Proton
PIC BASIC
Compiler

A Powerful BASIC Compiler for 8-bit 12F, 16F, and 18F PIC Devices

Written By Les Johnson

8-bit Proton Compiler Development Suite.

The author reserve’s the right to make changes to the products contained in this publication in
order to improve design, performance or reliability. Except for the limited warranty covering a
physical CD-ROM and/or Hardware License key supplied with this publication as provided in
the End-User License agreement, the information and material content of this publication are
provided “as is” without warranty of any kind express or implied including without limitation any
warranty concerning the accuracy adequacy or completeness of such information or material or
the results to be obtained from using such information or material. The author shall not be re-
sponsible for any claims attributable to errors omissions or other inaccuracies in the information
or materials contained in this publication and in no event shall the author be liable for direct,
indirect, or special incidental or consequential damages arising out of the use of such informa-
tion or material.

All terms mentioned in this manual that are known to be trademarks or service marks have

been appropriately marked. Use of a term in this publication should not be regarded as affect-
ing the validity of any trademark.

PICmicro" is a trade name of Microchip Technologies Inc. www.microchip.com

Proton ' is a trade name of Rosatta technologies and Crownhill Associates Ltd.
www.crownhill.co.uk

Proton24 " is a trade name of Rosetta Technologies and Crownhill Associates Ltd.
www.crownhill.co.uk

EPIC™ is a trade name of microEngineering Labs Inc. www.microengineeringlabs.com
The Proton IDE was written by David Barker of Mecanique www.mecanique.co.uk

Proteus VSM © Copyright Labcenter Electronics Ltd www.labcenter.co.uk

Title image by Amie Reynolds.

Web URLSs correct at time of writing.

The Proton compiler and documentation are written by Les Johnson.

If you should find any anomalies or omission in this document, please contact us, as we appre-
ciate your assistance in improving our products and services.

8-bit Proton Compiler Development Suite.

Introduction

The Proton BASIC compiler was written with simplicity and flexibility in mind. Using BASIC,
which is almost certainly the easiest programming language around, you can now produce ex-
tremely powerful applications for your PICmicro” without having to learn the relative complexity
of assembler, or wade through the gibberish that can be C.

The Proton IDE provides a seamless development environment, which allows you to write, de-
bug and compile your code within the same Windows environment, and by using a compatible
programmer, just one key press allows you to program and verify the resulting code in the
PICmicro™ of your choice!

The Proton compiler allows many devices without requiring a USB key. The supported free de-
vices are:

Free 12-bit core Devices:
PIC10F200, PIC10F202, PIC10F204, PIC10F206, PIC10F222, PIC12F508, PIC12F508A,
PIC12F509, PIC12F509A

Free Standard 14-bit core Devices:

PIC12F675, PIC12F683, PIC16F627, PIC16LF627, PIC16F627A, PIC16LF627A, PIC16F628,
PIC16LF628, PIC16F628A, PIC16LF628A, PIC16F684, PIC16LF684, PIC16F685,
PIC16LF685, PIC16F687, PIC16LF687, PIC16F688, PIC16LF688, PIC16F689, PIC16LF689,
PIC16F84, PIC16F84A, PIC16F87, PIC16LF87, PIC16F88, PIC16LF88, PIC16F876,
PIC16F876A, PIC16F877, PIC16F877A, PIC16F882, PIC16F883, PIC16F884, PIC16F886,
PIC16F887

Free Enhanced 14-bit core Devices:

PIC12F1552, PIC12LF1552, PIC12F1572, PIC12LF1572, PIC16F1614, PIC16LF1614,
PIC16F1826, PIC16LF1826, PIC16F1829, PIC16LF1829, PIC16F18323, PIC16LF18323,
PIC16F1937, PIC16LF1937

Free 18F devices:

PIC18F13K50, PIC18LF13K50, PIC18F14K50, PIC18LF14K50, PIC18F252, PIC18LF252,
PIC18F2550, PIC18LF2550, PIC18F25K20, PIC18LF25K20, PIC18F25K22, PIC18LF25K22,
PIC18F26K?20, PIC18LF26K20, PIC18F26K22, PIC18LF26K22, PIC18F452, PIC18LF452,
PIC18F4550, PIC18LF4550, PIC18F45K20, PIC18LF45K20, PIC18F45K22, PIC18LF45K22,
PIC18F46K20, PIC18LF46K20, PIC18F46K22, PIC18LF46K22

These will be increased in time, and the most popular devices on the market will be added as
free devices. For other devices, the commercial compiler is available for a, relatively, small fee
that allows the author to develop it further.

8-bit Proton Compiler Development Suite.

Contact Details

For your convenience we have set up a web site www.picbasic.org, where there is a section
for users of the Proton compiler, to discuss the compiler, and provide self help with programs
written for Proton BASIC, or download sample programs. The web site is well worth a visit now
and then, either to learn a bit about how other peoples code works or to request help should
you encounter any problems with programs that you have written.

Should you need to get in touch with us for any reason our details are as follows: -

Postal

Crownhill Associates Limited.
Old Station Yard

Station Road

Ely

Cambridgeshire.

CB6 3PZ.

Telephone
(+44) 01353 749990

Fax
(+44) 01353 749991

Email
sales@crownhill.co.uk

Web Sites
https://sites.google.com/view/rosetta-tech/home
www.protonbasic.co.uk

www.crownhill.co.uk

8-bit Proton Compiler Development Suite.

Table of Contents.

(070]] 011 L= @ A =T AV 1= 14
PICIICIO " DBVICES.eveeeeeeeeeeeeeeeeeeetee e etee e et e e et e e e te e e eteeeeae e e et e e steeeeneeeeteeeeneeeateeanneas 14
Limited 12-bit Device CompatibDility.c.ooniiii e 14
Programming Considerations for 12-bit core DeVICEeS.ooeuiiiiiiiiiiie e 15
DEVICE SPECITIC ISSUBS ... etnitiieiie ettt ettt e e et e et e e e et e e e e e e e e e e e eaneeneen 16
L0 =T o] 1= 17
T = o = P 17
[VZ= L =] L PRPPPN 18
Floating POINt Math..... ..o e e e e e e 21

Floating Point TO INtEgEr ROUNGINGceuuiitie ettt ettt et et e e e et e et e e e e e ea e e b e eeaaas 23

L oT= L] Lo T o [A =T (od= o1 T TN - Vo 24
A S . ettt ea e 25
(070 151 = 1 1 PP 28
SYMIDOIS. .. 28
NUMENIC REPIESENTATIONSeeietitiet et ettt et ettt et et et e e e e e ea e ea e ea e eaneaaaaanns 29
Quoted String Of CHarACLEIS e e e e e e et e e e e e e ens 29
POItS @nd Other REQISTEIS ... eu i et e e et e e e e e e e e e e e e e eeenes 29
(CT=T L= = L o] 0 0 - PP 30
A Typical basiC Program LAYOULcuueeuieiieie e e e e e e e e e e e e e e e e eneenns 31
Line Continuation CharaCter ' e e e e e e e e e ee e 32
Creating and USING ATTAYSoeu et eee et e et e ea e et e et e e e e e e ea e ea e e e e e e ea e e eeneennes 33
Creating and USING STINGS «.uuvuei et e e e e e e e et e e e e e e e e e e e e e eneens 40
Creating and using Flash Memory StriNgSc.oouiiiiiiiiie e 46
Creating and using Eeprom Memory Strings with Edataccooeeiiiiiiiiiiiiiieeeee 48
RS T o T 1 4] F= L £ 1L 50
(] U a0 gt LI @] oT=] = L (o] £ PN 53
B0OOIEAN LOGIC OPEIATOIS .. c.neeieieeteee et ettt et et e et et e e e et e e e e e e e e eaeenee 54

8-bit Proton Compiler Development Suite.

Y =t g T @] 0T =T = U {1 = PP 55
oL RS I R ST 6T (o 63
Dot g P LI T = 1 = (o 63
2 0 PP 64
72 0L 65
Yoo PP 66
| o PR 67
= o PP 68
07 01 PP 69
1D oo PP 70
o PP 71
L0 10] o P 72
LS I et aean 73
O 0 PP 74
] | PP 75
o o PP 76
10 o 1 O PP 77
N o PP 78
20 PP 79
0 80
0o | TP 81
12 L PP PP 82
D] Y2 72 PP 83

8-bit Proton Compiler Development Suite.

Compiler Commands and DIFECTIVES ... 84
Y o 88
S 0 T = o] o PP 90
=10) PP PRTRPP 91
2> T o 92
= = 1 o o | PP 93
=TT 1P 94
2] 2= PSPPI 96
2] (0] PP 97
=] 1] =L PP 97
BUSACK .ttt e e aas 97
U] - Tod PP 97
T 98
= T 50 11 | PP 101
=T 1 (0] o PP 105
07 | 107
(07 1= - L PP 108
03T o] [PP 113
03 = S 114
(03127 o o PP 115
(O3 = = PPN 117
0 PP 118
070 T 119

Configl,Config2, Config3 and CONfigacuuiiuiii i e e e e e e e e e e e e e e anaas 120
070 0111 T 121
(070] 01 (= q AP 122
(0701 U] o] (=] PPN 124
Lo W TR o] o 1 1 T o ot C 125
03 =7 To PP 127
Cread8, CreadlB, Cread32 ettt e e e e et e e e e e e e e e e e 128
O 81 50 PPN 130
03 1 1 (= PP 131
Do PP PP 132

8-bit Proton Compiler Development Suite.

D L<Tod F= 1 <Y 133
OSCIllator FreqUENCY DECIAIE. ittt ettt e e eb e e et e e et e ae e e e eenn s 133
Y TET ol L= F= U< 134
F N0 [T B =T = | (= 137
BUSIN = BUSOUL DBCIAIES. ... eeeeeee ettt ettt ettt ettt ettt et e e et e et e e e e e s e e e e e e e e a e e ea s ee e s e ea e e se e enensn 137
HBOUSIN = HOUSOUE DECIAIES. .. cveieiei ittt ettt et e et e et e e et e e e e e e e e e e s e e a s e ea s e raee e renaneenannen 138
USART1 Declares for use with Hrsin, Hserin, Hrsout and HSEroUt.coouiinieiiieiiiiieeeeeee e 139
USART?2 Declares for use with Hrsin2, Hserin2, Hrsout2 and HSEroUt2.coeuieinieieiiiiieiieeeeeeeeeeeee e 140
USART3 Declares for use with Hrsin3, Hserin3, Hrsout3 and HSErout3.ccoveiiviiiiiiiiiiiecee e, 141
USART4 Declares for use with Hrsind, Hserind, Hrsout4 and HSEroUt4.cc.oeuieiiiiiiiiniiii e, 142
[T 1T T =Tl o T = PP 144
Alphanumeric (Hitachi HD44780) LCD Print DECIAIES.c.uuiiiiiii ettt 145
(€T o] T Tol IO I I =] = 1= 147
KS0108 Graphic LCD SPECITIC DECIAIES. ... ettt ettt e e e e et e e e e e e e aeans 147
Toshiba T6963 Graphic LCD SPECIfiC DECIAIES.c.u it 148
LECE) Y7 = 1o I =T o = 150
LR TR = T T 1 A D1 To] =T <= 151
ST TR (o 1 L A B LT £ < 152
S 1T TS g 01U A B =Tod £ 153
D] P 5 154
DIBIAYMS ...t e e e e 155
D =] =Y £ 156
)L 157
D] o PP 158
) 2 159
[T 1SY=1 o] (= 164
Do TR X o o o P 165
028157/ T 167
o = 7= 168
= 0] P 173
=1 oo IR 175
(<= o [176
Y1 (P 177
0] G A1 q SR = o PP 178
=T [0 1 P 180
€12y 1= | 182
=Y o 183
(€701 U1 o T 184
€0] (o 188
[|05 = 189
[10157 o] PSP 190
[101 ST 7= 190

8-bit Proton Compiler Development Suite.

| T Y o 190
HIUSINGCK ...t et e et e et e e e et e en e 190
| U o PP 191
| 00U 195
oo P 199
HP N M L et 201
Hrsin, HISINZ, HISING, HISINA ..ottt e e et e e e e e e e e e e e e e aenanens 202
Hrsout, Hrsout2, Hrsout3, HISOULAoe i e e 209
HrsoutLn, Hrsout2Ln, Hrsout3Ln, HrSOULALNo 213
Hserin, Hserin2, HSerin3, HSEINA et 214
Hserout, Hserout2, HSerout3, HSEIOULAo e e 220
HseroutLn, Hserout2Ln, Hserout3Ln, HSEroutdLn ..o 226
HSeriall_ChangeBaud...........cc.oeuiiniiiiiieie e e e e e e e e e enes 227
HSerial2_ChangeBaud..............oouiiniiii e e 228
HSerial3_ChangeBauUd.ccu ittt e e ene e 229
HSeriald_ChangeBaud............c.oeuiiniiiiiie e en e enes 230
122 o P 231
122 11 | PP 233
If..Then. . EISelf..EISE..ENAIT e 236
03 0T PP 238
T PRSPPI 240
0]) 241
10T o LU | PSPPI 242
3 0 - T 244
I 1) (= PP PRPRN 246
(0 - - 248
T o PP 253
] PR 255
PP 257
TN o PP 258
0= To |] 1 PP PRPN 259
(0o} 11 10111 o 260
0T 4011 o | I PP PRPRN 261
(0 T0] (0 o 262
(0T (U o I PP PR PP PPPRN 263

8-bit Proton Compiler Development Suite.

0 P 264
=TT PSPPSR 266
Lread8, Lreadl6, Lread32coouiiiiiiiiiiie e 268
1Yo P 270
(] 5 T © o] {0 P 272
(@] 0 T © o] {0 PP 274
(0] 0 €101 | o PP PPTPPRPTRPPRN 275
ON_Hardware INTerTUPL.o e e e e e e e e e e eaaeaaas 277

Typical format of the interrupt handler with standard 14-bit core deviCes..........covveiiiiiiiiiiiii e 278

Typical format of the interrupt handler with enhanced 14-bit core deviCes.coouiiiiiiiiiiiiiiiiieeeees 278

Typical format of the interrupt handler with 18F deVICES.c.ieuiiiiiii e 279
(@] o I W 1YLV L1 (=] 4 (Vo PP 280
(@ 111 01U | PP 283
@ o PP 285
(0] =T Lo F PP UPPUPTPPPPPN 286
(0 1 (= PPN 201
D PP PP PRSPPI 293
0 PP PPTPPRPN 294
o0 PPN 296
0 PP 298
o] 299

USING @ KSOL08 GraphiC LCD.....euu i ettt ettt et ettt ettt e et et e e et e e ea e e et e e e e eeean e eenas 304

Using a Toshiba TE963 GraphiC LDc.uiieeiiii e iee e et e e e e e e e e e e e e e e e e e e a e eaeen e eneaeenns 309
G T o 1 G TR {2 PP 312
U 5= o PP PPPPP 315
U | =T 11 | S PP UPPRPPI 316
e o 317
e 322
=T a0 (o] 1 o P PSP PP PP 323
£ o 324
1] o PPN 325
Repeat...UNLl. ... e e 328
S5 TP 329
] UL 330
T |1 PPN 332
o] PP 334
O PP 335

10

8-bit Proton Compiler Development Suite.

S | PPN 336
0 PP 341
L T0 T | 1 N o PP 346
RS- T o 347
SeleCt..CaSE..ENUSEIECTuieie e e 348
ST =T] o PPN 350
BT 0 11 | PPN 357
1T Yo PP 365
ST =] 12 367
ST =] 1 o T PP 368
RS T=] O 1O 6 | PP 370
= PPN 371
05T o1 PP 372
15T 20T 1 PP 374
10 1[0 10 74 = PP 376
00 1= o 377
EST0] 01V 1 [P PT 379
05T 0 0] o 380
85T 0] 01T PP 381
) (0] o I PP PRPPRPR 382
) 4 o PPN 383
1 PPN 384
SUD-ENASUD ...t an 386
LY=o PP 387
SYMIDOL .. e 388
L1 T T | = PP 389
L0 0 T P 391
1010 0] o= PP 393
Toshiba_ComMMaNG e e e e e 395
LI035 11 o= YL 15 1 PP 399
6 o o o PPN 401
L1127 o P 402
L] =1 o PPN 403
L6120 U PPN 405
L] 2o o | PP 409

11

8-bit Proton Compiler Development Suite.

12 1P 410
AAAreSSOT OF VAIPI .. e ettt e e et e e e e e e eanes 412
LT 1= VAT T T PP 413
L 414
011 PP PPPRPPRP 416
USING the OPTIMISEr .o ettt e e e e e anes 418
USING The PrepPrOCESSOrttt eane 420
PrEPIOCESSON DIFECHIVES ... e ittt e e e e et e e e e e e e e e e n e n e neeaeens 420
Conditional Directives ($ifdef, $ifndef, $if, $endif, $else and Selseif).........cceevevvieriennnnn. 423
PrOtON IDE OVEIVIBWV ...eiiiiiiiieie ettt ettt ettt e e e e e e e e enns 426
Y =T U = - PP 427
1Y =V I e o1 | o= U 428
=T [A oo | o= 1 PP PRPPRN 429
(00 0 [0 = q] 0] 1= 431
RESUITS VIBW ...ttt ettt en e eneenns 434
oL 0T g o o] 1 435
(1o | a1 1o | 1 (=T o @] o) o] LS 437
Compile and Program OPLIONSceuieiii ettt e et e e e e e e e e e e eaas 439
RSy = LT T = W o 0 To | = Lo] 0T 440
Creating a custom Programmer ENTIYo 441
1Y FTox o Tod o To L= o - T [T 443
(0 =T =1 @ o 1 0] o 1 445
Loader Main TOOIDANo e ens 446
L1 o 3 T] L PP 447
1O I = o PP 448
L o3 Y T U 448
ASSEMDBIET WINUOW ...ttt et e enes 449
Assembler Main TOOIDANcuui e enns 450
P T=T 0] o] 1= g o 11 o] @ o] 4[] o ISP 451
Serial COMMIUNICATON . .. cuu ettt ettt et e e et et e e et e et e e e e e e e e ennees 452
Serial Communicator Main TOOIDANieuii e 453
Labcenter EIeCtroniCS ProteUS VSM.........iiu i e e e e e e ens 456
ISIS Simulator QUICK STart GUIAEuuinieiiiii e e e e aaeaas 456

12

8-bit Proton Compiler Development Suite.

AMICUSL8 HardWare OVEIVIEW.........uuiieii et e et e et et e e e e e e e eeneaen 460
AMICUSLE SOCKETLS. . e ittt e e et e e e e e e e e e e e e e e enns 461
The 8-Pin POWET NBAGET SOCKET: ... et e e e e et e et e e e et e et e et e e e e e eaneereneeannns 461

The 4-pin POWEr hEAUEr SOCKET: ittt et et e e e e et e e e e enn s 461

THE PORTA (ANX) SOCKET: ... euuieieiiei i e ettt e e e et et et e e e et e et e e e e ea e ea e ea e aneeaneeanaeanaaeanaeanns 462

B =T O O 1ol (= TP 463

THE PORTB SOCKEL: ... ettt ettt ettt et e e et et ettt et e et e et e e e e ea e ea e ea e e en e een e aeenaeanaaannns 464
Device Programming HEAENouveiiii e e e e e enns 465
N[0 a] o= =T g o o= To Y]] o 1P 466
Serial Handshake CONNECTIONScuiuiieiii i e e e e e e e e e e e 467
Using the Proton Compiler with the Amicus18 board.............ccoooiiiiiiiiii e 468
Writing your first Amicus18 program using the Proton compiler.........occoovvveiiiniiiiinieneennen. 469
AMICUSL8 CIrCUIt DIAGIAM ...ttt ettt et e et et e et et e e e e e e e e e e eanns 471
AMICUSLE PCB LAYOUL ...ceiitiieieie eneenns 472
Installing the AMICUSL8 USB DIIVELuuiiiiei ettt e e e ees 473
Built in AMicus18 Peripheral MaCIOScuuvuieiiiie e e e e eans 477
P\l o g F=Ted o 30 g To (U T £ o o PPN 478
TimMer MACrOS INTFOTUCTION.cceei ittt e e et e e e e e et e e e et e e et e e et e e e e e ae e e eeannes 483

Yo I =Yook N (o To [F o4 £ o] o WP 492
Hardware PWM macro INTFOAUCTIONt e e e e e et e e e e e e e e e e e e aeenns 495
Using the Proton Compiler with MPLAB IDE"coouiiiieiieceee e 500
Protected CoOmMPIler WOTAS...... ot ea e 509

13

8-bit Proton Compiler Development Suite.

Compiler Overview

PICmicro™ Devices
The compiler supports 99% of the PICmicro” range of devices, and takes full advantage of
their various features e.g. A/D Converter, data memory eeprom area, hardware multiply etc.

This manual is not intended to give details about individual microcontroller devices, therefore,
for further information visit the Microchip website at www.microchip.com, and download the
multitude of datasheets and application notes available.

Limited 12-bit Device Compatibility.

The 12-bit core microcontrollers have been available for a long time, and are at the heart of
many excellent, and complex projects. However, with their limited architecture, they were never
intended to be used for high level languages such as BASIC. Some of these limits include only
a two-level hardware stack and small amounts of general purpose RAM memory. The code
page size is also small at 512 bytes. There is also a limitation that calls and computed jumps
can only be made to the first half (256 words) of any code page. Therefore, these limitations
have made it necessary to eliminate some compiler commands and modify the operation of
others.

While many useful programs can be written for the 12-bit core devices using the compiler, there
will be some applications that are not suited to them. Choosing a 14-bit core device with more
resources will, in most instances, be the best solution, or better still, choose a suitable 18F de-
vice.

Some of the commands that are not supported for the 12-bit core devices are illustrated in the
table below: -

Command Reason for omission
Dwords Memory limitations
Floats Memory limitations
Signed Variables | Memory limitations
Adin No internal ADCs
Cdata No write modify feature
Cls Limited stack size
Cread No write modify feature
Cursor Limited stack size
Cwrite No write modify feature
DTMFout Limited stack size
Edata No on-board EEPROM
Eread No on-board EEPROM
Ewrite No on-board EEPROM
Freqout Limited stack size
LCDread No graphic LCD support
LCDwrite No graphic LCD support
Hpwm No 12-bit MSSP modules
Hrsin No hardware serial port
Hrsout No hardware serial port
Hserin No hardware serial port
Hserout No hardware serial port
Interrupts No Interrupts

Pixel No graphic LCD support
Plot No graphic LCD support

14

8-bit Proton Compiler Development Suite.

Serout Limited memory

Serin Limited memory
Sound?2 Limited resources
UnPlot No graphic LCD support
USBin No 12-bit USB devices
USBout No 12-bit USB devices
Xin Limited stack size

Xout Limited stack size

Trying to use any of the above commands with 12-bit core devices will result in the compiler
producing numerous Syntax errors. If any of these commands are a necessity, then choose a
comparable standard or enhanced 14-bit core device.

The available commands that have had their operation modified are: -
Print, Rsout, Busin, Busout

Most of the modifiers are not supported for these commands because of memory and stack
size limitations, this includes the At, and the Str modifier. However, the @, Dec and Dec3
modifiers are still available.

Programming Considerations for 12-bit core Devices.

Because of the limited architecture of the 12-bit core microcontrollers, programs compiled for
them by the compiler will be larger and slower than programs compiled for the 14-bit core de-
vices. The two main programming limitations that will most likely occur are running out of RAM
memory for variables, and running past the first 256 word limit for the library routines.

Even though the compiler arranges its internal system variables more intuitively than previous
versions, it still needs to create temporary variables for complex expressions etc. It also needs
to allocate extra RAM for use as a Software-Stack so that the BASIC program is still able to
nest Gosubs up to 4 levels deep.

Some of the older devices only have 25 bytes of RAM so there is very little space for user vari-
ables on those devices. Therefore, use variables sparingly, and always use the appropriately
sized variable for a specific task. i.e. Byte variable if 0-255 is required, Word variable if O-
65535 required, Bit variables if a true or false situation is required. Try to alias any commonly
used variables, such as loops or temporary stores etc.

As was mentioned earlier, 12-bit core microcontrollers can call only into the first half (256
words) of a code page. Since the compiler's library routines are all accessed by calls, they must
reside entirely in the first 256 words of the code space. Many library routines, such as Busin,
are quite large. It may only take a few routines to outgrow the first 256 words of code space.
There is no work around for this, and if it is necessary to use more library routines that will fit
into the first half of the first code page, it will be necessary to move to a 14-bit core device in-
stead of the 12-bit core device.

No 32-bit or floating point variable support with 12-bit core devices.

Because of the profound lack of RAM space available on most 12-bit core devices, the Proton
compiler does not allow 32-bit Dword type variables to be used. For 32-bit support, use one of
the many 14-bit core, or 18F equivalent devices. Floating point variables are also not supported
with 12-bit core devices.

15

8-bit Proton Compiler Development Suite.

Device Specific issues
Before venturing into your latest project, always read the datasheet for the specific device being
used, because some devices have features that may interfere with expected pin operations.

An example of a potential problem is that bit-4 of PORTA (PORTA.4) exhibits unusual behav-
iour when used as an output. This is because the pin has an open drain output rather than the
usual bipolar stage as in the rest of the output pins. This means it can pull to ground when set
to 0 (low), but it will simply float when set to a 1 (high), instead of going high.

To make this pin act as expected, add a pull-up resistor between the pin and 5 Volts. A typical
value resistor may be between 1KQ and 33KQ, depending on the device it is driving. If the pin
is used as an input, it behaves the same as any other pin.

Most devices allow low-voltage programming. This function, generally, takes over one of the
PORTB pins and can cause the device to act erratically if this pin is not pulled low. In normal
use, It's best to make sure that low-voltage programming is disabled at the time the device is
programmed. By default, the low voltage programming fuse is disabled, however, if the Config
directive is used, then it may inadvertently be omitted.

All of the microcontroller’s pins are set to inputs on power-up. If you need a pin to be an output,
set it to an output before you use it, or use a BASIC command that does it for you. Once again,
always read the PICmicro data sheets to become familiar with the particular part.

The name of the port pins on the 6-pin and 8-pin devices is GPIO. The name for the Tris regis-
ter is TrislO: -

GP10.0
TRISIO

1 " Set GP10.0 high
%101010 " Manipulate ins and outs

However, these are also mapped as PORTB, therefore any reference to PORTB on these de-
vices will point to the relevant pin of GPIO.

Some of the more recent devices have PPS (Peripheral Pin Select), which allows the user to
choose a pin to use. It does add some extra complexity to a program, but the compiler tries to
help and any command that uses a peripheral will automatically adjust the PPS SFRs to suite.
Such as Hrsout, Hrsin, Hserout, Hserin, HPWM, Hbusin, or Hbusout.

16

8-bit Proton Compiler Development Suite.

Identifiers

An identifier is a technical term for a name. Identifiers are used for line labels, variable names,
and constant aliases. An identifier is any sequence of letters, digits, and underscores, although
it must not start with a digit. Identifiers are not case sensitive, therefore label, LABEL, and Label

are all treated as equivalent. And while labels might be any number of characters in length, only
the first 32 are recognised.

Line Labels

In order to mark statements that the program may wish to reference with the Goto, Call, or
Gosub commands, the compiler uses line labels. Unlike many older BASICs, the compiler does
not allow or require line numbers and doesn’t require that each line be labelled. Instead, any
line may start with a line label, which is simply an identifier followed by a colon ":".

Label:
Print "Hello World"
Goto Label

17

8-bit Proton Compiler Development Suite.

Variables

Variables are where temporary data is stored in a BASIC program. They are created using the
Dim keyword. Because RAM space on 8-bit micrcontrollers is somewhat limited, choosing the
right size variable for a specific task is important. Variables may be Bits, Bytes, Words,
Dwords , SBytes, SWords, SDwords or Floats.

Space for each variable is automatically allocated in the microcontroller's RAM area. The for-
mat for creating a variable is as follows: -

Dim Label as Size

Label is any identifier, (excluding keywords). Size is Bit, Byte, Word, Dword, SByte, SWord,
SDword or Float. Some examples of creating variables are: -

Dim Cat as Bit
Dim Dog as Byte
im Rat as Word
im Lrg_Rat as Dword

Create a single bit variable (0 or 1)

Create an 8-bit unsigned variable (0 to 255)

Create a 16-bit unsigned variable (0 to 65535)
Create a 32-bit unsigned variable (0 to 4294967295)

Dim sDog as SByte
Dim sRat as SWord
Dim sLrg_Rat as SDword

Create an 8-bit signed variable (-128 to +127)
Create a 16-bit signed variable (-32768 to +32767)
Create a 32-bit signed variable (-2147483648 to
+2147483647)

Dim Pointy Rat as Float " Create a 32-bit floating point variable

The number of variables available depends on the amount of RAM on a particular device and
the size of the variables within the BASIC program. The compiler will reserve RAM for its own
use and may also create additional temporary (System) variables for use when calculating
equations, or more complex command structures. Especially if floating point calculations are
carried out.

Intuitive Variable Handling.

The compiler handles its System variables intuitively, in that it only creates those that it re-
quires. Each of the compiler's built in library subroutines i.e. Print, Rsout etc, require a certain
amount of System RAM as internal variables. Previous versions of the compiler defaulted to 26
RAM spaces being created before a program had been compiled. However, with the 12-bit core
device compatibility, 26 RAM slots is more than some devices possess.

Try the following program, and look at the RAM usage message on the bottom Status bar.

Dim MyWord as Word Create a Word variable i.e. 16-bits
Do

High PORTB.O

For MyWord = 1 to 20000 : Next

Create a loop
Set bit 0 of PORTB high
Create a delay without using a library call

Low PORTB.O Set bit 0 of PORTB high
For MyWord = 1 to 20000 : Next " Create a delay without using a library call
Loop Do it forever

Only two bytes of RAM were used, and those were the ones declared in the program as vari-
able MyWord.

18

8-bit Proton Compiler Development Suite.

The compiler will increase its System RAM requirements as programs get larger, or more com-
plex structures are used, such as complex expressions, inline commands used in conditions,
Boolean logic used etc. However, with the limited RAM space available on some PICmicro™
devices, every byte counts.

There are certain reserved words that cannot be used as variable names, these are the system
variables used by the compiler.

The following reserved words should not be used as variable names, as the compiler will create
these names when required: -

PPO, PPOH, PP1, PP1H, PP2, PP2H, PP3, PP3H, PP4, PP4H, PP5, PP5H, PP6, PP6H,
PP7, PP7H, PP8, PP9H,GEN, GENH, GEN2, GEN2H, GEN3, GEN3H, GEN4, GEN4H, GPR,
BPF, BPFH.

RAM space required.
Each type of variable requires differing amounts of RAM memory for its allocation. The list be-
low illustrates this.

Float Requires 4 bytes of RAM.

Dword Requires 4 bytes of RAM.

SDword Requires 4 bytes of RAM.

Word Requires 2 bytes of RAM.

SWord Requires 2 bytes of RAM.

Byte Requires 1 byte of RAM.

SByte Requires 1 byte of RAM.

Bit Requires 1 byte of RAM for every 8 Bit variables created.

Each type of variable may hold a different minimum and maximum value.

e Bit type variables may hold a 0 or a 1. These are created 8 at a time, therefore declaring
a single Bit type variable in a program will not save RAM space, but it will save code
space, as Bit type variables produce the most efficient use of code for comparisons etc.

e Byte type variables may hold an unsigned value from 0 to 255, and are the usual work
horses of most programs. Code produced for Byte sized variables is very low compared
to signed or unsigned Word, DWord or Float types, and should be chosen if the pro-
gram requires faster, or more efficient operation.

e SByte type variables may hold a 2'° complemented signed value from -128 to +127.
Code produced for SByte sized variables is very low compared to SWord, Float, or
SDword types, and should be chosen if the program requires faster, or more efficient
operation. However, code produced is usually larger for signed variables than unsigned

types.

e Word type variables may hold an unsigned value from 0 to 65535, which is usually large
enough for most applications. It still uses more memory than an 8-bit byte variable, but
not nearly as much as a Dword or SDword type.

e SWord type variables may hold a 2° complemented signed value from -32768 to
+32767, which is usually large enough for most applications. SWord type variables will
use more code space for expressions and comparisons, therefore, only use signed vari-
ables when required.

19

8-bit Proton Compiler Development Suite.

e Dword type variables may hold an unsigned value from 0 to 4294967295 making this
the largest of the variable family types. This comes at a price however, as Dword calcu-
lations and comparisons will use more code space within the microcontroller Use this
type of variable sparingly, and only when necessary.

e SDword type variables may hold a 2'° complemented signed value from -2147483648 to
+2147483647, also making this the largest of the variable family types. This comes at a
price however, as SDword expressions and comparisons will use more code space than
a regular Dword type. Use this type of variable sparingly, and only when necessary.

¢ Float type variables may theoretically hold a value from -1e37 to +1e38, but because of
the 32-bit architecture of the compiler, a maximum and minimum value should be
thought of as -2147483646.999 to +2147483646.999 making this the most varsatile of
the variable family types. However, more so than Dword types, this comes at a price as
floating point expressions and comparisons will use more code space within the
PICmicro™. Use this type of variable sparingly, and only when strictly necessary. Smaller
floating point values usually offer more accuracy.

See also: Aliases, Arrays, Dim, Constants Symbol, Floating Point Math.

20

8-bit Proton Compiler Development Suite.

Floating Point Math
The Proton compiler can perform 32 x 32 bit IEEE 754 'Compliant’ Floating Point calculations.

Declaring a variable as Float will enable floating point calculations on that variable.

Dim MyFloat as Float

To create a floating point constant, add a decimal point. Especially if the value is a whole num-
ber.

Symbol PI = 3.14 " Create an obvious floating point constant

Symbol FINum = 5.0 " Create a floating point value of a whole number

Please note. Floating point arithmetic is not the ultimate in accuracy, it is merely a means of
compressing a complex or large value into a small space (4 bytes in the compiler's case). Per-
fectly adequate results can usually be obtained from correct scaling of integer variables, with an
increase in speed and a saving of RAM and code space. 32 bit floating point math is extremely
microcontroller intensive since the PICmicro" is only an 8 bit processor. It also consumes large
amounts of RAM, and code space for its operation, therefore always use floating point spar-
ingly, and only when strictly necessary. Floating point is not available on 12-bit core PICmicros
because of memory restrictions, and is most efficient when used with 18F devices because of
the more linear code and RAM specifications.

Floating Point Format

The Proton compiler uses the Microchip variation of IEEE 754 floating point format. The differ-
ences to standard IEEE 745 are minor, and well documented in Microchip application note
AN575 (downloadable from www.microchip.com).

Floating point numbers are represented in a modified IEEE-754 format. This format allows the
floating-point routines to take advantage of the PICmicro's architecture and reduce the amount
of overhead required in the calculations. The representation is shown below compared to the
IEEE-754 format: where s is the sign bit, y is the Isb of the exponent and x is a placeholder for
the mantissa and exponent bits.

The two formats may be easily converted from one to the other by manipulation of the Expo-
nent and Mantissa 0 bytes. The following assembly code shows an example of this operation.

Format Exponent Mantissa0 Mantissal Mantissa 2
IEEE-754 SXXX XXXX YXXX XXXX XXXX XXXX XXXX XXXX
Microchip XXXX XXXy SXXX XXXX XXXX XXXX XXXX XXXX

IEEE-754 to Microchip
RIf MantissaO
RIT Exponent
Rrf MantissaO

Microchip to IEEE-754
RIT MantissaO
Rrf Exponent
Rrf MantissaO

21

8-bit Proton Compiler Development Suite.

Variables Used by the Floating Point Libraries.

Several 8-bit RAM registers are used by the math routines to hold the operands for and results
of floating point operations. Since there may be two operands required for a floating point op-
eration (such as multiplication or division), there are two sets of exponent and mantissa regis-
ters reserved (A and B). For argument A, PBP_AARGHHH holds the exponent and
PBP_AARGHH, PBP_AARGH and PBP_AARG hold the mantissa. For argument B,
PBP_BARGHHH holds the exponent and PBP_BARGHH, PBP_BARGH and PBP_BARG hold

the mantissa.

Floating Point Example Programs.

* Multiply two floating point values

Device = 18F452
Declare Xtal = 4
Declare Hserial Baud = 9600

Dim MyFloat as Float
Symbol FINum = 1.234

MyFloat = FINum * 10
HrsoutLn Dec MyFloat
Stop

" Set the Baud

" Add two Floating point variables

Device = 18F452
Declare Xtal = 4
Declare Hserial Baud = 9600

as Float
Float
Float

Dim MyFloat
Dim FItl as
Dim FIt2 as

Fitl 1.23

FIt2 = 1000.1

MyFloat = FItl + FIt2
HrsoutLn Dec MyFloat

Stop

A digital volt meter, using
Device = 16F1829

Declare Xtal = 4

Declare Hserial _Baud = 9600
Declare Adin_Res = 10

Declare Adin_Tad = cFRC

Declare Adin_Delay = 50
Dim ADC_Raw as Word

Dim Volts as Float

Symbol Quanta = 5.0 / 1024

ADCON1 = %10000000

Do
ADC_Raw = Adin O
Volts = ADC_Raw * Quanta
HrsoutLn Dec2 Volts,"V"
DelayMs 300

Loop

" Set the Baud

the on-board ADC

" Set the Baud

rate for Hrsout

" Create a floating point constant value

rate for Hrsout

rate for Hrsout

10-bit result required
" RC OSC chosen for the ADC
Allow 50us sample time

Create a loop
Get an ADC reading

Transmit the decimal

Do it forever

22

Calculate the quantising value

Set analogue input on PORTA.O

Convert it to a Voltage value
volts to a serial terminal

8-bit Proton Compiler Development Suite.

