41

Slicing a String.
Each position within the string can be accessed the same as an unsigned Byte Array by using
square braces: -

 Device 24FJ64GA002
 Declare Xtal = 16
 Dim SourceString as String * 20 ' Create a String

 SourceString[0] = "H" ' Place letter "H" as first character
 SourceString[1] = "e" ' Place the letter "e" as the second character
 SourceString[2] = "l" ' Place the letter "l" as the third character
 SourceString[3] = "l" ' Place the letter "l" as the fourth character
 SourceString[4] = "o" ' Place the letter "o" as the fifth character
 SourceString[5] = 0 ' Add a null to terminate the string

 Print SourceString ' Display the string, which will be "Hello"

The example above demonstrates the ability to place individual characters anywhere in the
string. Of course, you wouldn't use the code above in an actual BASIC program.

A string can also be read character by character by using the same method as shown above: -

 Device 24FJ64GA002
 Declare Xtal = 16
 Dim SourceString as String * 20 ' Create a String
 Dim Var1 as Byte

 SourceString = "Hello" ' Load the source string with characters
' Copy character 1 from the source string and place it into Var1
 Var1 = SourceString[1]
 Print Var1 ' Display character extracted from string. Which will be "e"

When using the above method of reading and writing to a string variable, the first character in
the string is referenced at 0 onwards, just like an unsigned Byte Array.

The example below shows a more practical String slicing demonstration.

' Display a string's text by examining each character individually
 Device 24FJ64GA002
 Declare Xtal = 16
 Dim SourceString as String * 20 ' Create a String
 Dim Charpos as Byte ' Holds the position within the string

 SourceString = "Hello World" ' Load the source string with characters
 Charpos = 0 ' Start at position 0 within the string
 Repeat ' Create a loop
 ' Display the character extracted from the string
 Print SourceString[Charpos]
 Inc Charpos ' Move to the next position within the string
 ' Keep looping until the end of the string is found
 Until Charpos = Len(SourceString)

Proton24 Compiler. Development Suite.

 42

Notes.
A word of caution regarding Strings: If you're familiar with interpreted BASICs and have used
their String variables, you may have run into the "subscript out of range" error. This error occurs
when the amount of characters placed in the string exceeds its maximum size.

For example, in the examples above, most of the strings are capable of holding 20 characters.
If your program exceeds this range by trying to place 21 characters into a string only created for
20 characters, the compiler will not respond with an error message. Instead, it will access the
next RAM location past the end of the String.

If you are not careful about this, it can cause all sorts of subtle anomalies as previously loaded
variables are overwritten. It's up to the programmer (you!) to prevent this from happening by
ensuring that the String in question is large enough to accommodate all the characters re-
quired, but not too large that it uses up too much precious RAM.

The compiler will help by giving a reminder message when appropriate, but this can be ignored
if you are confident that the String is large enough.

See also : Creating and using code memory strings,
 Creating and using code memory strings,
 Len, Left$, Mid$, Right$
 String Comparisons, Str$, ToLower, ToUpper, AddressOf.

Proton24 Compiler. Development Suite.

 43

Procedures
A procedure is essentially a subroutine in a wrapper that can be optionally passed parameter
variables and optionally return a variable. The code within the procedure block is self con-
tained, including local variables, symbols and labels who’s names are local to the procedure's
block and cannot be accessed by the main program or another procedure, even though the
names may be the same within different procedures.

The Proton24 compiler has a rudimentary procedure mechanism that allows procedures to be
constructed along with their local variables and, moreover, the procedure will not be included
into the program unless it is called by the main program or from within another procedure. A
procedure also has the ability to return a variable for use within an expression or comparison
etc. This means that libraries of procedures can be created and only the ones called will actu-
ally be used.

A procedure is created by the keyword Proc and ended by the keyword EndProc

A simple procedure block is shown below:

Proc MyProc(pBytein as Byte)
 HrsoutLn Dec pBytein

EndProc

To use the above procedure, give its name and any associated parameters:

MyProc(123)

Parameters
A procedure may have up to 10 parameters. Each parameter must be given a unique name
and a variable type. The parameter name must consist of more than one character. The types
supported as parameters are:

Bit, Byte, SByte, Word, SWord, Dword, SDword, Float, Double, and String.

A parameter can be passed by value or by reference. By value will copy the contents into the
parameter variable, while by reference will copy the address of the original variable into the pa-
rameter variable. By default, a parameter is passed by value. In order to pass a parameter by
reference, so that it can be accessed by one of the PtrX commands, the parameter name must
be preceded by the text ByRef. For clarification, the text ByValue may precede a parameter
name to illustrate that the variable is passed by value. For example:

Proc MyProc(ByRef pWordin as Word, ByValue pDwordin as Dword)
 HrsoutLn Dec pWordin, " : ", Dec pDwordin

EndProc

The syntax for creating parameters is the same as when they are created using Dim. String or
Array variables must be given lengths. For example, to create a 10 character String parameter
use:

Proc MyProc(pMyString as String * 10)

To create a 10 element unsigned Word array parameter, use:

Proc MyProc(pMyArray[10] as Word)

Proton24 Compiler. Development Suite.

 44

A parameter can also be aliased to an SFR (Special Function Register). For example:

Proc MyProc(pMyWord as WREG0)

As with standard variables, the aliased parameter can also be casted to a type that has fewer
bytes. For example, a Word variable can be casted to a Byte type, or a Dword can be casted
to a Word or Byte type etc…

Proc MyProc(pMyByte as WREG2.Byte0)

Local Variable and Label Names
Any label, constant or variable created within a procedure is local to that procedure only. Mean-
ing that it is only visible within the procedure, even if the name is the same as other variables
created in other procedures, or global constants or variables. A local variable is created exactly
the same as global variables. i.e. using Dim:

Proc MyProc(pMyByte as Byte)
Dim MyLocal as Byte ' Create a local byte variable

 MyLocal = pMyByte ' Load the local variable with parameter variable
EndProc

Note that a local variable's name must consist of more than 1 character.

Return Variable
A procedure can return a variable of any type, making it useful for inclusion within expressions.
The variable type to return is added to the end of the procedure's template. For example:

Proc MyProc(), SByte
 Result = 10

EndProc

All variable types are allowed as return parameters and follow the same syntax rules as Dim.
Note that a return name is not required, only a type. For example:

Proc MyProc(), [12] as Byte ' Procedure returns a 12 element byte array
Proc MyProc(), [12] as Word ' Procedure returns a 12 element word array
Proc MyProc(), [12] as Dword ' Procedure returns a 12 element dword array
Proc MyProc(), [12] as Float ' Procedure returns a 12 element float array
Proc MyProc(), String * 12 ' Procedure returns a 12 character string

In order to return a value, the text “Result” is used. Internally, the text Result will be mapped
to the procedure’s return variable. For example:

Proc MyProc(pBytein as Byte), Byte
 Result = pBytein ' Transfer the parameter directly to the return variable

EndProc

The Result variable is mapped internally to a variable of the type given as the return parame-
ter, therefore it is possible to use it the same as any other local variable, and upon return from
the procedure, its value will be passed. For example:

Proc MyProc(pBytein as Byte), Byte
 Result = pBytein ' Transfer the parameter to the return variable
 Result = Result + 1 ' Add one to it

EndProc

Proton24 Compiler. Development Suite.

 45

Returning early from a procedure is the same as returning from a subroutine. i.e. using the Re-
turn keyword.

Proc MyProc(pBytein as Byte), Byte
 Result = pBytein ' Transfer the parameter to the return variable
 If pBytein = 0 Then Return ' Perform a test and return early if required
 Result = Result + 1 ' Otherwise… Add one to it

EndProc

A return parameter can also be aliased to an SFR (Special Function Register). For example:

Proc MyProc(), WREG0

As with standard variables, the aliased return parameter can also be casted to a type that has
fewer bytes. For example, a Word variable can be casted to a Byte type, or a Dword can be
casted to a Word or Byte type etc…

Proc MyProc(), WREG2.Byte0

Below is an example procedure that mimics the compiler’s 16-bit Dig command.

 Device = 24EP128MC202
 Declare Xtal = 140.03
 Declare Hserial_Baud = 9600 ' UART1 baud rate
 Declare Hrsout1_Pin = PORTB.11 ' Select pin to be used for USART1 TX

 Dim MyWord As Word = 12345
'--
' Emulate the 16-bit Dig command's operation
' Input : pWordin holds the value to extract from
' : pDigit holds which digit to extract (1 To 5)
' Output : Result holds the extracted value
' Notes : None
'
Proc DoDig16(pWordin As Word, pDigit As Byte), Byte
Dim DigitLoop As Byte

 pWordin = Abs(pWordin)
 If pDigit > 0 Then
 For DigitLoop = (pDigit - 1) To 0 Step -1
 pWordin = pWordin / 10
 Next
 EndIf
 Result = pWordin // 10
EndProc
'--
Main:
' Setup the Oscillator to operate the device at 140.03MHz
' Fosc = (7.37 * 76) / (2 * 2) = 140.03MHz
 PLL_Setup(76, 2, 2, $0300)
 RPOR4.Byte1 = 1 ' Make PPS Pin RB11 U1TX

 HRSOut Dec DoDig16(MyWord, 0)
 HRSOut Dec DoDig16(MyWord, 1)
 HRSOut Dec DoDig16(MyWord, 2)
 HRSOut Dec DoDig16(MyWord, 3)
 HRSOutLn Dec DoDig16(MyWord, 4)

Proton24 Compiler. Development Suite.

 46

'--
' Configure for internal 7.37MHz oscillator with PLL
' OSC pins are general purpose I/O
'
 Config FGS = GWRP_OFF, GCP_OFF
 Config FOSCSEL = FNOSC_FRCPLL, IESO_ON, PWMLOCK_OFF
 Config FOSC = POSCMD_NONE, OSCIOFNC_ON, IOL1WAY_OFF, FCKSM_CSDCMD
 Config FWDT = WDTPOST_PS256, WINDIS_OFF, PLLKEN_ON, FWDTEN_OFF
 Config FPOR = ALTI2C1_ON, ALTI2C2_OFF
 Config FICD = ICS_PGD1, JTAGEN_OFF

Notes
The compiler’s implementation of procedures is not as thorough as a true procedural language
such as C or Pascal because they have had to be added to an already flat language. However,
they are still a powerful feature of the language when used appropriately. Procedures are not
supported in every instance of the compiler and if one is not supported within a particular com-
mand, a syntax error will be produced. In which case, an intermediate variable will need to be
created to hold the procedure’s return result:

MyTemp = MyProc()

The compiler does not re-cycle RAM for parameters or local variables.

A parameter that is passed ByRef can only ever be a Byte, Word or Dword type, because it
will hold the address of the variable passed to it and not its value. This is then used by either
Ptr8, Ptr16, Ptr32 and Ptr64 in order to manipulate the address indirectly. An example of this
mechanism is shown below:

' Demonstrate a procedure for finding the length of a word array
' given a particular terminator value
'
 Device = 24FJ64GA002
 Declare Xtal = 16
'
' USART1 declares
'
 Declare Hserial_Baud = 9600 ' UART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim MyLength As Word
 Dim MyArray[20] As Word = 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,0

'---
' Find the length of a word array with a user defined terminator
' Input : pArrayIn holds the address of the word array
' : pTerminator holds the terminator value
' Output : Returns the length of the word array upto the terminator
' Notes : Uses indirect addressing using ByRef and Ptr16
'
Proc LengthOf(ByRef pInAddress As Word, pTerminator As Word), Word
 Result = 0 ' Clear the result of the procedure
 While ' Create an infinite loop
 '
 ' Increment up the array and exit the loop when the terminator is found
 '
 If Ptr16(pInAddress++) = pTerminator Then Break

Proton24 Compiler. Development Suite.

 47

 Inc Result ' Increment the count
 Wend
EndProc
'---
Main:
 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
'
' Find the length of a null terminated word array
'
 MyLength = LengthOf(MyArray, 0)
 HRSOutLn Dec MyLength ' Display the result on a serial terminal

See Also: Ptr8, Ptr16, Ptr32, Ptr64

Proton24 Compiler. Development Suite.

 48

A Typical Flat BASIC Program Layout
The compiler is very flexible, and will allow most types of constant, declaration, or variable to be placed
anywhere within the BASIC program. However, it may not produce the correct results, or an unexpected
syntax error may occur due to a variable or declare being created after it is supposed to be used.

The recommended layout for a program is shown below.

 Device ' Always required
'
 Xtal declare ' Always required
'
 General declares
'
 Includes
'

Constants and/or Variables
'

GoTo Main ' Jump over the subroutines (if any)
'
 Subroutines go here
'
Main:
 Main Program code goes here

For example:

 Device = 24FJ64GA002
'---
 Declare Xtal = 32
 Declare Hserial_Baud = 9600
'---
' Load an include file (if required)
 Include "MyInclude.inc"
'---
' Create Variables

Dim MyWord as Word ' Create a Word size variable
'---
' Define Constants and/or aliases

Symbol MyConst = 10 ' Create a constant
'---

GoTo Main ' Jump over the subroutine/s (if any)
'---
' Simple Subroutine
AddIt:

MyWord = MyWord + MyConst ' Add the constant to the variable
Return ' Return from the subroutine

'---
' Main Program Code
Main:
 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 MyWord = 10 ' Pre-load the variable

GoSub AddIt ' Call the subroutine
 HrsoutLn Dec MyWord ' Display the result on the serial terminal

Of course, it depends on what is within the include file as to where it should be placed within
the program, but the above outline will usually suffice. Any include file that requires placing
within a certain position within the code should be documented to state this fact.

Proton24 Compiler. Development Suite.

 49

A Typical Procedural BASIC Program Layout
The compiler is very flexible, and will allow most types of constant, declaration, or variable to be placed
anywhere within the BASIC program. However, it may not produce the correct results, or an unexpected
syntax error may occur due to a variable or declare being created after it is supposed to be used.

The recommended layout for a program is shown below.

 Device ' Always required
'
 Xtal declare ' Always required
'
 General declares
'
 Includes
'

Constants and/or Variables
'
 Procedures go here
'
Main:
 Main Program code goes here

For example:

 Device = 24FJ64GA002
'---
 Declare Xtal = 32
 Declare Hserial_Baud = 9600
'---
' Load an include file (if required)
 Include "MyInclude.inc"
'---
' Create Variables

Dim MyWord as Word ' Create a Word size variable
'---
' Define Constants and/or aliases

Symbol MyConst = 10 ' Create a constant
'---
' Simple Procedure
Proc AddIt(pMyWord1 as Word, pMyWord2 as Word), Word

Result = pMyWord1 + pMyWord2 ' Add the two variables as the result
EndProc
'---
' Main Program Code
Main:
 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 MyWord = 10 ' Pre-load the variable

MyWord = AddIt(MyWord, MyConst) ' Call the procedure
 HrsoutLn Dec MyWord ' Display the result on the serial terminal

Of course, it depends on what is within the include file as to where it should be placed within
the program, but the above outline will usually suffice. Any include file that requires placing
within a certain position within the code should be documented to state this fact.

Proton24 Compiler. Development Suite.

 50

General Format
The compiler is not case sensitive, except when processing string constants such as "hello".

Multiple instructions and labels can be combined on the same line by separating them with co-
lons ':'.

The examples below show the same program as separate lines and as a single-line: -

Multiple-line version: -

 Low PORTB ' Make all pins on PORTB outputs
 For MyByte = 0 to 100 ' Count from 0 to 100
 PORTB = MyByte ' Make PORTB = MyByte
 Next ' Continue counting until 100 is reached

Single-line version: -

 Low PORTB: For MyByte = 0 to 100 : PORTB = MyByte: Next

Line Continuation Character '_'
Lines that are too long to display. i.e. greater than 1000 characters, may be split using the con-
tinuation character '_'. This will direct the continuation of a command to the next line. Its use is
only permitted after a comma delimiter: -

 Var1 = LookUp Var2,[1,2,3,_
 4,5,6,7,8]
or
 Print At 1,1,_
 "Hello World",_
 Dec Var1,_
 Hex Var2

Proton24 Compiler. Development Suite.

 51

Creating and using Code Memory Tables
All 24-bit core devices have the ability to read their own flash memory. And although writing to
this memory too many times is unhealthy for the device, reading this memory is both fast, and
harmless. Which offers a form of data storage and retrieval, the Dim as Code directive proves
this, as it uses the mechanism of reading and storing in the microcontroller’s flash memory.

Dim MyCode as Code = As Dword 1, 2, 3, 4, 5

or

Dim MyCode as PSV = As Word 100, 200, 300, 400

Both of the above lines of code will create a data table in the device's code memory, however,
the PSV directive will ensure that the AddressOf function returns the PSV address of the table,
instead of its actual code memory address. This is used mainly for DSP operations.

The data produced by the Code or PSV directives follows the same casting rules as the Cdata
directive, in that the table's data can be given a size that each element will occupy.

Dim CodeString As Code = "Hello World", 0

The above line will create, in code memory, the values that make up the ASCII text "Hello
World", at address CodeString. Note the null terminator after the ASCII text.

To display, or transmit this string of characters, the following command structure could be used:

 Hrsout CodeString

The label that declared the address where the list of code memory values resided now be-
comes the string's name.

Note the null terminators after the ASCII text in the table data. Without these, the microcontrol-
ler will continue to transmit data until it reaches a 0 value within code.

The term 'virtual string' relates to the fact that a string formed in code memory cannot (rather
should not) be written too, but only read from.

Using the Cstr modifier it is also possible to use constants, variables and expressions that hold
the address of the code memory data (a pointer). For example, the program below uses a
Word size variable to hold 2 pointers (address of a label, variable, or array) to 2 individual null
terminated text strings formed in code memory.

Proton24 Compiler. Development Suite.

 52

Example

 Device 24FJ64GA002
 Declare Xtal = 16

 Dim Address as Word ' Address holding variable
'
' Create the text to display
'

Dim CodeString1 as Code = "Hello ", 0
Dim CodeString2 as Code = "World", 0

 DelayMs 100 ' Wait for things to stabilise
 Cls ' Clear the LCD

 Address = AddressOf(CodeString1) ' Point address to CodeString1
 Print Cstr Address ' Display CodeString1
 Address = AddressOf(CodeString2) ' Point Address to CodeString2
 Print Cstr Address ' Display CodeString2

Proton24 Compiler. Development Suite.

 53

String Comparisons
Just like any other variable type, String variables can be used within comparisons such as If-
Then, Repeat-Until, and While-Wend . In fact, it's an essential element of any programming
language.

Equal (=) or Not Equal (<>) comparisons are the only type that apply to Strings, because one
String can only ever be equal or not equal to another String. It would be unusual (unless your
using the C language) to compare if one String was greater or less than another.

So a valid comparison could look something like the lines of code below: -

 If String1 = String2 Then
 Hrsout "Equal\r"
 Else
 Hrsout "Not Equal\r"
 EndIf

But as you've found out if you read the Creating Strings section, there is more than one type of
String in a PIC24® and dsPIC33® microcontroller. There is a RAM String variable, a code
memory string, and a quoted character string.

Note that pointers to String variables are not allowed in comparisons, and a syntax error will be
produced if attempted.

Starting with the simplest of string comparisons, where one string variable is compared to an-
other string variable. The line of code would look similar to either of the two lines above.

Example 1
' Simple string variable comparison
 Device = 24FJ64GA002
 Declare Xtal = 16

 Dim String1 as String * 20 ' Create a String
 Dim String2 as String * 20 ' Create another String

 Cls
 String1 = "EGGS" ' Pre-load String String1 with the text EGGS
 String2 = "BACON" ' Load String String2 with the text BACON

 If String1 = String2 Then ' Is String1 equal to String2?
 Print At 1,1, "Equal" ' Yes. So display Equal on line 1 of the LCD
 Else ' Otherwise
 Print At 1,1, "Not Equal" ' Display Not Equal on line 1 of the LCD
 EndIf

 String2 = "EGGS" ' Now make the strings the same as each other
 If String1 = String2 Then ' Is String1 equal to String2?
 Print At 2,1, "Equal" ' Yes. So display Equal on line 2 of the LCD
 Else ' Otherwise
 Print At 2,1, "Not Equal" ' Display Not Equal on line 2 of the LCD
 EndIf

The example above will display not Equal on line one of the LCD because String1 contains the
text "EGGS" while String2 contains the text "BACON", so they are clearly not equal.

Proton24 Compiler. Development Suite.

 54

Line two of the LCD will show Equal because String2 is then loaded with the text "EGGS" which
is the same as String1, therefore the comparison is equal.

A similar example to the previous one uses a quoted character string instead of one of the
String variables.

Example 2
' String variable to Quoted character string comparison

 Device = 24FJ64GA002
 Declare Xtal = 16

 Dim String1 as String * 20 ' Create a String

 Cls
 String1 = "EGGS" ' Pre-load String String1 with the text EGGS

 If String1 = "BACON" Then ' Is String1 equal to "BACON"?
 Print At 1,1, "Equal" ' Yes. So display Equal on line 1 of the LCD
 Else ' Otherwise…
 Print At 1,1, "Not Equal" ' Display Not Equal on line 1 of the LCD
 EndIf

 If String1 = "EGGS" Then ' Is String1 equal to "EGGS"?
 Print At 2,1, "Equal" ' Yes. So display Equal on line 2 of the LCD
 Else ' Otherwise…
 Print At 2,1, "Not Equal" ' Display Not Equal on line 2 of the LCD
 EndIf

The example above produces exactly the same results as example1 because the first compari-
son is clearly not equal, while the second comparison is equal.

Example 3
' Use a string comparison in a Repeat-Until loop
 Device = 24FJ64GA002

Declare Xtal = 16

 Dim SourceString as String * 20 ' Create a String
 Dim DestString as String * 20 ' Create another String
 Dim Charpos as Byte ' Character position within the strings

RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 Clear DestString ' Fill DestString with nulls
 SourceString = "Hello" ' Load String SourceString with the text Hello
 Repeat ' Create a loop
 '

' Copy SourceString into DestString one character at a time
'
DestString[Charpos] = SourceString[Charpos]

 Inc Charpos ' Move to the next character in the strings
 '

' Stop when DestString is equal to the text "Hello"
'

 Until DestString = "Hello"
 HrsoutLn DestString ' Display DestString

Proton24 Compiler. Development Suite.

 55

Example 4
' Compare a string variable to a string held in code memory
 Device = 24FJ64GA002
 Declare Xtal = 16

 Dim String1 as String * 20 ' Create a String
 Dim CodeString as Code = "EGGS", 0

 Cls
 String1 = "BACON" ' Pre-load String String1 with the text BACON
 If CodeString= "BACON" Then ' Is CodeString equal to "BACON" ?
 Print At 1,1, " equal " ' Yes. So display equal on line 1 of the LCD
 Else ' Otherwise…
 Print At 1,1, "not equal" ' Display not equal on line 1 of the LCD
 EndIf

 String1 = "EGGS" ' Pre-load String String1 with the text EGGS
 If String1 = CodeString Then ' Is String1 equal to CodeString ?
 Print At 2,1, " equal " ' Yes. So display equal on line 2 of the LCD
 Else ' Otherwise…
 Print At 2,1, "not equal " ' Display not equal on line 2 of the LCD
 EndIf

Example 5
' String comparisons using Select-Case
 Device = 24FJ64GA002
 Declare Xtal = 16

 Dim String1 as String * 20 ' Create a String for 20 characters

RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 String1 = "EGGS" ' Pre-load String String1 with the text EGGS
 Select String1 ' Start comparing the string
 Case "EGGS" ' Is String1 equal to EGGS?
 HrsoutLn "Found EGGS"
 Case "BACON" ' Is String1 equal to BACON?
 HrsoutLn "Found BACON"
 Case "COFFEE" ' Is String1 equal to COFFEE?
 HrsoutLn "Found COFFEE"
 Case Else ' Default to...
 HrsoutLn "No Match" ' Displaying no match

EndSelect

See also : Creating and using Strings
 Creating and using code memory strings
 If-Then-Else-EndIf, Repeat-Until
 Select-Case, While-Wend .

Proton24 Compiler. Development Suite.

 56

Relational Operators
Relational operators are used to compare two values. The result can be used to make a deci-
sion regarding program flow.

The list below shows the valid relational operands accepted by the compiler:

Operator Relation Expression Type
 = Equality X = Y
 == Equality X == Y (Same as above Equality)
 <> Inequality X <> Y
 < Less than X < Y
 > Greater than X > Y
 <= Less than or Equal to X <= Y
 >= Greater than or Equal to X >= Y

See also : If-Then-Else-EndIf, Repeat-Until, Select-Case, While-Wend.

Proton24 Compiler. Development Suite.

 57

Boolean Logic Operators
The operators and and or join the results of two conditions to produce a single true/false result.
And and or work the same as they do in everyday speech. Run the example below once with
and (as shown) and again, substituting or for and: -

 Device = 24FJ64GA002
 Declare Xtal = 16
 Dim MyByte1 as Byte
 Dim MyByte2 as Byte

RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 MyByte1 = 5
 MyByte2 = 9
 If MyByte1 = 5 And MyByte2 = 10 Then GoTo Res_True
 Stop
Res_True:
 HrsoutLn "Result is True."

The condition "Var1 = 5 and Var2 = 10" is not true. Although Var1 is 5, Var2 is not 10. and
works just as it does in plain English, both conditions must be true for the statement to be true.
or also works in a familiar way; if one or the other or both conditions are true, then the state-
ment is true.

Parenthesis (or rather the lack of it!).
Every compiler has its quirky rules, and the Proton24 compiler is no exception. One of its quirks
means that parenthesis is not supported in a Boolean condition, or indeed with any of the If-
Then-Else-EndIf, While-Wend, and Repeat-Until conditions. Parenthesis in an expression
within a condition is allowed however. So, for example, the expression: -

 If (Var1 + 3) = 10 Then do something. Is allowed.
but: -
 If ((Var1 + 3) = 10) Then do something. Is not allowed.

The Boolean operands do have a precedence within a condition. The and operator has the
highest priority, then the or, then the xor. This means that a condition such as: -

 If Var1 = 2 and Var2 = 3 or Var3 = 4 Then do something

Will compare Var1 and Var2 to see if the and condition is true. It will then see if the or condition
is true, based on the result of the and condition.

Then always required.
The Proton24 compiler relies heavily on the Then part. Therefore, if the Then part of a condi-
tion is left out of the code listing, a Syntax Error will be produced.

Proton24 Compiler. Development Suite.

 58

Math Operators
The Proton24 compiler performs all math operations in full hierarchal order. Which means that
there is precedence to the operands. For example, multiplies and divides are performed before
adds and subtracts. To ensure the operations are carried out in the correct order use parenthe-
sis to group the operations: -

 A = ((B - C) * (D + E)) / F

All math operations are signed or unsigned depending on the variable type used, and per-
formed with 16, or 32-bit or floating point precision, again, depending on the variable types and
constant values used within the expression.

The operators supported are: -

Standard operators
Addition '+' Adds variables and/or constants.
Subtraction '-'. Subtracts variables and/or constants.
Multiply '*' Multiplies variables and/or constants.
Multiply High '**' Returns the high 16 bits of an unsigned 16-bit integer multiply.
Multiply Middle '*/' Returns the middle 16 bits of an unsigned 16-bit integer multiply.
Divide '/' Divides variables and/or constants.
Remainder '//' Returns the remainder after dividing one integer value by another.

Logical operators
Bitwise and '&' Returns the logical And of two values.
Bitwise or '|' Returns the logical Or of two values.
Bitwise xor '^'. Returns the logical Xor of two values.
Bitwise Shift Left '<<'. Shifts the bits of a value left a specified number of places.
Bitwise Shift Right '>>'. Shifts the bits of a value right a specified number of places.
Bitwise Complement '~' Reverses the bits in a variable.

Proton24 operators
Abs Returns the absolute value of a signed value.
Ceil Returns the ceiling of a 32-bit floating point value.
Dcd 2 n -power decoder of a four-bit integer value.
Dig '?' Returns the specified decimal digit of a positive integer value.
Exp Returns the exponential function of a 32-bit floating point value.
Floor Returns the floor of a 32-bit floating point value.
fAbs Returns the absolute value of a 32-bit or 64-bit floating point value.
ISqr Returns the integer Square Root of an integer value.
Modf Split a 32-bit floating point value into its fractional and whole parts.
Ncd Priority encoder of a 16-bit integer value.
Pow Computes a 32-bit floating point variable to the power of another.
Rev '@' Reverses the order of the lowest bits in an integer value.
Sqr Returns the Square Root of a 32-bit floating point value.
dCeil Returns the ceiling of a 64-bit floating point value.
dExp Returns the exponential function of a 64-bit floating point value.
dFloor Returns the floor of a 64-bit floating point value.
Modd Split a 64-bit floating point value into its fractional and whole parts.
dPow Computes a 64-bit floating point variable to the power of another.
dSqr Returns the Square Root of a 64-bit floating point value.

Proton24 Compiler. Development Suite.

 59

Trigonometry functions
Acos Returns the Arc Cosine of a 32-bit floating point value in radians.
Asin Returns the Arc Sine of a 32-bit floating point value in radians.
Atan Returns the Arc Tangent of a 32-bit floating point value in radians.
Cos Returns the Cosine of a 32-bit floating point value in radians.
ISin Returns the integer Sine of an integer value in radians.
ICos Returns the integer Cosine of an integer value in radians.
Log Returns the Natural Log of a 32-bit floating point value.
Log10 Returns the Log of a 32-bit floating point value.
Sin Returns the Sine of a 32-bit floating point value in radians.
Tan Returns the Tangent of a 32-bit floating point value in radians.
dAcos Returns the Arc Cosine of a 64-bit floating point value in radians.
dAsin Returns the Arc Sine of a 64-bit floating point value in radians.
dAtan Returns the Arc Tangent of a 64-bit floating point value in radians.
dCos. Returns the Cosine of a 64-bit floating point value in radians.
dLog Returns the Natural Log of a 64-bit floating point value.
dLog10 Returns the Log of a 64-bit floating point value.
dSin Returns the Sine of a 64-bit floating point value in radians.
dTan Returns the Tangent of a 64-bit floating point value in radians.

Proton24 Compiler. Development Suite.

 60

Add '+'

Syntax
Assignment Variable = Variable + Variable

Overview
Adds variables and/or constants, returning an unsigned or signed 8, 16, 32-bit or floating point
result.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Addition works exactly as you would expect with signed and unsigned integers as well as float-
ing point.

 Device = 24FJ64GA002
 Declare Xtal = 16

Dim MyWord1 as Word
 Dim MyWord2 as Word

 MyWord1 = 1575
 MyWord2 = 976
 MyWord1 = MyWord1 + MyWord2 ' Add the numbers.
 HrsoutLn Dec MyWord1 ' Display the result

' 32-bit addition
 Device = 24FJ64GA002
 Declare Xtal = 16
 Dim MyWord as Word
 Dim MyDword as Dword

 MyWord = 1575
 MyDword = 9763647
 MyDword = MyDword + MyWord ' Add the numbers.
 HrsoutLn Dec MyDword ' Display the result

Proton24 Compiler. Development Suite.

 61

Subtract '-'

Syntax
Assignment Variable = Variable - Variable

Overview
Subtracts variables and/or constants, returning an unsigned or signed 8, 16, 32-bit or floating
point result.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Subtract works exactly as you would expect with signed and unsigned integers as well as float-
ing point.

 Device = 24FJ64GA002
 Declare Xtal = 16
 Dim MyWord1 as Word
 Dim MyWord2 as Word

 MyWord1 = 1000
 MyWord2 = 999
 MyWord1 = MyWord1 - MyWord2 ' Subtract the values.
 HrsoutLn Dec MyWord1 ' Display the result

' 32-bit subtraction
 Device = 24FJ64GA002
 Declare Xtal = 16
 Dim MyWord as Word
 Dim MyDword as Dword

 MyWord = 1575
 MyDword = 9763647
 MyDword = MyDword - MyWord ' Subtract the values.
 HrsoutLn Dec MyDword ' Display the result

' 32-bit signed subtraction
 Device = 24FJ64GA002
 Declare Xtal = 16
 Dim MyDword1 as SDword
 Dim MyDword2 as SDword

 MyDword1 = 1575
 MyDword2 = 9763647
 MyDword1 = MyDword1 - MyDword2 ' Subtract the values.
 HrsoutLn Sdec MyDword1 ' Display the result

Proton24 Compiler. Development Suite.

 62

Multiply '*'

Syntax
Assignment Variable = Variable * Variable

Overview
Multiplies variables and/or constants, returning an unsigned or signed 8, 16, 32-bit or floating
point result.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Multiply works exactly as you would expect with signed or unsigned integers from -2147483648
to +2147483647, or 0 to 4294967295, as well as floating point.

 Device = 24FJ64GA002
 Declare Xtal = 16
 Dim MyWord1 as Word
 Dim MyWord2 as Word

 MyWord1 = 1000
 MyWord2 = 19
 MyWord1 = MyWord 1 * MyWord2 ' Multiply MyWord1 by MyWrd2.
 HrsoutLn Dec MyWord1 ' Display the result

' 32-bit multiplication
 Device = 24FJ64GA002
 Declare Xtal = 16
 Dim MyWord as Word
 Dim MyDword as Dword

 MyWord = 100
 MyDword = 10000
 MyDword = MyDword * MyWord ' Multiply the numbers.
 HrsoutLn Dec MyDword ' Display the result

Proton24 Compiler. Development Suite.

 63

Multiply High '**'

Syntax
Assignment Variable = Variable ** Variable

Overview
Multiplies 8 or 16-bit unsigned variables and/or constants, returning the high 16 bits of the re-
sult.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

When multiplying two 16-bit values, the result can be as large as 32 bits. Since the largest vari-
able supported by the compiler is 16-bits, the highest 16 bits of a 32-bit multiplication result are
normally lost. The ** (double-star) operator produces these upper 16 bits.

For example, suppose 65000 ($FDE8) is multiplied by itself. The result is 4,225,000,000 or
$FBD46240. The * (star, or normal multiplication) instruction would return the lower 16 bits,
$6240. The ** instruction returns $FBD4.

 Device = 24FJ64GA002
 Declare Xtal = 16
 Dim MyWord1 as Word
 Dim MyWord2 as Word

 MyWord1 = $FDE8
 MyWord2 = MyWord1 ** MyWord1 ' Multiply $FDE8 by itself
 HrsoutLn Hex MyWord2 ' Return high 16 bits.

Notes.
This operator enables compatibility with BASIC STAMP code, and melab's compiler code, but
is rather obsolete considering the 32-bit capabilities of the Proton24 compiler.

Proton24 Compiler. Development Suite.

 64

Multiply Middle '*/'

Syntax
Assignment Variable = Variable */ Variable

Overview
Multiplies unsigned variables and/or constants, returning the middle 16 bits of the 32-bit result.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

The Multiply Middle operator (*/) has the effect of multiplying a value by a whole number and a
fraction. The whole number is the upper byte of the multiplier (0 to 255 whole units) and the
fraction is the lower byte of the multiplier (0 to 255 units of 1/256 each). The */ operator allows a
workaround for the compiler's integer-only math.

Suppose we are required to multiply a value by 1.5. The whole number, and therefore the up-
per byte of the multiplier, would be 1, and the lower byte (fractional part) would be 128, since
128/256 = 0.5. It may be clearer to express the */ multiplier in Hex as $0180, since hex keeps
the contents of the upper and lower bytes separate. Here's an example: -

 Device = 24FJ64GA002
 Declare Xtal = 16
 Dim MyWord1 as Word

 MyWord1 = 100
 MyWord1 = MyWord1 */ $0180 ' Multiply by 1.5 [1 + (128/256)]
 HrsoutLn Dec MyWord1 ' Display result (150).

To calculate constants for use with the */ instruction, put the whole number portion in the upper
byte, then use the following formula for the value of the lower byte: -

 int(fraction * 256)

For example, take Pi (3.14159). The upper byte would be $03 (the whole number), and the
lower would be int(0.14159 * 256) = 36 ($24). So the constant Pi for use with */ would be
$0324. This isn't a perfect match for Pi, but the error is only about 0.1%.

Notes.
This operator enables compatibility with BASIC STAMP code, and, to some extent, melab's
compiler code, but is rather obsolete considering the 32-bit capabilities of the Proton24 com-
piler.

Proton24 Compiler. Development Suite.

 65

Divide '/'

Syntax
Assignment Variable = Variable / Variable

Overview
Divides variables and/or constants, returning an unsigned or signed 8, 16, 32-bit or floating
point result.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

The Divide operator (/) works exactly as you would expect with signed or unsigned integers
from -2147483648 to +2147483647 as well as floating point.

 Device = 24FJ64GA002
 Declare Xtal = 16
 Dim MyWord1 as Word
 Dim MyWord2 as Word

 MyWord1 = 1000
 MyWord2 = 5
 MyWord1 = MyWord1 / MyWord2 ' Divide the numbers.
 HrsoutLn Dec MyWord1 ' Display the result (200).

' 32-bit division
 Device = 24FJ64GA002
 Declare Xtal = 16
 Dim MyWord as Word
 Dim MyDword as Dword

 MyWord = 100
 MyDword = 10000
 MyDword = MyDword / MyWord ' Divide the numbers.
 HrsoutLn Dec MyDword ' Display the result

Note
The PIC24® and dsPIC33® range of devices have an exception mechanism built into their
hardware. One of these mechanisms is a trap of a division by zero on any of its instructions.
The compiler attempts to avoid this state, however, it cannot guarantee that an exception will
not occur, and because it is a compiled language, it cannot always give an error message for
such an event.

If the BASIC code seems to reset at a particular place within the code, make sure it is not a di-
vision by 0. If a suspected division by zero will occur, wrap the division within a condition. For
example:

If MyVar2 <> 0 Then
 DestVar = MyVar1 / MyVar2

EndIF

Proton24 Compiler. Development Suite.

 66

Remainder '//'

Syntax
Assignment Variable = Variable // Variable

Overview
Return the remainder left after dividing one unsigned or signed value by another.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Some division problems don't have a whole-number result; they return a whole number and a
fraction. For example, 1000/6 = 166.667. Integer math doesn't allow the fractional portion of the
result, so 1000/6 = 166. However, 166 is an approximate answer, because 166*6 = 996. The
division operation left a remainder of 4. The // returns the remainder of a given division opera-
tion. Numbers that divide evenly, such as 1000/5, produce a remainder of 0: -

 Device = 24FJ64GA002
 Declare Xtal = 16
 Dim MyWord1 as Word
 Dim MyWord2 as Word

 MyWord1 = 1000
 MyWord2 = 6
 MyWord1 = MyWord1 // MyWord2 ' Get remainder of MyWord1 / MyWord2.
 HrsoutLn Dec MyWord1 ' Display the result (4).

' 32-bit modulus
 Device = 24FJ64GA002
 Declare Xtal = 16
 Dim MyWord as Word
 Dim MyDword as Dword

 MyWord = 100
 MyDword = 99999
 MyDword = MyDword // MyWord ' Mod the numbers.
 HrsoutLn Dec MyDword ' Display the result

The modulus operator does not operate with floating point values or variables. Use fMod for
that operation.

Note
The PIC24® and dsPIC33® range of devices have an exception mechanism built into their
hardware. One of these mechanisms is a trap of a division by zero on any of its instructions.
The compiler attempts to avoid this state, however, it cannot guarantee that an exception will
not occur, and because it is a compiled language, it cannot always give an error message for
such an event.

If the BASIC code seems to reset at a particular place within the code, make sure it is not a di-
vision by 0. If a suspected division by zero will occur, wrap the modulus within a condition. For
example:

If MyVar2 <> 0 Then
 DestVar = MyVar1 // MyVar2

EndIF

Proton24 Compiler. Development Suite.

 67

Logical and '&'
The And operator (&) returns the bitwise and of two integer values. Each bit of the values is
subject to the following logic: -

 0 and 0 = 0
 0 and 1 = 0
 1 and 0 = 0
 1 and 1 = 1

The result returned by & will contain 1s in only those bit positions in which both input values
contain 1s: -

 Device = 24FJ64GA002
 Declare Xtal = 16
 Dim MyByte1 as Byte
 Dim MyByte2 as Byte
 Dim MyResult as Byte
 MyByte1 = %00001111
 MyByte2 = %10101101
 MyResult = MyByte1 & MyByte2
 Hrsout Bin MyResult, 13 ' Display and result (%00001101)

or

 Hrsout Bin (%00001111 & %10101101) , 13 ' Display and result (%00001101)

Bitwise operations are not permissible with floating point values or variables.

Logical or '|'
The Or operator (|) returns the bitwise or of two integer values. Each bit of the values is subject
to the following logic: -

 0 or 0 = 0
 0 or 1 = 1
 1 or 0 = 1
 1 or 1 = 1

The result returned by | will contain 1s in any bit positions in which one or the other (or both)
input values contain 1s: -

 Device = 24FJ64GA002
 Declare Xtal = 16
 Dim MyByte1 as Byte
 Dim MyByte2 as Byte
 Dim MyResult as Byte
 MyByte1 = %00001111
 MyByte2 = %10101001
 MyResult = MyByte1 | MyByte2
 Hrsout Bin MyResult, 13 ' Display or result (%10101111)

or

 Hrsout Bin (%00001111 | %10101001) , 13 ' Display or result (%10101111)

Bitwise operations are not permissible with floating point values or variables.

Proton24 Compiler. Development Suite.

 68

Logical Xor '^'
The Xor operator (^) returns the bitwise xor of two integer values. Each bit of the values is sub-
ject to the following logic: -

 0 xor 0 = 0
 0 xor 1 = 1
 1 xor 0 = 1
 1 xor 1 = 0

The result returned by ^ will contain 1s in any bit positions in which one or the other (but not
both) input values contain 1s: -

 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

Dim MyByte1 as Byte

 Dim MyByte2 as Byte
 Dim MyResult as Byte

RPOR7 = 3 ' Make PPS Pin RP14 U1TX

MyByte1 = %00001111
 MyByte2 = %10101001
 MyResult = MyByte1 ^ MyByte2
 Hrsout Bin MyResult, 13 ' Display xor result (%10100110)

or

 Hrsout Bin (%00001111 ^ %10101001) , 13 ' Display xor result (%10100110)

Bitwise operations are not permissible with floating point values or variables.

Proton24 Compiler. Development Suite.

 69

Bitwise Shift Left '<<'
Shifts the bits of an integer value to the left a specified number of places. Bits shifted off the left
end of a number are lost; bits shifted into the right end of the number are 0s. Shifting the bits of
a value left n number of times also has the effect of multiplying that number by two to the nth
power.

For example 100 << 3 (shift the bits of the decimal number 100 left three places) is equivalent
to 100 * 2^3.

 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

Dim MyWord as Word

 Dim Loop as Byte

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

MyWord = %1111111111111111
 For Loop = 1 to 16 ' Repeat with loop = 1 to 16.
 HrsoutLn Bin MyWord << Loop ' Shift MyWord left Loop places.
 Next

Bitwise operations are not permissible with floating point values or variables. All bit shifts are
unsigned, regardless of the variable type used.

Proton24 Compiler. Development Suite.

 70

Bitwise Shift Right '>>'
Shifts the bits of an integer value to the right a specified number of places. Bits shifted off the
right end of a number are lost; bits shifted into the left end of the number are 0s. Shifting the
bits of a value right n number of times also has the effect of dividing that number by two to the
nth power.

For example 100 >> 3 (shift the bits of the decimal number 100 right three places) is equivalent
to 100 / 2^3.

 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim MyWord as Word
 Dim Loop as Byte

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 MyWord = %1111111111111111
 For Loop = 1 to 16 ' Repeat with loop = 1 to 16.
 HrsoutLn Bin MyWord >> Loop ' Shift MyWord right Loop places.
 Next

Proton24 Compiler. Development Suite.

 71

Complement ‘~’
The Complement operator (~) inverts the bits of an integer value. Each bit that contains a 1 is
changed to 0 and each bit containing 0 is changed to 1. This process is also known as a "bit-
wise not".

 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim MyWord1 as Word
 Dim MyWord2 as Word

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 MyWord2 = %1111000011110000
 MyWord1 = ~MyWord2 ' Complement MyWord2.
 HrsoutLn Bin16 MyWord1 ' Display the result

Complementing can be carried out with all variable types except Floats. Attempting to comple-
ment a floating point variable will produce a syntax error. All bit shifts are unsigned, regardless
of the variable type used.

Proton24 Compiler. Development Suite.

 72

Abs

Syntax
Assignment Variable = Abs(Variable)

Overview
Return the absolute value of a constant, variable or expression.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

32-bit Example
 Device = 24FJ64GA002
 Declare Xtal = 16

 Dim MyDword1 as Dword ' Create an unsigned Dword variable
 Dim MyDword2 as Dword ' Create an unsigned Dword variable

 MyDword1 = -1234567 ' Load MyDword1 with value -1234567
 MyDword2 = Abs(MyDword1) ' Extract the absolute value from MyDword1
 Hrsout Dec MyDword2, 13 ' Display the result, which is 1234567

32-bit Floating Point example
 Device = 24FJ64GA002
 Declare Xtal = 16

 Dim MyFloat1 as Float ' Create a Float variable
 Dim MyFloat2 as Float ' Create a Float variable

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 MyFloat1 = -12345 ' Load MyFloat1 with value -12345
 MyFloat2 = Abs(MyFloat1) ' Extract the absolute value from MyFloat1
 Hrsout Dec MyFloat2, 13 ' Display the result, which is 12345

64-bit Floating Point example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim MyDouble1 as Double ' Create a Double variable
 Dim MyDouble2 as Double ' Create a Double variable

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 MyDouble1 = -12345 ' Load MyDouble1 with value -12345
 MyDouble2 = Abs(MyDouble1) ' Extract the absolute value from MyDouble1
 Hrsout Dec MyDouble2, 13 ' Display the result, which is 12345

Note.
When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Abs(MyVar1)) + (ISin(MyVar2))

Proton24 Compiler. Development Suite.

 73

fAbs

Syntax
Assignment Variable = fAbs(Variable)

Overview
Return the absolute value of a constant, variable or expression as 32-bit floating point.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim MyFloat as Float ' Create a Float variable
 Dim Floatout as Float ' Create a Float variable

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 MyFloat = -3.14 ' Load MyFloat with value -3.14
 Floatout = fAbs(MyFloat) ' Extract the absolute value from MyFloat
 Hrsout Dec Floatout, 13 ' Display the result, which is 3.14

Note.
When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (fAbs(MyVar1)) + (Sin(MyVar2))

Proton24 Compiler. Development Suite.

 74

dAbs

Syntax
Assignment Variable = dAbs(Variable)

Overview
Return the absolute value of a constant, variable or expression as 64-bit floating point.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim MyDouble as Double ' Create a Double variable
 Dim Doubleout as Double ' Create a Double variable

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 MyDouble = -3.14 ' Load My Double with value -3.14
 Doubleout = dAbs(MyDouble) ' Extract the absolute value from My Double
 Hrsout Dec Doubleout, 13 ' Display the result, which is 3.14

Note.
When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (dAbs(MyVar1)) + (dSin(MyVar2))

Proton24 Compiler. Development Suite.

 75

Acos

Syntax
Assignment Variable = Acos(Variable)

Overview
Deduce the Arc Cosine of a 32-bit floating point value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Arc Cosine (Inverse Co-
sine) extracted. The value expected and returned by the floating point Acos is in radians. The
value must be in the range of -1 to +1

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

Dim Floatin as Float ' Holds the value to Acos
 Dim Floatout as Float ' Holds the result of the Acos

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Floatin = 0.8 ' Load the variable
 Floatout = Acos(Floatin) ' Extract the Acos of the value
 Hrsout Dec Floatout, 13 ' Display the result

Notes.
Floating point trigonometry is rather memory hungry, so do not be surprised if a large chunk of
the microcontroller’s code memory is used with a single operator. This also means that floating
point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Acos(MyVar1)) + (Sin(MyVar2))

Proton24 Compiler. Development Suite.

 76

dAcos

Syntax
Assignment Variable = dAcos(Variable)

Overview
Deduce the Arc Cosine of a 64-bit floating point value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Arc Cosine (Inverse Co-
sine) extracted. The value expected and returned by the 64-bit floating point dAcos is in radi-
ans. The value must be in the range of -1 to +1

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

Dim Doublein as Double ' Holds the value to Acos
 Dim Doubleout as Double ' Holds the result of the Acos

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Doublein = 0.8 ' Load the variable
 Doubleout = dAcos(Doublein) ' Extract the Acos of the value
 Hrsout Dec Doubleout, 13 ' Display the result

Notes.
64-bit floating point trigonometry is very memory hungry, so do not be surprised if a large chunk
of the microcontroller’s code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (dAcos(MyVar1)) + (dSin(MyVar2))

Proton24 Compiler. Development Suite.

 77

Asin

Syntax
Assignment Variable = Asin(Variable)

Overview
Deduce the Arc Sine of a 32-bit floating point value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Arc Sine (Inverse Sine) ex-
tracted. The value expected and returned by Asin is in radians. The value must be in the range
of -1 to +1

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

Dim Floatin as Float ' Holds the value to Asin
 Dim Floatout as Float ' Holds the result of the Asin

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Floatin = 0.8 ' Load the variable
 Floatout = Asin(Floatin) ' Extract the Asin of the value
 Hrsout Dec Floatout, 13 ' Display the result

Notes.
Floating point trigonometry is rather memory hungry, so do not be surprised if a large chunk of
the microcontroller’s code memory is used with a single operator. This also means that floating
point trigonometry is comparatively slow to operate compared to integer maths.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Asin(MyVar1)) + (Sin(MyVar2))

Proton24 Compiler. Development Suite.

 78

dAsin

Syntax
Assignment Variable = dAsin(Variable)

Overview
Deduce the Arc Sine of a 64-bit floating point value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Arc Sine (Inverse Sine) ex-
tracted. The value expected and returned by dAsin is in radians. The value must be in the
range of -1 to +1

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

Dim Doublein as Double ' Holds the value to Asin
 Dim Doubleout as Double ' Holds the result of the Asin

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Doublein = 0.8 ' Load the variable
 Doubleout = dAsin(Doublein) ' Extract the Asin of the value
 Hrsout Dec Doubleout, 13 ' Display the result

Notes.
64-bit floating point trigonometry is very memory hungry, so do not be surprised if a large chunk
of the microcontroller’s code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate compared to integer maths.

The compiler uses the stack as temporary storage when performing 64-bit floating point library
routines, therefore, it may be required to increase the stack size from the default 120 words to
200 words using the Stack_Size declare. If the program resets with a stack underflow/overflow
exception when running, the stack size is insufficient and requires increasing.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (dAsin(MyVar1)) + (dSin(MyVar2))

Proton24 Compiler. Development Suite.

 79

Atan

Syntax
Assignment Variable = Atan(Variable)

Overview
Deduce the arc tangent of a 32-bit floating point value.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the arc tangent (Inverse Tan-
gent) extracted. The value expected and returned by the floating point Atan is in radians.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim Floatin as Float ' Holds the value to Atan
 Dim Floatout as Float ' Holds the result of the Atan

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Floatin = 1 ' Load the variable
 Floatout = Atan(Floatin) ' Extract the Atan of the value
 Hrsout Dec Floatout, 13 ' Display the result

Notes.
Floating point trigonometry is rather memory hungry, so do not be surprised if a large chunk of
the microcontroller’s code memory is used with a single operator. This also means that floating
point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (dAtan(MyVar1)) + (dSin(MyVar2))

Proton24 Compiler. Development Suite.

 80

dAtan

Syntax
Assignment Variable = dAtan(Variable)

Overview
Deduce the arc tangent of a 64-bit floating point value.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the arc tangent (Inverse Tan-
gent) extracted. The value expected and returned by the floating point Atan is in radians.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

Dim Doublein as Double ' Holds the value to Atan
 Dim Doubleout as Double ' Holds the result of the Atan

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Doublein = 1 ' Load the variable
 Doubleout = dAtan(Doublein) ' Extract the Atan of the value
 Hrsout Dec Doubleout, 13 ' Display the result

Notes.
64-bit floating point trigonometry is very memory hungry, so do not be surprised if a large chunk
of the microcontroller’s code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

The compiler uses the stack as temporary storage when performing 64-bit floating point library
routines, therefore, it may be required to increase the stack size from the default 120 words to
200 words using the Stack_Size declare. If the program resets with a stack underflow/overflow
exception when running, the stack size is insufficient and requires increasing.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (dAtan(MyVar1)) + (dCos(MyVar2))

Proton24 Compiler. Development Suite.

 81

Atan2

Syntax
Assignment Variable = Atan2(yVariable, xVariable)

Overview
Deduce the arc tangent of 32-bit floating point y/x.

Operands
Assignment Variable can be any valid variable type.
y Variable can be a constant, variable or expression that requires the arc tangent (Inverse
Tangent) extracted. The value expected and returned by the floating point Atan2 is in radians.
x Variable can be a constant, variable or expression that requires the arc tangent (Inverse
Tangent) extracted. The value expected and returned by the floating point Atan2 is in radians.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

Dim Floatin1 as Float
 Dim Floatin2 as Float

 Dim Floatout as Float ' Holds the result of Atan2

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Floatin1 = 3
 Floatin2 = 3.4

 Floatout = Atan2(Floatin1, Floatin2) ' Extract the Atan2 of the values
 Hrsout Dec Floatout, 13 ' Display the result

Notes.
Floating point trigonometry is rather memory hungry, so do not be surprised if a large chunk of
the microcontroller’s code memory is used with a single operator. This also means that floating
point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Atan2(MyVar1, MyVar2)) + (Tan(MyVar3))

Proton24 Compiler. Development Suite.

 82

dAtan2

Syntax
Assignment Variable = dAtan2(yVariable, xVariable)

Overview
Deduce the arc tangent of 64-bit floating point y/x.

Operands
Assignment Variable can be any valid variable type.
y Variable can be a constant, variable or expression that requires the arc tangent (Inverse
Tangent) extracted. The value expected and returned by the 64-bit floating point dAtan2 is in
radians.
x Variable can be a constant, variable or expression that requires the arc tangent (Inverse
Tangent) extracted. The value expected and returned by the 64-bit floating point dAtan2 is in
radians.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

Dim Doublein1 as Double
 Dim Doublein2 as Double

 Dim Doubleout as Double ' Holds the result of Atan2

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Doublein1 = 3
 Doublein2 = 3.4

 Doubleout = dAtan2(Doublein1, Doublein2)' Perfrom the Atan of the values
 Hrsout Dec Doubleout, 13 ' Display the result

Notes.
64-bit floating point trigonometry is very memory hungry, so do not be surprised if a large chunk
of the microcontroller’s code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

The compiler uses the stack as temporary storage when performing 64-bit floating point library
routines, therefore, it may be required to increase the stack size from the default 120 words to
200 words using the Stack_Size declare. If the program resets with a stack underflow/overflow
exception when running, the stack size is insufficient and requires increasing.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (dAtan2(MyVar1, MyVar2)) + (dSin(MyVar3))

Proton24 Compiler. Development Suite.

 83

Ceil

Syntax
Assignment Variable = Ceil(Variable)

Overview
Deduce the ceil of a 32-bit floating point value. Returns the smallest whole value greater than
or equal to Variable.

Operands
Assignment Variable can be any valid variable type.
Variable can be a floating point constant, variable or expression.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

Dim Floatin as Float ' Holds the value to Ceil

 Dim Floatout as Float ' Holds the result of the Ceil

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Floatin = 3.8 ' Load the variable
 Floatout = Ceil(Floatin) ' Extract the ceil value
 Hrsout Dec Floatout, 13 ' Display the result (4.0)

Note.
When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Ceil(MyVar1)) + (Sin(MyVar2))

Proton24 Compiler. Development Suite.

 84

dCeil

Syntax
Assignment Variable = dCeil(Variable)

Overview
Deduce the ceil of a 64-bit floating point value. Returns the smallest whole value greater than
or equal to Variable.

Operands
Assignment Variable can be any valid variable type.
Variable can be a floating point constant, variable or expression.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

Dim Doublein as Double ' Holds the value to Ceil

 Dim Doubleout as Double ' Holds the result of the Ceil

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Doublein = 3.8 ' Load the variable
 Doubleout = dCeil(Doublein) ' Extract the ceil value
 Hrsout Dec Doubleout, 13 ' Display the result (4.0)

Note.
When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (dCeil(MyVar1)) + MyVar2

Proton24 Compiler. Development Suite.

 85

Cos

Syntax
Assignment Variable = Cos(Variable)

Overview
Deduce the Cosine of a 32-bit floating point value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Cosine extracted. The
value expected and returned by Cos is in radians.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim Floatin as Float ' Holds the value to Cos with
 Dim Floatout as Float ' Holds the result of the Cos

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Floatin = 123 ' Load the variable
 Floatout = Cos(Floatin) ' Extract the Cosine of the value
 Hrsout Dec Floatout, 13 ' Display the result

Notes.
Floating point trigonometry is rather memory hungry, so do not be surprised if a large chunk of
the microcontroller’s code memory is used with a single operator. This also means that floating
point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Cos(MyVar1)) + MyVar2

Proton24 Compiler. Development Suite.

 86

dCos

Syntax
Assignment Variable = dCos(Variable)

Overview
Deduce the Cosine of a 64-bit floating point value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Cosine extracted. The
value expected and returned by dCos is in radians.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

Dim Doublein as Double ' Holds the value to Cos with
 Dim Doubleout as Double ' Holds the result of the Cos

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Doublein = 123 ' Load the variable
 Doubleout = dCos(Doublein) ' Extract the Cosine of the value
 Hrsout Dec Doubleout, 13 ' Display the result

Notes.
64-bit floating point trigonometry is very memory hungry, so do not be surprised if a large chunk
of the microcontroller’s code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

The compiler uses the stack as temporary storage when performing 64-bit floating point library
routines, therefore, it may be required to increase the stack size from the default 120 words to
200 words using the Stack_Size declare. If the program resets with a stack underflow/overflow
exception when running, the stack size is insufficient and requires increasing.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (dCos(MyVar1)) + MyVar2

Proton24 Compiler. Development Suite.

 87

Dcd
2 n -power decoder of a four-bit value. Dcd accepts a value from 0 to 15, and returns a 16-bit
number with that bit number set to 1. For example: -

 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

Dim MyWord1 as Word

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

MyWord1= Dcd 12 ' Set bit 12.
 HrsoutLn Bin16 MyWord1 ' Display result (%0001000000000000)

Dcd does not (as yet) support Double, Float or Dword type variables. Therefore the highest
value obtainable is 65535.

Dig '?'
In this form, the ? operator is compatible with the BASIC Stamp, and the melab's PICBASIC
Pro compiler. ? returns the specified decimal digit of a 16-bit positive value. Digits are num-
bered from 0 (the rightmost digit) to 4 (the leftmost digit of a 16- bit number; 0 to 65535). Exam-
ple: -

 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

Dim Loop as Byte
Dim MyWord1 as Word

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

MyWord1= 9742
 Hrsout MyWord1 ? 2, 13 ' Display digit 2 (7)
 For Loop = 0 to 4
 HrsoutLn MyWord1 ? Loop ' Display digits 0 through 4 of 9742.
 Next

Note
Dig does not support Double, Float or Dword type variables.

Proton24 Compiler. Development Suite.

 88

Exp

Syntax
Assignment Variable = Exp(Variable)

Overview
Deduce the exponential function of a 32-bit floating point value. This is e to the power of value
where e is the base of natural logarithms. Exp 1 is 2.7182818.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

Dim Floatin as Float ' Holds the value to Exp with
 Dim Floatout as Float ' Holds the result of the Exp

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Floatin = 1 ' Load the variable
 Floatout = Exp(Floatin) ' Extract the Exp of the value
 HrsoutLn Dec Floatout ' Display the result

Notes.
Floating point trigonometry is rather memory hungry, so do not be surprised if a large chunk of
the microcontroller’s code memory is used with a single operator. This also means that floating
point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Exp(MyVar1)) + MyVar2

Proton24 Compiler. Development Suite.

 89

dExp

Syntax
Assignment Variable = dExp(Variable)

Overview
Deduce the exponential function of a 64-bit floating point value. This is e to the power of value
where e is the base of natural logarithms. dExp 1 is 2.7182818.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

Dim Doublein as Double ' Holds the value to Exp with
 Dim Doubleout as Double ' Holds the result of the Exp

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Doublein = 1 ' Load the variable
 Doubleout = dExp(Doublein) ' Extract the Exp of the value
 HrsoutLn Dec Doubleout, 13 ' Display the result

Notes.
64-bit floating point trigonometry is very memory hungry, so do not be surprised if a large chunk
of the microcontroller’s code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

The compiler uses the stack as temporary storage when performing 64-bit floating point library
routines, therefore, it may be required to increase the stack size from the default 120 words to
200 words using the Stack_Size declare. If the program resets with a stack underflow/overflow
exception when running, the stack size is insufficient and requires increasing.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (dExp(MyVar1)) + MyVar2

Proton24 Compiler. Development Suite.

 90

Floor

Syntax
Assignment Variable = Floor(Variable)

Overview
Deduce the floor of a 32-bit floating point value. Returns the largest whole value less than or
equal to Variable.

Operands
Assignment Variable can be any valid variable type.
Variable can be a floating point constant, variable or expression.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

Dim Floatin as Float ' Holds the value to Asin
 Dim Floatout as Float ' Holds the result of the Asin

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Floatin = 3.8 ' Load the variable
 Floatout = Floor(Floatin) ' Extract the floor value
 HrsoutLn Dec Floatout ' Display the result (3.0)

Note.
When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Floor(MyVar1)) + MyVar2

Proton24 Compiler. Development Suite.

 91

dFloor

Syntax
Assignment Variable = dFloor(Variable)

Overview
Deduce the floor of a 64-bit floating point value. Returns the largest whole value less than or
equal to Variable.

Operands
Assignment Variable can be any valid variable type.
Variable can be a floating point constant, variable or expression.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

Dim Doublein as Double ' Holds the value to Asin
 Dim Doubleout as Double ' Holds the result of the Asin

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Doublein = 3.8 ' Load the variable
 Doubleout = dFloor(Doublein) ' Extract the floor value
 HrsoutLn Dec Doubleout ' Display the result (3.0)

Notes.
The compiler uses the stack as temporary storage when performing 64-bit floating point library
routines, therefore, it may be required to increase the stack size from the default 120 words to
200 words using the Stack_Size declare. If the program resets with a stack underflow/overflow
exception when running, the stack size is insufficient and requires increasing.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (dFloor(MyVar1)) + MyVar2

Proton24 Compiler. Development Suite.

 92

fRound

Syntax
Assignment Variable = fRound(Variable)

Overview
Round a 32-bit floating point value, variable or expression to the nearest whole number.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Example 1
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

Dim Floatin as Float ' Holds the value to round
 Dim Dwordout as Dword ' Holds the result of fRound

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Floatin = 1.9 ' Load the variable
 Dwordout = fRound(Floatin) ' Round to the nearest whole value
 HrsoutLn Dec Dwordout ' Display the integer result (which is 2)

Example 2
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

Dim Floatin as Float ' Holds the value to round
 Dim Dwordout as Dword ' Holds the result of fRound

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Floatin = 1.2 ' Load the variable
 Dwordout = fRound(Floatin) ' Round to the nearest whole value
 HrsoutLn Dec Dwordout ' Display the integer result (which is 1)

Notes.
Floating point routines are rather memory hungry, so do not be surprised if a large chunk of the
microcontroller’s code memory is used with a single operator. This also means that floating
point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (fRound(MyVar1)) + MyVar2

Proton24 Compiler. Development Suite.

 93

dRound

Syntax
Assignment Variable = dRound(Variable)

Overview
Round a 64-bit floating point value, variable or expression to the nearest whole number.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Example 1
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

Dim Doublein as Double ' Holds the value to round
 Dim Dwordout as Dword ' Holds the result of dRound

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Doublein = 1.9 ' Load the variable
 Dwordout = dRound(Doublein) ' Round to the nearest whole value
 HrsoutLn Dec Dwordout ' Display the integer result (which is 2)

Example 2
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

Dim Doublein as Double ' Holds the value to round
 Dim Dwordout as Dword ' Holds the result of dRound

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Doublein = 1.2 ' Load the variable
 Dwordout = dRound(Doublein) ' Round to the nearest whole value
 Hrsout Dec Dwordout, 13 ' Display the integer result (which is 1)

Notes.
64-bit floating point routines are very memory hungry, so do not be surprised if a large chunk of
the microcontroller’s code memory is used with a single operator. This also means that floating
point trigonometry is comparatively slow to operate.

The compiler uses the stack as temporary storage when performing 64-bit floating point library
routines, therefore, it may be required to increase the stack size from the default 120 words to
200 words using the Stack_Size declare. If the program resets with a stack underflow/overflow
exception when running, the stack size is insufficient and requires increasing.

Note.
When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (dRound(MyVar1)) + MyVar2

Proton24 Compiler. Development Suite.

 94

ISin

Syntax
Assignment Variable = ISin(Variable)

Overview
Deduce the integer Sine of an integer value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Sine extracted. The value
expected and returned by ISin is in decimal radians (0 to 255).

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

Dim ByteIn as Byte ' Holds the value to Sin
 Dim ByteOut as Byte ' Holds the result of the Sin

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 ByteIn = 123 ' Load the variable
 ByteOut = ISin(ByteIn) ' Extract the integer Sin of the value
 HrsoutLn Dec ByteOut ' Display the result

Note.
When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (ISin(MyVar1)) + MyVar2

Proton24 Compiler. Development Suite.

 95

ICos

Syntax
Assignment Variable = ICos(Variable)

Overview
Deduce the integer Cosine of an integer value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Cosine extracted. The
value expected and returned by ICos is in decimal radians (0 to 255).

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim ByteIn as Byte ' Holds the value to Cos
 Dim ByteOut as Byte ' Holds the result of the Cos

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 ByteIn = 123 ' Load the variable
 ByteOut = ICos(ByteIn) ' Extract the integer Cosine of the value
 HrsoutLn Dec ByteOut ' Display the result

Note.
When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (ICos(MyVar1)) + MyVar2

Proton24 Compiler. Development Suite.

 96

Isqr

Syntax
Assignment Variable = ISqr(Variable)

Overview
Deduce the integer Square Root of an integer value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Square Root extracted.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim ByteIn as Byte ' Holds the value to Cos
 Dim ByteOut as Byte ' Holds the result of the Cos

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 ByteIn = 123 ' Load the variable
 ByteOut = ISqr(ByteIn) ' Extract the integer square root of the value
 HrsoutLn Dec ByteOut ' Display the result

Note.
When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Isqr(MyVar1)) + MyVar2

Proton24 Compiler. Development Suite.

 97

Log

Syntax
Assignment Variable = Log(Variable)

Overview
Deduce the Natural Logarithm a 32-bit floating point value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the natural logarithm ex-
tracted.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim Floatin as Float ' Holds the value to Log with
 Dim Floatout as Float ' Holds the result of the Log

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Floatin = 1 ' Load the variable
 Floatout = Log(Floatin) ' Extract the Log of the value
 HrsoutLn Dec Floatout ' Display the result

Notes.
Floating point trigonometry is rather memory hungry, so do not be surprised if a large chunk of
the microcontroller’s code memory is used with a single operator. This also means that floating
point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Log(MyVar1)) + MyVar2

Proton24 Compiler. Development Suite.

 98

dLog

Syntax
Assignment Variable = dLog(Variable)

Overview
Deduce the Natural Logarithm a 64-bit floating point value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the natural logarithm ex-
tracted.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim Doublein as Double ' Holds the value to Log with
 Dim Doubleout as Double ' Holds the result of the Log

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Doublein = 1 ' Load the variable
 Doubleout = dLog(Doublein) ' Extract the Log of the value
 HrsoutLn Dec Doubleout ' Display the result

Notes.
64-bit floating point trigonometry is very memory hungry, so do not be surprised if a large chunk
of the microcontroller’s code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

The compiler uses the stack as temporary storage when performing 64-bit floating point library
routines, therefore, it may be required to increase the stack size from the default 120 words to
200 words using the Stack_Size declare. If the program resets with a stack underflow/overflow
exception when running, the stack size is insufficient and requires increasing.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (dLog(MyVar1)) + MyVar2

Proton24 Compiler. Development Suite.

 99

Log10

Syntax
Assignment Variable = Log10(Variable)

Overview
Deduce the Logarithm a 32-bit floating point value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Logarithm extracted.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim Floatin as Float ' Holds the value to Log10 with
 Dim Floatout as Float ' Holds the result of the Log10

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Floatin = 1 ' Load the variable
 Floatout = Log10(Floatin) ' Extract the Log10 of the value
 HrsoutLn Dec Floatout ' Display the result

Notes.
Floating point trigonometry is rather memory hungry, so do not be surprised if a large chunk of
the microcontroller’s code memory is used with a single operator. This also means that floating
point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Log10(MyVar1)) + MyVar2

Proton24 Compiler. Development Suite.

 100

dLog10

Syntax
Assignment Variable =dL(Variable)

Overview
Deduce the Logarithm a 64-bit floating point value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Logarithm extracted.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim Doublein as Double ' Holds the value to Log10 with
 Dim Doubleout as Double ' Holds the result of the Log10

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Doublein = 1 ' Load the variable
 Doubleout = dLog10(Doublein) ' Extract the Log10 of the value
 HrsoutLn Dec Doubleout ' Display the result

Notes.
64-bit floating point trigonometry is rather memory hungry, so do not be surprised if a large
chunk of the microcontroller’s code memory is used with a single operator. This also means
that floating point trigonometry is comparatively slow to operate.

The compiler uses the stack as temporary storage when performing 64-bit floating point library
routines, therefore, it may be required to increase the stack size from the default 120 words to
200 words using the Stack_Size declare. If the program resets with a stack underflow/overflow
exception when running, the stack size is insufficient and requires increasing.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (dLog10(MyVar1)) + MyVar2

Proton24 Compiler. Development Suite.

 101

Modf

Syntax
Assignment Variable = Modf (pVariable, pWhole)

Overview
Split a 32-bit floating point value into fractional and whole parts.

Operands
Assignment Variable can be any valid variable type.
pVariable can be a floating point constant, variable or expression that will be split.
pWhole must be a 32-bit floating point variable that will hold the whole part of the split value.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim Floatin as Float
 Dim Whole as Float ' Holds the whole part of the value
 Dim Fraction as Float ' Holds the fractional part of the value
 Dim MyDword as Dword

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 Floatin = 3.14

 Fraction = Modf(Floatin, Whole) ' Split the value
 MyDword = Whole ' Convert the whole part to an integer
 HrsoutLn "Whole = " Dec MyDword
 HrsoutLn "Fraction = ", Dec Fraction

Note.
When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Modf(MyVar1)) + MyVar2

Proton24 Compiler. Development Suite.

 102

Modd

Syntax
Assignment Variable = Modd (pVariable, pWhole)

Overview
Split a 64-bit floating point value into fractional and whole parts.

Operands
Assignment Variable can be any valid variable type.
pVariable can be a floating point constant, variable or expression that will be split.
pWhole must be a 64-bit floating point variable that will hold the whole part of the split value.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim Doublein as Double
 Dim Whole as Double ' Holds the whole part of the value
 Dim Fraction as Double ' Holds the fractional part of the value
 Dim MyDword as Dword

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Doublein = 3.14

 Fraction = Modd(Doublein, Whole) ' Split the value
 MyDword = Whole ' Convert the whole part to an integer
 HrsoutLn "Whole = " Dec MyDword
 HrsoutLn "Fraction = ", Dec Fraction

Notes.
The compiler uses the stack as temporary storage when performing 64-bit floating point library
routines, therefore, it may be required to increase the stack size from the default 120 words to
200 words using the Stack_Size declare. If the program resets with a stack underflow/overflow
exception when running, the stack size is insufficient and requires increasing.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Modd(MyVar1)) + MyVar2

Proton24 Compiler. Development Suite.

 103

Ncd
Priority encoder of a 16-bit or 32-bit value. Ncd takes a value, finds the highest bit containing a
1 and returns the bit position plus one (1 through 32). If no bit is set, the input value is 0. Ncd
returns 0. Ncd is a fast way to get an answer to the question "what is the largest power of two
that this value is greater than or equal to?" The answer that Ncd returns will be that power, plus
one. Example: -

 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim MyWord as Word
 Dim MyResult as Word

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 MyWord= %00001101 ' Highest bit set is bit-3.
 MyResult = Ncd MyWord

HrsoutLn Dec MyResult ' Display the Ncd of MyWord1(4).

Ncd does not support Float or Double type variables.

Proton24 Compiler. Development Suite.

 104

Pow

Syntax
Assignment Variable = Pow (Variable, Pow Variable)

Overview
Computes 32-bit Floating point Variable to the power of Pow Variable.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.
Pow Variable can be a constant, variable or expression.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim PowOf as Float
 Dim Floatin as Float ' Holds the value to Pow with
 Dim Floatout as Float ' Holds the result of the Pow

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 PowOf= 10
 Floatin = 2 ' Load the variable
 Floatout = Pow(Floatin,PowOf) ' Extract the Pow of the value
 HrsoutLn Dec Floatout ' Display the result

Notes.
Floating point trigonometry is rather memory hungry, so do not be surprised if a large chunk of
the microcontroller’s code memory is used with a single operator. This also means that floating
point trigonometry is comparatively slow to operate.

Note.
When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Pow(MyVar1)) + MyVar2

Proton24 Compiler. Development Suite.

 105

dPow

Syntax
Assignment Variable = dPow (Variable, Pow Variable)

Overview
Computes 64-bit Floating point Variable to the power of Pow Variable.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.
Pow Variable can be a constant, variable or expression.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim PowOf as Double
 Dim Doublein as Double ' Holds the value to Pow with
 Dim Doubleout as Double ' Holds the result of the Pow

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 PowOf= 10
 Doublein = 2 ' Load the variable
 Doubleout = Pow(Doublein,PowOf) ' Extract the Pow of the value
 HrsoutLn Dec Doubleout ' Display the result

Notes.
64-bit loating point trigonometry is rather memory hungry, so do not be surprised if a large
chunk of the microcontroller’s code memory is used with a single operator. This also means
that floating point trigonometry is comparatively slow to operate.

The compiler uses the stack as temporary storage when performing 64-bit floating point library
routines, therefore, it may be required to increase the stack size from the default 120 words to
200 words using the Stack_Size declare. If the program resets with a stack underflow/overflow
exception when running, the stack size is insufficient and requires increasing.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (dPow(MyVar1)) + MyVar2

Proton24 Compiler. Development Suite.

 106

Rev '@'

Reverses the order of the lowest bits in an integer value. The number of bits to be reversed is
from 1 to 32. Its syntax is: -

 Var1 = %10101100 @ 4 ' Sets Var1 to %10100011

or

Dim MyDword as Dword
' Sets MyDword to %10101010000000001111111110100011

MyDword = %10101010000000001111111110101100 @ 4

Proton24 Compiler. Development Suite.

 107

Sin

Syntax
Assignment Variable = Sin(Variable)

Overview
Deduce the Sine of a 32-bit floating point value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Sine extracted. The value
expected and returned by Sin is in radians.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim Floatin as Float ' Holds the value to Sin
 Dim Floatout as Float ' Holds the result of the Sin

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Floatin = 123 ' Load the variable
 Floatout = Sin(Floatin) ' Extract the Sin of the value
 HrsoutLn Dec Floatout ' Display the result

Notes.
Floating point trigonometry is rather memory hungry, so do not be surprised if a large chunk of
the microcontroller’s code memory is used with a single operator. This also means that floating
point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Sin(MyVar1)) + MyVar2

Proton24 Compiler. Development Suite.