Notes.
Any expression that contains a floating point variable or constant will be calculated as a floating
point. Even if the expression also contains integer constants or variables.

If the assignment variable is an integer variable, but the expression is of a floating point nature,
then the floating point result will be converted into an integer.

Device = 16F1829
Dim MyDword as Dword
Dim MyFloat as Float
Symbol PI = 3.14

MyFloat = 10

MyDword = MyFloat + Pl " Float calculation will be 13.14, reduced to 13
HrsoutLn Dec MyDword " Transmit the integer result 13

Stop

For a more in-depth explanation of floating point, download the Microchip application notes
AN575, and AN660. These can be found at www.microchip.com.

Code space requirements.

As mentioned above, floating point accuracy comes at a price of speed, and code space. Both
these issues are not a problem if an 18F device is used, however 14-bit core devices can pose
a problem. The compiler attempts to load the floating point libraries into low memory, along with
all the other library subroutines, but if it does not fit within the first 2048 bytes of code space,
and the PICmicro" has more than 2048 bytes of code available, the floating point libraries will
be loaded into the top 1000 bytes of code memory. This is invisible to the user, however, the
compiler will warn that this is occurring in case that part of memory is being used by your BA-
SIC program.

Floating Point To Integer Rounding
Assigning a floating point variable to an integer type will be truncated to the nearest value by default.
For example:

FloatVar
DwordVar

3.9
FloatVar

The variable DwordVar will hold the value of 3.

If rounding to the nearest integer value is required, use the fRound command.

23

8-bit Proton Compiler Development Suite.

Floating Point Exception Flags
The floating point exception flags are accessible from within the BASIC program via the system variable
_FP_FLAGS. This must be brought into the BASIC program for the code to recognise it:

Dim _FP_FLAGS as Byte System

The exceptions are:

_FP_FLAGS.1 " Floating point overflow
_FP_FLAGS.2 " Floating point underflow
_FP_FLAGS.3 " Floating point divide by zero
_FP_FLAGS.5 " Domain error exception

The exception bits can be aliased for more readability within the program:

Symbol FpOverflow
Symbol FpUnderFlow
Symbol FpDivO

Symbol FpDomainError

_FP_FLAGS.1 ~ Floating point overflow
_FP_FLAGS.2 " Floating point underflow
_FP_FLAGS.3 " Floating point divide by zero
_FP_FLAGS.5 " Domailn error exception

After an exception is detected and handled in the program, the exception bit should be cleared so that
new exceptions can be detected, however, exceptions can be ignored because new operations are not
affected by old exceptions.

More Accurate Display or Conversion of Floating Point values.

By default, the compiler uses a relatively small routine for converting floating point values to
decimal, ready for Rsout, Print Str$ etc. However, because of its size, it does not perform any
rounding of the value first, and is only capable of converting relatively small values. i.e. approx
6 digits of accuracy. In order to produce a more accurate result, the compiler needs to use a
larger routine. This is implemented by using a Declare: -

Declare Float_Display_Type = Fast or Standard
Using the Fast model for the above declare will trigger the compiler into using the more accu-
rate floating point to decimal routine. Note that even though the routine is larger than the stan-
dard converter, it operates much faster.

The compiler defaults to Standard if the Declare is not issued in the BASIC program.

Seealso: Dim, Symbol, Aliases, Arrays, Constants .

24

8-bit Proton Compiler Development Suite.

Aliases

The Symbol directive is the primary method of creating an alias, however Dim can be used to
create an alias to a variable. This is extremely useful for accessing the separate parts of a vari-
able.

Dim Fido as Dog

Dim Mouse as Rat.LowByte
Dim Tail as Rat.HighByte
Dim Flea as Dog.0

Fido is another name for Dog

Mouse is the first byte (low byte) of word Rat
Tail i1s the second byte(high byte) of word Rat
Flea is bit-0 of Dog, which is aliased to Fido

There are modifiers that may also be used with variables. These are HighByte, LowByte,
ByteO, Bytel, Byte2, Byte3, Word0O, Wordl, SHighByte, SLowByte, SByte0, SBytel,
SByte2, SByte3, SWord0, and SWord1,

WordO, Word1, Byte2, Byte3, SWord0, SWordl, SByte2, and SByte3 may only be used in
conjunction with 32-bit Dword or SDword type variables.

HighByte and Bytel are one and the same thing, when used with a Word or SWord type vari-
able, they refer to the unsigned High byte of a Word or SWord type variable: -

Dim Wrd as Word " Create an unsigned Word variable
Dim Wrd_Hi as Wrd.HighByte
" Wrd_Hi now represents the unsigned high byte of variable Wrd

Variable Wrd_Hi is now accessed as a Byte sized type, but any reference to it actually alters
the high byte of Wrd.

SHighByte and SBytel are one and the same thing, when used with a Word or SWord type
variable, they refer to the signed High byte of a Word or SWord type variable: -

Dim Wrd as SWord " Create a signed Word variable
Dim Wrd_Hi as Wrd.SHighByte
" Wrd_Hi now represents the signed high byte of variable Wrd

Variable Wrd_Hi is now accessed as an SByte sized type, but any reference to it actually alters
the high byte of Wrd.

However, if Bytel is used in conjunction with a Dword type variable, it will extract the second
byte. HighByte will still extract the high byte of the variable, as will Byte3. If SBytel is used in
conjunction with an SDword type variable, it will extract the signed second byte. SHighByte
will still extract the signed high byte of the variable, as will SByte3.

The same is true of LowByte, ByteO, SLowByte and SByte0, but they refer to the unsigned
or signed Low Byte of a Word or SWord type variable: -

Dim Wrd as Word " Create an unsigned Word variable

Dim Wrd_Lo as Wrd.LowByte
" Wrd_Lo now represents the low byte of variable Wrd

Variable Wrd_Lo is now accessed as a Byte sized type, but any reference to it actually alters
the low byte of Wrd.

25

8-bit Proton Compiler Development Suite.

The modifier Byte2 will extract the 3rd unsigned byte from a 32-bit Dword or SDword type
variable as an alias. Likewise Byte3 will extract the unsigned high byte of a 32-bit variable.

Dim Dwd as Dword " Create a 32-bit unsigned variable named Dwd
Dim Partl as Dwd.ByteO " Alias unsigned Partl to the low byte of Dwd
Dim Part2 as Dwd.Bytel " Alias unsigned Part2 to the 2nd byte of Dwd
Dim Part3 as Dwd.Byte2 " Alias unsigned Part3 to the 3rd byte of Dwd
Dim Part4 as Dwd.Byte3 " Alias unsigned Part3 to the high (4th) byte of Dwd

The modifier SByte2 will extract the 3rd signed byte from a 32-bit Dword or SDword type vari-
able as an alias. Likewise SByte3 will extract the signed high byte of a 32-bit variable.

Dim sDwd as SDword

Dim sPartl as sDwd.SByteO
Dim sPart2 as sDwd.SBytel
Dim sPart3 as sDwd.SByte2
Dim sPart4 as sDwd.SByte3

Create a 32-bit signed variable named sDwd
Alias signed Partl to the low byte of sDwd
Alias signed Part2 to the 2nd byte of sDwd
Alias signed Part3 to the 3rd byte of sDwd
Alias signed Part3 to the 4th byte of sDwd

The Word0 and Word1 modifiers extract the unsigned low word and high word of a Dword or
SDword type variable, and is used the same as the Byten modifiers.

Dim Dwd as Dword " Create a 32-bit unsigned variable named Dwd

Dim Partl as Dwd.WordO " Alias unsigned Partl to the low word of Dwd
Dim Part2 as Dwd.Wordl " Alias unsigned Part2 to the high word of Dwd

The SWord0 and SWord1 modifiers extract the signed low word and high word of a Dword or
SDword type variable, and is used the same as the SByten modifiers.

Dim sDwd as SDword " Create a 32-bit signed variable named sDwd
Dim sPartl as sDwd.SWordO " Alias Partl to the low word of sDwd
Dim sPart2 as sDwd.SWordl " Alias Part2 to the high word of sDwd

RAM space for variables is allocated within the microcontroller in the order that they are placed
in the BASIC code. For example: -

Dim Varl as Byte
Dim Var2 as Byte

Places Varl first, then Var2: -

Varl equ n
Var2 equ n

This means that on a device with more than one RAM Bagk, the first n variables will always be
in BankO (the value of n depends on the specific PICmicro = used).

26

8-bit Proton Compiler Development Suite.

Finer points for variable handling.

The position of the variable within Banks is usually of little importance if BASIC code is used,
however, if assembler routines are being implemented, always assign any variables used within
them first.

Problems may also arise if a Word, SWord, Dword, SDword or Float variable crosses a Bank
boundary. If this happens, a warning message will be displayed in the error window. Most of the
time, this will not cause any problems, however, to err on the side of caution, try and ensure
that Word, SWord, Dword, SDword or Float type variables are fully inside a Bank. This is
easily accomplished by placing a dummy Byte variable before the offending variable, or relo-
cating the offending variable within the list of Dim statements.

Word and SWord type variables have a low byte and a high byte. The high byte may be ac-
cessed by simply adding the letter H to the end of the variable's name. For example: -

Dim Wrd as Word

Will produce the assembler code: -

Wrd equ n
WrdH equ n

To access the high byte of variable Wrd, use: -

WrdH = 1

This is especially useful when assembler routines are being implemented, such as: -

Moviw 1
Movwf WrdH “ Load the high byte of Wrd with 1

Dword, SDWord and Float type variables have a low, midl, mid2, and high byte. The high
byte may be accessed by by using ByteO, Bytel, Byte2, or Byte3. For example: -

Dim MyDword as Dword

To access the high byte of variable MyDword, use: -

MyDword.Byte3 = 1
The same is true of all the alias modifiers such as SWord0O, WordO etc...

Casting a variable from signed to unsigned and vice-versa is also possible using the modifiers.
For example:

Dim MyDword as SDword Create a 32-bit signed variable

MyDword.Byte3 = 1 " Load the unsigned high byte with the value 1

MyDword.SByteO = -1 " Load the signed low byte with the value -1
MyDword.SWord0O = 128 " Load the signed low and midl bytes with the value 128

27

8-bit Proton Compiler Development Suite.

Constants

Named constants may be created in the same manner as variables. It can be more informative
to use a constant name instead of a constant number. Once a constant is declared, it cannot be
changed later, hence the name ‘constant'.

Dim Label as Constant expression
Dim Mouse as 1

Dim Mice as Mouse * 400
Dim Mosue Pl as Mouse + 2.14

Although Dim can be uses to create constants, Symbol is more often used.

Symbols
The Symbol directive provides yet another method for aliasing variables and constants. Sym-
bol cannot be used to create a variable. Constants declared using Symbol do not use any RAM
within the PICmicro .

Symbol Cat = 123

Symbol Tiger = Cat " Tiger now holds the value of Cat

Symbol Mouse = 1 " Same as Dim Mouse as 1
Symbol TigOuse = Tiger + Mouse " Add Tiger to Mouse to make Tigouse

Floating point constants may also be created using Symbol by simply adding a decimal point to
a value.

Symbol PI = 3.14 " Create a floating point constant named PI
Symbol FINum = 5.0 " Create a floating point constant holding the value 5

Floating point constant can also be created using expressions.

" Create a floating point constant holding the result of the expression
Symbol Quanta = 5.0 / 1024

If a variable or register's name is used in a constant expression then the variable's or register's
address will be substituted, not the value held in the variable or register: -

Symbol Const = (PORTA + 1)" Const will hold the value 6 (5+1)

Symbol is also useful for aliasing Ports and Registers: -

Symbol LED = PORTA.1 " LED now references bit-1 of PORTA
Symbol TOIF = INTCON.2 " TOIF now references bit-2 of INTCON register

The equal sign between the constant’'s name and the alias value is optional: -

Symbol LED PORTA.1 " Same as Symbol LED=PORTA.1

28

8-bit Proton Compiler Development Suite.

Numeric Representations
The compiler recognises several different numeric representations: -

Binary is prefixed by %. i.e. %0101

Hexadecimal is prefixed by $ or Ox. i.e. $0A or Ox0A

Character byte is surrounded by quotes. i.e. "a" represents a value of 97
Decimal values need no prefix.

Floating point is created by using a decimal point. i.e. 3.14

Quoted String of Characters
A Quoted String of Characters contains one or more characters (maximum 200) and is delim-
ited by double quotes. Such as "Hello World"

The compiler also supports a subset of C language type formatters within a quoted string of
characters. These are: -

\a Bell (alert) character $07
\b Backspace character $08
\f Form feed character $0C
\n New line character $0A
\r Carriage return character $0D
\t Horizontal tab character $09
\v Vertical tab character $0B
\\ Backslash $5C
\" Double quote character $22
Example: -

Hrsout "Hello World\n\r"

Strings are usually treated as a list of individual character values, and are used by commands
such as Print, Rsout, Busout, Ewrite etc. And of course, String variables.

Null Terminated

Null is a term used in computer languages for zero. So a null terminated String is a collection of
characters followed by a zero in order to signify the end of characters. For example, the string
of characters "Hello", would be stored as: -

UHY, e, I, UIT LMo, O
Notice that the terminating null is the value 0 not the character "0".

Ports and other Registers
All of the PICmicro” registers, including the ports, can be accessed just like any other byte-
sized variable. This means that they can be read from, written to or used in equations directly.

PORTA = %01010101 " Write value to PORTA

Varl = Wrd * PORTA " Multiply variable Wrd with the contents of PORTA

29

8-bit Proton Compiler Development Suite.

The compiler can also combinel6-bit registers such as TMR1 into a Word type variable. Which
makes loading and reading these registers simple: -

" Combine TMR1L and TMR1H into unsigned Word variable wTimerl
Dim wTimerl as TMR1L.Word

wTimerl = 12345 " Load TMR1L and TMR1H with the value 12345

or
Wrdl = wTimerl " Load Wrdl with contents of TMR1

The .Word extension links registers TMR1L, and TMR1H, (which are assigned in the .ppi file
associated with the relevant device used).

Any hardware register that can hold a 16-bit result can be assigned as a Word type variable: -

" Combine ADRESL and ADRESH into unsigned Word variable wADC Result
Dim wADC_Result as ADRESL.Word
" Combine PRODL and PRODH into unsigned Word variable wMul PROD

Dim wMul_PROD as PRODL.Word

General Format
The compiler is not case sensitive, except when processing string constants such as "hello".

Multiple instructions and labels can be combined on the same line by separating them with co-
lons "

The examples below show the same program as separate lines and as a single-line: -

Multiple-line version: -

Output PORTB " Make all pins on PORTB outputs
For Varl = 0 to 100 * Count from O to 100
PORTB = Varl " Make PORTB = Varl
Next " Continue counting until 100 is reached

Single-line version: -

Output PORTB : For Varl = 0 to 100 : PORTB = Varl : Next

30

8-bit Proton Compiler Development Suite.

A Typical basic Program Layout

The compiler is very flexible, and will allow most types of constant, declaration, or variable to be placed
anywhere within the BASIC program. However, it may not produce the correct results, or an unexpected
syntax error may occur due to a variable being declared after it is supposed to be used.

The recommended layout for a program is shown below.

O S T

}

Device

Declares

Includes

Constants and Variables

GoTo Main " Jump over the subroutines (if any)

Subroutines go here

Main:
Main Program code goes here

For example:

Device = 18F25K20

Declare Xtal = 20

Declare Hserial Baud = 9600

Load an ADC include file (if required)
Include "ADC.inc"

Define Variables
Dim WordvVar as Word
Define Constants and/or aliases

Symbol Value = 10 " Create a constant

Simple Subroutine

AddIt:

M

WordVar = WordVar + Value " Add the constant to the variable
Return Return from the subroutine
Main Program Code
ain:
WordVar = 10 " Pre-load the variable
GoSub AddIt " Call the subroutine
HrsoutLn Dec WordVar Display the result on the serial terminal

Of course, it depends on what is within the include file as to where it should be placed within the pro-

g

ram, but the above outline will usually suffice. Any include file that requires placing within a certain po-

sition within the code should be documented to state this fact.

31

8-bit Proton Compiler Development Suite.

Line Continuation Character '
Lines that are too long to display, may be split using the continuation character ' '. This will di-
rect the continuation of a command to the next line. Its use is only permitted after a comma de-

limiter: -

Varl = LookUp Vvar2,[1,2,3,_
4,5,6,7,8]
or

HrsoutLn ""Hello World",
Dec varl, _
Hex Var2

32

8-bit Proton Compiler Development Suite.

Creating and using Arrays

The Proton compiler supports multi part Byte, Word, Dword, SByte, Sword, SDword and
Float variables named arrays (Dword, SDword and Float arrays are only supported with 18F
and enhanced 14-bit core devices). An array is a group of variables of the same size (8-bits,
16-bits or 32-bits wide), sharing a single name, but split into numbered cells, called elements.

An array is defined using the following syntax: -

Dim Name|[length] as Byte
Dim Name][length] as Word
Dim Name] length] as Dword
Dim Name][length] as SByte
Dim Name|[length] as SWord
Dim Name|[length] as Sdword
Dim Name] length] as Float

where Name is the variable's given name, and the new argument, [length], informs the com-
piler how many elements you want the array to contain. For example: -

Dim MyArray[10] as Byte Create
Dim MyArray[10] as Word Create
Dim MyArray[10] as Dword Create

" 10 element unsigned byte array
Dim sMyArray[10] as SByte " Create

10 element unsigned word array
10 element unsigned dword array
10 element signed byte array

10 element signed word array

10 element signed dword array
10 element floatin point array

Dim sMyArray[10] as SWord Create
Dim sMyArray[10] as SDword Create
Dim fMyArray[10] as Float Create

QoYY

On 18F or enhanced core devices, arrays may have as many elements as RAM permits, how-
ever, with 12-bit core and standard 14-bit core devices, arrays may contain a maximum of 256
elements, (128 for word arrays when using standard 14-bit core devices). Because of the rather
complex way that some PICmicro's RAM cells are organised (i.e. Banks), there are a few rules
that need to be observed when creating arrays with standard 14-bit core devices.

PICmicro™ Memory Map Complexities.

Some microcontrollers have more RAM available for variable storage, however, accessing the
RAM on the standard 14-bit core devices is not as straightforward as one might expect. The
RAM is organised in Banks, where each Bank is 128 bytes in length. Crossing these Banks re-
quires bits 5 and 6 of the STATUS register to be manipulated. The larger devices such as the
16F877 have 512 RAM locations, but only 368 of these are available for variable storage, the
rest are known as Special Function Registers (SFRs) and are used to control certain aspects of
the microcontroller i.e. TRIS, 10 ports, USART etc. The compiler attempts to make this complex
system of RAM Bank switching as transparent to the user as possible, and succeeds where
standard Bit, Byte, Word, and Dword variables are concerned. However, Array variables will
inevitably need to cross the Banks in order to create arrays larger than 96 bytes, which is the
largest section of RAM within BankO. Coincidently, this is also the largest array size permissible
by most other compilers at the time of writing this manual.

33

8-bit Proton Compiler Development Suite.

Large arrays (normally over 96 elements) require that their Starting address be located within
the first 255 bytes of RAM (i.e. within BankO and Bank2), the array itself may cross this bound-
ary. This is easily accomplished by declaring them at, or near the top of the list of variables.
The compiler does not manipulate the variable declarations. If a variable is placed first in the
list, it will be placed in the first available RAM slot within the microcontroller. This way, you, the
programmer maintains finite control of the variable usage. For example, commonly used vari-
ables should be placed near the top of the list of declared variables. An example of declaring
an array is illustrated below: -

Choose a microcontroller with extra RAM
Create a small array of 20 elements
Create a standard Byte variable

Create a Byte array of 256 elements

Device 16F1829

Dim Small_Array[20] as Byte
Dim Varl as Byte

Dim Large Array[256] as Byte

or
Dim Arrayl[120] as Byte " Create an array of 120 elements
Dim Array2[100] as Byte " Create another smaller array of 100 elements

If an array cannot be resolved, then a warning will be issued informing you of the offending line:
Warning Array ‘array name' is declared at address ‘array address'. Which is over the 255
RAM address limit, and crosses Bank3 boundary!

Ignoring this warning will spell certain failure of your program.

The following array declaration will produce a warning when compiled for a 16F877 device: -

Device 16F877 " Choose a microcontroller with extra RAM
Dim Arrayl[200] as Byte " Create an array of 200 elements
Dim Array2[100] as Byte " Create another smaller array of 100 elements

Examining the assembler code produced, will reveal that Arrayl starts at address 32 and fin-
ishes at address 295. This is acceptable and the compiler will not complain. Now look at Ar-
ray2, its start address is at 296 which is over the 255 address limit, thus producing a warning
message.

The above warning is easily remedied by re-arranging the variable declaration list: -

Dim Array2[100] as Byte " Create a small array of 100 elements
Dim Arrayl[200] as Byte " Create an array of 200 elements

Again, examining the asm code produced, now reveals that Array2 starts at address 32 and fin-
ishes at address 163. everything OK there then. And Arrayl starts at address 164 and finishes
at address 427, again, its starting address was within the 255 limit so everything's OK there as
well, even though the array itself crossed several Banks. A simple re-arrangement of code
meant the difference between a working and not working program.

Of course, the smaller microcontrollers do not have this limitation as they do not have 255 RAM

cells anyway. Therefore, arrays may be located anywhere in the variable declaration list. The
same goes for the 18F devices, as these can address any area of their RAM.

34

8-bit Proton Compiler Development Suite.

18F and enhanced 14-bit core device simplicity.

The 18F devices have no such complexities in their memory map as the standard 14-bit core
devices do. The memory is still banked, but each bank is 256 bytes in length, and runs linearly
from one to the other. Add to that, the ability to access all RAM areas using indirect addressing,
makes arrays extremely easy to use. If many large arrays are required in a program, then the
18F devices are highly recommended.

Once an array is created, its elements may be accessed numerically. Numbering starts at O
and ends at n-1. For example: -

MyArray[3] = 57
HrsoutLn "‘MyArray[3] = ", Dec MyArray[3]

The above example will access the fourth element in the Byte array and display "MyArray[3] =
57" on the serial terminal. The true flexibility of arrays is that the index value itself may be a
variable. For example: -

Device 16F88 " We"ll use a smaller device this time

Dim MyArray[10] as Byte " Create a 10-byte array.

Dim Index as Byte " Create a Byte variable.

For Index = 0 to 9 " Repeat with Index= 0,1,2...9
MyArray[Index] = Index * 10 " Write Index*10 to each element of the array.

Next

For Index = 0 to 9 " Repeat with Index= 0,1,2...9
Print At 1, 1, Dec MyArray [Index] ° Show the contents of each element.
DelayMs 500 " Wait long enough to view the values

Next

Stop

If the above program is run, 10 values will be displayed, counting from 0 to 90 i.e. Index * 10.

A word of caution regarding arrays: If you're familiar with other BASICs and have used their ar-
rays, you may have run into the "subscript out of range" error. Subscript is simply another term
for the index value. It is considered 'out-of range' when it exceeds the maximum value for the
size of the array.

For example, in the example above, MyArray is a 10-element array. Allowable index values are
0 through 9. If your program exceeds this range, the compiler will not respond with an error
message. Instead, it will access the next RAM location past the end of the array.

If you are not careful about this, it can cause all sorts of subtle anomalies, as previously loaded
variables are overwritten. It's up to the programmer (you!) to help prevent this from happening.

Even more flexibility is allowed with arrays because the index value may also be an expression.

Device 16F88 " We"ll use a smaller device

Dim MyArray[10] as Byte " Create a 10-byte array.

Dim Index as Byte " Create a Byte variable.

For Index = 0 to 8 " Repeat with Index= 0,1,2...8
MyArray[Index + 1] = Index * 10 " Write Index*10 to each element of array

Next

For Index = 0 to 8 " Repeat with Index= 0,1,2...8
Print At 1, 1, Dec MyArray[Index + 1] " Show the contents of elements
DelayMs 500 " Wait long enough to view the values

Next

Stop

35

8-bit Proton Compiler Development Suite.

The expression within the square braces should be kept simple, and arrays are not allowed as

part of the expression.

Using Arrays in Expressions.

Of course, arrays are allowed within expressions themselves. For example: -

Device = 16F88 -
Device Xtal = 4
Declare Hserial Baud = 9600

Dim MyArray[10] as Byte "
Dim Index as Byte
Dim Varl as Byte

We"l1l use a smaller device

Create a 10-byte array.

Create a Byte variable.

Create another Byte variable

Create a variable to hold result of expression

And Index now holds the value 5
Variable Varl now holds the value 10
Load the 6th element of MyArray with value 20

MyResult = (Varl * MyArray[Index]) /7 20 " Do a simple expression

Dim MyResult as Byte "
Index = 5 "
Varl = 10 "
MyArray[Index] = 20 "
HrsoutLn Dec MyResult "
Stop

Display result of expression

The previous example will display 10 on the serial terminal, because the expression reads as: -

(10 * 20 / 20

Varl holds a value of 10, MyArray[Index] holds a value of 20, these two variables are multiplied
together which will yield 200, then they're divided by the constant 20 to produce a result of 10.

An index expression used within an array that is used within an expression itself is limited to

two operands.

36

8-bit Proton Compiler Development Suite.

Arrays as Strings
Arrays may also be used as simple strings in certain commands, because after all, a string is
simply a byte array used to store text.

For this, the Str modifier is used.
The commands that support the Str modifier are: -
Busout - Busin
Hbusout - Hbusin
Hrsout - Hrsin
Owrite - Oread
Rsout - Rsin
Serout - Serin

Shout - Shin
Print

The Str modifier works in two ways, it outputs data from a pre-declared array in commands that
send data i.e. Rsout, Print etc, and loads data into an array, in commands that input informa-
tion i.e. Rsin, Serin etc. The following examples illustrate the Str modifier in each compatible
command.

Using Str with the Busin and Busout commands.

Refer to the sections explaining the Busin and Busout commands.

Using Str with the Hbusin and Hbusout commands.

Refer to the sections explaining the Hbusin and Hbusout commands.

Using Str with the Rsin command.

Dim Arrayl[10] as Byte " Create a 10-byte array named Arrayl
Rsin Str Arrayl " Load 10 bytes of data directly into Arrayl

Using Str with the Rsout command.

Dim Arrayl[10] as Byte " Create a 10-byte array named Arrayl
Rsout Str Arrayl " Send 10 bytes of data directly from Arrayl

Using Str with the Hrsin and Hrsout commands.

Refer to the sections explaining the Hrsout and Hrsin commands.

37

8-bit Proton Compiler Development Suite.

Using Str with the Shout command.

Symbol Data Pin = PORTA.O " Alias the two lines for the Shout command
Symbol CIk_Pin = PORTA.1
Dim Arrayl[10] as Byte " Create a 10-byte array named Arrayl

" Send 10 bytes of data from Arrayl
Shout Data_Pin, Clk_Pin, MSBFirst, [Str Arrayl]

Using Str with the Shin command.

Symbol Data Pin = PORTA.O " Alias the two lines for the Shin command
Symbol CIk_Pin = PORTA.1
Dim Arrayl[10] as Byte " Create a 10-byte array named Arrayl

" Load 10 bytes of data directly into Arrayl
Shin Data_Pin, CIlk Pin, MSBPre, [Str Arrayl]

Using Str with the Print command.

Dim Arrayl[10] as Byte " Create a 10-byte array named Arrayl
Print Str Arrayl " Send 10 bytes of data directly from Arrayl

Using Str with the Serout and Serin commands.

Refer to the sections explaining the Serin and Serout commands.

Using Str with the Oread and Owrite commands.

Refer to the sections explaining the Oread and Owrite commands.

The Str modifier has two forms for variable-width and fixed-width data, shown below: -
Str bytearray ASCII string from bytearray until byte = 0 (null terminated).

Or array length is reached.

Str bytearray\n ASCII string consisting of n bytes from bytearray.

null terminated means that a zero (null) is placed at the end of the string of ASCII characters to
signal that the string has finished.

The example below is the variable-width form of the Str modifier: -

Dim MyArray[5] as Byte " Create a 5 element array

MyArray[0] = "A " Fill the array with ASCII
MyArray[1] = "B"

MyArray[2] = "C"

MyArray[3] = "D"

MyArray[4] = O " Add the null Terminator
Print Str MyArray " Display the string

The code above displays "ABCD" on the LCD. In this form, the Str formatter displays each
character contained in the byte array until it finds a character that is equal to 0 (value 0, not
ASCII "0"). Note: If the byte array does not end with O (null), the compiler will read and

38

8-bit Proton Compiler Development Suite.

output all RAM register contents until it cycles through all RAM locations for the declared length
of the byte array.

For example, the same code as before without a null terminator is: -

Dim MyArray[4] as Byte " Create a 4 element array

MyArray[0] = "A " Fill the array with ASCII
MyArray[1] = "B"

MyArray[2] = "C"

MyArray[3] = D"

Print Str MyArray " Display the string

The code above will display the whole of the array, because the array was declared with only
four elements, and each element was filled with an ASCII character i.e. "ABCD".

To specify a fixed-width format for the Str modifier, use the form Str MyArray\n; where MyArray
is the byte array and n is the number of characters to display, or transmit. Changing the Print
line in the examples above to: -

Print Str MyArray \ 2
would display "AB" on the LCD.

Str is not only used as a modifier, it is also a command, and is used for initially filling an array
with data. The above examples may be re-written as: -

Dim MyArray[5] as Byte " Create a 5 element array
Str MyArray = "ABCD", O " Fill array with ASCII, and null terminate it
Print Str MyArray " Display the string

Strings may also be copied into other strings: -

Dim Stringl[5] as Byte
Dim String2[5] as Byte
Str Stringl '

" Create a 5 element array

" Create another 5 element array

'ABCD", O " Fill array with ASCII, and null terminate it
Str String2 "EFGH", O " Fill other array with ASCII, null terminate it
Str Stringl Str String2 " Copy String2 into Stringl

Print Str Stringl " Display the string

The above example will display "EFGH", because Stringl has been overwritten by String2.

Using the Str command with Busout, Hbusout, Shout, and Owrite differs from using it with
commands Serout, Print, Hrsout, and Rsout in that, the latter commands are used more for
dealing with text, or ASCII data, therefore these are null terminated.

The Hbusout, Busout, Shout, and Owrite commands are not commonly used for sending
ASCII data, and are more inclined to send standard 8-bit bytes. Thus, a null terminator would
cut short a string of byte data, if one of the values happened to be a 0. So these commands will
output data until the length of the array is reached, or a fixed length terminator is used i.e.
MyArray\n.

39

8-bit Proton Compiler Development Suite.

Creating and using Strings
The Proton compiler supports String variables, but only when targeting an 18F or enhanced
14-bit core device.

The syntax to create a string is : -
Dim String Name as String * String Length

String Name can be any valid variable name. See Dim .
String Length can be any value up to 255, allowing up to 255 characters to be stored.

The line of code below will create a String hamed MyString that can hold 20 characters: -
Dim MyString as String * 20
Two or more strings can be concatenated (linked together) by using the plus (+) operator: -

Device = 18F4520 " A suitable device for Strings
Create three strings capable of holding 20 characters

Dim DestString as String * 20

Dim SourceStringl as String * 20

Dim SourceString2 as String * 20

SourceStringl = "HELLO " " Load String SourceStringl with the text HELLO
" Load String SourceString2 with the text WORLD
SourceString2 = "WORLD"
Add both Source Strings together. Place result into String DestString

DestString = SourceStringl + SourceString2

The String DestString now contains the text "HELLO WORLD", and can be transmitted serially
or displayed on an LCD: -

Print DestString

The Destination String itself can be added to if it is placed as one of the variables in the addi-
tion expression. For example, the above code could be written as: -

Device = 18F452 " A suitable device for Strings

Create a String capable of holding 20 characters

Dim DestString as String * 20

Create another String capable of holding 20 characters

Dim SourceString as String * 20

DestString = "HELLO ™ " Pre-load String DestString with the text HELLO
SourceString = "WORLD" " Load String SourceString with the text WORLD
Concatenate DestString with SourceString

DestString = DestString + SourceString

Print DestString " Display the result which is "HELLO WORLD"
Stop

Note that Strings cannot be subtracted, multiplied or divided, and cannot be used as part of a
regular expression otherwise a syntax error will be produced.

40

8-bit Proton Compiler Development Suite.

It's not only other strings that can be added to a string, the functions Cstr, Estr, Mid$, Left$,
Right$, Str$, ToUpper, and ToLower can also be used as one of variables to concatenate.

A few examples of using these functions are shown below: -

Cstr Example
" Use Cstr function to place a code memory string into a RAM String variable

Device = 18F4520 " A suitable device for Strings
Create a String capable of holding 20 characters
Dim DestString as String * 20

Dim SourceString as String * 20 " Create another String

SourceString = "HELLO ™ " Load the string with characters
DestString = SourceString + Cstr CodeStr " Concatenate the string
Print DestString " Display the result which is "HELLO WORLD"
Stop

CodeStr:

Cdata "WORLD'",0

The above example is really only for demonstration because if a Label name is placed as one
of the parameters in a string concatenation, an automatic (more efficient) Cstr operation will be
carried out. Therefore the above example should be written as: -

More efficient Example of above code
" Place a code memory string into a String variable more efficiently than
" using Cstr

Device = 18F4520 " A suitable device for Strings
Create a String capable of holding 20 characters
Dim DestString as String * 20

Dim SourceString as String * 20 " Create another String
SourceString = "HELLO ™ " Load the string with characters
DestString = SourceString + CodeStr " Concatenate the string
Print DestString " Display the result which is "HELLO WORLD"
Stop

CodeStr:

Cdata ""WORLD™,0

A null terminated string of characters held in Data (on-board eeprom) memory can also be
loaded or concatenated to a string by using the Estr function: -

Estr Example

" Use the Estr function in order to place a

" Data memory string into a String variable

" Remember to place Edata before the main code
" so it’s recognised as a constant value

Device = 18F4520 " A suitable device for Strings
Dim DestString as String * 20 " Create a String for 20 characters
Dim SourceString as String * 20 ~ Create another String

Data_Str Edata ""WORLD",O " Create a string in Data memory
SourceString = "HELLO ™ " Load the string with characters
DestString = SourceString + Estr Data Str " Concatenate the strings
Print DestString " Display the result which is "HELLO WORLD
Stop

41

8-bit Proton Compiler Development Suite.

Converting an integer or floating point value into a string is accomplished by using the Str$
function: -

Str$ Example
" Use the Str$ function in order to concatenate
" an integer value into a String variable

Device = 18F4520 " A suitable device for Strings

Dim DestString as String * 30 " Create a String for 30 characters

Dim SourceString as String * 20 " Create another String

Dim Wrdl as Word " Create a Word variable

Wrdl = 1234 " Load the Word variable with a value
SourceString = "Value = " " Load the string with characters

DestString = SourceString + Str$(Dec Wrdl) " Concatenate the string

Print DestString " Display the result which is "Value = 1234"
Stop

Left$ Example
" Copy 5 characters from the left of SourceString
" and add to a quoted character string

Device = 18F4520 " A suitable device for Strings
Dim SourceString as String * 20 " Create a String
Dim DestString as String * 20 " Create another String

SourceString = "Hello World" " Load the source string with characters
DestString = Left$(SourceString, 5) + ' World"

Print DestString " Display the result which is ""Hello World"
Stop

Right$ Example
" Copy 5 characters from the right of SourceString
" and add to a quoted character string

Device = 18F4520 " A suitable device for Strings
Dim SourceString as String * 20 " Create a String
Dim DestString as String * 20 " Create another String
SourceString = "Hello World" " Load the source string with characters
DestString = "Hello " + Right$(SourceString, 5)
Print DestString " Display the result which is "Hello World"
Stop
Mid$ Example

" Copy 5 characters from position 4 of SourceString
" and add to quoted character strings

Device = 18F4520 " A suitable device for Strings

Dim SourceString as String * 20 " Create a String

Dim DestString as String * 20 " Create another String

SourceString = "Hello World" " Load the source string with characters
DestString = "Hel" + Mid$(SourceString, 4, 5) + "rild"

Print DestString " Display the result which is ""Hello World"
Stop

42

8-bit Proton Compiler Development Suite.

Converting a string into uppercase or lowercase is accomplished by the functions ToUpper and
ToLower: -

ToUpper Example
" Convert the characters in SourceString to upper case

Device = 18F4520 " A suitable device for Strings

Dim SourceString as String * 20 " Create a String

Dim DestString as String * 20 " Create another String

SourceString = "hello world" " Load source with lowercase characters
DestString = ToUpper(SourceString)

Print DestString " Display the result which is "HELLO WORLD"
Stop

ToLower Example
" Convert the characters in SourceString to lower case

Device = 18F4520 " A suitable device for Strings

Dim SourceString as String * 20 " Create a String

Dim DestString as String * 20 " Create another String

SourceString = "HELLO WORLD" " Load the string with uppercase characters
DestString = ToLower(SourceString)

Print DestString " Display the result which is "hello world"”
Stop

Loading a String Indirectly

If the Source String is asigned or unsigned Byte, Word, Float or an Array variable, the value
contained within the variable is used as a pointer to the start of the Source String's address in
RAM.

Example
" Copy SourceString into DestString using a pointer to SourceString

Device = 18F4520 " A suitable device for Strings

Dim SourceString as String * 20 ~ Create a String

Dim DestString as String * 20 " Create another String

Create a Word variable to hold the address of SourceString

Dim StringAddr as Word

SourceString = "Hello World" " Load the source string with characters

Locate the start address of SourceString in RAM

StringAddr = AddressOf(SourceString)

DestString = StringAddr " Source string into the destination string
Print DestString " Display the result, which will be "Hello"
Stop

43

8-bit Proton Compiler Development Suite.