 108

dSin

Syntax
Assignment Variable = dSin(Variable)

Overview
Deduce the Sine of a 64-bit floating point value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Sine extracted. The value
expected and returned by dSin is in radians.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim Doublein as Double ' Holds the value to Sin
 Dim Doubleout as Double ' Holds the result of the Sin

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Doublein = 123 ' Load the variable
 Doubleout = dSin(Doublein) ' Extract the Sin of the value
 HrsoutLn Dec Doubleout ' Display the result

Notes.
64-bit floating point trigonometry is rather memory hungry, so do not be surprised if a large
chunk of the microcontroller’s code memory is used with a single operator. This also means
that floating point trigonometry is comparatively slow to operate.

The compiler uses the stack as temporary storage when performing 64-bit floating point library
routines, therefore, it may be required to increase the stack size from the default 120 words to
200 words using the Stack_Size declare. If the program resets with a stack underflow/overflow
exception when running, the stack size is insufficient and requires increasing.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (dSin(MyVar1)) + MyVar2

Proton24 Compiler. Development Suite.

 109

Sqr

Syntax
Assignment Variable = Sqr(Variable)

Overview
Deduce the Square Root of a 32-bit floating point value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Square Root extracted.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim Floatin as Float ' Holds the value to Sqr
 Dim Floatout as Float ' Holds the result of the Sqr

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Floatin = 600 ' Load the variable
 Floatout = Sqr(Floatin) ' Extract the Sqr of the value
 HrsoutLn Dec Floatout ' Display the result

Notes.
Floating point trigonometry is rather memory hungry, so do not be surprised if a large chunk of
the microcontroller’s code memory is used with a single operator. This also means that floating
point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Sqr(MyVar1)) + MyVar2

Proton24 Compiler. Development Suite.

 110

dSqr

Syntax
Assignment Variable = dSqr(Variable)

Overview
Deduce the Square Root of a 64-bit floating point value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Square Root extracted.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim Doublein as Double ' Holds the value to Sqr
 Dim Doubleout as Double ' Holds the result of the Sqr

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Doublein = 600 ' Load the variable
 Doubleout = dSqr(Doublein) ' Extract the Sqr of the value
 HrsoutLn Dec Doubleout ' Display the result

Notes.
Floating point trigonometry is rather memory hungry, so do not be surprised if a large chunk of
the microcontroller’s code memory is used with a single operator. This also means that floating
point trigonometry is comparatively slow to operate.

The compiler uses the stack as temporary storage when performing 64-bit floating point library
routines, therefore, it may be required to increase the stack size from the default 120 words to
200 words using the Stack_Size declare. If the program resets with a stack underflow/overflow
exception when running, the stack size is insufficient and requires increasing.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (dSqr(MyVar1)) + MyVar2

Proton24 Compiler. Development Suite.

 111

Tan

Syntax
Assignment Variable = Tan(Variable)

Overview
Deduce the Tangent of a 32-bit floating point value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Tangent extracted. The
value expected and returned by the floating point Tan is in radians.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim Floatin as Float ' Holds the value to Tan
 Dim Floatout as Float ' Holds the result of the Tan

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Floatin = 1 ' Load the variable
 Floatout = Tan(Floatin) ' Extract the Tan of the value
 HrsoutLn Dec Floatout ' Display the result

Notes.
Floating point trigonometry is rather memory hungry, so do not be surprised if a large chunk of
the microcontroller’s code memory is used with a single operator. This also means that floating
point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Tan(MyVar1)) + MyVar2

Proton24 Compiler. Development Suite.

 112

dTan

Syntax
Assignment Variable = dTan(Variable)

Overview
Deduce the Tangent of a 64-bit floating point value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Tangent extracted. The
value expected and returned by the floating point dTan is in radians.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim Doublein as Double ' Holds the value to Tan
 Dim Doubleout as Double ' Holds the result of the Tan

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Doublein = 1 ' Load the variable
 Doubleout = dTan(Doublein) ' Extract the Tan of the value
 HrsoutLn Dec Doubleout ' Display the result

Notes.
64-bit floating point trigonometry is very memory hungry, so do not be surprised if a large chunk
of the microcontroller’s code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

The compiler uses the stack as temporary storage when performing 64-bit floating point library
routines, therefore, it may be required to increase the stack size from the default 120 words to
200 words using the Stack_Size declare. If the program resets with a stack underflow/overflow
exception when running, the stack size is insufficient and requires increasing.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (dTan(MyVar1)) + MyVar2

Proton24 Compiler. Development Suite.

 113

Compiler Commands and Directives

Peripheral and Interfacing Commands
Adin Read the on-board analogue to digital converter.
Bstart Send a Start condition to the I2C bus.
Bstop Send a Stop condition to the I2C bus.
Brestart Send a Restart condition to the I2C bus.
BusAck Send an Acknowledge condition to the I2C bus.
BusNack Send an Not Acknowledge condition to the I2C bus.
Busin Read bytes from an I2C device using a bit-bashed interface.
Busout Write bytes to an I2C device using a bit-bashed interface.
Button Detect and debounce a key press.
ClearPin Pull a pin low using a variable as the pin number.
Counter Count the number of pulses occurring on a pin.
DTMFout Produce a DTMF Touch Tone note.
Freqout Generate one or two tones, of differing or the same frequencies.
GetPin Read a pin from a port using a variable as the index
HbStart Send a Start condition to the I2C bus using the MSSP peripheral.
HbStop Send a Stop condition to the I2C bus using the MSSP peripheral.
HbRestart Send a Restart condition to the I2C bus using the MSSP peripheral.
HbusAck Send an Ack condition to the I2C bus using the MSSP peripheral.
HbusNack Send a Not Ack condition to the I2C bus using the MSSP peripheral.
Hbusin Read from an I2C device using the MSSP peripheral.
Hbusout Write to an I2C device using the MSSP peripheral.
High Make a pin or port output high.
Hpwm Generate a PWM signal using one of the the CCP peripherals.
I2Cin Read bytes from an I2C device with user definable SDA\SCL lines.
I2Cout Write bytes to an I2C device with user definable SDA\SCL lines.
Inkey Scan a matrix keypad.
Input Make pin an input.
Low Make a pin or port output low.
Output Make a pin an output.
Oread Receive data from a device using the Dallas 1-wire protocol.
Owrite Send data to a device using the Dallas 1-wire protocol.
Pot Read a potentiometer on specified pin.
PulseIn Measure the pulse width on a pin.
PulseOut Generate a pulse from a pin.
Pwm Output a Pulse Width Modulated pulse train to pin.
RCin Measure a pulse width on a pin.
Servo Control a servo motor.
SetPin Set a pin high using a variable as the pin number.
Shin Synchronous serial input.
Shout Synchronous serial output.
Sound Generate a tone or white-noise on a specified pin.
Toggle Reverse the state of a port's bit.
Touch_Active Detect if the touch screen is being touched.
Touch_Read Read the X and Y coordinates from the touch screen
Touch_HotSpot Detect a touch within a user defind window on the touch screen

Proton24 Compiler. Development Suite.

 114

LCD Commands
Box Draw a square on a graphic LCD.
Circle Draw a circle on a graphic LCD.
Cls Clear an LCD.
Cursor Position the cursor on the LCD.
LCDread Read a single byte from a Graphic LCD.
LCDwrite Write bytes to a Graphic LCD.
Line Draw a line in any direction on a graphic LCD.
LineTo Draw a straight line in any direction on a graphic LCD, starting from the

previous Line command's end position.
Pixel Read a single pixel from a Graphic LCD.
Plot Set a single pixel on a Graphic LCD.
Print Display characters on an LCD.
Toshiba_Command Send a command to a Toshiba T6963 graphic LCD.
Toshiba_UDG Create User Defined Graphics for Toshiba T6963 graphic LCD.
UnPlot Clear a single pixel on a Graphic LCD.

Async Serial Commands
Hrsin Receive data from the serial port on devices that contain a USART.
Hrsout Transmit data from the serial port on devices that contain a USART.
HrsoutLn Transmit data from the serial port on devices that contain a USART

 and transmit a terminator value or values.
Hserin Receive data from the serial port on devices that contain a USART.
Hserout Transmit data from the serial port on devices that contain a USART.
HseroutLn Transmit data from the serial port on devices that contain a USART
 and transmit a terminator value or values.
Hrsin2 Same as Hrsin but using a 2nd USART if available.
Hrsout2 Same as Hrsout but using a 2nd USART if available.
Hrsout2Ln Same as HrsoutLn but using a 2nd USART if available.
Hserin2 Same as Hserin but using a 2nd USART if available.
Hserout2 Same as Hserout but using a 2nd USART if available.
Hserout2Ln Same as HseroutLn but using a 2nd USART if available.
Hrsin3 Same as Hrsin but using a 3rd USART if available.
Hrsout3 Same as Hrsout but using a 3rd USART if available.
Hrsout3Ln Same as HrsoutLn but using a 3rd USART if available.
Hserin3 Same as Hserin but using a 3rd USART if available.
Hserout3 Same as Hserout but using a 3rd USART if available.
Hserout3Ln Same as HseroutLn but using a 3rd USART if available.
Hrsin4 Same as Hrsin but using a 4th USART if available.
Hrsout4 Same as Hrsout but using a 4th USART if available.
Hrsout4Ln Same as HrsoutLn but using a 4th USART if available.
Hserin4 Same as Hserin but using a 4th USART if available.
Hserout4 Same as Hserout but using a 4th USART if available.
Hserout4Ln Same as HseroutLn but using a 4th USART if available.
Rsin Asynchronous serial input from a fixed pin and baud rate.
Rsout Asynchronous serial output to a fixed pin and baud rate.
RsoutLn Asynchronous serial output to a fixed pin and baud rate,
 and transmit a terminator value or values.
Serin Receive asynchronous serial data (i.e. RS232 data).
Serout Transmit asynchronous serial data (i.e. RS232 data).

Proton24 Compiler. Development Suite.

 115

Comparison and Loop Commands
Branch Computed GoTo (equiv. to On..GoTo).
BranchL Branch out of page (long Branch).
Break Exit a loop prematurely.
Continue Cause the next iteration of the enclosing loop to begin.
Do...Loop Execute a block of instructions until a condition is true.
For…to…Next…Step Repeatedly execute statements.
If..Then..ElseIf..Else..EndIf Conditionally execute statements.
On Gosub Call a Subroutine based on an Index value.
On GoTo Jump to an address in code memory based on an Index value.
 (Primarily for smaller devices)
On GotoL Jump to an address in code memory based on an Index value.
 (Primarily for larger devices)
Repeat...Until Execute a block of instructions until a condition is true.
Select..Case..EndSelect Conditionally run blocks of code.
While…Wend Execute statements while condition is true.

General BASIC Commands
Call Call an assembly language subroutine.
Clear Place a variable or bit in a low state, or clear all RAM area.
ClearBit Clear a bit of a port or variable, using a variable index.
Dec Decrement a variable.
DelayMs Delay (1 millisecond resolution).
DelayUs Delay (1 microsecond resolution).
DelayCs Delay (1 clock cycle resolution).
Dig Return the value of a decimal digit.
GetBit Examine a bit of a port or variable, using a variable index.
Gosub Call a BASIC subroutine at a specified label.
GoTo Continue execution at a specified label.
Inc Increment a variable.
LoadBit Set or Clear a bit of a port or variable, using a variable index.
Ptr8, Ptr16, Ptr32, Ptr64 Indirectly read or write RAM using a variable to hold the address.
Random Generate a pseudo-random number.
Return Continue at the statement following the last Gosub.
Rol Bitwise rotate a variable left with or without the microcontroller’s Carry flag.
Ror Bitwise rotate a variable right with or without the microcontroller’s Carry flag.
Seed Seed the random number generator, to obtain a more random result.
Set Place a variable or bit in a high state.
SetBit Set a bit of a port or variable, using a variable index.
Stop Stop program execution.
Swap Exchange the values of two variables.
End Stop execution of the BASIC program.

RAM String Variable Commands
Left$ Extract n amount of characters from the left of a String.
Mid$ Extract characters from a String beginning at n characters from the left.
Right$ Extract n amount of characters from the right of a String.
Str Load a Byte array with values.
Strn Create a null terminated byte array.
Str$ Convert the contents of a variable to a null terminated String.
ToLower Convert the characters in a String to lower case.
ToUpper Convert the characters in a String to upper case.
Val Convert a null terminated String to an integer value.

Proton24 Compiler. Development Suite.

 116

Non-Volatile Data Commands
cPtr8, cPtr16, cPtr32, cPtr64 Indirectly read flash memory using a variable as the address.
Cdata Place information into flash memory. For access by CreadX.
Cread8, Cread16, Cread32, Cread64 Read a value from a code memory table.
Edata Define initial contents of on-board eeprom.
Eread Read a value from on-board eeprom.
Ewrite Write a value to on-board eeprom.
LookDown Search a constant lookdown table for a value.
LookDownL Search constant or variable lookdown table for a value.
LookUp Fetch a constant value from a lookup table.
LookUpL Fetch a constant or variable value from lookup table.

Directives
AddressOf Locate the address of a variable or label.
Asm-EndAsm Insert assembly language code section.
Config Set or Reset programming fuse configurations.
Declare Adjust library routine parameters.
Device Choose the type of PIC24® or dsPIC33® microcontroller to compile for.
Dim Create a variable.
Include Load a BASIC file into the source code.
ISR_Start...ISR_End Define an interrupt handler block of code.
Symbol Create an alias to a constant, port, pin, or register.

Proton24 Compiler. Development Suite.

 117

Adin

Syntax
Assignment Variable = Adin ANx pin number

Overview
Read the value from the on-board Analogue to Digital Converter.

Parameters
Assignment Variable is a user defined variable that holds the result of the ADC.
ANx pin number can be a constant, variable or expression. It holds the ADC number from
MUXA of the device in use.

Example
' Read the value from AN0 of the ADC and serially transmit the result.
 Device = 24FJ64GA002
 Declare Xtal = 32

 Declare Adin_Tad = cFRC ' RC oscillator chosen

Declare Adin_Stime = 10 ' Allow 10us sample time

 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Pin to be used for TX with USART1

Dim ADC_Result as Word ' Create a word variable

CLKDIV = 0 ' CPU peripheral clock ratio set to 1:1
Write_OSCCONH(%00010000) ' Enable PLL

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 AD1CON2 = 0 ' AVdd, AVss, MUXA only
 AD1PCFGbits_PCFG0 = 0 ' Analogue input on pin AN0

Do ' Create an infinite loop
 ADC_Result = Adin 0 ' Place the conversion into variable ADC_Result

 HrsoutLn Dec ADC_Result ' Transmit the decimal ASCII result
 DelayMs 100 ' Wait for 100 milliseconds
 Loop ' Do it forever
'
' For internal oscillator with PLL
'

Config Config1 = JTAGEN_OFF, GCP_OFF, GWRP_OFF, BKBUG_OFF, COE_OFF,_
 ICS_PGx1, FWDTEN_OFF, WINDIS_OFF, FWPSA_PR128, WDTPOST_PS256
Config Config2 = IOL1WAY_OFF, COE_OFF, IESO_OFF, FNOSC_FRCPLL,_
 FCKSM_CSDCMD, OSCIOFNC_ON, POSCMOD_NONE

Proton24 Compiler. Development Suite.

 118

Adin Declares
There are two Declare directives for use with Adin. These are: -

Declare Adin_Tad c1_FOSC, c2_FOSC, c4_FOSC, c8_FOSC, c16_FOSC, c32_FOSC,
c64_FOSC, or cFRC.
Sets the ADC's clock source.

All compatible devices have multiple options for the clock source used by the ADC peripheral.
c1_FOSC, c2_FOSC, c4_FOSC, c8_FOSC, c16_FOSC, c32_FOSC, and c64_FOSC are ratios
of the external oscillator, while FRC is the device's internal RC oscillator.

Care must be used when issuing this Declare, as the wrong type of clock source may result in
poor accuracy, or no conversion at all. If in doubt use FRC which will produce a slight reduction
in accuracy and conversion speed, but is guaranteed to work first time, every time. FRC is the
default setting if the Declare is not issued in the BASIC listing.

Declare Adin_Stime 0 to 65535 microseconds (us).
Allows the internal capacitors to fully charge before a sample is taken. This may be a value
from 0 to 65535 microseconds (us).

A value too small may result in a reduction of resolution. While too large a value will result in
poor conversion speeds without any extra resolution being attained.

A typical value for Adin_Stime is 2 to 100. This allows adequate charge time without loosing
too much conversion speed. But experimentation will produce the right value for your particular
requirement. The default value if the Declare is not used in the BASIC listing is 50.

Notes.
Before the Adin command may be used, the appropriate pin must be configured as an ana-
logue input. Refer to the datasheet of the specific device being used for more information on
the SFRs involved.

If multiple conversions are being implemented, then a small delay should be used after the
Adin command. This allows the ADC's internal capacitors to discharge fully: -

Do ' Create an infinite loop
 MyWord = Adin 0 ' Place the conversion into variable MyWord

 DelayUs 4 ' Wait for 4us
 Loop ' Read the ADC forever

See also : Rcin, Pot.

Proton24 Compiler. Development Suite.

 119

Asm..EndAsm

Syntax
 Asm
 assembler mnemonics
 EndAsm

 or

 @ assembler mnemonic

Overview
Incorporate in-line assembler in the BASIC code. The mnemonics are passed directly to the as-
sembler without the compiler interfering in any way. This allows a great deal of flexibility that
cannot always be achieved using BASIC commands alone.

The compiler also allows simple assembler mnemonics to be used within the BASIC program
without wrapping them in Asm-EndAsm.

Proton24 Compiler. Development Suite.

 120

Box

Syntax
Box Pixel Colour, Xpos Start, Ypos Start, Size

Overview
Draw a square on a graphic LCD.

Parameters
Pixel Colour may be a constant or variable that determines if the square will set or clear the
pixels. A value of 1 will set the pixels and draw a square, while a value of 0 will clear any pixels
and erase a square. If using a colour graphic LCD, this parameter holds the 16-bit colour of the
pixel.
Xpos Start may be a constant or variable that holds the X position for the centre of the square.
Can be a value from 0 to 65535.
Ypos Start may be a constant or variable that holds the Y position for the centre of the square.
Can be a value from 0 to 65535.
Size may be a constant or variable that holds the size of the square (in pixels). Can be a value
from 0 to 65535.

KS0108 graphic LCD example
' Draw a square at position 63,32 with a size of 20 pixels
' on a KS0108 graphic LCD
 Device = 24FJ64GA002
 Declare Xtal = 32

 Declare LCD_Type = KS0108 ' Setup for a KS0108 graphic LCD
 Declare LCD_DTPort = PORTB.Byte0 ' Use the first 8-bits of PORTB
 Declare LCD_CS1Pin = PORTB.8
 Declare LCD_CS2Pin = PORTB.9
 Declare LCD_ENPin = PORTB.10
 Declare LCD_RSPin = PORTB.11
 Declare LCD_RWPin = PORTB.12

Dim Xpos as Byte
 Dim Ypos as Byte
 Dim Size as Byte
 Dim SetClr as Byte

CLKDIV = 0 ' CPU peripheral clock ratio set to 1:1
Write_OSCCONH(%00010000) ' Enable PLL

 DelayMs 100 ' Wait for things to stabilise
 Cls ' Clear the LCD
 Xpos = 63
 Ypos = 32
 Size = 20
 SetClr = 1
 Box SetClr, Xpos, Ypos, Radius
'
' Config fuses for internal oscillator with PLL
'

Config Config1 = JTAGEN_OFF, GCP_OFF, GWRP_OFF, BKBUG_OFF, COE_OFF,_
 ICS_PGx1, FWDTEN_OFF, WINDIS_OFF, FWPSA_PR128, WDTPOST_PS256
Config Config2 = IOL1WAY_OFF, COE_OFF, IESO_OFF, FNOSC_FRCPLL,_
 FCKSM_CSDCMD, OSCIOFNC_ON, POSCMOD_NONE

Proton24 Compiler. Development Suite.

 121

ILI9320 colour graphic LCD example
' Demonstrate the box command with a colour LCD
'
 Device = 24EP128MC202
 Declare Xtal = 140.03
'
' Setup the Pins used by the ILI9320 graphic LCD
'
 Declare LCD_DTPort = PORTB.Byte0 ' Use the first 8-bits of PORTB
 Declare LCD_CSPin = PORTB.8 ' Connect to the LCD's CS pin
 Declare LCD_RDPin = PORTB.9 ' Connect to the LCD's RD pin
 Declare LCD_RSPin = PORTB.10 ' Connect to the LCD's RS pin
 Declare LCD_WRPin = PORTA.3 ' Connect to the LCD's WR pin

 Include "ILI9320.inc" ' Load the ILI9320 routines into the program

 Dim wRadius As Word ' Create a variable for the circle's radius

'--
Main:
' Configure the internal Oscillator to operate the device at 140.03MHz
'
 PLL_Setup(76, 2, 2, $0300)

 Cls clYellow ' Clear the LCD with the colour yellow
 For wRadius = 0 To 319
 Box clBrightCyan, 120, 160, wRadius ' Draw a series of squares
 Next
'--
' Configure for internal 7.37MHz oscillator with PLL
' OSC pins are general purpose I/O
'
 Config FGS = GWRP_OFF, GCP_OFF
 Config FOSCSEL = FNOSC_FRCPLL, IESO_ON, PWMLOCK_OFF
 Config FOSC = POSCMD_NONE, OSCIOFNC_ON, IOL1WAY_OFF, FCKSM_CSDCMD
 Config FWDT = WDTPOST_PS256, WINDIS_OFF, PLLKEN_ON, FWDTEN_OFF
 Config FPOR = ALTI2C1_ON, ALTI2C2_OFF
 Config FICD = ICS_PGD1, JTAGEN_OFF

Notes.
Because of the aspect ratio of the pixels on the KS0108 graphic LCD (approx 1.5 times higher
than wide) the circle will appear elongated.

With an ILI9320 colour graphic LCD, the colour is a 16-bit value formatted in RGB565, where
the upper 5-bits represent the red content, the middle 6-bits represent the green content, and
the lower 5-bits represent the blue content. As illustrated below:

Low ByteHigh Byte

045101115

Red value Green value Red value

Proton24 Compiler. Development Suite.

 122

For convenience, there are several colours defined within the ILI9320.inc file. These are:

clBlack
clBrightBlue
clBrightGreen
clBrightCyan
clBrightRed
clBrightMagenta
clBrightYellow
clBlue
clGreen
clCyan
clRed
clMagenta
clBrown
clLightGray
clDarkGray
clLightBlue
clLightGreen
clLightCyan
clLightRed
clLightMagenta
clYellow
clWhite

More constant values for colours can be added by the user if required.

See Also : Circle, Line, LineTo, Plot, UnPlot.

Proton24 Compiler. Development Suite.

 123

Branch

Syntax
Branch Index, [Label1 {,...Labeln }]

Overview
Cause the program to jump to different locations based on a variable index, where the destina-
tion is within 32768 bytes from the source.

Parameters
Index is a constant, variable, or expression, that specifies the address to branch to.
Label1,...Labeln are valid labels that specify where to branch to. A maximum of 65536 labels
may be placed between the square brackets.

Example
 Device = 24FJ64GA002
 Declare Xtal = 32

 Dim Index as Byte

CLKDIV = 0 ' CPU peripheral clock ratio set to 1:1
Write_OSCCONH(%00010000) ' Enable PLL

Start:
 Index = 2 ' Assign Index a value of 2
 Branch Index,[Lab_0, Lab_1, Lab_2] ' Jump to Lab_2 because Index = 2
Lab_0:
 Index = 2 ' Index now equals 2
 GoTo Start
Lab_1:
 Index = 0 ' Index now equals 0
 GoTo Start
Lab_2:
 Index = 1 ' Index now equals 1
 GoTo Start
'
' Config fuses for internal oscillator with PLL
'

Config Config1 = JTAGEN_OFF, GCP_OFF, GWRP_OFF, BKBUG_OFF, COE_OFF,_
 ICS_PGx1, FWDTEN_OFF, WINDIS_OFF, FWPSA_PR128, WDTPOST_PS256
Config Config2 = IOL1WAY_OFF, COE_OFF, IESO_OFF, FNOSC_FRCPLL,_
 FCKSM_CSDCMD, OSCIOFNC_ON, POSCMOD_NONE

The above example we first assign the index variable a value of 2, then we define our labels.
Since the first position is considered 0 and the variable index equals 2 the Branch command
will cause the program to jump to the third label in the brackets [Lab_2].

Notes.
Branch operates the same as On x GoTo. It's useful when you want to organise a structure
such as: -

 If Var1 = 0 Then GoTo Lab_0 ' Var1 =0: go to label "Lab_0"
 If Var1 = 1 Then GoTo Lab_1 ' Var1 =1: go to label "Lab_1"
 If Var1 = 2 Then GoTo Lab_2 ' Var1 =2: go to label "Lab_2"

Proton24 Compiler. Development Suite.

 124

You can use Branch to organise this into a single statement: -

 Branch Var1, [Lab_0, Lab_1, Lab_2]

This works exactly the same as the above If...Then example. If the value is not in range (in this
case if Var1 is greater than 2), Branch does nothing. The program continues with the next in-
struction..

The Branch command is primarily for use with devices that have less code memory. If larger
devices are used and you suspect that the branch label will be over the 32768 boundary, use
the BranchL command instead.

Proton24 Compiler. Development Suite.

 125

BranchL

Syntax
BranchL Index, [Label1 {,...Labeln }]

Overview
Cause the program to jump to different locations based on a variable index.

Parameters
Index is a constant, variable, or expression, that specifies the address to branch to.
Label1,...Labeln are valid labels that specify where to branch to. A maximum of 65536 labels
may be placed between the square brackets.

Example
 Device = 24FJ64GA002
 Declare Xtal = 32

Dim Index as Byte

CLKDIV = 0 ' CPU peripheral clock ratio set to 1:1
Write_OSCCONH(%00010000) ' Enable PLL

Start:
Index = 2 ' Assign Index a value of 2

' Jump to label 2 (Label_2) because Index = 2
BranchL Index,[Label_0, Label_1, Label_2]

Label_0:
Index = 2 ' Index now equals 2
GoTo Start

Label_1:
Index = 0 ' Index now equals 0
GoTo Start

Label_2:
Index = 1 ' Index now equals 1
GoTo Start

'
' Config fuses for internal oscillator with PLL
'

Config Config1 = JTAGEN_OFF, GCP_OFF, GWRP_OFF, BKBUG_OFF, COE_OFF,_
 ICS_PGx1, FWDTEN_OFF, WINDIS_OFF, FWPSA_PR128, WDTPOST_PS256
Config Config2 = IOL1WAY_OFF, COE_OFF, IESO_OFF, FNOSC_FRCPLL,_
 FCKSM_CSDCMD, OSCIOFNC_ON, POSCMOD_NONE

The above example we first assign the index variable a value of 2, then we define our labels.
Since the first position is considered 0 and the variable index equals 2 the BranchL command
will cause the program to jump to the third label in the brackets [Label_2].

See also : Branch

Proton24 Compiler. Development Suite.

 126

Break

Syntax
Break

Overview
Exit a For…Next, While…Wend or Repeat…Until loop prematurely.

Example 1
' Break out of a For-Next loop when the count reaches 10

 Device = 24FJ64GA002
 Declare Xtal = 32
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim MyByte as Byte

CLKDIV = 0 ' CPU peripheral clock ratio set to 1:1
Write_OSCCONH(%00010000) ' Enable PLL

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 For MyByte = 0 to 39 ' Create a loop of 40 revolutions
 HrsoutLn Dec MyByte ' Display revolutions on the serial terminal
 If MyByte = 10 Then Break ' Break out of the loop when MyByte = 10
 DelayMs 200 ' Delay so we can see what's happening
 Next ' Close the For-Next loop
 HrsoutLn "Exited At ", Dec MyByte ' Display value when loop was broken
'
' Config fuses for internal oscillator with PLL
'

Config Config1 = JTAGEN_OFF, GCP_OFF, GWRP_OFF, BKBUG_OFF, COE_OFF,_
 ICS_PGx1, FWDTEN_OFF, WINDIS_OFF, FWPSA_PR128, WDTPOST_PS256
Config Config2 = IOL1WAY_OFF, COE_OFF, IESO_OFF, FNOSC_FRCPLL,_
 FCKSM_CSDCMD, OSCIOFNC_ON, POSCMOD_NONE

Example 2
' Break out of a Repeat-Until loop when the count reaches 10

 Device = 24FJ64GA002
 Declare Xtal = 32
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim MyByte as Byte

CLKDIV = 0 ' CPU peripheral clock ratio set to 1:1
Write_OSCCONH(%00010000) ' Enable PLL

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 MyByte = 0
 Repeat ' Create a loop
 HrsoutLn Dec MyByte ' Display revolutions on the serial terminal
 If MyByte = 10 Then Break ' Break out of the loop when MyByte = 10
 DelayMs 200 ' Delay so we can see what's happening
 Inc MyByte
 Until MyByte > 39 ' Close the loop after 40 revolutions
 HrsoutLn "Exited At ", Dec MyByte ' Display value when loop was broken
'
' Config fuses for internal oscillator with PLL
'

Config Config1 = JTAGEN_OFF, GCP_OFF, GWRP_OFF, BKBUG_OFF, COE_OFF,_
 ICS_PGx1, FWDTEN_OFF, WINDIS_OFF, FWPSA_PR128, WDTPOST_PS256
Config Config2 = IOL1WAY_OFF, COE_OFF, IESO_OFF, FNOSC_FRCPLL,_
 FCKSM_CSDCMD, OSCIOFNC_ON, POSCMOD_NONE

Proton24 Compiler. Development Suite.

 127

Example 3
' Break out of a While-Wend loop when the count reaches 10

 Device = 24FJ64GA002
 Declare Xtal = 32
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim MyByte as Byte

CLKDIV = 0 ' CPU peripheral clock ratio set to 1:1
Write_OSCCONH(%00010000) ' Enable PLL

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

MyByte = 0
 While MyByte < 40 ' Create a loop of 40 iterations
 HrsoutLn Dec MyByte ' Display iterations on the serial terminal
 If MyByte = 10 Then Break ' Break out of the loop when MyByte = 10
 DelayMs 200 ' Delay so we can see what's happening
 Inc MyByte
 Wend ' Close the loop
 HrsoutLn "Exited At ", Dec MyByte ' Display value when loop was broken
'
' Config fuses for internal oscillator with PLL
'

Config Config1 = JTAGEN_OFF, GCP_OFF, GWRP_OFF, BKBUG_OFF, COE_OFF,_
 ICS_PGx1, FWDTEN_OFF, WINDIS_OFF, FWPSA_PR128, WDTPOST_PS256
Config Config2 = IOL1WAY_OFF, COE_OFF, IESO_OFF, FNOSC_FRCPLL,_
 FCKSM_CSDCMD, OSCIOFNC_ON, POSCMOD_NONE

Notes.
The Break command is similar to a GoTo but operates internally. When the Break command is
encountered, the compiler will force a jump to the loop's internal exit label.

If the Break command is used outside of a For…Next, Repeat…Until, While…Wend or
Do…Loop condition, an error will be produced.

See also : Continue, For…Next, While…Wend, Repeat…Until, Do…Loop.

Proton24 Compiler. Development Suite.

 128

Bstart

Syntax
Bstart

Overview
Send a Start condition to the I2C bus.

Notes.
Because of the subtleties involved in interfacing to some I2C devices, the compiler's standard
Busin, and Busout commands were found lacking somewhat. Therefore, individual pieces of
the I2C protocol may be used in association with the new structure of Busin, and Busout. See
relevant sections for more information.

Example
' Interface to a 24LC32 serial eeprom
 Device = 24FJ64GA002
 Declare Xtal = 8
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1
 Declare SCL_Pin = PORTB.3 ' Select the pin for I2C SCL
 Declare SDA_Pin = PORTB.4 ' Select the pin for I2C SDA

 Dim Loop as Byte
 Dim MyString as String * 20
 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
'
' Transmit bytes to the I2C bus
'
 Bstart ' Send a Start condition
 Busout %10100000 ' Target an eeprom, and send a Write command
 Busout 0 ' Send the High Byte of the address
 Busout 0 ' Send the Low Byte of the address
 For Loop = 48 to 57 ' Create a loop containing ASCII 0 to 9
 Busout Loop ' Send the value of Loop to the eeprom
 Next ' Close the loop
 Bstop ' Send a Stop condition
 DelayMs 5 ' Wait for data to be entered into eeprom matrix
'
' Receive bytes from the I2C bus
'
 Clear MyString ' Clear the string before we start
 Bstart ' Send a Start condition
 Busout %10100000 ' Target an eeprom, and send a Write command
 Busout 0 ' Send the High Byte of the address
 Busout 0 ' Send the Low Byte of the address
 Brestart ' Send a Restart condition
 Busout %10100001 ' Target an eeprom, and send a Read command
 For Loop = 0 to 9 ' Create a loop
 MyString[Loop] = Busin ' Load a string with bytes received
 If Loop = 9 Then Bstop : Else : BusAck ' Ack or Stop ?
 Next ' Close the loop
 Hrsout MyString , 13 ' Display the String

See also: Bstop, Brestart, BusAck, Busin, Busout, HbStart, HbRestart, HbusAck,

Hbusin, Hbusout.

Proton24 Compiler. Development Suite.

 129

Bstop

Syntax
Bstop

Overview
Send a Stop condition to the I2C bus.

Brestart

Syntax
Brestart

Overview
Send a Restart condition to the I2C bus.

BusAck

Syntax
BusAck

Overview
Send an Acknowledge condition to the I2C bus.

BusNack

Syntax
BusNack

Overview
Send a Not Acknowledge condition to the I2C bus.

See also: Bstop, Bstart, Brestart, Busin, Busout, HbStart, HbRestart, HbusAck,

Hbusin, Hbusout.

Proton24 Compiler. Development Suite.

 130

Busin

Syntax
Assignment Variable = Busin Control, { Address }

or

Variable = Busin

or

Busin Control, { Address }, [Variable {, Variable…}]

or

Busin Variable

Overview
Receives a value from the I2C bus, and places it into variable/s. If versions two or four (see
above) are used, then No Acknowledge, or Stop is sent after the data. Versions one and three
first send the control and optional address out of the clock pin (SCL), and data pin (SDA).

Parameters
Assignment Variable is a user defined variable or constant.
Control may be a constant value or a Byte sized variable expression.
Address may be a constant value or a variable expression.

The four variations of the Busin command may be used in the same BASIC program. The sec-
ond and fourth types are useful for simply receiving a single byte from the bus, and must be
used in conjunction with one of the low level commands. i.e. Bstart, Brestart, BusAck, or
Bstop. The first, and third types may be used to receive several values and designate each to
a separate variable, or variable type.

The Busin command is a software implementation (bit-bashed) and operates as an I2C master,
without using the microcontroller's MSSP peripheral, and may be used to interface with any de-
vice that complies with the 2-wire I2C protocol.

The most significant 7-bits of control byte contain the control code and the slave address of the
device being interfaced with. Bit-0 is the flag that indicates whether a read or write command is
being implemented.

For example, if we were interfacing to an external eeprom such as the 24LC32, the control
code would be %10100001 or $A1. The most significant 4-bits (1010) are the eeprom's unique
slave address. Bits 1 to 3 reflect the three address pins of the eeprom. And bit-0 is set to signify
that we wish to read from the eeprom. Note that this bit is automatically set by the Busin com-
mand, regardless of its initial setting.

Proton24 Compiler. Development Suite.

 131

Example
' Receive a byte from the I2C bus and place it into variable MyByte.
 Device = 24FJ64GA002
 Declare Xtal = 8
 Declare SCL_Pin = PORTB.3 ' Select the pin for I2C SCL
 Declare SDA_Pin = PORTB.4 ' Select the pin for I2C SDA

 Dim Loop as Byte
 Dim MyString as String * 20
 Dim MyByte as Byte ' We'll only read 8-bits
 Dim Address as Word ' 16-bit address required
 Symbol Control %10100001 ' Target an eeprom

 Address = 20 ' Read the value at address 20
 MyByte = Busin Control, Address ' Read the byte from the eeprom

or

 Busin Control, Address, [MyByte] ' Read the byte from the eeprom

Address, is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in
this position, the size of address is dictated by the size of the variable used (Byte, Word, or
Dword). In the case of the previous eeprom interfacing, the 24LC32 eeprom requires a 16-bit
address. While the smaller types require an 8-bit address. Make sure you assign the right size
address for the device interfaced with, or you may not achieve the results you intended.

The value received from the bus depends on the size of the variables used, except for variation
three, which only receives a Byte (8-bits). For example: -

 Dim MyWord as Word ' Create a Word size variable
 MyWord = Busin Control, Address

Will receive a 16-bit value from the bus. While: -

 Dim MyByte as Byte ' Create a Byte size variable
 MyByte = Busin Control, Address

Will receive an 8-bit value from the bus.

Using the third variation of the Busin command allows differing variable assignments. For ex-
ample: -

 Dim MyByte as Byte
 Dim MyWord as Word
 Busin Control, Address, [MyByte, MyWord]

Will receive two values from the bus, the first being an 8-bit value dictated by the size of vari-
able Var1 which has been declared as a byte. And a 16-bit value, this time dictated by the size
of the variable MyWord which has been declared as a word. Of course, Bit type variables may
also be used, but in most cases these are not of any practical use as they still take up a byte
within the eeprom.

Proton24 Compiler. Development Suite.

 132

The second and fourth variations allow all the subtleties of the I2C protocol to be exploited, as
each operation may be broken down into its constituent parts. It is advisable to refer to the
datasheet of the device being interfaced to fully understand its requirements. See section on
Bstart, Brestart, BusAck, or Bstop, for example code.

Declares
See Busout for declare explanations.

Notes.
When the Busout command is used, the appropriate SDA and SCL Port and Pin are automati-
cally setup as inputs, and outputs.

Because the I2C protocol calls for an open-collector interface, pull-up resistors are required on
both the SDA and SCL lines. Values of 1KΩ to 4.7KΩ will suffice.

You may imagine that it's limiting having a fixed set of pins for the I2C interface, but you should
remember that several different devices may be attached to a single bus, each having a unique
slave address. Which means there is usually no need to use up more than two pins on the mi-
crocontroller in order to interface to many devices.

Str modifier with Busin
Using the Str modifier allows variations three and four of the Busin command to transfer the
bytes received from the I2C bus directly into a byte array. If the amount of received characters
is not enough to fill the entire array, then a formatter may be placed after the array's name,
which will only receive characters until the specified length is reached. An example of each is
shown below: -

 Device = 24FJ64GA002
 Declare Xtal = 8
 Declare SCL_Pin = PORTB.3 ' Select the pin for I2C SCL
 Declare SDA_Pin = PORTB.4 ' Select the pin for I2C SDA

 Dim Array[10] as Byte ' Create an array of 10 bytes
 Dim Address as Byte ' Create a word sized variable
 Busin %10100000, Address, [Str Array] ' Load data into all the array
'
' Load data into only the first 5 elements of the array
'
 Busin %10100000, Address, [Str Array\5]
 Bstart ' Send a Start condition
 Busout %10100000 ' Target an eeprom, and send a WRITE command
 Busout 0 ' Send the HighByte of the address
 Busout 0 ' Send the LowByte of the address
 Brestart ' Send a Restart condition
 Busout %10100001 ' Target an eeprom, and send a Read command
 Busin Str Array ' Load all the array with bytes received
 Bstop ' Send a Stop condition

An alternative ending to the above example is: -

 Busin Str Array\5 ' Load data into only the first 5 elements of the array
 Bstop ' Send a Stop condition

See also : BusAck, Bstart, Brestart, Bstop, Busout, HbStart, HbRestart, HbusAck,

Hbusin, Hbusout.

Proton24 Compiler. Development Suite.

 133

Busout

Syntax
Busout Control, { Address }, [Variable {, Variable…}]

or

Busout Variable

Overview
Transmit a value to the I2C bus, by first sending the control and optional address out of the
clock pin (SCL), and data pin (SDA). Or alternatively, if only one operator is included after the
Busout command, a single value will be transmitted, along with an Ack reception.

Parameters
Variable is a user defined variable or constant.
Control may be a constant value or a Byte sized variable expression.
Address may be a constant, variable, or expression.

The Busout command is a software implementation (bit-bashed) and operates as an I2C mas-
ter without using the device's MSSP module, and may be used to interface with any device that
complies with the 2-wire I2C protocol.

The most significant 7-bits of control byte contain the control code and the slave address of the
device being interfaced with. Bit-0 is the flag that indicates whether a read or write command is
being implemented.

For example, if we were interfacing to an external eeprom such as the 24LC32, the control
code would be %10100000 or $A0. The most significant 4-bits (1010) are the eeprom's unique
slave address. Bits 1 to 3 reflect the three address pins of the eeprom. And Bit-0 is clear to sig-
nify that we wish to write to the eeprom. Note that this bit is automatically cleared by the Bu-
sout command, regardless of its initial value.

Example
' Send a byte to the I2C bus.
 Device = 24FJ64GA002
 Declare Xtal = 8
 Declare SCL_Pin = PORTB.3 ' Select the pin for I2C SCL
 Declare SDA_Pin = PORTB.4 ' Select the pin for I2C SDA

 Dim MyByte as Byte ' We'll only read 8-bits
 Dim Address as Word ' 16-bit address required
 Symbol Control = %10100000 ' Target an eeprom

 Address = 20 ' Write to address 20
 MyByte = 200 ' The value place into address 20
 Busout Control, Address,[MyByte] ' Send the byte to the eeprom
 DelayMs 10 ' Allow time for allocation of byte

Address, is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in
this position, the size of address is dictated by the size of the variable used (Byte, Word or
Dword). In the case of the above eeprom interfacing, the 24LC32 eeprom requires a 16-bit ad-
dress. While the smaller types require an 8-bit address. Make sure you assign the right size
address for the device interfaced with, or you may not achieve the results you intended.

Proton24 Compiler. Development Suite.

 134

The value sent to the bus depends on the size of the variables used. For example: -

 Dim MyWord as Word ' Create a Word size variable
 Busout Control, Address, [MyWord]

Will send a 16-bit value to the bus. While: -

 Dim MyByte as Byte ' Create a Byte size variable
 Busout Control, Address, [MyByte]

Will send an 8-bit value to the bus.

Using more than one variable within the brackets allows differing variable sizes to be sent. For
example: -

 Dim MyByte as Byte
 Dim MyWord as Word
 Busout Control, Address, [MyByte, MyWord]

Will send two values to the bus, the first being an 8-bit value dictated by the size of variable
MyByte which has been declared as a byte. And a 16-bit value, this time dictated by the size of
the variable MyWord which has been declared as a word. Of course, Bit type variables may
also be used, but in most cases these are not of any practical use as they still take up a byte
within the eeprom.

A string of characters can also be transmitted, by enclosing them in quotes: -

 Busout Control, Address, ["Hello World", MyByte, MyWord]

Using the second variation of the Busout command, necessitates using the low level com-
mands i.e. Bstart, Brestart, BusAck, or Bstop.

Using the Busout command with only one value after it, sends a byte of data to the I2C bus,
and returns holding the Acknowledge reception. This acknowledge indicates whether the data
has been received by the slave device.

The Ack reception is returned in the microcontroller's Carry flag, which is SR.0, and also Sys-
tem variable PP4.0. A value of zero indicates that the data was received correctly, while a one
indicates that the data was not received, or that the slave device has sent a NAck return. You
must read and understand the datasheet for the device being interfacing to, before the Ack re-
turn can be used successfully. An code snippet is shown below: -

' Transmit a byte to a 24LC32 serial eeprom
 Device = 24FJ64GA002
 Declare Xtal = 8
 Declare SCL_Pin = PORTB.3 ' Select the pin for I2C SCL
 Declare SDA_Pin = PORTB.4 ' Select the pin for I2C SDA

 Bstart ' Send a Start condition
 Busout %10100000 ' Target an eeprom, and send a Write command
 Busout 0 ' Send the High Byte of the address
 Busout 0 ' Send the Low Byte of the address
 Busout "A" ' Send the value 65 to the bus
 If SRbits_C = 1 Then GoTo Not_Received ' Has Ack been received OK?
 Bstop ' Send a Stop condition
 DelayMs 5 ' Wait for the data to be entered into eeprom

Proton24 Compiler. Development Suite.

 135

Str modifier with Busout.
The Str modifier is used for transmitting a string of bytes from a byte array variable. A string is a
set of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3
would be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A
byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string 1,2,3 would be stored in a byte
array containing three bytes (elements).

Below is an example that sends four bytes from an array: -

 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare SCL_Pin = PORTB.3 ' Select the pin for I2C SCL
 Declare SDA_Pin = PORTB.4 ' Select the pin for I2C SDA

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 MyArray [0] = "A" ' Load the first 4 bytes of the array
 MyArray [1] = "B" ' With the data to send
 MyArray [2] = "C"
 MyArray [3] = "D"
 Busout %10100000, Address, [Str MyArray\4] ' Send 4-byte string.

Note that we use the optional \n argument of Str. If we didn't specify this, the program would try
to keep sending characters until all 10 bytes of the array were transmitted. Since we do not
wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 4 bytes.

The above example may also be written as: -

 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare SCL_Pin = PORTB.3 ' Select the pin for I2C SCL
 Declare SDA_Pin = PORTB.4 ' Select the pin for I2C SDA
 Dim MyArray [10] as Byte ' Create a 10-byte array.
 Str MyArray = "ABCD" ' Load the first 4 bytes of the array
 Bstart ' Send a Start condition
 Busout %10100000 ' Target an eeprom, and send a Write command
 Busout 0 ' Send the HighByte of the address
 Busout 0 ' Send the LowByte of the address
 Busout Str MyArray\4 ' Send 4-byte string.
 Bstop ' Send a Stop condition

The above example, has exactly the same function as the previous one. The only differences
are that the string is now constructed using the Str as a command instead of a modifier, and
the low-level Hbus commands have been used.

Declares
There are three Declare directives for use with Busout.
These are: -

Declare SDA_Pin Port . Pin
Declares the port and pin used for the data line (SDA). This may be any valid port on the micro-
controller.

Declare SCL_Pin Port . Pin
Declares the port and pin used for the clock line (SCL). This may be any valid port on the mi-
crocontroller.

Proton24 Compiler. Development Suite.

 136

These declares, as is the case with all the Declares, may only be issued once in any single
program, as they setup the I2C library code at design time.

Declare Slow_Bus On - Off or 1 - 0
Slows the bus speed when using an oscillator higher than 4MHz.

The standard speed for the I2C bus is 100KHz. Some devices use a higher bus speed of
400KHz. If you use an 8MHz or higher oscillator, the bus speed may exceed the devices specs,
which will result in intermittent transactions, or in some cases, no transactions at all. Therefore,
use this Declare if you are not sure of the device's spec. The datasheet for the device used will
inform you of its bus speed.

Notes.
When the Busout command is used, the appropriate SDA and SCL Port and Pin are automati-
cally setup as inputs, and outputs.

Because the I2C protocol calls for an open-collector interface, pull-up resistors are required on
both the SDA and SCL lines. Values of 1KΩ to 4.7KΩ will suffice.

You may imagine that it's limiting having a fixed set of pins for the I2C interface, but you must
remember that several different devices may be attached to a single bus, each having a unique
slave address. Which means there is usually no need to use up more than two pins on the de-
vice, in order to interface to many devices.

A typical use for the I2C commands is for interfacing with serial eeproms. Shown below is the
connections to the I2C bus of a 24LC32 serial eeprom.

See also : BusAck, Bstart, Brestart, Bstop, Busin, HbStart, HbRestart,
 HbusAck, Hbusin, Hbusout.

VCC
WP

SCL

A1
A2

VSS

24LC32

7

8

A0

SDA

1

2

3

4

6

5To I/O pin
To I/O pin

0v

R2
4.7k

R1
4.7k

Proton24 Compiler. Development Suite.

 137

Button

Syntax
Button Pin, DownState, Delay, Rate, Workspace, TargetState, Label

Overview
Debounce button input, perform auto-repeat, and branch to address if button is in target state.
Button circuits may be active-low or active-high.

Parameters
Pin is a Port.Bit, constant, or variable (0 - 15), that specifies the I/O pin to use. This pin will
automatically be set to input.
DownState is a variable, constant, or expression (0 or 1) that specifies which logical state oc-
curs when the button is pressed.
Delay is a variable, constant, or expression (0 - 255) that specifies how long the button must be
pressed before auto-repeat starts. The delay is measured in cycles of the Button routine. Delay
has two special settings: 0 and 255. If Delay is 0, Button performs no debounce or auto-repeat.
If Delay is 255, Button performs debounce, but no auto-repeat.
Rate is a variable, constant, or expression (0 – 255) that specifies the number of cycles be-
tween auto-repeats. The rate is expressed in cycles of the Button routine.
Workspace is a byte variable used by Button for workspace. It must be cleared to 0 before be-
ing used by Button for the first time and should not be adjusted outside of the Button com-
mand.
TargetState is a variable, constant, or expression (0 or 1) that specifies which state the button
should be in for a branch to occur. (0 = not pressed, 1 = pressed).
Label is a label that specifies where to branch if the button is in the target state.

Example
 Device = 24FJ64GA002
 Declare Xtal = 8
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

Dim BtnVar as Byte ' Workspace for Button command

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Do
 ' Go to NoPress unless BtnVar = 0.

Button 0, 0, 255, 250, BtnVar, 0, NoPress
HrsoutLn "*"

NoPress:
Loop

Notes.
When a button is pressed, the contacts make or break a connection. A short (1 to 20ms) burst
of noise occurs as the contacts scrape and bounce against each other. Button’s debounce
feature prevents this noise from being interpreted as more than one switch action.

Button also reacts to a button press the way a computer keyboard does to a key press. When
a key is pressed, a character immediately appears on the screen. If the key is held down,
there’s a delay, then a rapid stream of characters appears on the screen. Button’s auto-repeat
function can be set up to work much the same way.

Proton24 Compiler. Development Suite.

 138

Button is designed for use inside a program loop. Each time through the loop, Button checks
the state of the specified pin. When it first matches DownState, the switch is debounced. Then,
as dictated by TargetState, it either branches to address (TargetState = 1) or doesn’t (Target-
State = 0).

If the switch stays in DownState, Button counts the number of program loops that execute.
When this count equals Delay, Button once again triggers the action specified by TargetState
and address. Thereafter, if the switch remains in DownState, Button waits Rate number of cy-
cles between actions. The Workspace variable is used by Button to keep track of how many
cycles have occurred since the pin switched to TargetState or since the last auto-repeat.

Button does not stop program execution. In order for its delay and auto repeat functions to
work properly, Button must be executed from within a program loop.

Two suitable circuits for use with Button are shown below.

+5V

0V

47k
Pullup

To I/O Pin
Push

Switch

+5V

0V

47k
Pulldown

To I/O Pin

Push
Switch

Active Low Active High

Proton24 Compiler. Development Suite.

 139

Call

Syntax
Call Label

Overview
Execute the assembly language subroutine named label.

Parameters
Label must be a valid label name.

Example
' Call an assembler routine
 Call Asm_Sub

 Asm
 Asm_Sub:
 {mnemonics}
 Return
 EndAsm

Notes.
The Gosub command is usually used to execute a BASIC subroutine. However, if your subrou-
tine happens to be written in assembler, the Call command should be used. The main differ-
ence between Gosub and Call is that when Call is used, the label's existence is not checked
until assembly time. Using Call, a label in an assembly language section can be accessed that
would otherwise be inaccessible to Gosub. This also means that any errors produced will be
assembler or linker types, which can be misleading and rather obscure.

See also : Gosub, GoTo

Proton24 Compiler. Development Suite.

 140

Cdata

Syntax
Cdata { alphanumeric data }

Overview
Place information directly into memory for access by Cread8, Cread16, Cread32 and Cread64.

Parameters
alphanumeric data can be any value, alphabetic character, or string enclosed in quotes (") or
numeric data without quotes.

Example
 Device = 24FJ64GA002
 Declare Xtal = 8

 Dim MyByte as Byte
 Dim bIndex as Byte
 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 For Loop = 0 to 11 ' Create a loop of 12
 MyByte = Cread8 MyLabel[bIndex] ' Read memory location MyLabel + bIndex
 Hrsout MyByte ' Display the value read
 Next
 Stop
MyLabel:

Cdata "Hello World\r" ' Create a string of text in code memory

The program above reads and displays 12 values from the address located by the Label ac-
companying the Cdata command. Resulting in "Hello World" being displayed.

Formatting a Cdata table.
Sometimes it is necessary to create a data table with a known format for its values. For exam-
ple all values will occupy 4 bytes of data space even though the value itself would only occupy
1 or 2 bytes.

 Cdata 100000, 10000, 1000, 100, 10, 1

The above line of code would produce an uneven code space usage, as each value requires a
different amount of code space to hold the values. 100000 would require 4 bytes of code
space, 10000 and 1000 would require 2 bytes, but 100, 10, and 1 would only require 1 byte.

Reading these values using one of the Cread commands would cause problems because there
is no way of knowing the amount of bytes to read in order to increment to the next valid value.

The answer is to use formatters to ensure that a value occupies a predetermined amount of
bytes. These are: -
 Byte
 Word
 Dword
 Float
 Double

Placing one of these formatters at the beginning of the table will force a given length.

Cdata As Dword 100000, 10000, 1000, 100, 10, 1

Proton24 Compiler. Development Suite.

 141

Byte will force all values in the table to occupy one byte of code space, regardless of its value.
Any values above 255 will be truncated to the least significant byte.

Word will force the values in the table to occupy 2 bytes of code space, regardless of its value.
Any values above 65535 will be truncated to the two least significant bytes. Any value below
255 will be padded to bring the memory count to 2 bytes.

Dword will force the values in the table to occupy 4 bytes of code space, regardless of its
value. Any value below 65535 will be padded to bring the memory count to 4 bytes. The line of
code shown above uses the Dword formatter to ensure all the values in the Cdata table occupy
4 bytes of code space.

Float will force the values in the table to their floating point equivalent, which always takes up 4
bytes of code space.

The example below illustrates the formatters in use.

' Convert a Dword value into a string. Using only BASIC commands
' Similar principle to the Str$ command

 Device = 24FJ64GA002
 Declare Xtal = 8

 Dim Pow10 as Dword ' Power of 10 variable
 Dim bCount as Byte
 Dim bTableIndex as Byte
 Dim dValue as Dword ' Value to convert
 Dim MyString as String * 12 ' Holds the converted value
 Dim bIndex as Byte ' Index within the string

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 DelayMs 10 ' Wait for things to stabilise
 Clear ' Clear all RAM before we start
 Value = 1234576 ' Value to convert
 Gosub DwordToStr ' Convert Value to string
 Hrsout MyString ' Display the result
 Stop
' Convert a Dword value into a string array
' Value to convert is placed in 'Value'
' Byte array 'Array1' is built up with the ASCII equivalent
'
DwordToStr:
 bIndex = 0
 bTableIndex = 0
 Repeat
 Pow10 = Cread32 Dword_Table[bTableIndex]
 bCount = 0
 While dValue >= Pow10
 dValue = dValue - Pow10
 Inc bCount
 Wend

 If bCount <> 0 Then
 MyString [bIndex] = bCount + "0"
 Inc bIndex
 EndIf
 Inc bTableIndex
 Until bTableIndex > 8

Proton24 Compiler. Development Suite.

 142

 MyString[bIndex] = dValue + "0"
 Inc bIndex
 MyString[bIndex] = 0 ' Add the null to terminate the string
 Return
'
' Cdata table is formatted for all 32-bit values.
' Which means each value will require 4 bytes of code space
Dword_Table:

Cdata as Dword 1000000000, 100000000, 10000000, 1000000, 100000,_
 10000, 1000, 100, 10

Label names as pointers.
If a label's name is used in the list of values in a Cdata table, the labels address will be used.
This is useful for accessing other tables of data using their address from a lookup table. See
example below.

' Transmit serially text from two code memory tables
' Based on their address located in a separate table

 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin used for TX with USART1

 Dim MyByte As Byte
 Dim MyString1 As Code = "Hello",0
 Dim MyString2 As Code = "World",0
 Dim wAddress As Word

'
' Table of address's
'
 Dim AddrTable As Code = As Word MyString1, MyString2

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 wAddress = CRead16 AddrTable[0] ' Locate the address of first string
 Do ' Create an infinite loop
 MyByte = cPtr8(wAddress++) ' Read each character from code memory
 If MyByte = 0 Then Break ' Exit when null found
 HRSOut MyByte ' Display the character
 Loop ' Close the loop
 HRSOut 13
 wAddress = CRead16 AddrTable[1] ' Locate the address of second string
 Do ' Create an infinite loop
 MyByte = cPtr8(wAddress++) ' Read each character from code memory
 If MyByte = 0 Then Break ' Exit when null found
 HRSOut MyByte ' Display the character
 Loop ' Close the loop

Note.
It is not recommended to use Cdata in a new program, and may be dropped from future com-
piler versions. It is recommended to use the Dim As Code construct.

See also : cPtr8, cPtr16, cPtr32, cPtr64, Cread8, Cread16, Cread32, Cread64, Dim.

Proton24 Compiler. Development Suite.

 143

Circle

Syntax
Circle Set_Clear, Xpos, Ypos, Radius

Overview
Draw a circle on a graphic LCD.

Parameters
Set_Clear may be a constant or variable that determines if the circle will set or clear the pixels.
A value of 1 will set the pixels and draw a circle, while a value of 0 will clear any pixels and
erase a circle. If using a colour graphic LCD, this parameter holds the 16-bit colour of the pixel.
Xpos may be a constant or variable that holds the X position for the centre of the circle. Can be
a value from 0 to the X resolution of the display.
Ypos may be a constant or variable that holds the Y position for the centre of the circle. Can be
a value from 0 to the Y resolution of the display.
Radius may be a constant or variable that holds the Radius of the circle. Can be a value from 0
to 65535.

KS0108 LCD example
' Draw circle at pos 63,32 with radius of 20 pixels on a KS0108 LCD

 Device = 24FJ64GA002
 Declare Xtal = 8

 Declare LCD_Type = KS0108 ' Setup for a KS0108 graphic LCD
 Declare LCD_DTPort = PORTB.Byte0 ' Use the first 8-bits of PORTB
 Declare LCD_CS1Pin = PORTB.8
 Declare LCD_CS2Pin = PORTB.9
 Declare LCD_ENPin = PORTB.10
 Declare LCD_RSPin = PORTB.11
 Declare LCD_RWPin = PORTB.12

 Dim Xpos as Byte
 Dim Ypos as Byte
 Dim Radius as Byte
 Dim SetClr as Byte

 DelayMs 100 ' Wait for things to stabilise
 Cls ' Clear the LCD
 Xpos = 63
 Ypos = 32
 Radius = 20
 SetClr = 1
 Circle SetClr, Xpos, Ypos, Radius

Proton24 Compiler. Development Suite.

 144

ILI9320 colour graphic LCD example
' Demonstrate the circle command with a colour LCD
'
 Device = 24EP128MC202
 Declare Xtal = 140.03
'
' Setup the Pins used by the ILI9320 graphic LCD
'
 Declare LCD_DTPort = PORTB.Byte0 ' Use the first 8-bits of PORTB
 Declare LCD_CSPin = PORTB.8 ' Connect to the LCD's CS pin
 Declare LCD_RDPin = PORTB.9 ' Connect to the LCD's RD pin
 Declare LCD_RSPin = PORTB.10 ' Connect to the LCD's RS pin
 Declare LCD_WRPin = PORTA.3 ' Connect to the LCD's WR pin

 Include "ILI9320.inc" ' Load the ILI9320 routines into the program

 Dim wRadius As Word ' Create a variable for the circle's radius

'--
Main:
' Configure the internal Oscillator to operate the device at 140.03MHz
'
 PLL_Setup(76, 2, 2, $0300)

 Cls clYellow ' Clear the LCD with the colour yellow
 For wRadius = 0 To 319
 Circle clBrightCyan, 120, 160, wRadius ' Draw a series of circles
 Next
'--
' Configure for internal 7.37MHz oscillator with PLL
' OSC pins are general purpose I/O
'
 Config FGS = GWRP_OFF, GCP_OFF
 Config FOSCSEL = FNOSC_FRCPLL, IESO_ON, PWMLOCK_OFF
 Config FOSC = POSCMD_NONE, OSCIOFNC_ON, IOL1WAY_OFF, FCKSM_CSDCMD
 Config FWDT = WDTPOST_PS256, WINDIS_OFF, PLLKEN_ON, FWDTEN_OFF
 Config FPOR = ALTI2C1_ON, ALTI2C2_OFF
 Config FICD = ICS_PGD1, JTAGEN_OFF

Notes.
Because of the aspect ratio of the pixels on the KS0108 graphic LCD (approx 1.5 times higher
than wide) the circle will appear elongated.

With an ILI9320 320x240 pixel colour graphic LCD, the colour is a 16-bit value formatted in
RGB565, where the upper 5-bits represent the red content, the middle 6-bits represent the
green content, and the lower 5-bits represent the blue content. As illustrated below:

Low ByteHigh Byte

045101115

Red value Green value Red value

Proton24 Compiler. Development Suite.

 145

For convenience, there are several colours defined within the ILI9320.inc file. These are:

clBlack
clBrightBlue
clBrightGreen
clBrightCyan
clBrightRed
clBrightMagenta
clBrightYellow
clBlue
clGreen
clCyan
clRed
clMagenta
clBrown
clLightGray
clDarkGray
clLightBlue
clLightGreen
clLightCyan
clLightRed
clLightMagenta
clYellow
clWhite

More constant values for colours can be added by the user if required.

See Also : Box, Line, Pixel, Plot, UnPlot.

Proton24 Compiler. Development Suite.

 146

Clear

Syntax
Clear Variable or Variable.Bit or Pin Number

Clear

Overview
Place a variable or bit in a low state. For a variable, this means loading it with 0. For a bit this
means setting it to 0.

Clear has another purpose. If no variable is present after the command, all user RAM within the
device is cleared.

Parameters
Variable can be any variable or register.
Variable.Bit can be any variable and bit combination.
Pin Number can only be a constant that holds a value from 0 to the amount of I/O pins on the
device. A value of 0 will be PORTA.0, if present, 1 will be PORTA.1, 16 will be PORTB.0 etc…
For a variable Pin Number, see ClearPin.

Example 1
 Clear ' Clear all RAM area
 Clear Var1.3 ' Clear bit 3 of Var1
 Clear Var1 ' Load Var1 with the value of 0
 Clear SR.0 ' Clear the carry flag
 Clear Array ' Clear all of an Array variable. i.e. reset to zero’s
 Clear String1 ' Clear all of a String variable. i.e. reset to zero’s
 Clear 0 ' Clear PORTA.0

Notes.
There is a major difference between the Clear and Low commands. Clear does not alter the
TRIS register if a Port is targeted.

See Also : ClearPin, Set, Low, High, SetPin

Proton24 Compiler. Development Suite.

 147

ClearBit

Syntax
ClearBit Variable, Index

Overview
Clear a bit of a variable or register using a variable index to the bit of interest.

Parameters
Variable is a user defined variable.
Index is a constant, variable, or expression that points to the bit within Variable that requires
clearing.

Example
' Clear then Set each bit of variable ExVar
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin used for TX with USART1

 Dim MyByte as Byte
 Dim Index as Byte

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 MyByte = %11111111
 Do ' Create an infinite loop

For Index = 0 to 7 ' Create a loop for 8 bits
 ClearBit MyByte,Index ' Clear each bit of MyByte
 Hrsout Bin8 MyByte , 13 ' Display the binary result
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 For Index = 7 to 0 Step -1 ' Create a loop for 8 bits
 SetBit MyByte,Index ' Set each bit of MyByte
 Hrsout Bin8 MyByte, 13 ' Display the binary result
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 Loop ' Do it forever

Notes.
There are many ways to clear a bit within a variable, however, each method requires a certain
amount of manipulation, either with rotates, or alternatively, the use of indirect addressing.
Each method has its merits, but requires a certain amount of knowledge to accomplish the task
correctly. The ClearBit command makes this task extremely simple using a register rotate
method, however, this is not necessarily the quickest method, or the smallest, but it is the easi-
est. For speed and size optimisation, there is no shortcut to experience.

To clear a known constant bit of a variable or register, then access the bit directly using
PORT.n.

PORTA.1 = 0
or

Var1.4 = 0

If a Port is targeted by ClearBit, the TRIS register is not affected.

See also : GetBit, LoadBit, SetBit.

Proton24 Compiler. Development Suite.

 148

ClearPin

Syntax
ClearPin Pin Number

Overview
Pull a Port’s pin low using a variable as the pin’s number, but does not set it as an output

Parameters
Pin Number can be a variable or constant or expression that holds a value from 0 to the
amount of I/O pins on the device. A value of 0 will be PORTA.0, if present, 1 will be PORTA.1,
16 will be PORTB.0 etc…

Example
' Clear then Set each pin of PORTB
 Device = 24HJ128GP502
 Declare Xtal = 16

Dim PinNumber as Byte

 High PORTB ' Make PORTB high before we start
 Do ' Create a loop
 For PinNumber = 16 to 31 ' Create a loop for 16 pins
 ClearPin PinNumber ' Clear each pin of PORTB
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 For Index = 16 to 31 ' Create a loop for 16 pins
 SetPin PinNumber ' Set each pin of PORTB
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 Loop ' Do it forever

Notes.
There are many ways to pull a pin of an I/O port low, however, each method requires a certain
amount of manipulation, either with rotates, or alternatively, the use of indirect addressing.
Each method has its merits, but requires a certain amount of knowledge to accomplish the task
correctly. The ClearPin command makes this task extremely simple using a variable as the pin
number, however, this is not necessarily the quickest method, or the smallest, but it is the easi-
est. For speed and size optimisation, there is no shortcut to experience.

To clear a known constant pin number of a port, access the pin directly using the Low com-
mand

Low PORTA.1

Proton24 Compiler. Development Suite.

 149

Each pin number has a designated name. These are Pin_A0, Pin_A1, Pin_A2,
Pin_B0…Pin_B15, Pin_C0…Pin_C15, Pin_D0…Pin_D15 to Pin_L15 etc… Each of the names
has a relevant value, for example, Pin_A0 has the value 0, Pin_B0 has the value 16, up to
Pin_J15, which has the value 143.

These can be used to pass a relevant pin number to a Procedure. For example:
'
' Flash an LED attached to PORTB.0 via a procedure
' Then flash an LED attached to PORTB.1 via the same procedure
'
 Device = 24HJ128GP502
 Declare Xtal = 16

Do ' Create an infinite loop

FlashPin(Pin_B0) ' Call the procedure to flash PORTB.0
FlashPin(Pin_B1) ' Call the procedure to flash PORTB.1

 Loop ' Do it forever
'
' Make a pin high then low for 500ms using a variable as the pin to adjust
'
Proc FlashPin(pPinNumber As Byte)

Output pPinNumber ' Make the pin an output
SetPin pPinNumber ' Bring the pin high

 DelayMs 500 ' Wait for 500 milliseconds
ClearPin pPinNumber ' Bring the pin low
DelayMs 500 ' Wait for 500 milliseconds

EndProc

Example 2
' Clear then Set each pin of PORTC
 Device = 24HJ128GP502
 Declare Xtal = 16

Dim PinNumber as Byte

 High PORTC ' Make PORTC output high before we start
 Do ' Create a loop
 For PinNumber = Pin_C0 to Pin_C7 ' Create a loop for 8 pins
 ClearPin PinNumber ' Clear each pin of PORTC
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 For PinNumber = Pin_C0 to Pin_C7 ' Create a loop for 8 pins
 SetPin PinNumber ' Set each pin of PORTC
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 Loop ' Do it forever

See also : SetPin, High, Low.

Proton24 Compiler. Development Suite.

 150

Cls

Syntax
Cls

or if using a Toshiba T6963 graphic LCD:

Cls Text
Cls Graphic

or if using a colour graphic LCD:

Cls Colour

Overview
Clears the alphanumeric or graphic LCD and places the cursor at the home position i.e. line 1,
position 1 (line 0, position 0 for graphic LCDs).

Toshiba graphic LCDs based upon the T6963 chipset have separate RAM for text and graph-
ics. Issuing the word Text after the Cls command will only clear the Text RAM, while issuing
the word Graphic after the Cls command will only clear the Graphic RAM. Issuing the Cls com-
mand on its own will clear both areas of RAM.

Example 1
' Clear a KS0108 graphic LCD
 Device = 24FJ64GA002
 Declare Xtal = 16

 Declare LCD_Type = KS0108 ' Setup for a KS0108 graphic LCD
 Declare LCD_DTPort = PORTB.Byte0 ' Use the first 8-bits of PORTB
 Declare LCD_CS1Pin = PORTB.8
 Declare LCD_CS2Pin = PORTB.9
 Declare LCD_ENPin = PORTB.10
 Declare LCD_RSPin = PORTB.11
 Declare LCD_RWPin = PORTB.12

 DelayMs 100 ' Wait for things to stabilise
 Cls ' Clear the LCD
 Print "Hello" ' Display the word "Hello" on the LCD
 Cursor 2,1 ' Move the cursor to line 2, position 1
 Print "World" ' Display the word "World" on the LCD

In the above example, the LCD is cleared using the Cls command, which also places the cursor
at the home position i.e. line 1, position 1. Next, the word “Hello” is displayed in the top left cor-
ner. The cursor is then moved to line 2 position 1, and the word “World” is displayed.

Proton24 Compiler. Development Suite.

 151

Example 2
' Clear a Toshiba T6963 graphic LCD.
 Device = 24FJ64GA002
 Declare Xtal = 16

 Include "T6963C.inc" ' Load the T6963C routines into the program

 Cls ' Clear all RAM within the LCD
 Print "Hello" ' Display the word "Hello" on the LCD
 Line 1,0,0,63,63 ' Draw a line on the LCD
 DelayMs 1000 ' Wait for 1 second
 Cls Text ' Clear only the text RAM, leaving the line displayed
 DelayMs 1000 ' Wait for 1 second
 Cls Graphic ' Now clear the line from the display

See also : Cursor, Print, Toshiba_Command.

Proton24 Compiler. Development Suite.

 152

Config

Syntax
Config Register Name = Fuse Name, Fuse Name {,Fuse Name}

Overview
Enable or Disable particular fuse settings for the device being used.

Parameters
Register Name is the designated name of the fuse register within the microcontroller. These
vary from device family to device family.
Fuse Name is a list of comma delimited texts that represent the fuse to enable or disable ac-
cordingly.

At the time of writing, the standard PIC24F® devices use the texts Config1, Config2, Config3,
and Config4, in order to designate a fuse register, depending on the type. However, some of
the newer PIC24FV® devices and all the the PIC24H® and PIC24E® and dsPIC33® devices use
the texts FBS, FGS, FOSCSEL, FOSC, FWDT, FPOR, FICD, FDS for fuse register designa-
tions.

Example 1
' Alter the fuses for a standard PIC24F device (24FJ64GA002)
 Config Config1 = JTAGEN_OFF, GCP_OFF, GWRP_OFF, BKBUG_OFF, COE_OFF,_
 ICS_PGx1, FWDTEN_OFF, WINDIS_OFF, FWPSA_PR128,_
 WDTPOST_PS256
 Config Config2 = IOL1WAY_OFF, COE_OFF, IESO_OFF, FNOSC_PRI,_
 FCKSM_CSDCMD, OSCIOFNC_OFF, POSCMOD_HS

Example 2
' Alter the fuses for a PIC24H device (24HJ128GP502)
 Config FBS = BWRP_WRPROTECT_OFF, BSS_NO_FLASH, BSS_NO_BOOT_CODE
 Config FSS = SWRP_WRPROTECT_OFF, SSS_NO_FLASH, RSS_NO_SEC_RAM
 Config FGS = GWRP_OFF, GCP_OFF
 Config FOSCSEL = FNOSC_FRCPLL, IESO_OFF
 Config FOSC = POSCMD_HS, OSCIOFNC_OFF, IOL1WAY_OFF, FCKSM_CSDCMD
 Config FWDT = WDTPOST_PS256, WINDIS_OFF, FWDTEN_OFF
 Config FPOR = FPWRT_PWR128, ALTI2C_OFF
 Config FICD = ICS_PGD1, JTAGEN_OFF

Notes.
The device’s PPI file has the required fuse designators in its [FUSESTART] section and a list of
the valid fuse names in its [CONFIGSTART] section. The default location of the PPI files is:

For Windows XP and Windows 7 (32-bit)
C:\Program Files\ProtonIDE\PDS\Includes\PPI

For Windows 7 (64-bit)
C:\Program Files (x86)\ProtonIDE\PDS\Includes\PPI

For detailed information concerning the configuration fuses, refer to the microcontroller’s data-
sheet.

The compiler’s default fuse settings are for an external oscillator with no PLL. In order for the
Sleep command’s timing to remian correct, always use the fuse setting WDTPOST_PS256

Proton24 Compiler. Development Suite.

 153

Below are a few examples of using the Config directive:

Example 1
' PIC24F external 8MHz crystal operating at 32MHz using PLL
'
 Device = 24FJ64GA002
 Declare Xtal = 32

 CLKDIV = 0 ' CPU peripheral clock ratio set to 1:1
 OSCCON.Byte1 = %00010000 ' Enable 4 x PLL '
'
' Flash an LED connected to PORTA.0
'
 Do
 High PORTA.0
 DelayMS 500
 Low PORTA.0
 DelayMS 500
 Loop
'
' Configure for external oscillator with PLL
'
 Config Config1 = JTAGEN_OFF, GCP_OFF, BKBUG_OFF,_
 COE_OFF, ICS_PGx1, FWDTEN_OFF, WINDIS_OFF,_
 FWPSA_PR128, WDTPOST_PS256
 Config Config2 = IOL1WAY_OFF, IESO_OFF, FNOSC_PRIPLL,_
 FCKSM_CSECME,OSCIOFNC_OFF, POSCMOD_HS

Example 2
' PIC24F internal 8MHz oscillator operating at 32MHz using PLL
'
 Device = 24FJ64GA002
 Declare Xtal = 32

 CLKDIV = 0 ' CPU peripheral clock ratio set to 1:1
 OSCCON.Byte1 = %00010000 ' Enable 4 x PLL
'
' Flash an LED connected to PORTA.0
'
 Do
 High PORTA.0
 DelayMS 500
 Low PORTA.0
 DelayMS 500
 Loop
'
' Configure for internal 8MHz oscillator with PLL
' OSC pins operate as general purpose I/O
'
 Config Config1 = JTAGEN_OFF, GCP_OFF, BKBUG_OFF,_
 COE_OFF, ICS_PGx1, FWDTEN_OFF, WINDIS_OFF,_
 FWPSA_PR128, WDTPOST_PS256
 Config Config2 = IOL1WAY_OFF, IESO_OFF, FNOSC_PRIPLL,_
 FCKSM_CSDCMD, OSCIOFNC_OFF, POSCMOD_NONE

Proton24 Compiler. Development Suite.

 154

Example 3
' PIC24H internal 7.37MHz oscillator operating at 79.23MHz using PLL
'
 Device = 24HJ128GP502
 Declare Xtal = 79.23
'---
Main:
' Configure the Oscillator to operate the device at 79.23MHz
' Fosc = (7.37 * 43) / (2 * 2) = 79.23MHz (40 MIPS)
'
 PLL_Setup(43, 2, 2, $0300)
'
' Flash an LED connected to PORTA.0
'
 Do
 High PORTA.0
 DelayMS 500
 Low PORTA.0
 DelayMS 500
 Loop
'
' Configure for internal 7.37MHz oscillator with PLL
' OSC pins operate as general purpose I/O
'
 Config FBS = BWRP_WRPROTECT_OFF
 Config FSS = SWRP_WRPROTECT_OFF
 Config FGS = GWRP_OFF
 Config FOSCSEL = FNOSC_FRCPLL, IESO_OFF
 Config FOSC = POSCMD_NONE, OSCIOFNC_OFF, IOL1WAY_OFF, FCKSM_CSECME
 Config FWDT = WDTPOST_PS256, WINDIS_OFF, FWDTEN_OFF
 Config FPOR = FPWRT_PWR128, ALTI2C_OFF
 Config FICD = ICS_PGD1, JTAGEN_OFF

Proton24 Compiler. Development Suite.