Slicing a String.
Each position within the string can be accessed the same as an unsigned Byte Array by using
square braces: -

Device = 18F4520 " A suitable device for Strings

Dim SourceString as String * 20 ~ Create a String

SourceString[0] = "H" " Place letter "H" as first character in the string
SourceString[1] = "E" " Place the letter "E" as the second character
SourceString[2] = L™ " Place the letter "L" as the third character
SourceString[3] = "L * Place the letter "L" as the fourth character
SourceString[4] = "0" " Place the letter "0" as the Ffifth character
SourceString[5] = 0 " Add a null to terminate the string

Print SourceString " Display the string, which will be "HELLO"

Stop

The example above demonstrates the ability to place individual characters anywhere in the
string. Of course, you wouldn't use the code above in an actual BASIC program.

A string can also be read character by character by using the same method as shown above: -

Device = 18F4520 " A suitable device for Strings
Dim SourceString as String * 20 " Create a String
Dim Varl as Byte

SourceString = ""HELLO" " Load the source string with characters
" Copy character 1 from the source string and place it into Varl

Varl = SourceString[1]
Print Varl " Display character extracted from string. Which will be "E"
Stop

When using the above method of reading and writing to a string variable, the first character in
the string is referenced at 0 onwards, just like an unsigned Byte Array.

The example below shows a more practical String slicing demonstration.

" Display a string®"s text by examining each character individually
Device = 18F4520 " A suitable device for Strings
Dim SourceString as String * 20 " Create a String
Dim Charpos as Byte Holds the position within the string

SourceString = "Hello World"” " Load the source string with characters
Charpos = 0 " Start at position 0 within the string
Repeat " Create a loop

Print SourceString[Charpos] Display character extracted from the string

Inc Charpos Move to next position within the string
Until Charpos = Len(SourceString) " Keep looping until the end of string is found
Stop

44

8-bit Proton Compiler Development Suite.

Notes

A word of caution regarding Strings: If you're familiar with interpreted BASICs and have used
their String variables, you may have run into the "subscript out of range" error. This error occurs
when the amount of characters placed in the string exceeds its maximum size.

For example, in the examples above, most of the strings are capable of holding 20 characters.
If your program exceeds this range by trying to place 21 characters into a string only created for
20 characters, the compiler will not respond with an error message. Instead, it will access the
next RAM location past the end of the String.

If you are not careful about this, it can cause all sorts of subtle anomalies as previously loaded
variables are overwritten. It's up to the programmer (you!) to prevent this from happening by
ensuring that the String in question is large enough to accommodate all the characters re-
quired, but not too large that it uses up too much precious RAM.

The compiler will help by giving a reminder message when appropriate, but this can be ignored
if you are confident that the String is large enough.

See also: Creating and using Virtual Strings with Cdata
Creating and using Virtual Strings with Edata
Cdata, Len, Left$, Mid$, Right$
String Comparisons, Str$, ToLower, ToUpper, AddressOf.

45

8-bit Proton Compiler Development Suite.

Creating and using Flash Memory Strings

Some devices have the ability to read and write to their own flash memory. And although writ-
ing to this memory too many times is unhealthy for the PICmicro™, reading this memory is both
fast, and harmless. Which offers a unique form of data storage and retrieval, the Cdata com-
mand and the new Dim as Code directive proves this, as they uses the mechanism of reading
and storing in the microcntroller's flash memory.

Combining the unique features of the 'self modifying devices ' with a string format, the compiler
is capable of reducing the overhead of printing, or transmitting large amounts of text data. The
Cstr modifier may be used in commands that deal with text processing i.e. Print, Serout,
Hrsout, and Rsout .

The Cstr modifier is used in conjunction with the Cdata command. The Cdata command is
used for initially creating the string of characters: -

Stringl: Cdata "HELLO WORLD"™, O

The above line of code will create, in flash memory, the values that make up the ASCII text
"HELLO WORLD", at address Stringl. Note the null terminator after the ASCII text.

null terminated means that a zero (null) is placed at the end of the string of ASCII characters to
signal that the string has finished.

To display, or transmit this string of characters, the following command structure could be used:

Print Cstr Stringl

The label that declared the address where the list of Cdata values resided, now becomes the
string's name. In a large program with lots of text formatting, this type of structure can save
quite literally hundreds of bytes of valuable code space.

Try both these small programs, and you'll see that using Cstr saves a few bytes of code: -

First the standard way of displaying text: -

Device = 18F4520

Cls

Print "HELLO WORLD™
Print "HOW ARE YOU?"
Print "1 AM FINEI'"
Stop

Now using the Cstr modifier: -

Cls
Print Cstr Textl
Print Cstr Text2
Print Cstr Text3
Stop

Textl: Cdata ""HELLO WORLD', O

Text2: Cdata ""HOW ARE YOu?', O
Text3: Cdata "I AM FINE!'", O

46

8-bit Proton Compiler Development Suite.

Again, note the null terminators after the ASCII text in the Cdata commands. Without these, the
microcontroller will continue to transmit data in an endless loop.

The term 'virtual string' relates to the fact that a string formed from the Cdata command cannot
(rather should not) be written too, but only read from.

Not only label names can be used with the Cstr modifier, constants, variables and expressions
can also be used that will hold the address of the Cdata 's label (a pointer). For example, the
program below uses a Word size variable to hold 2 pointers (address of a label, variable or ar-
ray) to 2 individual null terminated text strings formed by Cdata .

Example 1
" Use the Proton development board for the example
Include "Proton_4.Inc"

Dim Address as Word " Pointer variable
DelayMs 100 " Wait for the LCD to stabilise
Cls " Clear the LCD

Address = Stringl " Point address to string 1
Print Cstr Address " Display string 1
Address = String2 " Point Address to string 2
Print Cstr Address " Display string 2

Stop
" Create the text to display in flash memory
Stringl:

Cdata "Hello ", O
String2:

Cdata ""World™, O

It is also possible to eliminate the Cstr modifier altogether and place the label’s name directly.
The compiler will see this as an implied Cstr and act accordingly. For example:

" Use the Proton development board for the example
Include "Protonl8 4.Inc"

"Hello "™, O
"World", O

Dim CodeStringl as Code
Dim CodeString2 as Code

Cls " Clear the LCD
Print CodeStringl " Display CodeStringl

Print CodeString2 " Display CodeString2
Stop

47

8-bit Proton Compiler Development Suite.

Creating and using Eeprom Memory Strings with Edata

Some 14-bit core and most 18F microcontrollers have on-board eeprom memory, and although
writing to this memory too many times is unhealthy for the device, reading this memory is both
fast and harmless. Which offers a great place for text storage and retrieval.

Combining the eeprom memory of a device with a string format, the compiler is capable of re-
ducing the overhead of printing, or transmitting large amounts of text data using a memory re-
source that is very often left unused and ignored. The Estr modifier may be used in commands
that deal with text processing i.e. Print, Serout, Hrsout, and Rsout and String handling etc.

The Estr modifier is used in conjunction with the Edata command, which is used to initially cre-
ate the string of characters: -

Stringl Edata ""HELLO WORLD"™, O

The above line of code will create, in eeprom memory, the values that make up the ASCII text
"HELLO WORLD", at address Stringl in Data memory. Note the null terminator after the ASCII
text.

To display, or transmit this string of characters, the following command structure could be used:

Print Estr Stringl

The identifier that declared the address where the list of Edata values resided, now becomes
the string's name. In a large program with lots of text formatting, this type of structure can save
many bytes of valuable code space.

Try both these small programs, and you'll see that using Estr saves code space: -

First the standard way of displaying text: -

Device 18F4520

Cls

Print "HELLO WORLD™
Print "HOW ARE YOU?"
Print "1 AM FINEI'"
Stop

Now using the Estr modifier: -

Textl Edata ""HELLO WORLD", O
Text2 Edata ""HOW ARE YOU?", O
Text3 Edata "1 AM FINE!™, O

Cls
Print Estr Textl
Print Estr Text2
Print Estr Text3
Stop

Again, note the null terminators after the ASCII text in the Edata commands. Without these, the
microcontroller will continue to transmit data in an endless loop.

48

8-bit Proton Compiler Development Suite.

The term 'virtual string' relates to the fact that a string formed from the Edata command cannot
(rather should not) be written to often, but can be read as many times as wished without caus-
ing harm to the device.

Not only identifiers can be used with the Estr modifier, constants, variables and expressions
can also be used that will hold the address of the Edata’s identifier (a pointer). For example, the
program below uses a Byte size variable to hold 2 pointers (address of a variable or array) to 2
individual null terminated text strings formed by Edata .

" Use the Proton development board for the example
Include "Proton_ 4.Inc"

Dim Address as Word " Pointer variable

" Create the text to display in eeprom memory
Stringl Edata "HELLO ", O
String2 Edata "WORLD', O

DelayMs 100

Cls

Address = Stringl
Print Estr Address
Address = String2
Print Estr Address
Stop

Wait for the LCD to stabilise
Clear the LCD

Point address to string 1
Display string 1

Point Address to string 2
Display string 2

Notes

Note that the identifying text must be located on the same line as the Edata directive or a syn-
tax error will be produced. It must also not contain a postfix colon as does a line label or it will
be treat as a line label. Think of it as an alias name to a constant.

Any Edata directives must be placed at the head of the BASIC program as is done with Sym-
bols, so that the name is recognised by the rest of the program as it is parsed. There is ho need
to jump over Edata directives as you have to with Ldata or Cdata, because they do not occupy
code memory, but reside in high Data memory.

49

8-bit Proton Compiler Development Suite.

String Comparisons

Just like any other variable type, String variables can be used within comparisons such as If-
Then, Repeat-Until, and While-Wend . In fact, it's an essential element of any programming
language. However, there are a few rules to obey because of the PICmicro's architecture.

Equal (=) or Not Equal (<>) comparisons are the only type that apply to Strings, because one
String can only ever be equal or not equal to another String. It would be unusual (unless your
using the C language) to compare if one String was greater or less than another.

So a valid comparison could look something like the lines of code below: -

IT Stringl = String2 Then Print "Equal™ : Else : Print "Not Equal™

or
IT Stringl <> String2 Then Print "Not Equal™ : Else : Print "Equal”

But as you've found out if you read the Creating Strings section, there is more than one type of
String in a PICmicro . There is a String variable, a code memory string, and a quoted charac-
ter string .

Note that pointers to String variables are not allowed in comparisons, and a syntax error will be
produced if attempted.

Starting with the simplest of string comparisons, where one string variable is compared to an-
other string variable. The line of code would look similar to either of the two lines above.

Example 1
" Simple string variable comparison

Device = 18F452 " A suitable device for Strings
" Create a String capable of holding 20 characters
Dim Stringl as String * 20

Dim String2 as String * 20 " Create another String
Cls
Stringl = "EGGS" " Pre-load String Stringl with the text EGGS
String2 = ""BACON" " Load String String2 with the text BACON
IT Stringl = String2 Then " Is Stringl equal to String2 ?

Print At 1,1, " Equal " " Yes. So display Equal on line 1 of the LCD
Else " Otherwise

Print At 1,1, "Not Equal " " Display Not Equal on line 1 of the LCD
EndIf

String2 = "EGGS"
IT Stringl = String2 Then
Print At 2,1, "Equal™

Now make the strings the same as each other
Is Stringl equal to String2 ?
Yes. So display Equal on line 2 of the LCD

Else Otherwise

Print At 2,1, "Not Equal " Display Not Equal on line 2 of the LCD
EndIf
Stop

The example above will display not Equal on line one of the LCD because Stringl contains the
text "EGGS" while String2 contains the text "BACON", so they are clearly not equal.

50

8-bit Proton Compiler Development Suite.

Line two of the LCD will show Equal because String2 is then loaded with the text "EGGS" which
is the same as String1, therefore the comparison is equal.

A similar example to the previous one uses a quoted character string instead of one of the
String variables.

Example 2
" String variable to Quoted character string comparison

Device = 18F4520 " A suitable device for Strings
Declare Xtal = 16

Declare Hserial Baud = 9600
Dim Stringl as String * 20 Create a String for 20 characters

Stringl = "EGGS" " Pre-load String Stringl with the text EGGS

IT Stringl = "BACON"™ Then " Is Stringl equal to "BACON" ?
HrsoutLn "Equal™ Yes. So display equal

Else " Otherwise..
HrsoutLn "Not Equal™ " Display Not Equal

EndIf

IT Stringl = "EGGS"™ Then " Is Stringl equal to "EGGS"™ ?
HrsoutLn "Equal™ " Yes. So display Equal

Else " Otherwise..
HrsoutLn ""Not Equal" " Display Not Equal

EndIf

Stop

The example above produces exactly the same results as examplel because the first compari-
son is clearly not equal, while the second comparison is equal.

Example 3
" Use a string comparison in a Repeat-Until loop

Device = 18F4520 " A suitable device for Strings
Declare Xtal = 16
Declare Hserial Baud = 9600

Dim SourceString as String * 20 " Create a String

Dim DestString as String * 20 " Create another String

Dim Charpos as Byte " Character position within the strings
Clear DestString " Fill DestString with nulls

SourceString = "Hello"” " Load String SourceString with the text Hello
Repeat " Create a loop

" Copy SourceString into DestString one character at a time

DestString[Charpos] = SourceString[Charpos]

Inc Charpos " Move to the next character in the strings
Until DestString = "Hello"” " Stop when DestString is equal to the text "Hello"
HrsoutLn DestString " Display DestString
Stop

51

8-bit Proton Compiler Development Suite.

Example 4
" Compare a string variable to a string held in flash memory
Device = 18F4520 " A suitable device for Strings

Declare Xtal = 16
Declare Hserial Baud = 9600

Dim Stringl as String * 20 " Create a String for 20 characters
Stringl = ""BACON" " Pre-load String Stringl with the text BACON

IT CodeString= ""BACON'" Then " Is CodeString equal to "BACON"?
HrsoutLn " Equal™ Yes. So display Equal

Else " Otherwise..
HrsoutLn "'Not Equal" " Display Not Equal
EndIf
Stringl = "EGGS" " Pre-load String Stringl with the text EGGS

IT Stringl = CodeString Then " Is Stringl equal to CodeString?
HrsoutLn " Equal™ Yes. So display Equal

Else " Otherwise..
HrsoutLn "Not Equal™ " Display Not Equal
EndIf
Stop
CodeString:

Cdata "EGGS™, O

Example 5
" String comparisons using Select-Case
Device = 18F4520 " A suitable device for Strings

Declare Xtal = 16
Declare Hserial Baud = 9600

Dim Stringl as String * 20 " Create a String for 20 characters
Stringl = "EGGS" " Pre-load String Stringl with the text EGGS
Select Stringl " Start comparing the string
Case "EGGS" " Is Stringl equal to EGGS?
HrsoutLn ""Found EGGS™ " Yes. So display it
Case ""BACON" " Is Stringl equal to BACON?
HrsoutLn ""Found BACON" " Yes. So display it
Case '"'COFFEE™ " Is Stringl equal to COFFEE?
HrsoutLn "Found COFFEE" " Yes. So display it
Case Else " Default to...
HrsoutLn ""No Match™ " Displaying no match
EndSelect
Stop

See also: Creating and using Strings
Creating and using Virtual Strings with Cdata
Cdata, If-Then-Else-EndIf, Repeat-Until
Select-Case, While-Wend, Do-Loop.

52

8-bit Proton Compiler Development Suite.

Relational Operators
Relational operators are used to compare two values. The result can be used to make a deci-
sion regarding program flow.

The list below shows the valid relational operators accepted by the compiler:

Operator Relation Expression Type

= Equality X=Y

== Equality X ==Y (Same as above Equality)
<> Inequality X<>Y

< Less than X<Y

> Greater than X>Y

<= Less than or Equal to X<=Y

>= Greater than or Equalto X >=Y

See also : If-Then-Else-EndIf, Repeat-Until, Select-Case, While-Wend.

53

8-bit Proton Compiler Development Suite.

Boolean Logic Operators
The If-Then-Else-EndIf, While-Wend, and Repeat-Until conditions now support the logical
operators and and or.

The operators and and or join the results of two conditions to produce a single true/false result.
and and or work the same as they do in everyday speech. Run the example below once with
and (as shown) and again, substituting or for and: -

Dim Varl as Byte
Dim Var2 as Byte

Cls

Varl = 5

Var2 = 9

IT Varl = 5 and Var2 = 10 Then Result_True
Stop

Result_True:
Print "Result Is True.™
Stop

The condition "Varl = 5 and Var2 = 10" is not true. Although Varl is 5, Var2 is not 10. and
works just as it does in plain English, both conditions must be true for the statement to be true.
or also works in a familiar way; if one or the other or both conditions are true, then the state-
ment is true. xor (short for exclusive-or) may not be familiar, but it does have an English coun-
terpart: If one condition or the other (but not both) is true, then the statement is true.

Parenthesis (or rather the lack of it!).

Every compiler has its quirky rules, and the Proton compiler is no exception. One of its quirks
means that parenthesis is not supported in a Boolean condition, or indeed with any of the If-
Then-Else-EndIf, While-Wend, and Repeat-Until conditions. Parenthesis in an expression
within a condition is allowed however. So, for example, the expression: -

IT (Varl + 3) = 10 Then do something. Is allowed.
but: -
IT((Varl + 3) = 10) Then do something. Is not allowed.

The boolean operands do have a precedence within a condition. The and operand has the
highest priority, then the or, then the xor. This means that a condition such as: -

IT Varl = 2 and Var2 = 3 or Var3 = 4 Then do something

Will compare Varl and Var2 to see if the and condition is true. It will then see if the or condition
is true, based on the result of the and condition.

Then operand always required.

The Proton compiler relies heavily on the Then part. Therefore, if the Then part of a condition
is left out of the code listing, a Syntax Error will be produced.

54

8-bit Proton Compiler Development Suite.

Math Operators

The Proton compiler performs all math operations in full hierarchal order. Which means that
there is precedence to the operators. For example, multiplies and divides are performed before
adds and subtracts. To ensure the operations are carried out in the correct order use parenthe-
sis to group the operations: -

A=(B-C)*(D+E))I/F

All math operations are signed or unsigned depending on the variable type used, and per-
formed with 16, or 32-bit or floating point precision, again, depending on the variable types and

constant values used within the expression. The operators supported are: -

Standard operators
Addition '+'
Subtraction '-'
Multiply "*

Multiply High "**
Multiply Middle "*/'
Divide '/

Modulus '//'.

Logical operators
Bitwise and '&'

Bitwise or '|'

Bitwise xor "'

Bitwise Shift Left '<<'
Bitwise Shift Right '>>'
Bitwise Complement '~'
Bitwise Reverse '@’

Proton operators

Abs.

Dcd.

Decimal Digit Extract '?’
Div32.

Exp

Isqr

Ncd.

Pow

Sqr

Trigonometry functions
Acos
Asin
Atan
Cos
ISin
ICos
Log
Logl0
Sin
Tan

Adds variables and/or constants.
Subtracts variables and/or constants.
Multiplies variables and/or constants.

Returns the high 16 bits of an unsigned 16-bit integer multiply.
Returns the middle 16 bits of an unsigned 16-bit integer multiply.

Divides variables and/or constants.

Returns the remainder after dividing one integer value by another.

Returns the logical AND of two values.

Returns the logical OR of two values.

Returns the logical XOR of two values.

Shifts the bits of a value left a specified number of places.
Shifts the bits of a value right a specified number of places.
Reverses the bits in a variable.

Reverses the order of the lowest bits in a value.

Returns the absolute value of a signed number.

2 n -power decoder of a four-bit value.

Returns the specified decimal digit of a positive value.
15-bit x 31 bit unsigned divide. (For PBP compatibility only)
Return the exponential function of a floating point value.
Returns the Square Root of an integer value.

Priority encoder of a 16-bit value.

Computes a variable to the power of another.

Returns the Square Root of a floating point value.

Returns the Arc Cosine of a floating point value in radians.
Returns the Arc Sine of a floating point value in radians.
Returns the Arc Tangent of a floating point value in radians.
Returns the Cosine of a floating point value in radians.
Returns the Sine of an integer value in radians.

Returns the Cosine of an integer value in radians.

Returns the Natural Log of a floating point value.

Returns the Log of a floating point value.

Returns the Sine of a floating point value in radians.
Returns the Tangent of a floating point value in radians.

55

8-bit Proton Compiler Development Suite.

Add '+

Syntax
Assignment Variable = Variable + Variable

Overview
Adds variables and/or constants, returning an unsigned or signed 8, 16, 32-bit or floating point
result.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Addition works exactly as you would expect with signed and unsigned integers as well as float-
ing point.

Dim Valuel as Word
Dim Value2 as Word

Valuel = 1575

Value2 = 976
Valuel = Valuel + Value2 " Add the numbers.
HrsoutLn Dec Valuel " Display the result

" 32-bit addition
Dim Valuel as Word
Dim Value2 as Dword

Valuel = 1575
Value2 = 9763647
Value2 = Value2 + Valuel " Add the numbers.
HrsoutLn Dec Valuel " Display the result
Subtract '~
Syntax

Assignment Variable = Variable - Variable

Overview
Subtracts variables and/or constants, returning an unsigned or signed 8, 16, 32-bit or floating
point result.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Subtract works exactly as you would expect with signed and unsigned integers as well as float-
ing point.

Dim Valuel as Word
Dim Value2 as Word

Valuel = 1000

Value2 = 999

Valuel = Valuel - Value2 " Subtract the numbers.
HrsoutLn Dec Valuel " Display the result

56

8-bit Proton Compiler Development Suite.

" 32-bit subtraction
Dim Valuel as Word
Dim Value2 as Dword

Valuel = 1575

Value2 = 9763647

Value2 = Value2 - Valuel " Subtract the numbers.
HrsoutLn Dec Valuel " Display the result

" 32-bit signed subtraction
Dim Valuel as SDword
Dim Value2 as SDword

Valuel = 1575
Value2 = 9763647
Valuel = Valuel - Value2 " Subtract the numbers.
HrsoutLn SDec Valuel " Display the result
Multiply =
Syntax

Assignment Variable = Variable * Variable

Overview
Multiplies variables and/or constants, returning an unsigned or signed 8, 16, 32-bit or floating
point result.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Multiply works exactly as you would expect with signed or unsigned integers from -2147483648
to +2147483647 as well as floating point. If the result of multiplication is larger than
2147483647 when using 32-bit variables, the excess bit will be lost.

Dim Valuel as Word
Dim Value2 as Word

Valuel = 1000

Value2 = 19

Valuel = Valuel * Value2 " Multiply Valuel by Value2.
HrsoutLn Dec Valuel " Display the result

" 32-bit multiplication
Dim Valuel as Word
Dim Value2 as Dword

Valuel = 100
Value2 = 10000
Value2 = Value2 * Valuel " Multiply the numbers.

HrsoutLn Dec Valuel Display the result

57

8-bit Proton Compiler Development Suite.

Multiply High

Syntax
Assignment Variable = Variable ** Variable

Overview
Multiplies 8 or 16-bit unsigned variables and/or constants, returning the high 16 bits of the re-
sult.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

When multiplying two 16-bit values, the result can be as large as 32 bits. Since the largest vari-
able supported by the compiler is 16-bits, the highest 16 bits of a 32-bit multiplication result are
normally lost. The ** (double-star) operand produces these upper 16 bits.

For example, suppose 65000 ($FDES8) is multiplied by itself. The result is 4,225,000,000 or
$FBD46240. The * (star, or normal multiplication) instruction would return the lower 16 bits,
$6240. The ** instruction returns $FBDA4.

Dim Valuel as Word
Dim Value2 as Word

Valuel = $FDES8

Value2 = Valuel ** Valuel " Multiply $FDE8 by itself
HrsoutLn Hex Value2 " Display the high 16 bits.
Notes.

This operand enables compatibility with BASIC STAMP code, and melab's compiler code, but is
rather obsolete considering the 32-bit capabilities of the Proton compiler.

Multiply Middle "+

Syntax
Assignment Variable = Variable */ Variable

Overview
Multiplies unsigned variables and/or constants, returning the middle 16 bits of the 32-bit result.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

The Multiply Middle operator (*/) has the effect of multiplying a value by a whole number and a
fraction. The whole number is the upper byte of the multiplier (0 to 255 whole units) and the
fraction is the lower byte of the multiplier (0 to 255 units of 1/256 each). The */ operand allows a
workaround for the compiler's integer-only math.

Suppose we are required to multiply a value by 1.5. The whole number, and therefore the up-
per byte of the multiplier, would be 1, and the lower byte (fractional part) would be 128, since
128/256 = 0.5. It may be clearer to express the */ multiplier in Hex as $0180, since hex keeps
the contents of the upper and lower bytes separate. Here's an example: -

58

8-bit Proton Compiler Development Suite.

Dim Valuel as Word

Valuel = 100

Valuel = Valuel */ $0180 " Multiply by 1.5 [1 + (128/256)]
HrsoutLn Dec Valuel " Display result (150).

To calculate constants for use with the */ instruction, put the whole number portion in the upper
byte, then use the following formula for the value of the lower byte: -

int(fraction * 256)

For example, take Pi (3.14159). The upper byte would be $03 (the whole number), and the
lower would be int(0.14159 * 256) = 36 ($24). So the constant Pi for use with */ would be
$0324. This isn't a perfect match for Pi, but the error is only about 0.1%.

Notes.
This operand enables compatibility with BASIC STAMP code, and melab's compiler code, but is
rather obsolete considering the 32-bit capabilities of the Proton compiler.

Divide '/

Syntax
Assignment Variable = Variable / Variable

Overview
Divides variables and/or constants, returning an unsigned or signed 8, 16, 32-bit or floating
point result.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

The Divide operator (/) works exactly as you would expect with signed or unsigned integers
from -2147483648 to +2147483647 as well as floating point.

Dim Valuel as Word
Dim Value2 as Word

Valuel = 1000

Value2 = 5

Valuel = Valuel / Value2 " Divide the numbers.
HrsoutLn Dec Valuel " Display the result (200).

" 32-bit division
Dim Valuel as Word
Dim Value2 as Dword

Valuel = 100
Value2 = 10000
Value2 = Value2 / Valuel " Divide the numbers.

HrsoutLn Dec Valuel Display the result

59

8-bit Proton Compiler Development Suite.

Integer Modulus '/»

Syntax

Assignment Variable = Variable // Variable

Overview

Return the remainder left after dividing one unsigned or signed value by another.

Operands

Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Some division problems don't have a whole-number result; they return a whole number and a
fraction. For example, 1000/6 = 166.667. Integer math doesn't allow the fractional portion of the
result, so 1000/6 = 166. However, 166 is an approximate answer, because 166*6 = 996. The
division operation left a remainder of 4. The // returns the remainder of a given division opera-
tion. Numbers that divide evenly, such as 1000/5, produce a remainder of O: -

Dim Valuel as Word
Dim Value2 as Word

Valuel = 1000

Value2 = 6

Valuel = Valuel // Value2
HrsoutLn Dec Valuel

" 32-bit modulus
Dim Valuel as Word
Dim Value2 as Dword

Valuel = 100

Value2 = 99999

Value2 = Value2 // Valuel
HrsoutlLn Dec Valuel

Get remainder of Valuel / Value2.
Display the result (4).

Mod the numbers.
Display the result

The modulus operator does not operate with floating point values or variables.

60

8-bit Proton Compiler Development Suite.

Logical and '&'
The And operator (&) returns the bitwise and of two values. Each bit of the values is subject to
the following logic: -

Oand0=0
Oand1=0
land0=0
land1=1

The result returned by & will contain 1s in only those bit positions in which both input values
contain 1s: -

Dim Valuel as Byte
Dim Value2 as Byte
Dim MyResult as Byte

Valuel = %00001111

Value2 = %10101101

MyResult = Valuel & Value2

HrsoutLn Bin MyResult " Display and result (%00001101)

or

HrsoutLn Bin (%00001111 & %10101101) = Display and result (%00001101)
Bitwise operations are not permissible with floating point values or variables.
Logical or |

The Or operator (|) returns the bitwise or of two values. Each bit of the values is subject to the
following logic: -

Oor0=0
OQorl=1
lor0=1
lorl=1

The result returned by | will contain 1s in any bit positions in which one or the other (or both)
input values contain 1s: -

Dim Valuel as Byte
Dim Value2 as Byte
Dim MyResult as Byte

Valuel = %00001111

Value2 = %10101001

MyResult = Valuel | Value2

HrsoutLn Bin MyResult " Display or result (%10101111)

or

HrsoutLn Bin (%00001111 | %10101001) " Display or result (%10101111)

Bitwise operations are not permissible with floating point values or variables.

61

8-bit Proton Compiler Development Suite.

Logical Xor '
The Xor operator () returns the bitwise xor of two values. Each bit of the values is subject to
the following logic: -

Oxor0=0
Oxorl=1
1xor0=1
1xorl=0

The result returned by ~ will contain 1s in any bit positions in which one or the other (but not
both) input values contain 1s: -

Dim Valuel as Byte
Dim Value2 as Byte
Dim MyResult as Byte

Valuel = %00001111

Value2 = %10101001

MyResult = Valuel ™ Value2

HrsoutLn Bin MyResult " Display xor result (%10100110)

or

HrsoutLn Bin (%00001111 ~ %10101001) " Display xor result (%10100110)

Bitwise operations are not permissible with floating point values or variables.

Bitwise Shift Left '<<

Shifts the bits of a value to the left a specified number of places. Bits shifted off the left end of a
number are lost; bits shifted into the right end of the number are 0s. Shifting the bits of a value
left n number of times also has the effect of multiplying that number by two to the nth power.

For example 100 << 3 (shift the bits of the decimal number 100 left three places) is equivalent
to 100 * 273.

Dim Valuel as Word
Dim MyLoop as Byte

Valuel = %1111111111111111

For MyLoop = 1 to 16 " Repeat with MyLoop = 1 to 16.
HrsoutLn Bin Valuel << MyLoop " Shift Valuel left MyLoop places.
Next

Bitwise operations are not permissible with floating point values or variables. All bit shifts are
unsigned, regardless of the variable type used.

62

8-bit Proton Compiler Development Suite.

Bitwise Shift Right '>>'

Shifts the bits of a variable to the right a specified number of places. Bits shifted off the right
end of a number are lost; bits shifted into the left end of the number are Os. Shifting the bits of a
value right n number of times also has the effect of dividing that number by two to the nth
power.

For example 100 >> 3 (shift the bits of the decimal number 100 right three places) is equivalent
to 100 / 23.

Dim Valuel as Word
Dim MyLoop as Byte

Valuel = %1111111111111111

For MyLoop = 1 to 16 " Repeat with MyLoop = 1 to 16.
HrsoutLn Bin Valuel >> MyLoop = Shift Valuel right MyLoop places.

Next

Complement '~
The Complement operator (~) inverts the bits of a value. Each bit that contains a 1 is changed
to 0 and each bit containing 0 is changed to 1. This process is also known as a "bitwise not".

Dim Valuel as Word
Dim Value2 as Word

Value2 = %1111000011110000
Valuel = ~Value2 " Complement Value2.
Print Binl6 Valuel " Display the result

Complementing can be carried out with all variable types except Floats. Attempting to comple-
ment a floating point variable will produce a syntax error. All bit shifts are unsigned, regardless
of the variable type used.

Bitwise Reverse '@'

Reverses the order of the lowest bits in a value. The number of bits to be reversed is from 1 to
32. Its syntax is: -

MyVar = %10101100 @ 4 " Sets MyVar to %10100011

or
Dim MyDword as Dword

" Sets MyDword to %10101010000000001111111110100011
MyDword = %10101010000000001111111110101100 @ 4

Decimal Digit extract '?"

In this form, the ? operator is compatible with the BASIC Stamp, and the melab's PicBASIC Pro
compiler. It returns the specified decimal digit of a 16-bit positive value. Digits are nhumbered
from O (the rightmost digit) to 4 (the leftmost digit of a 16- bit number; 0 to 65535). Example: -

MyWord = 9742

HrsoutLn MyWord ? 2 " Display digit 2 (7)
For MyLoop = O to 4
HrsoutLn MyWord ? MyLoop " Display digits 0 through 4 of 9742.
Next
Note

Decimal Digit Extract does not support Float type variables.

63

8-bit Proton Compiler Development Suite.

Abs

Syntax
Assignment Variable = Abs(Variable)

Overview
Return the absolute value of a constant, variable or expression.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

32-bit Example
Device = 18F25K22 " Choose the device
Declare Xtal = 16 " Choose the oscillator frequency used
Declare Hserial_Baud = 9600 " Choose the Baud rate for HrsoutLn

Dim Dwdl as Dword
Dim Dwd2 as Dword

Create an unsigned Dword variable
Create an unsigned Dword variable

Dwdl = -1234567 " Load Dwdl with value -1234567

Dwd2 = Abs(Dwdl) " Extract the absolute value from Dwdl
HrsoutLn Dec Dwd2 * Display the result, which is 1234567
Stop

Floating Point example
Device = 18F25K22 " Choose the device
Declare Xtal = 16 " Choose the oscillator frequency used
Declare Hserial _Baud = 9600 " Choose the Baud rate for HrsoutLn

Dim FIpl as Float " Create a Float variable
Dim FIp2 as Float " Create a Float variable
Flpl = -1234567 " Load FlIpl with value -1234567
FIp2 = Abs(Flpl) " Extract the absolute value from Flpl
HrsoutLn Dec FlIp2 " Display the result, which is 1234567
Stop

Note

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

MyAssignment = (Abs(MyVarl)) + MyVar2

64

8-bit Proton Compiler Development Suite.

fAbs

Syntax
Assignment Variable = fAbs(Variable)

Overview
Return the absolute value of a constant, variable or expression as floating point.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Floating Point example
Device = 18F25K22 " Choose the device
Declare Xtal = 16 " Choose the oscillator frequency used
Declare Hserial _Baud = 9600 " Choose the Baud rate for HrsoutLn

Dim FIpl as Float " Create a Float variable
Dim FIp2 as Float " Create a Float variable
Flpl = -1234567 " Load FlIpl with value -1234567
FIp2 = FfAbs(Flpl) " Extract the absolute value from Flpl
HrsoutLn Dec Flp2 " Display the result, which is 1234567
Stop

Note

When implementing trigopnometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

MyAssignment = (fAbs(MyVvarl)) + MyVar2

65

8-bit Proton Compiler Development Suite.

AcCo0S

Syntax
Assignment Variable = Acos(Variable)

Overview
Deduce the Arc Cosine of a floating point value

Operands

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression that requires the Arc Cosine (Inverse Co-
sine) extracted. The value expected and returned by the floating point Acos is in radians. The
value must be in the range of -1 to +1

Example
Device = 18F25K22 " Choose the device
Declare Xtal = 16 " Choose the oscillator frequency used

Declare Hserial_Baud = 9600 " Choose the Baud rate for HrsoutLn

Dim Floatin as Float " Holds the value to Acos

Dim Floatout as Float " Holds the result of the Acos
Floatin = 0.8 " Load the variable
Floatout = Acos(Floatin) " Extract the Acos of the value
HrsoutLn Dec Floatout " Display the result
Stop

Notes

Acos is not implemented with 12, or 14-bit core devices, however, with the extra functionality,
and more linear memory offered by the 18F devices, full 32-bit floating point Arc Cosine is im-
plemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk
of the microcontroller's code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap

them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

MyAssignment = (Acos(MyVarl)) + MyVar2

66

8-bit Proton Compiler Development Suite.

Asin

Syntax
Assignment Variable = Asin(Variable)

Overview
Deduce the Arc Sine of a floating point value

Operands

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression that requires the Arc Sine (Inverse Sine) ex-
tracted. The value expected and returned by Asin is in radians. The value must be in the range
of -1to +1

Example
Device = 18F25K22 " Choose the device
Declare Xtal = 16 " Choose the oscillator frequency used

Declare Hserial _Baud = 9600 " Choose the Baud rate for HrsoutLn
Dim Floatin as Float " Holds the value to Asin
Dim Floatout as Float " Holds the result of the Asin

Floatin = 0.8 " Load the variable

Floatout = Asin(Floatin) " Extract the Asin of the value
HrsoutLn Dec Floatout Display the result

Stop

Notes

Asin is not implemented with 12, or 14-bit core devices, however, with the extra functionality,
and more linear memory offered by the 18F devices, full 32-bit floating point Arc Sine is imple-
mented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk
of the microcontroller's code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

When implementing trigopnometry, or other built in, functions within an expression, always wrap

them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

MyAssignment = (Asin(MyVarl)) + MyVar2

67

8-bit Proton Compiler Development Suite.

Atan

Syntax
Assignment Variable = Atan(Variable)

Overview
Deduce the Arc Tangent of a floating point value

Operands

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression that requires the Arc Tangent (Inverse Tan-
gent) extracted. The value expected and returned by the floating point Atan is in radians.

Example
Device = 18F25K22 " Choose the device
Declare Xtal = 16 " Choose the oscillator frequency used

Declare Hserial _Baud = 9600 " Choose the Baud rate for HrsoutLn

Dim Floatin as Float " Holds the value to Atan
Dim Floatout as Float * Holds the result of the Atan

Floatin = 1 " Load the variable

Floatout = Atan(Floatin) = Extract the Atan of the value
HrsoutLn Dec Floatout Display the result

Stop

Notes

Atan is not implemented with 12, or 14-bit core devices, however, with the extra functionality,
and more linear memory offered by the 18F devices, full 32-bit floating point Arc Tangent is im-
plemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk
of the microcontroller's code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

MyAssignment = (Atan(MyVarl)) + MyVar2

68

8-bit Proton Compiler Development Suite.

Cos

Syntax
Assignment Variable = Cos(Variable)

Overview
Deduce the Cosine of a floating point value

Operands

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression that requires the Cosine extracted. The
value expected and returned by Cos is in radians.

Example
Device = 18F25K22 " Choose the device
Declare Xtal = 16 " Choose the oscillator frequency used

Declare Hserial Baud = 9600 " Choose the Baud rate for HrsoutLn

Dim Floatin as Float Holds the value to Cos with
Dim Floatout as Float " Holds the result of the Cos

Floatin = 123 " Load the variable

Floatout = Cos(Floatin) " Extract the Cos of the value
HrsoutLn Dec Floatout Display the result

Stop

Notes

With 12, and 14-bit core devices, Cos returns the 8-bit cosine of a value, compatible with the
BASIC Stamp syntax. The result is in two's complement form (i.e. -127 to 127). Cos starts with
a value in binary radians, 0 to 255, instead of the customary 0 to 359 degrees.

However, with the extra functionality, and more linear memory offered by the 18F devices, full
32-bit floating point Cosine is implemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk
of the microcontroller's code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

When implementing trigopnometry, or other built in, functions within an expression, always wrap

them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

MyAssignment = (Cos(MyVarl)) + MyVar2

69

8-bit Proton Compiler Development Suite.

Dcd
2 n -power decoder of a four-bit value. Dcd accepts a value from 0 to 15, and returns a 16-bit

number with that bit number set to 1. For example: -

Wrdl= Dcd 12 " Set bit-12.
HrsoutLn Binl6 Wrdl " Display result (%0001000000000000)

Dcd does not support Dword, or Float type variables. Therefore the highest value obtainable is
65535.

70

8-bit Proton Compiler Development Suite.

EXp

Syntax
Assignment Variable = Exp(Variable)

Overview
Deduce the exponential function of a floating point value. This is e to the power of value where
e is the base of natural logarithms. Exp 1 is 2.7182818.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Example
Device = 18F25K22 " Choose the device
Declare Xtal = 16 " Choose the oscillator frequency used

Declare Hserial Baud = 9600 " Choose the Baud rate for HrsoutLn

Dim Floatin as Float " Holds the value to Exp with
Dim Floatout as Float " Holds the result of the Exp
Floatin = 1 " Load the variable

Floatout = Exp(Floatin) " Extract the Exp of the value
HrsoutLn Dec Floatout Display the result
Stop

Notes

Exp is not implemented with 12, or 14-bit core devices, however, with the extra functionality,
and more linear memory offered by the 18F devices, full 32-bit floating point exponentials are
implemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk
of the microcontroller's code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap

them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

MyAssignment = (Exp(MyVarl)) + MyVar2

71

8-bit Proton Compiler Development Suite.

fRound

Syntax
Assignment Variable = fRound(Variable)

Overview
Round a value, variable or expression to the nearest integer.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Example
Device = 18F25K22 " Choose the device
Declare Xtal = 16 " Choose the oscillator frequency used

Declare Hserial _Baud = 9600 " Choose the Baud rate for HrsoutLn

Dim Floatin as Float " Holds the value to round
Dim Dwordout as Dword " Holds the result of fRound
Floatin = 1.9 " Load the variable
Dwordout = fRound(Floatin) " Round to the nearest integer value
HrsoutLn Dec Dwordout " Display the integer result
Stop
Notes

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk
of the microcontroller's code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

MyAssignment = (fRound(MyVarl)) + MyVar2

72

8-bit Proton Compiler Development Suite.

ISin

Syntax
Assignment Variable = ISin(Variable)

Overview
Deduce the integer Sine of an integer value

Operands

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression that requires the Sine extracted. The value
expected and returned by ISin is in decimal radians (0 to 255).

Example
Device = 18F25K22 " Choose the device
Declare Xtal = 16 " Choose the oscillator frequency used

Declare Hserial Baud = 9600 " Choose the Baud rate for HrsoutLn

Dim Byteln as Byte " Holds the value to 1Sin

Dim ByteOut as Byte " Holds the result of the ISin
Byteln = 123 " Load the variable
ByteOut = ISin(Byteln) " Extract the integer Sin of the value
HrsoutLn Dec ByteOut " Display the result
Stop
Note

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

MyAssignment = (ISin(MyVvarl)) + MyVar2

73

8-bit Proton Compiler Development Suite.

ICos

Syntax
Assignment Variable = ICos(Variable)

Overview
Deduce the integer Cosine of an integer value

Operands

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression that requires the Cosine extracted. The
value expected and returned by ICos is in decimal radians (0 to 255).

Example
Device = 18F25K22 " Choose the device
Declare Xtal = 16 " Choose the oscillator frequency used

Declare Hserial Baud = 9600 " Choose the Baud rate for HrsoutLn

Dim Byteln as Byte " Holds the value to ICos
Dim ByteOut as Byte " Holds the result of the Icos
Byteln = 123 " Load the variable
ByteOut = ICos(Byteln) " Extract the integer Cosine of the value
HrsoutLn Dec ByteOut " Display the result
Stop
Note

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

MyAssignment = (ICos(MyVarl)) + MyVar2

74

8-bit Proton Compiler Development Suite.

Isqr

Syntax
Assignment Variable = ISqr(Variable)

Overview
Deduce the integer Square Root of an integer value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Square Root extracted.

Example
Device = 18F25K22 * Choose the device
Declare Xtal = 16 " Choose the oscillator frequency used

Declare Hserial Baud = 9600 " Choose the Baud rate for HrsoutLn

Dim Byteln as Byte " Holds the value to ISgr
Dim ByteOut as Byte " Holds the result of the Isqr
Byteln = 123 " Load the variable
ByteOut = ISqr(Byteln) " Extract the integer square root of the value
HrsoutLn Dec ByteOut " Display the result
Stop
Note

When implementing trigopnometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

MyAssignment = (Isgqr(Myvarl)) + MyVar2

75

8-bit Proton Compiler Development Suite.

Log

Syntax
Assignment Variable = Log(Variable)

Overview
Deduce the Natural Logarithm a floating point value

Operands

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression that requires the natural logarithm ex-
tracted.

Example
Device = 18F25K22 " Choose the device
Declare Xtal = 16 " Choose the oscillator frequency used

Declare Hserial Baud = 9600 " Choose the Baud rate for HrsoutLn

Dim Floatin as Float " Holds the value to Log with
Dim Floatout as Float " Holds the result of the Log
Floatin = 1 " Load the variable
Floatout = Log(Floatin) " Extract the Log of the value
HrsoutLn Dec Floatout " Display the result
Stop

Notes

Log is not implemented with 12, or 14-bit core devices, however, with the extra functionality,
and more linear memory offered by the 18F devices, full 32-bit floating point Natural Logarithms
are implemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk
of the microcontroller's code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

MyAssignment = (Log(MyVarl)) + MyVar2

76

8-bit Proton Compiler Development Suite.

Logl0

Syntax
Assignment Variable = Log10(Variable)

Overview
Deduce the Logarithm a floating point value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Logarithm extracted.

Example
Device = 18F25K22 * Choose the device
Declare Xtal = 16 " Choose the oscillator frequency used

Declare Hserial Baud = 9600 " Choose the Baud rate for HrsoutLn

Dim Floatin as Float " Holds the value to Logl0 with
Dim Floatout as Float " Holds the result of the Logl0
Floatin = 1 " Load the variable

Floatout = LoglO(Floatin) " Extract the LoglO of the value
HrsoutLn Dec Floatout Display the result
Stop

Notes

Log10 is not implemented with 12, or 14-bit core devices, however, with the extra functionality,
and more linear memory offered by the 18F devices, full 32-bit floating point logarithms are im-
plemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk
of the microcontroller's code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

When implementing trigopnometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

MyAssignment = (LoglO(MyVarl)) + MyVar?2

77

8-bit Proton Compiler Development Suite.

Ncd
Priority encoder of a 16-bit value. Ncd takes a 16-bit value, finds the highest bit containing a 1

and returns the bit position plus one (1 through 16). If no bit is set, the input value is 0. Ncd re-
turns 0. Ncd is a fast way to get an answer to the question "what is the largest power of two that
this value is greater than or equal to?" The answer that Ncd returns will be that power, plus

one. Example: -

Wrdl= %1101 " Highest bit set is bit-3.
HrsoutLn Dec Ncd Wrdl * Display the Ncd of Wrd1(4).

Ncd does not support Dword, or Float type variables.

78

8-bit Proton Compiler Development Suite.

Pow

Syntax
Assignment Variable = Pow(Variable, Pow Variable)

Overview
Computes Variable to the power of Pow Variable.

Operands

Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Pow Variable can be a constant, variable or expression.

Example
Device = 18F25K22 " Choose the device
Declare Xtal = 16 " Choose the oscillator frequency used
Declare Hserial Baud = 9600 " Choose the Baud rate for HrsoutLn

Dim PowOf as Float

Dim Floatin as Float Holds the value to Pow with

Dim Floatout as Float " Holds the result of the Pow
PowOf= 10
Floatin = 2 " Load the variable

Floatout = Pow(Floatin,PowOf) " Extract the Pow of the value
HrsoutLn Dec Floatout Display the result
Stop

Notes

Pow is not implemented with 12, or 14-bit core devices, however, with the extra functionality,
and more linear memory offered by the 18F devices, full 32-bit floating point power of is imple-
mented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk
of the microcontroller's code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

When implementing trigopnometry, or other built in, functions within an expression, always wrap

them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

MyAssignment = (Pow(MyVarl, MyVar2)) + MyVar3

79

8-bit Proton Compiler Development Suite.

Sin

Syntax
Assignment Variable = Sin(Variable)

Overview
Deduce the Sine of a floating point value

Operands

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression that requires the Sine extracted. The value
expected and returned by Sin is in radians.

Example
Device = 18F25K22 " Choose the device
Declare Xtal = 16 " Choose the oscillator frequency used

Declare Hserial Baud = 9600 " Choose the Baud rate for HrsoutLn

Dim Floatin as Float " Holds the value to Sin
Dim Floatout as Float " Holds the result of the Sin
Floatin = 123 " Load the variable
Floatout = Sin(Floatin) " Extract the Sin of the value
HrsoutLn Dec Floatout " Display the result
Stop

Notes

With 12, and 14-bit core devices, Sin returns the 8-bit sine of a value, compatible with the BA-
SIC Stamp syntax. The result is in two's complement form (i.e. -127 to 127). Sin starts with a
value in binary radians, 0 to 255, instead of the customary 0 to 359 degrees.

However, with the extra functionality, and more linear memory offered by the 18F devices, full
32-bit floating point Sine is implemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk
of the microcontroller's code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

MyAssignment = (Sin(MyVarl)) + MyVar2

80

8-bit Proton Compiler Development Suite.

Sqgr

Syntax
Assignment Variable = Sqr(Variable)

Overview
Deduce the Square Root of a floating point value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Squrare Root extracted.

Notes

With 12 and 14-bit core devices, Sqr returns an integer square root of a value, compatible with
the BASIC Stamp syntax. Remember that most square roots have a fractional part that the
compiler discards in doing its integer-only math. Therefore it computes the square root of 100
as 10 (correct), but the square root of 99 as 9 (the actual is close to 9.95). Example: -

Varl = Sqgr Var2

or

HrsoutLn Sqgr 100 " Display square root of 100 (10).
HrsoutLn Sqr 99 " Display of square root of 99 (9 due to truncation)

However, with the extra functionality, and more linear memory offered by the 18F devices, full
32-bit floating point Sqr is implemented.

Example
Device = 18F25K22 * Choose the device
Declare Xtal = 16 " Choose the oscillator frequency used

Declare Hserial Baud = 9600 " Choose the Baud rate for HrsoutLn

Dim Floatin as Float Holds the value to Sqr

Dim Floatout as Float " Holds the result of the Sqgr
Floatin = 600 " Load the variable
Floatout = Sqr(Floatin) " Extract the Sgr of the value
HrsoutLn Dec Floatout * Display the result
Stop

Notes

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk
of the microcontroller’s code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap

them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

MyAssignment = (Sqgr(MyVarl)) + MyVar2

81

8-bit Proton Compiler Development Suite.

Tan

Syntax
Assignment Variable = Tan(Variable)

Overview
Deduce the Tangent of a floating point value

Operands

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression that requires the Tangent extracted. The
value expected and returned by the floating point Tan is in radians.

Example
Device = 18F25K22 " Choose the device
Declare Xtal = 16 " Choose the oscillator frequency used

Declare Hserial Baud = 9600 " Choose the Baud rate for HrsoutLn

Dim Floatin as Float " Holds the value to Tan
Dim Floatout as Float " Holds the result of the Tan
Floatin = 1 " Load the variable
Floatout = Tan(Floatin) " Extract the Tan of the value
HrsoutLn Dec Floatout " Display the result
Stop

Notes

Tan is not implemented with 12, or 14-bit core devices, however, with the extra functionality,
and more linear memory offered by the 18F devices, full 32-bit floating point tangent is imple-
mented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk
of the microcontroller's code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

MyAssignment = (Tan(MyVarl)) + MyVar2

82

8-bit Proton Compiler Development Suite.

Div32

In order to make the Proton compiler more compatible with code produced for the melab's
PicBASIC Pro compiler, the Div32 operator has been added. The melab's compiler's multiply
operand operates as a 16-bit x 16-bit multiply, thus producing a 32-bit result. However, since
the compiler only supports a maximum variable size of 16 bits (Word), access to the result had
to happen in 2 stages: -

Var = Varl * Var2 returns the lower 16 bits of the multiply
while...
Var = Varl ** Var2 returns the upper 16 bits of the multiply

There was no way to access the 32-bit result as a valid single value.

In many cases it is desirable to be able to divide the entire 32-bit result of the multiply by a 16-
bit number for averaging, or scaling. Div32 is actually limited to dividing a 31-bit unsigned inte-
ger (0 - 2147483647) by a 15-bit unsigned integer (0 - 32767). This ought to be sufficient in
most situations.

Because the melab's compiler only allows a maximum variable size of 16 bits (0 - 65535),
Div32 relies on the fact that a multiply was performed just prior to the Div32 command, and
that the internal compiler variables still contain the 32-bit result of the multiply. No other opera-
tion may occur between the multiply and the Div32 or the internal variables may be altered,
thus destroying the 32-bit multiplication result.

The following example demonstrates the operation of Div32:-

Device = 18F25K22 " Choose the device
Declare Xtal = 16 " Choose the oscillator frequency used
Declare Hserial Baud = 9600 " Choose the Baud rate for HrsoutLn

Dim Wrdl as Word
Dim Wrd2 as Word
Dim Wrd3 as Word

Dim Fake as Word " Must be a Word type variable for result

Wrd2 = 300

Wrd3 = 1000

Fake = Wrd2 * Wrd3 " Operators ** or */ could also be used instead

Wrdl= Div32 100
HrsoutLn Dec Wrdl

The above program assigns Wrd2 the value 300 and Wrd3 the value 1000. When multiplied to-
gether, the result is 300000. However, this number exceeds the 16-bit word size of a variable
(65535). Therefore, the dummy variable, Fake, contains only the lower 16 bits of the result.
Div32 uses the compiler's internal (System) variables as the operands.

Note.

This operand enables a certain compatibility with melab’s compiler code, but is rather obsolete
considering the 32-bit, and floating point capabilities of the Proton compiler.

83

8-bit Proton Compiler Development Suite.

Compiler Commands and Directives

Peripheral and Interfacing Commands

Adin
Bstart
Bstop
Brestart
BusAck
BusNack
Busin
Busout
Button
ClearPin
Counter
DTMFout
Freqout
GetPin
HbStart
HbStop
HbRestart
HbusAck

HbusNack

Hbusin
Hbusout
High
Hpwm
12Cin
12Cout
Inkey
Input
Output
Oread
Owrite
Low
Pot
Pulseln
PulseOut
Pwm
RCin
Servo
SetPin
Shin
Shout
Sound
Sound2
Toggle
USBinit
USBIin
USBout
Xin
Xout

Read the on-board Analogue to Digital Converter peripheral.
Send a Start condition to the 1°C bus.

Send a Stop condition to the I°C bus.

Send a Restart condition to the 1°C bus.

Send an Acknowledge condition to the I°C bus.

Send an Not Acknowledge condition to the 1°C bus.

Read bytes from an I°C device.

Write bytes to an 1°C device.

Detect and debounce a key press.

Clear a pin of a port using a variable as the pin number.

Count the number of pulses occurring on a pin.

Produce a DTMF Touch Tone note.

Generate one or two tones, of differing or the same frequencies.
Read a pin from a port using a variable as the index

Send a Start condition to the 1°C bus using the MSSP module.
Send a Stop condition to the I1°C bus using the MSSP module.
Send a Restart condition to the 1°C bus using the MSSP module.
Send an Ack condition to the I°C bus using the MSSP module.
Send a Not Ack condition to the 12C bus using the MSSP module.
Read from an 1°C device using the MSSP module.

Write to an 1°C device using the MSSP module.

Make a pin or port high.

Generate Pwm signals using the device’s CCP peripherals.
Read bytes from an I°C device with user definable SDA\SCL lines.
Write bytes to an I°C device with user definable SDA\SCL lines.
Scan a matrix keypad.

Make a pin or port an input.

Make a pin or port an output.

Receive data from a device using the Dallas 1-wire protocol.
Send data to a device using the Dallas 1-wire protocol.

Make a pin or port low.

Read a potentiometer on specified pin using an RC method.
Measure the pulse width on a pin.

Generate a pulse from a pin.

Output a pulse width modulated pulse train to pin.

Measure a pulse width on a pin.

Control a servo motor.

Set a pin of a port using a variable as the pin number.
Synchronous serial input. i.e. SPI

Synchronous serial output. i.e. SPI

Generate a tone or white-noise from a specified pin.

Generate 2 tones from 2 separate pins.

Reverse the state of a port's bit.

Initialise the USB on devices that contain a USB peripheral.

Receive data via a USB endpoint on devices that contain a USB peripheral.
Transmit data via a USB endpoint on devices that contain a USB peripheral.

Receive data using the X10 protocol.
Transmit data using the X10 protocol.

84

8-bit Proton Compiler Development Suite.

LCD Commands

Box
Circle
Cls
Cursor
LCDread
LCDwrite
Line
LineTo

Pixel
Plot
Print

Toshiba_Command
Toshiba_UDG

UnPlot

Draw a square on a graphic LCD.

Draw a circle on a graphic LCD.

Clear the LCD.

Position the cursor on the LCD.

Read a single byte from a Graphic LCD.

Write bytes to a Graphic LCD.

Draw a line in any direction on a graphic LCD.

Draw a straight line in any direction on a graphic LCD, starting from the
previous Line command's end position.

Read a single pixel from a Graphic LCD.

Set a single pixel on a Graphic LCD.

Display characters on an LCD.

Send a command to a Toshiba T6963 graphic LCD.

Create User Defined Graphics for Toshiba T6963 graphic LCD.
Clear a single pixel on a Graphic LCD.

Async Serial Commands

Hrsin
Hrsout
HrsoutLn

Hserin
Hserout
HseroutlLn

Hrsin2
Hrsout2
Hrsout2Ln
Hserin2
Hserout?2
Hserout2Ln
Hrsin3
Hrsout3
Hrsout3Ln
Hserin3
Hserout3
Hserout3Ln
Hrsin4
Hrsout4
Hrsout4lLn
Hserin4
Hserout4
Hserout4lLn
Rsin

Rsout
RsoutlLn

Serin
Serout

Receive data from the serial port on devices that contain a USART.
Transmit data from the serial port on devices that contain a USART.
Transmit data from the serial port on devices that contain a USART
and transmit a terminator value or values.

Receive data from the serial port on devices that contain a USART.
Transmit data from the serial port on devices that contain a USART.
Transmit data from the serial port on devices that contain a USART
and transmit a terminator value or values.

Same as Hrsin but using a 2nd USART if available.

Same as Hrsout but using a 2nd USART if available.

Same as HrsoutLn but using a 2nd USART if available.

Same as Hserin but using a 2nd USART if available.

Same as Hserout but using a 2nd USART if available.

Same as HseroutLn but using a 2nd USART if available.

Same as Hrsin but using a 3rd USART if available.

Same as Hrsout but using a 3rd USART if available.

Same as HrsoutLn but using a 3rd USART if available.

Same as Hserin but using a 3rd USART if available.

Same as Hserout but using a 3rd USART if available.

Same as HseroutLn but using a 3rd USART if available.

Same as Hrsin but using a 4th USART if available.

Same as Hrsout but using a 4th USART if available.

Same as HrsoutLn but using a 4th USART if available.

Same as Hserin but using a 4th USART if available.

Same as Hserout but using a 4th USART if available.

Same as HseroutLn but using a 4th USART if available.
Asynchronous serial input from a fixed pin and baud rate.
Asynchronous serial output to a fixed pin and baud rate.
Asynchronous serial output to a fixed pin and baud rate,

and transmit a terminator value or values.

Receive asynchronous serial data (i.e. RS232 data).

Transmit asynchronous serial data (i.e. RS232 data).

85

8-bit Proton Compiler Development Suite.

Comparison and Loop Commands

Branch Computed Goto (equiv. to On..Goto).

BranchL Branch out of page (long Branch).

Break Exit a loop prematurely.

Continue Cause the next iteration of the enclosing loop to begin.
Do...Loop Execute a block of instructions until a condition is true.

For...To...Next...Step Repeatedly execute statements.
If..Then..Elself..Else..EndIf Conditionally execute statements.

On Gosub Call a Subroutine based on an Index value. For 18F devices only.

On Goto Jump to an address in code memory based on an Index value.
(Primarily for smaller devices)

On GotolL Jump to an address in code memory based on an Index value.
(Primarily for larger devices)

Repeat...Until Execute a block of instructions until a condition is true.

Select..Case..EndSelect Conditionally run blocks of code.

While...Wend Execute statements while condition is true.

General BASIC Commands

AddressOf Get the address of a variable or label.

Call Call an assembly language subroutine.

Clear Place a variable or bit in a low state, or clear all RAM area.

ClearBit Clear a bit of a variable, using a variable index.

Dec Decrement a variable.

DelayCs Delay with a 1 instruction cycle resolution.

DelayMs Delay milliseconds.

DelayUs Delay microseconds.

Dig Return the value of a decimal digit.

GetBit Examine a bit of a variable, using a variable index.

Gosub Call a BASIC subroutine at a specified label.

Goto Continue execution at a specified label.

Inc Increment a variable.

LoadBit Set or Clear a bit of a variable, using a variable index.

Random Generate a pseudo-random number.

Return Continue at the statement following the last Gosub.

Rol Rotate a variable left, with or without the microcontroller’s Carry flag.
Ror Rotate a variable right, with or without the microcontroller’s Carry flag.
Seed Seed the random number generator, to obtain a more random result.
Set Place a variable or bit in a high state.

SetBit Set a bit of a variable, using a variable index.

Sleep Power down the processor for a period of time.

Snooze Power down the processor for short period of time.

Stop Stop program execution.

Swap Exchange the values of two variables.

86

8-bit Proton Compiler Development Suite.

RAM String Variable Commands

Left$ Extract n amount of characters from the left of a String.

Mid$ Extract characters from a String beginning at n characters from the left.
Right$ Extract n amount of characters from the right of a String.

Str Load a byte array with values.

Strn Create a null terminated byte array.

Str$ Convert the contents of a variable to a null terminated String.

ToLower Convert the characters in a String to lower case.

ToUpper Convert the characters in a String to upper case.

Val Convert a null terminated String to an integer value.

Non-Volatile Data (Flash memory) Commands

cPtr8, cPtrl6, cPtr32 Indirectly read flash memory using a variable as the address.

Cdata Place information into flash memory. For access by Cread.

Cread Read data from flash memory.

Cread8, Cread16, Cread32 Read a single or multi-byte value from an Cdata table
with more efficiency than Cread.

Cwrite Write data to flash memory.

Edata Define initial contents of on-board eeprom.

Eread Read a value from on-board eeprom.

Ewrite Write a value to on-board eeprom.

Ldata Place information into flash memory. For access by Lread.
LookDown Search a constant lookdown table for a value.
LookDownL Search constant or variable lookdown table for a value.
LookUp Fetch a constant value from a lookup table.

LookUpL Fetch a constant or variable value from lookup table.
Lread Read a value from an Ldata table.

Lread8, Lread16, Lread32 Read a single or multi-byte value from an Ldata table
with more efficiency than Lread.

Directives

Asm-EndAsm Insert assembly language code section.
Config Set or Reset programming fuse configurations.
Declare Adjust library routine parameters.

Device Choose the type of PICmicro™ to compile for.
Dim Create a variable.

Disable Disable software interrupts previously Enabled.
Enable Enable software interrupts previously Disabled.
End Stop execution of the BASIC program.

Include Load a file into the source code.

On Interrupt Execute a subroutine using a Software interrupt

(On Interrupt is Legacy. Not Recommended).
On_Hardware_Interrupt Point to the subroutine that a hardware interrupt will jump too.
On_Low_Interrupt Point to a subroutine for a Low Priority interrupt on an 18F device.

Org Set Program Origin.

Resume Re-enable software interrupts and return.

Set OSCCAL Calibrate the internal oscillator found on some PICmicro™ devices.
Sub-EndSub Create a subroutine unit

Symbol Create a constant.

87

8-bit Proton Compiler Development Suite.

ADin

Syntax
Variable = ADin channel number

Overview
Read the value from the on-board Analogue to Digital Converter.

Parameters
Variable is a user defined variable.
Channel number can be a constant or a variable expression.

Example
" Read the value from ANO of the ADC and place in variable ADC Result.
Device = 18F25K20
Declare Xtal = 16
Declare Hserial _Baud = 9600
Declare Adin_Res = 10
Declare Adin_Tad = FRC
Declare Adin_Stime = 50

Set the Baud rate for HrsoutLn
10-bit ADC result required

RC oscillator chosen for the ADC
Allow 50us sample time

Dim ADC_Result as Word " Create a word variable to hold the ADC value
ADCON1 = %10000000 " Set analogue input on PORTA.O

ADC_Result = Adin O " Place the conversion into variable ADC_Result
HrsoutLn Dec ADC Result " Transmit the decimal ADC value

ADin Declares
There are three Declare directives for use with ADin. These are: -

Declare Adin_Res 8, 10, or 12.
Sets the number of bits in the result.

If this Declare is not used, then the default is the resolution of the PICmicro" type used. For
example, the 16F87X range will result in a resolution of 10-bits, along with the 18F devices,
while the standard PICmicro" types will produce an 8-bit result. Using the above Declare al-
lows an 8-bit result to be obtained from the 10-bit PICmicro™ types, but not 10-bits from the 8-
bit types.

Declare Adin_Tad 2_FOSC, 8 FOSC, 32 FOSC, 64_FOSC, or FRC.
Sets the ADC's clock source.

All compatible PICs have four options for the clock source used by the ADC. 2_FOSC,
8 FOSC, 32 FOSC, and 64 _FOSC are ratios of the external oscillator, while FRC is the
PICmicro's internal RC oscillator. Instead of using the predefined names for the clock source,
values from 0 to 3 may be used. These reflect the settings of bits 0-1 in register ADCONO.

Care must be used when issuing this Declare, as the wrong type of clock source may result in
poor resolution, or no conversion at all. If in doubt use FRC which will produce a slight reduc-
tion in resolution and conversion speed, but is guaranteed to work first time, every time. FRC is
the default setting if the Declare is not issued in the BASIC listing.

Declare Adin_Stime 0 to 65535 microseconds (us).

Allows the internal capacitors to fully charge before a sample is taken. This may be a value
from 0 to 65535 microseconds (us).

88

8-bit Proton Compiler Development Suite.

A value too small may result in a reduction of resolution. While too large a value will result in
poor conversion speeds without any extra resolution being attained.

A typical value for Adin_Stime is 50 to 100. This allows adequate charge time without loosing
too much conversion speed. But experimentation will produce the right value for your particular
requirement. The default value if the Declare is not used in the BASIC listing is 50.

Notes

Before the Adin command may be used, the appropriate Tris register must be manipulated to
set the desired pin to an input. Also, the ADCONL1 register must be set according to which pin is
required as an analogue input, and in some cases, to configure the format of the conversion's
result. See the numerous Microchip datasheets for more information on these registers and
how to set them up correctly for the specific device used.

If multiple conversions are being implemented, then a small delay should be used after the
Adin command. This allows the ADC's internal capacitors to discharge fully: -

Do
ADC Result = Adin 3 ~ Place the conversion into variable ADC Result
DelayUs 2 " Wait for 2us

Loop " Read the ADC forever

The circuit below shows a typical setup for a simple ADC test.

Regulated 5 Volts

on

o—3 rc7 VDD
To 2 RCe
Serial = RC5
LcD 2 RC4

RC3 MCLR }

RC2

RC1

RCO

R1
4.7k

P le |
=

[
N

iy
=

RB7 = 153 F
RB6 cp ™™ -

RB5
RB4 0.1uF

RB2 Crystal

RB1 osc1l B *
RBO l
PIC16F876
RA5 —
RA4
RA3 osc2 P
RA2
RAL I
RAO yssvss C4 wm C3 mm
15pF | 15pF

[2n]8]|
SO |O | |

NN
N | W
—

|N
[y

VR1
100k
linear

\/Tw\/lw NEEE

19 8

Ov

See also: Rcin, Pot.

89

8-bit Proton Compiler Development Suite.

Asm..EndAsm

Syntax
Asm
assembler mnemonics
EndAsm

or
@ assembler mnemonic

Overview

Incorporate in-line assembler in the BASIC code. The mnemonics are passed directly to the
assembler without the compiler interfering in any way. This allows a great deal of flexibility that
cannot always be achieved using BASIC commands alone.

When the Asm directive is found within the BASIC program, the RAM banks are reset before
the assembler code is operated upon. The same happens when the EndAsm directive is
found, in that the RAM banks are reset upon leaving the assembly code. However, this may not
always be required and can waste precious code memory.

Placing a dash after Asm or EndAsm will remove the RAM reset mnemonics.

Asm-
EndAsm

Only remove the RAM resets if you are confident enough to do so, as PICmicro™ devices have
fragmented RAM.

The compiler also allows simple assembler mnemonics to be used within the BASIC program
without wrapping them in Asm-EndAsm, however, the constants, labels, and variables used
must be valid BASIC types:

Dim MyVar As Byte

Moviw 10
MovwT MyVar

Note. It is important to remember that mnemonics within the BASIC program will not manipu-

late RAM banks or Flash pages, as the high level commands do, so always us with caution,
and understand the RAM and flash fragmentation of the device being used.

90

8-bit Proton Compiler Development Suite.

Box

Syntax
Box Set_Clear, Xpos Start, Ypos Start, Size

Overview
Draw a square on a graphic LCD.

Parameters

Set_Clear may be a constant or variable that determines if the square will set or clear the pix-
els. A value of 1 will set the pixels and draw a square, while a value of O will clear any pixels
and erase a square .

Xpos Start may be a constant or variable that holds the X position for the centre of the square.
Can be a value from 0 to 127.

Ypos Start may be a constant or variable that holds the Y position for the centre of the square.
Can be a value from 0 to 63.

Size may be a constant or variable that holds the Size of the square (in pixels). Can be a value
from O to 255.

Example
" Draw a square at position 63,32 with a size of 20 pixels
" on a KS0108 graphic LCD

Include "Proton_ G4.int"

Dim Xpos as Byte
Dim Ypos as Byte
Dim Size as Byte
Dim SetClr as Byte

DelayMs 100 " Wait for the LCD to stabilise
Cls " Clear the LCD
Xpos = 63
Ypos = 32
Size = 20
SetCIr = 1
Box SetClr, Xpos, Ypos, Radius
Stop
Notes

Because of the aspect ratio of the pixels on the graphic LCD (approx 1.5 times higher than
wide) the square will appear elongated.

See Also : Circle, Line, LineTo, Plot, UnPlot.

91

8-bit Proton Compiler Development Suite.

Branch

Syntax
Branch Index, [Labell {,...Labeln }]

Overview
Cause the program to jump to different locations based on a variable index. On a PICmicro
device with only one page of memory.

Parameters

Index is a constant, variable, or expression, that specifies the address to branch to.
Labell,...Labeln are valid labels that specify where to branch to. A maximum of 255 labels
may be placed between the square brackets, 256 if using an 18F device.

Example

Device = 16F84

Dim Index as Byte
Start:

Index = 2 " Assign Index a value of 2

Branch Index,[Lab_0, Lab_1, Lab 2] " Jump to Lab_2 because Index = 2
Lab O:

Index = 2 " Index now equals 2
Goto Start

Lab 1:
Index = 0 " Index now equals O
Goto Start

Lab 2:
Index = 1 " Index now equals 1
Goto Start

The above example we first assign the index variable a value of 2, then we define our labels.
Since the first position is considered 0 and the variable index equals 2 the Branch command
will cause the program to jump to the third label in the brackets [Lab_2].

Notes
Branch operates the same as On x Goto. It's useful when you want to organise a structure
such as: -

If Varl
If Varl
I Varl

O Then Goto Lab 0 " Varl =0: go to label "Lab 0"
1 Then Goto Lab_1 " Varl =1: go to label "Lab 1"
2 Then Goto Lab_2 * Varl =2: go to label *"Lab_2"

You can use Branch to organise this into a single statement: -

Branch Varl, [Lab_0, Lab 1, Lab_2]

This works exactly the same as the above If...Then example. If the value is not in range (in this
case if Varl is greater than 2), Branch does nothing. The program continues with the next in-
struction..

The Branch command is primarily for use with devices that have one page of memory (0-

2047). If larger devices are used and you suspect that the branch label will be over a page
boundary, use the BranchL command instead.

92

8-bit Proton Compiler Development Suite.

BranchL

Syntax
BranchL Index, [Labell {,...Labeln }]

Overview
Cause the program to jump to different locations based on a variable index. On a PICmicro™
device with more than one page of memory.

Parameters

Index is a constant, variable, or expression, that specifies the address to branch to.
Labell,...Labeln are valid labels that specify where to branch to. A maximum of 127 labels
may be placed between the square brackets, 256 if using an 18F device.

Example
Device = 16F1829
Dim Index as Byte

Start:
Index = 2 " Assign Index a value of 2
" Jump to label 2 (Label_2) because Index = 2
BranchL Index,[Label_ 0, Label 1, Label 2]

Label O:
Index = 2 " Index now equals 2
Goto Start

Label _1:
Index = 0 " Index now equals O
Goto Start

Label 2:
Index = 1 " Index now equals 1
Goto Start

The above example we first assign the index variable a value of 2, then we define our labels.
Since the first position is considered 0 and the variable index equals 2 the BranchL command
will cause the program to jump to the third label in the brackets [Label_2].

Notes

The BranchL command is mainly for use with PICmicro™ devices that have more than one
page of memory (greater than 2048). It may also be used on any PICmicro device, but does
produce code that is larger than Branch.

See also: Branch

93

8-bit Proton Compiler Development Suite.

Break

Syntax
Break

Overview
Exit a For...Next, While...Wend, Repeat...Until or Do...Loop condition prematurely.

Example 1
" Break out of a For-Next loop when the count reaches 10

Include "Proton_4.Inc" " Demo using Proton Dev board
Dim Varl as Byte

DelayMs 100 " Wait for the LCD to stabilise

Cls " Clear the LCD

For Varl = 0 to 39 " Create a loop of 40 revolutions
Print At 1,1,Dec Varl " Print the revolutions on the LCD
IT Varl = 10 Then Break " Break out of the loop when Varl = 10
DelayMs 200 " Delay so we can see what"s happening

Next " Close the For-Next loop

Print At 2,1,"Exited At ", Dec Varl " Display value when loop was broke
Stop

Example 2
" Break out of a Repeat-Until loop when the count reaches 10

Include "Proton_4.Inc" " Demo using Proton Dev board
Dim Varl as Byte

DelayMs 100 " Wait for the LCD to stabilise

Cls " Clear the LCD

Varl = 0

Repeat " Create a loop
Print At 1,1,Dec Varl " Print the revolutions on the LCD
IT Varl = 10 Then Break " Break out of the loop when Varl = 10
DelayMs 200 " Delay so we can see what"s happening
Inc Varl

until Varl > 39 " Close the loop after 40 revolutions

Print At 2,1,"Exited At ", Dec Varl " Display value when loop was broke
Stop

94

8-bit Proton Compiler Development Suite.

Example 3
" Break out of a While-Wend loop when the count reaches 10

Include "Proton_4.Inc" Demo using Proton Dev board

Dim Varl as Byte

DelayMs 100 " Wait for the LCD to stabilise

Cls " Clear the LCD

Varl = 0O

While Varl < 40 * Create a loop of 40 revolutions
Print At 1,1,Dec Varl * Print the revolutions on the LCD
IT Varl = 10 Then Break " Break out of the loop when Varl = 10
DelayMs 200 " Delay so we can see what"s happening
Inc Varl

Wend " Close the loop

Print At 2,1,"Exited At ", Dec Varl " Display value when loop was broke
Stop

Notes
The Break command is similar to a Goto but operates internally. When the Break command is
encountered, the compiler will force a jump to the loop's internal exit label.

If the Break command is used outside of For...Next, Repeat...Until, While...Wend or
Do...Loop, an error will be produced.

If the Break command is used within a Select...EndSelect construct while this is itself inside a
loop, only the Select...EndSelect will be exited, not the loop.

See also: Continue, For...Next, While...Wend, Repeat...Until.

95

8-bit Proton Compiler Development Suite.

Bstart

Syntax
Bstart

Overview
Send a Start condition to the I1°C bus.

Notes

Because of the subtleties involved in interfacing to some I1°C devices, the compiler's standard
Busin, and Busout commands were found lacking somewhat. Therefore, individual pieces of
the 1°C protocol may be used in association with the new structure of Busin, and Busout. See
relevant sections for more information.