 155

Example 4
' PIC24E internal 7.37MHz oscillator operating at 140.03MHz using PLL
'
 Device = 24EP128MC202
 Declare Xtal = 140.03
'---
Main:
' Configure the Oscillator to operate the device at 140.03MHz (70 MIPS)
' Fosc = (7.37 * 76) / (2 * 2) = 140.03MHz
'
 PLL_Setup(76, 2, 2, $0300)
'
' Flash an LED connected to PORTA.0
'
 Do
 High PORTA.0
 DelayMS 500
 Low PORTA.0
 DelayMS 500
 Loop
'
' Configure for internal 7.37MHz oscillator with PLL
' OSC pins operate as general purpose I/O
'
 Config FGS = GWRP_OFF
 Config FOSCSEL = FNOSC_FRCPLL, IESO_OFF, PWMLOCK_OFF
 Config FOSC = POSCMD_NONE, OSCIOFNC_ON, IOL1WAY_OFF, FCKSM_CSECME
 Config FWDT = WDTPOST_PS256, WINDIS_OFF, PLLKEN_ON, FWDTEN_OFF
 Config FPOR = ALTI2C1_ON, ALTI2C2_OFF
 Config FICD = ICS_PGD1, JTAGEN_OFF

Proton24 Compiler. Development Suite.

 156

Example 5
' PIC33F internal 7.37MHz oscillator operating at 79.23MHz using PLL
'
 Device = 33FJ128MC802
 Declare Xtal = 79.23
'---
Main:
' Configure the Oscillator to operate the device at 79.23MHz
' Fosc = (7.37 * 43) / (2 * 2) = 79.23MHz (40 MIPS)
'
 PLL_Setup(43, 2, 2, $0300)
'
' Flash an LED connected to PORTA.0
'
 Do
 High PORTA.0
 DelayMS 500
 Low PORTA.0
 DelayMS 500
 Loop
'
' Configure for internal 7.37MHz oscillator with PLL
' OSC pins operate as general purpose I/O
'
 Config FBS = BWRP_WRPROTECT_OFF
 Config FGS = GWRP_OFF
 Config FOSCSEL = FNOSC_FRCPLL, IESO_OFF
 Config FOSC = POSCMD_NONE, OSCIOFNC_OFF, IOL1WAY_OFF, FCKSM_CSECME
 Config FWDT = WDTPOST_PS256, WINDIS_OFF, FWDTEN_OFF
 Config FPOR = FPWRT_PWR128, ALTI2C_OFF
 Config FICD = ICS_PGD1, JTAGEN_OFF

Note.
The PLL_Setup helper macro can be found within the device’s “.def” file. It is required because
the dsPIC33E®, PIC24E® and PIC24H® devices need an unlock sequence before writing to the
OSCCON SFR, unlike the PIC24F® devices, that can write directly to the OSCCON SFR.

Proton24 Compiler. Development Suite.

 157

Continue

Syntax
Continue

Overview
Cause the next iteration of a For…Next, While...Wend, Repeat...Until or Do…Loop condition
to occur. With a For…Next loop, Continue will jump to the Next part. With a While…Wend
loop, Continue will jump to the While part. With a Repeat…Until loop, Continue will jump to
the Until part. With Do…Loop, Continue will jump to the Loop part.

Example
' Create and display a For-Next loop's iterations, missing out number 10
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim Index as Byte

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 For Index = 0 to 19 ' Create a loop of 20 iterations
 If Index = 10 Then Continue ' Miss out number 10
 HrsoutLn Dec Index ' Display the counting loop
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop

See also : Break, Do…Loop, For…Next, Repeat…Until, While…Wend.

Proton24 Compiler. Development Suite.

 158

Counter

Syntax
Assignment Variable = Counter Pin, Period

Overview
Count the number of pulses that appear on pin during period, and store the result in variable.

Parameters
Assignment Variable is a user-defined variable.
Pin is a Port.Pin constant declaration i.e. PORTA.0.
Period may be a constant, variable, or expression.

Example
' Count the pulses that occur on PORTA.0 within a 100ms period
' and displays the results.

 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim MyWord as Word ' Create a word size variable
 Symbol Pin = PORTA.0 ' Assign the input pin to PORTA.0

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 Do ' Create a loop
 MyWord = Counter Pin, 100 ' Variable MyWord now contains the Count
 HrsoutLn Dec MyWord ' Display the decimal result
 Loop ' Do it forever

Notes.
The resolution of period is in milliseconds (ms). It obtains its scaling from the oscillator declara-
tion, Declare Xtal.

Counter checks the state of the pin in a concise loop, and counts the rising edge of a transi-
tion.

See also : PulseIn, Rcin.

Proton24 Compiler. Development Suite.

 159

cPtr8, cPtr16, cPtr32, cPtr64

Syntax
Assignment Variable = cPtr8 (Address)
Assignment Variable = cPtr16 (Address)
Assignment Variable = cPtr32 (Address)
Assignment Variable = cPtr64 (Address)

Overview
Indirectly read code memory using a variable to hold the 16-bit or 32-bit address.

Parameters
Assignment Variable is a user defined variable that holds the result of the indirectly addressed
code memory area.
Address is a Word or Dword variable that holds the 16-bit or 32-bit address of the code mem-
ory area of interest.

Address can also post or pre increment or decrement:

 (MyAddress++) Post increment MyAddress after retreiving its RAM location.
 (MyAddress --) Post decrement MyAddress after retreiving its RAM location.
 (++MyAddress) Pre increment MyAddress before retreiving its RAM location.
 (--MyAddress) Pre decrement MyAddress before retreiving its RAM location.

cPtr8 will retrieve a value with an optional 8-bit post or pre increment or decrement.
cPtr16 will retrieve a value with an optional 16-bit post or pre increment or decrement.
cPtr32 will retrieve a value with an optional 32-bit post or pre increment or decrement.
cPtr64 will retrieve a value with an optional 64-bit post or pre increment or decrement.

8-bit Example.
'
' Read 8-bit values indirectly from code memory
'
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' UART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select pin to be used for TX
'
' Create an 8-bit code memory array
'
 Dim CodeArray As Code = as Byte 1, 2, 3, 4, 5, 6, 7, 8, 9, 0
 Dim MyByte As Byte ' Create a byte variable
 Dim bIndex As Byte
 Dim wAddress As Word ' Create variable to hold 16-bit address
Main:
 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
'
' Read from code memory
'
 wAddress = AddressOf(CodeArray) ' Load wAddress with address of memory
 While ' Create a loop
 MyByte = cPtr8(wAddress++) ' Retrieve from code with post increment
 If MyByte = 0 Then Break ' Exit when a null(0) is read from code
 HRSOutLn Dec MyByte ' Transmit the byte read from code
 Wend

Proton24 Compiler. Development Suite.

 160

16-bit Example.
'
' Read 16-bit values indirectly from code memory
'
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' UART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select pin is to be used for TX
'
' Create a 16-bit code memory array
'
 Dim CodeArray As Code = as Word 100, 200, 300, 400, 500, 600, 700, 0
 Dim MyWord As Word ' Create a word variable
 Dim bIndex As Byte
 Dim wAddress As Word ' Create variable to hold 16-bit address

Main:
 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
'
' Read from code memory
'
 wAddress = AddressOf(CodeArray) ' Load wAddress with address of memory
 While ' Create a loop
 MyWord = cPtr16(wAddress++) ' Retrieve from code with post increment
 If MyWord = 0 Then Break ' Exit when a null(0) is read from code
 HRSOutLn Dec MyWord ' Transmit the word read from code
 Wend

32-bit Example.
'
' Read 32-bit values indirectly from code memory
'
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' UART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select pin is to be used for TX
'
' Create a 32-bit code memory array
'
 Dim CodeArray As Code = as Dword 100, 200, 300, 400, 500, 600, 700, 0
 Dim MyDword As Dword ' Create a dword variable
 Dim bIndex As Byte
 Dim wAddress As Word ' Create variable to hold 16-bit address

Main:
 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
'
' Read from code memory
'
 wAddress = AddressOf(CodeArray) ' Load wAddress with address of memory
 While ' Create a loop
 MyDword = cPtr32(wAddress++) ' Retrieve from code with post increment
 If MyDword = 0 Then Break ' Exit when a null(0) is read from code
 HRSOutLn Dec MyDword ' Transmit the dword read from code
 Wend

See also: AddressOf, Cread8, Cread16, Cread32, Cread64, Ptr8, Ptr16, Ptr32, Ptr64.

Proton24 Compiler. Development Suite.

 161

Cread8, Cread16, Cread32, Cread64

Syntax
Assignment Variable = Cread8 Label [Offset Variable]
or
Assignment Variable = Cread16 Label [Offset Variable]
or
Assignment Variable = Cread32 Label [Offset Variable]
or
Assignment Variable = Cread64 Label [Offset Variable]

Overview
Read an 8, 16, 32 or 64-bit value from a code memory table using an offset of Offset Variable
and place into Variable.

Cread8 will access 8-bit values from a code memory table.
Cread16 will access 16-bit values from a code memory table.
Cread32 will access 32-bit values from a code memory table, this also includes 32-bit floating
point values.
Cread64 will access 64-bit values from a code memory table.

Parameters
Assignment Variable is a user defined variable.
Label is a label name given to the code memory table of which values will be read from.
Offset Variable can be a constant value, variable, or expression that points to the location of
interest within the code memory table.

Cread8 Example
' Extract the second value from within an 8-bit code memory table
'
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim Offset as Byte ' Create a Byte size variable for the offset
 Dim MyResult as Byte ' Create a Byte size variable to hold the result
'
' Create a table containing only 8-bit values
'

Dim Byte_Table as Code = as Byte 100, 200

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Offset = 1 ' Point to second value in the code memory table
'
' Read the 8-bit value pointed to by Offset
'
 MyResult = Cread8 Byte_Table[Offset]
 HrsoutLn Dec MyResult ' Display the decimal result

Proton24 Compiler. Development Suite.

 162

Cread16 Example
' Extract the second value from within a 16-bit code memory table
'
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim Offset as Byte ' Create a Byte size variable for the offset
 Dim MyResult as Word ' Create a Word size variable to hold the result
'
' Create a table containing only 16-bit values
'

Dim WordTable as Code = as Word 1234, 5678

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 Offset = 1 ' Point to the second value in the code table
'
' Read the 16-bit value pointed to by Offset
'
 MyResult = Cread16 WordTable[Offset]
 HrsoutLn Dec MyResult ' Display the decimal result

Cread32 Example
' Extract the second value from within a 32-bit code memory table
'
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim Offset as Byte ' Create a Byte size variable for the offset
 Dim MyResult as Dword ' Create a Dword size variable to hold the result
'
' Create a table containing only 32-bit values
'

Dim DwordTable as Code = as Dword 12340, 56780

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 Offset = 1 ' Point to the second value in the code table
'
' Read the 32-bit value pointed to by Offset
'
 MyResult = Cread32 DwordTable[Offset]
 HrsoutLn Dec MyResult ' Display the decimal result

See also : Dim as code, cPtr8, cPtr16, cPtr32, cPtr64.

Proton24 Compiler. Development Suite.

 163

Cursor

Syntax
Cursor Line, Position

Overview
Move the cursor position on an Alphanumeric or Graphic LCD to a specified line (ypos) and po-
sition (xpos).

Parameters
Line is a constant, variable, or expression that corresponds to the line (Ypos) number from 1 to
maximum lines (0 to maximum Y resolution if using a graphic LCD).
Position is a constant, variable, or expression that moves the position within the position
(Xpos) chosen, from 1 to maximum position (0 to maximum position if using a graphic LCD).

Example 1
 Device = 24FJ64GA002
 Declare Xtal = 16

 Declare LCD_DTPin = PORTB.4
 Declare LCD_RSPin = PORTA.0
 Declare LCD_ENPin = PORTA.1
 Declare LCD_Lines = 4
 Declare LCD_Interface = 4

 Dim Line as Byte
 Dim Xpos as Byte

 Line = 2
 Xpos = 1
 Cls ' Clear the LCD
 Print "Hello" ' Display the word "Hello" on the LCD
 Cursor Line, Xpos ' Move the cursor to line 2, position 1
 Print "World" ' Display the word "World" on the LCD

In the above example, the LCD is cleared using the Cls command, which also places the cursor
at the home position i.e. line 1, position 1. Next, the word “Hello” is displayed in the top left cor-
ner. The cursor is then moved to line 2 position 1, and the word “World” is displayed.

Proton24 Compiler. Development Suite.

 164

Example 2
 Device = 24FJ64GA002
 Declare Xtal = 16

 Declare LCD_DTPin = PORTB.4
 Declare LCD_RSPin = PORTA.0
 Declare LCD_ENPin = PORTA.1
 Declare LCD_Lines = 4
 Declare LCD_Interface = 4

 Dim Xpos as Byte
 Dim Ypos as Byte

 Do ' Create an infinite loop
 Ypos = 1 ' Start on line 1
 For Xpos = 1 to 16 ' Create a loop of 16
 Cls ' Clear the LCD
 Cursor Ypos, Xpos ' Move the cursor to position Ypos,Xpos
 Print "*" ' Display the character
 DelayMs 100
 Next
 Ypos = 2 ' Move to line 2
 For Xpos = 16 to 1 Step -1 ' Create another loop, this time reverse
 Cls ' Clear the LCD
 Cursor Ypos, Xpos ' Move the cursor to position Ypos,Xpos
 Print "*" ' Display the character
 DelayMs 100
 Next
 Loop ' Do it forever

Example 2 displays an asterisk character moving around the perimeter of a 2-line by 16 charac-
ter LCD.

See also : Cls, Print

Proton24 Compiler. Development Suite.

 165

Dec

Syntax
Dec Variable

Overview
Decrement a variable i.e. Var1 = Var1 - 1

Parameters
Variable is a user defined variable

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim MyWord as Word

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 MyWord = 11
 Do
 Dec MyWord
 Hrsout Dec MyWord, 13
 DelayMs 200
 Loop Until MyWord = 0

The above example shows the equivalent to the For-Next loop: -

 For MyWord = 10 to 0 Step -1
 Next

See also : Inc.

Proton24 Compiler. Development Suite.

 166

Declare

Syntax
Declare Code Modifying Directive = Modifying Value

Overview
Adjust certain aspects of the produced code at compile time, i.e. Crystal frequency, LCD port
and pins, serial baud rate etc.

Parameters
Code Modifying Directive is a set of pre-defined words. See list below.
Modifying Value is the value that corresponds to the action. See list below.

The Declare directive is an indispensable part of the compiler. It moulds the library subroutines,
and passes essential user information to them.

Note.
The Declare directive is mandatory and must precede the texts, otherwise a syntax error will be
produced.

The Declare directive usually alters the corresponding library subroutine at compile time. This
means that once the Declare is added to the BASIC program, it usually cannot be Undeclared
later, or changed in any way. However, there are some declares that alter the flow of code, and
can be enabled and disabled throughout the BASIC listing.

Misc Declares.
Declare WatchDog = On or Off, or True or False, or 1, 0
The WatchDog Declare directive enables or disables the ClrWdt mnemonic within strategic
locations of the compiler’s library subroutines. Unlike Proton for 8-bit microcontrollers, it does
not enable the watchdog fuse. This must be done by using the Config directive. The default for
the compiler is WatchDog Off, therefore, if the watchdog timer is required, then this Declare
will need to be invoked.

Declare Warnings = On or Off, or True or False, or 1, 0
The Warnings Declare directive enables or disables the compiler's warning messages. This
can have disastrous results if a warning is missed or ignored, so use this directive sparingly,
and at your own peril.

The Warnings Declare can be issued multiple times within the BASIC code, enabling and dis-
abling the warning messages at key points in the code as and when required.

Declare Reminders = On or Off, or True or False, or 1, 0
The Reminders Declare directive enables or disables the compiler's reminder messages. The
compiler issues a reminder for a reason, so use this directive sparingly, and at your own peril.

The Reminders Declare can be issued multiple times within the BASIC code, enabling and
disabling the reminder messages at key points in the code as and when required.

Proton24 Compiler. Development Suite.

 167

Declare Access_Upper_64K = On or Off, or True or False, or 1, 0
Some PIC24® and dsPIC® devices have very large amounts of code memory storage, however,
because the architecture of the devices is 16-bit, the largest address that can be accessed with
a single mnemonic is 65535 bytes. When this address is exceeded, the device’s TBLPAG SFR
must be loaded with the 17th, 18th, up to 24th bit of the address.

Note that this only applies to data stored in code memory using the Cdata directive or very
large data segments using the Dim as Code directive. It does not usually affect normal com-
mands or mnemonics.

When the Access_Upper_64K declare is used, the compiler will add code that manipulates the
TBLPAG SFR, however, this will impact on the code size produced by the compiler.

Proton24 Compiler. Development Suite.

 168

Adin Declares.
Declare Adin_Tad c1_FOSC, c2_FOSC, c4_FOSC, c8_FOSC, c16_FOSC, c32_FOSC,
c64_FOSC, or cFRC.
Sets the ADC's clock source.

All compatible devices have multiple options for the clock source used by the ADC peripheral.
1_FOSC, 2_FOSC, 4_FOSC, 8_FOSC, 16_FOSC, 32_FOSC, and 64_FOSC are ratios of the
external oscillator, while FRC is the device's internal RC oscillator.

Care must be used when issuing this Declare, as the wrong type of clock source may result in
poor accuracy, or no conversion at all. If in doubt use FRC which will produce a slight reduction
in accuracy and conversion speed, but is guaranteed to work first time, every time. FRC is the
default setting if the Declare is not issued in the BASIC listing.

Declare Adin_Stime 0 to 65535 microseconds (us).
Allows the internal capacitors to fully charge before a sample is taken. This may be a value
from 0 to 65535 microseconds (us).

A value too small may result in a reduction of resolution. While too large a value will result in
poor conversion speeds without any extra resolution being attained.

A typical value for Adin_Stime is 2 to 100. This allows adequate charge time without loosing
too much conversion speed. But experimentation will produce the right value for your particular
requirement. The default value if the Declare is not used in the BASIC listing is 50.

Proton24 Compiler. Development Suite.

 169

Busin - Busout Declares.
Declare SDA_Pin Port . Pin
Declares the port and pin used for the data line (SDA). This may be any valid port on the micro-
controller. If this declare is not issued in the BASIC program, then the default Port and Pin is
PORTA.0

Declare SCL_Pin Port . Pin
Declares the port and pin used for the clock line (SCL). This may be any valid port on the mi-
crocontroller. If this declare is not issued in the BASIC program, then the default Port and Pin is
PORTA.1

Declare Slow_Bus On - Off or 1 - 0
Slows the bus speed when using an oscillator higher than 4MHz.

The standard speed for the I2C bus is 100KHz. Some devices use a higher bus speed of
400KHz. If you use an 8MHz or higher oscillator, the bus speed may exceed the devices specs,
which will result in intermittent writes or reads, or in some cases, none at all. Therefore, use this
Declare if you are not sure of the device's spec. The datasheet for the device used will inform
you of its bus speed.

Declare Bus_SCL On - Off, 1 - 0 or True - False
Eliminates the necessity for a pull-up resistor on the SCL line.

The I2C protocol dictates that a pull-up resistor is required on both the SCL and SDA lines,
however, this is not always possible due to circuit restrictions etc, so once the Bus_SCL On
Declare is issued at the top of the program, the resistor on the SCL line can be omitted from
the circuit. The default for the compiler if the Bus_SCL Declare is not issued, is that a pull-up
resistor is required.

Hbusin - Hbusout Declares.
Declare HSDA_Pin Port . Pin
Declares the port and pin used for the data line (SDA). The location of the port and pin used for
hardware I2C can be altered by the fuse configurations. If the declare is not used in the pro-
gram, it will default to the standard pin configuration.

Declare HSCL_Pin Port . Pin
Declares the port and pin used for the clock line (SCL). The location of the port and pin used for
hardware I2C can be altered by the fuse configurations. If the declare is not used in the pro-
gram, it will default to the standard pin configuration.

Declare Hbus_Bitrate Constant 100, 400, 1000 etc.
The standard speed for the I2C bus is 100KHz. Some devices use a higher bus speed of
400KHz. The above Declare allows the I2C bus speed to be increased or decreased. Use this
Declare with caution, as too high a bit rate may exceed the device's specs, which will result in
intermittent transactions, or in some cases, no transactions at all. The datasheet for the device
used will inform you of its bus speed. The default bit rate is the standard 100KHz.

Proton24 Compiler. Development Suite.

 170

USART1 Declares for Hserin, Hserout, Hrsin and Hrsout.
Declare HRsout_Pin Port . Pin
Declares the port and pin used for USART1 transmission (TX). The location of the port and pin
is dictated by the device's PPS (Peripheral Pin Select) options. Note that this declare will not
alter any PPS (Peripheral Pin Select) SFRs.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare HRsin_Pin Port . Pin
Declares the port and pin used for USART1 reception (RX). The location of the port and pin is
dictated by the device's PPS (Peripheral Pin Select) options. Note that this declare will not alter
any PPS (Peripheral Pin Select) SFRs.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare Hserial_Baud Constant value
Sets the Baud rate that will be used to transmit or receive a byte serially. The baud rate is cal-
culated using the Xtal frequency declared in the program. The default baud rate if the Declare
is not included in the program listing is 9600 baud.

Declare Hserial_Parity Odd or Even
Enables/Disables parity on the serial port. For Hrsin, Hrsout, Hserin and Hserout. The default
serial data format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1
stop bit) or 7O1 (7data bits, odd parity, 1 stop bit) may be enabled using the Hserial_Parity
declare.

 Declare Hserial_Parity = Even ' Use if even parity desired
 Declare Hserial_Parity = Odd ' Use if odd parity desired

Declare Hserial_Clear On or Off
Clear the overflow error bit before commencing a read.

Declare Hrsout_Pace 0 to 65535 microseconds (us)
Implements a delay between characters transmitted by the Hrsout or HSerout command.

On occasion, the characters transmitted serially are in a stream that is too fast for the receiver
to catch, this results in missed characters. To alleviate this, a delay may be implemented be-
tween each individual character transmitted by Hrsout or HSerout.

If the Declare is not used in the program, then the default is no delay between characters.

Proton24 Compiler. Development Suite.

 171

USART2 Declares for use with Hrsin2, Hserin2, Hrsout2 and Hserout2.
Declare HRsout2_Pin Port . Pin
Declares the port and pin used for USART2 transmission (TX). The location of the port and pin
is dictated by the device's PPS (Peripheral Pin Select) options. Note that this declare will not
alter any PPS (Peripheral Pin Select) SFRs.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare HRsin2_Pin Port . Pin
Declares the port and pin used for USART2 reception (RX). The location of the port and pin is
dictated by the device's PPS (Peripheral Pin Select) options. Note that this declare will not alter
any PPS (Peripheral Pin Select) SFRs.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare Hserial2_Baud Constant value
Sets the Baud rate that will be used to transmit or receive a byte serially. The baud rate is cal-
culated using the Xtal frequency declared in the program. The default baud rate if the Declare
is not included in the program listing is 9600 baud.

Declare Hserial2_Parity Odd or Even
Enables/Disables parity on the serial port. For Hrsout2, Hrsin2, Hserout2 and Hserin2. The
default serial data format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even
parity, 1 stop bit) or 7O1 (7data bits, odd parity, 1 stop bit) may be enabled using the Hse-
rial2_Parity declare.

 Declare Hserial2_Parity = Even ' Use if even parity desired
 Declare Hserial2_Parity = Odd ' Use if odd parity desired

Declare Hserial2_Clear On or Off
Clear the overflow error bit before commencing a read.

 Declare Hserial2_Clear = On

Declare Hrsout2_Pace 0 to 65535 microseconds (us)
Implements a delay between characters transmitted by the Hrsout2 or HSerout2 command.

On occasion, the characters transmitted serially are in a stream that is too fast for the receiver
to catch, this results in missed characters. To alleviate this, a delay may be implemented be-
tween each individual character transmitted by Hrsout2 or HSerout2.

If the Declare is not used in the program, then the default is no delay between characters.

Proton24 Compiler. Development Suite.

 172

USART3 Declares for use with Hrsin3, Hserin3, Hrsout3 and Hserout3.
Declare HRsout3_Pin Port . Pin
Declares the port and pin used for USART3 transmission (TX). The location of the port and pin
is dictated by the device's PPS (Peripheral Pin Select) options. Note that this declare will not
alter any PPS (Peripheral Pin Select) SFRs.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare HRsin3_Pin Port . Pin
Declares the port and pin used for USART3 reception (RX). The location of the port and pin is
dictated by the device's PPS (Peripheral Pin Select) options. Note that this declare will not alter
any PPS (Peripheral Pin Select) SFRs.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare Hserial3_Baud Constant value
Sets the Baud rate that will be used to transmit or receive a byte serially. The baud rate is cal-
culated using the Xtal frequency declared in the program. The default baud rate if the Declare
is not included in the program listing is 9600 baud.

Declare Hserial3_Parity Odd or Even
Enables/Disables parity on the serial port. For Hrsout3, Hrsin3, Hserout3 and Hserin3. The
default serial data format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even
parity, 1 stop bit) or 7O1 (7data bits, odd parity, 1 stop bit) may be enabled using the Hse-
rial3_Parity declare.

 Declare Hserial3_Parity = Even ' Use if even parity desired
 Declare Hserial3_Parity = Odd ' Use if odd parity desired

Declare Hserial3_Clear On or Off
Clear the overflow error bit before commencing a read.

 Declare Hserial3_Clear = On

Declare Hrsout3_Pace 0 to 65535 microseconds (us)
Implements a delay between characters transmitted by the Hrsout3 or HSerout3 command.

On occasion, the characters transmitted serially are in a stream that is too fast for the receiver
to catch, this results in missed characters. To alleviate this, a delay may be implemented be-
tween each individual character transmitted by Hrsout3 or HSerout3.

If the Declare is not used in the program, then the default is no delay between characters.

Proton24 Compiler. Development Suite.

 173

USART4 Declares for use with Hrsin4, Hserin4, Hrsout4 and Hserout4.
Declare HRsout4_Pin Port . Pin
Declares the port and pin used for USART4 transmission (TX). The location of the port and pin
is dictated by the device's PPS (Peripheral Pin Select) options. Note that this declare will not
alter any PPS (Peripheral Pin Select) SFRs.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare HRsin4_Pin Port . Pin
Declares the port and pin used for USART4 reception (RX). The location of the port and pin is
dictated by the device's PPS (Peripheral Pin Select) options. Note that this declare will not alter
any PPS (Peripheral Pin Select) SFRs.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare Hserial4_Baud Constant value
Sets the Baud rate that will be used to transmit or receive a byte serially. The baud rate is cal-
culated using the Xtal frequency declared in the program. The default baud rate if the Declare
is not included in the program listing is 9600 baud.

Declare Hserial4_Parity Odd or Even
Enables/Disables parity on the serial port. For Hrsout4, Hrsin4, Hserout4 and Hserin4. The
default serial data format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even
parity, 1 stop bit) or 7O1 (7data bits, odd parity, 1 stop bit) may be enabled using the Hse-
rial4_Parity declare.

 Declare Hserial4_Parity = Even ' Use if even parity desired
 Declare Hserial4_Parity = Odd ' Use if odd parity desired

Declare Hserial3_Clear On or Off
Clear the overflow error bit before commencing a read.

 Declare Hserial3_Clear = On

Declare Hrsout4_Pace 0 to 65535 microseconds (us)
Implements a delay between characters transmitted by the Hrsout4 or HSerout4 command.

On occasion, the characters transmitted serially are in a stream that is too fast for the receiver
to catch, this results in missed characters. To alleviate this, a delay may be implemented be-
tween each individual character transmitted by Hrsout4 or HSerout4.

If the Declare is not used in the program, then the default is no delay between characters.

Hpwm Declares.
Some devices have alternate pins that may be used for Hpwm. The following Declares allow
the use of different pins: -

Declare CCP1_Pin Port.Pin ' Select Hpwm port and bit for CCP1 module (ch 1)
Declare CCP2_Pin Port.Pin ' Select Hpwm port and bit for CCP2 module (ch 2)
Declare CCP3_Pin Port.Pin ' Select Hpwm port and bit for CCP3 module (ch 3)
Declare CCP4_Pin Port.Pin ' Select Hpwm port and bit for CCP4 module (ch 4)
Declare CCP5_Pin Port.Pin ' Select Hpwm port and bit for CCP5 module (ch 5)

Proton24 Compiler. Development Suite.

 174

Alphanumeric (Hitachi HD44780) LCD Print Declares.
Declare LCD_DTPin Port . Pin
Assigns the Port and Pins that the LCD's DT lines will attach to.

The LCD may be connected to the microcontroller using either a 4-bit bus or an 8-bit bus. If an
8-bit bus is used, all 8 bits must be on one port. If a 4-bit bus is used, it must be connected to
either the bottom 4 or top 4 bits of one port. For example: -

 Declare LCD_DTPin PORTB.4 ' Use a 4-line interface on low byte of PORTB
 Declare LCD_DTPin PORTB.0 ' Use an 8-line interface on low byte of PORTB
 Declare LCD_DTPin PORTB.12' Use a 4-line interface on high byte of PORTB
 Declare LCD_DTPin PORTB.8 ' Use an 8-line interface on high byte of PORTB

In the above examples, PORTB is only a personal preference. The LCD's DT lines can be at-
tached to any valid port on the microcontroller.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_DataX_Pin Port . Pin
Assigns the individual Ports and Pins that the HD4470 LCD’s DT lines will attach to.

Unlike the above LCD_DTPin declares, the LCD’s data pins can also be attached to any se-
perate port and pin. For example:-

Declare LCD_Data0_Pin PORTA.0 ' Connect PORTA.0 to the LCD’s D0 line
Declare LCD_Data1_Pin PORTA.2 ' Connect PORTA.2 to the LCD’s D1 line
Declare LCD_Data2_Pin PORTA.4 ' Connect PORTA.4 to the LCD’s D2 line
Declare LCD_Data3_Pin PORTB.0 ' Connect PORTB.0 to the LCD’s D3 line
Declare LCD_Data4_Pin PORTB.1 ' Connect PORTB.1 to the LCD’s D4 line
Declare LCD_Data5_Pin PORTB.5 ' Connect PORTB.5 to the LCD’s D5 line
Declare LCD_Data6_Pin PORTC.0 ' Connect PORTC.0 to the LCD’s D6 line
Declare LCD_Data7_Pin PORTC.1 ' Connect PORTC.1 to the LCD’s D7 line

There are no default settings for these Declares and they must be used within the BASIC pro-
gram if required.

Declare LCD_ENPin Port . Pin
Assigns the Port and Pin that the LCD's EN line will attach to. This also assigns the graphic
LCD's EN pin, however, the default value remains the same as for the alphanumeric type, so
this will require changing.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_RSPin Port . Pin
Assigns the Port and Pins that the LCD's RS line will attach to. This also assigns the graphic
LCD's RS pin, however, the default value remains the same as for the alphanumeric type, so
this will require changing.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_Interface 4 or 8
Inform the compiler as to whether a 4-line or 8-line interface is required by the LCD.

There is no default setting for this Declare and it must be used within the BASIC program.

Proton24 Compiler. Development Suite.

 175

Declare LCD_Lines 1, 2, or 4
Inform the compiler as to how many lines the LCD has.

Alphanumeric HD4470 LCD's come in a range of sizes, the most popular being the 2 line by 16
character types. However, there are 4-line types as well. Simply place the number of lines that
the particular LCD has into the declare.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_CommandUS 1 to 65535
Time to wait (in microseconds) between commands sent to the LCD.

If the Declare is not used in the program, then the default delay is 2000us (2ms).

Declare LCD_DataUs 1 to 65535
Time to wait (in microseconds) between data sent to the LCD.

If the Declare is not used in the program, then the default delay is 50us.

Proton24 Compiler. Development Suite.

 176

Graphic LCD Declares.

Declare LCD_Type Alpha or Graphic or KS0108 or Toshiba or T6963 or Colour
Inform the compiler as to the type of LCD that the Print command will output to. If Graphic, or
KS0108 is chosen then any output by the Print command will be directed to a graphic LCD
based on the KS0108 chipset. The text Toshiba, or T6963 will direct the output to a graphic
LCD based on the Toshiba T6963 chipset. The text Colour will direct the output to an ILI9320
Colour Graphic LCD. The text Alpha, or if the Declare is not issued, will target the standard Hi-
tachi HD44780 alphanumeric LCD type

Targeting the graphic LCD will also enable commands such as Plot, UnPlot, LCDread,
LCDwrite, Pixel, Box, Circle and Line etc.

KS0108 Graphic LCD specific Declares.

Declare LCD_DTPort Port
Assign the port that will output the 8-bit data to the graphic LCD.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_RWPin Port . Pin
Assigns the Port and Pin that the graphic LCD's RW line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_ENPin Port . Pin
Assigns the Port and Pin that the graphic LCD's EN line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_RSPin Port . Pin
Assigns the Port and Pins that the graphic LCD's RS line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_CS1Pin Port . Pin
Assigns the Port and Pin that the graphic LCD's CS1 line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_CS2Pin Port . Pin
Assigns the Port and Pin that the graphic LCD's CS2 line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare GLCD_CS_Invert On - Off, 1 or 0
Some graphic LCD types have inverters on their CS lines. Which means that the LCD displays
left hand data on the right side, and vice-versa. The GLCD_CS_Invert Declare, adjusts the li-
brary LCD handling library subroutines to take this into account.

Proton24 Compiler. Development Suite.

 177

Declare GLCD_Strobe_Delay 0 to 16383 cycles.
If a noisy circuit layout is unavoidable when using a graphic LCD, then the above Declare may
be used. This will create a delay between the Enable line being strobed. This can ease random
data being produced on the LCD's screen.

If the Declare is not used in the program, then the cycles delay is determined by the oscillator
used.

Toshiba T6963C Graphic LCD specific Declares.

Declare LCD_DTPort Port
Assign the port that will output the 8-bit data to the graphic LCD.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_WRPin Port . Pin
Assigns the Port and Pin that the graphic LCD's WR line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_RDPin Port . Pin
Assigns the Port and Pin that the graphic LCD's RD line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_CEPin Port . Pin
Assigns the Port and Pin that the graphic LCD's CE line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_CDPin Port . Pin
Assigns the Port and Pin that the graphic LCD's CD line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_RSTPin Port . Pin
Assigns the Port and Pin that the graphic LCD's RST line will attach to.

The LCD’s RST (Reset) Declare is optional and if omitted from the BASIC code the compiler
will not manipulate it. However, if not used as part of the interface, you must set the LCD’s RST
pin high for normal operation.

Declare LCD_X_Res 0 to 255
LCD displays using the T6963 chipset come in varied screen sizes (resolutions). The compiler
must know how many horizontal pixels the display consists of before it can build its library sub-
routines.

There is no default setting for this Declare and it must be used within the BASIC program.

Proton24 Compiler. Development Suite.

 178

Declare LCD_Y_Res 0 to 255
LCD displays using the T6963 chipset come in varied screen sizes (resolutions). The compiler
must know how many vertical pixels the display consists of before it can build its library subrou-
tines.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_Font_Width 6 or 8
The Toshiba T6963 graphic LCDs have two internal font sizes, 6 pixels wide by eight high, or 8
pixels wide by 8 high. The particular font size is chosen by the LCD’s FS pin. Leaving the FS
pin floating or bringing it high will choose the 6 pixel font, while pulling the FS pin low will
choose the 8 pixel font. The compiler must know what size font is required so that it can calcu-
late screen and RAM boundaries.

Note that the compiler does not control the FS pin and it is down to the circuit layout whether or
not it is pulled high or low. There is no default setting for this Declare and it must be used
within the BASIC program.

Declare LCD_RAM_Size 1024 to 65535
Toshiba graphic LCDs contain internal RAM used for Text, Graphic or Character Generation.
The amount of RAM is usually dictated by the display’s resolution. The larger the display, the
more RAM is normally present. Standard displays with a resolution of 128x64 typically contain
4096 bytes of RAM, while larger types such as 240x64 or 190x128 typically contain 8192 bytes
or RAM. The display’s datasheet will inform you of the amount of RAM present.

If this Declare is not issued within the BASIC program, the default setting is 8192 bytes.

Declare LCD_Text_Pages 1 to n
As mentioned above, Toshiba graphic LCDs contain RAM that is set aside for text, graphics or
characters generation. In normal use, only one page of text is all that is required, however, the
compiler can re-arrange its library subroutines to allow several pages of text that is continuous.
The amount of pages obtainable is directly proportional to the RAM available within the LCD
itself. Larger displays require more RAM per page, therefore always limit the amount of pages
to only the amount actually required or unexpected results may be observed as text, graphic
and character generator RAM areas merge.

This Declare is purely optional and is usually not required. There is no default setting for this
Declare.

Declare LCD_Text_Home_Address 0 to n
The RAM within a Toshiba graphic LCD is split into three distinct uses, text, graphics and char-
acter generation. Each area of RAM must not overlap or corruption will appear on the display
as one uses the other’s assigned space. The compiler’s library subroutines calculate each area
of RAM based upon where the text RAM starts. Normally the text RAM starts at address 0,
however, there may be occasions when it needs to be set a little higher in RAM. The order of
RAM is; Text, Graphic, then Character Generation.

This Declare is purely optional and is usually not required. There is no default setting for this
Declare.

Proton24 Compiler. Development Suite.

 179

ILI9320 Colour Graphic LCD specific Declares.

Declare LCD_DTPort Port
Assign the port that will output the 8-bit data to the graphic LCD.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_WRPin Port . Pin
Assigns the Port and Pin that the graphic LCD's WR line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_RDPin Port . Pin
Assigns the Port and Pin that the graphic LCD's RD line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_CSPin Port . Pin
Assigns the Port and Pin that the graphic LCD's CS line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_RSPin Port . Pin
Assigns the Port and Pins that the graphic LCD's RS line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_RSTPin Port . Pin
Assigns the Port and Pin that the graphic LCD's RST line will attach to.

The LCD’s RST (Reset) Declare is optional and if omitted from the BASIC code the compiler
will not manipulate it. However, if not used as part of the interface, you must set the LCD’s RST
pin high for normal operation.

Proton24 Compiler. Development Suite.

 180

ADS7846 Touch Screen controller Declares.

Declare Touch_CSPin Port . Pin
Assigns the Port and Pin that will attach to the ADS7846 chip’s CS pin.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare Touch_CLKPin Port . Pin
Assigns the Port and Pin that will attach to the ADS7846 chip’s CLK pin.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare Touch_DINPin Port . Pin
Assigns the Port and Pin that will attach to the ADS7846 chip’s DIN pin.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare Touch_DOUTPin Port . Pin
Assigns the Port and Pin that will attach to the ADS7846 chip’s DOUT pin.

There is no default setting for this Declare and it must be used within the BASIC program.

Keypad Declare.
Declare Keypad_Port Port
Assigns the Port that the keypad is attached to.

Rsin - Rsout Declares.
Declare Rsout_Pin Port . Pin
Assigns the Port and Pin that will be used to output serial data from the Rsout command. This
may be any valid port on the microcontroller.

If the Declare is not used in the program, then the default Port and Pin is PORTB.0.

Declare Rsin_Pin Port . Pin
Assigns the Port and Pin that will be used to input serial data by the Rsin command. This may
be any valid port on the microcontroller.

If the Declare is not used in the program, then the default Port and Pin is PORTB.1.

Declare Rsout_Mode True or Inverted or 1, 0
Sets the serial mode for the data transmitted by Rsout. This may be inverted or true. Alterna-
tively, a value of 1 may be substituted to represent inverted, and 0 for true.

If the Declare is not used in the program, then the default mode is inverted.

Declare Rsin_Mode True or Inverted or 1, 0
Sets the serial mode for the data received by Rsin. This may be inverted or true. Alternatively,
a value of 1 may be substituted to represent inverted, and 0 for true.

If the Declare is not used in the program, then the default mode is inverted.

Proton24 Compiler. Development Suite.

 181

Declare Serial_Baud 0 to 65535 bps (baud)
Informs the Rsin and Rsout routines as to what baud rate to receive and transmit data.

Virtually any baud rate may be transmitted and received (within reason), but there are standard
bauds, namely: -

300, 600, 1200, 2400, 4800, 9600, and 19200 etc...

When using a 4MHz crystal, the highest baud rate that is reliably achievable is 9600. However,
an increase in the oscillator speed allows higher baud rates to be achieved, including 38400
baud and above.

If the Declare is not used in the program, then the default baud is 9600.

Declare Rsout_Pace 0 to 65535 microseconds (us)
Implements a delay between characters transmitted by the Rsout command.

On occasion, the characters transmitted serially are in a stream that is too fast for the receiver
to catch, this results in missed characters. To alleviate this, a delay may be implemented be-
tween each individual character transmitted by Rsout.

If the Declare is not used in the program, then the default is no delay between characters.

Declare Rsin_Timeout 0 to 65535 milliseconds (ms)
Sets the time, in ms, that Rsin will wait for a start bit to occur.

Rsin waits in a tight loop for the presence of a start bit. If no timeout parameter is issued, then it
will wait forever.

The Rsin command has the option of jumping out of the loop if no start bit is detected within the
time allocated by timeout.

If the Declare is not used in the program, then the default timeout value is 10000ms which is 10
seconds.

Proton24 Compiler. Development Suite.

 182

Serin - Serout Declare.
If communications are with existing software or hardware, its speed and mode will determine
the choice of baud rate and mode. In general, 7-bit/even-parity (7E) mode is used for text, and
8-bit/no-parity (8N) for byte-oriented data. Note: the most common mode is 8-bit/no-parity, even
when the data transmitted is just text. Most devices that use a 7-bit data mode do so in order to
take advantage of the parity feature. Parity can detect some communication errors, but to use it
you lose one data bit. This means that incoming data bytes transferred in 7E (even-parity)
mode can only represent values from 0 to 127, rather than the 0 to 255 of 8N (no-parity) mode.

The compiler's serial commands Serin and Serout have the option of still using a parity bit with
4 to 8 data bits. This is through the use of a Declare: -

With parity disabled (the default setting): -

 Declare Serial_Data 4 ' Set Serin and Serout data bits to 4
 Declare Serial_Data 5 ' Set Serin and Serout data bits to 5
 Declare Serial_Data 6 ' Set Serin and Serout data bits to 6
 Declare Serial_Data 7 ' Set Serin and Serout data bits to 7
 Declare Serial_Data 8 ' Set Serin and Serout data bits to 8 (default)

With parity enabled: -

 Declare Serial_Data 5 ' Set Serin and Serout data bits to 4
 Declare Serial_Data 6 ' Set Serin and Serout data bits to 5
 Declare Serial_Data 7 ' Set Serin and Serout data bits to 6
 Declare Serial_Data 8 ' Set Serin and Serout data bits to 7 (default)
 Declare Serial_Data 9 ' Set Serin and Serout data bits to 8

Serial_Data data bits may range from 4 bits to 8 (the default if no Declare is issued). Enabling
parity uses one of the number of bits specified.

Declaring Serial_Data as 9 allows 8 bits to be read and written along with a 9th parity bit.

Parity is a simple error-checking feature. When a serial sender is set for even parity (the mode
the compiler supports) it counts the number of 1s in an outgoing byte and uses the parity bit to
make that number even. For example, if it is sending the 7-bit value: %0011010, it sets the par-
ity bit to 1 in order to make an even number of 1s (four).

The receiver also counts the data bits to calculate what the parity bit should be. If it matches
the parity bit received, the serial receiver assumes that the data was received correctly. Of
course, this is not necessarily true, since two incorrectly received bits could make parity seem
correct when the data was wrong, or the parity bit itself could be bad when the rest of the data
was correct.

Many systems that work exclusively with text use 7-bit/ even-parity mode. For example, to re-
ceive one data byte through bit-0 of PORTA at 9600 baud, 7E, inverted:

Proton24 Compiler. Development Suite.

 183

Shin - Shout Declare.
Declare Shift_DelayUs 0 - 65535 microseconds (us)
Extend the active state of the shift clock.

The clock used by Shin and Shout runs at approximately 45KHz dependent on the oscillator
frequency. The active state is held for a minimum of 2 microseconds, again depending on the
oscillator. By placing this declare in the program, the active state of the clock is extended by an
additional number of microseconds up to 65535 (65.535 milliseconds) to slow down the clock
rate.

If the Declare is not used in the program, then the default is no clock delay.

Stack Declares.
Declare Stack_Size = 20 to n (in words)
The compiler sets the default size of the microcontroller’s stack to 60 words (120 bytes). This
can be increased or decreased as required, as long as it fits within the RAM available. The
compiler places a minimum limit of 20 for stack size. If the stack overflows or underflows, the
microcontroller will trigger an exception. The compiler’s command library routines make extren-
sive use of the stack for saving and restoring WREG SFRs, therefore, make sure the stack is
large enough to accommodate all the Gosub/Return commands, as well as temporary data
used.

When 64-bit floating point Double variables are being used in trigonometry routines, it is impor-
tant to increase the stack size because the library routines use the stack intensively as tempo-
rary storage. A stack size of 200 words will usually suffice. If the program resets intermittently,
the stack size is too small and the microcontroller is executing an over/under stack exception.

Declare Stack_Expand = 1 or 0 or On or Off
Whenever an interrupt handler is used within a BASIC program, it must context save and re-
store critical SFRs and variables that would otherwise get overwritten. It uses the microcontrol-
ler’s stack for temporary storage of the SFRs and variables, therefore the stack will increase
with every interrupt handler used within the program. If this behaviour is undesirable, the above
declare will disable it. However, the user must make sure that the stack is large enough to ac-
commodate the storage, otherwise an exception will be triggered by the microcontroller.

Proton24 Compiler. Development Suite.

 184

Oscillator Frequency Declare.
Declare Xtal = Frequency (in MHz).

Inform the compiler what frequency oscillator is being used. For example:

 Declare Xtal = 7.37

or

 Declare Xtal = 80

Some commands are very dependant on the oscillator frequency, Rsin, Rsout, DelayMs, and
DelayUs being just a few. In order for the compiler to adjust the correct timing for these com-
mands, it must know what frequency crystal is being used.

Note
The Xtal declare will not alter any fuse settings or SFRs (Special Function Registers) relating to
the oscillator setup. There is no default value if the Declare is not issued in a program, and it
should be considered as a mandatory addition to the code.

PIC24® and dsPIC33® devices have a multitude of oscillator options, therefore, they cannot all
be detailed in this manual. However, shown below are some examples that illustrate methods
of using an external crystal and the internal oscillator, both with and without the PLL multiplier.

Example 1
' PIC24F external 8MHz crystal operating at 32MHz using PLL
'
 Device = 24FJ64GA002
 Declare Xtal = 32

 CLKDIV = 0 ' CPU peripheral clock ratio set to 1:1
 OSCCON.Byte1 = %00010000 ' Enable 4 x PLL '
'
' Flash an LED connected to PORTA.0
'
 Do
 High PORTA.0
 DelayMS 500
 Low PORTA.0
 DelayMS 500
 Loop
'
' For external oscillator with PLL
'
 Config Config1 = JTAGEN_OFF, GCP_OFF, GWRP_OFF, BKBUG_OFF,_
 COE_OFF, ICS_PGx1, FWDTEN_OFF, WINDIS_OFF,_
 FWPSA_PR128, WDTPOST_PS256
 Config Config2 = IOL1WAY_OFF, IESO_OFF, FNOSC_PRIPLL,_
 FCKSM_CSDCMD,OSCIOFNC_OFF, POSCMOD_HS

Proton24 Compiler. Development Suite.

 185

Example 2
' PIC24F internal 8MHz oscillator operating at 32MHz using PLL
'
 Device = 24FJ64GA002
 Declare Xtal = 32

 CLKDIV = 0 ' CPU peripheral clock ratio set to 1:1
 OSCCON.Byte1 = %00010000 ' Enable 4 x PLL
'
' Flash an LED connected to PORTA.0
'
 While
 High PORTA.0
 DelayMS 500
 Low PORTA.0
 DelayMS 500
 Wend
'
' For internal 8MHz oscillator with PLL
' OSC pins operate as general purpose I/O
'
 Config Config1 = JTAGEN_OFF, GCP_OFF, BKBUG_OFF,_
 COE_OFF, ICS_PGx1, FWDTEN_OFF, WINDIS_OFF,_
 FWPSA_PR128, WDTPOST_PS256
 Config Config2 = IOL1WAY_OFF, IESO_OFF, FNOSC_PRIPLL,_
 FCKSM_CSECME, OSCIOFNC_OFF, POSCMOD_NONE

Example 3
' PIC24H internal 7.37MHz oscillator operating at 79.23MHz using PLL
'
 Device = 24HJ128GP502
 Declare Xtal = 79.23
'---
Main:
' Configure the Oscillator to operate the device at 79.23MHz
' Fosc = (7.37 * 43) / (2 * 2) = 79.23MHz (40 MIPS)
'
 PLL_Setup(43, 2, 2, $0300)
'
' Flash an LED connected to PORTA.0
'
 While
 High PORTA.0
 DelayMS 500
 Low PORTA.0
 DelayMS 500
 Wend
'
' For internal 7.37MHz oscillator with PLL
' OSC pins operate as general purpose I/O
'
 Config FBS = BWRP_WRPROTECT_OFF
 Config FSS = SWRP_WRPROTECT_OFF
 Config FGS = GWRP_OFF
 Config FOSCSEL = FNOSC_FRCPLL, IESO_OFF
 Config FOSC = POSCMD_NONE, OSCIOFNC_OFF, IOL1WAY_OFF, FCKSM_CSECME
 Config FWDT = WDTPOST_PS256, WINDIS_OFF, FWDTEN_OFF
 Config FPOR = FPWRT_PWR128, ALTI2C_OFF
 Config FICD = ICS_PGD1, JTAGEN_OFF

Proton24 Compiler. Development Suite.

 186

Example 4
' PIC24E internal 7.37MHz oscillator operating at 140.03MHz using PLL
'
 Device = 24EP128MC202
 Declare Xtal = 140.03
'---
Main:
' Configure the Oscillator to operate the device at 140.03MHz (70 MIPS)
' Fosc = (7.37 * 76) / (2 * 2) = 140.03MHz
'
 PLL_Setup(76, 2, 2, $0300)
'
' Flash an LED connected to PORTA.0
'
 While
 High PORTA.0
 DelayMS 500
 Low PORTA.0
 DelayMS 500
 Wend
'
' For internal 7.37MHz oscillator with PLL
' OSC pins operate as general purpose I/O
'
 Config FGS = GWRP_OFF
 Config FOSCSEL = FNOSC_FRCPLL, IESO_OFF, PWMLOCK_OFF
 Config FOSC = POSCMD_NONE, OSCIOFNC_ON, IOL1WAY_OFF, FCKSM_CSECME
 Config FWDT = WDTPOST_PS256, WINDIS_OFF, PLLKEN_ON, FWDTEN_OFF
 Config FPOR = ALTI2C1_ON, ALTI2C2_OFF
 Config FICD = ICS_PGD1, JTAGEN_OFF

Note.
The PLL_Setup helper macro can be found within the device’s “.def” file. It is required because
the dsPIC33®, PIC24E® and PIC24H® devices need an unlock sequence before writing to the
OSCCON SFR, unlike the PIC24F® devices, that can write directly to the OSCCON SFR.

Proton24 Compiler. Development Suite.

 187

DelayCs

Syntax
DelayCs Length

Overview
Delay execution for an amount of instruction cycles.

Parameters
Length can only be a constant with a value from 1 to 16383.

Example
 DelayCs 100 ' Delay for 100 cycles

Note.
DelayCs is oscillator independent.

The length of a given instruction cycle is determined by the oscillator frequency divided by 2.
The higher the oscillator, the smaller the cycle.

See also : DelayUs, DelayMs.

Proton24 Compiler. Development Suite.

 188

DelayMs

Syntax
DelayMs Length

Overview
Delay execution for length x milliseconds (ms). Delays may be up to 65535ms (65.535 sec-
onds) long.

Parameters
Length can be a constant, variable, or expression.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16

 Dim MyByte as Byte
 Dim MyWord as Word

 MyByte = 50
 MyWord= 1000
 DelayMs 100 ' Delay for 100ms
 DelayMs MyByte ' Delay for 50ms
 DelayMs MyWord ' Delay for 1000ms
 DelayMs MyWord + 10 ' Delay for 1010ms

Note.
DelayMs is oscillator independent, as long as you inform the compiler of the crystal frequency
to use, using the Xtal directive.

See also : DelayCs, DelayUs.

Proton24 Compiler. Development Suite.

 189

DelayUs

Syntax
DelayUs Length

Overview
Delay execution for length x microseconds (us). Delays may be up to 65535us (65.535 milli-
seconds) long.

Parameters
Length can be a constant, variable, or expression.

Example
 Device = 24FJ64GA002
 Declare Xtal = 16

 Dim MyByte as Byte
 Dim MyWord as Word

 MyByte = 50
 MyWord= 1000
 DelayUs 1 ' Delay for 1us
 DelayUs 100 ' Delay for 100us
 DelayUs MyByte ' Delay for 50us
 DelayUs MyWord ' Delay for 1000us
 DelayUs MyWord + 10 ' Delay for 1010us

Note.
DelayUs is oscillator independent, as long as you inform the compiler of the crystal frequency
to use, using the Xtal directive.

See also : DelayUs, DelayMs.

Proton24 Compiler. Development Suite.

 190

Device

Syntax
Device Device name

Overview
Inform the compiler which microcontroller is being used.

Parameters
Device name can be any value PIC24E, PIC24F, PIC24H, dsPIC33F or dsPIC33E type.

Example

Device = 24FJ64GA002 ' Produce code for a 24FJ64GA002 device

Device should be the first directive placed in the program.

For an up-to-date list of compatible devices refer to the compiler’s PPI folder.

Default location:

For Windows XP or Windows 7 32-bit:
C:\Program Files\ProtonIDE\PDS\Includes\PPI

For Windows 7 64-bit:
C:\Program Files (x86)\ProtonIDE\Includes\PPI

Proton24 Compiler. Development Suite.

 191

Dig

Syntax
Assignment Variable = Dig Value, Digit number

Overview
Returns the value of a decimal digit.

Parameters
Value is an unsigned constant, 8-bit, 16-bit, 32-bit variable or expression, from which the digit
number is to be extracted.
Digit number is a constant, variable, or expression, that represents the digit to extract from
value. (0 - 9 with 0 being the rightmost digit).

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim MyByte as Byte
 Dim MyResult as Byte

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 MyByte = 124
 MyResult = Dig MyByte, 1 ' Extract the second digit's value
 HrsoutLn Dec MyResult ' Display the value, which is 2

Proton24 Compiler. Development Suite.

 192

Dim

Syntax
Dim Variable as Size

Overview
All user-defined variables must be declared using the Dim statement.

Parameters
Variable can be any alphanumeric character or string.
Size is the physical size of the variable, it may be Bit, Byte, Word, Dword, SByte, SWord,
SDword, Float, Double, String, Code, or PSV

Example
' Declare different sized variables
 Dim MyByte as Byte ' Create an unsigned 8-bit Byte variable
 Dim MyWord as Word ' Create an unsigned 16-bit Word variable
 Dim MyDword as Dword ' Create an unsigned 32-bit Dword variable

 Dim sMyByte as SByte ' Create a signed 8-bit SByte variable
 Dim sMyWord as SWord ' Create a signed 16-bit SWord variable
 Dim sMyDword as SDword ' Create a signed 32-bit SDword variable

 Dim MyBit as Bit ' Create a 1-bit Bit variable
 Dim MyFloat as Float ' Create a 32-bit floating point variable
 Dim MyDouble as Double ' Create a 64-bit floating point variable

 Dim MyString as String * 20 ' Create a 20 character string variable
 Dim MyCode as Code = 1,2,3,4,5,6,7 ' Place 7 bytes in code memory
 Dim MyCode as PSV = 1,2,3,4,5,6,7 ' Place 7 bytes in PSV code memory

Notes.
Any RAM variable that is declared without the 'as' text after it, will assume an 8-bit Byte type.

Dim should be placed near the beginning of the program. Any references to variables not de-
clared or before they are declared may, in some cases, produce errors.

Variable names, as in the case or labels, may freely mix numeric content and underscores.

 Dim MyByte as Byte
or
 Dim My_Byte as Word
or
 Dim My_Bit as Bit

Variable names may start with an underscore, but must not start with a number. They can be
no more than 32 characters long. Any characters after this limit will cause a syntax error.

 Dim 2MyVar is not allowed.

Proton24 Compiler. Development Suite.

 193

Variable names are not case sensitive, which means that the variable: -

 Dim MYVar
Is the same as…
 Dim MYVar

Dim can also be used to create Alias’s to other variables: -

 Dim Var1 as Byte ' Create a Byte sized variable
 Dim Var_Bit as Var1.1 ' Var_Bit now represents Bit-1 of Var1

Alias’s, as in the case of constants, do not require any RAM space, because they point to a
variable, or part of a variable that has already been declared.

RAM space required.
Each type of variable requires differing amounts of RAM memory for its allocation. The list be-
low illustrates this.

 String Requires the specified length of characters + 1.
 Double Requires 8 bytes of RAM.
 Float Requires 4 bytes of RAM.
 Dword Requires 4 bytes of RAM.
 SDword Requires 4 bytes of RAM.
 Word Requires 2 bytes of RAM.
 SWord Requires 2 bytes of RAM.
 Byte Requires 1 byte of RAM.
 SByte Requires 1 byte of RAM.
 Bit Requires 1 byte of RAM for every 8 Bit variables declared.

Each type of variable may hold a different minimum and maximum value.

• String type variables can hold a maximum of 8192 characters.

• Bit type variables may hold a 0 or a 1. These are created 8 at a time, therefore declaring

a single Bit type variable in a program will not save RAM space, but it will save code
space, as Bit type variables produce the most efficient use of code for comparisons etc.

• Byte type variables may hold an unsigned value from 0 to 255, and are the usual work

horses of most programs. Code produced for Byte sized variables is very low compared
to signed or unsigned Word, DWord or Float types, and should be chosen if the pro-
gram requires faster, or more efficient operation.

• SByte type variables may hold a 2's complemented signed value from -128 to +127.

Code produced for SByte sized variables is very low compared to SWord, Float, or
SDword types, and should be chosen if the program requires faster, or more efficient
operation. However, code produced is usually larger for signed variables than unsigned
types.

• Word type variables may hold an unsigned value from 0 to 65535, which is usually large

enough for most applications. It still uses more memory than an 8-bit byte variable, but
not nearly as much as a Dword or SDword type.

Proton24 Compiler. Development Suite.

 194

• SWord type variables may hold a 2's complemented signed value from -32768 to

+32767, which is usually large enough for most applications. SWord type variables will
use more code space for expressions and comparisons, therefore, only use signed vari-
ables when required.

• Dword type variables may hold an unsigned value from 0 to 4294967295 making this

the largest of the variable family types. This comes at a price however, as Dword calcu-
lations and comparisons will use more code space within the microcontroller Use this
type of variable sparingly, and only when necessary.

• SDword type variables may hold a 2's complemented signed value from -2147483648 to

+2147483647, also making this the largest of the variable family types. This comes at a
price however, as SDword expressions and comparisons will use more code space than
a regular Dword type. Use this type of variable sparingly, and only when necessary.

• Float type variables may theoretically hold a value from -1e37 to +1e38, but because of

the 32-bit architecture of the compiler, a maximum and minimum value should be
thought of as -2147483646.999 to +2147483646.999 making this the most versatile of
the variable family types. However, more so than Dword types, this comes at a price as
floating point expressions and comparisons will use more code space within the micro-
controller. Use this type of variable sparingly, and only when strictly necessary. Smaller
floating point values usually offer more accuracy.

• Double type variables may hold a value larger than Float types, and with some extra

accuracy, but because of the 32-bit architecture of the compiler, a maximum and mini-
mum value should be thought of as -2147483646.999 to +2147483646.999 making this
one of the most versatile of the variable family types. However, more so than Dword and
Float types, this comes at a price because 64-bit floating point expressions and com-
parisons will use more code space within the microcontroller. Use this type of variable
sparingly, and only when strictly necessary. Smaller floating point values usually offer
more accuracy.

There are modifiers that may also be used with variables. These are HighByte, LowByte,
Byte0, Byte1, Byte2, Byte3, Word0, Word1, HighSByte, LowSByte, SByte0, SByte1,
SByte2, SByte3, SWord0, and SWord1,

Word0, Word1, Byte2, Byte3, SWord0, SWord1, SByte2, and SByte3 may only be used in
conjunction with 32-bit Dword or SDword type variables.

HighByte and Byte1 are one and the same thing, when used with a Word or SWord type vari-
able, they refer to the unsigned High byte of a Word or SWord type variable: -

 Dim MyWord as Word ' Create an unsigned Word variable
 Dim MyWord_Hi as MyWord.HighByte
' MyWord_Hi now represents the unsigned high byte of variable MyWord

Variable MyWord_Hi is now accessed as a Byte sized type, but any reference to it actually al-
ters the high byte of MyWord.

Proton24 Compiler. Development Suite.

 195

HighSByte and SByte1 are one and the same thing, when used with a Word or SWord type
variable, they refer to the signed High byte of a Word or SWord type variable: -

 Dim MyWord as SWord ' Create a signed Word variable
 Dim MyWord_Hi as MyWord.SByte1
' MyWord_Hi now represents the signed high byte of variable MyWord

Variable MyWord_Hi is now accessed as an SByte sized type, but any reference to it actually
alters the high byte of MyWord.

However, if Byte1 is used in conjunction with a Dword type variable, it will extract the second
byte. HighByte will still extract the high byte of the variable, as will Byte3. If SByte1 is used in
conjunction with an SDword type variable, it will extract the signed second byte. HighSByte
will still extract the signed high byte of the variable, as will SByte3.

The same is true of LowByte, Byte0, LowSByte and SByte0, but they refer to the unsigned or
signed Low Byte of a Word or SWord type variable: -

 Dim MyWord as Word ' Create an unsigned Word variable
 Dim MyWord_Lo as MyWord.LowByte
' MyWord_Lo now represents the low byte of variable MyWord

Variable MyWord_Lo is now accessed as a Byte sized type, but any reference to it actually al-
ters the low byte of MyWord.

The modifier Byte2 will extract the 3rd unsigned byte from a 32-bit Dword or SDword type
variable as an alias. Likewise Byte3 will extract the unsigned high byte of a 32-bit variable.

 Dim Dwd as Dword ' Create a 32-bit unsigned variable named Dwd
 Dim Part1 as Dwd.Byte0 ' Alias unsigned Part1 to the low byte of Dwd
 Dim Part2 as Dwd.Byte1 ' Alias unsigned Part2 to the 2nd byte of Dwd
 Dim Part3 as Dwd.Byte2 ' Alias unsigned Part3 to the 3rd byte of Dwd
 Dim Part4 as Dwd.Byte3 ' Alias unsigned Part3 to the high (4th) byte of Dwd

The modifier SByte2 will extract the 3rd signed byte from a 32-bit Dword or SDword type vari-
able as an alias. Likewise SByte3 will extract the signed high byte of a 32-bit variable.

 Dim sDwd as SDword ' Create a 32-bit signed variable named sDwd
 Dim sPart1 as sDwd.SByte0 ' Alias signed Part1 to the low byte of sDwd
 Dim sPart2 as sDwd.SByte1 ' Alias signed Part2 to the 2nd byte of sDwd
 Dim sPart3 as sDwd.SByte2 ' Alias signed Part3 to the 3rd byte of sDwd
 Dim sPart4 as sDwd.SByte3 ' Alias signed Part3 to the 4th byte of sDwd

The Word0 and Word1 modifiers extract the unsigned low word and high word of a Dword or
SDword type variable, and is used the same as the Byten modifiers.

 Dim Dwd as Dword ' Create a 32-bit unsigned variable named Dwd
 Dim Part1 as Dwd.Word0 ' Alias unsigned Part1 to the low word of Dwd
 Dim Part2 as Dwd.Word1 ' Alias unsigned Part2 to the high word of Dwd

Proton24 Compiler. Development Suite.

 196

The SWord0 and SWord1 modifiers extract the signed low word and high word of a Dword or
SDword type variable, and is used the same as the SByten modifiers.

 Dim sDwd as SDword ' Create a 32-bit signed variable named sDwd
 Dim sPart1 as sDwd.SWord0 ' Alias Part1 to the low word of sDwd
 Dim sPart2 as sDwd.SWord1 ' Alias Part2 to the high word of sDwd

Creating Code Memory Tables using Dim
There are two special cases of the Dim directive. These are:

Dim MyCode As Code

and

Dim MyCode As PSV

Both will create a data table in the device's code memory, however, the PSV directive will en-
sure that the AddressOf function returns the PSV address of the table, instead of its actual
code memory address. This used mainly for DSP operations.

The data produced by the Code or PSV directives follows the same casting rules as the Cdata
directive, in that the table's data can be given a size that each element will occupy.

Dim MyCode as Code = As Word 1, 2, 3, 4, 5

or

Dim MyCode as PSV = As Dword 100, 200, 300, 400

Note.
A code or PSV data table will not be included into a program if it is not used somewhere within
the program.

Creating variables in Y RAM
dsPIC33® devices have an extra area of RAM dedicated to DSP operations. It resides at the top
of the X RAM area and is named Y RAM. All DSP operations involving the accumulators must
use Y RAM, otherwise the microcontroller will create an exception.

Adding the text YRAM at the end of a variable's declaration will cause it to be created in the Y
RAM section:

Dim MyArray[10] As Word YRAM = 1, 2, 3, 4, 5, 6, 7

Each dsPIC33® family has differing amounts of YRAM, so the compiler will produce an error
message if the limit is exceeded.

Proton24 Compiler. Development Suite.

 197

Creating variables in DMA RAM
Some PIC24® and dsPIC33® devices have an extra area of RAM dedicated to DMA (Direct
Memory Access) operations. It resides at the top of the X RAM area, above any Y RAM, and is
named DMA RAM. All DMA operations must use DMA RAM, otherwise the microcontroller will
create an exception.

Adding the text DM at the end of a variable's declaration will cause it to be created in the DMA
RAM section:

Dim MyArray[10] As Word DMA = 1, 2, 3, 4, 5, 6, 7

Each device has differing amounts of DMA RAM, if any, so the compiler will produce an error
message if the limit is exceeded.

Notes.
The final RAM usage will also encompass the microcontroller’s stack size, therefore, even if the
BASIC program only declares 4 byte variables, the final RAM count will be 84. 80 bytes for the
default stack size and 4 bytes for variable usage. If handled interrupts are used, the stack size
will increase due to context saving and restoring requirements.

RAM locations for variables is allocated automatically within the microcontroller because the
PIC24® and dsPIC33® range of devices have specific requirements concerning RAM address-
ing. Which are:

 16-bit variables must be located on a 16-bit RAM address boundary.
 32-bit and 64-bit variables must be placed on a 16-bit address boundary, but should be

placed on a 32-bit address, if possible, for more efficiency with some mnemonics.
 8-bit variables can be located on an 8-bit,16-bit or 32-bit RAM address boundary.

Therefore, the order of variable placements is:

 The microcontroller's 16-bit stack is located before all variables are placed.
 The compiler's 16-bit system variables are placed.
 Word variables are placed.
 Dword variables are placed.
 Float variables are placed.
 Double variables are placed.
 Byte variables are placed.
 Word Arrays are placed.
 Dword Arrays are placed.
 Float Arrays are placed.
 Byte Arrays are placed.
 String variables are placed.

The logic behind the variable placements is because of the microcontroller’s near and far RAM.

Proton24 Compiler. Development Suite.

 198

The first 8192 bytes of RAM are considered "near" RAM, while space above that is considered
"far" RAM. By default, the compiler sets all user variables to near RAM. However, when near
RAM space is full, the compiler will place variables in far RAM (above 8192).

The special significance of near versus far to the compiler is that near RAM accesses are en-
coded in only one mnemonic using direct addressing, while accesses to variables in far RAM
require two to three mnemonics using indirect addressing.

Standard variables are used more commonly within a BASIC program, therefore should reside
in near RAM for efficiency. Arrays and Strings are generally accessed indirectly anyway, there-
fore, it is of little consequence if they reside in near or far RAM.

See Also : Aliases, Declaring Arrays, Floating Point Math, Symbol,
 Creating and using Strings .

Proton24 Compiler. Development Suite.

 199

Do...Loop

Syntax
Do
 Instructions
Loop

or

Do

Instructions
Loop Until Condition

or

Do

Instructions
Loop While Condition

Overview
Execute a block of instructions until a condition is true, or while a condition is false, or create an
infinite loop.

Example 1
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim MyWord as Word
 MyWord = 1
 Do ' Create a loop
 Print Dec MyWord, " "
 DelayMs 200
 Inc MyWord
 Loop Until MyWord > 10 ' Loop until MyWord is greater than 10

Example 2
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim MyWord as Word
 MyWord = 1
 Do ' Create a loop
 Print Dec MyWord, " "
 DelayMs 200
 Inc MyWord
 Loop While MyWord < 11 ' Loop while MyWord is less than 11

Proton24 Compiler. Development Suite.

 200

Example 3
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim MyWord as Word
 MyWord = 1
 Do ' Create a loop
 Print Dec MyWord, " "
 DelayMs 200
 Inc MyWord
 Loop ' Loop forever

Notes.
Do-Loop differs from the While-Wend type in that, the Do loop will carry out the instructions
within the loop at least once like a Repeat-Until type, then continuously until the condition is
true, but the While loop only carries out the instructions if the condition is true.

Do-Loop is an ideal replacement to a For-Next loop, and can actually take less code space,
thus performing the loop faster.

The above example 2 and example 3 show the equivalent to the For-Next loop: -

 For MyWord = 1 to 10 : Next

See also : While...Wend, For...Next...Step.

Proton24 Compiler. Development Suite.

 201

DTMFout

Syntax
DTMFout Pin, { OnTime }, { OffTime, } [Tone {, Tone…}]

Overview
Produce a DTMF Touch Tone sequence on Pin.

Parameters
Pin is a Port.Bit constant that specifies the I/O pin to use. This pin will be set to output during
generation of tones and set to input after the command is finished.
OnTime is an optional variable, constant, or expression (0 - 65535) specifying the duration, in
ms, of the tone. If the OnTime parameter is not used, then the default time is 200ms
OffTime is an optional variable, constant, or expression (0 - 65535) specifying the length of si-
lent delay, in ms, after a tone (or between tones, if multiple tones are specified). If the OffTime
parameter is not used, then the default time is 50ms
Tone may be a variable, constant, or expression (0 - 15) specifying the DTMF tone to generate.
Tones 0 through 11 correspond to the standard layout of the telephone keypad, while 12
through 15 are the fourth-column tones used by phone test equipment and in some radio appli-
cations.

Example

DTMFout PORTA.0, [7, 6, 9, 8, 2, 0] ' Call a number.

If the microcontroller was connected to the phone line correctly, the above command would dial
749990. If you wanted to slow down the dialling in order to break through a noisy phone line or
radio link, you could use the optional OnTime and OffTime values: -

'Set the OnTime to 500ms and OffTime to 100ms

DTMFout PORTA.0, 500, 100, [7, 6, 9, 8, 2, 0] ' Call number slowly.

Notes. DTMF tones are used to dial a telephone, or re-
motely control pieces of radio equipment. The microcon-
troller can generate these tones digitally using the
DTMFout command. However, to achieve the best quality
tones, a higher crystal frequency is required. A 4MHz
type will work but the quality of the sound produced will
suffer. The circuits illustrate how to connect a speaker or
audio amplifier to hear the tones produced.

The microcontroller is a digital device, however, DTMF
tones are analogue waveforms, consisting of a mixture of
two sine waves at different audio frequencies. So how
can a digital device generate an analogue output? The
microcontroller creates and mixes two sine waves mathematically, then uses the resulting
stream of numbers to control the duty cycle of an extremely fast pulse-width modulation (PWM)
routine. Therefore, what’s actually being produced from the I/O pin is a rapid stream of pulses.
The purpose of the filtering arrangements illustrated above is to smooth out the high-frequency
PWM, leaving behind only the lower frequency audio. You should keep this in mind if you wish
to interface the microcontroller's DTMF output to radios and other equipment that could be ad-
versely affected by the presence of high-frequency noise on the input. Make sure to filter the
DTMF output scrupulously. The circuits above are only a reference; you may want to use an
active low-pass filter with a cut-off frequency of approximately 2KHz.

C2
0.1uF

R2
1k

To Audio
Amplifier

R1
1k

C1
0.1uF

From I/O pin

From I/O pin

Speaker
C1

10uF

C2
10uF

Proton24 Compiler. Development Suite.

 202

Edata

Syntax
Edata Constant1 { ,...Constantn etc }

Overview
Places constants or strings directly into the on-board eeprom memory of compatible devices.

Parameters
Constant1,Constantn are values that will be stored in the on-board eeprom. When using an
Edata statement, all the values specified will be placed in the eeprom starting at location 0. The
Edata statement does not allow you to specify an eeprom address other than the beginning lo-
cation at 0. To specify a location to write or read data from the eeprom other than 0 refer to the
Eread, Ewrite commands.

Example
' Stores the values 1000,20,255,15, and the ASCII values for
' H','e','l','l','o' in the eeprom starting at memory position 0.

 Edata 1000, 20, $FF, %00001111, "Hello"

Notes.
16-bit, 32-bit and floating point values may also be placed into eeprom memory. These are
placed LSB first (Lowest Significant Byte). For example, if 1000 is placed into an Edata state-
ment, then the order is: -

 Edata 1000

In eeprom it looks like 232, 03

Alias's to constants may also be used in an Edata statement: -

 Symbol Alias = 200

 Edata Alias, 120, 254, "Hello World"

Addressing an Edata table.
Eeprom data starts at address 0 and works up towards the maximum amount that the micro-
controller will allow. However, it is rarely the case that the information stored in eeprom memory
is one continuous piece of data. Eeprom memory is normally used for storage of several values
or strings of text, so a method of accessing each piece of data is essential. Consider the follow-
ing piece of code: -

 Edata "Hello"
 Edata "World"

Now we know that eeprom memory starts at 0, so the text "Hello" must be located at address 0,
and we also know that the text "Hello" is built from 5 characters with each character occupying
a byte of eeprom memory, so the text "World" must start at address 5 and also contains 5 char-
acters, so the next available piece of eeprom memory is located at address 10. To access the
two separate text strings we would need to keep a record of the start and end address's of each
character placed in the tables.

Proton24 Compiler. Development Suite.

 203

Counting the amount of eeprom memory used by each piece of data is acceptable if only a few
Edata tables are used in the program, but it can become tedious if multiple values and strings
are needing to be stored, and can lead to program glitches if the count is wrong.

Placing an identifying name before the Edata table will allow the compiler to do the byte count-
ing for you. The compiler will store the eeprom address associated with the table in the identify-
ing name as a constant value. For example: -

 Hello_Text Edata "Hello"
 World_Text Edata "World"

The name Hello_Text is now recognised as a constant with the value of 0, referring to address
0 that the text string "Hello" starts at. The World_Text is a constant holding the value 5, which
refers to the address that the text string "World" starts at.

Note that the identifying text must be located on the same line as the Edata directive or a syn-
tax error will be produced. It must also not contain a postfix colon as does a line label or it will
be treat as a line label. Think of it as an alias name to a constant.

Any Edata directives must be placed at the head of the BASIC program as is done with Sym-
bols, so that the name is recognised by the rest of the program as it is parsed. There is no need
to jump over Edata directives because they do not occupy code memory, but reside in a sepa-
rate part of memory.

The example program below illustrates the use of eeprom addressing.

' Display two text strings held in eeprom memory

 Device = 24F08KL301
 Declare Xtal = 16

Dim Char as Byte ' Holds the character read from eeprom
Dim Charpos as Byte ' Holds the address within eeprom memory

' Create a string of text in eeprom memory. null terminated
Hello Edata "Hello ",0
' Create another string of text in eeprom memory. null terminated
World Edata "World",0

DelayMs 100 ' Wait for things to stabilise
 Cls ' Clear the LCD
 Charpos = Hello ' Point Charpos to the start of text "Hello"
 Gosub DisplayText ' Display the text "Hello"
 Charpos = World ' Point Charpos to the start of text "World"
 Gosub DisplayText ' Display the text "World"
 Stop ' We're all done

' Subroutine to read and display the text held at the address in Charpos
DisplayText:
 While ' Create an infinite loop
 Char = Eread Charpos ' Read the eeprom data
 If Char = 0 Then Break ' Exit when null found
 Print Char ' Display the character
 Inc Charpos ' Move up to the next address
 Wend ' Close the loop
 Return ' Exit the subroutine

Proton24 Compiler. Development Suite.

 204

Formatting an Edata table.
Sometimes it is necessary to create a data table with a known format for its values. For exam-
ple all values will occupy 4 bytes of data space even though the value itself would only occupy
1 or 2 bytes.

 Edata 100000, 10000, 1000, 100, 10, 1

The above line of code would produce an uneven data space usage, as each value requires a
different amount of data space to hold the values. 100000 would require 4 bytes of eeprom
space, 10000 and 1000 would require 2 bytes, but 100, 10, and 1 would only require 1 byte.

Reading these values using Eread would cause problems because there is no way of knowing
the amount of bytes to read in order to increment to the next valid value.

The answer is to use formatters to ensure that a value occupies a predetermined amount of
bytes.

These are: -

 Byte
 Word
 Dword
 Float

Placing one of these formatters at the beginning of the table will force a given length.

Edata as Dword 100000, 10000, 1000, 100, 10, 1

Byte will force the value to occupy one byte of eeprom space, regardless of its value. Any val-
ues above 255 will be truncated to the least significant byte.

Word will force the value to occupy 2 bytes of eeprom space, regardless of its value. Any val-
ues above 65535 will be truncated to the two least significant bytes. Any value below 255 will
be padded to bring the memory count to 2 bytes.

Dword will force the value to occupy 4 bytes of eeprom space, regardless of its value. Any
value below 65535 will be padded to bring the memory count to 4 bytes. The line of code
shown above uses the Dword formatter to ensure all the values in the Edata table occupy 4
bytes of eeprom space.

Float will force a value to its floating point equivalent, which always takes up 4 bytes of eeprom
space.

Proton24 Compiler. Development Suite.

 205

The example below illustrates the formatters in use.

' Convert a Dword value into a string array
' Using only BASIC commands
' Similar principle to the Str$ command

 Device = 24F08KL301
 Declare Xtal = 16

 Dim P10 as Dword ' Power of 10 variable
 Dim BCount as Byte
 Dim Index as Byte

 Dim Value as Dword ' Value to convert
 Dim String1[11] as Byte ' Holds the converted value
 Dim Pointer as Byte ' Pointer within the Byte array

 DelayMs 100 ' Wait for things to stabilise
 Cls ' Clear the LCD
 Clear ' Clear all RAM before we start
 Value = 1234576 ' Value to convert
 Gosub DwordToStr ' Convert Value to string
 Print Str String1 ' Display the result
 Stop
'-------------------------
' Convert a Dword value into a string array
' Value to convert is placed in 'Value'
' Byte array 'String1' is built up with the ASCII equivalent

DwordToStr:
 Pointer = 0
 Index = 0
 Repeat
 P10 = Eread Index * 4
 BCount = 0

 While Value >= P10
 Value = Value - P10
 Inc BCount
 Wend
 If BCount <> 0 Then
 String1[Pointer] = BCount + "0"
 Inc Pointer
 EndIf
 Inc Index
 Until Index > 8
 String1[Pointer] = Value + "0"
 Inc Pointer
 String1[Pointer] = 0 ' Add the null to terminate the string
 Return

' Edata table is formatted for all 32 bit values.
' Which means each value will require 4 bytes of eeprom space
Edata as Dword 1000000000, 100000000, 10000000, 1000000,100000,_

10000, 1000, 100, 10

Proton24 Compiler. Development Suite.

 206

Label names as pointers in an Edata table.
If a label's name is used in the list of values in an Edata table, the labels address will be used.
This is useful for accessing other tables of data using their address from a lookup table. See
example below.

' Display text from two code memory tables
' Based on their address located in a separate table
'
 Device = 24F08KL301
 Declare Xtal = 16
'
' Table of address's located in eeprom memory
'

Edata as Word String1, String2

Dim DataByte as Byte
Dim String1 as Code = "Hello",0
Dim String2 as Code = "World",0

WREG10 = Eread 0 ' Locate the address of the first string
While ' Create an infinite loop

DataByte = cPtr8(WREG10++) ' Read each character from the code string
If DataByte = 0 Then Break ' Exit if null found
Hrsout DataByte ' Display the character

Wend ' Close the loop
Hrsout 13

WREG10 = Eread 2 ' Locate the address of the second string
While ' Create an infinite loop

DataByte = cPtr8(WREG10++) ' Read each character from the code string
If DataByte = 0 Then Break ' Exit if null found
Hrsout DataByte ' Display the character

Wend ' Close the loop
Hrsout 13

See also : Eread, Ewrite.

Proton24 Compiler. Development Suite.

 207

End

Syntax
End

Overview
The End statement creates an infinite loop.

Notes.
End stops the microcontroller processing by placing it into a continuous loop. The port pins re-
main the same.

See also : Stop.

Proton24 Compiler. Development Suite.

 208

Eread

Syntax
Assignment Variable = Eread Address

Overview
Read information from the on-board eeprom available on some devices.

Parameters
Assignment Variable is a user defined variable.
Address is a constant, variable, or expression, that contains the address of interest within
eeprom memory.

Example
 Device = 24F08KL301
 Declare Xtal = 16

 Dim MyByte As Byte
 Dim MyWord As Word
 Dim MyDword As Dword

 Edata 10, 354, 123456789 ' Place some data into the eeprom
 MyByte = Eread 0 ' Read the 8-bit value from address 0
 MyWord = Eread 1 ' Read the 16-bit value from address 1
 MyDword = Eread 3 ' Read the 32-bit value from address 3

Notes.
If a Float, or Dword type variable is used as the assignment variable, then 4-bytes will be read
from the eeprom. Similarly, if a Word type variable is used as the assignment variable, then a
16-bit value (2-bytes)will be read from eeprom, and if a Byte type variable is used, then 8-bits
will be read. To read an 8-bit value while using a Word sized variable, use the LowByte modi-
fier: -

 MyWord.LowByte = Eread 0 ' Read an 8-bit value
 MyWord.HighByte = 0 ' Clear the high byte of MyWord

If a 16-bit (Word) size value is read from the eeprom, the address must be incremented by two
for the next read. Also, if a Float or Dword type variable is read, then the address must be in-
cremented by 4.

Eeprom memory is non-volatile, and is an excellent place for storage of long-term information,
or tables of values.

Reading data with the Eread command is almost instantaneous, but writing data to the eeprom
can take up to 5ms per byte.

See also : Edata, Ewrite

Proton24 Compiler. Development Suite.

 209

Ewrite

Syntax
Ewrite Address, [Variable {, Variable…etc }]

Overview
Write information to the on-board eeprom available on some devices.

Parameters
Address is a constant, variable, or expression, that contains the address of interest within
eeprom memory.
Variable is a user defined variable.

Example
 Device = 24F08KL301
 Declare Xtal = 16

 Dim MyByte as Byte
 Dim MyWord as Word
 Dim Address as Byte
 MyByte = 200
 MyWord = 2456
 Address = 0 ' Point to address 0 within the eeprom
 Ewrite Address, [MyWord, MyByte] ' Write a 16-bit then an 8-bit value

Notes.
If a Dword type variable is used, then a 32-bit value (4-bytes) will be written to the eeprom.
Similarly, if a Word type variable is used, then a 16-bit value (2-bytes) will be written to eeprom,
and if a Byte type variable is used, then 8-bits will be written. To write an 8-bit value while using
a Word sized variable, use the LowByte modifier: -

 Ewrite Address, [MyWord.LowByte, MyByte]

If a 16-bit (Word) size value is written to the eeprom, the address must be incremented by two
before the next write: -

 For Address = 0 to 64 Step 2
 Ewrite Address, [MyWord]
 Next

Eeprom memory is non-volatile, and is an excellent place for storage of long-term information,
or tables of values.

Writing data with the Ewrite command can take up to 5ms per byte, but reading data from the
eeprom is almost instantaneous,.

See also : Edata, Eread

Proton24 Compiler. Development Suite.

 210

For...Next...Step

Syntax
For Variable = Startcount to Endcount [Step { Stepval }]
{code body}
Next

Overview
The For…Next loop is used to execute a statement, or series of statements a predetermined
amount of times.

Parameters
Variable refers to an index variable used for the sake of the loop. This index variable can itself
be used in the code body but beware of altering its value within the loop as this can cause
many problems.
Startcount is the start number of the loop, which will initially be assigned to the variable. This
does not have to be an actual number - it could be the contents of another variable.
Endcount is the number on which the loop will finish. This does not have to be an actual num-
ber, it could be the contents of another variable, or an expression.
Stepval is an optional constant or variable by which the variable increases or decreases with
each trip through the For-Next loop. If Startcount is larger than Endcount, then a minus sign
must precede Stepval.

Example 1
' Display in decimal, all the values of MyWord within an upward loop
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim MyWord as Word

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 For MyWord = 0 to 2000 Step 2 ' Perform an upward loop
 Hrsout Dec MyWord, 13 ' Display the value of MyWord
 Next ' Close the loop

Example 2
' Display in decimal, all the values of MyWord within a downward loop
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim MyWord as Word

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 For MyWord = 2000 to 0 Step -2 ' Perform a downward loop
 Hrsout Dec MyWord, 13 ' Display the value of MyWord
 Next ' Close the loop

Proton24 Compiler. Development Suite.

 211

Example 3
' Display in decimal, all the values of MyDword within a downward loop
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim MyDword as Dword

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 For MyDword = 200000 to 0 Step -200 ' Perform a downward loop
 Hrsout Dec MyDword, 13 ' Display the value of MyDword
 Next ' Close the loop

Example 4
' Display all of MyWord1 using expressions as parts of the For-Next
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim MyWord1 as Word
 Dim MyWord2 as Word

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 MyWord2 = 1000

 For MyWord1= MyWord2 + 10 to MyWord2 + 1000 ' Perform a loop
 Hrsout Dec MyWord1, 13 ' Display the value of MyWord1
 Next ' Close the loop

Notes.
It may have been noticed from the above examples, that no variable is present after the Next
command. A variable name after Next is purely optional.

For-Next loops may be nested as deeply as the code memory on the microcontroller will allow.
To break out of a loop you may use the GoTo command without any ill effects, which is exactly
what the Break command does: -

 For MyByte = 0 to 20 ' Create a loop of 21
 If MyByte = 10 Then GoTo BreakOut ' Break out of loop when MyByte is 10
 Next ' Close the loop

BreakOut:

See also : While...Wend, Repeat...Until.

Proton24 Compiler. Development Suite.

 212

Freqout

Syntax
Freqout Pin, Period, Freq1 {, Freq2}

Overview
Generate one or two sine-wave tones, of differing or the same frequencies, for a specified pe-
riod.

Parameters
Pin is a Port-Bit combination that specifies which I/O pin to use.
Period may be a variable, constant, or expression (0 - 65535) specifying the amount of time to
generate the tone(s).
Freq1 may be a variable, constant, or expression (0 - 32767) specifying frequency of the first
tone.
Freq2 may be a variable, constant, or expression (0 - 32767) specifying frequency of the sec-
ond tone. When specified, two frequencies will be mixed together on the same I/O pin.

Example
' Generate a 2500Hz (2.5KHz) tone for 1 second (1000 ms) on bit 0 of PORTA.
 Freqout PORTA.0, 1000, 2500

' Play two tones at once for 1000ms. One at 2.5KHz, the other at 3KHz.
 Freqout PORTA.0, 1000, 2500, 30000

Notes.
Freqout generates one or two sine waves using a pulse-width modulation algorithm. Freqout
will work with a 4MHz crystal, however, it is best used with higher frequency crystals, and oper-
ates accurately with a 20MHz or 40MHz crystal. The raw output from Freqout requires filtering,
to eliminate most of the switching noise. The circuits shown below will filter the signal in order to
play the tones through a speaker or audio amplifier.

The two circuits shown above, work by filtering out the high-frequency PWM used to generate
the sine waves. Freqout works over a very wide range of frequencies (0 to 32767KHz) so at
the upper end of its range, the PWM filters will also filter out most of the desired frequency. You
may need to reduce the values of the parallel capacitors shown in the circuit, or to create an
active filter for your application.

C2
0.1uF

R2
1k

To Audio
Amplifier

R1
1k

C1
0.1uF

From PIC
I/O pin

From PIC
I/O pin

Speaker
C1

10uF

C2
10uF

Proton24 Compiler. Development Suite.

 213

Example 2
' Play a tune using Freqout to generate the notes

 Device = 24FJ64GA002
 Declare Xtal = 16

 Dim Loop as Byte ' Counter for notes.
 Dim Freq1 as Word ' Frequency1.
 Dim Freq2 as Word ' Frequency2
 Symbol C = 2092 ' C note
 Symbol D = 2348 ' D note
 Symbol E = 2636 ' E note
 Symbol G = 3136 ' G note
 Symbol R = 0 ' Silent pause.
 Symbol Pin = PORTA.0 ' Sound output pin

 Loop = 0
 Repeat ' Create a loop for 29 notes within the LookUpL table.
 Freq1 = LookUpL Loop,[E,D,C,D,E,E,E,R,D,D,D,_
 R,E,G,G,R,E,D,C,D,E,E,E,E,D,D,E,D,C]
 If Freq1 = 0 Then
 Freq2 = 0
 Else
 Freq2 = Freq1 - 8
 EndIf
 Freqout Pin, 225, Freq1, Freq2
 Inc Loop
 Until Loop > 28

See also : DTMFout, Sound.

Proton24 Compiler. Development Suite.

 214

GetBit

Syntax
Assignment Variable = GetBit Variable, Index

Overview
Examine a bit of a variable, or register.

Parameters
Assignment Variable is a user defined variable.
Index is a constant, variable, or expression that points to the bit within Variable that requires
examining.

Example
' Examine and display each bit of variable MyByte
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim MyByte as Byte
 Dim Index as Byte
 Dim Var1 as Byte

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 MyByte = %10110111
 While ' Create an infinite loop
 HrsoutLn Bin8 MyByte ' Display the original variable
 For Index = 7 to 0 Step -1 ' Create a loop for 8 bits
 Var1 = GetBit MyByte,Index ' Examine each bit of MyByte
 Hrsout Dec1 Var1 ' Display the binary result
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 Hrsout 13
 Wend ' Do it forever

See also : ClearBit, LoadBit, SetBit.

Proton24 Compiler. Development Suite.

 215

GetPin

Syntax
Assignment Variable = GetPin Pin Number

Overview
Examine a pin of a port.

Parameters
Assignment Variable is a user defined variable.
Pin Number is a constant, variable, or expression that points to the pin of a port that requires
reading. A value of 0 will read PORTA.0, a value of 1 will read PORTA.1, a value of 16 will read
PORTB.0 etc… The pin will be made an input before reading commences.

Example
' Examine and display each pin of PORTB
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim PinNumber as Byte
 Dim Var1 as Byte

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 While
 For PinNumber = 16 to 31 ' Create a loop for 16 pins
 Var1 = GetPin PinNumber ' Examine each pin of PORTB
 Hrsout Dec1 Var1 ' Display the result
 Next ' Close the loop

DelayMs 100 ' Slow things down to see what's happening
Hrsout 13

Wend ' Do it forever

Proton24 Compiler. Development Suite.

 216

Gosub

Syntax
Gosub Label

Overview
Gosub jumps the program to a defined label and continues execution from there. Once the
program hits a Return command the program returns to the instruction following the Gosub
that called it and continues execution from that point.

Parameters
Label is a user-defined label.

Example 1
' Implement a standard subroutine call
 GoTo Main ' Jump over the subroutines
SubA:
 subroutine A code
 ……
 ……
 Return

SubB:
 subroutine B code
 ……
 ……
 Return

' Actual start of the main program
Main:

Gosub SubA
 Gosub SubB

A subroutine must always end with a Return command.

Proton24 Compiler. Development Suite.

 217

GoTo

Syntax
GoTo Label

Overview
Jump to a defined label and continue execution from there.

Parameters
Label is a user-defined label placed at the beginning of a line which must have a colon ':' di-
rectly after it.

Example
 If Var1 = 3 Then GoTo Jumpover
 code here executed only if Var1<>3
 ……
 ……
JumpOver:
 {continue code execution}

In this example, if Var1=3 then the program jumps over all the code below it until it reaches the
label JumpOver where program execution continues as normal.

See also : Call, Gosub.

Proton24 Compiler. Development Suite.

 218

HbStart

Syntax
HbStart

Overview
Send a Start condition to the I2C bus using the microcontroller's MSSP module.

Notes.
Because of the subtleties involved in interfacing to some I2C devices, the compiler's standard
Hbusin and Hbusout commands were found lacking. Therefore, individual pieces of the I2C
protocol may be used in association with the new structure of Hbusin, and Hbusout. See rele-
vant sections for more information.

Example
' Interface to a 24LC32 serial eeprom
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim Loop as Byte
 Dim Array[10] as Byte

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
'
' Transmit bytes to the I2C bus
'
 HbStart ' Send a Start condition
 Hbusout %10100000 ' Target an eeprom, and send a Write command
 Hbusout 0 ' Send the HighByte of the address
 Hbusout 0 ' Send the LowByte of the address
 For Loop = 48 to 57 ' Create a loop containing ASCII 0 to 9
 Hbusout Loop ' Send the value of Loop to the eeprom
 Next ' Close the loop
 HbStop ' Send a Stop condition
 DelayMs 10 ' Wait for the data to be entered into eeprom matrix
'
' Receive bytes from the I2C bus
'
 HbStart ' Send a Start condition
 Hbusout %10100000 ' Target an eeprom, and send a Write command
 Hbusout 0 ' Send the HighByte of the address
 Hbusout 0 ' Send the LowByte of the address
 HbRestart ' Send a Restart condition
 Hbusout %10100001 ' Target an eeprom, and send a Read command
 For Loop = 0 to 9 ' Create a loop
 Array[Loop] = Hbusin ' Load an array with bytes received
 If Loop = 9 Then HbStop : Else : HbusAck ' Ack or Stop ?
 Next ' Close the loop
 HrsoutLn Str Array ' Display the Array as a String

See also : HbusAck, HbRestart, HbStop, Hbusin, Hbusout.

Proton24 Compiler. Development Suite.

 219

HbStop

Syntax
HbStop

Overview
Send a Stop condition to the I2C bus using the microcontroller's MSSP module.

HbRestart

Syntax
HbRestart

Overview
Send a Restart condition to the I2C bus using the microcontroller's MSSP module.

HbusAck

Syntax
HbusAck

Overview
Send an Acknowledge condition to the I2C bus using the microcontroller's MSSP module.

HbusNack

Syntax
HbusNack

Overview
Send a Not Acknowledge condition to the I2C bus using the microcontroller's MSSP module..

See also : HbStart, HbRestart, HbStop, Hbusin, Hbusout.

Proton24 Compiler. Development Suite.

 220

Hbusin

Syntax
Assignment Variable = Hbusin Control, { Address }

or

Assignment Variable = Hbusin

or

Hbusin Control, { Address }, [Variable {, Variable…}]

or

Hbusin Variable

Overview
Receives a value from the I2C bus using the MSSP module, and places it into variable/s. If syn-
tax structures Two or Four (see above) are used, then No Acknowledge, or Stop is sent after
the data. Syntax structures One and Three first send the control and optional address out of the
clock pin (SCL), and data pin (SDA).

Parameters
Variable is a user defined variable or constant.
Control may be a constant value or a Byte sized variable expression.
Address may be a constant value or a variable expression.

The four variations of the Hbusin command may be used in the same BASIC program. The
Second and Fourth syntax types are useful for simply receiving a single byte from the bus, and
must be used in conjunction with one of the low level commands. i.e. HbStart, HbRestart, Hbu-
sAck, or HbStop. The First, and Third syntax types may be used to receive several values and
designate each to a separate variable, or variable type.

The Hbusin command operates as an I2C master, using the microcontroller's MSSP module,
and may be used to interface with any device that complies with the 2-wire I2C protocol.

The most significant 7-bits of control byte contain the control code and the slave address of the
device being interfaced with. Bit-0 is the flag that indicates whether a read or write command is
being implemented.

For example, if we were interfacing to an external eeprom such as the 24LC32, the control
code would be %10100001 or $A1. The most significant 4-bits (1010) are the eeprom's unique
slave address. Bits 2 to 3 reflect the three address pins of the eeprom. And bit-0 is set to signify
that we wish to read from the eeprom. Note that this bit is automatically set by the Hbusin
command, regardless of its initial setting.

Proton24 Compiler. Development Suite.

 221

Example
' Receive a byte from the I2C bus and place it into variable Var1.

 Dim MyByte as Byte ' We'll only read 8-bits
 Dim Address as Word ' 16-bit address required
 Symbol Control %10100001 ' Target an eeprom
 Address = 20 ' Read the value at address 20
 MyByte = Hbusin Control, Address ' Read the byte from the eeprom

or

 Hbusin Control, Address, [MyByte] ' Read the byte from the eeprom

Address, is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in
this position, the size of address is dictated by the size of the variable used (Byte or Word). In
the case of the previous eeprom interfacing, the 24LC32 eeprom requires a 16-bit address.
While the smaller types require an 8-bit address. Make sure you assign the right size address
for the device interfaced with, or you may not achieve the results you intended.

The value received from the bus depends on the size of the variables used, except for variation
three, which only receives a Byte (8-bits). For example: -

 Dim MyWord as Word ' Create a Word size variable
 MyWord = Hbusin Control, Address

Will receive a 16-bit value from the bus. While: -

 Dim MyByte as Byte ' Create a Byte size variable
 MyByte = Hbusin Control, Address

Will receive an 8-bit value from the bus.

Using the Third variation of the Hbusin command allows differing variable assignments. For
example: -

 Dim MyByte as Byte
 Dim MyWord as Word
 Hbusin Control, Address, [MyByte, MyWord]

Will receive two values from the bus, the first being an 8-bit value dictated by the size of vari-
able MyByte which has been declared as a byte. And a 16-bit value, this time dictated by the
size of the variable MyWord which has been declared as a word. Of course, Bit type variables
may also be used, but in most cases these are not of any practical use as they still take up a
byte within the eeprom.

The Second and Fourth syntax variations allow all the subtleties of the I2C protocol to be ex-
ploited, as each operation may be broken down into its constituent parts. It is advisable to refer
to the datasheet of the device being interfaced to fully understand its requirements. See section
on HbStart, HbRestart, HbusAck, or HbStop, for example code.

Proton24 Compiler. Development Suite.

 222

Hbusin Declares
Declare HSDA_Pin Port . Pin
Declares the port and pin used for the data line (SDA). The location of the port and pin used for
hardware I2C can be altered by the fuse configurations. If the declare is not used in the pro-
gram, it will default to the standard pin configuration.

Declare HSCL_Pin Port . Pin
Declares the port and pin used for the clock line (SCL). The location of the port and pin used for
hardware I2C can be altered by the fuse configurations. If the declare is not used in the pro-
gram, it will default to the standard pin configuration.

Declare Hbus_Bitrate Constant 100, 400, 1000 etc.
The standard speed for the I2C bus is 100KHz. Some devices use a higher bus speed of
400KHz. The above Declare allows the I2C bus speed to be increased or decreased. Use this
Declare with caution, as too high a bit rate may exceed the device's specs, which will result in
intermittent transactions, or in some cases, no transactions at all. The datasheet for the device
used will inform you of its bus speed. The default bit rate is the standard 100KHz.

Notes.
Because the I2C protocol calls for an open-collector interface, pull-up resistors are required on
both the SDA and SCL lines. Values of 1KΩ to 4.7KΩ will suffice.

Str modifier with Hbusin
Using the Str modifier allows variations Three and Four of the Hbusin command to transfer the
bytes received from the I2C bus directly into a byte array. If the amount of received characters
is not enough to fill the entire array, then a formatter may be placed after the array's name,
which will only receive characters until the specified length is reached. An example of each is
shown below: -

 Dim MyArray[10] as Byte ' Create an array of 10 bytes
 Dim Address as Byte ' Create a word sized variable

 Hbusin %10100000, Address, [Str MyArray] ' Load data into all the array
'
' Load data into only the first 5 elements of the array
'
 Hbusin %10100000, Address, [Str MyArray\5]
 HbStart ' Send a Start condition
 Hbusout %10100000 ' Target an eeprom, and send a WRITE command
 Hbusout 0 ' Send the HighByte of the address
 Hbusout 0 ' Send the LowByte of the address
 HbRestart ' Send a Restart condition
 Hbusout %10100001 ' Target an eeprom, and send a Read command
 Hbusin Str MyArray ' Load all the array with bytes received
 HbStop ' Send a Stop condition

An alternative ending to the above example is: -

 Hbusin Str MyArray\5 ' Load data into only the first 5 elements of array
 HbStop ' Send a Stop condition

See also : HbusAck, HbRestart, HbStop, HbStart, Hbusout.

Proton24 Compiler. Development Suite.

 223

Hbusout

Syntax
Hbusout Control, { Address }, [Variable {, Variable…}]

or

Hbusout Variable

Overview
Transmit a value to the I2C bus using the microcontroller's on-board MSSP module, by first
sending the control and optional address out of the clock pin (SCL), and data pin (SDA). Or al-
ternatively, if only one operator is included after the Hbusout command, a single value will be
transmitted, along with an Ack reception.

Parameters
Variable is a user defined variable or constant.
Control may be a constant value or a Byte sized variable expression.
Address may be a constant, variable, or expression.

The Hbusout command operates as an I2C master and may be used to interface with any de-
vice that complies with the 2-wire I2C protocol.

The most significant 7-bits of control byte contain the control code and the slave address of the
device being interfaced with. Bit-0 is the flag that indicates whether a read or write command is
being implemented.

For example, if we were interfacing to an external eeprom such as the 24LC32, the control
code would be %10100000 or $A0. The most significant 4-bits (1010) are the eeprom's unique
slave address. Bits 2 to 3 reflect the three address pins of the eeprom. And Bit-0 is clear to sig-
nify that we wish to write to the eeprom. Note that this bit is automatically cleared by the Hbu-
sout command, regardless of its initial value.

Example
' Send a byte to the I2C bus.

 Dim MyByte as Byte ' We'll only read 8-bits
 Dim Address as Word ' 16-bit address required
 Symbol Control = %10100000 ' Target an eeprom

Address = 20 ' Write to address 20
 MyByte = 200 ' The value place into address 20
 Hbusout Control, Address, [MyByte] ' Send the byte to the eeprom
 DelayMs 10 ' Allow time for allocation of byte

Address, is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in
this position, the size of address is dictated by the size of the variable used (Byte or Word). In
the case of the above eeprom interfacing, the 24LC32 eeprom requires a 16-bit address. While
the smaller types require an 8-bit address. Make sure you assign the right size address for the
device interfaced with, or you may not achieve the results you intended.

Proton24 Compiler. Development Suite.

 224

The value sent to the bus depends on the size of the variables used. For example: -

 Dim MyWord as Word ' Create a Word size variable
 Hbusout Control, Address, [MyWord]

Will send a 16-bit value to the bus. While: -

 Dim MyByte as Byte ' Create a Byte size variable
 Hbusout Control, Address, [MyByte]

Will send an 8-bit value to the bus.

Using more than one variable within the brackets allows differing variable sizes to be sent. For
example: -

 Dim MyByte as Byte
 Dim MyWord as Word
 Hbusout Control, Address, [MyByte, MyWord]

Will send two values to the bus, the first being an 8-bit value dictated by the size of variable
Var1 which has been declared as a byte. And a 16-bit value, this time dictated by the size of
the variable MyWord which has been declared as a word. Of course, Bit type variables may
also be used, but in most cases these are not of any practical use as they still take up a byte
within the eeprom.

A string of characters can also be transmitted, by enclosing them in quotes: -

 Hbusout Control, Address, ["Hello World", MyByte, MyWord]

Using the second variation of the Hbusout command, necessitates using the low level com-
mands i.e. HbStart, HbRestart, HbusAck, or HbStop.

Using the Hbusout command with only one value after it, sends a byte of data to the I2C bus,
and returns holding the Acknowledge reception. This acknowledge indicates whether the data
has been received by the slave device.

The Ack reception is returned in the microcontroller's CARRY flag, which is SR.0, and also Sys-
tem variable PP4.0. A value of zero indicates that the data was received correctly, while a one
indicates that the data was not received, or that the slave device has sent a NAck return. You
must read and understand the datasheet for the device being interfacing to, before the Ack re-
turn can be used successfully. An code snippet is shown below: -

' Transmit a byte to a 24LC32 serial eeprom
 HbStart ' Send a Start condition
 Hbusout %10100000 ' Target an eeprom, and send a Write command
 Hbusout 0 ' Send the HighByte of the address
 Hbusout 0 ' Send the LowByte of the address
 Hbusout "A" ' Send the value 65 to the bus
 If SRbits_C = 1 Then GoTo Not_Received ' Has Ack been received OK?
 HbStop ' Send a Stop condition
 DelayMs 10 ' Wait for the data to be entered into eeprom matrix

Proton24 Compiler. Development Suite.

 225

Hbusout Declares
Declare HSDA_Pin Port . Pin
Declares the port and pin used for the data line (SDA). The location of the port and pin used for
hardware I2C can be altered by the fuse configurations. If the declare is not used in the pro-
gram, it will default to the standard pin configuration.

Declare HSCL_Pin Port . Pin
Declares the port and pin used for the clock line (SCL). The location of the port and pin used for
hardware I2C can be altered by the fuse configurations. If the declare is not used in the pro-
gram, it will default to the standard pin configuration.

Declare Hbus_Bitrate Constant 100, 400, 1000 etc.
The standard speed for the I2C bus is 100KHz. Some devices use a higher bus speed of
400KHz. The above Declare allows the I2C bus speed to be increased or decreased. Use this
Declare with caution, as too high a bit rate may exceed the device's specs, which will result in
intermittent transactions, or in some cases, no transactions at all. The datasheet for the device
used will inform you of its bus speed. The default bit rate is the standard 100KHz.

Notes.
When the Hbusout command is used, the appropriate SDA and SCL Port and Pin are auto-
matically setup as inputs. Because the I2C protocol calls for an open-collector interface, pull-up
resistors are required on both the SDA and SCL lines. Values of 1KΩ to 4.7KΩ will suffice.

Proton24 Compiler. Development Suite.

 226

Str modifier with Hbusout.
The Str modifier is used for transmitting a string of bytes from a byte array variable. A string is a
set of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3
would be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A
byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string 1,2,3 would be stored in a byte
array containing three bytes (elements).

Below is an example that sends four bytes from an array: -

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 MyArray [0] = "A" ' Load the first 4 bytes of the array
 MyArray [1] = "B" ' With the data to send
 MyArray [2] = "C"
 MyArray [3] = "D"
 Hbusout %10100000, Address, [Str MyArray \4] ' Send 4-byte string.

Note that we use the optional \n argument of Str. If we didn't specify this, the program would try
to keep sending characters until all 10 bytes of the array were transmitted. Since we do not
wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 4 bytes.

The above example may also be written as: -

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 Str MyArray = "ABCD" ' Load the first 4 bytes of the array

HbStart ' Send a Start condition
 Hbusout %10100000 ' Target an eeprom, and send a Write command
 Hbusout 0 ' Send the HighByte of the address
 Hbusout 0 ' Send the LowByte of the address
 Hbusout Str MyArray\4 ' Send 4-byte string.
 HbStop ' Send a Stop condition

The above example, has exactly the same function as the previous one. The only differences
are that the string is now constructed using the Str as a command instead of a modifier, and
the low-level Hbus commands have been used.

See also : HbusAck, HbRestart, HbStop, Hbusin, HbStart.

Proton24 Compiler. Development Suite.

 227

High

Syntax
High Port or Port.Bit or Pin Number

Overview
Place a Port or Port.Pin in a high output state. For a Port, this means setting it as an output and
filling it with 1's.

Parameters
Port can be any valid port.
Port.Bit can be any valid port and bit combination, i.e. PORTA.1
Pin Number can be a variable or constant that holds a value from 0 to the amount of I/O pins
on the device. A value of 0 will be PORTA.0, if present, 1 will be PORTA.1, 16 will be PORTB.0
etc…

Example 1
 Device = 24HJ128GP502
 Declare Xtal = 16

 Symbol LED = PORTB.4
 High LED

 High PORTB
 High PORTA.0

 High 1 ' Set Pin PORTA.1 high

Example 2
' Flash each of the pins on PORTB
'
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim MyPin as Byte

 For MyPin = 16 to 31 ' Create a loop for the pin to flash (PORTB)
 High MyPin ' Set the pin high
 DelayMs 500 ' Delay so that it can be seen
 Low MyPin ' Pull the pin low
 DelayMs 500 ' Delay so that it can be seen
 Next

Notes.
The compiler will write to the device’s LAT SFR and will always set the relevant Port or Port.Bit
to an output.

Proton24 Compiler. Development Suite.

 228

Each pin number has a designated name. These are Pin_A0, Pin_A1, Pin_A2,
Pin_B0…Pin_B15, Pin_C0…Pin_C15, Pin_D0…Pin_D15 to Pin_L15 etc… Each of the names
has a relevant value, for example, Pin_A0 has the value 0, Pin_B0 has the value 16, up to
Pin_J15, which has the value 143.

These can be used to pass a relevant pin number to a Procedure. For example:
'
' Flash an LED attached to PORTB.0 via a procedure
' Then flash an LED attached to PORTB.1 via the same procedure
'
 Device = 24HJ128GP502
 Declare Xtal = 16

Do ' Create a loop

FlashPin(Pin_B0) ' Call the procedure to flash PORTB.0
FlashPin(Pin_B1) ' Call the procedure to flash PORTB.1

 Loop ' Do it forever
'
' Set a pin high then low for 500ms using a variable as the pin to adjust
'
Proc FlashPin(pPinNumber As Byte)

High pPinNumber ' Set the pin output high
 DelayMs 500 ' Wait for 500 milliseconds

Low pPinNumber ' Pull the pin output low
DelayMs 500 ' Wait for 500 milliseconds

EndProc

Example 3
' Clear then Set each pin of PORTC
 Device = 24HJ128GP502

Declare Xtal = 16

Dim PinNumber as Byte

 Low PORTC ' Make PORTC output low before we start
 Do ' Create a loop
 For PinNumber = Pin_C0 to Pin_C7 ' Create a loop for 8 pins
 Low PinNumber ' Clear each pin of PORTC
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 For PinNumber = Pin_C0 to Pin_C7 ' Create a loop for 8 pins
 High PinNumber ' Set each pin of PORTC
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 Loop ' Do it forever

See also : Clear, Dim, Low, Set, SetPin, Symbol.

Proton24 Compiler. Development Suite.

 229

Hpwm

Syntax
Hpwm Channel, Dutycycle, Frequency

Overview
Output a pulse width modulated pulse train using on of the OCP modules. The PWM pulses
produced can run continuously in the background while the program is executing other instruc-
tions.

Parameters
Channel is a constant value that specifies which hardware PWM channel to use (1 to 5). must
be the same on all channels. It must be noted, that this is a limitation of the devices not the
compiler. The data sheet for the particular device used shows the fixed hardware pin for each
Channel.
Dutycycle is a variable, constant (0-255), or expression that specifies the on/off (high/low) ratio
of the signal. It ranges from 0 to 255, where 0 is off (low all the time) and 255 is on (high) all the
time. A value of 127 gives a 50% duty cycle (square wave).
Frequency is a variable, constant (0-65535), or expression that specifies the desired frequency
of the PWM signal. Not all frequencies are available at all oscillator settings. The highest fre-
quency at any oscillator speed is 65535Hz. The lowest usable Hpwm Frequency at each oscil-
lator setting is dependant on the oscillator frequency that the device is operating with.

Example
 Device = 24FJ64GA002
 Declare Xtal = 32

CLKDIV = 0 ' CPU peripheral clock ratio set to 1:1
Write_OSCCONH(%00010000) ' Enable PLL

 Hpwm 1,127,1000 ' Send a 50% duty cycle PWM signal at 1KHz
 DelayMs 500
 Hpwm 1,64,2000 ' Send a 25% duty cycle PWM signal at 2KHz
'
' For internal oscillator with PLL
'

Config Config1 = JTAGEN_OFF, GCP_OFF, GWRP_OFF, BKBUG_OFF, COE_OFF,_
 ICS_PGx1, FWDTEN_OFF, WINDIS_OFF, FWPSA_PR128, WDTPOST_PS256
Config Config2 = IOL1WAY_OFF, COE_OFF, IESO_OFF, FNOSC_FRCPLL,_
 FCKSM_CSDCMD, OSCIOFNC_ON, POSCMOD_NONE

Notes.
Some devices have alternate pins that may be used for Hpwm. The following Declares allow
the use of different pins: -

Declare CCP1_Pin Port.Pin ' Select Hpwm port and bit for OCP1 module.
Declare CCP2_Pin Port.Pin ' Select Hpwm port and bit for OCP2 module.
Declare CCP3_Pin Port.Pin ' Select Hpwm port and bit for OCP3 module.
Declare CCP4_Pin Port.Pin ' Select Hpwm port and bit for OCP4 module.
Declare CCP5_Pin Port.Pin ' Select Hpwm port and bit for OCP5 module.

See also : Pwm, Pulseout, Servo.

Proton24 Compiler. Development Suite.

 230

Hrsin, Hrsin2, Hrsin3, Hrsin4

Syntax
Assignment Variable = Hrsin, { Timeout, Timeout Label }

or

Hrsin { Timeout, Timeout Label }, { Parity Error Label }, Modifiers, Variable {, Variable... }

Overview
Receive one or more values from the serial port on devices that contain a hardware USART.

Parameters
Timeout is an optional value for the length of time the Hrsin command will wait before jumping
to label Timeout Label. Timeout is specified in 1 millisecond units.
Timeout Label is an optional valid BASIC label where Hrsin will jump to in the event that a
character has not been received within the time specified by Timeout.
Parity Error Label is an optional valid BASIC label where Hrsin will jump to in the event that a
Parity error is received. Parity is set using Declares. Parity Error detecting is not supported in
the inline version of Hrsin (first syntax example above).
Modifier is one of the many formatting modifiers, explained below.
Assignment Variable is a user variable, that will be loaded by Hrsin.

Example
' Receive values serially and timeout if no reception after 1 second
'
 Device = 24FJ64GA002
 Declare Xtal = 32
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

Declare HRSIn1_Pin = PORTB.15 ' Select the pin for RX with USART1

 Dim MyByte as Byte

CLKDIV = 0 ' CPU peripheral clock ratio set to 1:1
Write_OSCCONH(%00010000) ' Enable PLL
RPOR7 = 3 ' Make RP14(PORTB.14) the pin for UART1 TX
RPINR18 = 15 ' Make RP15(PORTB.15) the pin for UART1 RX

 Do

 MyByte = Hrsin, {1000, Timeout} ' Receive a byte serially into MyByte
 HrsoutLn Dec MyByte ' Re-Transmit the byte received
 Loop ' Loop forever
Timeout:
 HrsoutLn "Timed Out" ' Transmit an error if Hrsin timed out
 Stop
'
' For internal oscillator with PLL
'

Config Config1 = JTAGEN_OFF, GCP_OFF, GWRP_OFF, BKBUG_OFF, COE_OFF,_
 ICS_PGx1, FWDTEN_OFF, WINDIS_OFF, FWPSA_PR128, WDTPOST_PS256
Config Config2 = IOL1WAY_OFF, COE_OFF, IESO_OFF, FNOSC_FRCPLL,_
 FCKSM_CSDCMD, OSCIOFNC_ON, POSCMOD_NONE

Proton24 Compiler. Development Suite.

 231

Hrsin Modifiers.
As we already know, Rsin will wait for and receive a single byte of data, and store it in a vari-
able . If the microcontroller was connected to a PC running a terminal program and the user
pressed the "A" key on the keyboard, after the Hrsin command executed, the variable would
contain 65, which is the ASCII code for the letter "A"

What would happen if the user pressed the "1" key? The result would be that the variable would
contain the value 49 (the ASCII code for the character "1"). This is an important point to re-
member: every time you press a character on the keyboard, the computer receives the ASCII
value of that character. It is up to the receiving side to interpret the values as necessary.
In this case, perhaps we actually wanted the variable to end up with the value 1, rather than the
ASCII code 49.

The Hrsin command provides a modifier, called the decimal modifier, which will interpret this
for us. Look at the following code: -

 Dim SerData as Byte
 Hrsin Dec SerData

Notice the decimal modifier in the Hrsin command that appears just to the left of the SerData
variable. This tells Hrsin to convert incoming text representing decimal numbers into true deci-
mal form and store the result in SerData. If the user running the terminal software pressed the
"1", "2" and then "3" keys followed by a space or other non-numeric text, the value 123 will be
stored in the variable SerData, allowing the rest of the program to perform any numeric opera-
tion on the variable.

Without the decimal modifier, however, you would have been forced to receive each character
("1", "2" and "3") separately, and then would still have to do some manual conversion to arrive
at the number 123 (one hundred twenty three) before you can do the desired calculations on it.

The decimal modifier is designed to seek out text that represents decimal numbers. The char-
acters that represent decimal numbers are the characters "0" through "9". Once the Hrsin
command is asked to use the decimal modifier for a particular variable, it monitors the incoming
serial data, looking for the first decimal character. Once it finds the first decimal character, it will
continue looking for more (accumulating the entire multi-digit number) until is finds a non-
decimal numeric character. Remember that it will not finish until it finds at least one decimal
character followed by at least one non-decimal character.

To illustrate this further, examine the following examples (assuming we're using the same code
example as above): -

Serial input: "ABC"
Result: The program halts at the Hrsin command, continuously waiting for decimal text.

Serial input: "123" (with no characters following it)
Result: The program halts at the Hrsin command. It recognises the characters "1", "2" and "3"
as the number one hundred twenty three, but since no characters follow the "3", it waits con-
tinuously, since there's no way to tell whether 123 is the entire number or not.

Serial input: "123" (followed by a space character)
Result: Similar to the above example, except once the space character is received, the pro-
gram knows the entire number is 123, and stores this value in SerData. The Hrsin command
then ends, allowing the next line of code to run.

Proton24 Compiler. Development Suite.

 232

Serial input: "123A"
Result: Same as the example above. The "A" character, just like the space character, is the
first non-decimal text after the number 123, indicating to the program that it has received the
entire number.

Serial input: "ABCD123EFGH"
Result: Similar to examples 3 and 4 above. The characters "ABCD" are ignored (since they're
not decimal text), the characters "123" are evaluated to be the number 123 and the following
character, "E", indicates to the program that it has received the entire number.

The final result of the Dec modifier is limited to 16 bits (up to the value 65535). If a value larger
than this is received by the decimal modifier, the end result will be incorrect because the result
rolled-over the maximum 16-bit value. Therefore, Hrsin modifiers may not (at this time) be used
to load Dword (32-bit) variables.

The decimal modifier is only one of a family of conversion modifiers available with Hrsin See
below for a list of available conversion modifiers. All of the conversion modifiers work similar to
the decimal modifier (as described above). The modifiers receive bytes of data, waiting for the
first byte that falls within the range of characters they accept (e.g., "0" or "1" for binary, "0" to
"9" for decimal, "0" to "9" and "A" to "F" for hex. Once they receive a numeric character, they
keep accepting input until a non-numeric character arrives, or in the case of the fixed length
modifiers, the maximum specified number of digits arrives.

While very effective at filtering and converting input text, the modifiers aren't completely fool-
proof. As mentioned before, many conversion modifiers will keep accepting text until the first
non-numeric text arrives, even if the resulting value exceeds the size of the variable. After
Hrsin, a Byte variable will contain the lowest 8 bits of the value entered and a Word (16-bits)
would contain the lowest 16 bits. You can control this to some degree by using a modifier that
specifies the number of digits, such as Dec2, which would accept values only in the range of 0
to 99.

 Conversion Modifier Type of Number Numeric Characters Accepted
 Dec{1..10} Decimal, optionally limited 0 through 9
 to 1 - 10 digits
 Hex{1..8} Hexadecimal, optionally limited 0 through 9,
 to 1 - 8 digits A through F
 Bin{1..32} Binary, optionally limited 0, 1
 to 1 - 32 digits

A variable preceded by Bin will receive the ASCII representation of its binary value.
For example, if Bin Var1 is specified and "1000" is received, Var1 will be set to 8.

A variable preceded by Dec will receive the ASCII representation of its decimal value.
For example, if Dec Var1 is specified and "123" is received, Var1 will be set to 123.

A variable preceded by Hex will receive the ASCII representation of its hexadecimal value.
For example, if Hex Var1 is specified and "FE" is received, Var1 will be set to 254.

SKIP followed by a count will skip that many characters in the input stream.
For example, SKIP 4 will skip 4 characters.

Proton24 Compiler. Development Suite.

 233

The Hrsin command can be configured to wait for a specified sequence of characters before it
retrieves any additional input. For example, suppose a device attached to the microcontroller is
known to send many different sequences of data, but the only data you wish to observe hap-
pens to appear right after the unique characters, "XYZ". A modifier named Wait can be used for
this purpose: -

 Hrsin Wait("XYZ"), SerData

The above code waits for the characters "X", "Y" and "Z" to be received, in that order, then it
receives the next data byte and places it into variable SerData.

Str modifier.
The Hrsin command also has a modifier for handling a string of characters, named Str.

The Str modifier is used for receiving a string of characters into a byte array variable.

A string is a set of characters that are arranged or accessed in a certain order. The characters
"ABC" would be stored in a string with the "A" first, followed by the "B" then followed by the "C".
A byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string "ABC" would be stored in a byte
array containing three bytes (elements).

Below is an example that receives ten bytes and stores them in the 10-byte array, SerString: -

 Dim SerString[10] as Byte ' Create a 10-byte array.
 Hrsin Str SerString ' Fill the array with received data.
 Print Str SerString ' Display the string.

If the amount of received characters is not enough to fill the entire array, then a formatter may
be placed after the array's name, which will only receive characters until the specified length is
reached. For example: -

 Dim SerString[10] as Byte ' Create a 10-byte array.
 Hrsin Str SerString\5 ' Fill the first 5-bytes of the array
 Print Str SerString\5 ' Display the 5-character string.

The example above illustrates how to fill only the first n bytes of an array, and then how to dis-
play only the first n bytes of the array. n refers to the value placed after the backslash.

Because of its complexity, serial communication can be rather difficult to work with at times. Us-
ing the guidelines below when developing a project using the Hrsin and Hrsout commands
may help to eliminate some obvious errors: -

Always build your project in steps.
Start with small, manageable pieces of code, (that deal with serial communication) and test
them, one individually.
Add more and more small pieces, testing them each time, as you go.
Never write a large portion of code that works with serial communication without testing its
smallest workable pieces first.

Proton24 Compiler. Development Suite.

 234

Pay attention to timing.
Be careful to calculate and overestimate the amount of time, operations should take within the
microcontroller for a given oscillator frequency. Misunderstanding the timing constraints is the
source of most problems with code that communicate serially. If the serial communication in
your project is bi-directional, the above statement is even more critical.

Pay attention to wiring.
Take extra time to study and verify serial communication wiring diagrams. A mistake in wiring
can cause strange problems in communication, or no communication at all. Make sure to con-
nect the ground pins (Vss) between the devices that are communicating serially.

Verify port setting on the PC and in the Hrsin / Hrsout commands.
Unmatched settings on the sender and receiver side will cause garbled data transfers or no
data transfers. This is never more critical than when a line transceiver is used(i.e. MAX232).
Always remember that a line transceiver inverts the serial polarity.
If the serial data received is unreadable, it is most likely caused by a baud rate setting error, or
a polarity error.

If receiving data from another device that is not a microcontroller, try to use baud rates of 9600
and below, or alternatively, use a higher frequency crystal.

Because of additional overheads in the microcontroller, and the fact that the Hrsin command
only offers a 8 level receive buffer for serial communication, received data may sometimes be
missed or garbled. If this occurs, try lowering the baud rate, or increasing the crystal frequency.
Using simple variables (not arrays) will also increase the chance that the microcontroller will re-
ceive the data properly.

Declares
There are several Declare directives for use with the Hrsin commands. These are: -

Declare HRsin_Pin Port . Pin
Declares the port and pin used for USART1 reception (RX). The location of the port and pin is
dictated by the device's PPS (Peripheral Pin Select) options. Note that this declare will not alter
any PPS (Peripheral Pin Select) SFRs.

Declare Hserial_Baud Constant value
Sets the Baud rate that will be used to receive a value serially from USART1. The baud rate is
calculated using the Xtal frequency declared in the program. The default baud rate if the De-
clare is not included in the program listing is 9600 baud.

Declare Hserial_Parity Odd or Even
Enables/Disables parity on the serial port. For both Hrsin and Hrsout The default serial data
format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop bit) or
7O1 (7data bits, odd parity, 1 stop bit) may be enabled using the Hserial_Parity declare.

 Declare Hserial_Parity = Even ' Use if even parity desired
 Declare Hserial_Parity = Odd ' Use if odd parity desired

Proton24 Compiler. Development Suite.

 235

Declare Hserial_Clear On or Off
Clear the overflow error bit before commencing a read.

The hardware serial ports (USARTs) only have a small input buffer, therefore, they can easily
overflow if characters are not read from it often enough. When this occurs, USART1 stops ac-
cepting any new characters, and requires resetting. This overflow error can be reset by clearing
the OERR bit within the U1STA register:

 Clear U1STAbits_OERR ' Clear an overflow error for USART1

Alternatively, the Hserial_Clear declare can be used to automatically clear this error, even if no
error occurred. However, the program will not know if an error occurred while reading, therefore
some characters may be lost.

 Declare Hserial_Clear = On

Declare HRsin2_Pin Port . Pin
Declares the port and pin used for USART2 reception (RX). The location of the port and pin is
dictated by the device's PPS (Peripheral Pin Select) options. Note that this declare will not alter
any PPS (Peripheral Pin Select) SFRs.

Declare Hserial2_Baud Constant value
Sets the Baud rate that will be used to receive a value serially from USART2. The baud rate is
calculated using the Xtal frequency declared in the program. The default baud rate if the De-
clare is not included in the program listing is 9600 baud.

Declare Hserial2_Parity Odd or Even
Enables/Disables parity on the serial port. For both Hrsin2 and Hrsout2 The default serial data
format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop bit) or
7O1 (7data bits, odd parity, 1 stop bit) may be enabled using the Hserial2_Parity declare.

 Declare Hserial2_Parity = Even ' Use if even parity desired
 Declare Hserial2_Parity = Odd ' Use if odd parity desired

Declare Hserial2_Clear On or Off
Clear the overflow error bit before commencing a read.

The hardware serial ports (USARTs) only have a small input buffer, therefore, they can easily
overflow if characters are not read from it often enough. When this occurs, USART2 stops ac-
cepting any new characters, and requires resetting. This overflow error can be reset by clearing
the OERR bit within the U2STA register:

 Clear U2STAbits_OERR ' Clear an overflow error for USART2

Alternatively, the Hserial2_Clear declare can be used to automatically clear this error, even if
no error occurred. However, the program will not know if an error occurred while reading, there-
fore some characters may be lost.

 Declare Hserial2_Clear = On

Proton24 Compiler. Development Suite.

 236

Declare HRsin3_Pin Port . Pin
Declares the port and pin used for USART3 reception (RX). The location of the port and pin is
dictated by the device's PPS (Peripheral Pin Select) options. Note that this declare will not alter
any PPS (Peripheral Pin Select) SFRs.

Declare Hserial3_Baud Constant value
Sets the Baud rate that will be used to receive a value serially from USART3. The baud rate is
calculated using the Xtal frequency declared in the program. The default baud rate if the De-
clare is not included in the program listing is 9600 baud.

Declare Hserial3_Parity Odd or Even
Enables/Disables parity on the serial port. For both Hrsin3 and Hrsout3 The default serial data
format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop bit) or
7O1 (7data bits, odd parity, 1 stop bit) may be enabled using the Hserial3_Parity declare.

 Declare Hserial3_Parity = Even ' Use if even parity desired
 Declare Hserial3_Parity = Odd ' Use if odd parity desired

Declare Hserial3_Clear On or Off
Clear the overflow error bit before commencing a read.

The hardware serial ports (USARTs) only have a small input buffer, therefore, they can easily
overflow if characters are not read from it often enough. When this occurs, USART3 stops ac-
cepting any new characters, and requires resetting. This overflow error can be reset by clearing
the OERR bit within the U3STA register:

 Clear U3STAbits_OERR ' Clear an overflow error for USART3

Alternatively, the Hserial3_Clear declare can be used to automatically clear this error, even if
no error occurred. However, the program will not know if an error occurred while reading, there-
fore some characters may be lost.

 Declare Hserial3_Clear = On

Declare HRsin4_Pin Port . Pin
Declares the port and pin used for USART4 reception (RX). The location of the port and pin is
dictated by the device's PPS (Peripheral Pin Select) options. Note that this declare will not alter
any PPS (Peripheral Pin Select) SFRs.

Declare Hserial4_Baud Constant value
Sets the Baud rate that will be used to receive a value serially from USART4. The baud rate is
calculated using the Xtal frequency declared in the program. The default baud rate if the De-
clare is not included in the program listing is 9600 baud.

Declare Hserial4_Parity Odd or Even
Enables/Disables parity on the serial port. For both Hrsin4 and Hrsout4 The default serial data
format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop bit) or
7O1 (7data bits, odd parity, 1 stop bit) may be enabled using the Hserial4_Parity declare.

 Declare Hserial4_Parity = Even ' Use if even parity desired
 Declare Hserial4_Parity = Odd ' Use if odd parity desired

Proton24 Compiler. Development Suite.

 237

Declare Hserial4_Clear On or Off
Clear the overflow error bit before commencing a read.

The hardware serial ports (USARTs) only have a small input buffer, therefore, they can easily
overflow if characters are not read from it often enough. When this occurs, USART4 stops ac-
cepting any new characters, and requires resetting. This overflow error can be reset by clearing
the OERR bit within the U4STA register:

 Clear U4STAbits_OERR ' Clear an overflow error for USART4

Alternatively, the Hserial4_Clear declare can be used to automatically clear this error, even if
no error occurred. However, the program will not know if an error occurred while reading, there-
fore some characters may be lost.

 Declare Hserial4_Clear = On

Notes.
The Hrsin commands can only be used with devices that contain a hardware USART. See the
specific device's data sheet for further information concerning the serial input pin as well as
other relevant parameters.

See also : Declare, Rsin, Rsout, Hrsout, Hserin, Hserout.

Proton24 Compiler. Development Suite.

 238

Hrsout, Hrsout2, Hrsout3, Hrsout4

Syntax
Hrsout Item {, Item... }

Overview
Transmit one or more Items from a USART on devices that support asynchronous serial
communications in hardware.

Parameters
Item may be a constant, variable, expression, string list, or inline command.
There are no operands as such, instead there are modifiers. For example, if an at sign'@' pre-
cedes an Item, the ASCII representation for each digit is transmitted.

The modifiers are listed below: -

 Modifier Operation

 Bin{1..32} Send binary digits
 Dec{1..10} Send decimal digits
 Hex{1..8} Send hexadecimal digits
 Sbin{1..32} Send signed binary digits
 Sdec{1..10} Send signed decimal digits
 Shex{1..8} Send signed hexadecimal digits
 Ibin{1..32} Send binary digits with a preceding '%' identifier
 Idec{1..10} Send decimal digits with a preceding '#' identifier
 Ihex{1..8} Send hexadecimal digits with a preceding '$' identifier
 ISbin{1..32} Send signed binary digits with a preceding '%' identifier
 ISdec{1..10} Send signed decimal digits with a preceding '#' identifier
 IShex{1..8} Send signed hexadecimal digits with a preceding '$' identifier

 Rep c\n Send character c repeated n times
 Str array\n Send all or part of an array
 Cstr Label Send string data defined in code memory.

The numbers after the Bin, Dec, and Hex modifiers are optional. If they are omitted, then the
default is all the digits that make up the value will be displayed.

If a floating point variable is to be displayed, then the digits after the Dec modifier determine
how many remainder digits are send. i.e. numbers after the decimal point.

 Dim MyFloat as Float
 MyFloat = 3.145
 Hrsout Dec2 MyFloat ' Send 2 digits after the decimal point

The above program will transmit the ASCII characters “3.14”

If the digit after the Dec modifier is omitted, then 3 digits will be displayed after the decimal
point.

Proton24 Compiler. Development Suite.

 239

 Dim MyFloat as Float
 MyFloat = 3.1456
 Hrsout Dec MyFloat ' Send 3 digits after the decimal point

The above program will transmit the ASCII characters “3.145”

There is no need to use the Sdec modifier for signed floating point values, as the compiler's
Dec modifier will automatically display a minus result: -

 Dim MyFloat as Float
 MyFloat = -3.1456
 Hrsout Dec MyFloat ' Send 3 digits after the decimal point

The above program will transmit the ASCII characters “-3.145”

Example 1
 Device = 24FJ64GA002
 Declare Xtal = 32
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

Dim MyByte as Byte
 Dim MyWord as Word
 Dim MyDword as Dword

CLKDIV = 0 ' CPU peripheral clock ratio set to 1:1
Write_OSCCONH(%00010000) ' Enable PLL
RPOR7 = 3 ' Make RP14(PORTB.14) the pin for UART1 TX

 Hrsout "Hello World\r" ' Display the text "Hello World"
 Hrsout "Var1= ", Dec MyByte, 13 ' Display the decimal value of MyByte
 Hrsout "Var1= ", Hex MyByte, 13 ' Display the hexadecimal value of MyByte
 Hrsout "Var1= ", Bin MyByte, 13 ' Display the binary value of MyByte
 Hrsout "MyDword= ", Hex6 MyDword, 13 ' Display 6 hex characters

' For internal oscillator with PLL
'

Config Config1 = JTAGEN_OFF, GCP_OFF, GWRP_OFF, BKBUG_OFF, COE_OFF,_
 ICS_PGx1, FWDTEN_OFF, WINDIS_OFF, FWPSA_PR128, WDTPOST_PS256
Config Config2 = IOL1WAY_OFF, COE_OFF, IESO_OFF, FNOSC_FRCPLL,_
 FCKSM_CSDCMD, OSCIOFNC_ON, POSCMOD_NONE

The Cstr modifier may be used in commands that deal with text processing i.e. Serout, Hse-
rout, and Print etc. However, the Cstr keyword is not always required, because the compiler
recognises a label name as a null terminated string of characters.

The Cstr modifier can be used in conjunction with code memory strings. The Dim as Code di-
rective is used for initially creating the string of characters: -

Dim MyCodeString as Code = "Hello World", 0

The above line of case will create, in code memory, the values that make up the ASCII text
"Hello World", at address MyCodeString. Note the null terminator after the ASCII text.
Null terminated means that a zero (null) is placed at the end of the string of ASCII characters to
signal that the string has finished.

Proton24 Compiler. Development Suite.

 240

To display, or transmit this string of characters, the following command structure could be used:

 Hrsout MyCodeString

The label that declared the address where the list of code memory values resided, now be-
comes the code memory string's name. For example, to transmit using a code memory string: -

Device = 24FJ64GA002
 Declare Xtal = 32
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim Text1 as Code = "Hello World\r", 0

Dim Text2 as Code = "How are you?\r", 0
Dim Text3 as Code = "I am fine!\r", 0

 CLKDIV = 0 ' CPU peripheral clock ratio set to 1:1
Write_OSCCONH(%00010000) ' Enable PLL

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Hrsout Text1
 Hrsout Text2
 Hrsout Text3
'
' For internal oscillator with PLL
'

Config Config1 = JTAGEN_OFF, GCP_OFF, GWRP_OFF, BKBUG_OFF, COE_OFF,_
 ICS_PGx1, FWDTEN_OFF, WINDIS_OFF, FWPSA_PR128, WDTPOST_PS256
Config Config2 = IOL1WAY_OFF, COE_OFF, IESO_OFF, FNOSC_FRCPLL,_
 FCKSM_CSDCMD, OSCIOFNC_ON, POSCMOD_NONE

Note the null terminators after the ASCII text in the code memory strings. Without these, the
device will continue to transmit data until it sees a value of 0.

Internally, the compiler is placing the quoted strings of characters into code memory, therefore
either of the above constructs is valid, however, the compiler also internally combines quoted
strings that are identical, meaning that the first of the above constructs can be more efficient in
some cases.

Proton24 Compiler. Development Suite.

 241

The Str modifier is used for sending a string of bytes from a byte array variable. A string is a set
of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3 would
be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A byte ar-
ray is a similar concept to a string; it contains data that is arranged in a certain order. Each of
the elements in an array is the same size. The string 1,2,3 would be stored in a byte array con-
taining three bytes (elements).

Below is an example that displays four bytes (from a byte array): -

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 MyArray [0] = "H" ' Load the first 5 bytes of the array
 MyArray [1] = "e" ' With the data to send
 MyArray [2] = "l"
 MyArray [3] = "l"
 MyArray [4] = "o"
 Hrsout Str MyArray\5 ' Display a 5-byte string.

Note that we use the optional \n argument of Str. If we didn't specify this, the microcontroller
would try to keep sending characters until all 10 bytes of the array were transmitted. Since we
do not wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 5
bytes.

The above example may also be written as: -

 Dim MyArray [10] as Byte ' Create a 10-byte array.
 Str MyArray = "Hello" ' Load the first 5 bytes of the array
 Hrsout Str MyArray\5 ' Send 5-byte string.

The above example, has exactly the same function as the previous one. The only difference is
that the string is now constructed using Str as a command instead of a modifier.

Declares
There are several Declare directives for use with the Hrsout commands. These are: -

For HRSout
Declare HRsout_Pin Port . Pin
Declares the port and pin used for USART1 transmission (TX). The location of the port and pin
is dictated by the device's PPS (Peripheral Pin Select) options. Note that this declare will not
alter any PPS (Peripheral Pin Select) SFRs.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare Hserial_Baud Constant value
Sets the BAUD rate that will be used to transmit a value serially. The baud rate is calculated
using the Xtal frequency declared in the program. The default baud rate if the Declare is not
included in the program listing is 2400 baud.

Declare Hserial_Parity Odd or Even
Enables/Disables parity on the serial port. For both Hrsout and Hrsin The default serial data
format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop bit) or
7O1 (7data bits, odd parity, 1 stop bit) may be enabled using the Hserial_Parity declare.

 Declare Hserial_Parity = Even ' Use if even parity desired
 Declare Hserial_Parity = Odd ' Use if odd parity desired

Proton24 Compiler. Development Suite.

 242

Declare Hrsout_Pace 0 to 65535 microseconds (us)
Implements a delay between characters transmitted by the Hrsout command.

On occasion, the characters transmitted serially are in a stream that is too fast for the receiver
to catch, this results in missed characters. To alleviate this, a delay may be implemented be-
tween each individual character transmitted by Hrsout.

If the Declare is not used in the program, then the default is no delay between characters.

For HRsout2
Declare HRsout2_Pin Port . Pin
Declares the port and pin used for USART2 transmission (TX). The location of the port and pin
is dictated by the device's PPS (Peripheral Pin Select) options. Note that this declare will not
alter any PPS (Peripheral Pin Select) SFRs.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare Hserial2_Baud Constant value
Sets the BAUD rate that will be used to transmit a value serially. The baud rate is calculated
using the Xtal frequency declared in the program.

Declare Hserial2_Parity Odd or Even
Enables/Disables parity on the serial port. For both Hrsout2 and Hrsin2 The default serial data
format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop bit) or
7O1 (7data bits, odd parity, 1 stop bit) may be enabled using the Hserial2_Parity declare.

 Declare Hserial2_Parity = Even ' Use if even parity desired
 Declare Hserial2_Parity = Odd ' Use if odd parity desired

Declare Hrsout2_Pace 0 to 65535 microseconds (us)
Implements a delay between characters transmitted by the Hrsout2 command.

On occasion, the characters transmitted serially are in a stream that is too fast for the receiver
to catch, this results in missed characters. To alleviate this, a delay may be implemented be-
tween each individual character transmitted by Hrsout2.

If the Declare is not used in the program, then the default is no delay between characters.

For HRsout3
Declare HRsout3_Pin Port . Pin
Declares the port and pin used for USART3 transmission (TX). The location of the port and pin
is dictated by the device's PPS (Peripheral Pin Select) options. Note that this declare will not
alter any PPS (Peripheral Pin Select) SFRs.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare Hserial3_Baud Constant value
Sets the BAUD rate that will be used to transmit a value serially. The baud rate is calculated
using the Xtal frequency declared in the program.

Proton24 Compiler. Development Suite.

 243

Declare Hserial3_Parity Odd or Even
Enables/Disables parity on the serial port. For both Hrsout3 and Hrsin3 The default serial data
format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop bit) or
7O1 (7data bits, odd parity, 1 stop bit) may be enabled using the Hserial3_Parity declare.

 Declare Hserial3_Parity = Even ' Use if even parity desired
 Declare Hserial3_Parity = Odd ' Use if odd parity desired

Declare Hrsout3_Pace 0 to 65535 microseconds (us)
Implements a delay between characters transmitted by the HRsout3 command.

On occasion, the characters transmitted serially are in a stream that is too fast for the receiver
to catch, this results in missed characters. To alleviate this, a delay may be implemented be-
tween each individual character transmitted by Hrsout3.

If the Declare is not used in the program, then the default is no delay between characters.

For HRsout4
Declare HRsout4_Pin Port . Pin
Declares the port and pin used for USART4 transmission (TX). The location of the port and pin
is dictated by the device's PPS (Peripheral Pin Select) options. Note that this declare will not
alter any PPS (Peripheral Pin Select) SFRs.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare Hserial4_Baud Constant value
Sets the BAUD rate that will be used to transmit a value serially. The baud rate is calculated
using the Xtal frequency declared in the program.

Declare Hserial4_Parity Odd or Even
Enables/Disables parity on the serial port. For both Hrsout4 and Hrsin4 The default serial data
format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop bit) or
7O1 (7data bits, odd parity, 1 stop bit) may be enabled using the Hserial4_Parity declare.

 Declare Hserial4_Parity = Even ' Use if even parity desired
 Declare Hserial4_Parity = Odd ' Use if odd parity desired

Declare Hrsout4_Pace 0 to 65535 microseconds (us)
Implements a delay between characters transmitted by the Hrsout4 command.

On occasion, the characters transmitted serially are in a stream that is too fast for the receiver
to catch, this results in missed characters. To alleviate this, a delay may be implemented be-
tween each individual character transmitted by Hrsout4.

If the Declare is not used in the program, then the default is no delay between characters.

Notes.
The Hrsout commands can only be used with devices that contain a hardware USART. See
the specific device's data sheet for further information concerning the serial input pin as well as
other relevant parameters.

See also : Declare, Rsin, Rsout, Serin, Serout, Hrsin, Hserin, Hserout.

Proton24 Compiler. Development Suite.

 244

HrsoutLn, Hrsout2Ln, Hrsout3Ln, Hrsout4Ln

Syntax
HrsoutLn Item {, Item... }
Hrsout2Ln Item {, Item... }
Hrsout3Ln Item {, Item... }
Hrsout4Ln Item {, Item... }

Overview
Transmit one or more Items from the hardware serial port on devices that contain one or more
USART peripherals and terminate with a Carriage Return(13) or Carriage Return(13) Line
Feed(10) or Line Feed(10) Carriage Return(13). The syntax and operators are exactly the same
as Hrsout, Hrsout2, Hrsout3 and Hrsout4. If Hrsout2Ln, Hrsout3Ln, or Hrsout4Ln are
used, the device must contain more than 1 USART.

Parameters
Item may be a constant, variable, expression, string list, or inline command.
There are no operators as such, instead there are modifiers. See the section for Hrsout for
more details.

Declares
There are 4 declares for the HrsoutXLn commands. Each one is for the particular command.

 Declare Hserial1_Terminator = CRLF or LFCR or CR
 Declare Hserial2_Terminator = CRLF or LFCR or CR
 Declare Hserial3_Terminator = CRLF or LFCR or CR
 Declare Hserial4_Terminator = CRLF or LFCR or CR

The parameter CR will transmit a single value of 13 at the end of transmission.
The parameter CRLF will transmit a value of 13 then 10 at the end of transmission.
The parameter LFCR will transmit a value of 10 then 13 at the end of transmission.

See also : Declare, Rsin, Rsout, Serin, Serout, Hrsout, Hrsin, Hserin, Hserout.

Proton24 Compiler. Development Suite.

 245

Hserin, Hserin2, Hserin3, Hserin4

Syntax
Hserin Timeout, Timeout Label, Parity Error Label, [Modifiers, Variable {, Variable... }]

Overview
Receive one or more values from the serial port on devices that contain a hardware USART.
(Compatible with the melabs compiler)

Parameters
Timeout is an optional value for the length of time the Hserin command will wait before jump-
ing to label Timeout Label. Timeout is specified in 1 millisecond units.
Timeout Label is an optional valid BASIC label where Hserin will jump to in the event that a
character has not been received within the time specified by Timeout.
Parity Error Label is an optional valid BASIC label where Hserin will jump to in the event that
a Parity error is received. Parity is set using Declares. Parity Error detecting is not supported in
the inline version of Hserin (first syntax example above).
Modifier is one of the many formatting modifiers, explained below.
Variable is a Bit, Byte, Word, or Dword variable, that will be loaded by Hserin.

Example
' Receive values serially and timeout if no reception after 1 second
 Device = 24FJ64GA002
 Declare Xtal = 32
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1
 Declare Hrsout1_Pin = PORTB.15 ' Select the pin for RX with USART1

Dim MyByte as Byte

 CLKDIV = 0 ' CPU peripheral clock ratio set to 1:1
Write_OSCCONH(%00010000) ' Enable PLL
RPOR7 = 3 ' Make RP14(PORTB.14) the pin for UART1 TX
RPINR18 = 15 ' Make RP15(PORTB.15) the pin for UART1 RX

 Do

 Hserin 1000, Timeout, [MyByte] ' Receive a byte serially into MyByte
 Hrsout Dec MyByte ' Re-Transmit the byte received
 Loop ' Loop forever
Timeout:
 HrsoutLn "Timed Out" ' Transmit an error if Hserin timed out
'
' For internal oscillator with PLL
'

Config Config1 = JTAGEN_OFF, GCP_OFF, GWRP_OFF, BKBUG_OFF, COE_OFF,_
 ICS_PGx1, FWDTEN_OFF, WINDIS_OFF, FWPSA_PR128, WDTPOST_PS256
Config Config2 = IOL1WAY_OFF, COE_OFF, IESO_OFF, FNOSC_FRCPLL,_
 FCKSM_CSDCMD, OSCIOFNC_ON, POSCMOD_NONE

Proton24 Compiler. Development Suite.

 246

Hserin Modifiers.
As we already know, Hserin will wait for and receive a single byte of data, and store it in a vari-
able . If the microcontroller was connected to a PC running a terminal program and the user
pressed the "A" key on the keyboard, after the Hserin command executed, the variable would
contain 65, which is the ASCII code for the letter "A"

What would happen if the user pressed the "1" key? The result would be that the variable would
contain the value 49 (the ASCII code for the character "1"). This is an important point to re-
member: every time you press a character on the keyboard, the computer receives the ASCII
value of that character. It is up to the receiving side to interpret the values as necessary. In this
case, perhaps we actually wanted the variable to end up with the value 1, rather than the ASCII
code 49.

The Hserin command provides a modifier, called the decimal modifier, which will interpret this
for us. Look at the following code: -

 Dim SerData as Byte
 Hserin [Dec SerData]

Notice the decimal modifier in the Hserin command that appears just to the left of the SerData
variable. This tells Hserin to convert incoming text representing decimal numbers into true
decimal form and store the result in SerData. If the user running the terminal software pressed
the "1", "2" and then "3" keys followed by a space or other non-numeric text, the value 123 will
be stored in the variable SerData, allowing the rest of the program to perform any numeric op-
eration on the variable.

Without the decimal modifier, however, you would have been forced to receive each character
("1", "2" and "3") separately, and then would still have to do some manual conversion to arrive
at the number 123 (one hundred twenty three) before you can do the desired calculations on it.

The decimal modifier is designed to seek out text that represents decimal numbers. The char-
acters that represent decimal numbers are the characters "0" through "9". Once the Hserin
command is asked to use the decimal modifier for a particular variable, it monitors the incoming
serial data, looking for the first decimal character. Once it finds the first decimal character, it will
continue looking for more (accumulating the entire multi-digit number) until is finds a non-
decimal numeric character. Remember that it will not finish until it finds at least one decimal
character followed by at least one non-decimal character.

To illustrate this further, examine the following examples (assuming we're using the same code
example as above): -

Serial input: "ABC"
Result: The program halts at the Hserin command, continuously waiting for decimal text.

Serial input: "123" (with no characters following it)
Result: The program halts at the Hserin command. It recognises the characters "1", "2" and
"3" as the number one hundred twenty three, but since no characters follow the "3", it waits
continuously, since there's no way to tell whether 123 is the entire number or not.

Proton24 Compiler. Development Suite.

 247

Serial input: "123" (followed by a space character)
Result: Similar to the above example, except once the space character is received, the pro-
gram knows the entire number is 123, and stores this value in SerData. The Hserin command
then ends, allowing the next line of code to run.

Serial input: "123A"
Result: Same as the example above. The "A" character, just like the space character, is the
first non-decimal text after the number 123, indicating to the program that it has received the
entire number.

Serial input: "ABCD123EFGH"
Result: Similar to examples 3 and 4 above. The characters "ABCD" are ignored (since they're
not decimal text), the characters "123" are evaluated to be the number 123 and the following
character, "E", indicates to the program that it has received the entire number.

The final result of the Dec modifier is limited to 16 bits (up to the value 65535). If a value larger
than this is received by the decimal modifier, the end result will be incorrect because the result
rolled-over the maximum 16-bit value. Therefore, Hserin modifiers may not (at this time) be
used to load Dword (32-bit) variables.

The decimal modifier is only one of a family of conversion modifiers available with Hserin See
below for a list of available conversion modifiers. All of the conversion modifiers work similar to
the decimal modifier (as described above). The modifiers receive bytes of data, waiting for the
first byte that falls within the range of characters they accept (e.g., "0" or "1" for binary, "0" to
"9" for decimal, "0" to "9" and "A" to "F" for hex. Once they receive a numeric character, they
keep accepting input until a non-numeric character arrives, or in the case of the fixed length
modifiers, the maximum specified number of digits arrives.

While very effective at filtering and converting input text, the modifiers aren't completely fool-
proof. As mentioned before, many conversion modifiers will keep accepting text until the first
non-numeric text arrives, even if the resulting value exceeds the size of the variable. After
Hserin, a Byte variable will contain the lowest 8 bits of the value entered and a Word (16-bits)
would contain the lowest 16 bits. You can control this to some degree by using a modifier that
specifies the number of digits, such as Dec2, which would accept values only in the range of 0
to 99.

 Conversion Modifier Type of Number Numeric Characters Accepted
 Dec{1..10} Decimal, optionally limited 0 through 9
 to 1 - 10 digits
 Hex{1..8} Hexadecimal, optionally limited 0 through 9,
 to 1 - 8 digits A through F
 Bin{1..32} Binary, optionally limited 0, 1
 to 1 - 32 digits

A variable preceded by Bin will receive the ASCII representation of its binary value.
For example, if Bin Var1 is specified and "1000" is received, Var1 will be set to 8.