Example

" Interface to a 24LC32 serial eeprom
Device = 16F1829
Dim MyLoop as Byte
Dim Array[10] as Byte

" Transmit bytes to the 12C bus

Bstart " Send a Start condition

Busout %10100000 " Target an eeprom, and send a Write command
Busout O * Send the High Byte of the address

Busout O " Send the Low Byte of the address

For MyLoop = 48 to 57 " Create a loop containing ASCII O to 9
Busout MyLoop Send the value of MyLoop to the eeprom

Next " Close the loop
Bstop " Send a Stop condition
DelayMs 10 " Wait for the data to be entered into eeprom matrix

Receive bytes from the 12C bus

Bstart " Send a Start condition

Busout %10100000 " Target an eeprom, and send a Write command
Busout O " Send the High Byte of the address

Busout O " Send the Low Byte of the address

Brestart " Send a Restart condition

Busout %10100001 " Target an eeprom, and send a Read command

For MyLoop = 0 to 9 Create a loop
Array[MyLoop] = Busin Load an array with bytes received
IT MyLoop = 9 Then Bstop : Else : BusAck " Ack or Stop ?

Next " Close the loop
Print At 1,1, Str Array " Display the Array as a String
Stop

See also: Bstop, Brestart, BusAck, Busin, Busout, HbStart, HbRestart, HbusAck,
Hbusin, Hbusout.

96

8-bit Proton Compiler Development Suite.

Bstop

Syntax
Bstop

Overview
Send a Stop condition to the 1°C bus.

Brestart

Syntax
Brestart

Overview
Send a Restart condition to the 1°C bus.

BusAck

Syntax
BusAck

Overview
Send an Acknowledge condition to the 1°C bus.

BusNack

Syntax
BusNack

Overview
Send a Not Acknowledge condition to the 1°C bus.

See also: Bstop, Bstart, Brestart, Busin, Busout, HbStart, HbRestart, HbusAck,
Hbusin, Hbusout.

97

8-bit Proton Compiler Development Suite.

Busin

Syntax
Variable = Busin Control, { Address }

or

Variable = Busin

or

Busin Control, { Address }, [Variable {, Variable...}]
or

Busin Variable

Overview

Receives a value from the I°C bus, and places it into variable/s. If versions two or four (see
above) are used, then No Acknowledge, or Stop is sent after the data. Versions one and three
first send the control and optional address.

Parameters

Variable is a user defined variable or constant.

Control may be a constant value or a Byte sized variable expression.
Address may be a constant value or a variable expression.

The four variations of the Busin command may be used in the same BASIC program. The sec-
ond and fourth types are useful for simply receiving a single byte from the bus, and must be
used in conjunction with one of the low level commands. i.e. Bstart, Brestart, BusAck, or
Bstop. The first, and third types may be used to receive several values and designate each to
a separate variable, or variable type.

The Busin command operates as an I°C master without using the microcontroller's MSSP pe-
ripheral, and may be used to interface with any device that complies with the 2-wire 1°C proto-
col.

The most significant 7-bits of control byte contain the control code and the slave address of the
device being interfaced with. Bit-0 is the flag that indicates whether a read or write command is
being implemented.

For example, if we were interfacing to an external eeprom such as the 24LC32, the control
code would be %10100001 or $A1. The most significant 4-bits (1010) are the eeprom'’s unique
slave address. Bits 1 to 3 reflect the three address pins of the eeprom. And bit-0 is set to signify
that we wish to read from the eeprom. Note that this bit is automatically set by the Busin com-
mand, regardless of its initial setting.

Example

" Receive a byte from the 12C bus and place it into variable Varl.
Dim Varl as Byte " We"ll only read 8-bits
Dim Address as Word " 16-bit address required
Symbol Control %10100001 " Target an eeprom

98

8-bit Proton Compiler Development Suite.

Address = 20 " Read the value at address 20
Varl = Busin Control, Address " Read the byte from the eeprom

or

Busin Control, Address, [Varl] " Read the byte from the eeprom

Address, is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in
this position, the size of address is dictated by the size of the variable used (Byte, Word, or
Dword). In the case of the previous eeprom interfacing, the 24LC32 eeprom requires a 16-bit
address. While the smaller types require an 8-bit address. Make sure you assign the right size
address for the device interfaced with, or you may not achieve the results you intended.

The value received from the bus depends on the size of the variables used, except for variation
three, which only receives a Byte (8-bits). For example: -

Dim Wrd as Word " Create a Word size variable
Wrd = Busin Control, Address

Will receive a 16-bit value from the bus. While: -

Dim Varl as Byte " Create a Byte size variable
Varl = Busin Control, Address

Will receive an 8-bit value from the bus.

Using the third variation of the Busin command allows differing variable assignments. For ex-
ample: -

Dim Varl as Byte
Dim Wrd as Word
Busin Control, Address, [Varl, Wrd]

Will receive two values from the bus, the first being an 8-bit value dictated by the size of vari-
able Varl which has been declared as a byte. And a 16-bit value, this time dictated by the size
of the variable Wrd which has been declared as a word. Of course, Bit type variables may also
be used, but in most cases these are not of any practical use as they still take up a byte within
the eeprom.

The second and fourth variations allow all the subtleties of the 1°C protocol to be exploited, as
each operation may be broken down into its constituent parts. It is advisable to refer to the
datasheet of the device being interfaced to fully understand its requirements. See section on
Bstart, Brestart, BusAck, or Bstop, for example code.

Declares
See Busout for declare explanations.

Notes
When the Busout command is used, the appropriate SDA and SCL Port and Pin are automati-
cally setup as inputs, and outputs.

Because the I°C protocol calls for an open-collector interface, pull-up resistors are required on
both the SDA and SCL lines. Values of 1KQ to 4.7KQ will suffice.

99

8-bit Proton Compiler Development Suite.

You may imagine that it's limiting having a fixed set of pins for the I°C interface, but you must
remember that several different devices may be attached to a single bus, each having a unique
slave address. Which means there is usually no need to use up more than two pins on the
PICmicro™, in order to interface to many devices.

Str modifier with Busin

Using the Str modifier allows variations three and four of the Busin command to transfer the
bytes received from the 1°C bus directly into a byte array. If the amount of received characters
is not enough to fill the entire array, then a formatter may be placed after the array's name,
which will only receive characters until the specified length is reached. An example of each is
shown below: -

Dim Array[10] as Byte " Define an array of 10 bytes
Dim Address as Byte " Create a word sized variable
Busin %10100000, Address, [Str Array] " Load data into all the array

Load data into only the First 5 elements of the array

Busin %10100000, Address, [Str Array\5]

Bstart Send a Start condition

Busout %10100000 " Target an eeprom, and send a WRITE command
Busout O " Send the HighByte of the address

Busout O " Send the LowByte of the address

Brestart " Send a Restart condition

Busout %10100001 " Target an eeprom, and send a Read command
Busin Str Array " Load all the array with bytes received
Bstop " Send a Stop condition

An alternative ending to the above example is: -

Busin Str Array\5 " Load data into only the first 5 elements of the array
Bstop " Send a Stop condition

See also: BusAck, Bstart, Brestart, Bstop, Busout, HbStart, HbRestart, HbusAck,
Hbusin, Hbusout.

100

8-bit Proton Compiler Development Suite.

Busout

Syntax
Busout Control, { Address }, [Variable {, Variable...}]

or
Busout Variable

Overview

Transmit a value to the 1C bus, by first sending the control and optional address out of the
clock pin (SCL), and data pin (SDA). Or alternatively, if only one operator is included after the
Busout command, a single value will be transmitted, along with an Ack reception.

Parameters

Variable is a user defined variable or constant.

Control may be a constant value or a Byte sized variable expression.
Address may be a constant, variable, or expression.

The Busout command operates as an I1°C master using a bit-bashed (software only) method,
and may be used to interface with any device that complies with the 2-wire I1°C protocol.

The most significant 7-bits of control byte contain the control code and the slave address of the
device being interfaced with. Bit-0 is the flag that indicates whether a read or write command is
being implemented.

For example, if we were interfacing to an external eeprom such as the 24LC32, the control
code would be %10100000 or $A0. The most significant 4-bits (1010) are the eeprom's unique
slave address. Bits 1 to 3 reflect the three address pins of the eeprom. And Bit-0 is clear to sig-
nify that we wish to write to the eeprom. Note that this bit is automatically cleared by the Bu-
sout command, regardless of its initial value.

Example

" Send a byte to the 12C bus.
Dim Varl as Byte " We"ll only read 8-bits
Dim Address as Word " 16-bit address required
Symbol Control = %10100000 " Target an eeprom

Address = 20 Write to address 20

Varl = 200 " The value place into address 20
Busout Control, Address, [Varl] " Send the byte to the eeprom
DelayMs 10 " Allow time for allocation of byte

Address, is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in
this position, the size of address is dictated by the size of the variable used (Byte, Word or
Dword). In the case of the above eeprom interfacing, the 24LC32 eeprom requires a 16-bit ad-
dress. While the smaller types require an 8-bit address. Make sure you assign the right size
address for the device interfaced with, or you may not achieve the results you intended.

101

8-bit Proton Compiler Development Suite.

The value sent to the bus depends on the size of the variables used. For example: -

Dim Wrd as Word " Create a Word size variable
Busout Control, Address, [Wrd]

Will send a 16-bit value to the bus. While: -

Dim Varl as Byte " Create a Byte size variable
Busout Control, Address, [Varl]

Will send an 8-bit value to the bus.

Using more than one variable within the brackets allows differing variable sizes to be sent. For
example: -

Dim Varl as Byte
Dim Wrd as Word
Busout Control, Address, [Varl, Wrd]

Will send two values to the bus, the first being an 8-bit value dictated by the size of variable
Varl which has been declared as a byte. And a 16-bit value, this time dictated by the size of
the variable Wrd which has been declared as a word. Of course, Bit type variables may also be
used, but in most cases these are not of any practical use as they still take up a byte within the
eeprom.

A string of characters can also be transmitted, by enclosing them in quotes: -

Busout Control, Address, ["Hello World"™, Varl, Wrd]

Using the second variation of the Busout command, necessitates using the low level com-
mands i.e. Bstart, Brestart, BusAck, or Bstop.

Using the Busout command with only one value after it, sends a byte of data to the 1°C bus,
and returns holding the Acknowledge reception. This acknowledge indicates whether the data
has been received by the slave device.

The Ack reception is returned in the PICmicro's Carry flag, which is STATUS.O, and also Sys-
tem variable PP4.0. A value of zero indicates that the data was received correctly, while a one
indicates that the data was not received, or that the slave device has sent a NAck return. You
must read and understand the datasheet for the device being interfacing to, before the Ack re-
turn can be used successfully. An code snippet is shown below: -

" Transmit a byte to a 24LC32 serial eeprom
Dim PP4 as Byte System Bring the system variable into the BASIC program

Bstart " Send a Start condition

Busout %10100000 " Target an eeprom, and send a Write command
Busout O " Send the High Byte of the address

Busout O " Send the Low Byte of the address

Busout A" " Send the value 65 to the bus

ITf PP4.0 = 1 Then Goto Not Received * Has Ack been received OK?

Bstop " Send a Stop condition

DelayMs 10 " Wait for the data to be entered into eeprom

102

8-bit Proton Compiler Development Suite.

Str modifier with Busout.

The Str modifier is used for transmitting a string of bytes from a byte array variable. A string is
a set of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3
would be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A
byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string 1,2,3 would be stored in a byte
array containing three bytes (elements).

Below is an example that sends four bytes from an array: -

Dim MyArray[10] as Byte " Create a 10-byte array.

MyArray [O] A" " Load the first 4 bytes of the array
MyArray [1] " With the data to send

MyArray [2]
MyArray [3]
Busout %10100000, Address, [Str MyArray\4] " Send 4-byte string.

SEE

Note that we use the optional \n argument of Str. If we didn't specify this, the program would try
to keep sending characters until all 10 bytes of the array were transmitted. Since we do not
wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 4 bytes.

The above example may also be written as: -

Dim MyArray [10] as Byte
Str MyArray = "ABCD"

Create a 10-byte array.
Load the first 4 bytes of the array

Bstart Send a Start condition
Busout O Send the HighByte of the address
Busout O Send the LowByte of the address

Busout Str MyArray\4
Bstop

Send 4-byte string.
Send a Stop condition

Busout %10100000 " Target an eeprom, and send a Write command

The above example, has exactly the same function as the previous one. The only differences
are that the string is now constructed using the Str as a command instead of a modifier, and
the low-level Hbus commands have been used.

Declares
There are three Declare directives for use with Busout.
These are: -

Declare SDA_Pin Port . Pin

Declares ntnhe port and pin used for the data line (SDA). This may be any valid port on the
PICmicro . If this declare is not issued in the BASIC program, then the default Port and Pin is
PORTA.O

Declare SCL_Pin Port . Pin

Declares the port and pin used for the clock line (SCL). This may be any valid port on the
PICmicro™. If this declare is not issued in the BASIC program, then the default Port and Pin is
PORTA.1

These declares, as is the case with all the Declares, may only be issued once in any single
program, as they setup the 1°C library code at design time.

103

8-bit Proton Compiler Development Suite.

Declare Slow_Bus On-Offor1-0
Slows the bus speed when using an oscillator higher than 4MHz.

The standard speed for the 1°C bus is 100KHz. Some devices use a higher bus speed of
400KHz. If you use an 8MHz or higher oscillator, the bus speed may exceed the devices specs,
which will result in intermittent transactions, or in some cases, no transactions at all. Therefore,
use this Declare if you are not sure of the device's spec. The datasheet for the device used will
inform you of its bus speed.

Notes
When the Busout command is used, the appropriate SDA and SCL Port and Pin are automati-
cally setup as inputs, and outputs.

Because the I1°C protocol calls for an open-collector interface, pull-up resistors are required on
both the SDA and SCL lines. Values of 1KQ to 4.7KQ will suffice.

You may imagine that it's limiting having a fixed set of pins for the I°C interface, but you must
remember that several different devices may be attached to a single bus, each having a unique
slave address. Which means there is usually no need to use up more than two pins on the
PICmicro™, in order to interface to many devices.

A typical use for the 1°C commands is for interfacing with serial eeproms. Shown below is the
connections to the 1°C bus of a 24LC32 serial eeprom.

+5 Volts
8
R1 § R2 VCC
47k < 4.7k we k2
To RB1lor RC4 © o Z SDA
To RBOor RC3 © SCL .
A0
24L.C32 a1 B
a2 B
VSS

4

Ov

See also: BusAck, Bstart, Brestart, Bstop, Busin, HbStart, HbRestart,
HbusAck, Hbusin, Hbusout.

104

8-bit Proton Compiler Development Suite.

Button

Syntax
Button Pin, DownState, Delay, Rate, Workspace, TargetState, Label

Overview
Debounce button input, perform auto-repeat, and branch to address if button is in target state.
Button circuits may be active-low or active-high.

Parameters

Pin is a Port.Bit, constant, or variable (0 - 15), that specifies the 1/0O pin to use. This pin will
automatically be set to input.

DownState is a variable, constant, or expression (0 or 1) that specifies which logical state oc-
curs when the button is pressed.

Delay is a variable, constant, or expression (0 - 255) that specifies how long the button must be
pressed before auto-repeat starts. The delay is measured in cycles of the Button routine. De-
lay has two special settings: 0 and 255. If Delay is 0, Button performs no debounce or auto-
repeat. If Delay is 255, Button performs debounce, but no auto-repeat.

Rate is a variable, constant, or expression (0 — 255) that specifies the number of cycles be-
tween auto-repeats. The rate is expressed in cycles of the Button routine.

Workspace is a byte variable used by Button for workspace. It must be cleared to O before be-
ing used by Button for the first time and should not be adjusted outside of the Button com-
mand.

TargetState is a variable, constant, or expression (0 or 1) that specifies which state the button
should be in for a branch to occur. (0 = not pressed, 1 = pressed).

Label is a label that specifies where to branch if the button is in the target state.

Example
Dim BtnVar as Byte " Workspace for Button instruction.
Do " Go to NoPress unless BtnVar = O.
Button O, 0O, 255, 250, BtnvVar, 0, NoPress
Print ">
NoPress:
Loop

Notes

When a button is pressed, the contacts make or break a connection. A short (1 to 20ms) burst
of noise occurs as the contacts scrape and bounce against each other. Button’s debounce
feature prevents this noise from being interpreted as more than one switch action.

Button also reacts to a button press the way a computer keyboard does to a key press. When
a key is pressed, a character immediately appears on the screen. If the key is held down,
there’s a delay, then a rapid stream of characters appears on the screen. Button’s auto-repeat
function can be set up to work much the same way.

Button is designed for use inside a program loop. Each time through the loop, Button checks
the state of the specified pin. When it first matches DownState, the switch is debounced. Then,
as dictated by TargetState, it either branches to address (TargetState = 1) or doesn’t (Target-
State = 0).

105

8-bit Proton Compiler Development Suite.

If the switch stays in DownState, Button counts the number of program loops that exe-
cute. When this count equals Delay, Button once again triggers the action specified by
TargetState and address. Thereatfter, if the switch remains in DownState, Button waits
Rate number of cycles between actions. The Workspace variable is used by Button to
keep track of how many cycles have occurred since the pin switched to TargetState or
since the last auto-repeat.

Button does not stop program execution. In order for its delay and auto repeat functions
to work properly, Button must be executed from within a program loop.

Two suitable circuits for use with Button are shown below.

+5V +5V
[[
Push
47k '}_1 :
Pullup Switch
To Pin of the To Pin of the
PIC PIC
}_{ Push 47k
Switch Pulldown
ov ov
Active LOW Active HIGH

106

8-bit Proton Compiler Development Suite.

Call

Syntax
Call Label

Overview
Execute the assembly language subroutine named label.

Parameters
Label must be a valid label name.

Example
" Call an assembler routine
Call Asm_Sub

Asm
Asm_Sub
{mnemonics}
Return
EndAsm

Notes

The Gosub command is usually used to execute a BASIC subroutine. However, if your subrou-
tine happens to be written in assembler, the Call command should be used. The main differ-
ence between Gosub and Call is that when Call is used, the label's existence is not checked
until assembly time. Using Call, a label in an assembly language section can be accessed that
would otherwise be inaccessible to Gosub. This also means that any errors produced will be
assembler types.

The Call command adds Page and Bank switching instructions prior to actually calling the sub-
routine, however, if Call is used in an all assembler environment, the extra mnemonics preced-
ing the command can interfere with carefully sculptured code such as bit tests etc. By wrapping
the subroutine's name in parenthesis, the Bank and Page instructions are suppressed, and the
Call command becomes the Call mnemonic.

Call(Subroutine_Name)
Only use the mnemonic variation of Call, if you know that your destination is within the same
Page as the section of code calling it. This is not an issue if using 18F devices, as they have a
more linear memory organisation.

See also: Gosub, Goto

107

8-bit Proton Compiler Development Suite.

Cdata

Syntax
Cdata { alphanumeric data }

Overview
Place information directly into flash memory for access by Cread and Cwrite.

Parameters

alphanumeric data can be any value, alphabetic character, or string enclosed in quotes (") or
numeric data without quotes.

Example
Device = 16F1829 " A device with flash modifying features
Dim MyChar as Byte
Dim MyLoop as Byte

For MyLoop = O to 10 " Create a loop of 11
MyChar = Cread Address + MyLoop " Read memory location Address + MylLoop
Print MyChar " Display the value read
Next
Stop
Address:
Cdata "'Hello World" " Create a string of text in flash memory

The program above reads and displays 10 values from the address located by the Label ac-
companying the Cdata command. Resulting in "Hello World" being displayed.

Using the in-line command structure, the Cread and Print parts of the above program may be
written as: -

" Read and display memory location Address + MylLoop
Print Cread Address + MyLoop

108

8-bit Proton Compiler Development Suite.

The Cwrite command uses the same technique for writing to memory: -

Device = 16F1829 " A device with code modifying features
Dim Dbyte as Byte
Dim MyLoop as Byte

Cwrite Address, [""HELLO WORLD™] * Write string to code memory at location Address
For MyLoop = O to 9 " Create a loop of 10

Print Cread Address + MyLoop " Read and display flash memory Address + MyLoop
Next
Stop

" Reserve 10 spaces in flash memory

Address:
Cdata 32, 32, 32, 32, 32, 32, 32, 32, 32, 32

Notice the string text now allowed in the Cwrite command. This allows the whole PICmicro™ to
be used for data storage and retrieval if desired.

Important Note

Take care not to overwrite existing code when using the Cwrite command, and also remember
that the all PICmicro” devices have a finite amount of write cycles (approx 1000). A single pro-
gram can easily exceed this limit, making that particular memory cell or cells inaccessible.

The configuration fuse setting WRTE must be enabled before Cdata, Cread and Cwrite may
be used. This enables the self-modifying feature. If the Config directive is used, then the
WRTE_ON fuse setting must be included in the list: -

Config WDT_ON, XT_OSC, WRTE_ON

Because the 14-bit core devices are only capable of holding 14 bits to a Word, values greater
than 16383 ($3FFF) cannot be stored.

Formatting a Cdata table with an 18F device.
Sometimes it is necessary to create a data table with a known format for its values. For exam-
ple all values will occupy 4 bytes of data space even though the value itself would only occupy
1 or 2 bytes. Formatters are not supported with 14-bit core devices, because they can only hold
a maximum value of $3FFF (16383). i.e. 14-bits.

Cdata 100000, 10000, 1000, 100, 10, 1
The above line of code would produce an uneven code space usage, as each value requires a

different amount of code space to hold the values. 100000 would require 4 bytes of code
space, 10000 and 1000 would require 2 bytes, but 100, 10, and 1 would only require 1 byte.

109

8-bit Proton Compiler Development Suite.

Reading these values using Cread would cause problems because there is no way of knowing
the amount of bytes to read in order to increment to the next valid value.

The answer is to use formatters to ensure that a value occupies a predetermined amount of
bytes. These are: -

Byte
Word
Dword
Float

Placing one of these formatters before the value in question will force a given length.

Cdata Dword 100000, Dword 10000, Dword 1000 ,
Dword 100, Dword 10, Dword 1

Byte will force the value to occupy one byte of code space, regardless of its value. Any values
above 255 will be truncated to the least significant byte.

Word will force the value to occupy 2 bytes of code space, regardless of its value. Any values
above 65535 will be truncated to the two least significant bytes. Any value below 255 will be
padded to bring the memory count to 2 bytes.

Dword will force the value to occupy 4 bytes of code space, regardless of its value. Any value
below 65535 will be padded to bring the memory count to 4 bytes. The line of code shown
above uses the Dword formatter to ensure all the values in the Cdata table occupy 4 bytes of
code space.

Float will force a value to its floating point equivalent, which always takes up 4 bytes of code
space.

If all the values in an Cdata table are required to occupy the same amount of bytes, then a sin-
gle formatter will ensure that this happens.

Cdata as Dword 100000, 10000, 1000, 100, 10, 1

The above line has the same effect as the formatter previous example using separate Dword
formatters, in that all values will occupy 4 bytes, regardless of their value. All four formatters
can be used with the as keyword.

The example below illustrates the formatters in use.

" Convert a Dword value into a string array
" Using only BASIC commands
" Similar principle to the Str$ command

Include "Protonl8 4.Inc" " Use an 18F device
Dim P10 as Dword " Power of 10 variable
Dim Cnt as Byte

Dim J as Byte

Dim Value as Dword " Value to convert
Dim Stringl[11] as Byte " Holds the converted value

110

8-bit Proton Compiler Development Suite.

Dim Ptr as Byte " Pointer within the Byte array
DelayMs 100 " Wait for the LCD to stabilise
Cls " Clear the LCD

Clear " Clear all RAM before we start
Value = 1234576 " Value to convert

Gosub DwordToStr " Convert Value to string

Print Str Stringl " Display the result

Stop

" Convert a Dword value into a string array
" Value to convert is placed in "Value~
" Byte array °"Stringl® is built up with the ASCII equivalent

DwordToStr:
Ptr = 0
J=0
Repeat

P10
Cnt

Cread DwordThl + (3 * 4)
0

While Value >= P10
Value = Value - P10
Inc Cnt

Wend

If Chnt <> 0 Then
Stringl[Ptr] = Cnt + 0"
Inc Ptr
EndIf
Inc J
until J > 8

Stringl[Ptr] = Value + "0
Inc Ptr
Stringl[Ptr]
Return

0 " Add the null to terminate the string

" Cdata table is formatted for all 32-bit values.
" Which means each value will require 4 bytes of code space

Dword_TBL:
Cdata as Dword 1000000000, 100000000, 10000000, 1000000, 100000,

10000, 1000, 100, 10

Label names as an Address.
If a label's name is used in the list of values in a Cdata table, the label's address will be used.

This is useful for accessing other tables of data using their address from a lookup table. See
the following example.

Note that this is not always permitted with standard 14-bit core devices, because they may not
be able to hold the larger value in a 14-bit word.

111

8-bit Proton Compiler Development Suite.

" Display text from two Cdata tables

" Based on their address located In a separate table

Include "Protonl8 4.Inc"

Dim Address as Word
Dim DataByte as Byte

DelayMs 100
Cls
Address = Cread AddrTable
While
DataByte = Cread Address
IT DataByte = 0 Then Break
Print DataByte
Inc Address
Wend

Cursor 2,1
Address = Cread AddrTable + 2
While
DataByte = Cread Address
IT DataByte = 0 Then Break
Print DataByte
Inc Address
Wend
Stop

AddrTable:

Cdata Word Stringl,Word String2
Stringl:

Cdata ""HELLO",O0
String2:

Cdata ""WORLD'",0

Seealso: Config, Cread, Cread8, Cread16, Cread32, Cwrite, Dim, Ldata, Lread, Lread8,

Lreadl16, Lread32.

" Use an 18F device

Wait for the LCD to stabilise

Clear the LCD

Locate the address of the first string
Create an infinite loop

Read each character from the Cdata string
Exit if null found

Display the character

Next character

Close the loop

Point to line 2 of the LCD

Locate the address of the second string
Create an infinite loop

Read each character from the Cdata string
Exit if null found

Display the character

Next character

Close the loop

Table of address®s

112

8-bit Proton Compiler Development Suite.

Circle

Syntax
Circle Set_Clear, Xpos, Ypos, Radius

Overview
Draw a circle on a graphic LCD.

Parameters

Set_Clear may be a constant or variable that determines if the circle will set or clear the pixels.
A value of 1 will set the pixels and draw a circle, while a value of O will clear any pixels and
erase a circle.

Xpos may be a constant or variable that holds the X position for the centre of the circle. Can be
a value from 0 to the X resolution of the display.

Ypos may be a constant or variable that holds the Y position for the centre of the circle. Can be
a value from 0 to the Y resolution of the display.

Radius may be a constant or variable that holds the Radius of the circle. Can be a value from O
to 255.

Example
" Draw circle at pos 63,32 with radius of 20 pixels on a KS0108 LCD

Include "Proton_G4.int" " Use a KS0108 LCD

Dim Xpos as Byte
Dim Ypos as Byte
Dim Radius as Byte
Dim SetClr as Byte

DelayMs 100 " Wait for the LCD to stabilise
Cls " Clear the LCD

1
Circle SetClr, Xpos, Ypos, Radius
Stop

Notes
Because of the aspect ratio of the pixels on the graphic LCD (approx 1.5 times higher than
wide) the circle will appear elongated.

See Also : Box, Line, Pixel, Plot, UnPlot.

113

8-bit Proton Compiler Development Suite.

Clear

Syntax
Clear Variable or Variable.Bit or Pin Number

Clear

Overview
Place a variable or bit in a low state. For a variable, this means loading it with 0. For a bit this
means setting it to O.

Clear has another purpose. If no variable is present after the command, all user RAM within the
device is cleared.

Parameters

Variable can be any variable or register.

Variable.Bit can be any variable and bit combination.

Pin Number can only be a constant that holds a value from 0 to the amount of I/O pins on the
device. A value of O will be PORTA.O, if present, 1 will be PORTA.1, 8 will be PORTB.O etc...

Examplel
Clear
Clear Varl.3
Clear Varl
Clear STATUS.O
Clear Array
Clear Stringl
Clear O

Clear all RAM area

Clear bit 3 of Varl

Load Varl with the value of 0O

Clear the carry flag high

Clear all of an Array variable. i.e. reset to zero’s
Clear all of a String variable. i.e. reset to zero’s
Clear PORTA.O.

Example 2

" Flash each of the pins on PORTA and PORTB
Device = 18F25K20
Declare Xtal = 16

Dim MyPin as Byte

Low PORTA

Low PORTB

For MyPin = O to 15 Create a loop for the pin to flash
Set MyPin Set the pin

DelayMs 500

Clear MyPin

DelayMs 500
Next

Delay so that it can be seen
Clear the pin
Delay so that it can be seen

Notes
There is a major difference between the Clear and Low command. Clear does not alter the
TRIS register if a Port is targeted.

See Also : Set, Low, High

114

8-bit Proton Compiler Development Suite.

ClearPin

Syntax
ClearPin Pin Number

Overview
Pull a Port’s pin low using a variable as the pin’s number, but does not set it as an output.

Operands

Pin Number can be a variable or constant or expression that holds a value from 0 to the
amount of I/O pins on the device. A value of 0 will be PORTA.O, if present, 1 will be PORTA.1,
8 will be PORTB.O etc...

Example

" Clear then Set each pin of PORTB
Device = 16F1829
Declare Xtal = 4
Dim PinNumber as Byte

High PORTB
Do
For PinNumber = 8 to 16
ClearPin PinNumber
DelayMs 100
Next
For PinNumber = 8 to 16
SetPin PinNumber
DelayMs 100

Make PORTB output high before we start
Create a loop

Create a loop for 8 pins

Clear each pin of PORTB

Slow things down to see what"s happening
Close the loop

Create a loop for 8 pins

Set each pin of PORTB

Slow things down to see what"s happening

Next Close the loop
Loop Do it forever
Notes.

There are many ways to pull a pin of an I/O port low, however, each method requires a certain
amount of manipulation, either with rotates, or alternatively, the use of indirect addressing.
Each method has its merits, but requires a certain amount of knowledge to accomplish the task
correctly. The ClearPin command makes this task extremely simple using a variable as the pin
number, however, this is not necessarily the quickest method, or the smallest, but it is the easi-
est. For speed and size optimisation, there is no shortcut to experience.

To clear a known constant pin number of a port, access the pin directly using the Low com-
mand

Low PORTA.1

115

8-bit Proton Compiler Development Suite.

Each pin number has a designated name. These are Pin_AO0, Pin_Al, Pin_A2,
Pin_BO...Pin_B7, Pin_CO0...Pin_C7, Pin_DQO...Pin_D7 to Pin_L7 etc... Each of the names has a
relevant value, for example, Pin_AO has the value 0, Pin_BO has the value 8, up to Pin_L7,
which has the value 87.

These can be used to pass a relevant pin number to a subroutine. For example:

" Flash an LED attached to PORTB.O via a subroutine
" Then flash an LED attached to PORTB.1 via the same subroutine

Device = 18F25K20

Declare Xtal = 16

Dim PinNumber As Byte "

Do "
PinNumber = Pin_BO "
Gosub FlashPin "
PinNumber = Pin_B1 "
Gosub FlashPin "

Loop "

Holds the pin number to set high and low

Create an infinite loop

Give the pin number to flash (PORTB.O)
Call the subroutine to flash the pin
Give the pin number to flash (PORTB.1)
Call the subroutine to flash the pin
Do it forever

" Make a pin high then low for 500ms using a variable as the pin to adjust

FlashPin:
Output PinNumber "
SetPin PinNumber -
DelayMs 500 "
ClearPin PinNumber "
DelayMs 500 "
Return

Example 2

" Clear then Set each pin of PORTC
Device = 18F25K20
Declare Xtal = 16

Dim PinNumber as Byte

High PORTC
Do
For PinNumber =
ClearPin PinNumber
DelayMs 100
Next
For PinNumber = Pin_CO to
SetPin PinNumber
DelayMs 100
Next
Loop

See also: SetPin, High, Low.

Pin_CO to Pin_C7

Make the pin an output
Bring the pin high

Wait for 500 milliseconds
Bring the pin low

Wait for 500 milliseconds

" Make PORTC output high before we start

" Create a loop

" Create a loop for 8 pins

Clear each pin of PORTC

Slow things down to see what®"s happening
Close the loop

" Create a loop for 8 pins

Set each pin of PORTC

Slow things down to see what®s happening
Close the loop

Do it forever

116

8-bit Proton Compiler Development Suite.

ClearBit

Syntax
ClearBit Variable, Index

Overview
Clear a bit of a variable or register using a variable index to the bit of interest.

Parameters

Variable is a user defined variable.

Index is a constant, variable, or expression that points to the bit within Variable that requires
clearing.

Example
" Clear then Set each bit of variable ExVar
Device = 16F1829
Declare Xtal = 4
Dim ExVar as Byte
Dim Index as Byte
Cls
ExVar = %11111111

While

For Index = 0 to 7
ClearBit ExVar, Index
Print At 1,1,Bin8 ExVar
DelayMs 100

Next

For Index = 7 to O Step -1
SetBit ExVar, Index
Print At 1,1,Bin8 ExVar
DelayMs 100

Create an infinite loop

Create a loop for 8 bits

Clear each bit of Exvar

Display the binary result

Slow things down to see what®s happening
Close the loop

Create a loop for 8 bits

Set each bit of ExVar

Display the binary result

Slow things down to see what"s happening

Next Close the loop
Wend Do it forever
Notes

There are many ways to clear a bit within a variable, however, each method requires a certain
amount of manipulation, either with rotates, or alternatively, the use of indirect addressing using
the FSR, and INDF registers. Each method has its merits, but requires a certain amount of
knowledge to accomplish the task correctly. The ClearBit command makes this task extremely
simple using a register rotate method, however, this is not necessarily the quickest method, or
the smallest, but it is the easiest. For speed and size optimisation, there is no shortcut to ex-
perience.

To Clear a known constant bit of a variable or register, then access the bit directly using Port.n.

PORTA.1 = 0

or
Varl.4 = 0

If a Port is targeted by ClearBit, the Tris register is not affected.

See also : GetBit, LoadBit, SetBit.

117

8-bit Proton Compiler Development Suite.

Cls

Syntax
Cls

Or if using a Toshiba T6963 graphic LCD

Cls Text
Cls Graphic

Overview
Clears the alphanumeric or graphic LCD and places the cursor at the home position i.e. line 1,
position 1 (line 0, position O for graphic LCDs).

Toshiba graphic LCDs based upon the T6963 chipset have separate RAM for text and graph-
ics. Issuing the word Text after the Cls command will only clear the TEXT RAM, while issuing
the word Graphic after the Cls command will only clear the Graphic RAM. Issuing the Cls
command on its own will clear both areas of RAM.

Example 1
" Clear an alphanumeric or KS0108 graphic LCD

Cls " Clear the LCD
Print "HELLO" " Display the word "HELLO"™ on the LCD
Cursor 2, 1 " Move the cursor to line 2, position 1
Print "WORLD" " Display the word "WORLD"™ on the LCD
Stop

In the above example, the LCD is cleared using the Cls command, which also places the cur-
sor at the home position i.e. line 1, position 1. Next, the word HELLO is displayed in the top left
corner. The cursor is then moved to line 2 position 1, and the word WORLD is displayed.

Example 2
" Clear a Toshiba T6963 graphic LCD.
Cls Clear all RAM within the LCD
Print "Hello"” Display the word “Hello” on the LCD
Line 1,0,0,63,63 Draw a line on the LCD
DelayMs 1000 Wait for 1 second
Cls Text Clear only the text RAM, leaving the line displayed
DelayMs 1000 Wait for 1 second
Cls Graphic Now clear the line from the display
Stop

Notes

The Cls command will also initialise any of the above LCDs. (set the ports to inputs/outputs
etc), however, this is most important to Toshiba graphic LCDs, and the Cls command should
always be placed at the head of the BASIC program, prior to issuing any command that inter-
faces with the LCD. i.e. Print, Plot etc.

See also: Cursor, Print, Toshiba_ Command.

118

8-bit Proton Compiler Development Suite.

Config

Syntax
Config { configuration fuse settings }

Overview
Enable or Disable particular fuse settings for the PICmicro .

Parameters
configuration fuse settings vary from device to device, however, certain settings are standard
to most PICmicro types. Refer to the microcontroller’'s datasheet for details.

Example
" Disable Watchdog timer and specify an HS 0OSC etc, on a PIC16F877 device
Config HS_0OSC, WDT_OFF, PWRTE_ON, BODEN_OFF, LVP_OFF, _
WRTE_ON, CP_OFF, DEBUG_OFF

18F Fuse Setting.

Because of the complexity that 18F devices require for adjusting their many fuses, the Config
directive is not suitable. Instead a more intuitive approach is adopted using the Config_Start
and Config_End directives: -

Config_Start

0SC = HS " Oscillator Selection HS

0SCS = Off " Osc. Switch Enable Disabled

PWRT = On " Power-up Timer Enabled

BOR = OFfF " Brown-out Reset Disabled

BORV = 25 " Brown-out Voltage 2.5V

WDT = Off " Watchdog Timer Disabled

WDTPS = 128 " Watchdog Postscaler 1:128

CCP2MUX = On " CCP2 MUX Enable (RC1)

STVR = OffF " Stack Overflow Reset Disabled

LVP = Off " Low Voltage ICSP Disabled

DEBUG = Off " Background Debugger Enable Disabled

CPO = OfF " Code Protection Block O Disabled

CP1 = OfF " Code Protection Block 1 Disabled

CP2 = OfF " Code Protection Block 2 Disabled

CP3 = OfF " Code Protection Block 3 Disabled

CPB = Off " Boot Block Code Protection Disabled

CPD = Off " Data EEPROM Code Protection Disabled

WRTO = Off " Write Protection Block 0 Disabled

WRT1 = OFF " Write Protection Block 1Disabled

WRT2 = OFF " Write Protection Block 2 Disabled

WRT3 = Off " Write Protection Block 3 Disabled

WRTB = Off " Boot Block Write Protection Disabled

WRTC = Off " Configuration Register Write Protection Disabled

WRTD = OFF " Data EEPROM Write Protection Disabled

EBTRO = Off " Table Read Protection Block O Disabled

EBTR1 = OffF " Table Read Protection Block 1 Disabled

EBTR2 = Off " Table Read Protection Block 2 Disabled

EBTR3 = Off " Table Read Protection Block 3 Disabled

EBTRB = Off " Boot Block Table Read Protection Disabled
Config_End

The configs shown are for the 18F452 device and differ from device to device.