A variable preceded by Dec will receive the ASCII representation of its decimal value.
For example, if Dec Var1 is specified and "123" is received, Var1 will be set to 123.

Proton24 Compiler. Development Suite.

 248

A variable preceded by Hex will receive the ASCII representation of its hexadecimal value.
For example, if Hex Var1 is specified and "FE" is received, Var1 will be set to 254.

Skipfollowed by a count will skip that many characters in the input stream.
For example, Skip 4 will skip 4 characters.

The Hserin command can be configured to wait for a specified sequence of characters before it
retrieves any additional input. For example, suppose a device attached to the microcontroller is
known to send many different sequences of data, but the only data you wish to observe hap-
pens to appear right after the unique characters, "XYZ". A modifier named Wait can be used for
this purpose: -

 Hserin [Wait("XYZ"), SerData]

The above code waits for the characters "X", "Y" and "Z" to be received, in that order, then it
receives the next data byte and places it into variable SerData.

Str modifier.
The Hserin command also has a modifier for handling a string of characters, named Str.

The Str modifier is used for receiving a string of characters into a byte array variable.

A string is a set of characters that are arranged or accessed in a certain order. The characters
"ABC" would be stored in a string with the "A" first, followed by the "B" then followed by the "C".
A byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string "ABC" would be stored in a byte
array containing three bytes (elements).

Below is an example that receives ten bytes and stores them in the 10-byte array, SerString: -

 Dim SerString[10] as Byte ' Create a 10-byte array.
 Hserin [Str SerString] ' Fill the array with received data.
 HrsoutLn Str SerString ' Display the string.

If the amount of received characters is not enough to fill the entire array, then a formatter may
be placed after the array's name, which will only receive characters until the specified length is
reached. For example: -

 Dim SerString[10] as Byte ' Create a 10-byte array.
 Hserin [Str SerString\5] ' Fill the first 5-bytes of the array
 Hrsout Str SerString\5 ' Display the 5-character string.

The example above illustrates how to fill only the first n bytes of an array, and then how to dis-
play only the first n bytes of the array. n refers to the value placed after the backslash.

Because of its complexity, serial communication can be rather difficult to work with at times. Us-
ing the guidelines below when developing a project using the Hserin and Hserout commands
may help to eliminate some obvious errors: -

Proton24 Compiler. Development Suite.

 249

Always build your project in steps.
Start with small, manageable pieces of code, (that deal with serial communication) and test
them, one individually.
Add more and more small pieces, testing them each time, as you go.
Never write a large portion of code that works with serial communication without testing its
smallest workable pieces first.

Pay attention to timing.
Be careful to calculate and overestimate the amount of time, operations should take within the
microcontroller for a given oscillator frequency. Misunderstanding the timing constraints is the
source of most problems with code that communicate serially. If the serial communication in
your project is bi-directional, the above statement is even more critical.

Pay attention to wiring.
Take extra time to study and verify serial communication wiring diagrams. A mistake in wiring
can cause strange problems in communication, or no communication at all. Make sure to con-
nect the ground pins (Vss) between the devices that are communicating serially.

Verify port setting on the PC and in the Hserin / Hserout commands.
Unmatched settings on the sender and receiver side will cause garbled data transfers or no
data transfers. This is never more critical than when a line transceiver is used(i.e. MAX232).
Always remember that a line transceiver inverts the serial polarity.
If the serial data received is unreadable, it is most likely caused by a baud rate setting error, or
a polarity error.

If receiving data from another device that is not a microcontroller, try to use baud rates of 9600
and below, or alternatively, use a higher frequency crystal.

Because of additional overheads in the microcontroller, and the fact that the Hserin command
offers a 8 level hardware receive buffer for serial communication, received data may sometimes
be missed or garbled. If this occurs, try lowering the baud rate, or increasing the crystal fre-
quency. Using simple variables (not arrays) will also increase the chance that the microcontrol-
ler will receive the data properly.

Declares
There are several Declare directives for use with the Hserin commands. These are the same
declares as used by the HRsin commands

Notes.
The Hserin commands can only be used with devices that contain a hardware USART. See
the specific device's data sheet for further information concerning the serial input pin as well as
other relevant parameters.

See also : Declare, Hserout, Hrsin, Hrsout, Rsin, Rsout.

Proton24 Compiler. Development Suite.

 250

Hserout, Hserout2, Hserout3, Hserout4

Syntax
Hserout [Item {, Item... }]

Overview
Transmit one or more Items from the USART on devices that support asynchronous serial
communications in hardware.

Parameters
Item may be a constant, variable, expression, string list, or inline command.
There are no operands as such, instead there are modifiers. For example, if an at sign'@' pre-
cedes an Item, the ASCII representation for each digit is transmitted.

The modifiers are listed below: -

 Modifier Operation

 Bin{1..32} Send binary digits
 Dec{1..10} Send decimal digits
 Hex{1..8} Send hexadecimal digits
 Sbin{1..32} Send signed binary digits
 Sdec{1..10} Send signed decimal digits
 Shex{1..8} Send signed hexadecimal digits
 Ibin{1..32} Send binary digits with a preceding '%' identifier
 Idec{1..10} Send decimal digits with a preceding '#' identifier
 Ihex{1..8} Send hexadecimal digits with a preceding '$' identifier
 ISbin{1..32} Send signed binary digits with a preceding '%' identifier
 ISdec{1..10} Send signed decimal digits with a preceding '#' identifier
 IShex{1..8} Send signed hexadecimal digits with a preceding '$' identifier

 Rep c\n Send character c repeated n times
 Str array\n Send all or part of an array
 Cstr Label Send string data defined in code memory.

The numbers after the Bin, Dec, and Hex modifiers are optional. If they are omitted, then the
default is all the digits that make up the value will be displayed.

If a floating point variable is to be displayed, then the digits after the Dec modifier determine
how many remainder digits are send. i.e. numbers after the decimal point.

 Dim MyFloat as Float
 MyFloat = 3.145
 Hserout [Dec2 MyFloat] ' Send 2 values after the decimal point

The above program will send 3.14

Proton24 Compiler. Development Suite.

 251

If the digit after the Dec modifier is omitted, then 3 values will be displayed after the decimal
point.

 Dim MyFloat as Float
 MyFloat = 3.1456
 Hserout [Dec MyFloat] ' Send 3 values after the decimal point

The above program will send 3.145

There is no need to use the Sdec modifier for signed floating point values, as the compiler's
Dec modifier will automatically display a minus result: -

 Dim MyFloat as Float
 MyFloat = -3.1456
 Hserout [Dec MyFloat] ' Send 3 values after the decimal point

The above program will transmit the ASCII representation of -3.145

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim MyByte as Byte
 Dim MyWord as Word
 Dim MyDword as Dword

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 Hserout ["Hello World"] ' Display the text "Hello World"
 Hserout ["Var1= ", Dec MyByte] ' Display the decimal value of MyByte
 Hserout ["Var1= ", Hex MyByte] ' Display the hexadecimal value of MyByte
 Hserout ["Var1= ", Bin MyByte] ' Display the binary value of MyByte
 ' Display 6 hex characters of a Dword type variable
 Hserout ["MyDword= ", Hex6 MyDword]

The Cstr modifier is used in conjunction with code memory strings. The Dim as Code directive
is used for initially creating the string of characters: -

Dim String1 as Code = "Hello World", 0

The above line of case will create, in flash memory, the values that make up the ASCII text
"Hello World", at address String1. Note the null terminator after the ASCII text.

Null terminated means that a zero (null) is placed at the end of the string of ASCII characters to
signal that the string has finished.

To display, or transmit this string of characters, the following command structure could be used:

 Hserout [Cstr String1]

The label that declared the address where the list of code memory values resided, now be-
comes the string's name. In a large program with lots of text formatting, this type of structure
can save quite literally hundreds of bytes of valuable code space.

Try both these small programs, and you'll see that using Cstr saves a few bytes of code: -

Proton24 Compiler. Development Suite.

 252

First the standard way of displaying text: -

 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

 Hserout ["Hello World\r"]
 Hserout ["How are you?\r"]
 Hserout ["I am fine!\r"]

Now using the Cstr modifier: -
 Dim Text1 as Code = "Hello World", 0

Dim Text2 as Code = "How are you?\r", 0
Dim Text3 as Code = "I am fine!\r", 0

 Hserout [Cstr Text1]
 Hserout [Cstr Text2]
 Hserout [Cstr Text3]

Again, note the null terminators after the ASCII text in the code memory strings. Without these,
the device will continue to transmit data until a value 0 is reached.

The Str modifier is used for sending a string of bytes from a byte array variable. A string is a set
of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3 would
be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A byte ar-
ray is a similar concept to a string; it contains data that is arranged in a certain order. Each of
the elements in an array is the same size. The string 1,2,3 would be stored in a byte array con-
taining three bytes (elements).

Below is an example that displays four bytes (from a byte array): -

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 MyArray [0] = "H" ' Load the first 5 bytes of the array
 MyArray [1] = "E" ' With the data to send
 MyArray [2] = "L"
 MyArray [3] = "L"
 MyArray [4] = "O"
 Hserout [Str MyArray\5] ' Display a 5-byte string.

Note that we use the optional \n argument of Str. If we didn't specify this, the microcontroller
would try to keep sending characters until all 10 bytes of the array were transmitted. Since we
do not wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 5
bytes.

The above example may also be written as: -

 Dim MyArray [10] as Byte ' Create a 10-byte array.
 Str MyArray = "Hello" ' Load the first 5 bytes of the array
 Hserout [Str MyArray\5] ' Send 5-byte string.

The above example, has exactly the same function as the previous one. The only difference is
that the string is now constructed using Str as a command instead of a modifier.

Proton24 Compiler. Development Suite.

 253

Declares
There are several Declare directives for use with the Hserout commands. These are the same
declares as used by the HRsout commands.

Notes.
Hserout can only be used with devices that contain a hardware USART. See the specific de-
vice's data sheet for further information concerning the serial input pin as well as other relevant
parameters.

See also : Declare, Rsin, Rsout, Serin, Serout, Hserin, Hserin.

Proton24 Compiler. Development Suite.

 254

HseroutLn, Hserout2Ln, Hserout3Ln, Hserout4Ln

Syntax
HseroutLn [Item {, Item... }]
Hserout2Ln [Item {, Item... }]
Hserout3Ln [Item {, Item... }]
Hserout4Ln [Item {, Item... }]

Overview
Transmit one or more Items from the hardware serial port on devices that contain one or more
USART peripherals and terminate with a Carriage Return(13) or Carriage Return(13) Line
Feed(10) or Line Feed(10) Carriage Return(13). The syntax and operators are exactly the same
as Hserout, Hserout2, Hserout3 and Hserout4. If Hserout2Ln, Hserout3Ln, or HseroutLn
are used, the device must contain more than 1 USART.

Parameters
Item may be a constant, variable, expression, string list, modifier, or inline command. See the
section on Hserout for more details.

Declares
There are 4 declares for the HseroutXLn commands. Each one is for the particular command.

 Declare Hserial1_Terminator = CRLF or LFCR or CR
 Declare Hserial2_Terminator = CRLF or LFCR or CR
 Declare Hserial3_Terminator = CRLF or LFCR or CR
 Declare Hserial4_Terminator = CRLF or LFCR or CR

The parameter CR will transmit a single value of 13 at the end of transmission.
The parameter CRLF will transmit a value of 13 then 10 at the end of transmission.
The parameter LFCR will transmit a value of 10 then 13 at the end of transmission.

See also : Declare, Rsin, Rsout, Serin, Serout, Hrsout, HrsoutLn, Hrsin, Hserin, Hserout.

Proton24 Compiler. Development Suite.

 255

HSerial1_ChangeBaud

Syntax
HSerial1_ChangeBaud Baud Value, { Display Actual Baud }

Overview
Changes the Baud rate of USART1 for the HRsout/HRsin and HSerout/HSerin commands.

Parameters
Baud Value is a constant value that signifies which Baud rate to set USART1 at.
Display Actual Baud is an optional constant of 0 or 1 that will produce a reminder message in
the IDE that indicates what the actual Baud rate is, and its error ratio.

Example

Device = 24FJ64GA306
 Declare Xtal = 32
 Declare HSerial_Baud = 9600 ' Set the Baud rate for USART1 to 9600

Declare HRSOut1_Pin PORTB.0 ' Set PORTB.0 as USART1 output pin

RPOR0 = 3 ' Configure the PPS for USART1 on PORTB.0

 HRsoutLn "Hello World at 9600 Baud"
 DelayMs 2000 ' Wait for 2 seconds

 HSerial1_ChangeBaud 115200 ' Change the Baud rate to 115200
 HRsoutLn "Hello World at 115200 Baud"
 Stop

Proton24 Compiler. Development Suite.

 256

HSerial2_ChangeBaud

Syntax
HSerial2_ChangeBaud Baud Value, { Display Actual Baud }

Overview
Changes the Baud rate of USART2 for the HRsout2/HRsin2 and HSerout2/HSerin2 com-
mands.

Parameters
Baud Value is a constant value that signifies which Baud rate to set USART2 at.
Display Actual Baud is an optional constant of 0 or 1 that will produce a reminder message in
the IDE that indicates what the actual Baud rate is, and its error ratio.

Example

Device = 24FJ64GA306
 Declare Xtal = 32
 Declare HSerial2_Baud = 9600 ' Set the Baud rate for USART2 to 9600

Declare HRSOut2_Pin PORTB.0 ' Set PORTB.0 as USART2 output pin

RPOR0 = 5 ' Configure the PPS for USART2 on PORTB.0

 Hrsout2Ln "Hello World at 9600 Baud"
 DelayMs 2000 ' Wait for 2 seconds

 HSerial2_ChangeBaud 115200 ' Change the Baud rate to 115200
 Hrsout2Ln "Hello World at 115200 Baud"
 Stop

Proton24 Compiler. Development Suite.

 257

HSerial3_ChangeBaud

Syntax
HSerial3_ChangeBaud Baud Value, { Display Actual Baud }

Overview
Changes the Baud rate of USART3 for the HRsout3/HRsin3 and HSerout3/HSerin3 com-
mands.

Parameters
Baud Value is a constant value that signifies which Baud rate to set USART3 at.
Display Actual Baud is an optional constant of 0 or 1 that will produce a reminder message in
the IDE that indicates what the actual Baud rate is, and its error ratio.

Example

Device = 24FJ64GA306 ' Use a device that has 4 USARTs
 Declare Xtal = 32
 Declare HSerial3_Baud = 9600 ' Set the Baud rate for USART3 to 9600

Declare HRSOut3_Pin PORTB.0 ' Set PORTB.0 as USART3 output pin

RPOR0 = 28 ' Configure the PPS for USART3 on PORTB.0

 HRsout3Ln "Hello World at 9600 Baud"
 DelayMs 2000 ' Wait for 2 seconds

 HSerial3_ChangeBaud 115200 ' Change the Baud rate to 115200
 HRsoutLn "Hello World at 115200 Baud"
 Stop

Proton24 Compiler. Development Suite.

 258

HSerial4_ChangeBaud

Syntax
HSerial4_ChangeBaud Baud Value, { Display Actual Baud }

Overview
Changes the Baud rate of USART4 for the HRsout4/HRsin4 and HSerout4/HSerin4 com-
mands.

Parameters
Baud Value is a constant value that signifies which Baud rate to set USART4 at.
Display Actual Baud is an optional constant of 0 or 1 that will produce a reminder message in
the IDE that indicates what the actual Baud rate is, and its error ratio.

Example

Device = 24FJ64GA306 ' Use a device that has 4 USARTs
 Declare Xtal = 32
 Declare HSerial4_Baud = 9600 ' Set the Baud rate for USART4 to 9600

Declare HRSOut4_Pin PORTB.0 ' Set PORTB.0 as USART4 output pin

RPOR0 = 30 ' Configure the PPS for USART1 on PORTB.0

 HRsout4Ln "Hello World at 9600 Baud"
 DelayMs 2000 ' Wait for 2 seconds

 HSerial4_ChangeBaud 115200 ' Change the Baud rate to 115200
 Hrsout4Ln "Hello World at 115200 Baud"
 Stop

Proton24 Compiler. Development Suite.

 259

I2Cin

Syntax
I2Cin Dpin, Cpin, Control, { Address }, [Variable {, Variable…}]

Overview
Receives a value from the I2C bus, and places it into Variable/s.

Parameters
Dpin is a Port.Pin constant that specifies the I/O pin that will be connected to the I2C device's
data line (SDA). This pin's I/O direction will be changed to input and will remain in that state af-
ter the instruction is completed.
Cpin is a Port.Pin constant that specifies the I/O pin that will be connected to the I2C device's
clock line (SCL). This pin's I/O direction will be changed to input and will remain in that state
after the instruction is completed.
Variable is a user defined variable of type Bit, Byte, Word, Dword, Float, Array.
Control is a constant value or a byte sized variable expression.
Address is an optional constant value or a variable expression.

The I2Cin command operates as an I2C master, and may be used to interface with any device that
complies with the 2-wire I2C protocol. The most significant 7-bits of control byte contain the control code
and the slave address of the device being interfaced with. Bit-0 is the flag that indicates whether a read
or write command is being implemented.

For example, if we were interfacing to an external eeprom such as the 24LC32, the control code would
be %10100001 or $A1. The most significant 4-bits (1010) are the eeprom's unique slave address. Bits 1
to 3 reflect the three address pins of the eeprom. And bit-0 is set to signify that we wish to read from the
eeprom. Note that this bit is automatically set by the I2Cin command, regardless of its initial setting.

Example
' Receive a byte from the I2C bus and place it into variable Var1.
 Device = 24FJ64GA002
 Declare Xtal = 16

 Dim MyByte as Byte ' We'll only read 8-bits
 Dim Address as Word ' 16-bit address required
 Symbol Control %10100001 ' Target an eeprom
 Symbol SDA = PORTC.3 ' Alias the SDA (Data) line
 Symbol SCL = PORTC.4 ' Alias the SSL (Clock) line

 Address = 20 ' Read the value at address 20
 I2Cin SDA, SCL, Control, Address, [MyByte] ' Read the byte from the eeprom

Address is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in
this position, the size of address is dictated by the size of the variable used (byte or word). In
the case of the previous eeprom interfacing, the 24LC32 eeprom requires a 16-bit address.
While the smaller types require an 8-bit address. Make sure you assign the right size address
for the device interfaced with, or you may not achieve the results you intended.

Proton24 Compiler. Development Suite.

 260

The I2Cin command allows differing variable assignments. For example: -

 Dim Var1 as Byte
 Dim MyWord as Word
 I2Cin SDA, SCL, Control, Address, [Var1, MyWord]

The above example will receive two values from the bus, the first being an 8-bit value dictated
by the size of variable Var1 which has been declared as a byte. And a 16-bit value, this time
dictated by the size of the variable MyWord which has been declared as a word. Of course, bit
type variables may also be used, but in most cases these are not of any practical use as they
still take up a byte within the eeprom.

Declares
See I2Cout for declare explanations.

Notes.
When the I2Cin command is used, the appropriate SDA and SCL Port and Pin are automati-
cally setup as inputs, and outputs. Because the I2C protocol calls for an open-collector inter-
face, pull-up resistors are required on both the SDA and SCL lines. Values of 4.7KΩ to 10KΩ
will suffice.

Str modifier with I2Cin
Using the Str modifier allows the I2Cin command to transfer the bytes received from the I2C
bus directly into a byte array. If the amount of received characters is not enough to fill the entire
array, then a formatter may be placed after the array's name, which will only receive characters
until the specified length is reached. An example of each is shown below: -

 Device = 24FJ64GA002
 Declare Xtal = 16

 Dim Array[10] as Byte ' Create an array of 10 bytes
 Dim Address as Byte ' Create a word sized variable
'
' Load data into all the array
'
 I2Cin SDA, SCL, %10100000, Address, [Str Array]
'
' Load data into only the first 5 elements of the array
'
 I2Cin SDA, SCL, %10100000, Address, [Str Array\5]

See Also: BusAck, Bstart, Brestart, Bstop, Busout, HbStart, HbRestart
 HbusAck, Hbusin, Hbusout, I2Cout

Proton24 Compiler. Development Suite.

 261

I2Cout

Syntax
I2Cout Control, { Address }, [OutputData]

Overview
Transmit a value to the I2C bus, by first sending the control and optional address.

Parameters
Dpin is a Port.Pin constant that specifies the I/O pin that will be connected to the I2C device's
data line (SDA). This pin's I/O direction will be changed to input and will remain in that state af-
ter the instruction is completed.
 Cpin is a Port.Pin constant that specifies the I/O pin that will be connected to the I2C device's
clock line (SCL). This pin's I/O direction will be changed to output.
 Control is a constant value or a byte sized variable expression.
 Address is an optional constant, variable, or expression.
 OutputData is a list of variables, constants, expressions and modifiers that informs I2Cout how
to format outgoing data. I2Cout can transmit individual or repeating bytes, convert values into
decimal, hex or binary text representations, or transmit strings of bytes from variable arrays.

These actions can be combined in any order in the OutputData list.

The I2Cout command operates as an I2C master and may be used to interface with any device
that complies with the 2-wire I2C protocol. The most significant 7-bits of control byte contain the
control code and the slave address of the device being interfaced with. Bit-0 is the flag that in-
dicates whether a read or write command is being implemented.

For example, if we were interfacing to an external eeprom such as the 24LC32, the control
code would be %10100000 or $A0. The most significant 4-bits (1010) are the eeprom's unique
slave address. Bits 1 to 3 reflect the three address pins of the eeprom. And Bit-0 is clear to sig-
nify that we wish to write to the eeprom. Note that this bit is automatically cleared by the I2Cout
command, regardless of its initial value.

Example
' Send a byte to the I2C bus.
 Device = 24FJ64GA002
 Declare Xtal = 16

 Dim MyByte as Byte ' We'll only read 8-bits
 Dim Address as Word ' 16-bit address required
 Symbol Control = %10100000 ' Target an eeprom
 Symbol SDA = PORTC.3 ' Alias the SDA (Data) line
 Symbol SCL = PORTC.4 ' Alias the SSL (Clock) line

Address = 20 ' Write to address 20
 MyByte = 200 ' The value place into address 20
 I2Cout SDA, SCL, Control, Address, [MyByte] ' Send the byte to the eeprom
 DelayMs 10 ' Allow time for allocation of byte

Address is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in
this position, the size of address is dictated by the size of the variable used (byte or word). In
the case of the above eeprom interfacing, the 24LC32 eeprom requires a 16-bit address. While
the smaller types require an 8-bit address. Make sure you assign the right size address for the
device interfaced with, or you may not achieve the results you intended.

Proton24 Compiler. Development Suite.

 262

The value sent to the bus depends on the size of the variables used. For example: -

 Dim MyWord as Word ' Create a Word size variable
 I2Cout SDA, SCL, Control, Address, [MyWord]

Will send a 16-bit value to the bus. While: -

 Dim MyByte as Byte ' Create a Byte size variable
 I2Cout SDA, SCL, Control, Address, [MyByte]

Will send an 8-bit value to the bus. Using more than one variable within the brackets allows dif-
fering variable sizes to be sent. For example: -

 Dim MyByte as Byte
 Dim MyWord as Word
 I2Cout SDA, SCL, Control, Address, [MyByte, MyWord]

Will send two values to the bus, the first being an 8-bit value dictated by the size of variable
MyByte which has been declared as a byte. And a 16-bit value, this time dictated by the size of
the variable MyWord which has been declared as a word. Of course, bit type variables may
also be used, but in most cases these are not of any practical use as they still take up a byte
within the eeprom.

A string of characters can also be transmitted, by enclosing them in quotes: -

 I2Cout SDA, SCL, Control, Address, ["Hello World", MyByte, MyWord]

Str modifier with I2Cout
The Str modifier is used for transmitting a string of bytes from a byte array variable. A string is a
set of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3
would be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A
byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string 1,2,3 would be stored in a byte
array containing three bytes (elements). Below is an example that sends four bytes from an ar-
ray: -

 Device = 24FJ64GA002
 Declare Xtal = 16

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 MyArray [0] = "A" ' Load the first 4 bytes of the array
 MyArray [1] = "B" ' With the data to send
 MyArray [2] = "C"
 MyArray [3] = "D"

' Send a 4-byte string
 I2Cout SDA, SCL, %10100000, Address, [Str MyArray\4]

Note that we use the optional \n argument of Str. If we didn't specify this, the program would try
to keep sending characters until all 10 bytes of the array were transmitted. Since we do not
wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 4 bytes.

Proton24 Compiler. Development Suite.

 263

Declares
There are two Declare directives for use with I2Cout. These are: -

Declare I2C_Slow_Bus On - Off or 1 – 0
Slows the bus speed when using an oscillator higher than 4MHz. The standard speed for the
I2C bus is 100KHz. Some devices use a higher bus speed of 400KHz. If you use an 8MHz or
higher oscillator, the bus speed may exceed the devices specs, which will result in intermittent
transactions, or in some cases, no transactions at all. Therefore, use this Declare if you are not
sure of the device's spec. The datasheet for the device used will inform you of its bus speed.

Declare I2C_Bus_SCL On - Off, 1 - 0
Eliminates the necessity for a pull-up resistor on the SCL line.

The I2C protocol dictates that a pull-up resistor is required on both the SCL and SDA lines,
however, this is not always possible due to circuit restrictions etc, so once the I2C_Bus_SCL
On Declare is issued at the top of the program, the resistor on the SCL line can be omitted
from the circuit. The default for the compiler if the I2C_Bus_SCL Declare is not issued, is that
a pull-up resistor is required.

Notes.
When the I2Cout command is used, the appropriate SDA and SCL Port and Pin are automati-
cally setup as inputs, and outputs. Because the I2C protocol calls for an open-collector inter-
face, pull-up resistors are required on both the SDA and SCL lines. Values of 4.7KΩ to 10KΩ
will suffice.

You may imagine that it's limiting having a fixed set of pins for the I2C interface, but you must
remember that several different devices may be attached to a single bus, each having a unique
slave address. Which means there is usually no need to use up more than two pins on the mi-
crocontroller in order to interface to many devices.

See Also: BusAck, Bstart, Brestart, Bstop, Busin, HbStart, HbRestart
 HbusAck, Hbusin, Hbusout, I2Cin

Proton24 Compiler. Development Suite.

 264

If..Then..ElseIf..Else..EndIf

Syntax
If Comparison Then Instruction : { Instruction }

Or, you can use the single line form syntax:

If Comparison Then Instruction : { Instruction } : ElseIf Comparison Then Instruction : Else In-
struction

Or, you can use the block form syntax:

If Comparison Then
Instruction(s)
ElseIf Comparison Then
Instruction(s)
{
ElseIf Comparison Then
Instruction(s)
 }
Else
Instruction(s)
EndIf

The curly braces signify optional conditions.

Overview
Evaluates the comparison and, if it fulfils the criteria, executes expression. If comparison is not
fulfilled the instruction is ignored, unless an Else directive is used, in which case the code after
it is implemented until the EndIf is found.

When all the instruction are on the same line as the If-Then statement, all the instructions on
the line are carried out if the condition is fulfilled.

Parameters
Comparison is composed of variables, numbers and comparators.
Instruction is the statement to be executed should the comparison fulfil the If criteria

Example 1
 Device = 24FJ64GA002
 Declare Xtal = 16
 Symbol LED = PORTB.4

MyByte = 3
 Low LED
 If MyByte > 4 Then High LED : DelayMs 500 : Low LED

In the above example, MyByte is not greater than 4 so the If criteria isn't fulfilled. Consequently,
the High LED statement is never executed leaving the state of port pin PORTB.4 low. However,
if we change the value of variable Var1 to 5, then the LED will turn on for 500ms then off, be-
cause MyByte is now greater than 4, so fulfills the comparison criteria.

Proton24 Compiler. Development Suite.

 265

A second form of If, evaluates the expression and if it is true then the first block of instructions
is executed. If it is false then the second block (after the Else) is executed.

The program continues after the EndIf instruction.

The Else is optional. If it is missed out then if the expression is false the program continues af-
ter the EndIf line.

Example 2
 If MyVar1 & 1 = 0 Then
 MyVar2 = 0
 MyVar3 = 1
 Else
 MyVar2 = 1
 EndIf
 If MyVar4 = 1 Then
 MyVar2 = 0
 MyVar3 = 0
 EndIf

Example 3
 If MyVar1 = 10 Then
 High LED1
 ElseIf MyVar1 = 20 Then
 High LED2
 Else
 High LED3
 EndIf

A forth form of If, allows the Else or ElseIf to be placed on the same line as the If: -

If MyVar1 = 10 Then High LED1 : ElseIf MyVar1 = 20 Then High LED2 : Else : High LED3

Notice that there is no EndIf instruction. The comparison is automatically terminated by the end
of line condition. So in the above example, if MyVar1 is equal to 10 then LED1 will illuminate, if
MyVar1 equals 20 then LED will illuminate, otherwise, LED3 will illuminate.

The If statement allows any type of variable, register or constant to be compared. A common
use for this is checking a Port bit: -

 If PORTA.0 = 1 Then High LED : Else : Low LED

Any commands on the same line after Then will only be executed if the comparison if fulfilled: -

 If MyVar1 = 1 Then High LED : DelayMs 500 : Low LED

Notes.
A GoTo command is optional after the Then: -

 If PORTB.0 = 1 Then Label

Then always required.
The Proton24 compiler relies heavily on the Then part. Therefore, if the Then part of a con-
struct is left out of the code listing, a Syntax Error will be produced.

See also : Boolean Logic Operators, Select..Case..EndSelect.

Proton24 Compiler. Development Suite.

 266

Include

Syntax
Include "Filename"

Overview
Include another file at the current point in the compilation. All the lines in the new file are com-
piled as if they were in the current file at the point of the Include directive.

A common use for the include command is shown in the example below. Here a small master
program is used to include a number of smaller library files which are all compiled together to
make the overall program.

Parameter
Filename is any valid Proton24 file.

Example
' Main Program Includes sub files
 Include "StartCode.inc"
 Include "MainCode.inc"
 Include "EndCode.inc"

Notes.
The file to be included into the BASIC listing may be in one of several places on the hard drive
if a specific path is not chosen.

 1… Within the BASIC program's directory.
 2… Within the Compiler's current directory.
 3... Within the user's Includes folder, located in the user's PDS directory.
 4… Within the Includes folder of the compiler's current directory.
 5… Within the Includes\Sources folder of the compiler's current directory.

 The list above also shows the order in which they are searched for.

Using Include files to tidy up your code.
There are some considerations that must be taken into account when writing code for an in-
clude file, these are: -

1). Always jump over the subroutines.

When the include file is placed at the top of the program this is the first place that the compiler
starts, therefore, it will run the subroutine/s first and the Return command will be pointing to a
random place within the code. To overcome this, place a GoTo statement just before the sub-
routine starts.

Proton24 Compiler. Development Suite.

 267

For example: -

 GoTo Over_This_Subroutine ' Jump over the subroutine
' The subroutine is placed here

Over_This_Subroutine: ' Jump to here first

2). Variable and Label names should be as meaningful as possible.

For example. Instead of naming a variable Loop, change it to Isub_Loop. This will help elimi-
nate any possible duplication errors, caused by the main program trying to use the same vari-
able or label name. However, try not to make them too obscure as your code will be harder to
read and understand, it might make sense at the time of writing, but come back to it after a few
weeks and it will be meaningless.

3). Comment, Comment, and Comment some more.

This cannot be emphasised enough. Always place a plethora of remarks and comments. The
purpose of the subroutine/s within the include file should be clearly explained at the top of the
program, also, add comments after virtually every command line, and clearly explain the pur-
pose of all variables and constants used. This will allow the subroutine to be used many weeks
or months after its conception. A rule of thumb that I use is that I can understand what is going
on within the code by reading only the comments to the right of the command lines.

Proton24 Compiler. Development Suite.

 268

Inc

Syntax
Inc Variable

Overview
Increment a variable i.e. Var1 = Var1 + 1

Parameters
Variable is a user defined variable

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim MyDword as Dword

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 MyDword = 1
 Repeat
 Hrsout Dec MyDword, 13
 DelayMs 200
 Inc MyDword
 Until MyDword > 10000

The above example shows the equivalent to the For-Next loop: -

 For MyDword = 1 to 10000 : Next

However, the Repeat-Until version, although it looks more complex, is much more efficient in
both code size and speed of operation.

See also : Dec.

Proton24 Compiler. Development Suite.

 269

Inkey

Syntax
Assignment Variable = Inkey

Overview
Scan a keypad and place the returned value into variable

Parameters
Assignment Variable is a user defined variable

Example
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1
 Declare KeyPad_Port = PORTB

 Dim MyByte as Byte
 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

Do ' Create an infinite loop
 MyByte = Inkey ' Scan the keypad
 DelayMs 50 ' Simple debounce by waiting 50ms
 Hrsout Dec MyByte, 13 ' Display the result
 Loop ' Do it forever

Notes.
Inkey will return a value between 0 and 16. If no key is pressed, the value returned is 16.

Using a LookUp command, the returned values can be re-arranged to correspond with the leg-
ends printed on the keypad: -

 MyByte = Inkey
 MyKey = LookUp MyByte, [255,1,4,7,"*",2,5,8,0,3,6,9,"#",0,0,0]

The above example is only a demonstration, the values inside the LookUp command will need
to be re-arranged for the type of keypad used, and its connection configuration.

Declare
Declare Keypad_Port Port
Assigns the 8-bits of a Port that the keypad is attached to.

The diagram above illustrates typical connections for a 16-button keypad.

S1
100Ω

S5

S9

S13 S14

S10

S6

S2 S3

S7

S11

S15 S16

S12

S8

S4

100Ω

100Ω

100Ω

RB3

RB2

RB1

RB0

RB4

RB5

RB6

RB7

Proton24 Compiler. Development Suite.

 270

Input

Syntax
Input Port . Pin or Pin Number

Overview
Makes the specified Port or Pin an input.

Parameters
Port.Pin must be a Port, or Port.Pin constant declaration.
Pin Number can be any variable or constant holding 0 to the amount of I/O pins on the device.
A value of 0 will be PORTA.0, if present, 1 will be PORTA.1, 16 will be PORTB.0 etc…

Example 1
 Input PORTB.0 ' Make bit-0 of PORTB an input
 Input PORTB ' Make all of PORTB an input

Input 0 ' Make pin-0 of PORTA an input
 Input 16 ' Make pin-0 of PORTB an input

Example 2
' Flash each of the pins on PORTB
'
 Device = 24FJ64GA002
 Declare Xtal = 16

 Dim PinNumber as Byte

 High PORTB
 For PinNumber = 16 to 31 ' Create a loop for the pin to flash
 Output PinNumber ' Set the pin as an output
 DelayMs 500 ' Delay so that it can be seen
 Input PinNumber ' Set the pin as an input
 DelayMs 500 ' Delay so that it can be seen
 Next

Notes.
An Alternative method for making a particular pin an input is by directly modifying the TRIS reg-
ister: -

 TRISB.0 = 1 ' Make bit-0 of PORTB an input

All of the pins on a port may be set to inputs by setting the whole TRIS register at once: -

 TRISB = %1111111111111111 ' Set all of PORTB to inputs

In the above examples, setting a TRIS bit to 1 makes the pin an input, and conversely, setting
the bit to 0 makes the pin an output.

Proton24 Compiler. Development Suite.

 271

Each pin number has a designated name. These are Pin_A0, Pin_A1, Pin_A2,
Pin_B0…Pin_B15, Pin_C0…Pin_C15, Pin_D0…Pin_D15 to Pin_L15 etc… Each of the names
has a relevant value, for example, Pin_A0 has the value 0, Pin_B0 has the value 16, up to
Pin_J15, which has the value 143.

These can be used to pass a relevant pin number to a Procedure. For example:
'
' Flash an LED attached to PORTB.0 via a procedure
' Then flash an LED attached to PORTB.1 via the same procedure
'
 Device = 24HJ128GP502
 Declare Xtal = 16

Do ' Create a loop

FlashPin(Pin_B0) ' Call the procedure to flash PORTB.0
FlashPin(Pin_B1) ' Call the procedure to flash PORTB.1

 Loop ' Do it forever
'
' Set a pin high then an input for 500ms using a value as the pin to adjust
'
Proc FlashPin(pPinNumber As Byte)

High pPinNumber ' Set the pin output high
 DelayMs 500 ' Wait for 500 milliseconds

Input pPinNumber ' Make the pin an input
DelayMs 500 ' Wait for 500 milliseconds

EndProc

See also : ClearPin, Output, SetPin, Low, High.

Proton24 Compiler. Development Suite.

 272

Isr, EndIsr

Syntax
Isr Interrupt Name, {UnHandled}
Interrupt handler BASIC code goes here
EndIsr

Overview
Indicate the start and end of an interrupt handling subroutine.

Parameters
Interrupt Name is the name of the interrupt being handled by the subroutine.
Unhandled is an optional parameter that will disable context saving and restoring of the WREG
SFRs and key SFRs, as well as compiler system variables. Use this option with caution and
only when you know that the interrupt handler’s code will not disturb any other SFRs or vari-
ables.

Unlike 8-bit PIC® microcontroller’s, PIC24® and dsPIC33® devices have a separate vector for
each type of interrupt. Each interrupt has a specific name, and there are up to 128 of them. A
typical interrupt vector name list is shown below:

Interrupt Name Interrupt Cause
OscillatorFail Oscillator Failure (Non-Maskable)
StackError Address Error (Non-Maskable)
AddressError Stack Error (Non-Maskable)
MathError Math Error (Non-Maskable)
DMACError DMA Error (Non-Maskable)

INT0Interrupt External Interrupt 0
IC1Interrupt Input Capture 1
OC1Interrupt Output Compare 1
T1Interrupt Timer1
DMA0Interrupt DMA Channel 0
IC2Interrupt Input Capture 2
OC2Interrupt Output Compare 2
T2Interrupt Timer2
T3Interrupt Timer3
SPI1ErrInterrupt SPI1 Error
SPI1Interrupt SPI1 Transfer Done
U1RXInterrupt UART1 Receiver
U1TXInterrupt UART1 Transmitter
ADC1Interrupt ADC 1
DMA1Interrupt DMA Channel 1
SI2C1Interrupt I2C1 Slave Events
MI2C1Interrupt I2C1 Master Events
CNInterrupt Change Notification Interrupt
INT1Interrupt External Interrupt 1
IC7Interrupt Input Capture 7
IC8Interrupt Input Capture 8
DMA2Interrupt DMA Channel 2
OC3Interrupt Output Compare 3
OC4Interrupt Output Compare 4

Proton24 Compiler. Development Suite.

 273

Interrupt Name Interrupt Cause
T4Interrupt Timer4
T5Interrupt Timer5
INT2Interrupt External Interrupt 2
U2RXInterrupt UART2 Receiver
U2TXInterrupt UART2 Transmitter
SPI2ErrInterrupt SPI2 Error
SPI2Interrupt SPI1 Transfer Done
DMA3Interrupt DMA Channel 3
IC3Interrupt Input Capture 3
IC4Interrupt Input Capture 4
IC5Interrupt Input Capture 5
IC6Interrupt Input Capture 6
OC5Interrupt Output Compare 5
OC6Interrupt Output Compare 6
OC7Interrupt Output Compare 7
OC8Interrupt Output Compare 8
DMA4Interrupt DMA Channel 4
T6Interrupt Timer6
T7Interrupt Timer7
SI2C2Interrupt I2C2 Slave Events
MI2C2Interrupt I2C2 Master Events
T8Interrupt Timer8
T9Interrupt Timer9
INT3Interrupt External Interrupt 3
INT4Interrupt External Interrupt 4
U1ErrInterrupt UART1 Error
U2ErrInterrupt UART2 Error

There are commonalities for the names on all PIC24® and dsPIC33® devices, however, inter-
rupt vector names will be added if the device has a specific peripheral. A full list of the interrupt
names for a specific device can be found within the device’s PPI file, under the [ISRSTART]
section. The PPI files can be found within the compiler’s “PDS\Includes\PPI” directory.

The first 5 names in the list are interrupts that cannot be disabled. i.e. Non-Maskable, and are
used for exception handling within the microcontroller. The others in the list are Maskable,
meaning they can be enabled or disabled accordingly.

The interrupt handler, unless otherwise indicated, will first disable any other interrupts, then
save key SFRs (Special Function Registers) such as SR (STATUS on 8-bit devices), COR-
CON, RCOUNT, WREG0 to WREG14, then if available on the device being used, PSVPAG,
DSRPAG, DCOUNT, DOSTART, and DOEND. If the device has more than 65K or code mem-
ory, the TBLPAG SFR will also be saved. Saving is accomplished by pushing the SFRs or vari-
ables onto the microcontroller’s stack, which will expand to accommodate them.

It will then save any compiler system variables that are used within the interrupt handler, before
re-enabling interrupts and handing control to the code within the interrupt handler. The reverse
is accomplished when the interrupt is exited, and the Retfie mnemonic issued. Note that the
interrupt handler will not reset any associated interrupt flag.

This means that pretty much any BASIC code can be placed inside an interrupt as long as it
handles any peripheral conflicts, such as Port re-use etc...

Proton24 Compiler. Development Suite.

 274

If additional SFRs or variables need to be saved within the interrupt handler, they can by
Pushed onto the stack then Popped from it before the interrupt exits. For example:

 Isr T1Interrupt
 Push TRISB ' Save 16-bit TRISB on the stack
 Push PORTB ' Save 16-bit PORTB on the stack
 Toggle PORTB ' Use TRISB and PORTB
 Pop PORTB ' Restore 16-bit PORTB from the stack
 Pop TRISB ' Restore 16-bit TRISB from the stack
 IFS0bits_T1IF = 0 ' Reset the Timer1 interrupt flag
 EndIsr ' Exit the interrupt

Note that the compiler can only track its system variable use when the code is between Isr and
EndIsr. It cannot track any code that is called as a subroutine or a procedure from the ISR
handler.

An asm Bra mnemonic is placed before the Isr directive, that jumps over the handler code past
the EndIsr directive. This means that the interrupt handler can be placed in the line of code
without having to jump over it manually. However, this behaviour can be altered by adding a
dash after the Isr and EndIsr directives: Isr- and EndIsr-. This will save two bytes of code
space for every interrupt handler used in the BASIC program, but measures should be taken to
make sure that the program does not run the interrupt code directly, such as a GoTo to the
main program loop.

Example
'
' Timer interrupt demo
'
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' UART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select which pin for TX with USART1

 Dim FloatOut1 As Float
 Dim FloatOut2 As Float

'---
 GoTo Main ' Jump over the interrupt handlers
'---
' Timer1 interrupt handler
' Transmit a floating point value serially
'
Isr- T1Interrupt ' Context save
 HRSOut "Timer1 ", Dec1 FloatOut1, 13
 FloatOut1 = FloatOut1 + 0.1
 IFS0bits_T1IF = 0 ' Reset the Timer1 interrupt flag
EndIsr- ' Context restore and exit the interrupt
'---
' Timer2 interrupt handler
' Transmit a floating point value serially
'
Isr - T2Interrupt ' Context save
 HRSOut "Timer2 ", Dec1 FloatOut2, 13
 FloatOut2 = FloatOut2 + 0.1
 IFS0bits_T2IF = 0 ' Reset the Timer2 interrupt flag
EndIsr- ' Context restore and exit the interrupt

Proton24 Compiler. Development Suite.

 275

'---
Main:
 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
 FloatOut1 = 0
 FloatOut2 = 0
'
' Configure Timer1
'
 TMR1 = 0
 PR1 = 8192 ' Load Timer1 period
 T1CON = %1010000000101001 ' Start Timer1
 ' Discontinue operation in Idle mode
 ' Gated time accumulation disabled
 ' 1:64 prescaler
 ' Do not synchronise external clock input
 ' Internal clock

 IFS0bits_T1IF = 0 ' Clear Timer1 interrupt flag
 IPC0bits_T1IP0 = 0 ' Set priority
 IEC0bits_T1IE = 1 ' Enable the Timer1 interrupt
'
' Configure Timer2
'
 TMR2 = 0
 PR2 = 8192 ' Load Timer2 period
 T2CON = %1010000000110101 ' Start Timer2
 ' Discontinue operation in Idle mode
 ' Gated time accumulation disabled
 ' 1:256 prescaler
 ' Timer2 as 16-bit timer
 ' Internal clock

 IFS0bits_T2IF = 0 ' Clear Timer2 interrupt flag
 IPC1bits_T2IP0 = 0 ' Set priority
 IEC0bits_T2IE = 1 ' Enable the Timer2 interrupt

The program above shows a worse case scenario of each interrupt calculating and displaying
floating point variables, which are among the most processor intensive operations.

Adding another interrupt is as simple as placing Isr and EndIsr directives with a given name,
and configuring the microcontroller to initiate the interrupt. The compiler will take care of the
rest as much as it can.

Notes.
Nesting of Isr and EndIsr directives is not allowed.

The naming of the interrupts is taken from the official Microchip™ documentation and are the
names used by the Linker application.

Proton24 Compiler. Development Suite.

 276

LCDread

Syntax
Assignment Variable = LCDread Ypos, Xpos

Overview
Read a byte from a graphic LCD.

Parameters
Assignment Variable is a user defined variable.
Ypos :-
With a KS0108 graphic LCD this may be a constant, variable or expression within the range of
0 to 7 This corresponds to the line number of the LCD, with 0 being the top row.

With a Toshiba T6963 graphic LCD this may be a constant, variable or expression within the
range of 0 to the Y resolution of the display. With 0 being the top line.
Xpos: -
With a KS0108 graphic LCD this may be a constant, variable or expression with a value of 0 to
127. This corresponds to the X position of the LCD, with 0 being the far left column.
With a Toshiba graphic LCD this may be a constant, variable or expression with a value of 0 to
the X resolution of the display divided by the font width (LCD_X_Res / LCD_Font_Width). This
corresponds to the X position of the LCD, with 0 being the far left column.

Example
' Read and display the top row of the KS0108 graphic LCD
 Device = 24HJ128GP502
 Declare Xtal = 16
'
' LCD interface pin assignments
'
 Declare LCD_Type = KS0108 ' Setup for a KS0108 graphic LCD
 Declare LCD_DTPort = PORTB.Byte0
 Declare LCD_CS1Pin = PORTB.8
 Declare LCD_CS2Pin = PORTB.9
 Declare LCD_ENPin = PORTB.10
 Declare LCD_RSPin = PORTB.11
 Declare LCD_RWPin = PORTB.12

 Dim Var1 as Byte
 Dim Xpos as Byte
 Cls ' Clear the LCD
 Print "Testing 1 2 3"
 For Xpos = 0 to 127 ' Create a loop of 128
 Var1 = LCDread 0, Xpos ' Read the LCD's top line
 Print At 1, 0, "Chr= ", Dec Var1," "
 DelayMs 100
 Next

Proton24 Compiler. Development Suite.

 277

Notes.
The graphic LCDs that are compatible with Proton24 are the KS0108, and the Toshiba T6963.
The KS0108 display usually has a pixel resolution of 64 x 128. The 64 being the Y axis, made
up of 8 lines each having 8-bits. The 128 being the X axis, made up of 128 positions. The To-
shiba LCDs are available with differing resolutions.

As with LCDwrite, the graphic LCD must be targeted using the LCD_Type Declare directive
before this command may be used.

See also : LCDwrite for a description of the screen formats, Pixel, Plot,
 Toshiba_Command, Toshiba_UDG, UnPlot,
 see Print for LCD connections.

Proton24 Compiler. Development Suite.

 278

LCDwrite

Syntax
LCDwrite Ypos, Xpos, [Value ,{ Value etc…}]

Overview
Write a byte to a graphic LCD.

Parameters
Ypos :-
With a KS0108 graphic LCD this may be a constant, variable or expression within the range of
0 to 7 This corresponds to the line number of the LCD, with 0 being the top row.

With a Toshiba T6963 graphic LCD this may be a constant, variable or expression within the
range of 0 to the Y resolution of the display. With 0 being the top line.
Xpos: -
With a KS0108 graphic LCD this may be a constant, variable or expression with a value of 0 to
127. This corresponds to the X position of the LCD, with 0 being the far left column.
With a Toshiba graphic LCD this may be a constant, variable or expression with a value of 0 to
the X resolution of the display divided by the font width (LCD_X_Res / LCD_Font_Width). This
corresponds to the X position of the LCD, with 0 being the far left column.
Value may be a constant, variable, or expression, within the range of 0 to 255 (byte).

Example 1
' Display a line on the top row of a KS0108 graphic LCD
 Device = 24HJ128GP502
 Declare Xtal = 16
'
' LCD interface pin assignments
'
 Declare LCD_Type = KS0108 ' Setup for a KS0108 graphic LCD
 Declare LCD_DTPort = PORTB.Byte0
 Declare LCD_CS1Pin = PORTB.8
 Declare LCD_CS2Pin = PORTB.9
 Declare LCD_ENPin = PORTB.10
 Declare LCD_RSPin = PORTB.11
 Declare LCD_RWPin = PORTB.12

 Dim Xpos as Byte
 Cls ' Clear the LCD
 For Xpos = 0 to 127 ' Create a loop of 128
 LCDwrite 0, Xpos, [%11111111] ' Write to the LCD's top line
 DelayMs 100
 Next

Proton24 Compiler. Development Suite.

 279

Example 2
' Display a line on the top row of a Toshiba 128x64 graphic LCD
 Device = 24HJ128GP502
 Declare Xtal = 16

 Include "T6963C.Inc" ' Load the T6983 routines into the program

 Dim Xpos as Byte
 Cls ' Clear the LCD
 For Xpos = 0 to 20 ' Create a loop of 21
 LCDwrite 0, Xpos, [%00111111] ' Write to the LCD's top line
 DelayMs 100
 Next

Notes.
The graphic LCDs that are compatible with Proton24 are the KS0108, and the Toshiba T6963
(which must be included separately). The KS0108 display has a pixel resolution of 64 x 128.
The 64 being the Y axis, made up of 8 lines each having 8-bits. The 128 being the X axis,
made up of 128 positions. The Toshiba LCDs are available with differing resolutions.

There are important differences between the KS0108 and T6963 screen formats. The diagrams
below show these in more detail: -

The diagram below illustrates the position of one byte at position 0,0 on a KS0108 LCD screen.
The least significant bit is located at the top. The byte displayed has a value of 149 (10010101).

The diagram below illustrates the position of one byte at position 0,0 on a Toshiba T6963 LCD
screen in 8-bit font mode. The least significant bit is located at the right of the screen byte. The
byte displayed has a value of 149 (10010101).

Xpos 0 - n

Ypos 0 - n

msb

Line 0

Line 1

Line 2

lsb

Toshiba T6963 LCD. (8-bit Font mode)

Xpos 0 - 127

Ypos 0 - 63
lsb

Line 0

Line 1

Line 2

msb

Samsung KS0108 graphic LCD

Proton24 Compiler. Development Suite.

 280

The diagram below illustrates the position of one byte at position 0,0 on a Toshiba T6963 LCD
screen in 6-bit font mode. The least significant bit is located at the right of the screen byte. The
byte displayed still has a value of 149 (10010101), however, only the first 6 bits are displayed
(010101) and the other two are discarded.

See also : LCDread, Plot, Toshiba_Command, Toshiba_UDG, UnPlot
 see Print for LCD connections.

Xpos 0 - n

Ypos 0 - n

msb

Line 0

Line 1

Line 2

lsb

Toshiba T6963 LCD. (6-bit Font mode)

Proton24 Compiler. Development Suite.

 281

Len

Syntax
Assignment Variable = Len(Source String)

Overview
Find the length of a String. (not including the null terminator) .

Parameters
Assignment Variable is a user defined variable.
Source String can be a String variable, or a Quoted String of Characters. The Source String
can also be a Byte, Word, Float or Array variable, in which case the value contained within the
variable is used as a pointer to the start of the Source String's address in RAM. A third possibil-
ity for Source String is a label name, in which case a null terminated Quoted String of Charac-
ters is read from code memory.

Example 1
' Display the length of SourceString
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim SourceString as String * 20 ' Create a String capable of 20 characters
 Dim Length as Byte

 SourceString = "Hello World" ' Load the source string with characters
 Length = Len(SourceString) ' Find the length
 Print Dec Length ' Display the result, which will be 11

Example 2
' Display the length of a Quoted Character String
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim Length as Byte

 Length = Len("Hello World") ' Find the length
 Print Dec Length ' Display the result, which will be 11

Example 3
' Display the length of SourceString using a pointer to SourceString
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim SourceString as String * 20 ' Create a String capable of 20 characters
 Dim Length as Byte ' Display the length of SourceString
 Dim SourceString as String * 20 ' Create a String capable of 20 characters
' Create a Word variable to hold the address of SourceString
 Dim StringAddr as Word

 SourceString = "Hello World" ' Load the source string with characters
 ' Locate the start address of SourceString in RAM

StringAddr = AddressOf(SourceString)
 Length = Len(StringAddr) ' Find the length
 Print Dec Length ' Display the result, which will be 11

Proton24 Compiler. Development Suite.

 282

Example 4
' Display the length of a code memory string
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim Length as Byte
'
' Create a null terminated string of characters in code memory
'

Dim Source as Code = "Hello World", 0

 Length = Len(Source) ' Find the length
 Print Dec Length ' Display the result, which will be 11

See also : Creating and using Strings, Creating and using code memory strings,

Left$, Mid$, Right$, Str$, ToLower, ToUpper, AddressOf .

Proton24 Compiler. Development Suite.

 283

Left$

Syntax
Destination String = Left$ (Source String, Amount of characters)

Overview
Extract n amount of characters from the left of a source string and copy them into a destination
string.

Parameters
Destination String can only be a String variable, and should be large enough to hold the cor-
rect amount of characters extracted from the Source String.
Source String can be a String variable, or a Quoted String of Characters. See below for more
variable types that can be used for Source String.
Amount of characters can be any valid variable type, expression or constant value, that signi-
fies the amount of characters to extract from the left of the Source String. Values start at 1 for
the leftmost part of the string and should not exceed 255 which is the maximum allowable
length of a String variable.

Example 1.
' Copy 5 characters from the left of SourceString into DestString
'
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim SourceString as String * 20 ' Create a String capable of 20 characters
 Dim DestString as String * 20 ' Create another String for 20 characters

 SourceString = "Hello World" ' Load the source string with characters
'
' Copy 5 characters from the source string into the destination string
'
 DestString = Left$(SourceString, 5)
 Print DestString ' Display the result, which will be "Hello"

Example 2.
' Copy 5 chars from the left of a Quoted Character String into DestString
'
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim DestString as String * 20 ' Create a String capable of 20 characters
'
' Copy 5 characters from the quoted string into the destination string
'
 DestString = Left$("Hello World", 5)
 Print DestString ' Display the result, which will be "Hello"

The Source String can also be a Byte, Word, Dword, Float or Array variable, in which case
the value contained within the variable is used as a pointer to the start of the Source String's
address in RAM.

Proton24 Compiler. Development Suite.

 284

Example 3.
' Copy 5 characters from the left of SourceString into DestString using a
' pointer to SourceString
'
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim SourceString as String * 20 ' Create a String capable of 20 characters
 Dim DestString as String * 20 ' Create another String for 20 characters
'
' Create a Word variable to hold the address of SourceString
'
 Dim StringAddr as Word

 SourceString = "Hello World" ' Load the source string with characters
'
' Locate the start address of SourceString in RAM
'
 StringAddr = AddressOf(SourceString)
'
' Copy 5 characters from the source string into the destination string
'
 DestString = Left$(StringAddr, 5)
 Print DestString ' Display the result, which will be "Hello"

A third possibility for Source String is a label name, in which case a null terminated Quoted
String of Characters is read from code memory.

Example 4.
' Copy 5 characters from the left of a code memory table into DestString
'
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim DestString as String * 20 ' Create a String capable of 20 characters
'
' Create a null terminated string of characters in code memory
'

Dim Source as Code = "Hello World", 0
'
' Copy 5 characters from label Source into the destination string
'
 DestString = Left$(Source, 5)
 Print DestString ' Display the result, which will be "Hello"

See also : Creating and using Strings, Creating and using code memory strings,

Len, Mid$, Right$, Str$, ToLower, ToUpper , AddressOf .

Proton24 Compiler. Development Suite.

 285

Line

Syntax
Line Pixel Colour, Xpos Start, Ypos Start, Xpos End, Ypos End

Overview
Draw a straight line in any direction on a graphic LCD.

Parameters
Pixel Colour may be a constant or variable that determines if the line will set or clear the pix-
els. A value of 1 will set the pixels and draw a line, while a value of 0 will clear any pixels and
erase a line. If using a colour graphic LCD, this parameter holds the 16-bit colour of the pixel.
Xpos Start may be a constant or variable that holds the X position for the start of the line. Can
be a value from 0 to the LCD's X resolution.
Ypos Start may be a constant or variable that holds the Y position for the start of the line. Can
be a value from 0 to the LCD's Y resolution.
Xpos End may be a constant or variable that holds the X position for the end of the line. Can
be a value from 0 to the LCD's X resolution.
Ypos End may be a constant or variable that holds the Y position for the end of the line. Can
be a value from 0 to the LCD's Y resolution.

KS0108 graphic LCD example
' Draw a line from 0,0 to 120,34
'
 Device = 24HJ128GP502
 Declare Xtal = 16
'
' LCD interface pin assignments
'
 Declare LCD_Type = KS0108 ' Setup for a KS0108 graphic LCD
 Declare LCD_DTPort = PORTB.Byte0
 Declare LCD_CS1Pin = PORTB.8
 Declare LCD_CS2Pin = PORTB.9
 Declare LCD_ENPin = PORTB.10
 Declare LCD_RSPin = PORTB.11
 Declare LCD_RWPin = PORTB.12

 Dim Xpos_Start as Byte
 Dim Xpos_End as Byte
 Dim Ypos_Start as Byte
 Dim Ypos_End as Byte
 Dim SetClr as Byte

 DelayMs 100 ' Wait for things to stabilise
 Cls ' Clear the LCD
 Xpos_Start = 0
 Ypos_Start = 0
 Xpos_End = 120
 Ypos_End = 34
 SetClr = 1
 Line SetClr, Xpos_Start, Ypos_Start, Xpos_End, Ypos_End

Proton24 Compiler. Development Suite.

 286

ILI9320 colour graphic LCD example
' Demonstrate the Line and LineTo commands with a colour LCD
'
 Device = 24EP128MC202
 Declare Xtal = 140.03
'
' Setup the Pins used by the ILI9320 graphic LCD
'
 Declare LCD_DTPort = PORTB.Byte0 ' Use the first 8-bits of PORTB
 Declare LCD_CSPin = PORTB.8 ' Connect to the LCD's CS pin
 Declare LCD_RDPin = PORTB.9 ' Connect to the LCD's RD pin
 Declare LCD_RSPin = PORTB.10 ' Connect to the LCD's RS pin
 Declare LCD_WRPin = PORTA.3 ' Connect to the LCD's WR pin

 Include "ILI9320.inc" ' Load the ILI9320 routines into the program

 Dim wXpos As Word ' Create a variable for the X position
 Dim wYpos As Word ' Create a variable for the Y position

'--
Main:
' Configure the Oscillator to operate the device at 140.03MHz
'
 PLL_Setup(76, 2, 2, $0300)

 Cls clWhite ' Clear the LCD with the colour white
'
' Draw a series of lines
'
 For wYpos = 0 To 319
 Line clBrightBlue,0,0,239,wYpos
 Next
 For wYpos = 0 To 319
 Line clBrightRed,239,0,0,wYpos
 Next
'
' Draw a box around the LCD using LineTo
'
 DelayMS 512
 Line clBlack,1,1,238,1
 LineTo clBlack,238,318
 LineTo clBlack,1,318
 LineTo clBlack,1,1
'--
' Configure for internal 7.37MHz oscillator with PLL
' OSC pins are general purpose I/O
'
 Config FGS = GWRP_OFF, GCP_OFF
 Config FOSCSEL = FNOSC_FRCPLL, IESO_ON, PWMLOCK_OFF
 Config FOSC = POSCMD_NONE, OSCIOFNC_ON, IOL1WAY_OFF, FCKSM_CSDCMD
 Config FWDT = WDTPOST_PS256, WINDIS_OFF, PLLKEN_ON, FWDTEN_OFF
 Config FPOR = ALTI2C1_ON, ALTI2C2_OFF
 Config FICD = ICS_PGD1, JTAGEN_OFF

Proton24 Compiler. Development Suite.

 287

Notes.
With an ILI9320 colour graphic LCD, the colour is a 16-bit value formatted in RGB565, where
the upper 5-bits represent the red content, the middle 6-bits represent the green content, and
the lower 5-bits represent the blue content. As illustrated below:

For convenience, there are several colours defined within the ILI9320.inc file. These are:

clBlack
clBrightBlue
clBrightGreen
clBrightCyan
clBrightRed
clBrightMagenta
clBrightYellow
clBlue
clGreen
clCyan
clRed
clMagenta
clBrown
clLightGray
clDarkGray
clLightBlue
clLightGreen
clLightCyan
clLightRed
clLightMagenta
clYellow
clWhite

More constant values for colours can be added by the user if required.

See Also : Box, Circle, LintTo, Plot.

Low ByteHigh Byte

045101115

Red value Green value Red value

Proton24 Compiler. Development Suite.

 288

LineTo

Syntax
LineTo Pixel Colour, Xpos End, Ypos End

Overview
Draw a straight line in any direction on a graphic LCD, starting from the previous Line com-
mand's end position.

Parameters
Pixel Colour may be a constant or variable that determines if the line will set or clear the pix-
els. A value of 1 will set the pixels and draw a line, while a value of 0 will clear any pixels and
erase a line. If using a colour graphic LCD, this parameter holds the 16-bit colour of the pixel.
Xpos End may be a constant or variable that holds the X position for the end of the line. Can
be a value from 0 to the LCD's X resolution.
Ypos End may be a constant or variable that holds the Y position for the end of the line. Can
be a value from 0 to the LCD's Y resolution.

Example
' Draw a line from 0,0 to 120,34. Then from 120,34 to 0,63
 Device = 24HJ128GP502
 Declare Xtal = 16
'
' LCD interface pin assignments
'
 Declare LCD_Type = KS0108 ' Setup for a KS0108 graphic LCD
 Declare LCD_DTPort = PORTB.Byte0
 Declare LCD_CS1Pin = PORTB.8
 Declare LCD_CS2Pin = PORTB.9
 Declare LCD_ENPin = PORTB.10
 Declare LCD_RSPin = PORTB.11
 Declare LCD_RWPin = PORTB.12
 Dim Xpos_Start as Byte
 Dim Xpos_End as Byte
 Dim Ypos_Start as Byte
 Dim Ypos_End as Byte
 Dim SetClr as Byte
 DelayMs 100 ' Wait for things to stabilise
 Cls ' Clear the LCD
 Xpos_Start = 0
 Ypos_Start = 0
 Xpos_End = 120
 Ypos_End = 34
 SetClr = 1
 Line SetClr, Xpos_Start, Ypos_Start, Xpos_End, Ypos_End
 Xpos_End = 0
 Ypos_End = 63
 LineTo SetClr, Xpos_End, Ypos_End

Notes.
The LineTo command uses the compiler's internal system variables to obtain the end position
of a previous Line command. These X and Y coordinates are then used as the starting X and Y
coordinates of the LineTo command.

See Also : Line, Box, Circle, Plot.

Proton24 Compiler. Development Suite.

 289

LoadBit

Syntax
LoadBit Variable, Index, Value

Overview
Clear, or Set a bit of a variable or register using a variable index to point to the bit of interest.

Parameters
Variable is a user defined variable, of type Byte, Word, or Dword.
Index is a constant, variable, or expression that points to the bit within Variable that requires
accessing.
Value is a constant, variable, or expression that will be placed into the bit of interest. Values
greater than 1 will set the bit.

Example
 ' Copy variable ExVar bit by bit into variable PT_Var
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim ExVar as Word
 Dim Index as Byte
 Dim Value as Byte
 Dim PT_Var as Word

 Do
 PT_Var = %0000000000000000
 ExVar = %1011011000110111
 Cls
 For Index = 0 to 15 ' Create a loop for 16 bits
 Value = GetBit ExVar, Index ' Examine each bit of variable ExVar
 LoadBit PT_Var, Index, Value ' Set or Clear each bit of PT_Var
 Print At 1,1,Bin16 ExVar ' Display the original variable
 Print At 2,1,Bin16 PT_Var ' Display the copied variable
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 Loop ' Do it forever

Notes.
There are many ways to clear or set a bit within a variable, however, each method requires a
certain amount of manipulation, either with rotates, or alternatively, the use of indirect address-
ing. Each method has its merits, but requires a certain amount of knowledge to accomplish the
task correctly. The LoadBit command makes this task extremely simple by taking advantage of
the indirect method, however, this is not necessarily the quickest method, or the smallest, but it
is the easiest. For speed and size optimisation, there is no shortcut to experience.

To Clear a known constant bit of a variable or register, then access the bit directly using Port.n.
i.e. PORTA.1 = 0

To Set a known constant bit of a variable or register, then access the bit directly using Port.n.
i.e. PORTA.1 = 1

If a Port is targeted by LoadBit, the TRIS register is not affected.

See also : ClearBit, GetBit, SetBit.

Proton24 Compiler. Development Suite.

 290

LookDown

Syntax
Assignment Variable = LookDown Index, [Constant {, Constant…etc }]

Overview
Search constants(s) for index value. If index matches one of the constants, then store the
matching constant's position (0-N) in variable. If no match is found, then the variable is unaf-
fected.

Parameters
Assignment Variable is a user define variable that holds the result of the search.
Index is the variable/constant being sought.
Constant(s),... is a list of values. A maximum of 255 values may be placed between the square
brackets, 256 if using an 18F device.

Example
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim Value as Byte
 Dim MyResult as Byte
 Value = 177 ' The value to look for in the list
 MyResult = 255 ' Default to value 255
 MyResult = LookDown Value, [75,177,35,1,8,29,245]
 Print "Value matches ", Dec MyResult, " in list"

In the above example, Print displays, "Value matches 1 in list" because Value (177) matches
item 1 of [75,177,35,1,8,29,245]. Note that index numbers count up from 0, not 1; that is in the
list [75,177,35,1,8,29,245], 75 is item 0.

If the value is not in the list, then MyResult is unchanged.

Notes.
LookDown is similar to the index of a book. You search for a topic and the index gives you the
page number. Lookdown searches for a value in a list, and stores the item number of the first
match in a variable.

LookDown also supports text phrases, which are basically lists of byte values, so they are also
eligible for Lookdown searches:

 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim Value as Byte = 101 ' ASCII "e". the value to look for in the list
 Dim MyResult as Byte = 255 ' Default to value 255

MyResult = LookDown Value, ["Hello World"]

In the above example, MyResult will hold a value of 1, which is the position of character 'e'

See also : Dim, cPtr8, cPtr16, cPtr32, Cread8, Cread16, Cread32, Edata, Eread,
 LookDownL, LookUp, LookUpL.

Proton24 Compiler. Development Suite.

 291

LookDownL

Syntax
Assignment Variable = LookDownL Index, {Operator} [Value {, Value…etc }]

Overview
A comparison is made between index and value; if the result is true, 0 is written into variable. If
that comparison was false, another comparison is made between value and value1; if the result
is true, 1 is written into variable. This process continues until a true is yielded, at which time the
index is written into variable, or until all entries are exhausted, in which case variable is unaf-
fected.

Parameters
Assignment Variable is a user define variable that holds the result of the search.
Index is the variable/constant being sought.
Value(s) can be a mixture of constants, string constants and variables. Expressions may not be
used in the Value list, although they may be used as the index value. A maximum of 65536 val-
ues may be placed between the square brackets.
Operator is an optional comparison operator and may be one of the following: -

 = equal
 <> not equal
 > greater than
 < less than
 >= greater than or equal to
 <= less than or equal to

The optional operator can be used to perform a test for other than equal to ("=") while searching
the list. For example, the list could be searched for the first Value greater than the index pa-
rameter by using ">" as the operator. If operator is left out, "=" is assumed.

Example
 Var1 = LookDownL MyWord, [512, MyWord1, 1024]
 Var1 = LookDownL MyWord, < [10, 100, 1000]

Notes.
Because LookDownL is more versatile than the standard LookDown command, it generates
larger code. Therefore, if the search list is made up only of 8-bit constants and strings, use
LookDown.

See also : Dim, cPtr8, cPtr16, cPtr32, Cread8, Cread16, Cread32, Edata, Eread,
 LookDown, LookUp, LookUpL.

Proton24 Compiler. Development Suite.

 292

LookUp

Syntax
Assignment Variable = LookUp Index, [Constant {, Constant…etc }]

Overview
Look up the value specified by the index and store it in variable. If the index exceeds the high-
est index value of the items in the list, then variable remains unchanged.

Parameters
Assignment Variable may be a constant, variable, or expression. This is where the retrieved
value will be stored.
Index may be a constant of variable. This is the item number of the value to be retrieved from
the list.
Constant(s) may be any 8-bit value (0-255). A maximum of 65536 values may be placed be-
tween the square brackets.

Example
' Create an animation of a spinning line on an LCD.
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim Index as Byte
 Dim Frame as Byte

Cls ' Clear the LCD
 Do
 For Index = 0 to 3 ' Create a loop of 4
 Frame = LookUp Index, ["|\-/"] ' Table of animation characters
 Print At 1, 1, Frame ' Display the character
 DelayMs 200 ' So we can see the animation
 Next ' Close the loop
 Loop ' Repeat forever

Notes.
Index starts at value 0. For example, in the LookUp command below. If the first value (10) is
required, then index will be loaded with 0, and 1 for the second value (20) etc.

 Var1 = LookUp Index, [10, 20, 30]

See also : Dim, cPtr8, cPtr16, cPtr32, Cread8, Cread16, Cread32, Edata, Eread,
 LookDown, LookDownL, LookUpL.

Proton24 Compiler. Development Suite.

 293

LookUpL

Syntax
Assignment Variable = LookUpL Index, [Value {, Value…etc }]

Overview
Look up the value specified by the index and store it in variable. If the index exceeds the high-
est index value of the items in the list, then variable remains unchanged. Works exactly the
same as LookUp, but allows variable types or constants in the list of values.

Parameters
Assignment Variable may be a constant, variable, or expression. This is where the retrieved
value will be stored.
Index may be a constant of variable. This is the item number of the value to be retrieved from
the list.
Value(s) can be a mixture of 16-bit constants, string constants and variables. A maximum of
65536 values may be placed between the square brackets.

Example
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim Var1 as Byte
 Dim MyWord as Word
 Dim Index as Byte
 Dim Assign as Word

Var1 = 10
 MyWord = 1234
 Index = 0 ' Point to the first value in the list (MyWord)
 Assign = LookUpL Index, [MyWord, Var1, 12345]

Notes.
Expressions may not be used in the Value list, although they may be used as the Index value.

Because LookUpL is capable of processing any variable and constant type, the code produced
is a lot larger than that of LookUp. Therefore, if only 8-bit constants are required in the list, use
LookUp instead.

See also : Dim, cPtr8, cPtr16, cPtr32, Cread8, Cread16, Cread32, Edata, Eread,
 LookDown, LookDownL, LookUp.

Proton24 Compiler. Development Suite.

 294

Low

Syntax
Low Port or Port.Bit or Pin Number

Overview
Place a Port or bit in a low state. For a port, this means filling it with 0's. For a bit this means
setting it to 0.

Parameters
Port can be any valid port.
Port.Bit can be any valid port and bit combination, i.e. PORTA.1
Pin Number can be a variable or constant that holds a value from 0 to the amount of I/O pins
on the device. A value of 0 will be PORTA.0, if present, 1 will be PORTA.1, 16 will be PORTB.0
etc…

Example 1
 Device = 24HJ128GP502
 Declare Xtal = 16

 Symbol LED = PORTB.4
 Low LED ' Clear PORTB bit 4
 Low PORTB.0 ' Clear PORTB bit 0
 Low PORTB ' Clear all of PORTB
 Low 1 ' Pull Pin PORTA.1 low

Example 2
' Flash each of the pins on PORTB
'
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim MyPin as Byte

 For MyPin = 16 to 31 ' Create a loop for the pin to flash
 High MyPin ' Set the pin high
 DelayMs 500 ' Delay so that it can be seen
 Low MyPin ' Pull the pin low
 DelayMs 500 ' Delay so that it can be seen
 Next

Notes.
The compiler will write to the device’s LAT SFR and will always set the relevant Port or Port.Bit
to an output.

Proton24 Compiler. Development Suite.

 295

Each pin number has a designated name. These are Pin_A0, Pin_A1, Pin_A2,
Pin_B0…Pin_B15, Pin_C0…Pin_C15, Pin_D0…Pin_D15 to Pin_L15 etc… Each of the names
has a relevant value, for example, Pin_A0 has the value 0, Pin_B0 has the value 16, up to
Pin_J15, which has the value 143.

These can be used to pass a relevant pin number to a Procedure. For example:
'
' Flash an LED attached to PORTB.0 via a procedure
' Then flash an LED attached to PORTB.1 via the same procedure
'
 Device = 24HJ128GP502
 Declare Xtal = 16

Do ' Create a loop

FlashPin(Pin_B0) ' Call the procedure to flash PORTB.0
FlashPin(Pin_B1) ' Call the procedure to flash PORTB.1

 Loop ' Do it forever
'
' Set a pin high then low for 500ms using a variable as the pin to adjust
'
Proc FlashPin(pPinNumber As Byte)

High pPinNumber ' Set the pin output high
 DelayMs 500 ' Wait for 500 milliseconds

Low pPinNumber ' Pull the pin output low
DelayMs 500 ' Wait for 500 milliseconds

EndProc

Example 3
' Clear then Set each pin of PORTC
 Device = 24HJ128GP502

Declare Xtal = 16

Dim PinNumber as Byte

 Low PORTC ' Make PORTC output low before we start
 Do ' Create a loop
 For PinNumber = Pin_C0 to Pin_C7 ' Create a loop for 8 pins
 Low PinNumber ' Clear each pin of PORTC
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 For PinNumber = Pin_C0 to Pin_C7 ' Create a loop for 8 pins
 High PinNumber ' Set each pin of PORTC
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 Loop ' Do it forever

See also : ClearPin, Dim, High, SetPin, Symbol.

Proton24 Compiler. Development Suite.

 296

Mid$

Syntax
Destination String = Mid$ (Source String, Position within String, Amount of characters)

Overview
Extract n amount of characters from a source string beginning at n characters from the left, and
copy them into a destination string.

Parameters
Destination String can only be a String variable, and should be large enough to hold the cor-
rect amount of characters extracted from the Source String.
Source String can be a String variable, or a Quoted String of Characters. See below for
more variable types that can be used for Source String.
Position within String can be any valid variable type, expression or constant value, that signi-
fies the position within the Source String from which to start extracting characters. Values start
at 1 for the leftmost part of the string and should not exceed 255 which is the maximum allow-
able length of a String variable.
Amount of characters can be any valid variable type, expression or constant value, that signi-
fies the amount of characters to extract from the left of the Source String. Values start at 1 and
should not exceed 255 which is the maximum allowable length of a String variable.

Example 1
' Copy 5 characters from position 4 of SourceString into DestString

 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim SourceString as String * 20 ' Create a String of 20 characters
 Dim DestString as String * 20 ' Create another String

 SourceString = "Hello World" ' Load the source string with characters
' Copy 5 characters from the source string into the destination string
 DestString = Mid$(SourceString, 4, 5)
 Print DestString ' Display the result, which will be "lo Wo"

Example 2
' Copy 5 chars from position 4 of a Quoted Character String into DestString

 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim DestString as String * 20 ' Create a String of 20 characters

' Copy 5 characters from the quoted string into the destination string
 DestString = Mid$("Hello World", 4, 5)
 Print DestString ' Display the result, which will be " lo Wo "

The Source String can also be a Byte, Word, Dword, Float or Array variable, in which case
the value contained within the variable is used as a pointer to the start of the Source String's
address in RAM.