119

8-bit Proton Compiler Development Suite.

A complete list of Config fuse settings can be found in the "hlpPIC18ConfigSet.chm" file
downloadable from www.microchip.com.

The fuse setting text between Config_Start and Config_End will have the preceding Config
text added, then is passed directly to the assembler. Any errors in the fuse setting texts will re-
sult in Assembler errors being produced.

Notes
If the Config directive is not used within the BASIC program then default values are used.
These may be found in the .ppi files within the “Includes\PPI” folder.

When using either of the Config directives, always use all the fuse settings for the particular
PICmicro™ used. With 14-bit core (16F) devices, the compiler will always issue a reminder after
the Config directive has been issued, however, this may be ignored if you are confident that
you have assigned all the relevant fuse names.

Any fuse names that are omitted from the Config list will normally assume an Off or Disabled
state. However, this is not always the case, and unpredictable results may occur, or the
PICmicro may refuse to start up altogether.

Before programming the PICmicro", always check the user configured fuse settings at pro-
gramming time to ensure that the settings are correct.

Always read the datasheet for the particular PICmicro™ of interest, before using this directive.

Configl,Config2, Config3 and Config4

Some enhanced 14-bit core devices have more than one configuration area, therefore addi-
tional Config directives have been added. These are Configl, Config2, Config3 and Config4.
Their use is exactly the same as the Config directive, but the fuse names depend on the de-
vice used:

Example:

" Alter the fuse settings for a 16F886 device

Configl HS_0SC, WDT_OFF, DEBUG_OFF, FCMEN_OFF, IESO_OFF,
BOR_OFF, CPD_OFF, CP_OFF, MCLRE_ON, PWRTE_ON

Config2 WRT_OFF, BOR21V

Note that at the time of writing, all enhanced 14-bit core devices have 2 or more config areas.

120

http://www.microchip.com/

8-bit Proton Compiler Development Suite.

Continue

Syntax
Continue

Overview

Cause the next iteration of For...Next, While...Wend or Repeat...Until or Do...Loop condi-
tions to occur. With a For...Next loop, Continue will jump to the Next part. With a
While...Wend loop, Continue will jump to the While part. With a Repeat...Until loop, Contnue
will jump to the Until part.

Example

" Create and display a For-Next loop*"s iterations, missing out number 10
Device = 18F25K20
Declare Xtal = 4

Dim Index as Byte

For Index = 0 to 19
IT Index = 10 Then Continue
HrsoutLn Dec Index Display the counting loop
DelayMs 100 Slow things down to see what"s happening
Next Close the loop

Create a loop of 20 iterations
Miss out number 10

See also: Break, For...Next, Repeat...Until, While...Wend.

121

8-bit Proton Compiler Development Suite.

Context

Syntax
Context Save {Variable,Variable}
Context Restore

Overview

Save and restore important variables and device SFRs (Special Function Registers) while in-
side an interrupt. Context Restore will also exit the interrupt and hand control back to the main
program.

Parameters
Variable is an optional list of user-defined variables or SFRs that will also be saved before en-
tering the interrupt handling subroutine and restored after the interrupt has ended.

Example:

" Illustrate a typical use for Context Save and Context Restore
Device = 18F4520
Declare Xtal = 20

On_Hardware_ Interrupt Goto ISR_Handler * Point to the interrupt handler
Dim wTimerl as TMR1L.Word " Create a 16-bit Word from registers TMR1L/H

Goto Main " Jump over any subroutines to main program

" A typical Interrupt handling subroutine

ISR_Handler:

Context Save " Save any variables used in the interrupt
IT PIR1bits_TMR1IF = 1 Then " Is it a Timerl overflow interrupt?
Toggle PORTB.O " Yes. So. Toggle PORTB.O
PIR1bits TMR1IF = O " Clear the Timerl Overflow flag
EndIf -
Context Restore " Restore any variables and exit the interrupt

" The main program starts here

Main:
Low PORTB " Make all of PORTB output low
" Setup a Timerl interrupt
T1CONbits RD16 = 1 " Enable read/write of Timerl in 16-bit mode
T1CONbits_T1CKPS1 = O " \ Timerl Prescaler to 1:4
T1CONbits_T1CKPSO = 1 "/
T1CONbits_T10SCEN = O " Disable External Oscillator
T1CONbits_TMR1CS = O " Increment on the internal Clock
wTimerl = O " Clear Timerl
T1CONbits_TMRION = 1 " Enable Timerl
PIElbits TMR1IE = 1 " Enable the Timerl overflow interrupt
INTCON1lbits PEIE = 1 " Enable all peripheral interrupts
INTCON1lbits GIE = 1 " Enable all interrupts
While " Create an infinite loop
PORTB.1 = 1 " Set PORTB.1 high
DelayMS 200 " Wait a while
PORTB.1 = O " Pull PORTB.1 low
DelayMs 200 " Wait a while
Wend " Do it forever

122

8-bit Proton Compiler Development Suite.

Notes.

When an interrupt occurs, it will immediately leave the main program and jump to the interrupt
handling subroutine regardless of what the main program is doing. The main program generally
has no idea that an interrupt has occurred and if it was using any of the device’s resources or
the compiler’'s system variables and the interrupt handler is doing the same, they will be altered
when the main program continues, with disastrous results.

This is the reason for context saving and restoring of the compiler’s internal system variables
and the device’'s SFRs (Special Function Registers). Each compiler command generates vari-
ables for it to work upon, either for passing parameters or the actual working of the library rou-
tine. Some commands also make use of the device's SFRs, for example FSR or PRODL or
PRODH etc...

Of course, we don’'t want to save every internal system variable or device SFR as this would
take far too much RAM and slow down the entry and exit of the interrupt while each was saved
and restored. What we want is to save and restore only the variables and SFRs that are used
within the interrupt handler itself. This may be a lot or a little, or none, depending on the pro-
gram within the interrupt handler subroutine.

The compiler examines the code between the Context Save and Context Restore commands
and keeps a record of the internal compiler system variables and SFRs used. There are ex-
cepts to this rule concerning SFRs which we'll deal with later.

The Context Save command should always be at the beginning of the interrupt handling sub-
routine, and this will save any variables in a specially created byte array.

Exceptions to the Rule.
Each of the compiler's commands reports internally as to which compiler system variable and
SFR they use. However, this is not the case for any SFRs used as an assignment variable. For
example:

PRODL = Bytelnl + Byteln2

It is also not the case for any PORT or TRIS registers.

For these SFRs to be saved and restored they will need to be added to the list of parameters
after the Context Save command:

Context Save PRODL, PORTB, TRISB

Seealso: On_Hardware_Interrupt, On_Low_Interrupt.

123

8-bit Proton Compiler Development Suite.

Counter

Syntax
Variable = Counter Pin, Period

Overview
Count the number of pulses that appear on pin during period, and store the result in variable.

Parameters

Variable is a user-defined variable.

Pin is a Port.Pin constant declaration i.e. PORTA.O.
Period may be a constant, variable, or expression.

Example
" Count the pulses that occur on PORTA.O within a 100ms period
" and displays the results.

Dim Wrd as Word " Create a word size variable
Symbol Pin = PORTA.O " Assign the input pin to PORTA.O
Cls
MyLoop:
Wrd = Counter Pin, 100 " Variable Wrd now contains the Count
Cursor 1, 1
Print Dec Wrd, ™ " " Display the decimal result on the LCD
Goto MylLoop " Do it indefinitely
Notes

The resolution of period is in milliseconds (ms). It obtains its scaling from the oscillator declara-
tion, Declare Xtal.

Counter checks the state of the pin in a concise loop, and counts the rising edge of a transition
(low to high).

With a 4MHz oscillator, the pin is checked every 20us, and every 4us with a 20MHz oscillator.
From this we can determine that the highest frequency of pulses that may be counted is: -

25KHz using a 4MHz oscillator.
125KHz using a 20MHz oscillator.

See also : Pulseln, Rcin.

124

8-bit Proton Compiler Development Suite.

cPtr8, cPtrl6, cPtr32

Syntax

Variable = cPtr8 (Address)
Variable = cPtr16 (Address)
Variable = cPtr32 (Address)

Overview
Indirectly read code memory using a variable to hold the 16-bit or 32-bit address. For enhanced
14-bit core devices and 18F devices only.

Operands

Variable is a user defined variable that holds the result of the indirectly addressed code mem-
ory area.

Address is a Word or Dword variable that holds the 16-bit or 32-bit address of the code mem-
ory area of interest.

Address can also post or pre increment or decrement:

(MyAddress++) Post increment MyAddress after retreiving it's RAM location.

(MyAddress --) Post decrement MyAddress after retreiving it's RAM location.
(++MyAddress) Pre increment MyAddress before retreiving it's RAM location.
(--MyAddress) Pre decrement MyAddress before retreiving it's RAM location.

cPtr8 will retrieve a value with an optional 8-bit post or pre increment or decrement.
cPtr16 will retrieve a value with an optional 16-bit post or pre increment or decrement.
cPtr32 will retrieve a value with an optional 32-bit post or pre increment or decrement.

8-bit Example.
" Read 8-bit values indirectly from code memory

Device = 18F25K20 " Choose an 18F device
Declare Xtal = 16

Declare Hserial_Baud = 9600 " Set baud rate to 9600
Create an 8-bit code memory array

Dim CodeArray As Code = as Byte 1, 2, 3, 4, 5, 6, 7, 8, 9, 0

Dim MyByte As Byte Create a byte variable

Dim blndex As Byte

Dim wAddress As Word " Create variable to hold 16-bit address
Main:

" Read from code memory
wAddress = AddressOf(CodeArray) " Load wAddress with address of memory
While " Create a loop
MyByte = cPtr8(wAddress++) " Retrieve from code with post increment
IT MyByte = 0 Then Break " Exit when a null(0) is read from code
HRSOutLn Dec MyByte " Transmit the byte read from code
Wend

125

8-bit Proton Compiler Development Suite.

16-bit Example.
Read 16-bit values indirectly from code memory

Device = 18F25K20 " Choose an 18F device
Declare Xtal = 16

Declare Hserial Baud = 9600 " Set baud rate to 9600
" Create a 16-bit code memory array

Dim CodeArray As Code = as Word 100, 200, 300, 400, 500, 600, 700, O

Dim MyWord As Word " Create a word variable

Dim bIndex As Byte

Dim wAddress As Word " Create variable to hold 16-bit address
Main:

" Read from code memory

wAddress = AddressOf(CodeArray) " Load wAddress with address of memory

While " Create a loop
MyWord = cPtri6(wAddress++) " Retrieve from code with post increment
IT MyWord = O Then Break " Exit when a null(0) is read from code
HRSOutLn Dec MyWord " Transmit the word read from code

Wend

32-bit Example.
Read 32-bit values indirectly from code memory

Device = 18F25K20 " Choose an 18F device
Declare Xtal = 16

Declare Hserial _Baud = 9600 " Set baud rate to 9600

Create a 32-bit code memory array

Dim CodeArray As Code = as Dword 100, 200, 300, 400, 500, 600, 700, O

Dim MyDword As Dword " Create a dword variable

Dim bIndex As Byte

Dim wAddress As Word " Create variable to hold 16-bit address
Main:

" Read from code memory

wAddress = AddressOf(CodeArray) " Load wAddress with address of memory

While " Create a loop
MyDword = cPtr32(wAddress++) " Retrieve from code with post increment
IT MyDword = O Then Break " Exit when a null(0) is read from code
HRSOutLn Dec MyDword " Transmit the dword read from code

Wend

See also: AddressOf, Cread8, Cread16, Cread32.

126

8-bit Proton Compiler Development Suite.

Cread

Syntax
Variable = Cread Address

Overview
Read data from anywhere in code memory.

Parameters

Variable is a user defined variable.

Address is a constant, variable, label, or expression that represents any valid address within
code memory

Example
" Read code memory locations within the device

Device = 16F1829
Dim Varl as Byte
Dim Wrd as Word

Dim Address as Word

Address = 1000 " Address now holds the base address
Varl = Cread 1000 " Read 8-bit data at address 1000 into Varl
Wrd = Cread Address + 10 " Read data at address 1000+10

Notes

The Cread command takes advantage of the self-modifying feature that is available in the lat-
est devices.

If a Float or Dword size variable is used as the assignment, then 32-bits will be read. If a Word
size variable is used as the assignment, then 16-bits will be read. If a Byte sized variable is
used as the assignment, then 8-bits will be read.

The configuration fuse setting WRTE must be enabled before Cdata, Cread, and Cwrite may
be used, this is the default setting. This enables the self-modifying feature. If the Config direc-
tive is used, then the WRTE_ON fuse setting must be included in the list: -

Config WDT_ON, XT_0OSC, WRTE_ON

See also: Cdata, Cread8, Cread16, Cread32, Config, Cwrite, Dim, Ldata, Lread, Lread8,
Lread16, Lread32.

127

8-bit Proton Compiler Development Suite.

Cread8, Cread16, Cread32

Syntax
Variable = Cread8 Label [Offset Variable]

or
Variable = Cread16 Label [Offset Variable]
or

Variable = Cread32 Label [Offset Variable]

Overview

Read an 8, 16, or 32-bit value from a Cdata table using an offset of Offset Variable and place
into Variable, with more efficiency than using Cread . For device’s that can access their own
code memory.

Cread8 will access 8-bit values from an Cdata table.
Cread16 will access 16-bit values from an Cdata table.
Cread32 will access 32-bit values from an Cdata table, this also includes floating point values.

Parameters

Variable is a user defined variable or an Array.

Label is a label name preceding the Cdata statement of which values will be read from.
Offset Variable can be a constant value, variable, or expression that points to the location of
interest within the Cdata table.

Cread8 Example
" Extract the second value from within an 8-bit Cdata table
Device = 18F452
Dim Offset as Byte " Create a Byte size variable for the offset
Dim MyResult as Byte " Create a Byte size variable to hold the result
" Create a table containing only 8-bit values
Dim Byte_Table as Code = as Byte 100, 200

Cls " Clear the LCD

Offset = 1 " Point to the second value in the Ldata table
" Read the 8-bit value pointed to by Offset

MyResult = Cread8 Byte Table[Offset]

Print Dec MyResult " Display the decimal result on the LCD

Stop

128

8-bit Proton Compiler Development Suite.

Cread16 Example
" Extract the second value from within a 16-bit Cdata table
Device = 18F4520
Dim Offset as Byte " Create a Byte size variable for the offset
Dim MyResult as Word " Create a Word size variable to hold the result
" Create a table containing only 16-bit values
Dim WordTable as Code = as Word 1234, 5678

Cls " Clear the LCD

Offset = 1 " Point to the second value in the Ldata table
" Read the 16-bit value pointed to by Offset

MyResult = Creadl6 WordTable[Offset]

Print Dec MyResult " Display the decimal result on the LCD

Stop

Cread32 Example
" Extract the second value from within a 32-bit Cdata table
Device = 18F4520
Dim Offset as Byte " Create a Byte size variable for the offset
Dim MyResult as Dword " Create a Dword size variable to hold the result

Create a table containing only 32-bit values
Dim DwordTable as Code = as Dword 12340, 56780

Cls " Clear the LCD

Offset = 1 " Point to the second value in the Ldata table
" Read the 32-bit value pointed to by Offset

MyResult = Cread32 DwordTable[Offset]

Print Dec MyResult " Display the decimal result on the LCD

Stop

Notes

Data storage in any program is of paramount importance, and although the standard Cread
command can access multi-byte values from a flash memory data table, it was not originally
intended as such, and is more suited to accessing character data or single 8-bit values. How-
ever, the Cread8, Cread16, and Cread32 commands are specifically written in order to effi-
ciently read data from an Cdata table, and use the least amount of code space in doing so,
thus increasing the speed of operation. Which means that wherever possible, Cread should be

replaced by Cread8, Cread16, or Cread32.

See also :Cdata, Cread, Dim, Ldata, Lread, Lread8, Lread16, Lread32.

129

8-bit Proton Compiler Development Suite.

Cursor

Syntax
Cursor Line, Position

Overview
Move the cursor position on an Alphanumeric or Graphic LCD to a specified line (ypos) and po-
sition (xpos).

Parameters

Line is a constant, variable, or expression that corresponds to the line (Ypos) number from 1 to
maximum lines (0 to maximum lines if using a graphic LCD).

Position is a constant, variable, or expression that moves the position within the position
(Xpos) chosen, from 1 to maximum position (0 to maximum position if using a graphic LCD).

Example 1
Dim Line as Byte
Dim Xpos as Byte

Line
Xpos
Cls " Clear the LCD

Print "Hello"” " Display the word "Hello"™ on the LCD

2
1

Cursor Line, Xpos Move the cursor to line 2, position 1
Print "World" Display the word "World™ on the LCD

In the above example, the LCD is cleared using the Cls command, which also places the cur-
sor at the home position i.e. line 1, position 1. Next, the word "Hello" is displayed in the top left
corner. The cursor is then moved to line 2 position 1, and the word "World" is displayed.

Example 2
Dim Xpos as Byte
Dim Ypos as Byte

Again:

Ypos = 1 " Start on line 1

For Xpos = 1 to 16 " Create a loop of 16
Cls " Clear the LCD
Cursor Ypos, Xpos " Move the cursor to position Ypos,Xpos
Print " " Display the character
DelayMs 100

Next

Ypos = 2 " Move to line 2

For Xpos = 16 to 1 Step -1" Create another loop, this time reverse

Cls Clear the LCD
Cursor Ypos, Xpos " Move the cursor to position Ypos,Xpos
Print =" " Display the character
DelayMs 100
Next
Goto Again " Repeat forever

Example 2 displays an asterisk character moving around the perimeter of a 2-line by 16 charac-
ter LCD.

See also: Cls, Print

130

8-bit Proton Compiler Development Suite.

Cwrite

Syntax
Cwrite Address, [Variable {, Variable...}]

Overview
Write data to anywhere in code memory on devices that support it.

Parameters

Variable can be a constant, variable, or expression.

Address is a constant, variable, label, or expression that represents any valid code memory
address

Example
" Write to memory location 2000+ within the PICmicro

Device = 16F877 " Choose the PICmicro
Declare Xtal = 4

Dim Varl as Byte = 234
Dim Wrd as Word = 1043
Dim Address as Word = 2000 " Address now holds the base address

Cwrite Address, [10, Varl, Wrd] ~ Write to address 2000 +
Org 2000

Notes
The Cwrite command takes advantage of the self-modifying feature that is available in most
devices.

If a Word size variable is used as the assignment, then a 14-bit Word will be written. If a Byte
sized variable is used as the assignment, then 8-bits will be written.

Because the 14-bit core devices are only capable of holding 14 bits to a Word, values greater
than 16383 ($3FFF) cannot be written. However, the 18F devices may hold values up to 65535
($FFFF).

The configuration fuse setting WRTE must be enabled before Cdata, Cread, and Cwrite may

be used, this is the default setting. This enables the self-modifying feature. If the Config direc-
tive is used, then the WRTE_ON fuse setting must be included in the list: -

Config WDT_ON, XT_OSC, WRTE_ON

See also: Cdata, Config, Cread, Cread8, Cread16, Cread32, Dim.

131

8-bit Proton Compiler Development Suite.

Dec

Syntax
Dec Variable

Overview
Decrement a variable i.e. Varl =Varl -1

Parameters
Variable is a user defined variable

Example
Device = 16F877 " Choose the microcontroller

Declare Xtal = 4

Dim Varl as Byte = 11

Repeat " Create a loop
Dec Varl " Decrement the variable
HrsoutLn Dec Varl * Transmit the decimal value serially
DelayMs 200 " A delay to see what’s happening
until Varl = 0 " Loop until the variable reaches 0

The above example shows the equivalent to the For-Next loop: -

For Varl = 10 to O Step -1
Next

See also: Inc.

132

8-bit Proton Compiler Development Suite.

Declare

Syntax
[Declare] code modifying directive = modifying value

Overview
Adjust certain aspects of the produced code at compile time, i.e. Crystal frequency, LCD port
and pins, serial baud rate etc.

Parameters
code modifying directive is a set of pre-defined words. See list below.
modifying value is the value that corresponds to the action. See list below.

The Declare directive is an indispensable part of the compiler. It moulds the library subroutines,
and passes essential user information to them.

Notes

The Declare directive usually alters the corresponding library subroutine at runtime. This
means that once the Declare is added to the BASIC program, it usually cannot be Undeclared
later, or changed in any way. However, there are some declares that alter the flow of code, and
can be enabled and disabled throughout the BASIC listing.

Oscillator Frequency Declare.
12-bit core device XTAL values:
Declare Xtal 4, 8, 10, 12, 16, or 20.

Standard 14-bit core device XTAL values:
Declare Xtal 3, 4, 7, 8, 10, 12, 14, 16, 19, 20, 22, or 24.

Enhanced 14-bit core device XTAL values:
Declare Xtal 3, 4, 7, 8, 10, 12, 14, 16, 19, 20, 22, 24, 32, 48, or 64.

18F device XTAL values:
Declare Xtal 3, 4, 7, 8, 10, 12, 14, 16, 19, 20, 22, 24, 25, 29, 32, 33, 40, 48, 64, 80, or 88.

Inform the compiler what frequency oscillator is being used.
Some commands are very dependant on the oscillator frequency, Rsin, Rsout, DelayMs, and
DelayUs being just a few. In order for the compiler to adjust the correct timing for these com-

mands, it must know what frequency crystal is being used.

The Xtal frequencies 3, 7, 14, 19 and 22 are for 3.58MHz, 7.2MHz, 14.32MHz, 19.66MHz,
22.1184MHz and 29.2MHz respectively.

If the Declare is not used in the program, then the default frequency will be of an unknown
state.

133

8-bit Proton Compiler Development Suite.

Misc Declares.

Declare WatchDog = On or Off, or True or False, or 1, 0

The WatchDog Declare directive enables or disables the watchdog timer. It also sets the
PICmicro's Config fuses for no watchdog. In addition, it removes any CIrwdt mnemonics from
the assembled code, thus producing slightly smaller programs. The default for the compiler is
WatchDog Off, therefore, if the watchdog timer is required, then this Declare will need to be
invoked.

The WatchDog Declare can be issued multiple times within the BASIC code, enabling and
disabling the watchdog timer as and when required.

Declare BootLoader = On or Off, or True or False, or 1, 0

The BootLoader Declare directive enables or disables the special settings that a serial boot-
loader requires at the start of code space. This directive is ignored if a PICmicro™ without boot-
loading capabilities is targeted.

Disabling the bootloader will free a few bytes from the code produced. This doesn't seem a
great deal, however, these few bytes may be the difference between a working or non-working
program. The default for the compiler is BootLoader On

Declare Show_System_Variables = On or Off, or True or False, or 1, 0

When using the Proteus VSM to simulate BASIC code, it is sometimes beneficial to observe the
behaviour of the compiler's System variables that are used for its library routines. The
Show_System_Variables Declare enables or disables this option.

Declare Warnings = On or Off, or True or False, or 1, 0

The Warnings Declare directive enables or disables the compiler's warning messages. This
can have disastrous results if a warning is missed or ignored, so use this directive sparingly,
and at your own peril.

The Warnings Declare can be issued multiple times within the BASIC code, enabling and dis-
abling the warning messages at key points in the code as and when required.

Declare Hints = On or Off, or True or False, or 1, 0
The Hints Declare directive enables or disables the compiler's hint messages. The compiler
issues a hint for a reason, so use this directive sparingly, and at your own peril.

The Hints Declare can be issued multiple times within the BASIC code, enabling and disabling
the hint messages at key points in the code as and when required.

Declare Label_Bank_Resets = On or Off, or True or False, or 1, 0

The compiler has very intuitive RAM bank handling, however, if you think that an anomaly is
occurring due to misplaced or mishandled RAM bank settings, you can issue this Declare and
it will reset the RAM bank on every BASIC label, which will force the compiler to re-calculate its
bank settings. If nothing else, it will reassure you that bank handling is not the cause of the
problem, and you can get on with finding the cause of the programming problem. However, if it
does cure a problem then please let me know and I will make sure the anomaly is fixed as
quickly as possible.

Using this Declare will increase the size of the code produced, as it will place Bcf mnemonics
in the case of a 12 or 14-bit core device, and a MovIb mnemonic in the case of an 18F device.

134

8-bit Proton Compiler Development Suite.

The Label Bank_Resets Declare can be issued multiple times within the BASIC code, ena-
bling and disabling the bank resets at key points in the code as and when required. See Line
Lables for more information.

Declare Float_Display_Type = Fast or Standard

By default, the compiler uses a relatively small routine for converting floating point values to
decimal, ready for Rsout, Print, Str$ etc. However, because of its size, it does not perform any
rounding of the value first, and is only capable of converting relatively small values. i.e. approx
6 digits of accuracy. In order to produce a more accurate result, the compiler needs to use a
larger routine. This is implemented by using the above Declare.

Using the Fast model for the above Declare will trigger the compiler into using the more accu-
rate floating point to decimal routine. Note that even though the routine is larger than the stan-
dard converter, it actually operates much faster.

The compiler defaults to Standard if the Declare is not issued in the BASIC program.
Declare Create_Coff = On or Off, or True or False or 1, 0
When the Create_Coff Declare is set to On, the compiler produces a cof file (Common Object

File). This is used for simulating the BASIC code within the MPLAB™ IDE environment or the
ISIS simulator.

135

8-bit Proton Compiler Development Suite.

Declare ICD_Req = On or Off, or True or False, or 1, 0

When the ICD_Req Declare is set to On, the compiler configures itself so that the Microchip
ICD2™ In-Circuit-Debugger, or PICkit2" can be used. The ICD2 ™ and PICkit2 ™ are very inva-
sive to the program, in so much that they require certain RAM areas for itself. This can be up to
26 bytes on some PICmicros. They also require 2 call-stack levels, so be careful when using a
14-bit core device or you may overflow the call-stack with disastrous results.

With a 14-bit core device, the top of BankO RAM is reserved for the ICD, for 18F devices, the
RAM usage is not so noticeable because of its linear nature, but it still requires 12 bytes re-
served at the end of RAM.

The list below highlights the requirements for the ICD2 ™ with some devices that support it.

Device RAM Usage
P12F675 $54 - $5F
P12F629 $54 - $5F
P16F627A $70 - $7F
P16F628A $70 - $7F
P16F648A $70 - $7F
P16F630 $54 - $5F
P16F676 $54 - $5F
P16F87 $70 - $7F
P16F88 $70 - $7F
P16F818 $65 - $7F
P16F819 $65 - $7F
P16F870 $70 - $7F, $B5 - $BF
P16F871 $70 - $7F, $B5 - $BF
P16F872 $70 - $7F, $B5 - $BF
P16F873/873A $74 - $7F
P16F874/874A $74 - $7F
P16F876/876A $70 - $7F
P16F877/877A $70 - $7F
P18F242/442 $02F4 - $02FF
P18F252/452 $05F4 - $05FF
P18F248/448 $02F4 - $02FF
P18F258/458 $05F4 - $05FF
P18F1220 $F4 - $FF
P18F1320 $F4 - $FF
P18F2220/4220 $01F4 - $01FF
P18F2320/4320 $01F4 - $01FF
P18F2331/4331 $02F4 - $02FF
P18F2431/4431 $02F4 - $02FF
P18F2680/4680 $0CF4 - $0CFF
P18F6520/8520 $0EF4 - $OEFF
P18F6620/8620 $0EF4 - $OEFF
P18F6720/8720 $0EF4 - $OEFF

Whenever ICD2 ™ or PICkit2 ™ or PICkit3 ™ compatibility is enabled, the compiler will automati-
cally deduct the reserved RAM from the available RAM within the PICmicro™, therefore you
must take this into account when declaring variables. Remember, there aren't as many vari-
ables available with the ICD enabled.

136

8-bit Proton Compiler Development Suite.

Adin Declares.
Declare Adin_Res 8, 10, or 12.
Sets the number of bits in the result.

If this Declare is not used, then the default is the resolution of the microcontroller used. Using
the above Declare allows an 8-bit result to be obtained from 10-bit or 12-bit microcontrollers,
but not 10-bits or 12-bits from the 8-bit types.

Declare Adin_Tad 2_FOSC, 8 FOSC, 32_FOSC, 64 FOSC or FRC.
Sets the ADC's clock source.

All compatible PICmicros have four options for the clock source used by the ADC; 2 _FOSC,
8 FOSC, and 32_FOSC, are ratios of the external oscillator, while FRC is the PICmicro's inter-
nal RC oscillator. Instead of using the predefined names for the clock source, values from 0O to
3 may be used. These reflect the settings of bits 0-1 in register ADCONO.

Care must be used when issuing this Declare, as the wrong type of clock source may result in
poor resolution, or no conversion at all. If in doubt use FRC which will produce a slight reduc-
tion in resolution and conversion speed, but is guaranteed to work first time, every time. FRC is
the default setting if the Declare is not issued in the BASIC listing.

Declare Adin_Stime 0 to 65535 microseconds (us).
Allows the internal capacitors to fully charge before a sample is taken. This may be a value
from 0 to 65535 microseconds (us).

A value too small may result in a reduction of resolution. While too large a value will result in
poor conversion speeds without any extra resolution being attained.

A typical value for Adin_Stime is 50 to 100. This allows adequate charge time without loosing
too much conversion speed.

But experimentation will produce the right value for your particular requirement. The default
value if the Declare is not used in the BASIC listing is 50.

Busin - Busout Declares.

Declare SDA_Pin Port . Pin

Declares the port and pin used for the data line (SDA). This may be any valid port on the mi-
crocontroller. If this declare is not issued in the BASIC program, then the default Port and Pin is
PORTA.O

Declare SCL_Pin Port . Pin

Declares the port and pin used for the clock line (SCL). This may be any valid port on the mi-
crocontroller. If this declare is not issued in the BASIC program, then the default Port and Pin is
PORTA.1

Declare Slow_Bus On-Offor1-0
Slows the bus speed when using an oscillator higher than 4MHz.

The standard speed for the 1°C bus is 100KHz. Some devices use a higher bus speed of
400KHz. If you use an 8MHz or higher oscillator, the bus speed may exceed the devices specs,
which will result in intermittent writes or reads, or in some cases, none at all. Therefore, use this
Declare if you are not sure of the device's spec. The datasheet for the device used will inform
you of its bus speed.

137

8-bit Proton Compiler Development Suite.

Declare Bus_SCL On - Off, 1 - 0 or True - False
Eliminates the necessity for a pull-up resistor on the SCL line.

The I12C protocol dictates that a pull-up resistor is required on both the SCL and SDA lines,
however, this is not always possible due to circuit restrictions etc, so once the Bus_SCL On
Declare is issued at the top of the program, the resistor on the SCL line can be omitted from
the circuit. The default for the compiler if the Bus_SCL Declare is not issued, is that a pull-up
resistor is required.

Hbusin - Hbusout Declares.

Declare Hbus_Bitrate Constant 100, 400, 1000 etc.

The standard speed for the 1°C bus is 100KHz. Some devices use a higher bus speed of
400KHz. The above Declare allows the 1°C bus speed to be increased or decreased. Use this
Declare with caution, as too high a bit rate may exceed the device's specs, which will result in
intermittent transactions, or in some cases, no transactions at all. The datasheet for the device
used will inform you of its bus speed. The default bit rate is the standard 100KHz.

Declare HSDA_Pin Port . Pin

For devices that have PPS (Peripheral Pin Select), the port and pin used for the data line (SDA)
must be given, so that the compiler can seup the PPS SFRs before the program starts. This
may be any valid port on the microcontroller, but check the datasheet to see if the Port is valid
for the peripheral.

Declare HSCL_Pin Port . Pin

For devices that have PPS (Peripheral Pin Select), the port and pin used for the clock line
(SCL) must be given, so that the compiler can seup the PPS SFRs before the program starts.
This may be any valid port on the microcontroller, but check the datasheet to see if the Port is
valid for the peripheral.

138

8-bit Proton Compiler Development Suite.

USART1 Declares for use with Hrsin, Hserin, Hrsout and Hserout.

Declare Hserout_Pin Port . Pin

For devices that have PPS (Peripheral Pin Select), the port and pin used for the TX line must
be given, so that the compiler can seup the PPS SFRs before the program starts. This may be
any valid port on the microcontroller, but check the datasheet to see if the Port is valid for the
peripheral.

Declare Hserin_Pin Port . Pin

For devices that have PPS (Peripheral Pin Select), the port and pin used for the RX line must
be given, so that the compiler can seup the PPS SFRs before the program starts. This may be
any valid port on the microcontroller, but check the datasheet to see if the Port is valid for the
peripheral.

Declare Hserial Baud Constant value

Sets the Baud rate that will be used to receive a value serially. The baud rate is calculated us-
ing the Xtal frequency declared in the program. The compiler will assign the best values to the
SFRs for the Baud rate required. Within the asm file listing are the Baud rate achieved and the
error percentage. Once compiled, press the F2 button and view the asm listing.

Declare Hserial RCSTA Constant value (0 to 255)

Hserial RCSTA, is an optional declare that sets the respective microcontroller hardware reg-
ister RCSTA, to the value in the Declare. See the device’s data sheet for more information re-
garding this register.

Declare Hserial TXSTA Constant value (0 to 255)

Hserial _TXSTA, is an optional declare that sets the respective hardware register, TXSTA, to
the value in the Declare. See the device’s data sheet for more information regarding this regis-
ter. The TXSTA register's BRGH bit controls the high speed mode for the baud rate generator.
Certain Baud rates at certain oscillator speeds require this bit to be set to operate properly. To
do this, set Hserial _TXSTA to a value of $24 instead of the default $20.

Declare Hserial_Parity Odd or Even

Enables/Disables parity on the serial port. For Hrsin, Hrsout, Hserin and Hserout. The default
serial data format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1
stop bit) or 701 (7data bits, odd parity, 1 stop bit) may be enabled using the Hserial Parity
declare.

Declare Hserial Parity
Declare Hserial_Parity

Even " Use if even parity desired
Odd " Use if odd parity desired

139

8-bit Proton Compiler Development Suite.

Declare Hserial _Clear On or Off
Clear the overflow error bit before commencing a read.

Because the hardware serial port only has a 2-byte input buffer, it can easily overflow is charac-
ters are not read from it often enough. When this occurs, the USART stops accepting any new
characters, and requires resetting. This overflow error can be reset by strobing the CREN bit
within the RCSTA register. Example: -

RCSTAbits_CREN
RCSTAbits_CREN

or
Clear RCSTAbits_CREN
Set RCSTAbits_CREN

0
1

Alternatively, the Hserial_Clear declare can be used to automatically clear this error, even if no
error occurred. However, the program will not know if an error occurred while reading, therefore
some characters may be lost.

Declare Hserial Clear = On
USART2 Declares for use with Hrsin2, Hserin2, Hrsout2 and Hserout2.

Declare Hserout2_Pin Port . Pin

For devices that have PPS (Peripheral Pin Select), the port and pin used for the TX2 line must
be given, so that the compiler can seup the PPS SFRs before the program starts. This may be
any valid port on the microcontroller, but check the datasheet to see if the Port is valid for the
peripheral.

Declare Hserin2_Pin Port . Pin

For devices that have PPS (Peripheral Pin Select), the port and pin used for the RX2 line must
be given, so that the compiler can seup the PPS SFRs before the program starts. This may be
any valid port on the microcontroller, but check the datasheet to see if the Port is valid for the
peripheral.

Declare Hserial2_Baud Constant value

Sets the Baud rate that will be used to transmit a value serially. The baud rate is calculated us-
ing the Xtal frequency declared in the program. The compiler will assign the best values to the
SFRs for the Baud rate required. Within the asm file listing are the Baud rate achieved and the
error percentage. Once compiled, press the F2 button and view the asm listing.

Declare Hserial2_ RCSTA Constant value (0 to 255)

Hserial2_RCSTA, is an optional declare that sets the respective hardware register RCSTAZ2,
to the value in the Declare. See the device’s data sheet for more information regarding this reg-
ister.

Declare Hserial2_TXSTA Constant value (0 to 255)

Hserial2_TXSTA, is an optional declare that sets the respective hardware register, TXSTA2,
to the value in the Declare. See the device’s data sheet for more information regarding this reg-
ister. The TXSTAZ2 register's BRGH2 bit controls the high speed mode for the baud rate gen-
erator. Certain baud rates at certain oscillator speeds require this bit to be set to operate prop-
erly. To do this, set Hserial2_TXSTA to a value of $24 instead of the default $20.

140

8-bit Proton Compiler Development Suite.

Declare Hserial2_Parity Odd or Even

Enables/Disables parity on the serial port. For Hrsout2, Hrsin2, Hserout2 and Hserin2. The
default serial data format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even
parity, 1 stop bit) or 701 (7data bits, odd parity, 1 stop bit) may be enabled using the Hse-
rial2_Parity declare.

Declare Hserial2_Parity
Declare Hserial2_Parity

Even " Use if even parity desired
Odd " Use if odd parity desired

Declare Hserial2_Clear On or Off
Clear the overflow error bit before commencing a read.