Proton24 Compiler. Development Suite.

 297

Example 3
' Copy 5 chars from position 4 of SourceString to DestString with a pointer
' to SourceString

 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim SourceString as String * 20 ' Create a String of 20 characters
 Dim DestString as String * 20 ' Create another String
' Create a Word variable to hold the address of SourceString
 Dim StringAddr as Word

 SourceString = "Hello World" ' Load the source string with characters
' Locate the start address of SourceString in RAM
 StringAddr = AddressOf(SourceString)
' Copy 5 characters from the source string into the destination string
 DestString = Mid$(StringAddr, 4, 5)
 Print DestString ' Display the result, which will be " lo Wo "

A third possibility for Source String is a Label name, in which case a null terminated Quoted
String of Characters is read from code memory.

Example 4
' Copy 5 characters from position 4 of a code memory string into DestString

 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim DestString as String * 20 ' Create a String of 20 characters
' Create a null terminated string of characters in code memory

Dim Source as Code = Hello World", 0

' Copy 5 characters from label Source into the destination string
 DestString = Mid$(Source, 4, 5)
 Print DestString ' Display the result, which will be "LO WO"

See also : Creating and using Strings, Creating and using code memory strings,

Len, Left$, Right$, Str$, ToLower, ToUpper, AddressOf .

Proton24 Compiler. Development Suite.

 298

On GoTo

Syntax
On Index Variable GoTo Label1 {,...Labeln }

Overview
Cause the program to jump to different locations based on a variable index.

Parameters
Index Variable is a constant, variable, or expression, that specifies the label to jump to.
Label1...Labeln are valid labels that specify where to branch to.

Example
 Device = 24HJ128GP502
 Declare Xtal = 16

Dim Index as Byte

Cls ' Clear the LCD
Index = 2 ' Assign Index a value of 2

Start: ' Jump to label 2 (Label_2) because Index = 2
On Index GoTo Label_0, Label_1, Label_2

Label_0:

Index = 2 ' Index now equals 2
Print At 1,1,"Label 0" ' Display the Label name on the LCD
DelayMs 500 ' Wait 500ms
GoTo Start ' Jump back to Start

Label_1:
Index = 0 ' Index now equals 0
Print At 1,1,"Label 1" ' Display the Label name on the LCD
DelayMs 500 ' Wait 500ms
GoTo Start ' Jump back to Start

Label_2:
Index = 1 ' Index now equals 1
Print At 1,1,"Label 2" ' Display the Label name on the LCD
DelayMs 500 ' Wait 500ms
GoTo Start ' Jump back to Start

The above example we first assign the index variable a value of 2, then we define our labels.
Since the first position is considered 0 and the variable Index equals 2 the On GoTo command
will cause the program to jump to the third label in the list, which is Label_2.

Proton24 Compiler. Development Suite.

 299

Notes.
On GoTo is useful when you want to organise a structure such as: -

 If Var1 = 0 Then GoTo Label_0 ' Var1 = 0: go to label "Label_0"
 If Var1 = 1 Then GoTo Label_1 ' Var1 = 1: go to label "Label_1"
 If Var1 = 2 Then GoTo Label_2 ' Var1 = 2: go to label "Label_2"

You can use On GoTo to organise this into a single statement: -

 On Var1 GoTo Label_0, Label_1, Label_2

This works exactly the same as the above If...Then example. If the value is not in range (in this
case if Var1 is greater than 2), On GoTo does nothing. The program continues with the next
instruction.

See also : Branch, BranchL, On Gosub.

Proton24 Compiler. Development Suite.

 300

On Gosub

Syntax
On Index Variable Gosub Label1 {,...Labeln }

Overview
Cause the program to Call a subroutine based on an index value. A subsequent Return will
continue the program immediately following the On Gosub command.

Parameters
Index Variable is a constant, variable, or expression, that specifies the label to call.
Label1...Labeln are valid labels that specify where to call.

Example
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim Index as Byte

 Cls ' Clear the LCD
 While ' Create an infinite loop
 For Index = 0 to 2 ' Create a loop to call all the labels

' Call the label depending on the value of Index
 On Index Gosub Label_0, Label_1, Label_2
 DelayMs 500 ' Wait 500ms after the subroutine has returned
 Next
 Wend ' Do it forever
Label_0:
 Print At 1,1,"Label 0" ' Display the Label name on the LCD
 Return
Label_1:
 Print At 1,1,"Label 1" ' Display the Label name on the LCD
 Return
Label_2:
 Print At 1,1,"Label 2" ' Display the Label name on the LCD
 Return

The above example, a loop is formed that will load the variable Index with values 0 to 2. The
On Gosub command will then use that value to call each subroutine in turn. Each subroutine
will Return to the DelayMs command, ready for the next scan of the loop.

Proton24 Compiler. Development Suite.

 301

Notes.
On Gosub is useful when you want to organise a structure such as: -

 If Var1 = 0 Then Gosub Label_0 ' Var1 = 0: call label "Label_0"
 If Var1 = 1 Then Gosub Label_1 ' Var1 = 1: call label "Label_1"
 If Var1 = 2 Then Gosub Label_2 ' Var1 = 2: call label "Label_2"

You can use On Gosub to organise this into a single statement: -

 On Var1 Gosub Label_0, Label_1, Label_2

This works exactly the same as the above If...Then example. If the value is not in range (in this
case if Var1 is greater than 2), On Gosub does nothing. The program continues with the next
instruction..

See also : Branch, BranchL, On GoTo.

Proton24 Compiler. Development Suite.

 302

Output

Syntax
Output Port or Port . Pin or Pin Number

Overview
Makes the specified Port or Port.Pin an output.

Parameters
Port.Pin must be a Port.Pin constant declaration.
Pin Number can be any variable or constant holding 0 to the amount of I/O pins on the device.
A value of 0 will be PORTA.0, if present, 1 will be PORTA.1, 8 will be PORTB.0 etc…

Example 1
 Output PORTA.0 ' Make bit-0 of PORTA an output
 Output PORTA ' Make all of PORTA an output

Output 0 ' Make pin-0 of PORTA an output
 Output 16 ' Make pin-0 of PORTB an output

Example 2
' Flash each of the pins on PORTB
'
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim PinNumber as Byte

 High PORTB
 For PinNumber = 16 to 31 ' Create a loop for the pin to flash
 Output PinNumber ' Set the pin as an output
 DelayMs 500 ' Delay so that it can be seen
 Input PinNumber ' Set the pin as an input
 DelayMs 500 ' Delay so that it can be seen
 Next

Notes.
An Alternative method for making a particular pin an output is by directly modifying the TRIS: -

 TRISB.0 = 0 ' Make bit-0 of PORTB an output

All of the pins on a port may be set to output by setting the whole TRIS register at once: -

 TRISB = %0000000000000000 ' Set all of PORTB to outputs

In the above examples, setting a TRIS bit to 0 makes the pin an output, and conversely, setting
the bit to 1 makes the pin an input.

See also : Input.

Proton24 Compiler. Development Suite.

 303

Oread

Syntax
Oread Pin, Mode, [Inputdata]

Overview
Receive data from a device using the Dallas Semiconductor 1-wire protocol. The 1-wire proto-
col is a form of asynchronous serial communication developed by Dallas Semiconductor. It re-
quires only one I/O pin which may be shared between multiple 1-wire devices.

Parameters
Pin is a Port-Bit combination that specifies which I/O pin to use. 1-wire devices require only one
I/O pin (normally called DQ) to communicate. This I/O pin will be toggled between output and
input mode during the Oread command and will be set to input mode by the end of the Oread
command.
Mode is a numeric constant (0 - 7) indicating the mode of data transfer. The Mode argument
control's the placement of reset pulses and detection of presence pulses, as well as byte or bit
input. See notes below.
Inputdata is a list of variables or arrays to store the incoming data into.

Example
 Device = 24HJ128GP502
 Declare Xtal = 16

Dim MyResult as Byte
Symbol DQ = PORTA.0
Oread DQ, 1, [MyResult]

The above example code will transmit a 'reset' pulse to a 1-wire device (connected to bit 0 of
PORTA) and will then detect the device's 'presence' pulse and receive one byte and store it in
the variable MyResult.

Notes.
The Mode operator is used to control placement of reset pulses (and detection of presence
pulses) and to designate byte or bit input. The table below shows the meaning of each of the 8
possible value combinations for Mode.

The correct value for Mode depends on the 1-wire device and the portion of the communication
that is being dealt with. Consult the data sheet for the device in question to determine the cor-
rect value for Mode. In many cases, however, when using the Oread command, Mode should
be set for either No Reset (to receive data from a transaction already started by an Owrite

Mode
Value Effect

0 No Reset, Byte mode
1 Reset before data, Byte mode
2 Reset after data, Byte mode
3 Reset before and after data, Byte mode
4 No Reset, Bit mode
5 Reset before data, Bit mode
6 Reset after data, Bit mode
7 Reset before and after data, Bit mode

Proton24 Compiler. Development Suite.

 304

command) or a Reset after data (to terminate the session after data is received). However, this
may vary due to device and application requirements.

When using the Bit (rather than Byte) mode of data transfer, all variables in the InputData ar-
gument will only receive one bit. For example, the following code could be used to receive two
bits using this mode: -

Dim BitVar1 as Bit
Dim BitVar2 as Bit
Oread PORTA.0, 6, [BitVar1, BitVar2]

In the example code shown, a value of 6 was chosen for Mode. This sets Bit transfer and Reset
after data mode.

We could also have chosen to make the BitVar1 and BitVar2 variables each a Byte type, how-
ever, they would still only have received one bit each in the Oread command, due to the Mode
that was chosen.

The compiler also has a modifier for handling a string of data, named Str.

The Str modifier is used for receiving data and placing it directly into a byte array variable.

A string is a set of bytes that are arranged or accessed in a certain order. The values 1, 2, 3
would be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A
byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string 1 2 3 would be stored in a byte
array containing three bytes (elements).

Below is an example that receives ten bytes through a 1-wire interface and stores them in the
10-byte array, MyArray: -

Dim MyArray[10] as Byte ' Create a 10-byte array.
Oread DQ, 1, [Str MyArray]
Print Dec Str MyArray ' Display the values.

If the amount of received characters is not enough to fill the entire array, then a formatter may
be placed after the array's name, which will only receive characters until the specified length is
reached. For example: -

Dim MyArray[10] as Byte ' Create a 10-byte array.
Oread DQ, 1, [Str MyArray\5] ' Fill the first 5-bytes of array with data.
Print Str MyArray \5 ' Display the 5-value string.

The example above illustrates how to fill only the first n bytes of an array, and then how to dis-
play only the first n bytes of the array. n refers to the value placed after the backslash.

Proton24 Compiler. Development Suite.

 305

Dallas 1-Wire Protocol.
The 1-wire protocol has a well defined standard for transaction sequences. Every transaction
sequence consists of four parts: -

 Initialisation.
 ROM Function Command.
 Memory Function Command.
 Transaction / Data.

Additionally, the ROM Function Command and Memory Function Command are always 8 bits
wide and are sent least-significant-bit first (LSB).

The Initialisation consists of a reset pulse (generated by the master) that is followed by a pres-
ence pulse (generated by all slave devices).

The reset pulse is controlled by the lowest two bits of the Mode argument in the Oread com-
mand. It can be made to appear before the ROM Function Command (Mode = 1), after the
Transaction / Data portion (Mode = 2), before and after the entire transaction (Mode = 3) or not
at all (Mode = 0).

Following the Initialisation, comes the ROM Function Command. The ROM Function Command
is used to address the desired 1-wire device. The above table shows a few common ROM
Function Commands. If only a single 1 wire device is connected, the Match ROM command can
be used to address it. If more than one 1-wire device is attached, the microcontroller will ulti-
mately have to address them individually using the Match ROM command.

The third part, the Memory Function Command, allows the microcontroller to address specific
memory locations, or features, of the 1-wire device. Refer to the 1-wire device's data sheet for a
list of the available Memory Function Commands.

Finally, the Transaction / Data section is used to read or write
data to the 1-wire device. The Oread command will read data
at this point in the transaction. A read is accomplished by
generating a brief low-pulse and sampling the line within
15us of the falling edge of the pulse. This is called a 'Read
Slot'.

The following program demonstrates interfacing to a Dallas Semiconductor DS1820 1-wire digi-
tal thermometer device using the compiler's 1-wire commands, and connections as per the dia-
gram to the right.

Command Value Action

Read ROM $33 Reads the 64-bit ID of the 1-wire device. This command can
only be used if there is a single 1-wire device on the line.

Match ROM $55 This command, followed by a 64-bit ID, allows the micro-
controller to address a specific 1-wire device.

Skip ROM $CC
Address a 1-wire device without its 64-bit ID. This command
can only be used if there is a single 1-wire device on the
line.

Search
ROM $F0

Reads the 64-bit IDs of all the 1-wire devices on the line. A
process of elimination is used to distinguish each unique
device.

DS1820
VDD

DQ

GND

3

1

2

R1
4.7k

+5 Volts

0v

To RA1
1 2 3

DS1820

1..GND
2..DQ
3..VCC

Proton24 Compiler. Development Suite.

 306

The code reads the Counts Remaining and Counts per Degree Centigrade registers within the
DS1820 device in order to provide a more accurate temperature (down to 1/10th of a degree).

 Device = 24HJ128GP502
 Declare Xtal = 16

Symbol DQ = PORTA.1 ' Place the DS1820 on bit-1 of PORTA
Dim Temp as Word ' Holds the temperature value
Dim C as Byte ' Holds the counts remaining value
Dim CPerD as Byte ' Holds the Counts per degree C value

Cls ' Clear the LCD before we start
Do

Owrite DQ, 1, [$CC, $44] ' Send Calculate Temperature command
Repeat

DelayMs 25 ' Wait until conversion is complete
Oread DQ, 4, [C] ' Keep reading low pulses until

Until C <> 0 ' the DS1820 is finished.
Owrite DQ, 1, [$CC, $BE] ' Send Read ScratchPad command
Oread DQ, 2,[Temp.LowByte,Temp.HighByte, C, C, C, C, C, CPerD]
' Calculate the temperature in degrees Centigrade
Temp = (((Temp >> 1) * 100) - 25) + (((CPerD - C) * 100) / CPerD)
Print At 1,1, Dec Temp / 100, ".", Dec2 Temp," ", At 1,8,"C"

Loop

Note.
The equation used in the program above will not work correctly with negative temperatures.
Also note that the 4.7kΩ pull-up resistor (R1) is required for correct operation.

Inline Oread Command.
The standard structure of the Oread command is: -

Oread Pin, Mode, [Inputdata]

However, this did not allow it to be used in conditions such as If-Then, While-Wend etc. There-
fore, there is now an additional structure to the Oread command: -

Var = Oread Pin, Mode

Parameters Pin and Mode have not changed their function, but the result from the 1-wire read
is now placed directly into the assignment variable.

See also : Owrite.

Proton24 Compiler. Development Suite.

 307

Owrite

Syntax
Owrite Pin, Mode, [OutputData]

Overview
Send data to a device using the Dallas Semiconductor 1-wire protocol. The 1-wire protocol is a
form of asynchronous serial communication developed by Dallas Semiconductor. It requires
only one I/O pin which may be shared between multiple 1-wire d vices.

Parameters
Pin is a Port-Bit combination that specifies which I/O pin to use. 1-wire devices require only one
I/O pin (normally called DQ) to communicate. This I/O pin will be toggled between output and
input mode during the Owrite command and will be set to input mode by the end of the Owrite
command.
Mode is a numeric constant (0 - 7) indicating the mode of data transfer. The Mode operator
control's the placement of reset pulses and detection of presence pulses, as well as byte or bit
input. See notes below.
OutputData is a list of variables or arrays transmit individual or repeating bytes.

Example

Symbol DQ = PORTA.0
Owrite DQ, 1, [$4E]

The above example will transmit a 'reset' pulse to a 1-wire device (connected to bit 0 of
PORTA) and will then detect the device's 'presence' pulse and transmit one byte (the value
$4E).

Notes.
The Mode operator is used to control placement of reset pulses (and detection of presence
pulses) and to designate byte or bit input. The table below shows the meaning of each of the 8
possible value combinations for Mode.

The correct value for Mode depends on the 1-wire device and the portion of the communication
you're dealing with. Consult the data sheet for the device in question to determine the correct
value for Mode. In many cases, however, when using the Owrite command, Mode should be
set for a Reset before data (to initialise the transaction). However, this may vary due to device
and application requirements.

Mode
Value Effect

0 No Reset, Byte mode
1 Reset before data, Byte mode
2 Reset after data, Byte mode
3 Reset before and after data, Byte mode
4 No Reset, Bit mode
5 Reset before data, Bit mode
6 Reset after data, Bit mode
7 Reset before and after data, Bit mode

Proton24 Compiler. Development Suite.

 308

When using the Bit (rather than Byte) mode of data transfer, all variables in the InputData ar-
gument will only receive one bit. For example, the following code could be used to receive two
bits using this mode: -

Dim BitVar1 as Bit
Dim BitVar2 as Bit
Owrite PORTA.0, 6, [BitVar1, BitVar2]

In the example code shown, a value of 6 was chosen for Mode. This sets Bit transfer and Reset
after data mode. We could also have chosen to make the BitVar1 and BitVar2 variables each a
Byte type, however, they would still only use their lowest bit (Bit0) as the value to transmit in the
Owrite command, due to the Mode value chosen.

The Str Modifier
The Str modifier is used for transmitting a string of bytes from a byte array variable. A string is a
set of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3
would be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A
byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string 1,2,3 would be stored in a byte
array containing three bytes (elements).

Below is an example that sends four bytes (from a byte array) through bit-0 of PORTA: -

Dim MyArray[10] as Byte ' Create a 10-byte array.
MyArray [0] = $CC ' Load the first 4 bytes of the array
MyArray [1] = $44 ' With the data to send
MyArray [2] = $CC
MyArray [3] = $4E
Owrite PORTA.0, 1, [Str MyArray\4] ' Send 4-byte string.

Note that we use the optional \n argument of Str. If we didn't specify this, the microcontroller
would try to keep sending characters until all 10 bytes of the array were transmitted. Since we
do not wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 4
bytes.

The above example may also be written as: -

Dim MyArray[10] as Byte ' Create a 10-byte array.
Str MyArray = $CC,$44,$CC,$4E ' Load the first 4 bytes of the array
Owrite PORTA.0, 1, [Str MyArray\4] ' Send 4-byte string.

The above example, has exactly the same function as the previous one. The only difference is
that the string is now constructed using the Str as a command instead of a modifier.

See also : Oread for example code, and 1-wire protocol.

Proton24 Compiler. Development Suite.

 309

Pixel

Syntax
Assignment Variable = Pixel Ypos, Xpos

Overview
Read the condition of an individual pixel from a graphic LCD. The returned value will be 1 if the
pixel is set, and 0 if the pixel is clear, or if using a colour graphic LCD, it will hold the 16-bit col-
our of the pixel.

Parameters
Assignment Variable is a user defined variable that holds the colour of the pixel.
Xpos can be a constant, variable, or expression, pointing to the X-axis location of the pixel to
examine. This must be a value of 0 to the X resolution of the LCD. Where 0 is the far left row of
pixels.
Ypos can be a constant, variable, or expression, pointing to the Y-axis location of the pixel to
examine. This must be a value of 0 to the Y resolution of the LCD. Where 0 is the top column of
pixels.

Example
' Read a line of pixels from a KS0108 graphic LCD
 Device = 24HJ128GP502
 Declare Xtal = 16
'
' KS0108 graphic LCD declares
'
 Declare LCD_Type = KS0108 ' Setup for a KS0108 graphic LCD
 Declare LCD_DTPort = PORTB.Byte0
 Declare LCD_CS1Pin = PORTB.8
 Declare LCD_CS2Pin = PORTB.9
 Declare LCD_ENPin = PORTB.10
 Declare LCD_RSPin = PORTB.11
 Declare LCD_RWPin = PORTB.12

 Dim Xpos as Byte
 Dim Ypos as Byte
 Dim MyResult as Byte

 Cls
 Print At 0, 0, "Testing 1-2-3"
' Read the top row and display the result
 For Xpos = 0 to 127
 MyResult = Pixel 0, Xpos ' Read the top row
 Print At 1, 0, Dec MyResult
 DelayMs 400
 Next

See also : LCDread, LCDwrite, Plot, UnPlot. See Print for circuit.

Proton24 Compiler. Development Suite.

 310

Plot

Syntax
Plot Ypos, Xpos

Overview
Set an individual pixel on a graphic LCD.

Parameters
Xpos can be a constant, variable, or expression, pointing to the X-axis location of the pixel to
set. This must be a value of 0 to the X resolution of the LCD. Where 0 is the far left row of pix-
els.
Ypos can be a constant, variable, or expression, pointing to the Y-axis location of the pixel to
set. This must be a value of 0 to the Y resolution of the LCD. Where 0 is the top column of pix-
els.

KS0108 LCD example
 Device = 24HJ128GP502
 Declare Xtal = 16
'
' KS0108 graphic LCD declares
'
 Declare LCD_Type = KS0108 ' Setup for a KS0108 graphic LCD
 Declare LCD_DTPort = PORTB.Byte0
 Declare LCD_CS1Pin = PORTB.8
 Declare LCD_CS2Pin = PORTB.9
 Declare LCD_ENPin = PORTB.10
 Declare LCD_RSPin = PORTB.11
 Declare LCD_RWPin = PORTB.12

 Dim Xpos as Byte
'
' Draw a line across the LCD
'
 While ' Create an infinite loop
 For Xpos = 0 to 127
 Plot 20, Xpos
 DelayMs 10
 Next
 '
 ' Now erase the line
 '
 For Xpos = 0 to 127
 UnPlot 20, Xpos
 DelayMs 10
 Next
 Wend

Proton24 Compiler. Development Suite.

 311

ILI9320 colour graphic LCD example
' Fill the LCD with colour using plot
'
 Device = 24EP128MC202
 Declare Xtal = 140.03
'
' Setup the Pins used by the ILI9320 320x240 pixel graphic LCD
'
 Declare LCD_DTPort = PORTB.Byte0 ' Use the first 8-bits of PORTB
 Declare LCD_CSPin = PORTB.8 ' Connect to the LCD's CS pin
 Declare LCD_RDPin = PORTB.9 ' Connect to the LCD's RD pin
 Declare LCD_RSPin = PORTB.10 ' Connect to the LCD's RS pin
 Declare LCD_WRPin = PORTA.3 ' Connect to the LCD's WR pin

 Include "ILI9320.inc" ' Load the ILI9320 routines into the program

 Dim wXpos As Word ' Create a variable for the X position
 Dim wYpos As Word ' Create a variable for the Y position
'--
Main:
' Configure the internal oscillator to operate the device at 140.03MHz
 PLL_Setup(76, 2, 2, $0300)

 Cls clYellow ' Clear the LCD with the colour yellow
 Glcd_InkColour(clBrightBlue) ' Choose the pixel colour
'
' Fill the LCD with colour
'
 For wYpos = 0 To 319
 For wXpos = 0 To 239
 Plot wYpos, wXpos
 Next
 Next
'--
' Configure for internal 7.37MHz oscillator with PLL
' OSC pins are general purpose I/O
'
 Config FGS = GWRP_OFF, GCP_OFF
 Config FOSCSEL = FNOSC_FRCPLL, IESO_ON, PWMLOCK_OFF
 Config FOSC = POSCMD_NONE, OSCIOFNC_ON, IOL1WAY_OFF, FCKSM_CSDCMD
 Config FWDT = WDTPOST_PS256, WINDIS_OFF, PLLKEN_ON, FWDTEN_OFF
 Config FPOR = ALTI2C1_ON, ALTI2C2_OFF
 Config FICD = ICS_PGD1, JTAGEN_OFF

Notes.
If using a colour graphic LCD, the Plot command will use the current colour of the pixel's Ink.
As previously set by the Glcd_Ink command.

With an ILI9320 320x240 pixel colour graphic LCD, the colour is a 16-bit value formatted in
RGB565, where the upper 5-bits represent the red content, the middle 6-bits represent the
green content, and the lower 5-bits represent the blue content. As illustrated below:

See also : LCDread, LCDwrite, Pixel, UnPlot.

Low ByteHigh Byte

045101115

Red value Green value Red value

Proton24 Compiler. Development Suite.

 312

Graphic LCD pixel configuration for a 128x64 resolution display.

Xp
os

 0
 -

12
7

Ypos 0 - 630
0

63
0

12
7630

12
7

Li
ne

 0

Li
ne

 1

Li
ne

 2

Li
ne

 3

Li
ne

 4

Li
ne

 5

Li
ne

 6

Li
ne

 7

Proton24 Compiler. Development Suite.

 313

Pop

Syntax
Pop Variable, {Variable, Variable etc}

Overview
Pull a single variable or multiple variables from the microcontroller’s stack.

Parameters
Variable is a user defined variable of type Bit, Byte, Word, Dword, Float, Array, or String.

The amount of bytes pushed on to the stack varies with the variable type used. The list below
shows how many bytes are pushed for a particular variable type, and their order. The microcon-
troller’s stack is word orientated, therefore all operations are accomplished using 16-bits.

Bit 2 Bytes are popped containing the value of the bit pushed.
Byte 2 Bytes are popped containing the value of the byte pushed.
Byte Array 2 Bytes are popped containing the value of the byte pushed.
Word 2 Bytes are popped. Low Byte then High Byte containing
 the value of the word pushed.
Word Array 2 Bytes are popped. Low Byte then High Byte containing
 the value of the word pushed.
Dword Array 4 Bytes are popped. Low Byte, Mid1 Byte, Mid2 Byte then High Byte
 containing the value of the dword pushed.
Float Array 4 Bytes are popped. Low Byte, Mid1 Byte, Mid2 Byte then High Byte
 containing the value of the dword pushed.
Dword 4 Bytes are popped. Low Byte, Mid1 Byte, Mid2 Byte then High Byte
 containing the value of the dword pushed.
Float 4 Bytes are popped. Low Byte, Mid1 Byte, Mid2 Byte then High Byte
 containing the value of the float pushed.
String 2 Bytes are popped. Low Byte then High Byte that point to the
 start address of the string previously pushed.

Example 1
' Push two variables on to the stack then retrieve them

 Device = 24HJ128GP502
 Declare Xtal = 16
 Declare Stack_Size = 90 ' Increase the stack to hold extra words

 Dim MyWord as Word ' Create a Word variable
 Dim MyDword as Dword ' Create a Dword variable

 MyWord = 1234 ' Load the Word variable with a value
 MyDword = 567890 ' Load the Dword variable with a value
 Push MyWord, MyDword ' Push the Word variable then the Dword variable

 Clear MyWord ' Clear the Word variable
 Clear MyDword ' Clear the Dword variable

 Pop MyDword, MyWord ' Pop the Dword variable then the Word variable
 Print Dec MyWord, " ", Dec MyDword ' Display the variables as decimal

Proton24 Compiler. Development Suite.

 314

Example 2
' Push a String on to the stack then retrieve it

 Device = 24HJ128GP502
 Declare Xtal = 16
 Declare Stack_Size = 90 ' Increase the stack to hold extra words

 Dim SourceString as String * 20 ' Create a String variable
 Dim DestString as String * 20 ' Create another String variable

 SourceString = "Hello World" ' Load the String variable with characters

 Push SourceString ' Push the String variable's address

 Pop DestString ' Pop the previously pushed String into DestString
 Print DestString ' Display the string, which will be "Hello World"

Example 3
' Push a Quoted character string on to the stack then retrieve it

 Device = 24HJ128GP502
 Declare Xtal = 16
 Declare Stack_Size = 90 ' Increase the stack to hold extra words

 Dim DestString as String * 20 ' Create a String variable

 Push "Hello World" ' Push the Quoted String of Characters on to the stack

 Pop DestString ' Pop the previously pushed String into DestString
 Print DestString ' Display the string, which will be "Hello World"

Notes.
Unlike the 8-bit PIC® microcontroller’s, the PIC24® and dsPIC33® types have a true stack that
occupied RAM and stores call and return data as well as data pushed onto it. This is a valuable
resource for saving and restoring variables or SFRs than would otherwise be altered.

There are two declares for use with the stack. These are:

Declare Stack_Size = 20 to n (in words)
The compiler sets the default size of the microcontroller’s stack to 60 words (120 bytes). This
can be increased or decreased as required, as long as it fits within the RAM available. The
compiler places a minimum limit of 20 for stack size. If the stack overflows or underflows, the
microcontroller will trigger an exception.

Declare Stack_Expand = 1 or 0 or On or Off
Whenever an interrupt handler is used within a BASIC program, it must context save and re-
store critical SFRs and variables that would otherwise get overwritten. It uses the microcontrol-
ler’s stack for temporary storage of the SFRs and variables, therefore the stack will increase
with every interrupt handler used within the program. If this behaviour is undesirable, the above
declare will disable it. However, the user must make sure that the stack is large enough to ac-
commodate the storage, otherwise an exception will be triggered by the microcontroller.

See also : Push.

Proton24 Compiler. Development Suite.

 315

Pot

Syntax
Assignment Variable = Pot Pin, Scale

Overview
Read a potentiometer, thermistor, photocell, or other variable resistance.

Parameters
Assignment Variable is a user defined variable.
Pin is a Port.Pin constant that specifies the I/O pin to use.
Scale is a constant, variable, or expression, used to scale the instruction's internal 16-bit result.
The 16- bit reading is multiplied by (scale/ 256), so a scale value of 128 would reduce the range
by approximately 50%, a scale of 64 would reduce to 25%, and so on.

Example
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim Var1 as Byte
 While ' Create an infinite loop
 Var1 = Pot PORTB.0, 100 ' Read potentiometer on pin 0 of PORTB.
 Print Dec Var1, " " ' Display the potentiometer reading
 Wend ' Do it forever

Notes.
Internally, the Pot instruction calculates a 16-bit value, which is scaled down to an 8-bit value.
The amount by which the internal value must be scaled varies with the size of the resistor being
used.

The pin specified by Pot must be connected to one side of a resistor, whose other side is con-
nected through a capacitor to ground. A resistance measurement is taken by timing how long it
takes to discharge the capacitor through the resistor.

The value of scale must be determined by experimentation, however, this is easily accom-
plished as follows: -

Set the device under measure, the pot in this instance, to maximum resistance and read it with
scale set to 255. The value returned in Var1 can now be used as scale: -

 Var1 = Pot PORTB.0, 255

See also : Adin, RCin.

To
I/O Pin

5-50k

0.1uF

Proton24 Compiler. Development Suite.

 316

Print

Syntax
Print Item {, Item... }

Overview
Send Text to an LCD module using the Hitachi HD44780 controller or a graphic LCD based on
the KS0108, or Toshiba T6963, or ILI9320 chipsets.

Parameters
Item may be a constant, variable, expression, modifier, or string list.
There are no operands as such, instead there are modifiers. For example, if an at sign'@' pre-
cedes an Item, the ASCII representation for each digit is sent to the LCD.

The modifiers are listed below: -

Modifier Operation

At ypos (1 to n),xpos(1 to n) Position the cursor on the LCD
Cls Clear the LCD (also creates a 30ms delay)

Bin{1..32} Display binary digits
Dec{1..10} Display decimal digits
Hex{1..8} Display hexadecimal digits
Sbin{1..32} Display signed binary digits
Sdec{1..10} Display signed decimal digits
Shex{1..8} Display signed hexadecimal digits
Ibin{1..32} Display binary digits with a preceding '%' identifier
Idec{1..10} Display decimal digits with a preceding '#' identifier
Ihex{1..8} Display hexadecimal digits with a preceding '$' identifier
ISbin{1..32} Display signed binary digits with a preceding '%' identifier
ISdec{1..10} Display signed decimal digits with a preceding '#' identifier
IShex{1..8} Display signed hexadecimal digits with a preceding '$' identifier

Rep c\n Display character c repeated n times
Str array\n Display all or part of an array
Cstr Label Display string data defined in code memory.

The numbers after the Bin, Dec, and Hex modifiers are optional. If they are omitted, then the
default is all the digits that make up the value will be displayed.

If a floating point variable is to be displayed, then the digits after the Dec modifier determine
how many remainder digits are printed. i.e. numbers after the decimal point.

 Dim MyFloat as Float
 MyFloat = 3.145
 Print Dec2 MyFloat ' Display 2 values after the decimal point

The above program will display 3.14

If the digit after the Dec modifier is omitted, then 3 values will be displayed after the decimal
point.

Proton24 Compiler. Development Suite.

 317

 Dim MyFloat as Float
 MyFloat = 3.1456
 Print Dec MyFloat ' Display 3 values after the decimal point

The above program will display 3.145

There is no need to use the Sdec modifier for signed floating point values, as the compiler's
Dec modifier will automatically display a minus result: -

 Dim MyFloat as Float
 MyFloat = -3.1456
 Print Dec MyFloat ' Display 3 values after the decimal point

The above program will display -3.145

Hex or Bin modifiers cannot be used with floating point values or variables.

The Xpos and Ypos values in the At modifier both start at 1. For example, to place the text
"Hello World" on line 1, position 1, the code would be: -

 Print At 1, 1, "Hello World"

Example 1
 Device = 24HJ128GP502
 Declare Xtal = 16

Dim Var1 as Byte
 Dim MyWord as Word
 Dim MyDword as Dword

 Print "Hello World" ' Display the text "Hello World"
 Print "Var1= ", Dec Var1 ' Display the decimal value of Var1
 Print "Var1= ", Hex Var1 ' Display the hexadecimal value of Var1
 Print "Var1= ", Bin Var1 ' Display the binary value of Var1
 Print "MyDword= ", Hex6 MyDword ' Display 6 hex characters of a Dword variable

Example 2
' Display a negative value on the LCD.
 Symbol Negative = -200
 Print At 1, 1, Sdec Negative

Example 3
' Display a negative value on the LCD with a preceding identifier.
 Print At 1, 1, IShex -$1234

Example 3 will produce the text "$-1234" on the LCD.

The Cstr modifier is used in conjunction with code memory strings. The Dim as Code directive
is used for initially creating the string of characters: -

Dim CodeString as Code = "Hello World", 0

The above line of case will create, in code memory, the values that make up the ASCII text
"Hello World", at address String1. Note the null terminator after the ASCII text.

Proton24 Compiler. Development Suite.

 318

Null terminated means that a zero (null) is placed at the end of the string of ASCII characters to
signal that the string has finished.

To display this string of characters, the following command structure could be used: -

 Print CodeString

The label that declared the address where the list of code memory values resided, now be-
comes the string's name.

The Str modifier is used for sending a string of bytes from a byte array variable. A string is a set
of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3 would
be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A byte ar-
ray is a similar concept to a string; it contains data that is arranged in a certain order. Each of
the elements in an array is the same size. The string 1,2,3 would be stored in a byte array con-
taining three bytes (elements).

Below is an example that displays four bytes (from a byte array): -

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 MyArray [0] = "H" ' Load the first 5 bytes of the array
 MyArray [1] = "E" ' With the data to send
 MyArray [2] = "L"
 MyArray [3] = "L"
 MyArray [4] = "O"
 Print Str MyArray\5 ' Display a 5-byte string.

Note that we use the optional \n argument of Str. If we didn't specify this, the microcontroller
would try to keep sending characters until all 10 bytes of the array were transmitted. Since we
do not wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 5
bytes.

The above example may also be written as: -

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 Str MyArray = "Hello" ' Load the first 5 bytes of the array
 Print Str MyArray\5 ' Send 5-byte string.

The above example, has exactly the same function as the previous one. The only difference is
that the string is now constructed using Str as a command instead of a modifier.

Proton24 Compiler. Development Suite.

 319

Declares
There are several Declares for use with an alphanumeric LCD and Print: -

Declare LCD_Type 0 or 1 or 2, Alpha or Graphic or KS0108 or Toshiba or T6963
Inform the compiler as to the type of LCD that the Print command will output to. If Graphic,
KS0108 or 1 is chosen then any output by the Print command will be directed to a graphic LCD
based on the KS0108 chipset. A value of 2, or the text Toshiba, or T6963, will direct the output
to a graphic LCD based on the Toshiba T6963 chipset. A value of 0 or Alpha, or if the Declare
is not issued, will target the standard Hitachi HD44780 alphanumeric LCD type

Targeting the graphic LCD will also enable commands such as Plot, UnPlot, LCDread,
LCDwrite, Pixel, Box, Circle and Line.

Declare LCD_DTPin Port . Pin
Assigns the Port and Pins that the LCD's DT (data) lines will attach to.
The LCD may be connected to the microcontroller using either a 4-bit bus or an 8-bit bus. If an
8-bit bus is used, all 8 bits must be on one port. If a 4-bit bus is used, it must be connected to
either the bottom 4 or top 4 bits of one port. For example: -

 Declare LCD_DTPin PORTB.4 ' Used for 4-line interface.

 Declare LCD_DTPin PORTB.0 ' Used for 8-line interface.

In the previous examples, PORTB is only a personal preference. The LCD's DT lines may be
attached to any valid port on the microcontroller.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_ENPin Port . Pin
Assigns the Port and Pin that the LCD's EN line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_RSPin Port . Pin
Assigns the Port and Pins that the LCD's RS line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_Interface 4 or 8
Inform the compiler as to whether a 4-line or 8-line interface is required by the LCD.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_Lines 1, 2, or 4
Inform the compiler as to how many lines the LCD has.

LCD's come in a range of sizes, the most popular being the 2 line by 16 character types. How-
ever, there are 4 line types as well. Simply place the number of lines that the particular LCD
has, into the declare.

There is no default setting for this Declare and it must be used within the BASIC program.

Proton24 Compiler. Development Suite.

 320

Notes.
If no modifier precedes an item in a Print command, then the character’s value is sent to the
LCD. This is useful for sending control codes to the LCD. For example: -

 Print $FE, 128

Will move the cursor to line 1, position 1 (HOME).

Below is a list of some useful control commands: -

 Control Command Operation

 $FE, 1 Clear display
 $FE, 2 Return home (beginning of first line)
 $FE, $0C Cursor off
 $FE, $0E Underline cursor on
 $FE, $0F Blinking cursor on
 $FE, $10 Move cursor left one position
 $FE, $14 Move cursor right one position
 $FE, $C0 Move cursor to beginning of second line
 $FE, $94 Move cursor to beginning of third line (if applicable)
 $FE, $D4 Move cursor to beginning of fourth line (if applicable)

Note that if the command for clearing the LCD is used, then a small delay should follow it: -

 Print $FE, 1 : DelayMs 10

The above diagram shows typical connections for an alphanumeric LCD module using a 4-bit
interface. Note that the compiler does not use the LCD's RW pin, and this must be connected to
ground.

220Ω
Contrast

+5
 V

ol
ts

2 lines x 16 characters
Alphanumeric LCD

D
B7

D
B6

D
B5

D
B4

D
B3

D
B2

D
B1

D
B0

EN R
/W

R
S Vo V
dd Vs

s

To
 R

B
7

To
 R

B
6

To
 R

B
5

To
 R

B
4

To
 R

B
3

To
 R

B
2

Proton24 Compiler. Development Suite.

 321

Using a KS0108 Graphic LCD
Once a KS0108 graphic LCD has been chosen using the Declare LCD_Type directive, all
Print outputs will be directed to that LCD.

The standard modifiers used by an alphanumeric LCD may also be used with the graphics
LCD. Most of the above modifiers still work in the expected manner, however, the At modifier
now starts at Ypos 0 and Xpos 0, where values 0,0 will be the top left corner of the LCD.

There are also four new modifiers. These are: -

 Inverse 0-1 Invert the characters sent to the LCD
 Or 0-1 Or the new character with the original
 Xor 0-1 Xor the new character with the original

Once one of the four new modifiers has been enabled, all future Print commands will use that
particular feature until the modifier is disabled. For example: -

' Enable inverted characters from this point
 Print At 0, 0, Inverse 1, "Hello World"
 Print At 1, 0, "Still Inverted"
' Now use normal characters
 Print At 2, 0, Inverse 0, "Normal Characters"

If no modifiers are present, then the character's ASCII representation will be displayed: -

' Print characters A and B
 Print At 0, 0, 65, 66

KS0108 graphic LCD Declares
There are several declares associated with a KS0108 graphic LCD.

Declare LCD_DTPort Port = Port.Byten
Assign the port that will output the 8-bit data to the graphic LCD.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_RWPin = Port . Pin
Assigns the Port and Pin that the graphic LCD's RW line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_ENPin Port . Pin
Assigns the Port and Pin that the LCD's EN line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_RSPin Port . Pin
Assigns the Port and Pins that the LCD's RS line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Proton24 Compiler. Development Suite.

 322

Declare LCD_CS1Pin = Port . Pin
Assigns the Port and Pin that the graphic LCD's CS1 line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_CS2Pin = Port . Pin
Assigns the Port and Pin that the graphic LCD's CS2 line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Note
The KS0108 graphic LCD is a “non-intelligent” type, therefore, a separate character set is re-
quired. This is held internally in code memory.

The code memory table that contains the font must have a label named Font_Table. For ex-
ample: -

'{ data for characters 0 to 64 here}

Dim Font_Table as Code = $7E, $11, $11, $11, $7E, $00,_ ' Chr 65 "A"
 $7F, $49, $49, $49, $36, $00,_ ' Chr 66 "B"
 { rest of font table }

The font is built up of an 8x6 cell, with only 5 of the 6 rows, and 7 of the 8 columns being used
for alphanumeric characters. See the diagram below.

If a graphic character is chosen (chr 0 to 31), the whole of the 8x6 cell is used. In this way,
large fonts and graphics may be easily constructed.

The character set itself is 128 characters long (0 -127). Which means that all the ASCII charac-
ters are present, including $, %, &, # etc.

$
7
E

$
0
0

$
1
1

$
1
1

$
1
1

$
7
E

Proton24 Compiler. Development Suite.

 323

Declare GLCD_CS_Invert On - Off, 1 or 0
Some graphic LCD types have inverters on the CS lines. Which means that the LCD displays
left-hand data on the right side, and vice-versa. The GLCD_CS_Invert Declare, adjusts the li-
brary LCD handling subroutines to take this into account.

Declare GLCD_Strobe_Delay 0 to 16383 cycles.
If a noisy circuit layout is unavoidable when using a graphic LCD, then the above Declare may
be used. This will create a delay between the Enable line being strobed. This can ease random
data being produced on the LCD's screen. See below for more details on circuit layout for
graphic LCDs.

If the Declare is not used in the program, then the cycles delay is determined by the oscillator
used.

The diagram above shows typical connections to a KS0108 graphic LCD.

KS0108
64 x 128

Dot Matrix
Graphic LCD

D
B7

D
B6

D
B5

D
B4

D
B3

D
B2

D
B1

D
B0

EN R
/W

R
S Vo Vc
c

G
nd C
S1

C
S2

R
ST

-V
ou

t

120

LE
D

A
LE

D
K

R2
10kΩ

R3
100kΩ

R1
10Ω To

 R
B7

To
 R

B6
To

 R
B5

To
 R

B4
To

 R
B3

To
 R

B2
To

 R
B1

To
 R

B0
To

 R
A

1
To

 R
A

3
To

 R
A

2

+5
 V

ol
ts

To
 R

B
9

To
 R

B
8

+5
 V

ol
ts

+5
 V

ol
ts

Proton24 Compiler. Development Suite.

 324

Using a Toshiba T6963 Graphic LCD
Once a Toshiba T6963 graphic LCD has been chosen using the Declare LCD_Type directive,
all Print outputs will be directed to that LCD. Note that the Toshiba routines must be loaded
into the program via the Include directive.

The standard modifiers used by an alphanumeric LCD may also be used with the graphics
LCD. Most of the modifiers still work in the expected manner, however, the At modifier now
starts at Ypos 0 and Xpos 0, where values 0,0 correspond to the top left corner of the LCD.

The KS0108 modifiers Inverse, Or, and Xor are not supported because of the method Toshiba
LCD’s using the T6963 chipset implement text and graphics.

There are several Declares for use with a Toshiba graphic LCD, some optional and some
mandatory.

Declare LCD_DTPort = Port
Assign the port that will output the 8-bit data to the graphic LCD.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_WRPin Port . Pin
Assigns the Port and Pin that the graphic LCD's WR line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_RDPin Port . Pin
Assigns the Port and Pin that the graphic LCD's RD line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_CEPin Port . Pin
Assigns the Port and Pin that the graphic LCD's CE line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_CDPin Port . Pin
Assigns the Port and Pin that the graphic LCD's CD line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_RSTPin Port . Pin
Assigns the Port and Pin that the graphic LCD's RST line will attach to.

The LCD’s RST (Reset) Declare is optional and if omitted from the BASIC code, the compiler
will not manipulate it. However, if not used as part of the interface, you must set the LCD’s RST
pin high for normal operation.

Declare LCD_X_Res 0 to 255
LCD displays using the T6963 chipset come in varied screen sizes (resolutions). The compiler
must know how many horizontal pixels the display consists of before it can build its library sub-
routines.

There is no default setting for this Declare and it must be used within the BASIC program.

Proton24 Compiler. Development Suite.

 325

Declare LCD_Y_Res 0 to 255
LCD displays using the T6963 chipset come in varied screen sizes (resolutions). The compiler
must know how many vertical pixels the display consists of before it can build its library subrou-
tines.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_Font_Width 6 or 8
The Toshiba T6963 graphic LCDs have two internal font sizes, 6 pixels wide by eight high, or 8
pixels wide by 8 high. The particular font size is chosen by the LCD’s FS pin. Leaving the FS
pin floating or bringing it high will choose the 6 pixel font, while pulling the FS pin low will
choose the 8 pixel font. The compiler must know what size font is required so that it can calcu-
late screen and RAM boundaries.

Note that the compiler does not control the FS pin and it is down to the circuit layout whether or
not it is pulled high or low. There is no default setting for this Declare and it must be used
within the BASIC program.

Declare LCD_RAM_Size 1024 to 65535
Toshiba graphic LCDs contain internal RAM used for Text, Graphic or Character Generation.
The amount of RAM is usually dictated by the display’s resolution. The larger the display, the
more RAM is normally present. Standard displays with a resolution of 128x64 typically contain
4096 bytes of RAM, while larger types such as 240x64 or 190x128 typically contain 8192 bytes
or RAM. The display’s datasheet will inform you of the amount of RAM present.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_Text_Pages 1 to n
As mentioned above, Toshiba graphic LCDs contain RAM that is set aside for text, graphics or
characters generation. In normal use, only one page of text is all that is required, however, the
compiler can re-arrange its library subroutines to allow several pages of text that is continuous.
The amount of pages obtainable is directly proportional to the RAM available within the LCD
itself. Larger displays require more RAM per page, therefore always limit the amount of pages
to only the amount actually required or unexpected results may be observed as text, graphic
and character generator RAM areas merge.

This Declare is purely optional and is usually not required. There is no default setting for this
Declare.

Declare LCD_Text_Home_Address 0 to n
The RAM within a Toshiba graphic LCD is split into three distinct uses, text, graphics and char-
acter generation. Each area of RAM must not overlap or corruption will appear on the display
as one uses the other’s assigned space. The compiler’s library subroutines calculate each area
of RAM based upon where the text RAM starts. Normally the text RAM starts at address 0,
however, there may be occasions when it needs to be set a little higher in RAM. The order of
RAM is; Text, Graphic, then Character Generation.

This Declare is purely optional and is usually not required. There is no default setting for this
Declare.

Proton24 Compiler. Development Suite.

 326

The diagram below shows a typical circuit for an interface with a Toshiba T6963 graphic LCD.

Example
' Toshiba T6963C graphic LCD demo
 Device = 24FJ64GA002
 Declare Xtal = 16
' Toshiba T6963C graphic LCD Pin configuration
 Declare LCD_Type = Toshiba ' LCD's type is Toshiba T6963C
 Declare LCD_DTPort = PORTB.Byte0 ' The LCD's 8-bit Data port
 Declare LCD_WRPin = PORTB.12 ' The LCD's WR pin
 Declare LCD_RDPin = PORTB.11 ' The LCD's RD pin
 Declare LCD_CEPin = PORTB.10 ' The LCD's CE pin
 Declare LCD_CDPin = PORTB.8 ' The LCD's CD pin
 Declare LCD_RSTPin = PORTB.9 ' The LCD's RST pin (optional)
'
' Toshiba T6963C graphic LCD setup configuration
'
 Declare LCD_Font_Width = 8 ' The font width (6 or 8)
 Declare LCD_X_Res = 128 ' The X resolution of the LCD
 Declare LCD_Y_Res = 64 ' The Y resolution of the LCD
 Declare LCD_Text_Home_Address = 0 ' The home address of the LCD
 Declare LCD_RAM_Size = 8192 ' The amount of RAM the LCD contains
 Declare LCD_Text_Pages = 1 ' The amount of text pages required

 Include "T6963C.inc" ' Load the Toshiba T6963C routines into the program
'
' Create variables used in the demo
'
 Dim MyCodeString As Code = "From Code",0
 Dim MyRAMString As String * 20 = "From RAM"
 Dim MyWord As Word = 1234
 Dim MyDword As Dword = 12345
 Dim MyFloat As Float = 3.14

 Cls ' Clear Text and Graphic RAM
 Print At 1,0, "1234567890ABCDEF"
 Print At 2,0, Dec MyWord
 Print At 3,0, Dec MyDword
 Print At 4,0, Dec MyFloat
 Print At 5,0, MyRAMString
 Print At 6,0, MyCodeString

G
N

D

TOSHIBA T6963C
GRAPHIC LCD

W
R

R
D

C
E

C
\D

R
ST D
0 D
1

D
2

D
3

D
4

D
5

D
6

D
7 FSVe
e

Vd
d

1

Vs
s

FG

3 42 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-5 to 0 Volts
Contrast

Font
Selection
Closed - 8
Open - 6

V
D

D

R
B

12
R

B
11

R
B

10
R

B
8

R
B

9
R

B
0

R
B

1
R

B
2

R
B

3
R

B
4

R
B

5
R

B
6

R
B

7

GND

Proton24 Compiler. Development Suite.

 327

Using an ILI9320 320x240 pixel Colour Graphic LCD
Once a colour graphic LCD has been chosen using the Declare LCD_Type directive, all Print
outputs will be directed to that LCD.

The standard modifiers used by an alphanumeric LCD may also be used with the graphics
LCD. Most of the previous modifiers still work in the expected manner, however, the At modifier
now starts at Ypos 0 and Xpos 0, where values 0,0 will be the top left corner of the LCD. And
each cursor position is pixel based. The Inverse, Xor, and Or modifiers are not available for a
colour LCD.

There are two new modifiers specifically for a colour LCD. These are: -

 Ink 0 to 65535 Choose the colour of the pixel used for a character
 Paper 0 to 65535 Choose the colour of the background under a character

Once one of the new modifiers has been enabled, all future Print commands will use that par-
ticular feature until the modifier is altered, or the Ink or Paper colour is chosen by the
GLCD_Ink or GLCD_Paper commands. For example: -

' Enable red characters from this point
 Print At 0, 0, Ink cBrightRed, "Hello World"
 Print At 30, 0, "Still Red"
' Now use black characters
 Print At 60, 0, Ink cBlack, "Black Characters"

If no modifiers are present, then the character's ASCII representation will be displayed: -

' Print characters A and B
 Print At 0, 0, 65, 66

The routines for the ILI9320 colour graphic LCD must be included into the program before they
are used, and the declares, listed later, must be placed. The LCD routines themselves are writ-
ten in Proton24 BASIC so their operation may be readily changed.

Example.
' Demonstrate the Print command with an ILI9320 colour graphic LCD
'
 Device = 24EP128MC202
 Declare Xtal = 140.03
'
' Setup the Pins used by the ILI9320 graphic LCD
'
 Declare LCD_DTPort = PORTB.Byte0 ' Use the first 8-bits of PORTB
 Declare LCD_CSPin = PORTB.8 ' Connect to the LCD's CS pin
 Declare LCD_RDPin = PORTB.9 ' Connect to the LCD's RD pin
 Declare LCD_RSPin = PORTB.10 ' Connect to the LCD's RS pin
 Declare LCD_WRPin = PORTA.3 ' Connect to the LCD's WR pin

 Include "ILI9320.inc" ' Load the ILI9320 routines into the program
'--
Main:
' Configure the internal oscillator to operate the device at 140.03MHz
 PLL_Setup(76, 2, 2, $0300)

 Cls clWhite ' Clear the LCD with the colour white

Proton24 Compiler. Development Suite.

 328

 Glcd_SetFont(CourierNew_20) ' Choose the font to use
 Print At 0,0, Ink clBrightBlue, "Hello World"

'--
' Load the font required
 Include "CourierNew_20.inc"
'
' Configure for internal 7.37MHz oscillator with PLL
' OSC pins are general purpose I/O
'
 Config FGS = GWRP_OFF, GCP_OFF
 Config FOSCSEL = FNOSC_FRCPLL, IESO_ON, PWMLOCK_OFF
 Config FOSC = POSCMD_NONE, OSCIOFNC_ON, IOL1WAY_OFF, FCKSM_CSDCMD
 Config FWDT = WDTPOST_PS256, WINDIS_OFF, PLLKEN_ON, FWDTEN_OFF
 Config FPOR = ALTI2C1_ON, ALTI2C2_OFF
 Config FICD = ICS_PGD1, JTAGEN_OFF

Fonts can be created using the supplied program named FontCreator.exe, and can be found in
the IDE's plugins folder.

With an ILI9320 320x240 pixel colour graphic LCD, the colour is a 16-bit value formatted in
RGB565, where the upper 5-bits represent the red content, the middle 6-bits represent the
green content, and the lower 5-bits represent the blue content. As illustrated below:

For convenience, there are several colours defined within the ILI9320.inc file. These are:

clBlack
clBrightBlue
clBrightGreen
clBrightCyan
clBrightRed
clBrightMagenta
clBrightYellow
clBlue
clGreen
clCyan
clRed
clMagenta
clBrown
clLightGray
clDarkGray
clLightBlue
clLightGreen
clLightCyan
clLightRed
clLightMagenta
clYellow
clWhite

More constant values for colours can be added by the user if required.

Low ByteHigh Byte

045101115

Red value Green value Red value

Proton24 Compiler. Development Suite.

 329

A suitable circuit for the Ampire AM240320D4T0QWT00H(R) module is shown below:

ILI9320 colour graphic LCD Declares
There are several declares associated with an ILI9320 colour graphic LCD.

Declare LCD_DTPort Port
Assign the port that will output the 8-bit data to the graphic LCD.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_WRPin Port . Pin
Assigns the Port and Pin that the graphic LCD's WR line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_RDPin Port . Pin
Assigns the Port and Pin that the graphic LCD's RD line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_CSPin Port . Pin
Assigns the Port and Pin that the graphic LCD's CS line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

GND
LEDs Anode

LEDs Cathode
GND

VCC(3v3)
VCC(3v3)
ENABLE
DOTCLK

HSYNC
VSYNC

RD
SCL/WR

RS
RESET

CS
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

D10
D11
D12
D13
D14
D15
D16
D17
SDI
NC

SDO
IM3
IM1

ID/IM0
GND

YU
YD
XR
XL

GND

Ampire
AM240320D4T0QWT00H(R)

ILI9320
320x240

Colour Graphic LCD
with Touch Screen

RB9

RB8

+3v3

10kΩ

100nF

+3v3

1uF/50v
ceramic

100Ω

+5v

1uF/10v
ceramic

10KΩ

10uH
MBRS130T3

Schottky
1

GND

3

2

4

5
Vin

EN

SW
FB TPS61040

LCD Backlight Boost

RB0
RB1
RB2
RB3
RB4
RB5
RB6

To ADS7846 Y-
To ADS7846 Y+
To ADS7846 X+
To ADS7846 X-

RB7

RB10

ILI9320 Colour LCD

RF filter

RA3

+3v3

Resistive touch
screen interface

Proton24 Compiler. Development Suite.

 330

Declare LCD_RSPin Port . Pin
Assigns the Port and Pins that the graphic LCD's RS line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_RSTPin Port . Pin
Assigns the Port and Pin that the graphic LCD's RST line will attach to.

The LCD’s RST (Reset) Declare is optional and if omitted from the BASIC code the compiler
will not manipulate it. However, if not used as part of the interface, you must set the LCD’s RST
pin high for normal operation.

Note.
The ILI9320 graphic LCD is a “non-intelligent” type, therefore, a separate character set is re-
quired. This is held internally in code memory and is chosen by issuing the
Glcd_SetFont(pFont) command.

Proton24 Compiler. Development Suite.

 331

Ptr8, Ptr16, Ptr32, Ptr64

Syntax
Assignment Variable = Ptr8 (Address)
Assignment Variable = Ptr16 (Address)
Assignment Variable = Ptr32 (Address)
Assignment Variable = Ptr64 (Address)

or

Ptr8 (Address) = Variable
Ptr16 (Address) = Variable
Ptr32 (Address) = Variable
Ptr64 (Address) = Variable

Overview
Indirectly address RAM for loading or retrieving using a variable to hold the 16-bit address.

Parameters
Variable is a user defined variable that holds the result of the indirectly address RAM area, or
the variable to place into the indirectly addressed RAM area.
Address is a Word variable that holds the 16-bit address of the RAM area of interest.

Address can also post or pre increment or decrement:

 (MyAddress++) Post increment MyAddress after retreiving its RAM location.
 (MyAddress --) Post decrement MyAddress after retreiving its RAM location.
 (++MyAddress) Pre increment MyAddress before retreiving its RAM location.
 (--MyAddress) Pre decrement MyAddress before retreiving its RAM location.

Ptr8 will load or retrieve a value with an optional 8-bit post or pre increment or decrement.
Ptr16 will load or retrieve a value with an optional 16-bit post or pre increment or decrement.
Ptr32 will load or retrieve a value with an optional 32-bit post or pre increment or decrement.
Ptr64 will load or retrieve a value with an optional 64-bit post or pre increment or decrement.

8-bit Example.
'
' Load and Read 8-bit values indirectly from/to RAM
'
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' UART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select pin to be used for TX

 Dim MyByteArray[20] As Byte ' Create a byte array
 Dim MyByte As Byte ' Create a byte variable
 Dim bIndex As Byte
 Dim wAddress as Word ' Create a variable to hold address

Proton24 Compiler. Development Suite.

 332

Main:
 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
'
' Load into RAM
'
 wAddress = AddressOf(MyByteArray) ' Load wAddress with address of array
 For bIndex = 19 To 0 Step -1 ' Create a loop
 Ptr8(wAddress++) = bIndex ' Load RAM with address post increment
 Next
'
' Read from RAM
'
 wAddress = AddressOf(MyByteArray) ' Load wAddress with address of array
 Do ' Create a loop
 MyByte = Ptr8(wAddress++) ' Retrieve from RAM with post increment
 HRSOut Dec MyByte, 13 ' Transmit the byte read from RAM
 If MyByte = 0 Then Break ' Exit when a null(0) is read from RAM
 Loop

16-bit Example.
' Load and Read 16-bit values indirectly from/to RAM
'
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' UART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select pin is to be used for TX

 Dim MyWordArray[20] As Word ' Create a word array
 Dim MyWord As Word ' Create a word variable
 Dim bIndex As Byte
 Dim wAddress as Word ' Create a variable to hold the address

Main:
 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
'
' Load into RAM
'
 wAddress = AddressOf(MyWordArray) ' Load wAddress with address of array
 For bIndex = 19 To 0 Step -1 ' Create a loop
 Ptr16(wAddress++) = bIndex ' Load RAM with address post increment
 Next
'
' Read from RAM
'
 wAddress = AddressOf(MyWordArray) ' Load wAddress with address of array
 Do ' Create a loop
 MyWord = Ptr16(wAddress++) ' Retrieve from RAM with post increment
 HRSOut Dec MyWord, 13 ' Transmit the word read from RAM
 If MyWord = 0 Then Break ' Exit when a null(0) is read from RAM
 Loop

Proton24 Compiler. Development Suite.

 333

32-bit Example.
' Load and Read 32-bit values indirectly from RAM
'
 Device = 24FJ64GA002
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' UART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select pin is to be used for TX

 Dim MyDwordArray[20] As Dword ' Create a dword array
 Dim MyDword As Dword ' Create a dword variable
 Dim bIndex As Byte
 Dim wAddress as Word ' Create a variable to hold the address

Main:
 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
'
' Load into RAM
'
 wAddress = AddressOf(MyDwordArray) ' Load wAddress with address of array
 For bIndex = 19 To 0 Step -1 ' Create a loop
 Ptr32(wAddress++) = bIndex ' Load RAM with address post increment
 Next
'
' Read from RAM
'
 wAddress = AddressOf(MyDwordArray) ' Load wAddress with address of array
 Do ' Create a loop
 MyDword = Ptr32(wAddress++) ' Retrieve from RAM with post increment
 HRSOut Dec MyDword, 13 ' Transmit the dword read from RAM
 If MyDword = 0 Then Break ' Exit when a null(0) is read from RAM
 Loop

See also: AddressOf, cPtr8, cPtr16, cPtr32, cPtr64.

Proton24 Compiler. Development Suite.

 334

PulseIn

Syntax
Assignment Variable = PulseIn Pin, State

Overview
Change the specified pin to input and measure an input pulse.

Parameters
Assignment Variable is a user defined variable. This may be a word variable with a range of 1
to 65535, or a byte variable with a range of 1 to 255.
Pin is a Port.Pin constant that specifies the I/O pin to use.
State is a constant (0 or 1) or name High - Low that specifies which edge must occur before
beginning the measurement.

Example
 Device = 24HJ128GP502
 Declare Xtal = 16

Declare Hserial_Baud = 9600 ' UART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select pin is to be used for TX

 Dim Var1 as Byte

 RPOR7 = 3 ' Make PPS Pin RP14 U1TX

Do
 Var1 = PulseIn PORTB.0, 1 ' Measure a pulse on pin 0 of PORTB.
 HrsoutLn Dec Var1 ' Display the reading
 DelayMs 500

Loop ' Repeat the process

Notes.
PulseIn acts as a fast clock that is triggered by a change in state (0 or 1) on the specified pin.
When the state on the pin changes to the state specified, the clock starts counting. When the
state on the pin changes again, the clock stops. If the state of the pin doesn't change (even if it
is already in the state specified in the PulseIn instruction), the clock won't trigger. PulseIn waits
a maximum of 0.65535 seconds for a trigger, then returns with 0 in variable.

The variable can be either a Word or a Byte . If the variable is a word, the value returned by
PulseIn can range from 1 to 65535 units.

The units are dependant on the frequency of the crystal used. If a 4MHz crystal is used, then
each unit is 10us, while a 20MHz crystal produces a unit length of 2us.

If the variable is a byte and the crystal is 4MHz, the value returned can range from 1 to 255
units of 10µs. Internally, PulseIn always uses a 16-bit timer. When your program specifies a
byte, PulseIn stores the lower 8 bits of the internal counter into it. Pulse widths longer than
2550µs will give false, low readings with a byte variable. For example, a 2560µs pulse returns a
reading of 256 with a word variable and 0 with a byte variable.

See also : Counter, PulseOut, RCin.

Proton24 Compiler. Development Suite.

 335

PulseOut

Syntax
PulseOut Pin, Period, { Initial State }

Overview
Generate a pulse on Pin of specified Period. The pulse is generated by toggling the pin twice,
thus the initial state of the pin determines the polarity of the pulse. Or alternatively, the initial
state may be set by using High-Low or 1-0 after the Period. Pin is automatically made an out-
put.

Parameters
Pin is a Port.Pin constant that specifies the I/O pin to use.
Period can be a constant of user defined variable. See notes.
State is an optional constant (0 or 1) or name High - Low that specifies the state of the outgo-
ing pulse.

Example
' Send a high pulse 1ms long to PORTB.5
'
 Device = 24HJ128GP502
 Declare Xtal = 16

 Low PORTB.5
 PulseOut PORTB.5, 100
'
' Send a high pulse 1ms long to PORTB.5
'
 PulseOut PORTB.5, 100, High

See also : Counter , PulseIn, RCin.

Proton24 Compiler. Development Suite.

 336

Push

Syntax
Push Variable, {Variable, Variable etc}

Overview
Place a single variable or multiple variables onto the microcontroller’s stack.

Parameters
Variable is a user defined variable of type Bit, Byte, Word, Dword, Float, Double, Arrays,
String, or constant value.

The amount of bytes pushed on to the stack varies with the variable type used. The list below
shows how many bytes are pushed for a particular variable type, and their order. The microcon-
troller’s stack is word orientated, therefore all operations are accomplished using 16-bits.

Bit 2 Bytes are pushed that hold the condition of the bit.
Byte 2 Bytes are pushed.
Byte Array 2 Bytes are pushed.
Word 2 Bytes are pushed. High Byte then Low Byte.
Word Array 2 Bytes are pushed. High Byte then Low Byte.
Dword Array 4 Bytes are pushed. High Byte, Mid2 Byte, Mid1 Byte then Low Byte.
Float Array 4 Bytes are pushed. High Byte, Mid2 Byte, Mid1 Byte then Low Byte.
Dword 4 Bytes are pushed. High Byte, Mid2 Byte, Mid1 Byte then Low Byte.
Float 4 Bytes are pushed. High Byte, Mid2 Byte, Mid1 Byte then Low Byte.
Double 8 Bytes are pushed. High Byte, Midx Bytes, then Low Byte.
String 2 Bytes are pushed. High Byte then Low Byte that point to the

 start address of the string in memory.
Constant Amount of bytes varies according to the value pushed. High Byte first.

Example 1
' Push two variables on to the stack then retrieve them

 Device = 24HJ128GP502
 Declare Xtal = 16
 Declare Stack_Size = 90 ' Increase the stack for holding extra words

 Dim MyWord as Word ' Create a Word variable
 Dim MyDword as Dword ' Create a Dword variable

 MyWord = 1234 ' Load the Word variable with a value
 MyDword = 567890 ' Load the Dword variable with a value
 Push MyWord, MyDword ' Push the Word variable then the Dword variable

 Clear MyWord ' Clear the Word variable
 Clear MyDword ' Clear the Dword variable

 Pop MyDword, MyWord ' Pop the Dword variable then the Word variable
 Print Dec MyWord, " ", Dec MyDword ' Display the variables as decimal

Proton24 Compiler. Development Suite.

 337

Example 2
' Push a String on to the stack then retrieve it

 Device = 24HJ128GP502
 Declare Xtal = 16
 Declare Stack_Size = 80 ' Increase the stack for holding extra words

 Dim SourceString as String * 20 ' Create a String variable
 Dim DestString as String * 20 ' Create another String variable

 SourceString = "Hello World" ' Load the String variable with characters

 Push SourceString ' Push the String variable's address

 Pop DestString ' Pop the previously pushed String into DestString
 Print DestString ' Display the string, which will be "Hello World"

Formatting a Push.
Each variable type, and more so, constant value, will push a different amount of bytes on to the
stack. This can be a problem where values are concerned because it will not be known what
size variable is required in order to Pop the required amount of bytes from the stack. For ex-
ample, the code below will push a constant value of 200 onto the stack, which requires 2 bytes
(remember, the stack is 16-bit orientated).

 Push 200

All well and good, but what if the recipient popped variable is of a Dword or Float type.

Pop MyWord

Popping from the stack into a Dword variable will actually pull 4 bytes from the stack, however,
the code above has only pushed two bytes, so the stack will become out of phase with the val-
ues or variables previously pushed. This is not really a problem where variables are concerned,
as each variable has a known byte count and the user knows if a Word is pushed, a Word
should be popped.

The answer lies in using a formatter preceding the value or variable pushed, that will force the
amount of bytes loaded on to the stack. The formatters are Byte, Word, Dword or Float.

The Byte formatter will force any variable or value following it to push only 1 word to the stack.

 Push Byte 12345

The Word formatter will force any variable or value following it to push only 1 word to the stack:

 Push Word 123

The Dword formatter will force any variable or value following it to push only 2 words to the
stack: -

 Push Dword 123

Proton24 Compiler. Development Suite.

 338

The Float formatter will force any variable or value following it to push only 2 words to the
stack, and will convert a constant value into the 2-word floating point format: -

 Push Float 123.1

The Double formatter will force any variable or value following it to push only 4 words to the
stack, and will convert a constant value into the 4-word 64-bit floating point format: -

 Push Double 123.1

So for the Push of 200 code above, you would use: -

 Push Word 200

In order for it to be popped back into a Word variable, because the push would be the high byte
of 200, then the low byte.

If using the multiple variable Push, each parameter can have a different formatter preceding it.

 Push Word 200, Dword 1234, Float 1234

Note that if a floating point value is pushed, 2 words will be placed on the stack because this is
a known format.

What is a Stack?
Unlike the 8-bit PIC® microcontrollers, the PIC24® and dsPIC33® devices have a true stack,
which is an area of RAM allocated for temporary data storage and call-return address's.

The stack is always present within a PIC24® or dsPIC33® device and is located at the end of
the variable RAM. The microcontroller uses it for call and return addresses, but it can also be
used for temporary storage of variables. The stack defaults to 60 words, but can be increased
or decreased by issuing the Stack_Size Declare.

 Declare Stack_Size = 200

The above line of code will increase the stack to 200 words.

Taking the above line of code as an example, we can examine what happens when a variable
is pushed on to the 200 word stack, and then popped off again.

Pushing.
When a Word variable is pushed onto the stack, the memory map would look like the diagram
below: -

End Of Stack Empty RAM
 ~ ~
 ~ ~
 Empty RAM
Start Of Stack Contents of the Word Variable

Because each element of the stack is 16-bit wide, the contents of the Word variable are placed
directly into it. The stack grows in an upward direction whenever a Push is implemented, which
means it shrinks back down whenever a Pop is implemented.

Proton24 Compiler. Development Suite.

 339

If we were to Push a Dword variable on to the stack as well as the Word variable, the stack
memory would look like: -

End Of Stack Empty RAM
 ~ ~
 ~ ~
 Empty RAM
 Contents of the Word Variable
 Contents of the High Word of the Dword Variable
Start Of Stack Contents of the Low Word of the Dword Variable

Popping.
When using the Pop command, the same variable type that was pushed last must be popped
first, or the stack will become out of phase and any variables that are subsequently popped will
contain invalid data, and there is a possibility that the microcontroller will cause an exception.

For example, using the above analogy, we need to Pop a Dword variable first. The Dword
variable will be popped Low Word first, then the High Word. This will ensure that the same
value pushed will be reconstructed correctly when placed into its recipient variable. After the
Pop, the stack memory map will look like: -

End Of Stack Empty RAM
 ~ ~
 ~ ~
 Empty RAM
Start Of Stack Contents of the Word Variable

If a Word variable was then popped, the stack will be empty, unless it already contains
call/return address’s. Now what if we popped a Dword variable instead of the required Word
variable? the stack would underflow by one word and definitely cause an exception. The same
is true if the stack overflows.

Technical Details of Stack implementation.
The stack implemented by the PIC24® and dsPIC33® microcontroller’s is known as an Incre-
menting Last-In First-Out Stack. Incrementing because it grows upwards in memory. Last-In
First-Out because the last variable pushed, will be the first variable popped.

The stack is not circular in operation, so that a stack underflow or overflow will cause an excep-
tion to be triggered.

Whenever a variable is popped from the stack, the stack's memory is not actually cleared, only
the stack pointer is moved (WREG15). Therefore, the above diagrams are not quite true when
they show empty RAM, but unless you have use of the remnants of the variable, it should be
considered as empty, and will be overwritten by the next Push command.

See also : Pop.

Proton24 Compiler. Development Suite.

 340

Pwm

Syntax
Pwm Pin, Duty, Cycles

Overview
Output pulse-width-modulation on a pin, then return the pin to input state.

Parameters
Pin is a Port.Pin constant that specifies the I/O pin to use.
Duty is a variable, constant (0-255), or expression, which specifies the analogue level desired
(0-5 volts).
Cycles is a variable or constant (0-255) which specifies the number of cycles to output. Larger
capacitors require multiple cycles to fully charge. Cycle time is very dependant on the oscillator
frequency of the microcontroller. The faster the oscillator, the faster the duty cycle.

Notes.
Pwm can be used to generate analogue voltages (0-3.3V) through a pin connected to a resistor
and capacitor to ground; the resistor-capacitor junction is the analogue output (see circuit).
Since the capacitor gradually discharges, Pwm should be executed periodically to refresh the
analogue voltage.

Pwm emits a burst of 1s and 0s whose ratio is proportional to the duty
value you specify. If duty is 0, then the pin is continuously low (0); if
duty is 255, then the pin is continuously high. For values in between,
the proportion is duty/255. For example, if duty is 100, the ratio of 1s to
0s is 100/255 = 0.392, approximately 39 percent.

When such a burst is used to charge a capacitor, the voltage across it is equal to:-

 (duty / 255) * 3.3.

So if duty is 100, the capacitor voltage is approximately:

 (100 / 255) * 3.3 = 1.29 volts.

See also : Hpwm, Pulseout, Servo.

To
I/O Pin

Analogue
Voltage
Output

10k

10uF

Proton24 Compiler. Development Suite.

 341

Random

Syntax
Assignment Variable = Random

or

Random Variable

Overview
Generate a pseudo-randomised value.

Parameters
Assignment Variable is a user defined variable that will hold the pseudo-random value. The
pseudo-random algorithm used has a working length of 1 to 65535.

Example
 Device = 24HJ128GP502
 Declare Xtal = 16

 Var1 = Random ' Get a random number into Var1
 Random Var1 ' Get a random number into Var1

See also: Seed.

Proton24 Compiler. Development Suite.

 342

RCin

Syntax
Assignment Variable = RCin Pin, State

Overview
Count time while pin remains in state, usually used to measure the charge/ discharge time of
resistor/capacitor (RC) circuit.

Parameters
Pin is a Port.Pin constant that specifies the I/O pin to use. This pin will be placed into input
mode and left in that state when the instruction finishes.
State is a variable or constant (1 or 0) that will end the Rcin period. Text, High or Low may also
be used instead of 1 or 0.
Assignment Variable is a variable in which the time measurement will be stored.

Example
 Device = 24HJ128GP502
 Declare Xtal = 16

Dim MyResult as Word ' Word variable to hold result.

High PORTB.0 ' Discharge the cap
 DelayMs 1 ' Wait for 1 ms.
 MyResult = RCin PORTB.0, High ' Measure RC charge time.
 Print Dec MyResult, " " ' Display the value on an LCD.

Notes.
The resolution of RCin is dependent upon the oscillator frequency. The resolution always
changes with the actual oscillator speed. If the pin never changes state 0 is returned.

When RCin executes, it starts a counter. The counter stops as soon as the specified pin is no
longer in State (0 or 1). If pin is not in State when the instruction executes, RCin will return 1 in
Variable, since the instruction requires one timing cycle to discover this fact. If pin remains in
State longer than 65535 timing cycles RCin returns 0.

 Figure A Figure B

The diagrams above show two suitable RC circuits for use with RCin. The circuit in figure B is
preferred, because of the microcontroller’s logic threshold.

To
I/O Pin

R

C
220

Ω

+3.3 Volts

To
I/O PinR

C 220
Ω

+3.3 Volts

Proton24 Compiler. Development Suite.

 343

Before RCin executes, the capacitor must be put into the state specified in the RCin command.
For example, with figure B, the capacitor must be discharged until both plates (sides of the ca-
pacitor) are at 3.3V. It may seem strange that discharging the capacitor makes the input high,
but you must remember that a capacitor is charged when there is a voltage difference between
its plates. When both sides are at +3.3 Volts, the capacitor is considered discharged. Below is a
typical sequence of instructions for the circuit in figure A.

Dim MyResult as Word ' Word variable to hold result.

High PORTB.0 ' Discharge the cap
DelayMs 1 ' Wait for 1ms.
MyResult = RCin PORTB.0, High ' Measure RC charge time.
Print Dec MyResult, " " ' Display the value on an LCD.