Because the hardware serial port only has a 2-byte input buffer, it can easily overflow is charac-
ters are not read from it often enough. When this occurs, the USART stops accepting any new
characters, and requires resetting. This overflow error can be reset by strobing the CREN bit
within the RCSTAZ2 register. Example: -

RCSTA2bits_CREN
RCSTA2bits_CREN

or
Clear RCSTA2bits_CREN
Set RCSTA2bits_CREN

0
1

Alternatively, the Hserial2_Clear declare can be used to automatically clear this error, even if
no error occurred. However, the program will not know if an error occurred while reading, there-
fore some characters may be lost.

Declare Hserial2 Clear = On
USART3 Declares for use with Hrsin3, Hserin3, Hrsout3 and Hserout3.

Declare Hserout3 Pin Port . Pin

For devices that have PPS (Peripheral Pin Select), the port and pin used for the TX3 line must
be given, so that the compiler can seup the PPS SFRs before the program starts. This may be
any valid port on the microcontroller, but check the datasheet to see if the Port is valid for the
peripheral.

Declare Hserin3_Pin Port . Pin

For devices that have PPS (Peripheral Pin Select), the port and pin used for the RX3 line must
be given, so that the compiler can seup the PPS SFRs before the program starts. This may be
any valid port on the microcontroller, but check the datasheet to see if the Port is valid for the
peripheral.

Declare Hserial3_Baud Constant value

Sets the Baud rate that will be used to transmit a value serially. The baud rate is calculated us-
ing the Xtal frequency declared in the program. The compiler will assign the best values to the
SFRs for the Baud rate required. Within the asm file listing are the Baud rate achieved and the
error percentage. Once compiled, press the F2 button and view the asm listing.

Declare Hserial3_RCSTA Constant value (0 to 255)

Hserial2_RCSTA, is an optional declare that sets the respective hardware register RCSTAS3,
to the value in the Declare. See the device’s data sheet for more information regarding this reg-
ister.

141

8-bit Proton Compiler Development Suite.

Declare Hserial3_TXSTA Constant value (0 to 255)

Hserial3_TXSTA, is an optional declare that sets the respective hardware register, TXSTAS,
to the value in the Declare. See the device’s data sheet for more information regarding this reg-
ister. The TXSTAS3 register's BRGH bit controls the high speed mode for the baud rate genera-
tor. Certain Baud rates at certain oscillator speeds require this bit to be set to operate properly.
To do this, set Hserial3_TXSTA to a value of $24 instead of the default $20.

Declare Hserial3_Parity Odd or Even

Enables/Disables parity on the serial port. For Hrsout3, Hrsin3, Hserout3 and Hserin3. The
default serial data format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even
parity, 1 stop bit) or 701 (7data bits, odd parity, 1 stop bit) may be enabled using the Hse-
rial2_Parity declare.

Declare Hserial3 Parity
Declare Hserial3 Parity

Even " Use if even parity desired
Odd " Use if odd parity desired

Declare Hserial3_Clear On or Off
Clear the overflow error bit before commencing a read.

Because the hardware serial port only has a 2-byte input buffer, it can easily overflow is charac-
ters are not read from it often enough. When this occurs, the USART stops accepting any new
characters, and requires resetting. This overflow error can be reset by strobing the CREN bit
within the RCSTAB3 register. Example: -

RCSTA3bits_CREN
RCSTA3bits_CREN

or
Clear RCSTA3bits_CREN
Set RCSTA3bits_CREN

0
1

Alternatively, the Hserial3_Clear declare can be used to automatically clear this error, even if
no error occurred. However, the program will not know if an error occurred while reading, there-
fore some characters may be lost.

Declare Hserial3 Clear = On
USARTA4 Declares for use with Hrsin4, Hserin4, Hrsout4 and Hserout4.

Declare Hserout4 Pin Port . Pin

For devices that have PPS (Peripheral Pin Select), the port and pin used for the TX4 line must
be given, so that the compiler can seup the PPS SFRs before the program starts. This may be
any valid port on the microcontroller, but check the datasheet to see if the Port is valid for the
peripheral.

Declare Hserin4 _Pin Port . Pin

For devices that have PPS (Peripheral Pin Select), the port and pin used for the RX4 line must
be given, so that the compiler can seup the PPS SFRs before the program starts. This may be
any valid port on the microcontroller, but check the datasheet to see if the Port is valid for the
peripheral.

Declare Hserial4 Baud Constant value

Sets the Baud rate that will be used to transmit a value serially. The baud rate is calculated us-
ing the Xtal frequency declared in the program. The compiler will assign the best values to the
SFRs for the Baud rate required. Within the asm file listing are the Baud rate achieved and the
error percentage. Once compiled, press the F2 button and view the asm listing.

142

8-bit Proton Compiler Development Suite.

Declare Hserial4 RCSTA Constant value (0 to 255)

Hserial4_RCSTA, is an optional declare that sets the respective hardware register RCSTA4,
to the value in the Declare. See the device’s data sheet for more information regarding this reg-
ister.

Declare Hserial4_TXSTA Constant value (0 to 255)

Hserial4_TXSTA, is an optional declare that sets the respective hardware register, TXSTA4,
to the value in the Declare. See the device’s data sheet for more information regarding this reg-
ister. The TXSTA4 register's BRGH bit controls the high speed mode for the Baud rate genera-
tor. Certain Baud rates at certain oscillator speeds require this bit to be set to operate properly.
To do this, set Hserial4_TXSTA to a value of $24 instead of the default $20.

Declare Hserial4_Parity Odd or Even

Enables/Disables parity on the serial port. For Hrsout4, Hrsin4, Hserout4 and Hserin4. The
default serial data format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even
parity, 1 stop bit) or 701 (7data bits, odd parity, 1 stop bit) may be enabled using the Hse-
rial4_Parity declare.

Even " Use if even parity desired
Odd " Use if odd parity desired

Declare Hserial4 Parity
Declare Hserial4 Parity

Declare Hserial4 Clear On or Off
Clear the overflow error bit before commencing a read.

Because the hardware serial port only has a 2-byte input buffer, it can easily overflow if bytes
are not read from it often enough. When this occurs, the USART stops accepting any new
characters, and requires resetting. This overflow error can be reset by strobing the CREN bit
within the RCSTA4 register. Example: -

RCSTA4bits_CREN

RCSTA4bits_CREN
or

Clear RCSTA4bits_CREN

Set RCSTA4bits_CREN

0
1

Alternatively, the Hserial4_Clear declare can be used to automatically clear this error, even if
no error occurred. However, the program will not know if an error occurred while reading, there-
fore some characters may be lost.

Declare Hserial4 Clear = On

143

8-bit Proton Compiler Development Suite.

Hpwm Declares.
Some devices have alternate pins that may be used for Hpwm. The following Declares allow
the use of different pins: -

Declare CCP1 _Pin Port.Pin
Declare CCP2_Pin Port.Pin
Declare CCP3_Pin Port.Pin
Declare CCP4_Pin Port.Pin
Declare CCP5 Pin Port.Pin
Declare CCP6_Pin Port._Pin

Select Hpwm port and bit for CCP1 module (ch 1)
Select Hpwm port and bit for CCP2 module (ch 2)
Select Hpwm port and bit for CCP3 module (ch 3)
Select Hpwm port and bit for CCP4 module (ch 4)
Select Hpwm port and bit for CCP5 module (ch 5)
Select Hpwm port and bit for CCP6 module (ch 6)

Or

Declare HPWM1_Pin Port.Pin * Select Hpwm port and bit for PWM1 module (ch 1)

Declare HPWM2_Pin Port.Pin ® Select Hpwm port and bit for PWM 2 module (ch 2)
Declare HPWM3_Pin Port.Pin Select Hpwm port and bit for PWM 3 module (ch 3)
Declare HPWM4_Pin Port.P Select Hpwm port and bit for PWM 4 module (ch 4)
Declare HPWM5_Pin Port.P Select Hpwm port and bit for PWM 5 module (ch 5)
Declare HPWM6_Pin Port.Pin Select Hpwm port and bit for PWM 6 module (ch 6)

-
>
" 5 n u

Both texts after the declare; HPWMx_Pin or CCPx_Pin are valid for all devices that contain, ei-
ther CCP peripherals or PWM peripherals.

For devices that have PPS (Peripheral Pin Select), the compiler will manipulate the appropriate
SFRs before the program starts, so that the PWM signal is produced correctly.

144

8-bit Proton Compiler Development Suite.

Alphanumeric (Hitachi HD44780) LCD Print Declares.
Declare LCD_DTPin Port . Pin
Assigns the Port and Pins that the LCD's DT lines will attach to.

The LCD may be connected to the microcontroller using either a 4-bit bus or an 8-bit bus. If an
8-bit bus is used, all 8 bits must be on one port. If a 4-bit bus is used, it must be connected to
either the bottom 4 or top 4 bits of one port. For example: -

Declare LCD DTPin PORTB.4 " Used for 4-line interface.
Declare LCD_DTPin PORTB.O " Used for 8-line interface.

In the above examples, PORTB is only a personal preference. The LCD's DT lines can be at-
tached to any valid port on the microcontroller. If the Declare is not used in the program, then
the default Port and Pin is PORTB.4, which assumes a 4-line interface.

Declare LCD_DataX_ Pin Port . Pin
Assigns the individual Ports and Pins that the HD4470 LCD’s DT lines will attach to.

Unlike the above LCD_DTPin declares, the LCD’s data pins can also be attached to any se-
perate port and pin. For example:-

Declare LCD DataO_Pin PORTA.O * Connect PORTA.O to the LCD’s DO line
Declare LCD Datal Pin PORTA.2 * Connect PORTA.2 to the LCD’s D1 line
Declare LCD Data2 Pin PORTA.4 * Connect PORTA.4 to the LCD’s D2 line
Declare LCD Data3 Pin PORTB.O " Connect PORTB.O to the LCD’s D3 line
Declare LCD Data4 Pin PORTB.1 * Connect PORTB.1 to the LCD’s D4 line
Declare LCD Data5 Pin PORTB.5 " Connect PORTB.5 to the LCD’s D5 line
Declare LCD Data6 Pin PORTC.0 * Connect PORTC.O to the LCD’s D6 line
Declare LCD Data7 Pin PORTC.1 = Connect PORTC.1 to the LCD’s D7 line

There are no default settings for these Declares and they must be used within the BASIC pro-
gram if required.

Declare LCD_ENPIn Port . Pin

Assigns the Port and Pin that the LCD's EN line will attach to. This also assigns the graphic
LCD's EN pin, however, the default value remains the same as for the alphanumeric type, so
this will require changing.

If the Declare is not used in the program, then the default Port and Pin is PORTB.2.

Declare LCD_RSPin Port . Pin

Assigns the Port and Pins that the LCD's RS line will attach to. This also assigns the graphic
LCD's RS pin, however, the default value remains the same as for the alphanumeric type, so
this will require changing.

If the Declare is not used in the program, then the default Port and Pin is PORTB.3.

Declare LCD_Interface 4 or 8
Inform the compiler as to whether a 4-line or 8-line interface is required by the LCD.

If the Declare is not used in the program, then the default interface is a 4-line type.

145

8-bit Proton Compiler Development Suite.

Declare LCD Lines 1, 2,0r4
Inform the compiler as to how many lines the LCD has.

LCD's come in a range of sizes, the most popular being the 2 line by 16 character types. How-
ever, there are 4-line types as well. Simply place the number of lines that the particular LCD
has into the declare.

If the Declare is not used in the program, then the default number of lines is 2.

Declare LCD_CommandUS 1 to 65535
Time to wait (in microseconds) between commands sent to the LCD.

If the Declare is not used in the program, then the default delay is 2000us (2ms).

Declare LCD_DataUs 1 to 255
Time to wait (in microseconds) between data sent to the LCD.

If the Declare is not used in the program, then the default delay is 50us.

146

8-bit Proton Compiler Development Suite.

Graphic LCD Declares.

Declare LCD_Type O or 1 or 2, Alpha or Graphic or KS0108 or Toshiba or T6963

Inform the compiler as to the type of LCD that the Print command will output to. If Graphic,
KS0108 or 1 is chosen then any output by the Print command will be directed to a graphic LCD
based on the KS0108 chipset. A value of 2, or the text Toshiba, or T6963 will direct the output
to a graphic LCD based on the Toshiba T6963 chipset. A value of 0 or Alpha, or if the Declare
is not issued, will target the standard Hitachi HD44780 alphanumeric LCD type

Targeting the graphic LCD will also enable commands such as Plot, UnPlot, LCDread,
LCDwrite, Pixel, Box, Circle and Line.

KS0108 Graphic LCD specific Declares.
Declare LCD_DTPort Port
Assign the port that will output the 8-bit data to the graphic LCD.

If the Declare is not used, then the default port is PORTB.

Declare LCD_RWPin Port . Pin
Assigns the Port and Pin that the graphic LCD's RW line will attach to.

If the Declare is not used in the program, then the default Port and Pin is PORTC.0.

Declare LCD_CS1Pin Port . Pin
Assigns the Port and Pin that the graphic LCD's CS1 line will attach to.

If the Declare is not used in the program, then the default Port and Pin is PORTC.O.

Declare LCD_CS2Pin Port . Pin
Assigns the Port and Pin that the graphic LCD's CS2 line will attach to.

If the Declare is not used in the program, then the default Port and Pin is PORTC.0.

Declare Internal_Font On - Off, 1 or O

The graphic LCD's that are compatible with Proton are non-intelligent types, therefore, a sepa-
rate character set is required. This may be in one of two places, either externally, in an 1°C
eeprom, or internally in a Cdata table.

If an external font is chosen, the 1°C eeprom must be connected to the specified SDA and SCL
pins (as dictated by Declare SDA_Pin and Declare SCL_Pin).

If an internal font is chosen, it must be on a PICmicro™ device that has self modifying code fea-
tures, such as the 16F87X, or 18F range.

147

8-bit Proton Compiler Development Suite.

The Cdata table that contains the font must have a label, named Font_Table: preceding it. For
example: -

Font_Table: Cdata $7E, $11, $11, $11, $7E, $0, " Chr "A"
$7F, $49, $49, $49, $36, $0 * Chr "B"
{ rest of font table }

The font table may be anywhere in memory, however, it is best placed after the main program
code.

If the Declare is omitted from the program, then an external font is the default setting.

Declare Font_Addr Oto 7
Set the slave address for the 1°C eeprom that contains the font.

When an external source for the font is chosen, it may be on any one of 8 eeproms attached to
the I°C bus. So as not to interfere with any other eeproms attached, the slave address of the
eeprom carrying the font code may be chosen.

If the Declare is omitted from the program, then address 0 is the default slave address of the
font eeprom.

Declare GLCD_CS Invert On - Off, 1 or O

Some graphic LCD types have inverters on their CS lines. Which means that the LCD displays
left hand data on the right side, and vice-versa. The GLCD_CS_Invert Declare, adjusts the li-
brary LCD handling library subroutines to take this into account.

Declare GLCD_Strobe_Delay 0 to 65535 us (microseconds).

Create a delay of n microseconds between strobing the EN line of the graphic LCD. This can
help noisy, or badly decoupled circuits overcome random bits appearing on the LCD. The de-
fault if the Declare is not used in the BASIC program is a delay of 0.

Toshiba T6963 Graphic LCD specific Declares.

Declare LCD_DTPort Port

Assign the port that will output the 8-bit data to the graphic LCD.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_WRPIin Port . Pin
Assigns the Port and Pin that the graphic LCD's WR line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_RDPin Port . Pin
Assigns the Port and Pin that the graphic LCD's RD line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_CEPIn Port . Pin
Assigns the Port and Pin that the graphic LCD's CE line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

148

8-bit Proton Compiler Development Suite.

Declare LCD_CDPin Port . Pin
Assigns the Port and Pin that the graphic LCD's CD line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_RSTPin Port . Pin
Assigns the Port and Pin that the graphic LCD's RST line will attach to.

The LCD’s RST (Reset) Declare is optional and if omitted from the BASIC code the compiler
will not manipulate it. However, if not used as part of the interface, you must set the LCD’s RST
pin high for normal operation.

Declare LCD_X Res 0to 255

LCD displays using the T6963 chipset come in varied screen sizes (resolutions). The compiler
must know how many horizontal pixels the display consists of before it can build its library sub-
routines.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_Y_Res 0 to 255

LCD displays using the T6963 chipset come in varied screen sizes (resolutions). The compiler
must know how many vertical pixels the display consists of before it can build its library subrou-
tines.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_Font_Width 6 or 8
The Toshiba T6963 graphic LCDs have two internal font sizes, 6 pixels wide by eight high, or 8
pixels wide by 8 high. The particular font size is chosen by the LCD’s FS pin. Leaving the FS
pin floating or bringing it high will choose the 6 pixel font, while pulling the FS pin low will
choose the 8 pixel font. The compiler must know what size font is required so that it can calcu-
late screen and RAM boundaries.

Note that the compiler does not control the FS pin and it is down to the circuit layout whether or
not it is pulled high or low. There is no default setting for this Declare and it must be used
within the BASIC program.

Declare LCD_RAM_Size 1024 to 65535

Toshiba graphic LCDs contain internal RAM used for Text, Graphic or Character Generation.
The amount of RAM is usually dictated by the display’s resolution. The larger the display, the
more RAM is normally present. Standard displays with a resolution of 128x64 typically contain
4096 bytes of RAM, while larger types such as 240x64 or 190x128 typically contain 8192 bytes
or RAM. The display’s datasheet will inform you of the amount of RAM present.

If this Declare is not issued within the BASIC program, the default setting is 8192 bytes.

149

8-bit Proton Compiler Development Suite.

Declare LCD_Text Pages 1ton

As mentioned above, Toshiba graphic LCDs contain RAM that is set aside for text, graphics or
characters generation. In normal use, only one page of text is all that is required, however, the
compiler can re-arrange its library subroutines to allow several pages of text that is continuous.
The amount of pages obtainable is directly proportional to the RAM available within the LCD
itself. Larger displays require more RAM per page, therefore always limit the amount of pages
to only the amount actually required or unexpected results may be observed as text, graphic
and character generator RAM areas merge.

This Declare is purely optional and is usually not required. The default is 3 text pages if this
Declare is not issued within the BASIC program.

Declare LCD_Graphic_Pages 1ton

Just as with text, the Toshiba graphic LCDs contain RAM that is set aside for graphics. In nor-
mal use, only one page of graphics is all that is required, however, the compiler can re-arrange
its library subroutines to allow several pages of graphics that is continuous. The amount of
pages obtainable is directly proportional to the RAM available within the LCD itself. Larger dis-
plays require more RAM per page, therefore always limit the amount of pages to only the
amount actually required or unexpected results may be observed as text, graphic and character
generator RAM areas merge.

This Declare is purely optional and is usually not required. The default is 1 graphics page if this
Declare is not issued within the BASIC program.

Declare LCD_Text Home_ Address Oton

The RAM within a Toshiba graphic LCD is split into three distinct uses, text, graphics and char-
acter generation. Each area of RAM must not overlap or corruption will appear on the display
as one uses the other’s assigned space. The compiler’s library subroutines calculate each area
of RAM based upon where the text RAM starts. Normally the text RAM starts at address O,
however, there may be occasions when it needs to be set a little higher in RAM. The order of
RAM is; Text, Graphic, then Character Generation.

This Declare is purely optional and is usually not required. The default is the text RAM staring
at address 0 if this Declare is not issued within the BASIC program.

Keypad Declare.
Declare Keypad_Port Port
Assigns the Port that the keypad is attached to.

The keypad routine requires pull-up resistors, therefore, the best Port for this device is PORTB

which, sometimes, comes equipped with internal pull-ups. If the Declare is not used in the pro-
gram, then PORTB is the default Port.

150

8-bit Proton Compiler Development Suite.

Rsin - Rsout Declares.

Declare Rsout_Pin Port . Pin

Assigns the Port and Pin that will be used to output serial data from the Rsout command. This
may be any valid port on the microcontroller.

If the Declare is not used in the program, then the default Port and Pin is PORTB.O.

Declare Rsin_Pin Port . Pin

Assigns the Port and Pin that will be used to input serial data by the Rsin command. This may
be any valid port on the microcontroller.

If the Declare is not used in the program, then the default Port and Pin is PORTB.1.

Declare Rsout_Mode True or Inverted or 1, O

Sets the serial mode for the data transmitted by Rsout. This may be inverted or true. Alterna-
tively, a value of 1 may be substituted to represent inverted, and O for true.

If the Declare is not used in the program, then the default mode is inverted.

Declare Rsin_Mode True or Inverted or 1, 0

Sets the serial mode for the data received by Rsin. This may be inverted or true. Alternatively,
a value of 1 may be substituted to represent inverted, and O for true.

If the Declare is not used in the program, then the default mode is inverted.

Declare Serial_Baud 0 to 65535 bps (baud)
Informs the Rsin and Rsout routines as to what Baud rate to receive and transmit data.

Virtually any baud rate may be transmitted and received (within reason), but there are standard
bauds, namely: -

300, 600, 1200, 2400, 4800, 9600, and 19200.

When using a 4MHz crystal, the highest baud rate that is reliably achievable is 9600. However,
an increase in the oscillator speed allows higher baud rates to be achieved, including 38400
baud.

If the Declare is not used in the program, then the default baud is 9600.

Declare Rsout_Pace 0 to 65535 microseconds (us)
Implements a delay between characters transmitted by the Rsout command.

On occasion, the characters transmitted serially are in a stream that is too fast for the receiver
to catch, this results in missed characters. To alleviate this, a delay may be implemented be-
tween each individual character transmitted by Rsout.

If the Declare is not used in the program, then the default is no delay between characters.

151

8-bit Proton Compiler Development Suite.

Declare Rsin_Timeout 0 to 65535 milliseconds (ms)
Sets the time, in ms, that Rsin will wait for a start bit to occur.

Rsin waits in a tight loop for the presence of a start bit. If no timeout parameter is issued, then it
will wait forever.

The Rsin command has the option of jumping out of the loop if no start bit is detected within the
time allocated by timeouit.

If the Declare is not used in the program, then the default timeout value is 10000ms which is 10
seconds.

Serin - Serout Declare.

If communications are with existing software or hardware, its speed and mode will determine
the choice of baud rate and mode. In general, 7-bit/even-parity (7E) mode is used for text, and
8-bit/no-parity (8N) for byte-oriented data. Note: the most common mode is 8-bit/no-parity, even
when the data transmitted is just text. Most devices that use a 7-bit data mode do so in order to
take advantage of the parity feature. Parity can detect some communication errors, but to use it
you lose one data bit. This means that incoming data bytes transferred in 7E (even-parity)
mode can only represent values from 0 to 127, rather than the 0 to 255 of 8N (no-parity) mode.

The compiler's serial commands Serin and Serout have the option of still using a parity bit with
4 to 8 data bits. This is through the use of a Declare: -

With parity disabled (the default setting): -

" Set Serin and Serout data bits to
Set Serin and Serout data bits to

Declare Serial _Data 4
5
Set Serin and Serout data bits to 6
b
8

4
Declare Serial Data 5
Declare Serial_Data 6
7
8

Declare Serial_Data Set Serin and Serout data bits to

Declare Serial_Data Set Serin and Serout data bits to (default)
With parity enabled: -

Declare Serial Data 5 " Set Serin and Serout data bits to 4

Declare Serial Data 6 " Set Serin and Serout data bits to 5

Declare Serial Data 7 " Set Serin and Serout data bits to 6

Declare Serial Data 8 " Set Serin and Serout data bits to 7 (default)

Declare Serial Data 9 " Set Serin and Serout data bits to 8

Serial_Data data bits may range from 4 bits to 8 (the default if no Declare is issued). Enabling
parity uses one of the number of bits specified.

Declaring Serial_Data as 9 allows 8 bits to be read and written along with a 9th parity bit.
Parity is a simple error-checking feature. When a serial sender is set for even parity (the mode
the compiler supports) it counts the number of 1s in an outgoing byte and uses the parity bit to

make that number even. For example, if it is sending the 7-bit value: %0011010, it sets the par-
ity bit to 1 in order to make an even number of 1s (four).

152

8-bit Proton Compiler Development Suite.

The receiver also counts the data bits to calculate what the parity bit should be. If it matches
the parity bit received, the serial receiver assumes that the data was received correctly. Of
course, this is not necessarily true, since two incorrectly received bits could make parity seem
correct when the data was wrong, or the parity bit itself could be bad when the rest of the data
was correct.

Many systems that work exclusively with text use 7-bit/ even-parity mode. For example, to re-
ceive one data byte through bit-0 of PORTA at 9600 baud, 7E, inverted:

Shin - Shout Declare.
Declare Shift_DelayUs 0 - 65535 microseconds (us)
Extend the active state of the shift clock.

The clock used by Shin and Shout runs at approximately 45KHz dependent on the oscillator.
The active state is held for a minimum of 2 microseconds. By placing this declare in the pro-
gram, the active state of the clock is extended by an additional number of microseconds up to
65535 (65.535 milliseconds) to slow down the clock rate.

If the Declare is not used in the program, then the default is a very small clock delay.

153

8-bit Proton Compiler Development Suite.

DelayCs

Syntax
DelayCs Length

Overview
Delay execution for an amount of instruction cycles.

Parameters
Length can only be a constant with a value from 1 to 1000.

Example
DelayCs 100 " Delay for 100 cycles

Notes
DelayCs is oscillator independent, as long as you inform the compiler of the crystal frequency
to use, using the Declare directive.

The length of a given instruction cycle is determined by the oscillator frequency. For example,
running the microcontroller at it's default speed of 64MHz will result in an instruction cycle of
62.5ns (nano seconds).

Because of code memory paging overheads, DelayCs is only available when using enhanced
14-bit core or 18F devices.

See also : DelayUs, DelayMs, Sleep, Snooze.

154

8-bit Proton Compiler Development Suite.

DelayMs

Syntax
DelayMs Length

Overview
Delay execution for length x milliseconds (ms). Delays may be up to 65535ms (65.535 sec-
onds) long.

Parameters
Length can be a constant, variable, or expression.

Example
Device = 18F25K20
Declare Xtal = 16

50
1000

Dim MyByte as Byte
Dim MyWord as Word

DelayMs 100 " Delay for 100ms
DelayMs MyByte " Delay for 50ms

DelayMs MyWord " Delay for 1000ms
DelayMs MyWord + 10 " Delay for 1010ms

Notes
DelayMs is oscillator independent, as long as you inform the compiler of the crystal frequency
to use, using the Declare directive.

See also: DelayUs, Sleep, Snooze.

155

8-bit Proton Compiler Development Suite.

DelayUs

Syntax
DelayUs Length

Overview
Delay execution for length x microseconds (us). Delays may be up to 65535us (65.535 milli-
seconds) long.

Parameters
Length can be a constant, variable, or expression.

Example
Device = 18F25K20
Declare Xtal = 16

50
1000

Dim MyByte as Byte
Dim MyWord as Word

DelayUs 1

DelayUs 100

DelayUs MyByte
DelayUs MyWord
DelayUs MyWord + 10

Delay for 1lus
Delay for 100us
Delay for 50us
Delay for 1000us
Delay for 1010us

Notes
DelayUs is oscillator independent, as long as you inform the compiler of the crystal frequency
to use, using the Xtal directive.

If a constant is used as length, then delays down to 1us can be achieved, however, if a variable
is used as length, then there's a minimum delay time depending on the frequency of the crystal
used: -

Crystal Freq Minimum Delay

4MHz 24us
8MHz 12us
10MHz 8us
16MHz Sus
20MHz 2us
24MHz 2us
25MHz 2us
32MHz 2us
33MHz 2us
40MHz 2us
48MHz 2us
64MHz 2us

See also: Declare, DelayMs, DelayCs, Sleep, Snooze

156

8-bit Proton Compiler Development Suite.

Device

Syntax
Device Device number

Overview
Inform the compiler which microcontroller is being used.

Parameters
Device number can be a 12-bit, 14-bit, enhanced 14-bit or 18F device. If a PIC24 or dsPIC de-
vice is chosen, the compiler will automatically use the Proton24.

Example
Device = 16F1829 " Produce code for a 16F1829 device
or
Device = 16F684 " Produce code for a 16F684 device
or
Device = 12F508 " Produce code for a 12-bit core 12F508 device
or
Device = 18F4520 " Produce code for a 18F4520 device

Device should be the first command placed in the program.

If the Device directive is not used in the BASIC program, the code produced will default to the
PIC18F25K20 device.

For an up-to-date list of compatible devices refer to the compiler’'s PPI directory.

157

8-bit Proton Compiler Development Suite.

Dig

Syntax
Variable = Dig Value, Digit number

Overview
Returns the value of a decimal digit.

Parameters

Value is an unsigned constant, 8-bit, 16-bit, 32-bit variable or expression, from which the digit
number is to be extracted.

Digit number is a constant, variable, or expression, that represents the digit to extract from
value. (O - 4 with O being the rightmost digit).

Example
Device = 18F25K20
Declare Xtal = 16

Dim MyValue as Byte
Dim MyDigit as Byte

MyValue = 124
MyDigit = Dig Myvalue, 1 " Extract the second digit"s value
HrsoutLn Dec MyDigit " Transmit the value, which is 2

158

8-bit Proton Compiler Development Suite.

Dim

Syntax

Dim Variable as Size
or

Dim Label as Code = comma delimited data

Overview
Declare a variable or alias or code memory table.

Parameters

Variable can be any alphanumeric character or string.

Size is the physical size of the variable, it may be Bit, Byte, Word, Dword, SByte, SWord,
SDword, Float, or String.

Label is a valid label name that will be associated with a code memory table.

Example

" Declare different sized variables
Dim Varl as Byte " Create an unsigned 8-bit Byte variable
Dim Wrdl as Word " Create an unsigned 16-bit Word variable

Dim Dwrdl as Dword " Create an unsigned 32-bit Dword variable
im sVarl as SByte Create a signed 8-bit SByte variable

Dim sWrdl as SWord " Create a signed 16-bit SWord variable

Dim sDwrdl as SDword " Create a signed 32-bit SDword variable

im Bitvar as Bit " Create a 1-bit Bit variable
Dim MyFloat as Float " Create a 32-bit floating point variable
Dim StrnG as String*20 " Create a 20 character string variable

Dim MyCode as Code = 1,2,3,4,5,6,7 " Place 7 bytes in code memory

Notes
Any variable that is declared without the 'as’ text after it, will assume an 8-bit Byte type.

Dim should be placed near the beginning of the program. Any references to variables not de-
clared or before they are declared may, in some cases, produce errors.

Variable names, as in the case or labels, may freely mix numeric content and underscores.

Dim MyVar as Byte

or
Dim MY_Var as Word

or
Dim My Var2 as Bit

Variable names may start with an underscore, but must not start with a number. They can be
no more than 32 characters long. Any characters after this limit will cause a syntax error.

Dim 2Myvar is not allowed.

159

8-bit Proton Compiler Development Suite.

Variable names are not case sensitive, which means that the variable: -

Dim MYVar

Is the same as...

Dim MYVar

Dim can also be used to create Alias’s to other variables: -

Dim MyByte as Byte " Create a Byte sized variable
Dim Var_Bit as MyByte.l " Var_Bit now represents Bit-1 of MyByte

Alias’s, as in the case of constants, do not require any RAM space, because they point to a
variable, or part of a variable that has already been declared.

RAM space required.
Each type of variable requires differing amounts of RAM memory for its allocation. The list be-
low illustrates this.

e String Requires the specified length of characters + 1.

e Float Requires 4 bytes of RAM.

e Dword Requires 4 bytes of RAM.

e SDword Requires 4 bytes of RAM.

e Word Requires 2 bytes of RAM.

e SWord Requires 2 bytes of RAM.

e Byte Requires 1 byte of RAM.

e SByte Requires 1 byte of RAM.

e Bit Requires 1 byte of RAM for every 8 Bit variables used.

Each type of variable may hold a different minimum and maximum value.

e String type variables are only useable with 18F and enhanced 14-bit core devices, and
can hold a maximum of 255 characters.

e Bit type variables may hold a 0 or a 1. These are created 8 at a time, therefore declaring
a single Bit type variable in a program will not save RAM space, but it will save code
space, as Bit type variables produce the most efficient use of code for comparisons etc.

e Byte type variables may hold an unsigned value from 0 to 255, and are the usual work
horses of most programs. Code produced for Byte sized variables is very low compared
to signed or unsigned Word, DWord or Float types, and should be chosen if the pro-
gram requires faster, or more efficient operation.

e SByte type variables may hold a 2'° complemented signed value from -128 to +127.
Code produced for SByte sized variables is very low compared to SWord, Float, or
SDword types, and should be chosen if the program requires faster, or more efficient
operation. However, code produced is usually larger for signed variables than unsigned
types.

e Word type variables may hold an unsigned value from 0 to 65535, which is usually large

enough for most applications. It still uses more memory than an 8-bit byte variable, but
not nearly as much as a Dword or SDword type.

160

8-bit Proton Compiler Development Suite.

e SWord type variables may hold a 2'° complemented signed value from -32768 to
+32767, which is usually large enough for most applications. SWord type variables will
use more code space for expressions and comparisons, therefore, only use signed vari-
ables when required.

e Dword type variables may hold an unsigned value from 0 to 4294967295 making this
the largest of the variable family types. This comes at a price however, as Dword calcu-
lations and comparisons will use more code space within the microcontroller Use this
type of variable sparingly, and only when necessary.

e SDword type variables may hold a 2'° complemented signed value from -2147483648 to
+2147483647, also making this the largest of the variable family types. This comes at a
price however, as SDword expressions and comparisons will use more code space than
a regular Dword type. Use this type of variable sparingly, and only when necessary.

e Float type variables may theoretically hold a value from -1e37 to +1e38, but because of
the 32-bit architecture of the compiler, a maximum and minimum value should be
thought of as -2147483646.999 to +2147483646.999 making this the most varsatile of
the variable family types. However, more so than Dword types, this comes at a price as
floating point expressions and comparisons will use more code space within the micro-
controller. Use this type of variable sparingly, and only when strictly necessary. Smaller
floating point values usually offer more accuracy.

There are modifiers that may also be used with variables. These are HighByte, LowByte,
ByteO, Bytel, Byte2, Byte3, Word0O, Wordl, SHighByte, SLowByte, SByte0, SBytel,
SByte2, SByte3, SWord0, and SWord1,

Word0, Word1, Byte2, Byte3, SWord0, SWordl, SByte2, and SByte3 may only be used in
conjunction with 32-bit Dword or SDword type variables.

HighByte and Bytel are one and the same thing, when used with a Word or SWord type vari-
able, they refer to the unsigned High byte of a Word or SWord type variable: -

Dim Wrd as Word " Create an unsigned Word variable
Dim Wrd_Hi as Wrd.HighByte
" Wrd_Hi now represents the unsigned high byte of variable Wrd

Variable Wrd_Hi is now accessed as a Byte sized type, but any reference to it actually alters
the high byte of Wrd.

SHighByte and SBytel are one and the same thing, when used with a Word or SWord type
variable, they refer to the signed High byte of a Word or SWord type variable: -

Dim Wrd as SWord " Create a signed Word variable
Dim Wrd_Hi as Wrd.SHighByte
" Wrd_Hi now represents the signed high byte of variable Wrd

Variable Wrd_Hi is now accessed as an SByte sized type, but any reference to it actually alters
the high byte of Wrd.

161

8-bit Proton Compiler Development Suite.

However, if Bytel is used in conjunction with a Dword type variable, it will extract the second
byte. HighByte will still extract the high byte of the variable, as will Byte3. If SBytel is used in
conjunction with an SDword type variable, it will extract the signed second byte. SHighByte
will still extract the signed high byte of the variable, as will SByte3.

The same is true of LowByte, ByteO, SLowByte and SByte0, but they refer to the unsigned
or signed Low Byte of a Word or SWord type variable: -

Dim Wrd as Word " Create an unsigned Word variable
Dim Wrd_Lo as Wrd.LowByte
" Wrd_Lo now represents the low byte of variable Wrd

Variable Wrd_Lo is now accessed as a Byte sized type, but any reference to it actually alters
the low byte of Wrd.

The modifier Byte2 will extract the 3rd unsigned byte from a 32-bit Dword or SDword type
variable as an alias. Likewise Byte3 will extract the unsigned high byte of a 32-bit variable.

Dim Dwd as Dword " Create a 32-bit unsigned variable named Dwd
Dim Partl as Dwd.ByteO " Alias unsigned Partl to the low byte of Dwd
Dim Part2 as Dwd.Bytel " Alias unsigned Part2 to the 2nd byte of Dwd
Dim Part3 as Dwd.Byte2 " Alias unsigned Part3 to the 3rd byte of Dwd
Dim Part4 as Dwd.Byte3 =" Alias unsigned Part3 to the high (4th) byte of Dwd

The modifier SByte2 will extract the 3rd signed byte from a 32-bit Dword or SDword type vari-
able as an alias. Likewise SByte3 will extract the signed high byte of a 32-bit variable.

Dim sDwd as SDword

im sPartl as sDwd.SByteO
im sPart2 as sDwd.SBytel
im sPart3 as sDwd.SByte2
im sPart4 as sDwd.SByte3

Create a 32-bit signed variable named sDwd
Alias signed Partl to the low byte of sDwd
Alias signed Part2 to the 2nd byte of sDwd
Alias signed Part3 to the 3rd byte of sDwd
Alias signed Part3 to the 4th byte of sDwd

The Word0O and Word1 modifiers extract the unsigned low word and high word of a Dword or
SDword type variable, and is used the same as the Byten modifiers.

Dim Dwd as Dword " Create a 32-bit unsigned variable named Dwd
Dim Partl as Dwd.WordO " Alias unsigned Partl to the low word of Dwd
Dim Part2 as Dwd.Wordl " Alias unsigned Part2 to the high word of Dwd

The SWord0 and SWord1 modifiers extract the signed low word and high word of a Dword or
SDword type variable, and is used the same as the SByten modifiers.