See also : Adin, Counter, Pot, PulseIn.

Proton24 Compiler. Development Suite.

 344

Repeat...Until

Syntax
Repeat Condition
Instructions
Instructions
Until Condition

or

Repeat { Instructions : } Until Condition

Overview
Execute a block of instructions until a condition is true.

Example
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim MyWord as Word
 MyWord = 1
 Repeat
 Print Dec MyWord, " "
 DelayMs 200
 Inc MyWord
 Until MyWord > 10

or

 Repeat High LED : Until PORTA.0 = 1 ' Wait for a Port change

Notes.
The Repeat-Until loop differs from the While-Wend type in that, the Repeat loop will carry out
the instructions within the loop at least once, then continuously until the condition is true, but
the While loop only carries out the instructions if the condition is true.

The Repeat-Until loop is an ideal replacement to a For-Next loop, and actually takes less code
space, thus performing the loop faster.

Two commands have been added especially for a Repeat loop, these are Inc and Dec.

 Inc. Increment a variable i.e. MyWord = MyWord + 1

 Dec. Decrement a variable i.e. MyWord = MyWord - 1

The above example shows the equivalent to the For-Next loop: -

 For MyWord = 1 to 10 : Next

See also : Do…Loop, While...Wend, For...Next...Step.

Proton24 Compiler. Development Suite.

 345

Return

Syntax
Return

Overview
Return from a subroutine.

See also : Call, Gosub.

Proton24 Compiler. Development Suite.

 346

Right$

Syntax
Destination String = Right$ (Source String, Amount of characters)

Overview
Extract n amount of characters from the right of a source string and copy them into a destina-
tion string.

Overview
Destination String can only be a String variable, and should be large enough to hold the cor-
rect amount of characters extracted from the Source String.
Source String can be a String variable, or a Quoted String of Characters. See below for
more variable types that can be used for Source String.
Amount of characters can be any valid variable type, expression or constant value, that signi-
fies the amount of characters to extract from the right of the Source String. Values start at 1 for
the rightmost part of the string and should not exceed 255 which is the maximum allowable
length of a String variable.

Example 1
' Copy 5 characters from the right of SourceString into DestString
'
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim SourceString as String * 20 ' Create a String of 20 characters
 Dim DestString as String * 20 ' Create another String

 SourceString = "Hello World" ' Load the source string with characters
'
' Copy 5 characters from the source string into the destination string
'
 DestString = Right$ (SourceString, 5)
 Print DestString ' Display the result, which will be "World"

Example 2
' Copy 5 characters from right of a Quoted Character String to DestString
'
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim DestString as String * 20 ' Create a String of 20 characters
'
' Copy 5 characters from the quoted string into the destination string
'
 DestString = Right$ ("Hello World", 5)
 Print DestString ' Display the result, which will be "World"

The Source String can also be a Byte, Word, Dword, Float or Array, variable, in which case
the value contained within the variable is used as a pointer to the start of the Source String's
address in RAM.

Proton24 Compiler. Development Suite.

 347

Example 3
' Copy 5 characters from the right of SourceString into DestString using a
' pointer to SourceString

 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim SourceString as String * 20 ' Create a String of 20 characters
 Dim DestString as String * 20 ' Create another String
' Create a Word variable to hold the address of SourceString
 Dim StringAddr as Word

 SourceString = "Hello World" ' Load the source string with characters
'
' Locate the start address of SourceString in RAM
'
 StringAddr = AddressOf(SourceString)
'
' Copy 5 characters from the source string into the destination string
'
 DestString = Right$(StringAddr, 5)
 Print DestString ' Display the result, which will be "World"

A third possibility for Source String is a Label name, in which case a null terminated Quoted
String of Characters is read from code memory.

Example 4
' Copy 5 characters from the right of a code memory string into DestString
'
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim DestString as String * 20 ' Create a String of 20 characters
'
' Create a null terminated string of characters in code memory
'

Dim Source as Code = "Hello World", 0
'
' Copy 5 characters from label Source into the destination string
'
 DestString = Right$(Source, 5)
 Print DestString ' Display the result, which will be "World"

See also : Creating and using Strings, Creating and using code memory strings,

Len, Left$, Mid$, Str$, ToLower, ToUpper, AddressOf.

Proton24 Compiler. Development Suite.

 348

Rol

Syntax
Rol Variable {,Set or Clear}

Overview
Bitwise rotate a variable left with or without the microcontroller’s Carry flag.

Parameters
Variable may be any standard variable type, but not an array.
Set or Clear are optional parameters that will clear or set the Carry flag before the rotate.
If no parameter is placed after the Variable, the current Carry flag state will be rotated into the
LSB (Least Significant Bit) of variable.

Example.
' Demonstrate the Rol Command
'
 Device = 24FJ64GA002
 Declare Xtal = 32
 Declare Hserial_Baud = 9600 ' UART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim Index As Byte
 Dim MyByte As Byte
 Dim Byteout As Byte

 RPOR7 = 3 ' Make Pin RP14 U1TX
'
' Rotate the carry through MyByte
'
 MyByte = %10000000
 Rol MyByte
 Rol MyByte
 Rol MyByte
 Rol MyByte
 Rol MyByte
 Rol MyByte
 Rol MyByte
 Rol MyByte
'
' Set each bit of MyByte with every rotate
'
 MyByte = %00000000
 For Index = 0 To 7
 Rol MyByte, Set
 HRSOutLn Bin8 MyByte
 Next
 HRSOutLn "----------"
'
' Clear each bit of MyByte with every rotate
'
 MyByte = %11111111
 For Index = 0 To 7
 Rol MyByte, Clear
 HRSOutLn Bin8 MyByte
 Next
 HRSOutLn "----------"

Proton24 Compiler. Development Suite.

 349

'
' Transfer the value of MyByte to Byteout, but reversed
'
 MyByte = %10000000
 Byteout = %00000000
 For Index = 0 To 7
 Rol MyByte
 Ror Byteout
 HRSOutLn Bin8 Byteout
 Next
'
' Configure for internal 8MHz oscillator with PLL
' OSC pins are general purpose I/O
'
 Config Config1 = JTAGEN_OFF, GCP_OFF, GWRP_OFF, BKBUG_OFF,_
 COE_OFF, ICS_PGx1, FWDTEN_OFF, WINDIS_OFF,_
 FWPSA_PR128, WDTPOST_PS256
 Config Config2 = IOL1WAY_OFF, COE_OFF, IESO_OFF, FNOSC_FRCPLL,_
 FCKSM_CSDCMD, OSCIOFNC_ON, POSCMOD_NONE

See also: Ror.

Proton24 Compiler. Development Suite.

 350

Ror

Syntax
Ror Variable {,Set or Clear}

Overview
Bitwise rotate a variable right with or without the microcontroller’s Carry flag.

Parameters
Variable may be any standard variable type, but not an array.
Set or Clear are optional parameters that will clear or set the Carry flag before the rotate.
If no parameter is placed after the Variable, the current Carry flag state will be rotated into the
MSB (Most Significant Bit) of variable.

Example.
' Demonstrate the Ror Command
'
 Device = 24FJ64GA002
 Declare Xtal = 32
 Declare Hserial_Baud = 9600 ' UART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin for TX with USART1

 Dim Index As Byte
 Dim MyByte As Byte
 Dim Byteout As Byte

 RPOR7 = 3 ' Make Pin RP14 U1TX
'
' Rotate the carry through MyByte
'
 MyByte = %00000001
 Ror MyByte
 Ror MyByte
 Ror MyByte
 Ror MyByte
 Ror MyByte
 Ror MyByte
 Ror MyByte
 Ror MyByte
'
' Set each bit of MyByte with every rotate
'
 MyByte = %00000000
 For Index = 0 To 7
 Ror MyByte, Set
 HRSOutLn Bin8 MyByte
 Next
 HRSOutLn "----------"
'
' Clear each bit of MyByte with every rotate
'
 MyByte = %11111111
 For Index = 0 To 7
 Ror MyByte, Clear
 HRSOutLn Bin8 MyByte
 Next
 HRSOutLn "----------"

Proton24 Compiler. Development Suite.

 351

'
' Transfer the value of MyByte to Byteout, but reversed
'
 MyByte = %00000001
 Byteout = %00000000
 For Index = 0 To 7
 Ror MyByte
 Rol Byteout
 HRSOutLn Bin8 Byteout
 Next
'
' Configure for internal 8MHz oscillator with PLL
' OSC pins are general purpose I/O
'
 Config Config1 = JTAGEN_OFF, GCP_OFF, GWRP_OFF, BKBUG_OFF,_
 COE_OFF, ICS_PGx1, FWDTEN_OFF, WINDIS_OFF,_
 FWPSA_PR128, WDTPOST_PS256
 Config Config2 = IOL1WAY_OFF, COE_OFF, IESO_OFF, FNOSC_FRCPLL,_
 FCKSM_CSDCMD, OSCIOFNC_ON, POSCMOD_NONE

See also: Rol.

Proton24 Compiler. Development Suite.

 352

Rsin

Syntax
Assignment Variable = Rsin, { Timeout Label }

 or

Rsin { Timeout Label }, Modifier..Variable {, Modifier.. Variable...}

Overview
Receive one or more bytes from a predetermined pin at a predetermined baud rate in standard
asynchronous format using 8 data bits, no parity and 1 stop bit (8N1). The pin is automatically
made an input.

Parameters
Modifiers may be one of the serial data modifiers explained below.
Assignment Variable can be any user defined variable.
An optional Timeout Label may be included to allow the program to continue if a character is
not received within a certain amount of time. Timeout is specified in units of 1 millisecond and is
specified by using a Declare directive.

Example
 Device = 24HJ128GP502
 Declare Xtal = 16
 Declare Rsin_Timeout = 2000 ' Timeout after 2 seconds

Dim MyByte as Byte
 Dim MyWord as Word
 MyByte = Rsin, {Label}
 Rsin MyByte, MyWord
 Rsin { Label }, MyByte, MyWord

Label: { do something when timed out }

Declares
There are four Declares for use with Rsin. These are : -

Declare Rsin_Pin Port . Pin
Assigns the Port and Pin that will be used to input serial data by the Rsin command. This may
be any valid port on the microcontroller.

If the Declare is not used in the program, then the default Port and Pin is PORTB.1.

Declare Rsin_Mode Inverted, True or 1, 0
Sets the serial mode for the data received by Rsin. This may be inverted or true. Alternatively,
a value of 1 may be substituted to represent inverted, and 0 for true.

If the Declare is not used in the program, then the default mode is Inverted.

Declare Serial_Baud 0 to 65535 bps (baud)
Informs the Rsin and Rsout routines as to what baud rate to receive and transmit data.

Virtually any baud rate may be transmitted and received, but there are standard bauds: -

 300, 600, 1200, 2400, 4800, 9600, and 19200.

Proton24 Compiler. Development Suite.

 353

When using a 4MHz crystal, the highest baud rate that is reliably achievable is 9600. However,
an increase in the oscillator speed allows higher baud rates to be achieved, including 38400
baud.

If the Declare is not used in the program, then the default baud is 9600.

Declare Rsin_Timeout 0 to 65535 milliseconds (ms)
Sets the time, in milliseconds, that Rsin will wait for a start bit to occur.

Rsin waits in a tight loop for the presence of a start bit. If no timeout value is used, then it will
wait forever. The Rsin command has the option of jumping out of the loop if no start bit is de-
tected within the time allocated by timeout.

If the Declare is not used in the program, then the default timeout value is 10000ms or 10 sec-
onds.

Rsin Modifiers.
As we already know, Rsin will wait for and receive a single byte of data, and store it in a vari-
able . If the microcontroller was connected to a PC running a terminal program and the user
pressed the "A" key on the keyboard, after the Rsin command executed, the variable would
contain 65, which is the ASCII code for the letter "A"

What would happen if the user pressed the "1" key? The result would be that the variable would
contain the value 49 (the ASCII code for the character "1"). This is an important point to re-
member: every time you press a character on the keyboard, the computer receives the ASCII
value of that character. It is up to the receiving side to interpret the values as necessary. In this
case, perhaps we actually wanted the variable to end up with the value 1, rather than the ASCII
code 49.

The Rsin command provides a modifier, called the decimal modifier, which will interpret this for
us. Look at the following code: -

 Dim SerData as Byte
 Rsin Dec SerData

Notice the decimal modifier in the Rsin command that appears just to the left of the SerData
variable. This tells Rsin to convert incoming text representing decimal numbers into true deci-
mal form and store the result in SerData. If the user running the terminal software pressed the
"1", "2" and then "3" keys followed by a space or other non-numeric text, the value 123 will be
stored in the variable SerData, allowing the rest of the program to perform any numeric opera-
tion on the variable.

Without the decimal modifier, however, you would have been forced to receive each character
("1", "2" and "3") separately, and then would still have to do some manual conversion to arrive
at the number 123 (one hundred twenty three) before you can do the desired calculations on it.

The decimal modifier is designed to seek out text that represents decimal numbers. The char-
acters that represent decimal numbers are the characters "0" through "9". Once the Rsin com-
mand is asked to use the decimal modifier for a particular variable, it monitors the incoming se-
rial data, looking for the first decimal character. Once it finds the first decimal character, it will
continue looking for more (accumulating the entire multi-digit number) until is finds a non-
decimal numeric character. Remember that it will not finish until it finds at least one decimal
character followed by at least one non-decimal character.

Proton24 Compiler. Development Suite.

 354

To illustrate this further, examine the following examples (assuming we're using the same code
example as above): -

Serial input: "ABC"
Result: The program halts at the Rsin command, continuously waiting for decimal text.

Serial input: "123" (with no characters following it)
Result: The program halts at the Rsin command. It recognises the characters "1", "2" and "3"
as the number one hundred twenty three, but since no characters follow the "3", it waits con-
tinuously, since there's no way to tell whether 123 is the entire number or not.

Serial input: "123" (followed by a space character)
Result: Similar to the above example, except once the space character is received, the pro-
gram knows the entire number is 123, and stores this value in SerData. The Rsin command
then ends, allowing the next line of code to run.

Serial input: "123A"
Result: Same as the example above. The "A" character, just like the space character, is the
first non-decimal text after the number 123, indicating to the program that it has received the
entire number.

Serial input: "ABCD123EFGH"
Result: Similar to examples 3 and 4 above. The characters "ABCD" are ignored (since they're
not decimal text), the characters "123" are evaluated to be the number 123 and the following
character, "E", indicates to the program that it has received the entire number.

The final result of the Dec modifier is limited to 16 bits (up to the value 65535). If a value larger
than this is received by the decimal modifier, the end result will be incorrect because the result
rolled-over the maximum 16-bit value. Therefore, Rsin modifiers may not (at this time) be used
to load Dword (32-bit) variables.

The decimal modifier is only one of a family of conversion modifiers available with Rsin See be-
low for a list of available conversion modifiers. All of the conversion modifiers work similar to the
decimal modifier (as described above). The modifiers receive bytes of data, waiting for the first
byte that falls within the range of characters they accept (e.g., "0" or "1" for binary, "0" to "9" for
decimal, "0" to "9" and "A" to "F" for hex. Once they receive a numeric character, they keep ac-
cepting input until a non-numeric character arrives, or in the case of the fixed length modifiers,
the maximum specified number of digits arrives.

While very effective at filtering and converting input text, the modifiers aren't completely fool-
proof. As mentioned before, many conversion modifiers will keep accepting text until the first
non-numeric text arrives, even if the resulting value exceeds the size of the variable. After Rsin,
a Byte variable will contain the lowest 8 bits of the value entered and a Word (16-bits) would
contain the lowest 16 bits. You can control this to some degree by using a modifier that speci-
fies the number of digits, such as Dec2, which would accept values only in the range of 0 to 99.

 Conversion Modifier Type of Number Numeric Characters Accepted
 Dec{1..10} Decimal, optionally limited 0 through 9
 to 1 - 10 digits
 Hex{1..8} Hexadecimal, optionally limited 0 through 9,
 to 1 - 8 digits A through F
 Bin{1..32} Binary, optionally limited 0, 1
 to 1 - 32 digits

Proton24 Compiler. Development Suite.

 355

A variable preceded by Bin will receive the ASCII representation of its binary value.
For example, if Bin Var1 is specified and "1000" is received, Var1 will be set to 8.

A variable preceded by Dec will receive the ASCII representation of its decimal value.
For example, if Dec Var1 is specified and "123" is received, Var1 will be set to 123.

A variable preceded by Hex will receive the ASCII representation of its hexadecimal value.
For example, if Hex Var1 is specified and "FE" is received, Var1 will be set to 254.

Skip followed by a count will skip that many characters in the input stream.
For example, Skip 4 will skip 4 characters.

The Rsin command can be configured to wait for a specified sequence of characters before it
retrieves any additional input. For example, suppose a device attached to the microcontroller is
known to send many different sequences of data, but the only data you wish to observe hap-
pens to appear right after the unique characters, "XYZ". A modifier named Wait can be used for
this purpose: -

 Rsin Wait("XYZ"), SerData

The above code waits for the characters "X", "Y" and "Z" to be received, in that order, then it
receives the next data byte and places it into variable SerData.

Str modifier.
The Rsin command also has a modifier for handling a string of characters, named Str.

The Str modifier is used for receiving a string of characters into a byte array variable.

A string is a set of characters that are arranged or accessed in a certain order. The characters
"ABC" would be stored in a string with the "A" first, followed by the "B" then followed by the "C".
A byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string "ABC" would be stored in a byte
array containing three bytes (elements).

Below is an example that receives ten bytes and stores them in the 10-byte array, SerString: -

 Dim SerString[10] as Byte ' Create a 10-byte array.
 Rsin Str SerString ' Fill the array with received data.
 Print Str SerString ' Display the string.

If the amount of received characters is not enough to fill the entire array, then a formatter may
be placed after the array's name, which will only receive characters until the specified length is
reached. For example: -

 Dim SerString[10] as Byte ' Create a 10-byte array.
 Rsin Str SerString\5 ' Fill the first 5-bytes of the array
 Print Str SerString\5 ' Display the 5-character string.

The example above illustrates how to fill only the first n bytes of an array, and then how to dis-
play only the first n bytes of the array. n refers to the value placed after the backslash.

Proton24 Compiler. Development Suite.

 356

Because of its complexity, serial communication can be rather difficult to work with at times. Us-
ing the guidelines below when developing a project using the Rsin and Rsout commands may
help to eliminate some obvious errors: -

Always build your project in steps.
Start with small, manageable pieces of code, (that deal with serial communication) and test
them, one individually.
Add more and more small pieces, testing them each time, as you go.
Never write a large portion of code that works with serial communication without testing its
smallest workable pieces first.

Pay attention to timing.
Be careful to calculate and overestimate the amount of time, operations should take within the
microcontroller for a given oscillator frequency. Misunderstanding the timing constraints is the
source of most problems with code that communicate serially. If the serial communication in
your project is bi-directional, the above statement is even more critical.

Pay attention to wiring.
Take extra time to study and verify serial communication wiring diagrams. A mistake in wiring
can cause strange problems in communication, or no communication at all. Make sure to con-
nect the ground pins (Vss) between the devices that are communicating serially.

Verify port setting on the PC and in the Rsin / Rsout commands.
Unmatched settings on the sender and receiver side will cause garbled data transfers or no
data transfers. This is never more critical than when a line transceiver is used(i.e. MAX232).
Always remember that a line transceiver inverts the serial polarity.
If the serial data received is unreadable, it is most likely caused by a baud rate setting error, or
a polarity error.

If receiving data from another device that is not a microcontroller, try to use baud rates of 9600
and below, or alternatively, use a higher frequency crystal.

Because of additional overheads in the microcontroller, and the fact that the Rsin command
offers no hardware receive buffer for serial communication, received data may sometimes be
missed or garbled. If this occurs, try lowering the baud rate, or increasing the crystal frequency.
Using simple variables (not arrays) will also increase the chance that the device will receive the
data correctly.

Notes.
Rsin is oscillator independent as long as the crystal frequency is declared at the top of the pro-
gram.

See also : Declare, Rsout, Serin, Serout, Hrsin, Hrsout, Hserin, Hserout.

Proton24 Compiler. Development Suite.

 357

Rsout

Syntax
Rsout Item {, Item... }

Overview
Send one or more Items to a predetermined pin at a predetermined baud rate in standard
asynchronous format using 8 data bits, no parity and 1 stop bit (8N1). The pin is automatically
made an output.

Parameters
Item may be a constant, variable, expression, or string list.
There are no operands as such, instead there are modifiers. For example, if an at sign'@' pre-
cedes an Item, the ASCII representation for each digit is transmitted.

The modifiers are listed below: -

 Modifier Operation

 Bin{1..32} Send binary digits
 Dec{1..10} Send decimal digits
 Hex{1..8} Send hexadecimal digits
 Sbin{1..32} Send signed binary digits
 Sdec{1..10} Send signed decimal digits
 Shex{1..8} Send signed hexadecimal digits
 Ibin{1..32} Send binary digits with a preceding '%' identifier
 Idec{1..10} Send decimal digits with a preceding '#' identifier
 Ihex{1..8} Send hexadecimal digits with a preceding '$' identifier
 ISbin{1..32} Send signed binary digits with a preceding '%' identifier
 ISdec{1..10} Send signed decimal digits with a preceding '#' identifier
 IShex{1..8} Send signed hexadecimal digits with a preceding '$' identifier

 Rep c\n Send character c repeated n times
 Str array\n Send all or part of an array
 Cstr Label Send string data defined in code memory.

The numbers after the Bin, Dec, and Hex modifiers are optional. If they are omitted, then the
default is all the digits that make up the value will be displayed.

If a floating point variable is to be displayed, then the digits after the Dec modifier determine
how many remainder digits are send. i.e. numbers after the decimal point.

 Dim MyFloat as Float
 MyFloat = 3.145
 Rsout Dec2 MyFloat ' Send 2 values after the decimal point

The above program will transmit the ASCII representation of the value 3.14

If the digit after the Dec modifier is omitted, then 3 values will be displayed after the decimal
point.

Proton24 Compiler. Development Suite.

 358

 Dim MyFloat as Float
 MyFloat = 3.1456
 Rsout Dec MyFloat ' Send 3 values after the decimal point

The above program will send 3.145

There is no need to use the Sdec modifier for signed floating point values, as the compiler's
Dec modifier will automatically display a minus result: -

 Dim MyFloat as Float
 MyFloat = -3.1456
 Rsout Dec MyFloat ' Send 3 values after the decimal point

The above program will transmit the ASCII representation of the value -3.145

Example
 Device = 24HJ128GP502
 Declare Xtal = 16

Dim Var1 as Byte
 Dim MyWord as Word
 Dim MyDword as Dword

 Rsout "Hello World" ' Display the text "Hello World"
 Rsout "Var1= ", Dec Var1 ' Display the decimal value of Var1
 Rsout "Var1= ", Hex Var1 ' Display the hexadecimal value of Var1
 Rsout "Var1= ", Bin Var1 ' Display the binary value of Var1
 Rsout "MyDword= ", Hex6 MyDword ' Display 6 hex chars of a Dword variable

Example 3 will produce the text "$-1234" on a serial terminal.

The Cstr modifier is used in conjunction with code memory strings. The Dim as Code directive
is used for initially creating the string of characters: -

Dim String1 as Code = "Hello World", 0

The above line of case will create, in flash memory, the values that make up the ASCII text
"Hello World", at address String1. Note the null terminator after the ASCII text.

Proton24 Compiler. Development Suite.

 359

Null terminated means that a zero (null) is placed at the end of the string of ASCII characters to
signal that the string has finished.

To display, or transmit this string of characters, the following command structure could be used:

 Rsout Cstr String1

The label that declared the address where the list of code memory values resided, now be-
comes the string's name. In a large program with lots of text formatting, this type of structure
can save quite literally hundreds of bytes of valuable code space.

Try both these small programs, and you'll see that using Cstr saves a few bytes of code: -

First the standard way of displaying text: -

 Device = 24HJ128GP502
 Declare Xtal = 16
 Rsout "Hello World\r"
 Rsout "How are you?\r"
 Rsout "I am fine!\r"

Now using the Cstr modifier: -

Dim Text1 as Code = "Hello World\r", 0
Dim Text2 as Code = "How are you?\r", 0
Dim Text3 as Code = "I am fine!\r", 0

 Rsout Cstr Text1
 Rsout Cstr Text2
 Rsout Cstr Text3

Again, note the null terminators after the ASCII text in the code memory data. Without these,
the microcontroller will continue to transmit data until a value of 0 is reached.

Proton24 Compiler. Development Suite.

 360

The Str modifier is used for sending a string of bytes from a byte array variable. A string is a set
of bytes sized values that are arranged or accessed in a certain order.

The values 1, 2, 3 would be stored in a string with the value 1 first, followed by 2 then followed
by the value 3. A byte array is a similar concept to a string; it contains data that is arranged in a
certain order. Each of the elements in an array is the same size. The string 1,2,3 would be
stored in a byte array containing three bytes (elements).

Below is an example that displays four bytes (from a byte array): -

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 MyArray [0] = "H" ' Load the first 5 bytes of the array
 MyArray [1] = "e" ' With the data to send
 MyArray [2] = "l"
 MyArray [3] = "l"
 MyArray [4] = "o"
 Rsout Str MyArray\5 ' Display a 5-byte string.

Note that we use the optional \n argument of Str. If we didn't specify this, the microcontroller
would try to keep sending characters until all 10 bytes of the array were transmitted. Since we
do not wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 5
bytes.

The above example may also be written as: -

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 Str MyArray = "Hello" ' Load the first 5 bytes of the array
 Rsout Str MyArray\5 ' Send 5-byte string.

The above example, has exactly the same function as the previous one. The only difference is
that the string is now constructed using Str as a command instead of a modifier.

Declares
There are four Declares for use with Rsout. These are : -

Declare Rsout_Pin Port . Pin
Assigns the Port and Pin that will be used to output serial data from the Rsout command. This
may be any valid port on the device.

Declare Rsout_Mode Inverted, True or 1, 0
Sets the serial mode for the data transmitted by Rsout. This may be inverted or true. Alterna-
tively, a value of 1 may be substituted to represent inverted, and 0 for true.

If the Declare is not used in the program, then the default mode is Inverted.

Declare Serial_Baud 0 to 65535 bps (Baud)
Informs the Rsin and Rsout routines as to what baud rate to receive and transmit data.

Virtually any baud rate may be transmitted and received, but there are standard bauds: -

300, 600, 1200, 2400, 4800, 9600, and 19200.

Proton24 Compiler. Development Suite.

 361

When using a 4MHz crystal, the highest baud rate that is reliably achievable is 9600. However,
an increase in the oscillator speed allows higher baud rates to be achieved, including 38400
baud and above.

If the Declare is not used in the program, then the default baud is 9600.

Declare Rsout_Pace 0 to 65535 microseconds (us)
Implements a delay between characters transmitted by the Rsout command.

On occasion, the characters transmitted serially are in a stream that is too fast for the receiver
to catch, this results in missed characters. To alleviate this, a delay may be implemented be-
tween each individual character transmitted by Rsout.

If the Declare is not used in the program, then the default is no delay between characters.

Notes.
Rsout is oscillator independent as long as the crystal frequency is declared at the top of the
program.

See also : Declare, Rsin , Serin, Serout, Hrsin, Hrsout, Hserin, Hserout.

Proton24 Compiler. Development Suite.

 362

RsoutLn

Syntax
RsoutLn Item {, Item... }

Overview
Transmit one or more Items to a predetermined pin at a predetermined baud rate in standard
asynchronous format using 8 data bits, no parity and 1 stop bit (8N1), and terminate with a Car-
riage Return(13) or Carriage Return(13) Line Feed(10) or Line Feed(10) Carriage Return(13)..
The pin is automatically made an output.

Parameters
Item may be a constant, variable, expression, string list, modifier, or inline command. See the-
section for Rsout for more details.

Declare
There is a declare for the RsoutLn command that dictates what values are used as the termi-
nator.

 Declare Rsout_Terminator = CRLF or LFCR or CR

The parameter CR will transmit a single value of 13 at the end of transmission.
The parameter CRLF will transmit a value of 13 then 10 at the end of transmission.
The parameter LFCR will transmit a value of 10 then 13 at the end of transmission.

See also : Declare, Rsin , Serin, Serout, Hrsin, Hrsout, HrsoutLn, Hserin, Hserout.

Proton24 Compiler. Development Suite.

 363

Seed

Syntax
Seed Value

Overview
Seed the random number generator, in order to obtain a more random result.

Parameters
Value can be a variable, constant or expression, with a value from 1 to 65535. A value of
$0345 is a good starting point.

Example
' Create and display a Random number
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim MyWord as Word

 Seed $0345
 Cls
 While
 MyWord = Random
 Print At 1,1,Dec MyWord, " "
 DelayMs 500
 Wend

See also: Random.

Proton24 Compiler. Development Suite.

 364

Select..Case..EndSelect

Syntax
Select Expression

 Case Condition(s)
 Instructions
 {
 Case Condition(s)
 Instructions

 Case Else
 Statement(s)
 }
EndSelect

The curly braces signify optional conditions.

Overview
Evaluate an Expression then continually execute a block of BASIC code based upon compari-
sons to Condition(s). After executing a block of code, the program continues at the line follow-
ing the EndSelect. If no conditions are found to be True and a Case Else block is included, the
code after the Case Else leading to the EndSelect will be executed.

Parameters
Expression can be any valid variable, constant, expression or inline command that will be
compared to the Conditions.
Condition(s) is a statement that can evaluate as True or False. The Condition can be a simple
or complex relationship, as described below. Multiple conditions within the same Case can be
separated by commas.
Instructions can be any valid BASIC command that will be operated on if the Case condition
produces a True result.

Example
' MyResult will return a value of 255 if no valid condition was met
 Device = 24HJ128GP502
 Declare Xtal = 16
 Dim MyByte as Byte
 Dim MyResult as Byte
 DelayMs 100 ' Wait for things to stabilise
 Cls ' Clear the LCD
 MyResult = 0 ' Clear the result variable before we start
 MyByte = 1 ' Variable to base the conditions upon
 Select MyByte
 Case 1 ' Is MyByte equal to 1?

MyResult = 1 ' Load MyResult with 1 if yes
Case 2 ' Is MyByte equal to 2?

 MyResult = 2 ' Load MyResult with 2 if yes
 Case 3 ' Is MyByte equal to 3?
 MyResult = 3 ' Load MyResult with 3 if yes
 Case Else ' Otherwise...
 MyResult = 255 ' Load MyResult with 255
 EndSelect
 Print Dec MyResult ' Display the result

Proton24 Compiler. Development Suite.

 365

Notes.
Select..Case is simply an advanced form of the If..Then..ElseIf..Else construct, in which multi-
ple ElseIf statements are executed by the use of the Case command.

Taking a closer look at the Case command: -

 Case Conditional_Op Expression

Where Conditional_Op can be an = operator (which is implied if absent), or one of the standard
comparison operands <>, <, >, >= or <=. Multiple conditions within the same Case can be
separated by commas. If, for example, you wanted to run a Case block based on a value being
less than one or greater than nine, the syntax would look like: -

 Case < 1, > 9

Another way to implement Case is: -

 Case value1 to value2

In this form, the valid range is from Value1 to Value2, inclusive. So if you wished to run a Case
block on a value being between the values 1 and 9 inclusive, the syntax would look like: -

 Case 1 to 9

For those of you that are familiar with C or Java, you will know that in those languages the
statements in a Case block fall through to the next Case block unless the keyword break is en-
countered. In BASIC however, the code under an executed Case block jumps to the code im-
mediately after EndSelect.

Shown below is a typical Select...Case structure with its corresponding If..Then equivalent
code alongside.

 Select Var1
 Case 6, 9, 99, 66
 ' If Var1 = 6 or Var1 = 9 or Var1 = 99 or Var1 = 66 Then
 Print "or Values"
 Case 110 to 200
 ' ElseIf Var1 >= 110 and Var1 <= 200 Then
 Print "and Values"
 Case 100
 ' ElseIf Var1 = 100 Then
 Print "Equal Value"
 Case > 300
 ' ElseIf Var1 > 300 Then
 Print "Greater Value"
 Case Else
 ' Else
 Print "Default Value"
 EndSelect
 ' EndIf

See also : If..Then..ElseIf..Else..EndIf.

Proton24 Compiler. Development Suite.

 366

Servo

Syntax
Servo Pin, Rotation Value

Overview
Control a remote control type servo motor.

Parameters
Pin is a Port.Pin constant that specifies the I/O pin for the attachment of the motor's control
terminal.
Rotation Value is a 16-bit (0-65535) constant or Word variable that dictates the position of the
motor. A value of approx 500 being a rotation to the farthest position in a direction and approx
2500 being the farthest rotation in the opposite direction. A value of 1500 would normally centre
the servo but this depends on the motor type.

Example
' Control a servo motor attached to pin 3 of PORTB

 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim Pos as Word ' Servo Position
 Symbol Pin = PORTB.3 ' Alias the servo pin

 Pos = 1500 ' Centre the servo
 PORTA = 0 ' PORTA lines low to read buttons
 TRISA = %00000111 ' Enable the button pins as inputs

' Check any button pressed to move servo
 While
 If PORTA.0 = 0 And Pos < 3000 Then Inc Pos ' Move servo left
 If PORTA.1 = 0 Then Pos = 1500 ' Centre servo
 If PORTA.2 = 0 And Pos > 0 Then Dec Pos ' Move servo right
 Servo Pin, Pos
 DelayMs 5 ' Servo update rate
 Hrsout "Position=", Dec Pos, 13
 Wend

Notes.
Servos of the sort used in radio-controlled models are finding increasing applications in this ro-
botics age we live in. They simplify the job of moving objects in the real world by eliminating
much of the mechanical design. For a given signal input, you get a predictable amount of mo-
tion as an output.

To enable a servo to move it must be connected to a 5 Volt power supply capable of delivering
an Ampere or more of peak current. It then needs to be supplied with a positioning signal. The
signal is normally a 5 Volt, positive-going pulse between 1 and 2 milliseconds (ms) long, re-
peated approximately 50 times per second.

The width of the pulse determines the position of the servo. Since a servo's travel can vary from
model to model, there is not a definite correspondence between a given pulse width and a par-
ticular servo angle, however most servos will move to the centre of their travel when receiving
1.5ms pulses.

Proton24 Compiler. Development Suite.

 367

Servos are closed-loop devices. This means that they are constantly comparing their com-
manded position (proportional to the pulse width) to their actual position (proportional to the re-
sistance of an internal potentiometer mechanically linked to the shaft). If there is more than a
small difference between the two, the servo's electronics will turn on the motor to eliminate the
error. In addition to moving in response to changing input signals, this active error correction
means that servos will resist mechanical forces that try to move them away from a commanded
position. When the servo is unpowered or not receiving positioning pulses, the output shaft may
be easily turned by hand. However, when the servo is powered and receiving signals, it won't
move from its position.

Driving servos with Proton24 is extremely easy. The Servo command generates a pulse in 1
microsecond (µs) units, so the following code would command a servo to its centred position
and hold it there: -

 Do
 Servo PORTA.0, 1500
 DelayMs 20
 Loop

The 20ms delay ensures that the program sends the pulse at the standard 50 pulse-per-second
rate. However, this may be lengthened or shortened depending on individual motor characteris-
tics.

The Servo command is oscillator independent and will always produce 1us pulses regardless
of the crystal frequency used.

See also : Pulseout.

Proton24 Compiler. Development Suite.

 368

SetBit

Syntax
SetBit Variable, Index

Overview
Set a bit of a variable or register using a variable index to the bit of interest.

Parameters
Variable is a user defined variable, of type Byte, Word, or Dword.
Index is a constant, variable, or expression that points to the bit within Variable that requires
setting.

Example
' Clear then Set each bit of variable ExVar
 Device = 24HJ128GP502
 Declare Xtal = 16
 Dim ExVar as Byte
 Dim Index as Byte

 Cls
 ExVar = %11111111
 While ' Create an infinite loop
 For Index = 0 to 7 ' Create a loop for 8 bits
 ClearBit ExVar,Index ' Clear each bit of ExVar
 Print At 1,1,Bin8 ExVar ' Display the binary result
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 For Index = 7 to 0 Step -1 ' Create a loop for 8 bits
 SetBit ExVar,Index ' Set each bit of ExVar
 Print At 1,1,Bin8 ExVar ' Display the binary result
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 Wend ' Do it forever

Notes.
There are many ways to set a bit within a variable, however, each method requires a certain
amount of manipulation, either with rotates, or alternatively, the use of indirect addressing.
Each method has its merits, but requires a certain amount of knowledge to accomplish the task
correctly. The SetBit command makes this task extremely simple using a register rotate
method, however, this is not necessarily the quickest method, or the smallest, but it is the easi-
est. For speed and size optimisation, there is no shortcut to experience.

To set a known constant bit of a variable or register, then access the bit directly using PORT.n.

PORTA.1 = 1
or

Var1.4 = 1

If a Port is targeted by SetBit, the TRIS register is not affected.

See also : ClearBit, GetBit, LoadBit.

Proton24 Compiler. Development Suite.

 369

SetPin

Syntax
SetPin Pin Number

Overview
Make a Port’s pin an output and set it high using a variable as the pin’s number.

Parameters
Pin Number can be a variable or constant or expression that holds a value from 0 to the
amount of I/O pins on the device. A value of 0 will be PORTA.0, if present, 1 will be PORTA.1,
16 will be PORTB.0 etc…

Example
' Clear then Set each pin of PORTB
 Device = 24HJ128GP502
 Declare Xtal = 16
 Dim PinNumber as Byte

 High PORTB ' Make PORTB high before we start
 Do ' Create a loop
 For PinNumber = 16 to 31 ' Create a loop for 16 pins
 ClearPin PinNumber ' Clear each pin of PORTB
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 For Index = 16 to 31 ' Create a loop for 16 pins
 SetPin PinNumber ' Set each pin of PORTB
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 Loop ' Do it forever

Notes.
There are many ways to set a pin of an I/O port, however, each method requires a certain
amount of manipulation, either with rotates, or alternatively, the use of indirect addressing.
Each method has its merits, but requires a certain amount of knowledge to accomplish the task
correctly. The SetPin command makes this task extremely simple using a variable as the pin
number, however, this is not necessarily the quickest method, or the smallest, but it is the easi-
est. For speed and size optimisation, there is no shortcut to experience.

To set a known constant pin number of a port, access the pin directly using the High command

High PORTA.1

Proton24 Compiler. Development Suite.

 370

Each pin number has a designated name. These are Pin_A0, Pin_A1, Pin_A2,
Pin_B0…Pin_B15, Pin_C0…Pin_C15, Pin_D0…Pin_D15 to Pin_L15 etc… Each of the names
has a relevant value, for example, Pin_A0 has the value 0, Pin_B0 has the value 16, up to
Pin_J15, which has the value 143.

These can be used to pass a relevant pin number to a Procedure. For example:
'
' Flash an LED attached to PORTB.0 via a procedure
' Then flash an LED attached to PORTB.1 via the same procedure
'
 Device = 24HJ128GP502
 Declare Xtal = 16

Do ' Create an infinite loop

FlashPin(Pin_B0) ' Call the procedure to flash PORTB.0
FlashPin(Pin_B1) ' Call the procedure to flash PORTB.1

 Loop ' Do it forever
'
' Make a pin high then low for 500ms using a variable as the pin to adjust
'
Proc FlashPin(pPinNumber As Byte)

Output pPinNumber ' Make the pin an output
SetPin pPinNumber ' Bring the pin high

 DelayMs 500 ' Wait for 500 milliseconds
ClearPin pPinNumber ' Bring the pin low
DelayMs 500 ' Wait for 500 milliseconds

EndProc

Example 2
' Clear then Set each pin of PORTC
 Device = 24HJ128GP502
 Declare Xtal = 16

Dim PinNumber as Byte

 High PORTC ' Make PORTC output high before we start
 Do ' Create a loop
 For PinNumber = Pin_C0 to Pin_C7 ' Create a loop for 8 pins
 ClearPin PinNumber ' Clear each pin of PORTC
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 For PinNumber = Pin_C0 to Pin_C7 ' Create a loop for 8 pins
 SetPin PinNumber ' Set each pin of PORTC
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 Loop ' Do it forever

See also : ClearPin, Low, High.

Proton24 Compiler. Development Suite.

 371

Set

Syntax
Set Variable or Variable.Bit or Pin Number

Overview
Place a variable or bit in a high state. For a variable, this means setting all the bits to 1. For a
bit this means setting it to 1.

Parameters
Variable can be any variable or register.
Variable.Bit can be any variable and bit combination.
Pin Number can be a variable or constant or expression that holds a value from 0 to the
amount of I/O pins on the device. A value of 0 will be PORTA.0, if present, 1 will be PORTA.1,
16 will be PORTB.0 etc… For a variable Pin Number, see SetPin.

Example
 Set MyVar.3 ' Set bit 3 of MyVar
 Set MyByte ' Load MyByte with the value of 255
 Set SR.0 ' Set the Carry flag high
 Set Array ' Set all of an Array variable.
 Set String1 ' Set all of a String variable. i.e. set to spaces (ASCII 32)
 Set ' Load all RAM with 255
 Set 0 ' Set PORTA.0

Notes.
Set does not alter the TRIS register if a Port is targeted.
If no variable follows the Set command then all user RAM will be loaded with the value 255.

See also : Clear, High, Low.

Proton24 Compiler. Development Suite.

 372

Shin

Syntax
Shin dpin, cpin, mode, [result { \bits } { ,result { \bits }...}]

or

Var = Shin dpin, cpin, mode, shifts

Overview
Shift data in from a synchronous-serial device.

Parameters
Dpin is a Port.Pin constant that specifies the I/O pin that will be connected to the synchronous-
serial device's data output. This pin's I/O direction will be changed to input and will remain in
that state after the instruction is completed.
Cpin is a Port.Pin constant that specifies the I/O pin that will be connected to the synchronous-
serial device's clock input. This pin's I/O direction will be changed to output.
Mode is a constant that tells Shin the order in which data bits are to be arranged and the rela-
tionship of clock pulses to valid data. Below are the symbols, values, and their meanings: -

Symbol Value Description
MsbPre
MsbPre_L

0 Shift data in highest bit first. Read data before
sending clock. Clock idles low

LsbPre
LsbPre_L

1 Shift data in lowest bit first. Read data before send-
ing clock. Clock idles low

MsbPost
MsbPost_L

2 Shift data in highest bit first. Read data after send-
ing clock. Clock idles low

LsbPost
LsbPost_L

3 Shift data in highest bit first. Read data after send-
ing clock. Clock idles low

MsbPre_H 4 Shift data in highest bit first. Read data before
sending clock. Clock idles high

LsbPre_H 5 Shift data in lowest bit first. Read data before send-
ing clock. Clock idles high

MsbPost_H 6 Shift data in highest bit first. Read data after send-
ing clock. Clock idles high

LsbPost_H 7 Shift data in lowest bit first. Read data after sending
clock. Clock idles high

Result is a bit, byte, or word variable in which incoming data bits will be stored.
Bits is an optional constant specifying how many bits (1-16) are to be input by Shin. If no bits
entry is given, Shin defaults to 8 bits.
Shifts informs the Shin command as to how many bit to shift in to the assignment variable,
when used in the inline format.

Notes.
Shin provides a method of acquiring data from synchronous-serial devices, without resorting to
the hardware SPI modules resident on some devices. Data bits may be valid after the rising or
falling edge of the clock line. This kind of serial protocol is commonly used by controller periph-
erals such as ADCs, DACs, clocks, memory devices, etc.

The Shin instruction causes the following sequence of events to occur: -

Proton24 Compiler. Development Suite.

 373

Makes the clock pin (cpin) output low.
Makes the data pin (dpin) an input.
Copies the state of the data bit into the msb (lsb-modes) or lsb (msb modes) either before (-pre
modes) or after (-post modes) the clock pulse.
Pulses the clock pin high.
Shifts the bits of the result left (msb- modes) or right (lsb-modes).
Repeats the appropriate sequence of getting data bits, pulsing the clock pin, and shifting the
result until the specified number of bits is shifted into the variable.

Making Shin work with a particular device is a matter of matching the mode and number of bits
to that device's protocol. Most manufacturers use a timing diagram to illustrate the relationship
of clock and data.

 Symbol CLK = PORTB.0
 Symbol DTA = PORTB.1
 Shin DTA, CLK, MsbPre, [Var1] ' Shift in msb-first, pre-clock.

In the above example, both Shin instructions are set up for msb-first operation, so the first bit
they acquire ends up in the msb (leftmost bit) of the variable.

The post-clock Shift in, acquires its bits after each clock pulse. The initial pulse changes the
data line from 1 to 0, so the post-clock Shift in returns %01010101.

By default, Shin acquires eight bits, but you can set it to shift any number of bits from 1 to 16
with an optional entry following the variable name. In the example above, substitute this for the
first Shin instruction: -

 Shin DTA, CLK, MsbPre, [Var1\4] ' Shift in 4 bits.

Some devices return more than 16 bits. For example, most 8-bit shift registers can be daisy-
chained together to form any multiple of 8 bits; 16, 24, 32, 40... You can use a single Shin in-
struction with multiple variables.
Each variable can be assigned a particular number of bits with the
backslash (\) option. Modify the previous example: -

' 5 bits into Var1; 8 bits into Var2.
 Shin DTA, CLK, MsbPre, [Var1\5, Var2]
 Print "1st variable: ", Bin8 Var1
 Print "2nd variable: ", Bin8 Var2

Inline Shin Command.
The structure of the inline Shin command is: -

Var = Shin dpin, cpin, mode, shifts

DPin, CPin, and Mode have not changed in any way, however, the InLine structure has a new
operand, namely Shifts. This informs the Shin command as to how many bit to shift in to the
assignment variable. For example, to shift in an 8-bit value from a serial device, we would use: -

 Var1 = Shin DTA, CLK, MsbPre, 8

To shift 16-bits into a Word variable: -

 MyWord = Shin DTA, CLK, MsbPre, 16

Proton24 Compiler. Development Suite.

 374

Shout

Syntax
Shout Dpin, Cpin, Mode, [OutputData {\Bits} {,OutputData {\Bits}..}]

Overview
Shift data out to a synchronous serial device.

Parameters
Dpin is a Port.Pin constant that specifies the I/O pin that will be connected to the synchronous
serial device's data input. This pin will be set to output mode.
Cpin is a Port.Pin constant that specifies the I/O pin that will be connected to the synchronous
serial device's clock input. This pin will be set to output mode.
Mode is a constant that tells Shout the order in which data bits are to be arranged. Below are
the symbols, values, and their meanings: -

Symbol Value Description
LsbFirst
LsbFirst _L 0 Shift data out lowest bit first.

Clock idles low
MsbFirst
MsbFirst_L 1 Shift data out highest bit first.

Clock idles low

LsbFirst _H 4 Shift data out lowest bit first.
Clock idles high

MsbFirst_H 5 Shift data out highest bit first.
Clock idles high

OutputData is a variable, constant, or expression containing the data to be sent.
Bits is an optional constant specifying how many bits are to be output by Shout. If no Bits entry
is given, Shout defaults to 8 bits.

Notes.
Shin and Shout provide a method of acquiring data from synchronous serial devices. Data bits
may be valid after the rising or falling edge of the clock line. This kind of serial protocol is com-
monly used by controller peripherals like ADCs, DACs, clocks, memory devices, etc.

At their heart, synchronous-serial devices are essentially shift-registers; trains of flip flops that
receive data bits in a bucket brigade fashion from a single data input pin. Another bit is input
each time the appropriate edge (rising or falling, depending on the device) appears on the clock
line.

The Shout instruction first causes the clock pin to output low and the data pin to switch to out-
put mode. Then, Shout sets the data pin to the next bit state to be output and generates a
clock pulse. Shout continues to generate clock pulses and places the next data bit on the data
pin for as many data bits as are required for transmission.

Making Shout work with a particular device is a matter of matching the mode and number of
bits to that device's protocol. Most manufacturers use a timing diagram to illustrate the relation-
ship of clock and data. One of the most important items to look for is which bit of the data
should be transmitted first; most significant bit (MSB) or least significant bit (LSB).

Proton24 Compiler. Development Suite.

 375

Example

 Shout DTA, CLK, MsbFirst, [250]

In the above example, the Shout command will write to I/O pin DTA (the Dpin) and will gener-
ate a clock signal on I/O CLK (the Cpin). The Shout command will generate eight clock pulses
while writing each bit (of the 8-bit value 250) onto the data pin (Dpin). In this case, it will start
with the most significant bit first as indicated by the Mode value of MsbFirst.

By default, Shout transmits eight bits, but you can set it to shift any number of bits from 1 to 16
with the Bits argument. For example: -

 Shout DTA, CLK, MsbFirst, [250\4]

Will only output the lowest 4 bits (%0000 in this case). Some devices require more than 16 bits.
To solve this, you can use a single Shout command with multiple values. Each value can be
assigned a particular number of bits with the Bits argument. As in: -

 Shout DTA, CLK, MsbFirst, [250\4, 1045\16]

The above code will first shift out four bits of the number 250 (%1111) and then 16 bits of the
number 1045 (%0000010000010101). The two values together make up a 20 bit value.

See also : Shin.

Proton24 Compiler. Development Suite.

 376

Sleep

Syntax
Sleep { Length }

Overview
Places the microcontroller into low power mode for approx n seconds.

Parameters
Length is an optional variable or constant (1-16383) that specifies the duration of sleep in ap-
proximate seconds. If length is omitted, then the Sleep command is assumed to be the assem-
bler mnemonic, which means the microcontroller will sleep continuously, or until an internal or
external influence wakes it up.

Example
 Symbol MyLED = PORTA.0
 While
 High MyLED ' Turn LED on.
 DelayMs 1000 ' Wait 1 second.
 Low MyLED ' Turn LED off.
 Sleep 60 ' Sleep for 1 minute.
 Wend

Notes.
Sleep will place the device into a low power mode for the specified period of seconds. Period is
14-bits, so delays of up to 16383 seconds are the limit. Sleep uses the Watchdog Timer so it is
independent of the oscillator frequency.

The Sleep command is used to put the microcontroller in a low power mode without resetting
the registers. Allowing continual program execution upon waking up from the Sleep period.

The watchdog must be enabled an set to a postscaler value of 1:256 for sleep to work correctly.

Proton24 Compiler. Development Suite.

 377

Sound

Syntax
Sound Pin, [Note, Duration {, Note, Duration...}]

Overview
Generates tone and/or white noise on the specified Pin. Pin is automatically made an output.

Parameters
Pin is a Port.Pin constant that specifies the output pin on the device.
Note can be an 8-bit variable or constant. 0 is silence. Notes 1-127 are tones. Notes 128-255
are white noise. Tones and white noises are in ascending order (i.e. 1 and 128 are the lowest
frequencies, 127 and 255 are the highest). Note 1 is approx 78.74Hz and Note 127 is approx
10,000Hz.
Duration can be an 8-bit variable or constant that determines how long the Note is played in
approx 10ms increments.

Example
' Star Trek The Next Generation...Theme and ship take-off
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim Loop as Byte
 Symbol Pin = PORTB.0

Theme:
 Sound Pin,[50,60,70,20,85,120,83,40,70,20,50,20,70,20,90,120,90,20,98,160]
 DelayMs 500
 For Loop = 128 to 255 ' Ascending white noises

Sound Pin, [Loop,2] ' For warp drive sound
 Next
 Sound Pin, [43,80,63,20,77,20,71,80,51,20,_
 90,20,85,140,77,20,80,20,85,20,_
 90,20,80,20,85,60,90,60,92,60,87,_
 60,96,70,0,10,96,10,0,10,96,10,0,_
 10,96,30,0,10,92,30,0,10,87,30,0,_
 10,96,40,0,20,63,10,0,10,63,10,0,_
 10,63,10,0,10,63,20]
 DelayMs 10000
 GoTo Theme

Notes.
With the excellent I/O characteristics of the PIC24® and dsPIC33®, a speaker can be driven
through a capacitor directly from the pin of the microcontroller. The value of the capacitor
should be determined based on the frequencies of interest and the speaker load. Piezo speak-
ers can be driven directly.

See also : Freqout, DTMFout.

Proton24 Compiler. Development Suite.

 378

Stop

Syntax
Stop

Overview
Stop halts program execution by sending the microcontroller into an infinite loop.

Example
 If A > 12 Then Stop
 { code data }

If variable A contains a value greater than 12 then stop program execution. code data will not
be executed.

Notes.
Although Stop halts the microcontroller in its tracks it does not prevent any code listed in the
BASIC source after it from being compiled.

See also : End, Sleep, Snooze.

Proton24 Compiler. Development Suite.

 379

Strn

Syntax
Strn Byte Array = Item

Overview
Load a Byte Array with null terminated data, which can be likened to creating a pseudo String
variable.

Parameters
Byte Array is the variable that will be loaded with values.
Item can be another Strn command, a Str command, Str$ command, or a quoted character
string

Example
' Load the Byte Array String1 with null terminated characters

 Device = 24HJ128GP502
 Declare Xtal = 16
 Dim String1[21] as Byte ' Create a Byte array with 21 elements

 DelayMs 100 ' Wait for things to stabilise
 Cls ' Clear the LCD
 Strn String1 = "Hello World"
'
' Load String1 with characters and null terminate it
'
 Print Str String1 ' Display the string

See also: Arrays as Strings, Str$.

Proton24 Compiler. Development Suite.

 380

Str$

Syntax
 Str Byte Array = Str$ (Modifier Variable)
or
 String = Str$ (Modifier Variable)

Overview
Convert a Decimal, Hex, Binary, or Floating Point value or variable into a null terminated string
held in a Byte array, or a String variable. For use only with the Str and Strn commands, and
real String variables.

Parameters
Modifier is one of the standard modifiers used with Print, Rsout, Hserout etc. See list below.
Variable is a variable that holds the value to convert. This may be a Bit, Byte, Word, Dword,
or Float.
Byte Array must be of sufficient size to hold the resulting conversion and a terminating null
character (0).
String must be of sufficient size to hold the resulting conversion.

Notice that there is no comma separating the Modifier from the Variable. This is because the
compiler borrows the format and subroutines used in Print. Which is why the modifiers are the
same: -

 Bin{1..32} Convert to binary digits
 Dec{1..10} Convert to decimal digits
 Hex{1..8} Convert to hexadecimal digits
 Sbin{1..32} Convert to signed binary digits
 Sdec{1..10} Convert to signed decimal digits
 Shex{1..8} Convert to signed hexadecimal digits
 Ibin{1..32} Convert to binary digits with a preceding '%' identifier
 Idec{1..10} Convert to decimal digits with a preceding '#' identifier
 Ihex{1..8} Convert to hexadecimal digits with a preceding '$' identifier
 ISbin{1..32} Convert to signed binary digits with a preceding '%' identifier
 ISdec{1..10} Convert to signed decimal digits with a preceding '#' identifier
 IShex{1..8} Convert to signed hexadecimal digits with a preceding '$' identifier

Example 1
' Convert a Word variable to a String of characters in a Byte array.
 Device = 24HJ128GP502
 Declare Xtal = 16
'
' Create a byte array to hold converted value, and null terminator
 Dim MyString as String * 12
 Dim MyWord1 as Word

 DelayMs 100 ' Wait for things to stabilise
 Cls ' Clear the LCD
 MyWord1 = 1234 ' Load the variable with a value
 Strn MyString = Str$(Dec MyWord1) ' Convert the Integer to a String
 Print MyString ' Display the string

Proton24 Compiler. Development Suite.

 381

Example 2
' Convert a Dword variable to a String of characters in a Byte array.
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim MyString as String * 12
 Dim MyDword1 as Dword
 DelayMs 100 ' Wait for things to stabilise
 Cls ' Clear the LCD
 MyDword1 = 1234 ' Load the variable with a value
 Strn MyString = Str$(Dec MyDword1) ' Convert the Integer to a String
 Print MyString ' Display the string

Example 3
' Convert a Float variable to a String of characters in a Byte array.
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim MyString as String * 12
 Dim MyFloat1 as Float
 DelayMs 100 ' Wait for things to stabilise
 Cls ' Clear the LCD
 MyFloat1 = 3.14 ' Load the variable with a value
 Strn MyString = Str$(Dec MyFloat1) ' Convert the Float to a String
 Print MyString ' Display the string

Example 4
' Convert a Word variable to a Binary String of characters in an array.
 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim MyString as String * 32
 Dim MyWord1 as Word
 DelayMs 100 ' Wait for things to stabilise
 Cls ' Clear the LCD
 MyWord1 = 1234 ' Load the variable with a value
 Strn MyString = Str$(Bin MyWord1) ' Convert the Integer to a String
 Print MyString ' Display the string

If we examine the resulting string (Byte Array) converted with example 2, it will contain: -

 character 1, character 2, character 3, character 4, 0

The zero is not character zero, but value zero. This is a null terminated string.
Notes.
The Byte Array created to hold the resulting conversion, must be large enough to accommo-
date all the resulting digits, including a possible minus sign and preceding identifying character.
%, $, or # if the I version modifiers are used. The compiler will try and warn you if it thinks the
array may not be large enough, but this is a rough guide, and you as the programmer must de-
cide whether it is correct or not. If the size is not correct, any adjacent variables will be overwrit-
ten, with potentially catastrophic results.

See also : Creating and using Strings, Strn, Arrays as Strings.

Proton24 Compiler. Development Suite.

 382

Swap

Syntax
Swap Variable, Variable

Overview
Swap any two variable's values with each other.

Parameters
Variable is the value to be swapped

Example
' If Dog = 2 and Cat = 10 then by using the swap command
' Dog will now equal 10 and Cat will equal 2.

 Var1 = 10 ' Var1 equals 10
 Var2 = 20 ' Var2 equals 20
 Swap Var1, Var2 ' Var2 now equals 20 and Var1 now equals 10

Proton24 Compiler. Development Suite.

 383

Symbol

Syntax
Symbol Name { = } Value

Overview
Assign an alias to a register, variable, or constant value

Parameters
Name can be any valid identifier.
Value can be any previously declared variable, system register, or a Register.Bit combination.
The equals '=' symbol is optional, and may be omitted if desired.

When creating a program it can be beneficial to use identifiers for certain values that don't
change: -

 Symbol Meter = 1
 Symbol Centimetre = 100
 Symbol Millimetre = 1000

This way you can keep your program very readable and if for some reason a constant changes
later, you only have to make one change to the program to change all the values. Another good
use of the constant is when you have values that are based on other values.

 Symbol Meter = 1
 Symbol Centimetre = Meter / 100
 Symbol Millimetre = Centimetre / 10

In the example above you can see how the centimetre and millimetre were derived from the
Meter.

Another use of the Symbol command is for assigning Port.Bit constants: -

 Symbol LED = PORTA.0
 High LED

In the above example, whenever the text LED is encountered, Bit-0 of PORTA is actually refer-
enced.

Floating point constants may also be created using Symbol by simply adding a decimal point to
a value.

 Symbol PI = 3.14 ' Create a floating point constant named PI
 Symbol FlNum = 3.0 ' Create a floating point constant with the value 3

Floating point constant can also be created using expressions.

 ' Create a floating point constant holding the result of the expression
 Symbol Quanta = 3.3 / 1024

Notes.
Symbol cannot create new variables, it simply aliases an identifier to a previously assigned
variable, or assigns a constant to an identifier.

Proton24 Compiler. Development Suite.

 384

Toggle

Syntax
Toggle Variable {.Bit}

Overview
Reverses a variable or pin. If a Port's pin is chosen as the operand, it will first be ser to output
mode. i.e. Changing 0 to 1 and 1 to 0.

Parameters
Variable {.Bit} can be any valid variable, variable and bit, or Port and Bit combination.

Example
 High PORTB.0 ' Set bit 0 of PORTB high
 Toggle PORTB.0 ' And now reverse the bit

 Toggle Var1.0 ' Reverse bit-0 of Var1
 Toggle Var1 ' Reverse the whole of Var1

See also : High, Low.

Proton24 Compiler. Development Suite.

 385

ToLower

Syntax
Destination String = ToLower (Source String)

Overview
Convert the characters from a source string to lower case.

Parameters
Destination String can only be a String variable, and should be large enough to hold the cor-
rect amount of characters extracted from the Source String.
Source String can be a String variable, or a Quoted String of Characters. The Source String
can also be a Byte, Word, Dword, Float or Array, variable, in which case the value contained
within the variable is used as a pointer to the start of the Source String's address in RAM. A
third possibility for Source String is a Label name, in which case a null terminated Quoted
String of Characters is read from code memory.

Example 1
' Convert the characters from SourceString to lowercase into DestString

 Device = 24HJ128GP502
 Declare Xtal = 16
 Dim SourceString as String * 20 ' Create a String of 20 characters
 Dim DestString as String * 20 ' Create another String

 SourceString = "HELLO WORLD" ' Load the source string with characters
 DestString = ToLower(SourceString) ' Convert to lowercase
 Print DestString ' Display the result, which will be "hello world"

Example 2
' Convert the characters from a Quoted Character String to lowercase
' into DestString

 Device = 24HJ128GP502
 Declare Xtal = 16
 Dim DestString as String * 20 ' Create a String of 20 characters

 DestString = ToLower("HELLO WORLD") ' Convert to lowercase
 Print DestString ' Display the result, which will be "hello world"

Example 3
' Convert to lowercase from SourceString into DestString using a pointer to
' SourceString

 Device = 24HJ128GP502
 Declare Xtal = 16
 Dim SourceString as String * 20 ' Create a String of 20 characters
 Dim DestString as String * 20 ' Create another String
 ' Create a Word variable to hold the address of SourceString
 Dim StringAddr as Word

 SourceString = "HELLO WORLD" ' Load the source string with characters
 ' Locate the start address of SourceString in RAM
 StringAddr = AddressOf(SourceString)
 DestString = ToLower(StringAddr) ' Convert to lowercase
 Print DestString ' Display the result, which will be "hello world"

Proton24 Compiler. Development Suite.

 386

Example 4
' Convert chars from a code memory string to lowercase
' and place into DestString

 Device = 24HJ128GP502
 Declare Xtal = 16
 Dim DestString as String * 20 ' Create a String of 20 characters
' Create a null terminated string of characters in code memory

Dim Source as Code = "HELLO WORLD", 0

 DestString = ToLower(Source) ' Convert to lowercase
 Print DestString ' Display the result, which will be "hello world"

See also : Creating and using Strings, Creating and using code memory strings,

Len, Left$, Mid$, Right$, Str$, ToUpper, AddressOf .

Proton24 Compiler. Development Suite.

 387

ToUpper

Syntax
Destination String = ToUpper (Source String)

Overview
Convert the characters from a source string to UPPER case.

Parameters
Destination String can only be a String variable, and should be large enough to hold the cor-
rect amount of characters extracted from the Source String.
Source String can be a String variable, or a Quoted String of Characters . The Source String
can also be a Byte, Word, Dword, Float or Array, variable, in which case the value contained
within the variable is used as a pointer to the start of the Source String's address in RAM. A
third possibility for Source String is a Label name, in which case a null terminated Quoted
String of Characters is read from code memory.

Example 1
' Convert the characters from SourceString to UpperCase and place into
' DestString

 Device = 24HJ128GP502
 Declare Xtal = 16
 Dim SourceString as String * 20 ' Create a String of 20 characters
 Dim DestString as String * 20 ' Create another String

 SourceString = "hello world" ' Load the source string with characters
 DestString = ToUpper(SourceString) ' Convert to uppercase
 Print DestString ' Display the result, which will be "HELLO WORLD"

Example 2
' Convert the chars from a Quoted Character String to UpperCase
' and place into DestString

 Device = 24HJ128GP502
 Declare Xtal = 16
 Dim DestString as String * 20 ' Create a String of 20 characters

 DestString = ToUpper("hello world") ' Convert to uppercase
 Print DestString ' Display the result, which will be "HELLO WORLD"

Example 3
' Convert to UpperCase from SourceString into DestString using a pointer to
' SourceString

 Device = 24HJ128GP502
 Declare Xtal = 16
 Dim SourceString as String * 20 ' Create a String of 20 characters
 Dim DestString as String * 20 ' Create another String
 Dim StringAddr as Word ' Create a Word variable to hold address

 SourceString = "hello world" ' Load the source string with characters
 ' Locate the start address of SourceString in RAM
 StringAddr = AddressOf(SourceString)
 DestString = ToUpper(StringAddr) ' Convert to uppercase
 Print DestString ' Display the result, which will be "HELLO WORLD"

Proton24 Compiler. Development Suite.

 388

Example 4
' Convert chars from a code memory string to uppercase
' and place into DestString

 Device = 24HJ128GP502
 Declare Xtal = 16
 Dim DestString as String * 20 ' Create a String of 20 characters
' Create a null terminated string of characters in code memory

Dim Source as Code = hello world", 0

 DestString = ToUpper(Source) ' Convert to uppercase
 Print DestString ' Display the result, which will be "HELLO WORLD"

See also : Creating and using Strings, Creating and using code memory strings,

Len, Left$, Mid$, Right$, Str$, ToLower, AddressOf .

Proton24 Compiler. Development Suite.

 389

Touch_Active

Syntax
Assignment Variable = Touch_Active

Overview
Indicates if the graphic LCD's resistive touch membrane has been touched.

Assignment
Assignment Variable can be any valid variable type and holds 1 if the touch screen mem-
brane has been touched with sufficient force.

Example
' Demonstrate the Touch_Active command
'
 Device = 24HJ128GP502
 Declare Xtal = 79.23
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin used for TX with USART1
'
' Setup the ADS7846 touchscreen chip's pins
'
 Declare Touch_DINPin = PORTB.13 ' Connect to the ADS7846 DIN pin
 Declare Touch_DOUTPin = PORTB.12 ' Connect to the ADS7846 DOUT pin
 Declare Touch_CLKPin = PORTB.11 ' Connect to the ADS7846 CLK pin
 Declare Touch_CSPin = PORTB.9 ' Connect to the ADS7846 CS pin

 Include "TouchScreen.inc" ' Load the touchscreen routines into the program

'--
Main:
' Configure the internal oscillator to operate the device at 79.23MHz
'
 PLL_Setup(43, 2, 2, $0300)
 RPOR7 = 3 ' Make Pin RP14 U1TX

 While
 If Touch_Active = 1 Then ' Has the LCD been touched?
 HRSOut "LCD is Touched\r" ' Yes. So transmit a message serially
 DelayMS 200
 EndIf
 Wend
'--
' Configure for internal 7.37MHz oscillator with PLL
' OSC pins are general purpose I/O
'
 Config FBS = BWRP_WRPROTECT_OFF, BSS_NO_FLASH, BSS_NO_BOOT_CODE
 Config FSS = SWRP_WRPROTECT_OFF, SSS_NO_FLASH, RSS_NO_SEC_RAM
 Config FGS = GWRP_OFF, GCP_OFF
 Config FOSCSEL = FNOSC_FRCPLL, IESO_ON
 Config FOSC = POSCMD_NONE, OSCIOFNC_ON, IOL1WAY_OFF, FCKSM_CSDCMD
 Config FWDT = WDTPOST_PS256, WINDIS_OFF, FWDTEN_OFF
 Config FPOR = FPWRT_PWR128, ALTI2C_OFF
 Config FICD = ICS_PGD1, JTAGEN_OFF

Proton24 Compiler. Development Suite.

 390

Notes.
The touch screen commands used by the compiler are for use with an ADS7846 touch screen
controller device. This device uses an SPI interface and connects to a 4-wire resistive touch
screen membrane to give X and Y coordinates, as well as touch pressure.

The routines must be incorporated into the BASIC program by use of an include file named
"TouchScreen.inc". This is written in Proton24 BASIC so that modifications or improvements
are easy. It also exposes how the touch screen is interfaced with.

A suitable circuit for the ADS7846 touch screen controller is shown below:

See Also. Touch_Read, Touch_HotSpot

ADS7846 Touch controller circuit

SCK
DIN

DOUT

GND

CS

ADS7846

+3v3

10KΩ

100nF

RB9
RB11
RB13
RB12

RF filter

Vref

VC
C

VC
C

BUSY

X-
X+
Y+
Y-

PENIRQ

Vbat
AUX

10uF/6.3v

1 10

9

11

7

8

6

5

3

2

4

13

12

14

16

15

From LCD YU
From LCD XR
From LCD YD
From LCD XL

Proton24 Compiler. Development Suite.

 391

Touch_Read

Syntax
Assignment Variable = Touch_Read

Overview
Get the X and Y pixel coordinates from the graphic LCD's resistive touch membrane.

Assignment
Assignment Variable can be any valid variable type and holds 1 if the touch screen mem-
brane has been touched within its bounds.
Two variables are loaded with the X and Y pixel coordinates. These are:
 Touch_Xpos holds the X position of the touch (0 to 239)
 Touch_Ypos holds the Y position of the touch (0 to 319)

Example
' Demonstrate the Touch_Read command
'
 Device = 24HJ128GP502
 Declare Xtal = 79.23
'
' Setup the ADS7846 touchscreen chip's pins
'
 Declare Touch_DINPin = PORTB.13 ' Connect to the ADS7846 DIN pin
 Declare Touch_DOUTPin = PORTB.12 ' Connect to the ADS7846 DOUT pin
 Declare Touch_CLKPin = PORTB.11 ' Connect to the ADS7846 CLK pin
 Declare Touch_CSPin = PORTB.9 ' Connect to the ADS7846 CS pin

 Include "TouchScreen.inc" ' Load the touchscreen routines into the program

' Configure the internal oscillator to operate the device at 79.23MHz
'
 PLL_Setup(43, 2, 2, $0300)
 While
 If Touch_Active = 1 Then ' Has the LCD been touched?
 If Touch_Read = 1 Then ' Is the touch within bounds?
 HRSOut "X Touch = ", Dec Touch_Xpos, 13
 HRSOut "Y Touch = ", Dec Touch_Ypos, 13
 DelayMS 200
 EndIf
 EndIf
 Wend
'---
' Configure for internal 7.37MHz oscillator with PLL
' OSC pins are general purpose I/O
'
 Config FBS = BWRP_WRPROTECT_OFF, BSS_NO_FLASH, BSS_NO_BOOT_CODE
 Config FSS = SWRP_WRPROTECT_OFF, SSS_NO_FLASH, RSS_NO_SEC_RAM
 Config FGS = GWRP_OFF, GCP_OFF
 Config FOSCSEL = FNOSC_FRCPLL, IESO_ON
 Config FOSC = POSCMD_NONE, OSCIOFNC_ON, IOL1WAY_OFF, FCKSM_CSDCMD
 Config FWDT = WDTPOST_PS256, WINDIS_OFF, FWDTEN_OFF
 Config FPOR = FPWRT_PWR128, ALTI2C_OFF
 Config FICD = ICS_PGD1, JTAGEN_OFF

Proton24 Compiler. Development Suite.

 392

Notes.
The touch screen commands used by the compiler are for use with an ADS7846 touch screen
controller device. This device uses an SPI interface and connects to a 4-wire resistive touch
screen membrane to give X and Y coordinates, as well as touch pressure.

The routines must be incorporated into the BASIC program by use of an include file named
"TouchScreen.inc". This is written in Proton24 BASIC so that modifications or improvements
are easy. It also exposes how the touch screen is interfaced with.

See Also. Touch_Active, Touch_HotSpot

Proton24 Compiler. Development Suite.

 393

Touch_HotSpot

Syntax
Assignment Variable = Touch_HotSpot Xpos Start, Ypos Start, Xpos End, Ypos End

Overview
Indicate when a user defined area on the graphic LCD's resistive touch membrane has been
touched.

Parameters
Assignment Variable can be any valid variable type and holds 1 if the touch screen mem-
brane has been touched within the window's bounds.
Xpos Start can be any valid variable type that holds the X position for the start of the touch
window. Can be a value from 0 to the LCD's X resolution.
Ypos Start can be any valid variable type that holds the Y position for the start of the touch
window. Can be a value from 0 to the LCD's Y resolution.
Xpos End can be any valid variable type that holds the X position for the end of the touch win-
dow. Can be a value from 0 to the LCD's X resolution.
Ypos End can be any valid variable type that holds the Y position for the end of the touch win-
dow. Can be a value from 0 to the LCD's Y resolution.

The Windowed area's X and Y start positions are top left of the LCD, as in the other pixel based
routines.

Example
' Demonstrate the Touch_HotSpot command
'
 Device = 24HJ128GP502
 Declare Xtal = 79.23
 Declare Hserial_Baud = 9600 ' USART1 baud rate
 Declare Hrsout1_Pin = PORTB.14 ' Select the pin used for TX with USART1
'
' Setup the touchscreen chip's pins
'
 Declare Touch_DINPin = PORTB.13 ' Connect to the ADS7846 DIN pin
 Declare Touch_DOUTPin = PORTB.12 ' Connect to the ADS7846 DOUT pin
 Declare Touch_CLKPin = PORTB.11 ' Connect to the ADS7846 CLK pin
 Declare Touch_CSPin = PORTB.9 ' Connect to the ADS7846 CS pin

 Include "TouchScreen.inc" ' Load the touchscreen routines into the program

' Configure the internal oscillator to operate the device at 79.23MHz
'
 PLL_Setup(43, 2, 2, $0300)
 RPOR7 = 3 ' Make PPS Pin RP14 U1TX
'
' Transmit a message if the LCD is touched within a window 40 pixels square
 While
 If Touch_Active = 1 Then ' Has the LCD been touched?
 Touch_Read ' Read the touch X and Y
 If Touch_HotSpot 0, 0, 40, 40 = 1 Then
 HRSOut "Touched at X ", Dec Touch_Xpos, ", Y ", Dec Touch_Ypos, 13
 DelayMS 100
 EndIf
 EndIf
 Wend

Proton24 Compiler. Development Suite.

 394

'--
' Configure for internal 7.37MHz oscillator with PLL
' OSC pins are general purpose I/O
'
 Config FBS = BWRP_WRPROTECT_OFF, BSS_NO_FLASH, BSS_NO_BOOT_CODE
 Config FSS = SWRP_WRPROTECT_OFF, SSS_NO_FLASH, RSS_NO_SEC_RAM
 Config FGS = GWRP_OFF, GCP_OFF
 Config FOSCSEL = FNOSC_FRCPLL, IESO_ON
 Config FOSC = POSCMD_NONE, OSCIOFNC_ON, IOL1WAY_OFF, FCKSM_CSDCMD
 Config FWDT = WDTPOST_PS256, WINDIS_OFF, FWDTEN_OFF
 Config FPOR = FPWRT_PWR128, ALTI2C_OFF
 Config FICD = ICS_PGD1, JTAGEN_OFF

Notes.
The touch screen commands used by the compiler are for use with an ADS7846 touch screen
controller device. This device uses an SPI interface and connects to a 4-wire resistive touch
screen membrane to give X and Y coordinates, as well as touch pressure.

The routines must be incorporated into the BASIC program by use of an include file named
"TouchScreen.inc". This is written in Proton24 BASIC so that modifications or improvements
are easy. It also exposes how the touch screen is interfaced with.

See Also. Touch_Active, Touch_Read.

Proton24 Compiler. Development Suite.

 395

Toshiba_Command

Syntax
Toshiba_Command Command, Value

Overview
Send a command with or without parameters to a Toshiba T6963 graphic LCD.

Parameters
Command can be a constant, variable, or expression, that contains the command to send to
the LCD. This will always be an 8-bit value.
Value can be a constant, variable, or expression, that contains an 8-bit or 16-bit parameter as-
sociated with the command. An 8-bit value will be sent as a single parameter, while a 16-bit
value will be sent as two parameters. Parameters are optional as some commands do not re-
quire any. Therefore if no parameters are included, only a command is sent to the LCD.

Because the size of the parameter is vital to the correct operation of specific commands, you
can force the size of the parameter sent by issuing either the text “Byte” or “Word” prior to the
parameter’s value.

Toshiba_Command $C0, Byte $FF01 ' Send the low byte of the 16-bit value.
Toshiba_Command $C0, Word $01 ' Send a 16-bit value regardless.

The explanation of each command is too lengthy for this document, however they can be found
in the Toshiba T6963C datasheet.

Example
' Toshiba T6963C Command demo
'
 Device = 24FJ64GA002
 Declare Xtal = 16
'
' Toshiba T6963C graphic LCD Pin configuration
'
 Declare LCD_Type = Toshiba ' LCD's type is Toshiba T6963C
 Declare LCD_DTPort = PORTB.Byte0 ' The LCD's 8-bit Data port
 Declare LCD_WRPin = PORTB.12 ' The LCD's WR pin
 Declare LCD_RDPin = PORTB.11 ' The LCD's RD pin
 Declare LCD_CEPin = PORTB.10 ' The LCD's CE pin
 Declare LCD_CDPin = PORTB.8 ' The LCD's CD pin
 Declare LCD_RSTPin = PORTB.9 ' The LCD's RST pin (optional)
'
' Toshiba T6963C graphic LCD setup configuration
'
 Declare LCD_Font_Width = 8 ' The font width (6 or 8)
 Declare LCD_X_Res = 128 ' The X resolution of the LCD
 Declare LCD_Y_Res = 64 ' The Y resolution of the LCD
 Declare LCD_Text_Home_Address = 0 ' The home address of the LCD
 Declare LCD_RAM_Size = 8192 ' The amount of RAM the LCD contains
 Declare LCD_Text_Pages = 1 ' The amount of text pages required

 Include "T6963C.inc" ' Load the Toshiba T6963C routines into the program

Proton24 Compiler. Development Suite.

 396

 Dim PanLoop As Byte
 Dim Ypos As Byte
'---
Main:
 Cls ' Clear Text and Graphic RAM
'
' Place text on two screen pages
'
 For Ypos = 1 To 6
 Print At Ypos,0," THIS IS PAGE ONE THIS IS PAGE TWO"
 Next
'
' Draw a box around the display
'
 Line 1,0,0,127,0 ' Top line
 LineTo 1,127,63 ' Right line
 LineTo 1,0,63 ' Bottom line
 LineTo 1,0,0 ' Left line
'
' Pan from one screen to the next then back
'
 While ' Create an infinite loop
 '
 ' Increment the Text home address
 '
 For PanLoop = 0 To 23
 Toshiba_Command cT6963_SET_TEXT_HOME_ADDRESS , Word PanLoop
 DelayMS 200
 Next
 DelayMS 200
 '
 ' Decrement the Text home address
 '
 For PanLoop = 23 To 0 Step -1
 Toshiba_Command cT6963_SET_TEXT_HOME_ADDRESS , Word PanLoop
 DelayMS 200
 Next
 DelayMS 200
 Wend ' Do it forever

Notes.
When the Toshiba LCD’s Declares are issued within the BASIC program, several internal vari-
ables and constants are automatically created that contain the Port and Bits used by the actual
interface and also some constant values holding valuable information concerning the LCD’s
RAM boundaries and setup. These variables and constants can be used within the BASIC or
Assembler environment. The internal variables and constants are: -

Variables.
_ _LCD_DTPort The Port where the LCD’s data lines are attached.
_ _LCD_WRPort The Port where the LCD’s WR pin is attached.
_ _LCD_RDPort The Port where the LCD’s RD pin is attached.
_ _LCD_CEPort The Port where the LCD’s CE pin is attached.
_ _LCD_CDPort The Port where the LCD’s CD pin is attached.
_ _LCD_RSTPort The Port where the LCD’s RST pin is attached.

Proton24 Compiler. Development Suite.

 397

Constants.
_ _LCD_Type The type of LCD targeted. 0 = Alphanumeric, 1 = KS0108, 2 = Toshiba.
_ _LCD_WRPin The Pin where the LCD’s WR line is attached.
_ _LCD_RDPin The Pin where the LCD’s RD line is attached.
_ _LCD_CEPin The Pin where the LCD’s CE line is attached.
_ _LCD_CDPin The Pin where the LCD’s CD line is attached.
_ _LCD_RSTPin The Pin where the LCD’s RST line is attached.
_ _LCD_Text_Pages The amount of TEXT pages chosen.
_ _LCD_Graphic_Pages The amount of Graphic pages chosen.
_ _LCD_RAM_Size The amount of RAM that the LCD contains.
_ _LCD_X_Res The X resolution of the LCD. i.e. Horizontal pixels.
_ _LCD_Y_Res The Y resolution of the LCD. i.e. Vertical pixels.
_ _LCD_Font_Width The width of the font. i.e. 6 or 8.
_ _LCD_Text_AREA The amount of characters on a single line of TEXT RAM.
_ _LCD_Graphic_AREA The amount of characters on a single line of Graphic RAM.
_ _LCD_Text_Home_Address The Starting address of the TEXT RAM.
_ _LCD_Graphic_Home_Address The Starting address of the Graphic RAM.
_ _LCD_CGRAM_Home_Address The Starting address of the CG RAM.
_ _LCD_End_OF_Graphic_RAM The Ending address of Graphic RAM.
_ _LCD_CGRAM_OFFset The Offset value for use with CG RAM.

Notice that each name has two underscores preceding it. This should ensure that duplicate
names are not defined within the BASIC environment.

It may not be apparent straight away why the variables and constants are required, however,
the Toshiba LCDs are capable of many tricks such as panning, page flipping, text manipulation
etc, and all these require some knowledge of RAM boundaries and specific values relating to
the resolution of the LCD used.

See also : LCDRead, LCDWrite, Pixel, Plot, Toshiba_UDG, UnPlot.

Proton24 Compiler. Development Suite.

 398

Toshiba_UDG

Syntax
Toshiba_UDG Character, [Value {, Values }]

Overview
Create User Defined Graphics for a Toshiba T6963 graphic LCD.

Parameters
Character can be a constant, variable, or expression, that contains the character to define.
User defined characters start from 160 to 255.
Value\s is a list of constants, variables, or expressions, that contain the information to build the
User Defined character. There are also some modifiers that can be used in order to access
UDG data from various tables.

Example
' Toshiba T6963C UDG (User Defined Graphics) demo
'
 Device = 24FJ64GA002
 Declare Xtal = 16
'
' Toshiba T6963C graphic LCD Pin configuration
'
 Declare LCD_Type = Toshiba ' LCD's type is Toshiba T6963C
 Declare LCD_DTPort = PORTB.Byte0 ' The LCD's 8-bit Data port
 Declare LCD_WRPin = PORTB.12 ' The LCD's WR pin
 Declare LCD_RDPin = PORTB.11 ' The LCD's RD pin
 Declare LCD_CEPin = PORTB.10 ' The LCD's CE pin
 Declare LCD_CDPin = PORTB.8 ' The LCD's CD pin
 Declare LCD_RSTPin = PORTB.9 ' The LCD's RST pin (optional)
'
' Toshiba T6963C graphic LCD setup configuration
'
 Declare LCD_Font_Width = 8 ' The font width (6 or 8)
 Declare LCD_X_Res = 128 ' The X resolution of the LCD
 Declare LCD_Y_Res = 64 ' The Y resolution of the LCD
 Declare LCD_Text_Home_Address = 0 ' The home address of the LCD
 Declare LCD_RAM_Size = 8192 ' The amount of RAM the LCD contains
 Declare LCD_Text_Pages = 2 ' The amount of text pages required

 Include "T6963C.inc" ' Load the Toshiba T6963C routines into the program

'--
Main:
 Dim UDG_Array[10] As Byte = $18, $18, $99, $DB, $7E, $3C, $18, $18
 Dim UDG_Code As Code = $30, $18, $0C, $FF, $FF, $0C, $18, $30

 Cls Text ' Clear Text RAM
'
' Print the user defined graphic characters 160, 161 and 162 on the LCD
'
 Print At 1,0,"Char 160 = ",160,_
 At 2,0,"Char 161 = ",161,_
 At 3,0,"Char 162 = ",162

Proton24 Compiler. Development Suite.

 399

'
' Create the UDG (User Defined Graphics) for three characters
'
 Toshiba_Udg 160,[UDG_Code\8]
 Toshiba_Udg 161,[Str UDG_Array\8]
 Toshiba_Udg 162,[$0C, $18, $30, $FF, $FF, $30, $18, $0C]

Notes.
User Defined Graphic values can be stored in code memory, and retrieved by the use of a label
name associated with the Dim as Code table:

Dim UDG_2 as Code = $30, $18, $0C, $FF, $FF, $0C, $18, $30

 Toshiba_UDG 161, [UDG_2\8]

The use of the Str modifier will retrieve values stored in an array, however, this is not recom-
mended as it will waste precious RAM.

The Toshiba LCD’s font is designed in an 8x8 grid or a 6x8 grid depending on the font size
chosen. The diagram below shows a designed character and its associated values.

See also : LCDRead, LCDWrite, Pixel, Plot, Toshiba_Command, UnPlot.

msb
%00000000 = $18

lsb

6 x 8 Font

%00011000 = $18
%00111100 = $3C
%01111110 = $7E
%11011011 = $DB
%10011001 = $99
%00011000 = $18
%00000000 = $18

8 x 8 Font

Proton24 Compiler. Development Suite.

 400

UnPlot

Syntax
UnPlot Ypos, Xpos

Overview
Clear an individual pixel on a graphic LCD.

Parameters
Xpos can be a constant, variable, or expression, pointing to the X-axis location of the pixel to
clear. This must be a value of 0 to the X resolution of the LCD. Where 0 is the far left row of pix-
els.
Ypos can be a constant, variable, or expression, pointing to the Y-axis location of the pixel to
clear. This must be a value of 0 to the Y resolution of the LCD. Where 0 is the top column of
pixels.

Example
 Device = 24HJ128GP502
 Declare Xtal = 16
'
' KS0108 graphic LCD declares
'
 Declare LCD_Type = KS0108 ' Setup for a KS0108 graphic LCD
 Declare LCD_DTPort = PORTB.Byte0
 Declare LCD_CS1Pin = PORTB.8
 Declare LCD_CS2Pin = PORTB.9
 Declare LCD_ENPin = PORTB.10
 Declare LCD_RSPin = PORTB.11
 Declare LCD_RWPin = PORTB.12

 Dim Xpos as Byte

 Cls ' Clear the LCD
'
' Draw a line across the LCD
'
 While ' Create an infinite loop

For Xpos = 0 to 127
 Plot 20, Xpos
 DelayMs 10
 Next

'
' Now erase the line
'

 For Xpos = 0 to 127
 UnPlot 20, Xpos
 DelayMs 10
 Next

Wend

See also : LCDRead, LCDWrite, Pixel, Plot. See Print for circuit.

Proton24 Compiler. Development Suite.

 401

Val

Syntax
Assignment Variable = Val (Array Variable, Modifier)

Overview
Convert a Byte Array or String containing Decimal, Hex, or Binary numeric text into its integer
equivalent.

Parameters
Array Variable is a byte array or string containing the alphanumeric digits to convert and termi-
nated by a null (i.e. value 0).
Modifier can be Hex, Dec, or Bin. To convert a Hex string, use the Hex modifier, for Binary,
use the Bin modifier, for Decimal use the Dec modifier.
Assignment Variable is a variable that will contain the converted value. Floating point charac-
ters and variables cannot be converted, and will be rounded down to the nearest integer value.

Example 1
' Convert a string of hexadecimal characters to an integer
 Device = 24HJ128GP502
 Declare Xtal = 16
 Dim String1 as String * 10 ' Create a String
 Dim MyWord as Word ' Create a variable to hold result
 DelayMs 100 ' Wait for things to stabilise
 Cls ' Clear the LCD
 String1 = "12AF" ' Load the String with Hex ASCII
 MyWord = Val(String1,Hex) ' Convert the String into an integer
 Print Hex MyWord ' Display the integer as Hex

Example 2
' Convert a string of decimal characters to an integer
 Device = 24HJ128GP502
 Declare Xtal = 16
 Dim String1 as String * 10 ' Create a String
 Dim MyWord as Word ' Create a variable to hold result
 DelayMs 100 ' Wait for things to stabilise
 Cls ' Clear the LCD
 String1 = "1234" ' Load the String with Decimal ASCII
 MyWord = Val(String1,Dec) ' Convert the String into an integer
 Print Dec MyWord ' Display the integer as Decimal

Example 3
' Convert a string of binary characters to an integer
 Device = 24HJ128GP502
 Declare Xtal = 16
 Dim String1 as String * 17 ' Create a String
 Dim MyWord as Word ' Create a variable to hold result
 DelayMs 100 ' Wait for things to stabilise
 Cls ' Clear the LCD
 String1 = "1010101010000000" ' Load the String with Binary ASCII
 MyWord = Val(String1,Bin) ' Convert the String into an integer
 Print Bin MyWord ' Display the integer as Binary

Proton24 Compiler. Development Suite.

 402

Notes.
The Val command is not recommended inside an expression, as the results are not predictable.
However, the Val command can be used within an If-Then, While-Wend, or Repeat-Until con-
struct, but the code produced is not as efficient as using it outside a construct, because the
compiler must assume a worst case scenario, and use Dword comparisons.

 Device = 24HJ128GP502
 Declare Xtal = 16

 Dim String1 as String * 10 ' Create a String
 DelayMs 100 ' Wait for things to stabilise
 Cls ' Clear the LCD
 String1 = "123" ' Load the String with Decimal ASCII
 If Val(String1,Hex) = 123 Then ' Compare the result
 Print At 1,1,Dec Val (String1,Hex)
 Else
 Print At 1,1,"Not Equal"
 EndIf

See also: Str, Strn, Str$.

Proton24 Compiler. Development Suite.

 403

AddressOf

Syntax
Assignment Variable = AddressOf (Variable or Label)

Overview
Returns the address of a variable in RAM, or a label in code memory. Commonly known as a
pointer.

Parameters
Assignment Variable can be any of the compiler's variable types, and will receive the vari-
able's or label's address.
Variable or Label can be any variable type used in the BASIC program, or it can be a label
name, in which case, it will return the code memory address.

Proton24 Compiler. Development Suite.

 404

While...Wend

Syntax
While Condition
Instructions
Instructions
Wend

or

While Condition { Instructions } : Wend

or

While
Instructions
Instructions
Wend

Overview
Execute a block of instructions while a condition is true, unless no condition is placed after
While, in which case and infinite loop will be created.

Example

MyVar = 1
 While MyVar <= 10
 Print Dec MyVar, " "
 MyVar = MyVar + 1
 Wend

or

 While PORTA.0 = 1 : Wend ' Wait for a change on the Port

or

MyVar = 1
 While
 Print at 1,1, Dec MyVar, " "
 MyVar = MyVar + 1
 Wend

Notes.
While-Wend, repeatedly executes Instructions While Condition is true. When the Condition is
no longer true, execution continues at the statement following the Wend. Condition may be any
comparison expression. If not condition is placed after While, an infinite loop will be created. A
no condition While-Wend is only valid when both are on a separate line.

See also : If-Then, Repeat-Until, For-Next.

Proton24 Compiler. Development Suite.

 405

Using the Preprocessor
A preprocessor directive is a non executable statement that informs the compiler how to com-
pile. For example, some microcontroller have certain hardware features that others don’t. A pre-
processor directive can be used to inform the compiler to add or remove source code, based on
that particular devices ability to support that hardware.

It’s important to note that the preprocessor works with directives on a line by line basis. It is
therefore important to ensure that each directive is on a line of its own. Don’t place directives
and source code on the same line.

It’s also important not to mistake the compiler’s preprocessor with the assembler’s preproces-
sor. Any directive that starts with a dollar “$” is the compiler’s preprocessor, and any directive
that starts with a hash “#” is the assembler’s preprocessor. They cannot be mixed, as each has
no knowledge of the other.

Preprocessor directives can be nested in the same way as source code statements. For exam-
ple:

$ifdef MyValue
 $if MyValue = 10
 Symbol CodeConst = 10
 $else
 Symbol CodeConst = 0
 $endif
$endif

Preprocessor directives are lines included in the code of the program that are not BASIC lan-
guage statements but directives for the preprocessor itself. The preprocessor is actually a
separate entity to the compiler, and, as the name suggests, pre-processes the BASIC code be-
fore the actual compiler sees it. Preprocessor directives are always preceded by a dollar sign
“$”.

Preprocessor Directives
To define preprocessor macros the directive $define is used. Its format is:-

$define identifier replacement

When the preprocessor encounters this directive, it replaces any occurrence of identifier in the
rest of the code by replacement. This replacement can be an expression, a statement, a block,
or simply anything. The preprocessor does not understand BASIC, it simply replaces any occur-
rence of identifier by replacement.

$define TableSize 100
Dim Table1[TableSize] as Byte
Dim Table2[TableSize] as Byte

After the preprocessor has replaced TableSize, the code becomes equivalent to:-

Dim Table1[100] as Byte
Dim Table2[100] as Byte

Proton24 Compiler. Development Suite.

 406

The use of $define as a constant definer is only one aspect of the preprocessor, and $define
can also work with parameters to define pseudo function macros. The syntax then is:-

$define identifier (parameter list) replacement

A simple example of a function-like macro is:-

$define RadToDeg(x) ((x) * 57.29578)

This defines a radians to degrees conversion which can be used as:-

Var1 = RadToDeg(34)

This is expanded in-place, so the caller does not need to clutter copies of the multiplication
constant throughout the code.

Precedence
Note that the example macro RadToDeg(x) given above uses normally unnecessary parenthe-
ses both around the argument and around the entire expression. Omitting either of these can
lead to unexpected results. For example:-

Macro defined as:

$define RadToDeg(x) (x * 57.29578)
will expand

RadToDeg(a + b)
to

(a + b * 57.29578)

Macro defined as

$define RadToDeg(x) (x) * 57.29578
will expand

1 / RadToDeg(a)
to

1 / (a) * 57.29578

neither of which give the intended result.

Not all replacement tokens can be passed back to an assignment using the equals operator. If
this is the case, the code needs to be similar to BASIC Stamp syntax, where the assignment
variable is the last parameter:-

 $define GetMax(x,y,z) If x > y Then z = x : Else : z = y

This would replace any occurrence of GetMax followed by three parameter (argument) by the
replacement expression, but also replacing each parameter by its identifier, exactly as would be
expected of a function.

Dim Var1 as Byte
Dim Var2 as Byte
Dim Var3 as Byte

Var1 = 100
Var2 = 99
GetMax(Var1, Var2, Var3)

Proton24 Compiler. Development Suite.

 407

The previous would be placed within the BASIC program as:-

Dim Var1 as Byte
Dim Var2 as Byte
Dim Var3 as Byte

Var1 = 100
Var2 = 99
If Var1 > Var2 Then Var3 = Var1 : Else : Var3 = Var2

Notice that the third parameter “Var3” is loaded with the result.

A macro lasts until it is undefined with the $undef preprocessor directive:-

$define TableSize 100
Dim Table1[TableSize] as Byte
$undef TableSize
$define TableSize 200
Dim Table2[TableSize] as Byte

This would generate the same code as:-

Dim Table1[100] as Byte
Dim Table2[200] as Byte

Because preprocessor replacements happen before any BASIC syntax check, macro defini-
tions can be a tricky feature, so be careful. Code that relies heavily on complicated macros may
be difficult to understand, since the syntax they expect is, on many occasions, different from the
regular expressions programmers expect in Proton24 BASIC.

Preprocessor directives only extend across a single line of code. As soon as a newline charac-
ter is found (end of line), the preprocessor directive is considered to end. The only way a pre-
processor directive can extend through more than one line is by preceding the newline charac-
ter at the end of the line by a comment character (‘) followed by a new line. No comment text
can follow the comment character. For example:-

$define GetMax(x,y,z) '
 If x > y Then '

 z = x '
 Else '
 z = y '
 EndIf

GetMax(Var1, Var2, Var3)

The compiler will see:-

If Var1 > Var2 Then
Var3 = Var1

Else
Var3 = Var2

EndIf

Note that parenthesis is always required around the $define declaration and its use within the
program.

Proton24 Compiler. Development Suite.

 408

If the replacement argument is not included within the $define directive, the identifier argument
will output nothing. However, it can be used as an identifier for conditional code:-

$define DoThis

$ifdef DoThis
{Rest of Code here}

$endif

$undef identifier
This removes any existing definition of the user macro identifier.

$eval expression
In normal operation, the $define directive simply replaces text, however, using the $eval direc-
tive allows constant value expressions to be evaluated before replacement within the BASIC
code. For example:-

$define Expression(Prm1) $eval (Prm1 << 1)

The above will evaluate the constant parameter Prm1, shifting it left one position.

Var1 = Expression(1)

Will be added to the BASIC code as:-

Var1 = 2

Because 1 shifted left one position is 2.

Several operands are available for use with an expression. These are +, -, *, -, ~, <<, >>, =, >,
<, >=, <=, <>, And, Or, Xor.

Conditional Directives ($ifdef, $ifndef, $if, $endif, $else and $elseif)
Conditional directives allow parts of the code to be included or discarded if a certain condition is
met.

$ifdef allows a section of a program to be compiled only if the macro that is specified as the pa-
rameter has been defined, no matter what its value is. For example:-

$ifdef TableSize
Dim Table[TableSize] as Byte

$endif

In the above condition, the line of code Dim Table[TableSize] as Byte is only compiled if Table-
Size was previously defined with $define, independent of its value. If it was not defined, the line
will not be included in the program compilation.

$ifndef serves for the exact opposite of $ifdef. The code between $ifndef and $endif direc-
tives is only compiled if the specified identifier has not been previously defined. For example:-

$ifndef TableSize
$define TableSize 100

$endif
Dim Table[TableSize] as Byte

Proton24 Compiler. Development Suite.

 409

In the previous code, when arriving at this piece of code, the TableSize directive has not been
defined yet. If it already existed it would keep its previous value since the $define directive
would not be executed.

A valuable use for $ifdef is that of a code guard with include files. This allows multiple inser-
tions of a file, but only the first will be used.

A typical code guard looks like:

$ifndef Unique Name
$define Unique Name
{ BASIC Code goes Here }

$endif

The logic of the above snippet is that if the include file has not previously been loaded into the
program, the $define Unique Name will not have been created, thus allowing the inclusion of
the code between $ifndef and $endif. However, if the include file has been previously loaded,
the $define will have already been created, and the condition will be false, thus not allowing the
code to be used.

Unique Name must be unique to each file. Therefore, it is recommended that a derivative of
the include file’s name is used.

$if expression
This directive invokes the arithmetic evaluator and compares the result in order to begin a con-
ditional block. In particular, note that the logical value of expression is always true when it can-
not be evaluated to a number.

The $if directive as well as the $elseif directive can use quite complex logic. For example:-

$if _device = _24FJ64GA002 or _device = _24FJ128GA002 and _core = 24
{ BASIC Code Here }

$endif

There are several built in user defines that will help separate blocks of code. These are:-

• _device. This holds the device name, as a string. i.e. _24FJ64GA002 etc.
• _type. This hold the type of PIC24. E, F or H or dsPIC33. F or E:
 For PIC24E, _type will hold the ASCII string _PIC24E
 For PIC24F, _type will hold the ASCII string _PIC24F
 For PIC24H, _type will hold the ASCII string _PIC24H
 For dsPIC33E, _type will hold the ASCII string _DSPIC33E
 For dsPIC33F, _type will hold the ASCII string _DSPIC33F
• _core. This holds the device’s core. i.e. 24 or 33
• _ram. This holds the amount of RAM contained in the device (in bytes).
• _code. This holds the amount of flash memory in the device. In bytes.
• _eeprom. This holds the amount of eeprom memory the device contains.
• _ports. This holds the amount of I/O ports that the device has.
• _adc. This holds the amount of ADC channels the device has.
• _usart. This holds the amount of USARTS the device has. i.e. 0, 1, 2, 3, or 4

The values for the user defines are taken from the compiler’s .def files, and are only avail-
able if the compiler’s Device directive is included within the BASIC program.

Proton24 Compiler. Development Suite.

 410

Also within the compiler's .def files are all the device's SFRs (Special Function Registers)
and SFR bit names. The SFR names are preceded by an underscore so they do not clash
with the assembler's SFR names. For example:

WREG0 is _WREG0
WREG12 is _WREG12

The SFR names are useful for compiling a piece of code only if that particular SFR is pre-
sent in the device being used:

$ifdef _T1CON

{ BASIC Code Here }
$endif

The SFR bit names are extremely useful within the BASIC program because they circum-
vent any differences in the device's makeup. For example, in order to access a devices
Carry flag, use: SRbits_C

All the bitnames follow the same rule, where the SFR name is first, followed by the text
"bits_", followed by the bit name. Below are a few examples:

T1CONbits_TCS
T1CONbits_TSYNC
T1CONbits_TGATE
T1CONbits_TSIDL
T1CONbits_TON
T1CONbits_TCKPS0
T1CONbits_TCKPS1

$else
This toggles the logical value of the current conditional block. What follows is evaluated if the
preceding condition was not met.

$endif
This ends a conditional block started by the $if, $ifdef or $ifndef directives.

$elseif expression
This directive can be used to avoid nested $if conditions. $if..$elseif..$endif is equivalent to
$if..$else $if ..$endif $endif.

Proton24 Compiler. Development Suite.

 411

The $if, $else and $elseif directives serve to specify some condition to be met in order for the
portion of code they surround to be compiled. The condition that follows $if or $elseif can only
evaluate constant expressions, including macro expressions. For example:-

$if TableSize > 200
$undef TableSize
$define TableSize 200

$elseif TableSize < 50

$undef TableSize
$define TableSize 50

$else

$undef TableSize
$define TableSize 100

$endif

Dim Table[TableSize] as Byte

Notice how the whole structure of $if, $elseif and $else chained directives ends with $endif.

The behaviour of $ifdef and $ifndef can also be achieved by using the special built-in user di-
rective _defined and ! _defined respectively, in any $if or $elseif condition. These allow more
flexibility than $ifdef and $ifndef. For example:-

$if _defined (MyDefine) and _defined (AnotherDefine)
{ BASIC Code Here }

$endif

The argument for the _defined user directive must be surrounded by parenthesis. The preced-
ing character “!” means “not”.

$error message
This directive causes an error message with the current filename and line number. Subsequent
processing of the code is then aborted.

$error Error Message Here

Proton24 Compiler. Development Suite.

 412

Proton IDE Overview
The Proton IDE is a professional and powerful Integrated Development Environment (IDE) de-
signed specifically for the Proton24 compiler. It is designed to accelerate product development
in a comfortable user friendly environment without compromising performance, flexibility or con-
trol.

Code Explorer
Allows quick navigation through the program code and device SFRs (Special Function Regis-
ters) .

Compiler Results
Provides information about the device used, the amount of code and data used, the version
number of the project and also date and time. You can also use the results window to jump to
compilation errors.

Programmer Integration
The IDE enables you to start your preferred programming software from within the development
environment . This enables you to compile and then program your microcontroller with just a
few mouse clicks (or keyboard strokes, if you prefer).

Serial Communicator
A simple to use utility which enables you to transmit and receive data via a serial cable con-
nected to your PC and development board. The easy to use configuration window allows you to
select port number, Baud rate, parity, byte size and number of stop bits. Alternatively, you can
use Serial Communicator favourites to quickly load pre-configured connection settings.

Plugin Architecture
The Proton IDE has been designed with flexibility in mind with support for IDE plugins.

Supported Operating Systems
Windows XP, Windows 7, Windows 8 , Windows 10 (32-bit or 64-bit)

Hardware Requirements
At least a 1 GHz Processor
At least 1 GB of RAM
At least 40 GB of hard drive space for the O/S and applications etc.

Proton24 Compiler. Development Suite.

 413

Menu Bar
File Menu

• New - Creates a new document. A header is automatically generated, showing informa-
tion such as author, copyright and date. To toggle this feature on or off, or edit the
header properties, you should select editor options.

• Open - Displays a open dialog box, enabling you to load a document into the Proton

IDE. If the document is already open, then the document is made the active editor page.

• Save - Saves a document to disk. This button is normally disabled unless the document
has been changed. If the document is 'untitled', a save as dialog is invoked. A save as
dialog is also invoked if the document you are trying to save is marked as read only.

• Save As - Displays a save as dialog, enabling you to name and save a document to

disk.
•

Close - Closes the currently active document.

• Close All - Closes all editor documents and then creates a new editor document.

• Reopen - Displays a list of Most Recently Used (MRU) documents.

• Print Setup - Displays a print setup dialog.

• Print Preview - Displays a print preview window.

• Print - Prints the currently active editor page.

• Exit - Enables you to exit the Proton IDE.

Edit Menu

• Undo - Cancels any changes made to the currently active document page.

• Redo - Reverse an undo command.

• Cut - Cuts any selected text from the active document page and places it into the clip-
board. This option is disabled if no text has been selected. Clipboard data is placed as
both plain text and RTF.

• Copy - Copies any selected text from the active document page and places it into the

clipboard. This option is disabled if no text has been selected. Clipboard data is placed
as both plain text and RTF.

• Paste - Paste the contents of the clipboard into the active document page. This option is

disabled if the clipboard does not contain any suitable text.

• Delete - Deletes any selected text. This option is disabled if no text has been selected.

• Select All - Selects the entire text in the active document page.

• Change Case - Allows you to change the case of a selected block of text.

Proton24 Compiler. Development Suite.

 414

• Find - Displays a find dialog.

• Replace - Displays a find and replace dialog.

• Find Next - Automatically searches for the next occurrence of a word. If no search word

has been selected, then the word at the current cursor position is used. You can also se-
lect a whole phrase to be used as a search term. If the editor is still unable to identify a
search word, a find dialog is displayed.

View Menu

• Results - Display or hide the results window.

• Code Explorer - Display or hide the code explorer window.

• Loader - Displays the MicroCode Loader application.

• Loader Options - Displays the MicroCode Loader options dialog.

• Compile and Program Options - Displays the compile and program options dialog.

• Editor Options - Displays the application editor options dialog.

• Toolbars - Display or hide the main, edit and compile and program toolbars. You can
also toggle the toolbar icon size.

• Plugin - Display a drop down list of available IDE plugins.

• Online Updates - Executes the IDE online update process, which checks online and in-

stalls the latest IDE updates.

Help Menu

• Help Topics - Displays the help file section for the toolbar.

• Online Forum - Opens your default web browser and connects to the online Proton24
Plus developer forum.

• About - Display about dialog, giving both the Proton IDE and Proton24 compiler version

numbers.

Main Toolbar

New
Creates a new document. A header is automatically generated, showing information such as
author, copyright and date. To toggle this feature on or off, or edit the header properties, you
should select the editor options dialog from the main menu.

Open
Displays a open dialog box, enabling you to load a document into the Proton IDE. If the docu-
ment is already open, then the document is made the active editor page.

Proton24 Compiler. Development Suite.

 415

Save
Saves a document to disk. This button is normally disabled unless the document has been
changed. If the document is 'untitled', a save as dialog is invoked. A save as dialog is also in-
voked if the document you are trying to save is marked as read only.

Cut
Cuts any selected text from the active document page and places it into the clipboard. This op-
tion is disabled if no text has been selected. Clipboard data is placed as both plain text and
RTF.

Copy
Copies any selected text from the active document page and places it into the clipboard. This
option is disabled if no text has been selected. Clipboard data is placed as both plain text and
RTF.

Paste
Paste the contents of the clipboard into the active document page. This option is disabled if the
clipboard does not contain any suitable text.

Undo
Cancels any changes made to the currently active document page.

Redo
Reverse an undo command.

Print
Prints the currently active editor page.

Edit Toolbar

Find
Displays a find dialog.

Find and Replace
Displays a find and replace dialog.

Indent
Shifts all selected lines to the next tab stop. If multiple lines are not selected, a single line is
moved from the current cursor position. All lines in the selection (or cursor position) are moved
the same number of spaces to retain the same relative indentation within the selected block.
You can change the tab width from the editor options dialog.

Outdent
Shifts all selected lines to the previous tab stop. If multiple lines are not selected, a single line is
moved from the current cursor position. All lines in the selection (or cursor position) are moved
the same number of spaces to retain the same relative indentation within the selected block.
You can change the tab width from the editor options dialog.

Proton24 Compiler. Development Suite.

 416

Block Comment
Adds the comment character to each line of a selected block of text. If multiple lines are not se-
lected, a single comment is added to the start of the line containing the cursor.

Block Uncomment
Removes the comment character from each line of a selected block of text. If multiple lines are
not selected, a single comment is removed from the start of the line containing the cursor.

Compile and Program Toolbar

Compile
Pressing this button, or F9, will compile the currently active editor page. The compile button will
generate a *.hex file, which you then have to manually program into your microcontroller.
Pressing the compile button will automatically save all open files to disk. This is to ensure that
the compiler is passed an up to date copy of the file(s) your are editing.

Compile and Program
Pressing this button, or F10, will compile the currently active editor page. Pressing the compile
and program button will automatically save all open files to disk. This is to ensure that the com-
piler is passed an up to date copy of the file(s) your are editing.

Unlike the compile button, the Proton IDE will then automatically invoke a user selectable appli-
cation and pass the compiler output to it. The target application is normally a device program-
mer. This enables you to program the generated *.hex file into the microcontroller. Alternatively,
the compiler output can be sent to an IDE Plugin. You can select a different programmer or
Plugin by pressing the small down arrow, located to the right of the compile and program but-
ton...

In the above example, melab’s USB programmer has been selected as the default device pro-
grammer. The compile and program drop down menu also enables you to install new pro-
gramming software. Just select the 'Install New Programmer...' option to invoke the
programmer configuration wizard. Once a program has been compiled, you can use F11 to
automatically start your programming software or plugin. You do not have to re-compile, unless
of course your program has been changed.

Proton24 Compiler. Development Suite.

 417

Code Explorer
The code explorer enables you to easily navigate your program code. The code explorer tree
displays your currently selected processor, include files, declares, constants, variables, alias
and modifiers, labels, macros and data labels.

Device Node
The device node is the first node in the explorer tree. It displays your currently selected proces-
sor type. For example, if you program has the declaration: -

Device = 24HJ128GP502

then the name of the device node will be 24HJ128GP502. You don't need to explicitly give the
device name in your program for it to be displayed in the explorer. For example, you may have
an include file with the device type already declared. The code explorer looks at all include files
to determine the device type. The last device declaration encountered is the one used in the
explorer window. If you expand the device node, then all Special Function Registers (SFRs) be-
longing to the selected device are displayed in the explorer tree.

Include File Node
When you click on an include file, the IDE will automatically open that file for viewing and edit-
ing. Alternatively, you can just explorer the contents of the include file without having to open it.
To do this, just click on the icon and expand the node. For example: -

In the above example, clicking on the icon for MyInclude.inc has expanded the node to reveal
its contents. It can now be see that MyInclude.inc has two constant declarations called cTrans-
ferMax and cTransferMin and also two variables called wIndex and wTransfer. The include file
also contains another include file called Traps.inc. Again, by clicking the icon, the contents of
the Traps.inc file can be seen, without opening the file itself. Clicking on a declaration name will
open the include file and automatically jump to the line number. For example, if you were to
click on cTransferMax, the include file MyInclude.inc would be opened and the declaration
cTransferMax would be marked in the IDE editor window.

Proton24 Compiler. Development Suite.

 418

When using the code explorer with include files, you can use the explorer history buttons to go
backwards or forwards. The explorer history buttons are normally located to the left of the main
editors file select tabs,

 History back button
 History forward button

Additional Nodes
Declares, constants, variables, alias and modifiers, labels, macros and data label explorer
nodes work in much the same way. Clicking on any of these nodes will take you to its declara-
tion. If you want to find the next occurrence of a declaration, you should enable automatically
select variable on code explorer click from View...Editor Options.

Selecting this option will load the search name into the 'find dialog' search buffer. You then just
need to press F3 to search for the next occurrence of the declaration in your program.
To sort the explorer nodes, right click on the code explorer and check the Sort Nodes option.

Results View
The results view performs two main tasks. These are (a) display a list of error messages,
should either compilation or assembly fail and (b) provide a summary on compilation success.

Compilation Success View
By default, a successful compile will display the results success view. This provides information
about the device used, the amount of code and RAM used, the version number of the project
and also date and time. Note that RAM usage also includes the microcontroller’s stack size.

If you don't want to see full summary information after a successful compile, select View...Editor
Options from the IDE main menu and uncheck display full summary after successful compile.
The number of program bytes and the number of data bytes used will still be displayed in the
IDE status bar.

Version Numbers
The version number is automatically incremented after a successful build. Version numbers are
displayed as major, minor, release and build. Each number will rollover if it reaches 256. For
example, if your version number is 1.0.0.255 and you compile again, the number displayed will
be 1.0.1.0. You might want to start you version information at a particular number. For example
1.0.0.0. To do this, click on the version number in the results window to invoke the version in-
formation dialog. You can then set the version number to any start value. Automatic increment-
ing will then start from the number you have specified. To disable version numbering, click on
the version number in the results window to invoke the version information dialog and then un-
check enable version information.

Proton24 Compiler. Development Suite.

 419

Date and Time
Date and time information is extracted from the generated *.hex file and is always displayed in
the results view.

Success - With Warnings!
A compile is considered successful if it generates a *.hex file. However, you may have gener-
ated a number of warning or reminder messages during compilation. Because you should not
normally ignore warning messages, the IDE will always display the error view, rather than the
success view, if warnings have been generated.

To toggle between these different views, you can do one of the following click anywhere on the
IDE status bar right click on the results window and select the Toggle View option.

Compilation Error View
If your program generates warning or error messages, the error view is always displayed.

Clicking on each error or warning message will automatically highlight the offending line in the
main editor window. If the error or warning has occurred in an include file, the file will be
opened and the line highlighted. By default, the IDE will automatically highlight the first error
line found. To disable this feature, select View...Editor Options from the IDE main menu and
uncheck automatically jump to first compilation error. At the time of writing, some compiler er-
rors do not have line numbers bound to them. Under these circumstances, the Proton IDE will
be unable to automatically jump to the selected line.

Occasionally, the compiler will generate a valid Asm file but warnings or errors are generated
during assembly. The IDE will display all assembler warnings or error messages in the error
view, but you will be unable to automatically jump to a selected line.

Proton24 Compiler. Development Suite.

 420

Editor Options
The editor options dialog enables you to configure and control many of the Proton IDE fea-
tures. The window is composed of four main areas, which are accessed by selecting the
General, Highlighter, Program Header and Online Updating tabs.

Show Line Numbers in Left Gutter
Display line numbers in the editors left hand side gutter. If enabled, the gutter width is in-
creased in size to accommodate a five digit line number.

Show Right Gutter
Displays a line to the right of the main editor. You can also set the distance from the left margin
(in characters). This feature can be useful for aligning your program comments.

Use Smart Tabs
Normally, pressing the tab key will advance the cursor by a set number of characters. With
smart tabs enabled, the cursor will move to a position along the current line which depends on
the text on the previous line. Can be useful for aligning code blocks.

Convert Tabs to Spaces
When the tab key is pressed, the editor will normally insert a tab control character, whose size
will depend on the value shown in the width edit box (the default is four spaces). If you then
press the backspace key, the whole tab is deleted (that is, the cursor will move back four
spaces). If convert tabs to spaces is enabled, the tab control character is replaced by the space
control character (multiplied by the number shown in the width edit box). Pressing the back-
space key will therefore only move the cursor back by one space. Please note that internally,
the editor does not use hard tabs, even if convert tabs to spaces is unchecked.

Automatically Indent
When the carriage return key is pressed in the editor window, automatically indent will advance
the cursor to a position just below the first word occurrence of the previous line. When this fea-
ture is unchecked, the cursor just moves to the beginning of the next line.

Show Parameter Hints
If this option is enabled, small prompts are displayed in the main editor window when a particu-
lar compiler keyword is recognised. For example,

Parameter hints are automatically hidden when the first parameter character is typed. To view
the hint again, press F1.

Open Last File(s) When Application Starts
When checked, the documents that were open when the Proton IDE was closed are automati-
cally loaded again when the application is restarted.

Display Full Filename Path in Application Title Bar
By default, The IDE only displays the document filename in the main application title bar (that
is, no path information is includes). Check display full pathname if you would like to display ad-
ditional path information in the main title bar.

Proton24 Compiler. Development Suite.

 421

Prompt if File Reload Needed
The IDE automatically checks to see if a file time stamp has changed. If it has (for example,
and external program has modified the source code) then a dialog box is displayed asking if the
file should be reloaded. If prompt on file reload is unchecked, the file is automatically reloaded
without any prompting.

Automatically Select Variable on Code Explorer Click
By default, clicking on a link in the code explorer window will take you to the part of your pro-
gram where a declaration has been made. Selecting this option will load the search name into
the 'find dialog' search buffer. You then just need to press F3 to search for the next occurrence
of the declaration in your program.

Automatically Jump to First Compilation Error
When this is enabled, The IDE will automatically jump to the first error line, assuming any errors
are generated during compilation.

Automatically Change Identifiers to Match Declaration
When checked, this option will automatically change the identifier being typed to match that of
the actual declaration. For example, if you have the following declaration,

 Dim MyIndex as Word

and you type 'myindex' in the editor window, The IDE will automatically change 'myindex' to
'MyIndex'. Identifiers are automatically changed to match the declaration even if the declaration
is made in an include file.

Please note that the actual text is not physically changed, it just changes the way it is displayed
in the editor window. For example, if you save the above example and load it into wordpad or
another text editor, it will still show as 'myindex'. If you print the document, the identifier will be
shown as 'MyIndex'. If you copy and paste into another document, the identifier will be shown
as 'MyIndex', if the target application supports formatted text (for example Microsoft Word).
In short, this feature is very useful for printing, copying and making you programs look consis-
tent throughout.

Clear Undo History After Successful Compile
If checked, a successful compilation will clear the undo history buffer. A history buffer takes up
system resources, especially if many documents are open at the same time. It's a good idea to
have this feature enabled if you plan to work on many documents at the same time.

Display Full Summary After Successful Compile
If checked, a successful compilation will display a full summary in the results window. Disabling
this option will still give a short summary in the IDE status bar, but the results window will not be
displayed.

Default Source Folder
The IDE will automatically go to this folder when you invoke the file open or save as dialogs. To
disable this feature, uncheck the 'Enabled' option, shown directly below the default source
folder.

Proton24 Compiler. Development Suite.

 422

Highlighter Options

Item Properties
The syntax highlighter tab lets you change the colour and attributes (for example, bold and
italic) of the following items: -

Comment
Device Name
Identifier
Keyword (Asm)
Keyword (Declare)
Keyword (Important)
Keyword (Macro Parameter)
Keyword (Proton24)
Keyword (User)
Number
Number (Binary)
Number (Hex)
SFR
SFR (Bitname)
String
Symbol
Preprocessor

The point size is ranged between 6pt to 16pt and is global. That is, you cannot have different
point sizes for individual items.

Proton24 Compiler. Development Suite.

 423

Reserved Word Formatting
This option enables you to set how The IDE displays keywords. Options include: -

Database Default - the IDE will display the keyword as declared in the applications keyword
database.

Uppercase - the IDE will display the keyword in uppercase.

Lowercase - the IDE will display the keyword in lowercase.

As Typed - the IDE will display the keyword as you have typed it.

Please note that the actual keyword text is not physically changed, it just changes the way it is
displayed in the editor window. For example, if you save your document and load it into word-
pad or another text editor, the keyword text will be displayed as you typed it. If you print the
document, the keyword will be formatted. If you copy and paste into another document, the
keyword will be formatted, if the target application supports formatted text (for example Micro-
soft Word).

Header options allows you to change the author and copyright name that is placed in a header
when a new document is created. For example: -

'* Name : Untitled.bas *
'* Author : J.R Hartley *
'* Notice : Copyright (c) 2013 MyCompany *
'* : All Rights Reserved *
'* Date : 19/01/13 *
'* Version : 1.0 *
'* Notes : *
'* : *
'**

If you do not want to use this feature, simply deselect the enable check box.

Proton24 Compiler. Development Suite.

 424

Compile and Program Options

Compiler Tab

You can get the IDE to locate a compiler directory automatically by clicking on the find auto-
matically button. The auto-search feature will stop when a compiler is found.

Alternatively, you can select the directory manually by selecting the find manually button. The
auto-search feature will search for a compiler and if one is found, the search is stopped and the
path pointing to the compiler is updated. If you have multiple versions of a compiler installed on
your system, use the find manually button. This ensures the correct compiler is used by the
IDE.

Programmer Tab

Use the programmer tab to install a new programmer, delete a programmer entry or edit the
currently selected programmer. Pressing the Install New Programmer button will invoke the
install new programmer wizard. The Edit button will invoke the install new programmer wizard in
custom configuration mode.

Proton24 Compiler. Development Suite.

 425

Installing a Programmer
The IDE enables you to start your preferred programming software from within the development
environment . This enables you to compile and then program your microcontroller with just a
few mouse clicks (or keyboard strokes, if you prefer). The first thing you need to do is tell the
IDE which programmer you are using. Select View...Options from the main menu bar, then se-
lect the Programmer tab. Next, select the Add New Programmer button. This will open the in-
stall new programmer wizard.

Select the programmer you want the IDE to use, then choose the Next button. The IDE will now
search your computer until it locates the required executable. If your programmer is not in the
list, you will need to create a custom programmer entry.
Your programmer is now ready for use. When you press the Compile and Program button on
the main toolbar, you program is compiled and the programmer software started. The *.hex file-
name and target device is automatically set in the programming software (if this feature is sup-
ported), ready for you to program your microcontroller.

You can select a different programmer, or install another programmer, by pressing the small
down arrow, located to the right of the compile and program button, as shown below

Proton24 Compiler. Development Suite.

 426

Creating a custom Programmer Entry
In most cases, the IDE has a set of pre-configured programmers available for use. However, if
you use a programmer not included in this list, you will need to add a custom programmer en-
try. Select View...Options from the main menu bar, then select the Programmer tab. Next, se-
lect the Add New Programmer button. This will open the install new programmer wizard. You
then need to select 'create a custom programmer entry', as shown below

Select Display Name
The next screen asks you to enter the display name. This is the name that will be displayed in
any programmer related drop down boxes. The IDE enables you to add and configure multiple
programmers. You can easily switch from different types of programmer from the compile and
program button, located on the main editor toolbar. The multiple programmer feature means
you do not have to keep reconfiguring your system when you switch programmers. The IDE will
remember the settings for you. In the example below, the display name will be 'My New Pro-
grammer'.

Proton24 Compiler. Development Suite.

 427

Select Programmer Executable
The next screen asks for the programmer executable name. You do not have to give the full
path, just the name of the executable name will do.

Select Programmer Path
The next screen is the path to the programmer executable. You can let the IDE find it automati-
cally, or you can select it manually.

Select Parameters
The final screen is used to set the parameters that will be passed to your programmer. Some
programmers, for example, EPICWin™ allows you to pass the device name and hex filename.
The IDE enables you to 'bind' the currently selected device and *.hex file you are working on.

Proton24 Compiler. Development Suite.

 428

For example, if you are compiling 'blink.bas' in the IDE using a 24FJ64GA002, you would want
to pass the 'blink.hex' file to the programmer and also the name of the microcontroller you in-
tend to program. Here is the EPICWin™ example: -

-pPIC$target-device$ $hex-filename$

When EPICWin™ is started, the device name and hex filename are 'bound' to $target-device$
and $hex-filename$ respectively. In the 'blink.bas' example, the actual parameter passed to the
programmer would be: -

-p24FJ64GA002 blink.hex

Parameter Summary
Parameter Description
$target-device$ Microcontroller name
$hex-filename$ Hex filename and path, DOS 8.3 format
$long-hex-filename$ Hex filename and path
$asm-filename$ Asm filename and path, DOS 8.3 format
$long-asm-filename$ Asm filename and path

IDE Plugins
The Proton IDE has been designed with flexibility in mind. Plugins enable the functionality of
the IDE to be extended by through additional third party software, which can be integrated into
the development environment. Proton IDE comes with a default set of plugins which you can
use straight away. These are: -

ASCII Table
Assembler
Hex View
Serial Communicator
Labcenter Electronics Proteus VSM

To access a plugin, select the plugin icon just above the main editor window. A drop down list
of available plugins will then be displayed. Plugins can also be selected from the main menu, or
by right clicking on the main editor window.

Plugin Developer Notes
The plugin architecture has been designed to make writing third party plugins very easy, using
the development environment of your choice (for example Visual BASIC, C++ or Borland Del-
phi). This architecture is currently evolving and is therefore publicly undocumented until all of
the protocols have been finalised. As soon as the protocol details have been finalised, this
documentation will be made public. For more information, please feel free to contact us.

Proton24 Compiler. Development Suite.

 429

ASCII Table
The American Standard Code for Information Interchange (ASCII) is a set of numerical codes,
with each code representing a single character, for example, 'a' or '$'.

The ASCII table plugin enables you to view these codes in either decimal, hexadecimal or bi-
nary. The first 32 codes (0..31) are often referred to as non-printing characters, and are dis-
played as grey text.

Hex View
The Hex view plugin enables you to view program code and EEPROM data for 14 and 16 core
devices.

The Hex View window is automatically updated after a successful compile, or if you switch pro-
gram tabs in the IDE. By default, the Hex view window remains on top of the main IDE window.
To disable this feature, right click on the Hex View window and uncheck the Stay on Top op-
tion.

Proton24 Compiler. Development Suite.

 430

Assembler Window
The Assembler plugin allows you to view and modify the *.asm file generated by the compiler.
Using the Assembler window to modify the generated *.asm file is not really recommended,
unless you have some experience using assembler.

Assembler Menu Bar

File Menu
New - Creates a new document. A header is automatically generated, showing information
such as author, copyright and date.

• Open - Displays a open dialog box, enabling you to load a document into the Assembler
plugin. If the document is already open, then the document is made the active editor
page.

• Save - Saves a document to disk. This button is normally disabled unless the document

has been changed. If the document is 'untitled', a save as dialog is invoked. A save as
dialog is also invoked if the document you are trying to save is marked as read only.

• Save As - Displays a save as dialog, enabling you to name and save a document to

disk.

• Close - Closes the currently active document.

• Close All - Closes all editor documents and then creates a new editor document.

• Reopen - Displays a list of Most Recently Used (MRU) documents.

• Print Setup - Displays a print setup dialog.

• Print - Prints the currently active editor page.

• Exit - Enables you to exit the Assembler plugin.

Edit Menu

• Undo - Cancels any changes made to the currently active document page.

• Redo - Reverse an undo command.

• Cut - Cuts any selected text from the active document page and places it into the clip-
board.

• Copy - Copies any selected text from the active document page and places it into the

clipboard.

• Paste - Paste the contents of the clipboard into the active document page. This option is
disabled if the clipboard does not contain any suitable text.

• Delete - Deletes any selected text. This option is disabled if no text has been selected.

• Select All - Selects the entire text in the active document page.

Proton24 Compiler. Development Suite.

 431

• Find - Displays a find dialog.

• Replace - Displays a find and replace dialog.

• Find Next - Automatically searches for the next occurrence of a word. If no search word

has been selected, then the word at the current cursor position is used. You can also se-
lect a whole phrase to be used as a search term. If the editor is still unable to identify a
search word, a find dialog is displayed.

View Menu

• Options - Displays the application editor options dialog.

• Toolbars - Display or hide the main and assemble and program toolbars. You can also
toggle the toolbar icon size.

Help Menu

• Help Topics - Displays the IDE help file.

• About - Display about dialog, giving the Assembler plugin version number.

Assembler Main Toolbar

New
Creates a new document. A header is automatically generated, showing information such as
author, copyright and date.

Open
Displays a open dialog box, enabling you to load a document into the Assembler plugin. If the
document is already open, then the document is made the active editor page.

Save
Saves a document to disk. This button is normally disabled unless the document has been
changed. If the document is 'untitled', a save as dialog is invoked. A save as dialog is also in-
voked if the document you are trying to save is marked as read only.

Cut
Cuts any selected text from the active document page and places it into the clipboard. This op-
tion is disabled if no text has been selected.

Copy
Copies any selected text from the active document page and places it into the clipboard. This
option is disabled if no text has been selected.

Paste
Paste the contents of the clipboard into the active document page. This option is disabled if the
clipboard does not contain any suitable text.

Undo
Cancels any changes made to the currently active document page.

Proton24 Compiler. Development Suite.

 432

Redo
Reverse an undo command.

Assembler Editor Options

Show Line Numbers in Left Gutter
Display line numbers in the editors left hand side gutter. If enabled, the gutter width is in-
creased in size to accommodate a five digit line number.

Show Right Gutter
Displays a line to the right of the main editor. You can also set the distance from the left margin
(in characters). This feature can be useful for aligning your program comments.

Use Smart Tabs
Normally, pressing the tab key will advance the cursor by a set number of characters. With
smart tabs enabled, the cursor will move to a position along the current line which depends on
the text on the previous line. Can be useful for aligning code blocks.

Convert Tabs to Spaces
When the tab key is pressed, the editor will normally insert a tab control character, whose size
will depend on the value shown in the width edit box (the default is four spaces). If you then
press the backspace key, the whole tab is deleted (that is, the cursor will move back four
spaces). If convert tabs to spaces is enabled, the tab control character is replaced by the space
control character (multiplied by the number shown in the width edit box). Pressing the back-
space key will therefore only move the cursor back by one space. Please note that internally,
the editor does not use hard tabs, even if convert tabs to spaces is unchecked.

Automatically Indent
When the carriage return key is pressed in the editor window, automatically indent will advance
the cursor to a position just below the first word occurrence of the previous line. When this fea-
ture is unchecked, the cursor just moves to the beginning of the next line.

Open Last File(s) When Application Starts
When checked, the documents that were open when the Assembler plugin was closed are
automatically loaded again when the application is restarted.

Display Full Filename Path in Application Title Bar
By default, the Assembler plugin only displays the document filename in the main application
title bar (that is, no path information is included). Check display full pathname if you would like
to display additional path information in the main title bar.

Prompt if File Reload Needed
The Assembler plugin automatically checks to see if a file time stamp has changed. If it has (for
example, and external program has modified the source code) then a dialog box is displayed
asking if the file should be reloaded. If prompt on file reload is unchecked, the file is automati-
cally reloaded without any prompting.

Automatically Jump to First Compilation Error
When this is enabled, the Assembler plugin will automatically jump to the first error line, assum-
ing any errors are generated during compilation.

Proton24 Compiler. Development Suite.

 433

Clear Undo History After Successful Compile
If checked, a successful compilation will clear the undo history buffer. A history buffer takes up
system resources, especially if many documents are open at the same time. It's a good idea to
have this feature enabled if you plan to work on many documents at the same time.

Default Source Folder
The Assembler plugin will automatically go to this folder when you invoke the file open or save
as dialogs. To disable this feature, uncheck the 'Enabled' option, shown directly below the de-
fault source folder.

Serial Communicator
The Serial Communicator plugin is a simple to use utility which enables you to transmit and
receive data via a serial cable connected to your PC and development board. The easy to use
configuration window allows you to select port number, Baud rate, parity, byte size and number
of stop bits. Alternatively, you can use Serial Communicator favourites to quickly load pre-
configured connection settings.

Menu options

File Menu

• Clear - Clears the contents of either the transmit or receive window.

• Open - Displays a open dialog box, enabling you to load data into the transmit window.

• Save As - Displays a save as dialog, enabling you to name and save the contents of the
receive window.

• Exit - Enables you to exit the Serial Communicator software.

Edit Menu

• Undo - Cancels any changes made to either the transmit or receive window.

• Cut - Cuts any selected text from either the transmit or receive window.

• Copy - Copies any selected text from either the transmit or receive window.

• Paste - Paste the contents of the clipboard into either the transmit or receive window.
This option is disabled if the clipboard does not contain any suitable text.

• Delete - Deletes any selected text. This option is disabled if no text has been selected.

View Menu

• Configuration Window - Display or hide the configuration window.

• Toolbars - Display small or large toolbar icons.

Help Menu

• Help Topics - Displays the serial communicator help file.

• About - Display about dialog, giving software version information.

Proton24 Compiler. Development Suite.

 434

Serial Communicator Main Toolbar

Clear
Clears the contents of either the transmit or receive window.

Open
Displays a open dialog box, enabling you to load data into the transmit window.

Save As
Displays a save as dialog, enabling you to name and save the contents of the receive window.

Cut
Cuts any selected text from either the transmit or receive window.

Copy
Copies any selected text from either the transmit or receive window.

Paste
Paste the contents of the clipboard into either the transmit or receive window. This option is
disabled if the clipboard does not contain any suitable text.

Connect
Connects the Serial Communicator software to an available serial port. Before connecting, you
should ensure that your communication options have been configured correctly using the
configuration window.

Disconnect
Disconnect the Serial Communicator from a serial port.

Proton24 Compiler. Development Suite.

 435

Configuration
The configuration window is used to select the COM port you want to connect to and also set
the correct communications protocols.

Clicking on a configuration link will display a drop down menu, listing available options. A sum-
mary of selected options is shown below the configuration links. For example, in the image
above, summary information is displayed under the heading 19200 Configuration.

Favourites
Pressing the favourite icon will display a number of options allowing you to add, manage or
load configuration favourites.

Add to Favourites
Select this option if you wish to save your current configuration. You can give your configuration
a unique name, which will be displayed in the favourite drop down menu. For example, 9600
Configuration or 115200 Configuration

Manage Favourites
Select this option to remove a previously saved configuration favourite.

Notes.
After pressing the connect icon on the main toolbar, the configuration window is automatically
closed and opened again when disconnect is pressed. If you don't want the configuration win-
dow to automatically close, right click on the configuration window and un-check the Auto-Hide
option.

Proton24 Compiler. Development Suite.

 436

Transmit Window
The transmit window enables you to send serial data to an external device connected to a PC
serial port. In addition to textual data, the send window also enables you to send control char-
acters. To display a list of transmit options, right click on the transmit window.

Clear
Clear the contents of the transmit window.

Word Wrap
This option allows you to wrap the text displayed in the transmit window.

Auto Clear After Transmit
Enabling this option will automatically clear the contents of the transmit window when data is
sent.

Transmit on Carriage Return
This option will automatically transmit data when the carriage return key is pressed. If this op-
tion is disabled, you will need to manually press the send button or press F4 to transmit.

Line Terminator
You can append your data with a number of line terminations characters. These include CR,
CR and LF, LF and CR, null and No Terminator.

Parse Control Characters
When enabled, the parse control characters option enables you to send control characters in
your message, using either a decimal or hexadecimal notation. For example, if you want to
send hello world followed by a carriage return and line feed character, you would use hello
world#13#10 for decimal, or hello worldDA for hex. Only numbers in the range 0 to 255 will
be converted. For example, sending the message letter #9712345 will be interpreted as letter
a12345.

If the sequence of characters does not form a legal number, the sequence is interpreted as
normal characters. For example, hello world#here I am. If you don't want characters to be in-
terpreted as a control sequence, but rather send it as normal characters, then all you need to
do is use the tilde symbol (~). For example, letter ~#9712345 would be sent as letter
#9712345.

Proton24 Compiler. Development Suite.

 437

Receive Window
The receive window is used to capture data sent from an external device (for example, a PIC
MCU) to your PC. To display a list of transmit options, right click on the receive window.

Clear
Clear the contents of the receive window.

Word Wrap
When enabled, incoming data is automatically word wrapped.

Notes.
In order to advance the cursor to the next line in the receive window, you must transmit either a
CR ($D) or a CR LF pair ($D $A) from your external device.

Proton24 Compiler. Development Suite.

 438

Protected Proton24 Compiler Words

Below is a list of protected words that the compiler, assembler or linker uses internally. Be sure
not to use any of these words as variable or label names, otherwise errors will be produced.

(A)
Abs, Access_Upper_64K, Acos, AddressOf, ADC_Resolution, Adcin, Adin, Adin_Delay,
Adin_Res, Adin_Stime, Adin_Tad, Asin, Asm, Atan, Atan2, Available_RAM
(B)
Bin, Bin1, Bin10, Bin11, Bin12, Bin13, Bin14, Bin15, Bin16, Bin17, Bin18, Bin19, Bin2, Bin20,
Bin21, Bin22, Bin23, Bin24, Bin25, Bin26, Bin27, Bin28, Bin29, Bin3, Bin30, Bin31, Bin32, Bin4,
Bin5, Bin6, Bin7, Bin8, Bin9, Bit, Bn, Bnc, Bnn, Bnov, Bnz, Bootloader, Bov, Box, Bra, Branch,
Branchl, Break, Brestart, Bstart, Bstop, Bus_DelayMs, Bus_SCL, BusAck, Busin, Busout,
Button, Button_Delay, Byte, Byte_Math, Bz, Bit_Bit, Bit_Byte, Bit_Dword, Bit_Float, Bit_Word,
Bit_Wreg, Byte_Bit, Byte_Byte, Byte_Dword, Byte_Float, Byte_Word, Byte_Wreg
(C)
Call, Case, Cblock, CCP1_Pin, CCP2_Pin, CCP3_Pin, CCP4_Pin, CCP5_Pin, Cdata, Cerase,
Chr$, Circle, Clear, ClearBit, ClearPin, Cls, Code, Config, Constant, Continue, Core, Cos,
Count, Counter, CPtr8, CPtr16, CPtr32, CPtr64, Cread, Cread8, Cread16, Cread32, Cread64,
Cursor, Cwrite
(D)
Data, Dcd, Dead_Code_Remove, Dword_Bit, Dword_Byte, Dword_Dword, Dword_Float,
Dword_Word, Dword_Wreg, Debug_Req, Debugin, Dec, Dec, Dec1, Dec1, Dec10, Dec2,
Dec2, Dec3, Dec3, Dec4, Dec4, Dec5, Dec5, Dec6, Dec6, Dec7, Dec7, Dec8, Dec8, Dec9, De-
clare, Decrement, Define, Delayms, Delayus, DelayCs, Device, Dig, Dim, Djc, Djnc, Djnz, Djz,
Dt, DTMfout, Dw, Dword, Double, dSin, dCos, dTan, dExp, dLog, dLog10, dAtan, dAtan2,
dAsin, dAcos, dSqr, dAbs, Do
(E)
Edata, Eeprom_Size, Else, ElseIf, End, EndAsm, EndIf, EndM,
EndSelect, EndProc, Equ, Eread, Error, ErrorLevel, Ewrite, ExitM, Exp, Expand
(F)
Fill, Fix16_8Add, Fix16_8Div, Fix16_8Greater, Fix16_8GreaterEqual, Fix16_8Less,
Fix16_8LessEqual, Fix16_8Mul, Fix16_8Sub, Fix16_8ToFloat, Fix16_8ToInt, Fix8_8Add,
Fix8_8Div, Fix8_8Greater Fix8_8GreaterEqual, Fix8_8Less, Fix8_8LessEqual, Fix8_8Mul,
Fix8_8Sub, Fix8_8ToFloat, Fix8_8ToInt, Flash_Capable, Float, Float_Display_Type,
Float_Rounding, FloatToFix16_8, FloatToFix8_8, Font_Addr, For, Freqout, Float_Bit,
Float_Byte, Float_Dword, Float_Float, Float_Word, Float_Wreg, fAbs
(G)
GetBit, GetPin, GLCD_CS_Invert, GLCD_Fast_Strobe, GLCD_Read_Delay,
GLCD_Strobe_Delay, Gosub, GoTo
(H)
HbRestart, HbStart, HbStop, Hbus_Bitrate, HbusAck, Hbusin, Hbusout, Hex, Hex1, Hex2,
Hex3, Hex4, Hex4, Hex5, Hex6, Hex7, Hex8, Hig, HighLow_Tris_Reverse, Hpwm,
Hrsin, Hrsin1, Hrsin2, Hrsin3, Hrsin4, Hrsout, Hrsout1, Hrsout2, Hrsout3, Hrsout4, Hserin,
Hserin1, Hserin2, Hserin3, Hserin4, Hserout, Hserout1, Hserout2, Hserout3, Hserout4,
Hserial_Baud, Hserial1_Baud, Hserial2_Baud, Hserial3_Baud, Hserial4_Baud, Hserial_Clear,
Hserial1_Clear, Hserial2_Clear, Hserial3_Clear, Hserial4_Clear, Hserial_Parity,
Hserial1_Parity, Hserial2_Parity Hserial3_Parity, Hserial4_Parity,
 (I)
I2C_Bus_SCL, I2C_Slow_Bus, I2Cin, I2Cout, I2CWrite, I2CRead, ICD_Req, ICos, If, Ijc,
Ijnc, Ijnz, Ijz, Inc, Include, Increment,Inkey, Input, Internal_Bus, Internal_Font,
IntToFix16_8, IntToFix8_8, IrIn, IrIn_Pin, ISin, ISqr

Proton24 Compiler. Development Suite.

 439

(K)
Keyboard_CLK_Pin, Keyboard_DTA_Pin, Keyboard_IN, Keypad_Port
(L)
Label_Word, LCD_CDPin, LCD_CEPin, LCD_CommandUS, LCD_CS1Pin, LCD_CS2Pin,
LCD_DataUs, LCD_DTPin, LCD_DTPort, LCD_ENPin, LCD_Font_HEIGHT, LCD_Font_Width,
LCD_Graphic_Pages, LCD_Interface, LCD_Lines, LCD_RAM_Size, LCD_RDPin, LCD_RSPin,
LCD_RSTPin, LCD_RWPin, LCD_Text_Home_Address, LCD_Text_Pages, LCD_Type,
LCD_WRPin, LCD_X_Res, LCD_Y_Res, LCDread, LCDwrite, Ldata, Left$, Len, Let, Lfsr, Lslf,
Lsrf, Library_Core, Line, LineTo, LoadBit, Log, Log10, LookDown, LookDownL, LookUp,
LookUpL, Low, Lread, Lread8, Lread16, Lread32, Lread64, Loop
(M)
Macro_Params, Max, Mid$, Min, Mouse_CLK_Pin, Mouse_Data_Pin, Mouse_In, Movlw,
Mssp_Type
(N)
Ncd, Next, Nop, Num_Bit, Num_Byte, Num_Dword, Num_Float, Num_Word, Num_Wreg
(O)
Onboard_Adc, Onboard_USART, Onboard_Usb, Optimiser_Level, Oread, Org, Output, Owin,
Owout, Owrite, OSC_PLLDIV
(P)
Pause, Pauseus, Pixel, Plot, Pop, PortB_Pullups, Pot, Pow, Print, Prm_1, Prm_10, Prm_11,
Prm_12, Prm_13, Prm_14, Prm_15, Prm_2, Prm_3, Prm_4, Prm_5, Prm_6, Prm_7, Prm_8,
Prm_9, Prm_Count, Proton24_Start_Address, PulsIn, PulseIn, Pulsin_Maximum, PulseOut,
Push, Pwm, Ptr8, Ptr16, Ptr32, Ptr64, Proc, Pin_A0, Pin_A1, Pin_A2, Pin_A3, Pin_A4, Pin_A5,
Pin_A6, Pin_A7, Pin_A8, Pin_A9, Pin_A10, Pin_A11, Pin_A12, Pin_A13, Pin_A14, Pin_A15,
Pin_B0, Pin_B1, Pin_B2, Pin_B3, Pin_B4, Pin_B5, Pin_B6, Pin_B7, Pin_B8, Pin_B9, Pin_B10,
Pin_B11, Pin_B12, Pin_B13, Pin_B14, Pin_B15, Pin_C0, Pin_C1, Pin_C2, Pin_C3, Pin_C4,
Pin_C5, Pin_C6, Pin_C7, Pin_C8, Pin_C9, Pin_C10, Pin_C11, Pin_C12, Pin_C13, Pin_C14,
Pin_C15, Pin_D0, Pin_D1, Pin_D2, Pin_D3, Pin_D4, Pin_D5, Pin_D6, Pin_D7, Pin_D8,
Pin_D9, Pin_D10, Pin_D11, Pin_D12, Pin_D13, Pin_D14, Pin_D15, Pin_E0, Pin_E1, Pin_E2,
Pin_E3, Pin_E4, Pin_E5, Pin_E6, Pin_E7, Pin_E8, Pin_E9, Pin_E10, Pin_E11, Pin_E12,
Pin_E13, Pin_E14, Pin_E15, Pin_F0, Pin_F1, Pin_F2, Pin_F3, Pin_F4, Pin_F5, Pin_F6,
Pin_F7, Pin_F8, Pin_F9, Pin_F10, Pin_F11, Pin_F12, Pin_F13, Pin_F14, Pin_F15,
Pin_G0, Pin_G1, Pin_G2, Pin_G3, Pin_G4, Pin_G5, Pin_G6, Pin_G7, Pin_G8, Pin_G9,
Pin_G10, Pin_G11, Pin_G12, Pin_G13, Pin_G14, Pin_G15, Pin_H0, Pin_H1, Pin_H2, Pin_H3,
Pin_H4, Pin_H5, Pin_H6, Pin_H7, Pin_H8, Pin_H9, Pin_H10, Pin_H11, Pin_H12, Pin_H13,
Pin_H14, Pin_H15, Pin_J0, Pin_J1, Pin_J2, Pin_J3, Pin_J4, Pin_J5, Pin_J6, Pin_J7, Pin_J8,
Pin_J9, Pin_J10, Pin_J11, Pin_J12, Pin_J13, Pin_J14, Pin_J15, Pin_K0, Pin_K1, Pin_K2,
Pin_K3, Pin_K4, Pin_K5, Pin_K6, Pin_K7, Pin_L0, Pin_L1, Pin_L2, Pin_L3, Pin_L4, Pin_L5,
Pin_L6, Pin_L7
(R)
Random, RC5in, RC5in_Extended, RC5in_Pin, RCall, RCin, RcTime, Read, Rem, Remarks,
Reminders, Rep, Repeat, Res, Retfie, Retlw, Return, Return_Type, Return_Var, Rev, Right$,
Rol, Ror, Rsin, Rsin_Mode, Rsin_Pin, Rsin_Timeout, Rsout, Rsout_Baud, Rsout_Mode,
Rsout_Pace, Rsout_Pin, Return_Bit, Return_Byte, Return_Dword, Return_Float,
Return_Word, Return_Wreg
(S)
SCL_Pin, SDA_Pin, Seed, Select, Serial_Baud, Serial_Data,
Serial_Parity, Serin, Serout, Servo, Set, SetBit, SetPin, Shift_DelayUs, ShiftIn, Shin, Shout,
Show_Expression_Parts, Show_System_Variables, Signed_Dword_Terms, Sin, SizeOf, Sleep,
Slow_Bus, Small_Micro_Model, Snooze, SonyIn, SonyIn_Pin, Sound, Sound2, Sqr,
Stack_Size, Step, Stop, Str, Str$, Str$, StrCmp, String, Strn, Swap, Symbol, Setup_PLL, Sbyte,
Sword, Sdword

Proton24 Compiler. Development Suite.

 440

(T)
Tan, Then, To, Toggle, ToLower, Toshiba_Command, Toshiba_UDG, ToUpper, Touch_Active,
Touch_Read, Touch_HotSpot, Touch_HotSpotTable, Trim, TrimLeft, TrimRight
(U)
Udata, UnPlot, Until, Upper
(V)
Val, Var, Variable, VarPtr
(W)
Wait, Warnings, WatchDog, Wend, While, Word, Write, Word_Bit, Word_Byte, Word_Dword,
Word_Float, Word_Word, Word_Wreg, Wreg_Bit, Wreg_Byte, Wreg_Dword, Wreg_Float,
Wreg_Word, Write_OSCCON, Write OSCCONL, Write_OSCCONH
(X)
Xtal

_adc, _adcres, _code, _core, _defined, _device, _eeprom, _flash, _mssp, _ports, _ram, _type,
_usart, _usb, _xtal

	Proton24 Compiler Overview
	Identifiers
	Line Labels
	Ports and other SFRs
	Numeric Representations
	Quoted String of Characters
	Standard Variables
	32-bit and 64-bit Floating Point Maths
	Aliases
	Symbols
	Creating and using Arrays
	Creating and using String variables
	Procedures
	A Typical Flat BASIC Program Layout
	A Typical Procedural BASIC Program Layout
	General Format
	Line Continuation Character '_'
	Creating and using Code Memory Tables
	String Comparisons
	Relational Operators
	Boolean Logic Operators
	Math Operators
	Abs
	fAbs
	dAbs
	Acos
	dAcos
	Asin
	dAsin
	Atan
	dAtan
	Atan2
	dAtan2
	Ceil
	dCeil
	Cos
	dCos
	Dcd
	Dig '?'
	Exp
	dExp
	Floor
	dFloor
	fRound
	dRound
	ISin
	ICos
	Isqr
	Log
	dLog
	Log10
	dLog10
	Modf
	Modd
	Ncd
	Pow
	dPow
	Rev '@'
	Sin
	dSin
	Sqr
	dSqr
	Tan
	dTan

	Compiler Commands and Directives
	Adin
	Asm..EndAsm
	Box
	Branch
	BranchL
	Break
	Bstart
	Bstop
	Brestart
	BusAck
	BusNack
	Busin
	Busout
	Button
	Call
	Cdata
	Circle
	Clear
	ClearBit
	ClearPin
	Cls
	Config
	Continue
	Counter
	cPtr8, cPtr16, cPtr32, cPtr64
	Cread8, Cread16, Cread32, Cread64
	Cursor
	Dec
	Declare
	DelayCs
	DelayMs
	DelayUs
	Device
	Dig
	Dim
	Do...Loop
	DTMFout
	Edata
	End
	Eread
	Ewrite
	For...Next...Step
	Freqout
	GetBit
	GetPin
	Gosub
	GoTo
	HbStart
	HbStop
	HbRestart
	HbusAck
	HbusNack
	Hbusin
	Hbusout
	High
	Hpwm
	Hrsin, Hrsin2, Hrsin3, Hrsin4
	Hrsout, Hrsout2, Hrsout3, Hrsout4
	HrsoutLn, Hrsout2Ln, Hrsout3Ln, Hrsout4Ln
	Hserin, Hserin2, Hserin3, Hserin4
	Hserout, Hserout2, Hserout3, Hserout4
	HseroutLn, Hserout2Ln, Hserout3Ln, Hserout4Ln
	HSerial1_ChangeBaud
	HSerial2_ChangeBaud
	HSerial3_ChangeBaud
	HSerial4_ChangeBaud
	I2Cin
	I2Cout
	If..Then..ElseIf..Else..EndIf
	Include
	Inc
	Inkey
	Input
	Isr, EndIsr
	LCDread
	LCDwrite
	Len
	Left$
	Line
	LineTo
	LoadBit
	LookDown
	LookDownL
	LookUp
	LookUpL
	Low
	Mid$
	On GoTo
	On Gosub
	Output
	Oread
	Owrite
	Pixel
	Plot
	Pop
	Pot
	Print
	Ptr8, Ptr16, Ptr32, Ptr64
	PulseIn
	PulseOut
	Push
	Pwm
	Random
	RCin
	Repeat...Until
	Return
	Right$
	Rol
	Ror
	Rsin
	Rsout
	RsoutLn
	Seed
	Select..Case..EndSelect
	Servo
	SetBit
	SetPin
	Set
	Shin
	Shout
	Sleep
	Sound
	Stop
	Strn
	Str$
	Swap
	Symbol
	Toggle
	ToLower
	ToUpper
	Touch_Active
	Touch_Read
	Touch_HotSpot
	Toshiba_Command
	Toshiba_UDG
	UnPlot
	Val
	AddressOf
	While...Wend

	Using the Preprocessor
	Preprocessor Directives
	Conditional Directives ($ifdef, $ifndef, $if, $endif, $else and $elseif)

	Proton IDE Overview
	Menu Bar
	Main Toolbar
	Edit Toolbar
	Code Explorer
	Results View
	Editor Options
	Highlighter Options
	Compile and Program Options
	Installing a Programmer
	Creating a custom Programmer Entry
	IDE Plugins
	ASCII Table
	Hex View
	Assembler Window
	Assembler Main Toolbar
	Assembler Editor Options
	Serial Communicator
	Serial Communicator Main Toolbar

	Protected Proton24 Compiler Words