Dim sDwd as SDword " Create a 32-bit signed variable named sDwd
Dim sPartl as sDwd.SWordO " Alias Partl to the low word of sDwd
Dim sPart2 as sDwd.SWordl " Alias Part2 to the high word of sDwd

162

8-bit Proton Compiler Development Suite.

RAM space for variables is allocated within the microcontroller in the order that they are placed
in the BASIC code. For example: -

Dim Varl as Byte
Dim Var2 as Byte

Places Varl first, then Var2: -

Varl equ n
Var2 equ n

This means that on a device with more than one RAM Bank, the first n variables will always be
in BankO (the value of n depends on the specific PICmicro”™ used).

The position of the variable within Banks is usually of little importance if BASIC code is used,
however, if assembler routines are being implemented, always assign any variables used within
them first.

Problems may also arise if a Word, Dword or Float variable crosses a RAM bank boundary. If
this happens, a warning message will be displayed in the error window. Most of the time, this
will not cause any problems, however, to err on the side of caution, try and ensure that Word,
Dword or Float type variables are fully inside a Bank. This is easily accomplished by placing a
dummy Byte variable before the offending Word, Dword or Float type variable, or relocating
the offending variable within the list of Dim statements.

See Also : Aliases, Declaring Arrays, Floating Point Math, Symbol,
Creating and using Strings .

163

8-bit Proton Compiler Development Suite.

Disable
Disable software interrupt processing that was previously Enabled following this instruction.

Disable and Enable, and Resume are not actually commands in the truest sense of the word,
but flags that the compiler uses internally. They do not produce any code.

Device = 16F877
Declare Xtal = 4

Symbol LED = PORTD.O
OPTION_REG = %00000111
INTCON = %00100000
* Enable software interrupts, and point to interrupt handler

On Interrupt Goto My Software_Int

Stop

Disable " Disable interrupts in the handler
My_Software_lInt:

Toggle LED " Toggle an LED when interrupted

Resume " Return to main program

Enable " Enable interrupts after the handler
Note.

Software interrupts are a remnant from earlier compiler versions and are not recommended for
new applications. See Managed Hardware Interrupts for a better method of interrupt handling.

See also: Software Interrupts in BASIC, Enable, Resume.

164

8-bit Proton Compiler Development Suite.

Do...Loop

Syntax

Do
Instructions

Loop

or

Do
Instructions
Loop Until Condition

or

Do
Instructions
Loop While Condition

Overview
Execute a block of instructions until a condition is true, or while a condition is false, or create an
infinite loop.

Example 1
Device = 18F25K22
Declare Xtal = 4

Dim MyWord as Word
MyWord = 1
Do " Create a loop
HrsoutLn Dec MyWord
DelayMs 200
Inc MyWord
Loop Until MyWord > 10 " Loop until MyWord is greater than 10

Example 2
Device = 18F25K22
Declare Xtal = 4

Dim MyWord as Word
MywWword = 1
Do " Create a loop
HrsoutLn Dec MyWord
DelayMs 200
Inc MyWord
Loop While MyWord < 11 " Loop while MyWord is less than 11

165

8-bit Proton Compiler Development Suite.

Example 3
Device = 18F25K22
Declare Xtal = 4

Dim MyWord as Word

MyWord = 1

Do " Create a loop
HrsoutLn Dec MyWord
DelayMs 200
Inc MyWord

Loop " Loop forever

Notes.

Do-Loop differs from the While-Wend type in that, the Do loop will carry out the instructions
within the loop at least once like a Repeat-Until type, then continuously until the condition is
true, but the While loop only carries out the instructions if the condition is true.

Do-Loop is an ideal replacement to a For-Next loop, and can actually take less code space,
thus performing the loop faster.

The above example 2 and example 3 show the equivalent to the For-Next loop: -

For MyWord = 1 to 10 : Next

See also: While...Wend, For...Next...Step.

166

8-bit Proton Compiler Development Suite.

DTMFout

Syntax
DTMFout Pin, { OnTime }, { OffTime, } [Tone {, Tone...}]

Overview
Produce a DTMF Touch Tone sequence on Pin.

Parameters

Pin is a Port.Bit constant that specifies the 1/O pin to use. This pin will be set to output during
generation of tones and set to input after the command is finished.

OnTime is an optional variable, constant, or expression (0 - 65535) specifying the duration, in
ms, of the tone. If the OnTime parameter is not used, then the default time is 200ms

OffTime is an optional variable, constant, or expression (0 - 65535) specifying the length of si-
lent delay, in ms, after a tone (or between tones, if multiple tones are specified). If the OffTime
parameter is not used, then the default time is 50ms

Tone may be a variable, constant, or expression (0 - 15) specifying the DTMF tone to generate.
Tones 0 through 11 correspond to the standard layout of the telephone keypad, while 12
through 15 are the fourth-column tones used by phone test equipment and in some radio appli-
cations.

Example
DTMFout PORTA.O, [7, 5, 7, 9, 4, 0] " Call a number.

If the PICmicro™ was connected to the phone line correctly, the above command would dial
666-709. If you wanted to slow down the dialling in order to break through a noisy phone line or
radio link, you could use the optional OnTime and OffTime values: -

"Set the OnTime to 500ms and OffTime to 100ms
DTMFout PORTA.O, 500, 100, [5, 4, 5, 9, 2, 0] * Call Slowly.

Notes DTMF tones are used to dial a telephone, or re- ';i Flf
motely control pieces of radio equipment. The PICmicro O—AA—
can generate these tones digitally using the DTMFout

. . From PIC To Audio
command. However, to achieve the best quality tones, a VO pin = C1 C2 Amplifier
higher crystal frequency is required. A 4MHz type will 0.1uF To 1uF
work but the quality of the sound produced will suffer. The © 1 °
circuits illustrate how to connect a speaker or audio am- =
plifier to hear the tones produced. ¢l

10uF Speaker
The PICmicro™ is a digital device, however, DTMF tones From.[IPIC :
are analogue waveforms, consisting of a mixture of two 1/0 pin c2

10uF

sine waves at different audio frequencies. So how can a O

digital device generate an analogue output? The =
PICmicro™ creates and mixes two sine waves mathematically, then uses the resulting stream of
numbers to control the duty cycle of an extremely fast pulse-width modulation (Pwm) routine.
Therefore, what's actually being produced from the 1/O pin is a rapid stream of pulses. The pur-
pose of the filtering arrangements illustrated above is to smooth out the high-frequency Pwm,
leaving behind only the lower frequency audio. You should keep this in mind if you wish to inter-
face the PICmicro’s DTMF output to radios and other equipment that could be adversely af-
fected by the presence of high-frequency noise on the input. Make sure to filter the DTMF out-
put scrupulously. The circuits above are only a foundation; you may want to use an active low-
pass filter with a cut-off frequency of approximately 2KHz.

167

8-bit Proton Compiler Development Suite.

Edata

Syntax
Edata Constantl { ,...Constantn etc }

Overview
Places constants or strings directly into the on-board eeprom memory of compatible PICmicro's

Parameters

Constantl,Constantn are values that will be stored in the on-board eeprom. When using an
Edata statement, all the values specified will be placed in the eeprom starting at location 0. The
Edata statement does not allow you to specify an eeprom address other than the beginning lo-
cation at 0. To specify a location to write or read data from the eeprom other than 0 refer to the
Eread, Ewrite commands.

Example
" Stores the values 1000,20,255,15, and the ASCII values for

" H","e","1","1","0" in the eeprom starting at memory position O.

Edata 1000, 20, $FF, %00001111, "Hello"

Notes

16-bit, 32-bit and floating point values may also be placed into eeprom memory. These are
placed LSB first (Lowest Significant Byte). For example, if 1000 is placed into an Edata state-
ment, then the order is: -

Edata 1000
In eeprom it looks like 232, 03

Alias's to constants may also be used in an Edata statement: -
Symbol Alias = 200

Edata Alias, 120, 254, "Hello World"

Addressing an Edata table.

Eeprom data starts at address O and works up towards the maximum amount that the
PICmicro™ will allow. However, it is rarely the case that the information stored in eeprom mem-
ory is one continuous piece of data. Eeprom memory is normally used for storage of several
values or strings of text, so a method of accessing each piece of data is essential. Consider the
following piece of code: -

Edata ""Hello"
Edata ""World"

Now we know that eeprom memory starts at 0, so the text "Hello" must be located at address 0,
and we also know that the text "Hello" is built from 5 characters with each character occupying
a byte of eeprom memory, so the text "World" must start at address 5 and also contains 5
characters, so the next available piece of eeprom memory is located at address 10. To access
the two separate text strings we would need to keep a record of the start and end address's of
each character placed in the tables.

168

8-bit Proton Compiler Development Suite.

Counting the amount of eeprom memory used by each piece of data is acceptable if only a few
Edata tables are used in the program, but it can become tedious if multiple values and strings
are needing to be stored, and can lead to program glitches if the count is wrong.

Placing an identifying name before the Edata table will allow the compiler to do the byte count-
ing for you. The compiler will store the eeprom address associated with the table in the identify-
ing name as a constant value. For example: -

Hello_Text Edata ""Hello™
World_Text Edata "World"

The name Hello_Text is now recognised as a constant with the value of 0, referring to address
0 that the text string "Hello" starts at. The World_Text is a constant holding the value 5, which
refers to the address that the text string "World" starts at.

Note that the identifying text must be located on the same line as the Edata directive or a syn-
tax error will be produced. It must also not contain a postfix colon as does a line label or it will
be treat as a line label. Think of it as an alias name to a constant.

Any Edata directives must be placed at the head of the BASIC program as is done with Sym-
bols, so that the name is recognised by the rest of the program as it is parsed. There is ho need
to jump over Edata directives as you have to with Ldata or Cdata, because they do not occupy
code memory, but reside in high Data memory.

The example program below illustrates the use of eeprom addressing.

" Display two text strings held in eeprom memory

Include "Proton_4.Inc" " Demo on a Proton development board
Dim Char as Byte " Holds the character read from eeprom
Dim Charpos as Byte " Holds the address within eeprom memory

" Create a string of text in eeprom memory. null terminated
Hello Edata "HELLO "™,0

" Create another string of text in eeprom memory. null terminated
World Edata "WORLD",0

Wait for the LCD to stabilise

Clear the LCD

Point Charpos to the start of text "Hello"
Display the text "Hello"

Charpos = World Point Charpos to the start of text "World"
Gosub DisplayText Display the text "World"

Stop We"re all done

DelayMs 100

Cls

Charpos = Hello
Gosub DisplayText

Subroutine to read and display the text held at the address in Charpos
DisplayText:
Do
Char = Eread Charpos
IT Char = 0 Then Break

Create an infinite loop
Read the eeprom data
Exit when null found

Print Char Display the character

Inc Charpos Move up to the next address
Loop Close the loop
Return Exit the subroutine

169

8-bit Proton Compiler Development Suite.

Formatting an Edata table.

Sometimes it is necessary to create a data table with a known format for its values. For exam-
ple all values will occupy 4 bytes of data space even though the value itself would only occupy
1 or 2 bytes.

Edata 100000, 10000, 1000, 100, 10, 1

The above line of code would produce an uneven data space usage, as each value requires a
different amount of data space to hold the values. 100000 would require 4 bytes of eeprom
space, 10000 and 1000 would require 2 bytes, but 100, 10, and 1 would only require 1 byte.

Reading these values using Eread would cause problems because there is no way of knowing
the amount of bytes to read in order to increment to the next valid value.

The answer is to use formatters to ensure that a value occupies a predetermined amount of
bytes.

These are: -

Byte
Word
Dword
Float

Placing one of these formatters before the value in question will force a given length.

Edata Dword 100000, Dword 10000 ,
Dword 1000, Dword 100, Dword 10, Dword 1

Byte will force the value to occupy one byte of eeprom space, regardless of its value. Any val-
ues above 255 will be truncated to the least significant byte.

Word will force the value to occupy 2 bytes of eeprom space, regardless of its value. Any val-
ues above 65535 will be truncated to the two least significant bytes. Any value below 255 will
be padded to bring the memory count to 2 bytes.

Dword will force the value to occupy 4 bytes of eeprom space, regardless of its value. Any
value below 65535 will be padded to bring the memory count to 4 bytes. The line of code
shown above uses the Dword formatter to ensure all the values in the Edata table occupy 4
bytes of eeprom space.

Float will force a value to its floating point equivalent, which always takes up 4 bytes of eeprom
space.

If all the values in an Edata table are required to occupy the same amount of bytes, then a sin-
gle formatter will ensure that this happens.

Edata as Dword 100000, 10000, 1000, 100, 10, 1
The above line has the same effect as the formatter previous example using separate Dword

formatters, in that all values will occupy 4 bytes, regardless of their value. All four formatters
can be used with the as keyword.

170

8-bit Proton Compiler Development Suite.

The example below illustrates the formatters in use.

" Convert a Dword value into a string array
" Using only BASIC commands
" Similar principle to the Str$ command

Include "Proton_4.Inc"

Dim P10 as Dword "
Dim Cnt as Byte

Dim J as Byte

Dim Value as Dword

Dim MyString[11] as Byte *

Dim Ptr as Byte

DelayMs 100

Cls "
Clear -
Value = 1234576 "
Gosub DwordToStr -
Print Str MyString "
Stop

Convert a Dword value into a string array
Value to convert is placed in "Value*
Byte array "MyString”™ is built up with the ASCII equivalent

DwordToStr:

Ptr = 0
J=0
Repeat
P10
Cnt

0

Eread J * 4

While Value >= P10

Value =
Inc Cnt
Wend
If Cnt <>

Value - P10

0 Then

Power of 10 variable

Value to convert
Holds the converted value
Pointer within the Byte array

Wait for the LCD to stabilise
Clear the LCD

Clear all RAM before we start
Value to convert

Convert Value to string
Display the result

MyString[Ptr] = Cnt + 0"

Inc Ptr
EndIf
Inc J

until J > 8

MyString[Ptr]

Inc Ptr

MyString[Ptr]

Return

Edata table

0

Value + "0"

" Add the null to terminate the string

is formatted for all 32 bit values.

" Which means each value will require 4 bytes of eeprom space
Edata as Dword 1000000000, 100000000, 10000000, 1000000,100000,
10000, 1000, 100, 10

171

8-bit Proton Compiler Development Suite.

Label names as pointers in an Edata table.

If a label's name is used in the list of values in an Edata table, the labels address will be used.
This is useful for accessing other tables of data using their address from a lookup table. See
example below.

" Display text from two Cdata tables
" Based on their address located in a separate table
Include "Proton_4.Inc" " Use a 14-bit core device

Dim Address as Word
Dim DataByte as Byte

DelayMs 100 " Wait for the LCD to stabilise

Cls " Clear the LCD

Address = Eread O " Locate the address of the first string
Do " Create an infinite loop

DataByte = Cread Address " Read each character from the Cdata string
IT DataByte = O Then Break®™ Exit if null found

Print DataByte " Display the character
Inc Address " Next character
Loop " Close the loop
Cursor 2,1 " Point to line 2 of the LCD
Address = Eread 2 " Locate the address of the second string
Do " Create an infinite loop

DataByte = Cread Address " Read each character from the Cdata string
IT DataByte = 0 Then Break®™ Exit if null found

Print DataByte " Display the character
Inc Address " Next character
Loop " Close the loop

Stop

" Table of address®s located in eeprom memory

Edata as Word Stringl, String2
Stringl:

Cdata "'Hello",0
String2:

Cdata "World",0

See also : Eread, Ewrite.

172

8-bit Proton Compiler Development Suite.

Enable
Enable software interrupt processing that was previously Disabled following this instruction.

Disable and Enable, and Resume are not actually commands in the truest sense of the word,
but flags that the compiler uses internally. They do not produce any code.

Device = 16F877
Declare Xtal = 4
Symbol LED = PORTD.O
OPTION_REG = %00000111
INTCON = %00100000

" Enable software interrupts, and point to interrupt handler

On Interrupt Goto My Software_ Int

Stop

Disable * Disable interrupts in the handler
My_Software_lInt:

Toggle LED " Toggle an LED when interrupted

Resume " Return to main program

Enable " Enable interrupts after the handler
Note.

Software interrupts are a remnant from earlier compiler versions and are not recommended for
new applications. See Managed Hardware Interrupts for a better method of interrupt handling.

See also: Software Interrupts in BASIC, Disable, Resume.

173

8-bit Proton Compiler Development Suite.

Software Interrupts in BASIC

Although the most efficient method of using an interrupt is in assembler, hardware interrupts
and BASIC are poor bedfellows. By far the easiest way to write an interrupt handler is to write it
in BASIC, in combination with the On Interrupt statement. This is not the same as the com-
piler's On_lInterrupt statement, which initiates a Hardware interrupt. On Interrupt (two sepa-
rate words.. On Interrupt) informs the compiler to activate its internal interrupt handling and to
jump to the BASIC interrupt handler as soon as it's capable, after receiving an interrupt. How-
ever, there's no such thing as a free lunch, and there are some penalties to pay for the ease of
use that this method brings.

The statement On_Hardware_Interrupt are also recognised by the compiler in order to clarify
which type of interrupt is being implemented.

When On Interrupt is used, the compiler simply flags that the interrupt has happened and im-
mediately goes back to what it was doing, before it was rudely interrupted. Unlike a hardware
interrupt, it does not immediately jump to the interrupt handler. And since the compiler's com-
mands are non re-entrant, there could be a considerable delay before the interrupt is actually
handled.

For example, if the program has just started to execute a DelayMs 2000 command when an
interrupt occurs, the compiler will flag the interrupt and continue with the delay. It could be as
much as 2 seconds later before the interrupt handler is executed. Any time critical routines de-
pendant on the interrupt occurring regularly will be ruined. For example, multiplexing seven
segment display.

To minimise the above problem, use only statements that don't take long to execute. For ex-
ample, instead of DelayMs 2000, use DelayMs 1 in a For..Next, or Repeat..Until loop. This
will allow the compiler to complete each command more quickly and handle any awaiting inter-
rupts: -

For Varl = 0 to 199 : DelayMs 1 : Next " Delay for 200ms

If interrupt processing needs to occur more regularly, then there is no choice but to use a hard-
ware interrupt, with all its quirks.

Exactly what happens when On Interrupt is used is this: A short interrupt handler is placed at
location 4 in the PICmicro " . This interrupt handler is simply a Return. What this does is send
the program back to what it was doing before the interrupt occurred. It does not require any
processor context saving. What it doesn't do is re-enable Global Interrupts as happens when
using a Retfie instruction.

A Call to a short subroutine is placed before each command in the BASIC program once an On
Interrupt statement is encountered. This short subroutine checks the state of the Global Inter-
rupt Enable bit (GIE). If it's off, an interrupt is awaiting so it vectors to the users interrupt han-
dler. Which is essentially a BASIC subroutine.

If it is still set, the program continues with the next BASIC statement, after which, the GIE bit is
checked again, and so forth.

Note.

Software interrupts are a remnant from earlier compiler versions and are not recommended for
new applications. See Managed Hardware Interrupts for a better method of interrupt handling.
See also : Enable, Disable, Resume.

174

8-bit Proton Compiler Development Suite.

End

Syntax
End

Overview
The End statement stops compilation of source, and creates an infinite loop.

Notes
End stops the PICmicro™ processing by placing it into a continuous loop. The port pins remain
the same and the device is placed in low power mode.

See also: Stop, Sleep, Snooze.

175

8-bit Proton Compiler Development Suite.

Eread

Syntax
Variable = Eread Address

Overview
Read information from the on-board eeprom available on some PICmicro types.

Parameters

Variable is a user defined variable.

Address is a constant, variable, or expression, that contains the address of interest within
eeprom memory.

Example
Device = 16F877 " A device with on-board eeprom
Dim Varl as Byte
Dim Wrdl as Word
Dim Dwrdl as Dword

Edata 10, 354, 123456789 " Place some data into the eeprom

Varl = Eread O " Read the 8-bit value from address O
Wrdl= Eread 1 " Read the 16-bit value from address 1
Dwrdl = Eread 3 " Read the 32-bit value from address 3

Notes
If a Float, or Dword type variable is used as the assignment variable, then 4-bytes will be read
from the eeprom. Similarly, if a Word type variable is used as the assignment variable, then a
16-bit value (2-bytes)will be read from eeprom, and if a Byte type variable is used, then 8-bits
will be read. To read an 8-bit value while using a Word sized variable, use the LowByte modi-
fier: -

Wrdl.LowByte = Eread O " Read an 8-bit value
Wrdl.HighByte = 0 " Clear the high byte of Wrd

If a 16-bit (Word) size value is read from the eeprom, the address must be incremented by two
for the next read. Also, if a Float or Dword type variable is read, then the address must be in-
cremented by 4.

Most of the Flash PICmicro™ types have a portion of memory set aside for storage of informa-
tion. The amount of memory is specific to the individual PICmicro" type, some, such as the
16F84, has 64 bytes, the 16F877 device has 256 bytes, and some of the 18F devices have
upwards of 512 bytes.

Eeprom memory is non-volatile, and is an excellent place for storage of long-term information,
or tables of values.

Reading data with the Eread command is almost instantaneous, but writing data to the eeprom
can take up to 10ms per byte.

See also: Edata, Ewrite

176

8-bit Proton Compiler Development Suite.

Ewrite

Syntax
Ewrite Address, [Variable {, Variable...etc }]

Overview
Write information to the on-board eeprom available on some PICmicro = types.

Parameters
Address is a constant, variable, or expression, that contains the address of interest within

eeprom memory.
Variable is a user defined variable.

Example
Device = 16F628 " A device with on-board eeprom

Dim Varl as Byte
Dim Wrdl as Word
Dim Address as Byte

Varl = 200

Wrdl= 2456

Address = 0 * Point to address O within the eeprom
Ewrite Address, [Wrd, Varl] " Write a 16-bit then an 8-bit value

Notes

If a Dword type variable is used, then a 32-bit value (4-bytes) will be written to the eeprom.
Similarly, if a Word type variable is used, then a 16-bit value (2-bytes) will be written to eeprom,
and if a Byte type variable is used, then 8-bits will be written. To write an 8-bit value while using
a Word sized variable, use the LowByte modifier: -

Ewrite Address, [Wrd.LowByte, Varl]

If a 16-bit (Word) size value is written to the eeprom, the address must be incremented by two
before the next write: -

For Address = 0 to 64 Step 2

Ewrite Address, [Wrd]
Next

Most of the Flash PICmicro™ types have a portion of memory set agﬂide for storage of informa-
tion. The amount of memory is specific to the individual PICmicro = type, some, such as the
16F84, has 64 bytes, while the 16F877, and 18FXXX devices have 256 bytes.

Eeprom memory is non-volatile, and is an excellent place for storage of long-term information,
or tables of values.

Writing data with the Ewrite command can take up to 10ms per byte, but reading data from the
eeprom is almost instantaneous,.

See also: Edata, Eread

177

8-bit Proton Compiler Development Suite.

For...Next...Step

Syntax

For Variable = Startcount to Endcount [Step { Stepval }]
{code body}

Next

Overview
The For...Next loop is used to execute a statement, or series of statements a predetermined
amount of times.

Parameters

Variable refers to an index variable used for the sake of the loop. This index variable can itself
be used in the code body but beware of altering its value within the loop as this can cause
many problems.

Startcount is the start number of the loop, which will initially be assigned to the variable. This
does not have to be an actual number - it could be the contents of another variable.

Endcount is the number on which the loop will finish. This does not have to be an actual num-
ber, it could be the contents of another variable, or an expression.

Stepval is an optional constant or variable by which the variable increases or decreases with
each trip through the For-Next loop. If startcount is larger than endcount, then a minus sign
must precede stepval.

Example 1
* Display in decimal, all the values of Wrd within an upward loop
Dim Wrd as Word

For Wrd = 0 to 2000 Step 2 " Perform an upward loop
Print Dec Wrd ,™ " " Display the value of Wrd
Next " Close the loop
Example 2

" Display in decimal, all the values of Wrd within a downward loop
Dim Wrd as Word

For Wrd = 2000 to O Step -2 " Perform a downward loop
Print Dec Wrd ,™ " " Display the value of Wrd
Next " Close the loop
Example 3

" Display in decimal, all the values of Dwrd within a downward loop
Dim Dwrd as Dword

For Dwrd = 200000 to O Step -200 " Perform a downward loop

Print Dec Dwrd ," " " Display the value of Dwrd
Next " Close the loop

178

8-bit Proton Compiler Development Suite.

Example 4
" Display all of Wrdl using a expressions as parts of the For-Next construct

Dim Wrdl as Word
Dim Wrd2 as Word

Wrd2 = 1000
For Wrdl= Wrd2 + 10 to Wrd2 + 1000 * Perform a loop
Print Dec Wrd1,™ ™ " Display the value of Wrdl
Next " Close the loop
Notes

You may have noticed from the above examples, that no variable is present after the Next
command. A variable after Next is purely optional.

For-Next loops may be nested as deeply as the memory on the PICmicro" will allow. To break
out of a loop you may use the Goto command without any ill effects, which is exactly what the
Break command does: -

For Varl = 0 to 20 " Create a loop of 21
IT Varl = 10 Then Goto BreakOut * Break out of loop when Varl is 10
Next " Close the loop
BreakOut:
Stop

See also: While...Wend, Repeat...Until.

179

8-bit Proton Compiler Development Suite.

Freqout

Syntax
Freqout Pin, Period, Freql {, Freq2}

Overview
Generate one or two sine-wave tones, of differing or the same frequencies, for a specified pe-
riod.

Parameters

Pin is a Port-Bit combination that specifies which I/O pin to use.

Period may be a variable, constant, or expression (0 - 65535) specifying the amount of time to
generate the tone(s).

Freql may be a variable, constant, or expression (0 - 32767) specifying frequency of the first
tone.

Freq2 may be a variable, constant, or expression (0 - 32767) specifying frequency of the sec-
ond tone. When specified, two frequencies will be mixed together on the same I/O pin.

Example
" Generate a 2500Hz (2.5KHz) tone for 1 second (1000 ms) on bit O of PORTA.
Freqout PORTA.O, 1000, 2500

" Play two tones at once for 1000ms. One at 2.5KHz, the other at 3KHz.
Freqout PORTA.0, 1000, 2500, 30000

Notes

Freqout generates one or two sine waves using a pulse-width modulation algorithm. Fregout
will work with a 4MHz crystal, however, it is best used with higher frequency crystals, and oper-
ates accurately with a 20MHz crystal. The raw output from Freqout requires filtering, to elimi-
nate most of the switching noise. The circuits shown below will filter the signal in order to play
the tones through a speaker or audio amplifier.

R1 R2
1k 1k
oMV YA%% o
From PIC e - To Audio
/Opin ®wmCl ®=mC2 Amplifier
0.1uF 0.1uF
O O
C1
10uF Speaker
From PIC
C2
I/O pin
o 10uF

The two circuits shown above, work by filtering out the high-frequency Pwm used to generate
the sine waves. Freqout works over a very wide range of frequencies (0 to 32767KHz) so at
the upper end of its range, the Pwm filters will also filter out most of the desired frequency. You
may need to reduce the values of the parallel capacitors shown in the circuit, or to create an
active filter for your application.

180

8-bit Proton Compiler Development Suite.

Example 2
" Play a tune using Fregout to generate the notes

Device = 16F1829
Declare Xtal = 20

Dim MyLoop as Byte " Counter for notes.

Dim Freql as Word " Frequencyl.

Dim Freg2 as Word * Frequency?2

Symbol C = 2092 " C note

Symbol D = 2348 " D note

Symbol E = 2636 " E note

Symbol G = 3136 " G note

Symbol R = 0 " Silent pause.

Symbol Pin = PORTA.O " Sound output pin

ADCON1 = 7 " Set PORTA and PORTE to all digital

MyLoop = O

Repeat " Create a loop for 29 notes within the LookUpL table.

Freql = LookUpL MyLoop,[E,D,C,D,E,E,E,R,D,D,D,

R,E,G,G,R,E,D,C,D,E,E,E,E,D,D,E,D,C]

IT Fregl = 0 Then

Freg2 = 0O
Else
Freq2 = Freql - 8
EndIf
Fregout Pin, 225, Freql, Freqg2
Inc MyLoop

Until MyLoop > 28

See also: DTMFout, Sound, Sound?2.

181

8-bit Proton Compiler Development Suite.

GetBit

Syntax
Variable = GetBit Variable, Index

Overview
Examine a bit of a variable, or register.

Parameters

Variable is a user defined variable.

Index is a constant, variable, or expression that points to the bit within Variable that requires
examining.

Example

" Examine and display each bit of variable ExVar
Device = 16F1829
Declare Xtal = 4

Dim ExVar as Byte
Dim Index as Byte
Dim Varl as Byte

ExVar = %10110111

Do
Cls
Print At 1,1,Bin8 ExVar
Cursor 2,1
For Index = 7 to 0 Step -1
Varl = GetBit ExVar, Index
Print Decl Varl
DelayMs 100
Next
Loop

Display the original variable

Position the cursor at line 2

Create a loop for 8 bits

Examine each bit of ExVar

Display the binary result

Slow things down to see what®s happening
Close the loop

Do it forever

See also: ClearBit, LoadBit, SetBit.

182

8-bit Proton Compiler Development Suite.

GetPin

Syntax
Variable = GetPin Pin Number

Overview
Read a pin of a port.

Parameters

Variable is a user defined variable.

Pin Number is a constant, variable, or expression that points to the pin of a port that requires
reading. A value of 0 will read PORTA.O, a value of 1 will read PORTA.1, a value of 8 will read
PORTB.O etc... The pin will be made an input before reading commences.

Example

" Examine and display each pin of PORTB
Device = 16F1829
Declare Xtal = 4

Dim PinNumber as Byte
Dim Varl as Byte

Do
For PinNumber = 8 to 15
Varl = GetPin PinNumber
Print Decl Varl
DelayMs 100
Next
Loop

Create a loop for 8 pins

Examine each pin of PORTB

Display the binary result

Slow things down to see what"s happening
Close the loop

Do it forever

183

8-bit Proton Compiler Development Suite.

Gosub

Syntax
Gosub Label

or
Gosub Label [Variable, {Variable, Variable... etc}], Receipt Variable

Overview

Gosub jumps the program to a defined label and continues execution from there. Once the
program hits a Return command the program returns to the instruction following the Gosub
that called it and continues execution from that point.

If using an 18F device, parameters can be pushed onto a software stack before the call is
made, and a variable can be popped from the stack before continuing execution of the next
commands. Only the 18F devices have this mechanism, because they contain an FSR2 regis-
ter that is used as a stack pointer. The other 16F devices do not contain this SFR.

Parameters

Label is a user-defined label placed at the beginning of a line which must have a colon "' di-
rectly after it.

Variable is a user defined variable of type Bit, Byte, Word, Dword, Float, String, Array or
Constant value, that will be pushed onto the stack before the call to a subroutine is performed.

Receipt Variable is a user defined variable of type Bit, Byte, Word, Dword, Float, String or
Array that will hold a value popped from the stack after the subroutine has returned.

Example 1
" Implement a standard subroutine call
Goto Start " Jump over the subroutines

SubA: { subroutine A code

Return

SubB: { subroutine B code

Return

" Actual start of the main program
Start:

Gosub SubA

Gosub SubB

Stop

See also: Sub-EndSub

184

8-bit Proton Compiler Development Suite.

Example 2
" Call a subroutine with parameter
Device = 18F25K20 " Stack only suitable for 18F devices
Declare Stack Size = 20 " Create a small stack capable of holding 20 bytes
Dim Wrdl as Word " Create a Word variable
Dim Wrd2 as Word " Create another Word variable

Dim Receipt as Word Create a variable to hold result

Wrdl 1234 " Load the Word variable with a value

Wrd2 567 " Load the other Word variable with a value
" Call the subroutine and return a value

Gosub AddThem [Wrdl, Wrd2], Receipt

Print Dec Receipt * Display the result as decimal

Stop

" Subroutine starts here. Add two parameters passed and return the result
AddThem:
Dim AddwWwrdl as Word " Create two uniquely named variables
Dim AddWrd2 as Word

Pop Addwrd2 " Pop the last variable pushed

Pop Addwrdl " Pop the first variable pushed
AddWrdl = AddwWrdl + AddWrd2 " Add the values together

Return Addwrdl " Return the result of the addition

In reality, what's happening with the Gosub in the above program is simple, if we break it into
its constituent events: -

Push Wrd1l
Push Wrd2
Gosub AddThem
Pop Receipt

Notes
Only one parameter can be returned from the subroutine, any others will be ignored.

If a parameter is to be returned from a subroutine but no parameters passed to the subroutine,
simply issue a pair of empty square braces: -

Gosub Label [], Receipt

The same rules apply for the parameters as they do for Push, which is after all, what is hap-
pening.

Proton allows any amount of Gosubs in a program, but the 14-bit PICmicro”™ architecture only
has an 8-level return address stack, which only allows 8 Gosubs to be nested. The compiler
only ever uses a maximum of 4-levels for its library subroutines, therefore do not use more than
4 Gosubs within subroutines. The 18F devices however, have a 28-level return address stack
which allows any combination of up to 28 GosubS to occur.

A subroutine must always end with a Return command.

185

8-bit Proton Compiler Development Suite.

What is a Stack?

All microprocessors and most microcontrollers have access to a Stack, which is an area of
RAM allocated for temporary data storage. But this is sadly lacking on a PICmicro™ device.
However, the 18F devices have an architecture and low-level mnemonics that allow a Stack to
be created and used very efficiently.

A stack is first created in high memory by issuing the Stack _Size Declare.

Declare Stack Size = 40

The above line of code will reserve 40 bytes at the top of RAM that cannot be touched by any
BASIC command, other than Push and Pop. This means that it is a safe place for temporary
variable storage.

Taking the above line of code as an example, we can examine what happens when a variable
is pushed on to the 40 byte stack, and then popped off again.

First the RAM is allocated. For this explanation we will assume that a 18F452 PICmicro" de-
vice is being used. The 18F452 has 1536 bytes of RAM that stretches linearly from address 0
to 1535. Reserving a stack of 40 bytes will reduce the top of memory so that the compiler will
only see 1495 bytes (1535 - 40). This will ensure that it will not inadvertently try and use it for
normal variable storage.

Pushing.
When a Word variable is pushed onto the stack, the memory map would look like the diagram
below: -

Top of Memory |..-ooooooo.... Empty RAM. | Address 1535
Empty RAM. | Address 1502
Empty RAM. | Address 1501
| Low Byte address of Word variable | Address 1496

Start of Stack | High Byte address of Word variable | Address 1495

The high byte of the variable is first pushed on to the stack, then the low byte. And as you can
see, the stack grows in an upward direction whenever a Push is implemented, which means it
shrinks back down whenever a Pop is implemented.

If we were to Push a Dword variable on to the stack as well as the Word variable, the stack
memory would look like: -

Top of Memory .-_._... Empty RAM. | Address 1535
Empty RAM. | Address 1502
Empty RAM. | Address 1501

Address 1500
Address 1499
Address 1498
Address 1497
Address 1496
Address 1495

| Low Byte address of Dword variable
| Midl Byte address of Dword variable
| Mid2 Byte address of Dword variable
| High Byte address of Dword variable
| Low Byte address of Word variable

| High Byte address of Word variable

Start of Stack

186

8-bit Proton Compiler Development Suite.

Popping.

When using the Pop command, the same variable type that was pushed last must be popped
first, or the stack will become out of phase and any variables that are subsequently popped will
contain invalid data. For example, using the above analogy, we need to Pop a Dword variable
first. The Dword variable will be popped Low Byte first, then MID1 Byte, then MID2 Byte, then
lastly the High Byte. This will ensure that the same value pushed will be reconstructed correctly
when placed into its recipient variable. After the Pop, the stack memory map will look like: -

Top of Memory |.--.-......... Empty RAM. | Address 1535
Empty RAM. | Address 1502
Empty RAM. _.___. | Address 1501

| Low Byte address of Word variable | Address 1496
Start of Stack | High Byte address of Word variable | Address 1495

If a Word variable was then popped, the stack will be empty, however, what if we popped a
Byte variable instead? the stack would contain the remnants of the Word variable previously
pushed. Now what if we popped a Dword variable instead of the required Word variable? the
stack would underflow by two bytes and corrupt any variables using those address's . The
compiler cannot warn you of this occurring, so it is up to you, the programmer, to ensure that
proper stack management is carried out. The same is true if the stack overflows. i.e. goes be-
yond the top of RAM. The compiler cannot give a warning.

Technical Details of Stack implementation.

The stack implemented by the compiler is known as an Incrementing Last-In First-Out Stack.
Incrementing because it grows upwards in memory. Last-In First-Out because the last variable
pushed, will be the first variable popped.

The stack is not circular in operation, so that a stack overflow will rollover into the PICmicro's
hardware register, and an underflow will simply overwrite RAM immediately below the Start of
Stack memory. If a circular operating stack is required, it will need to be coded in the main BA-
SIC program, by examination and manipulation of the stack pointer (see below).

Indirect register pair FSR2L and FSR2H are used as a 16-bit stack pointer, and are incre-
mented for every Byte pushed, and decremented for every Byte popped. Therefore checking
the FSR2 registers in the BASIC program will give an indication of the stack's condition if re-
quired. This also means that the BASIC program cannot use the FSR2 register pair as part of
its code, unless for manipulating the stack. Note that none of the compiler's commands, other
than Push and Pop, use FSR2.

Whenever a variable is popped from the stack, the stack's memory is not actually cleared, only
the stack pointer is moved. Therefore, the above diagrams are not quite true when they show
empty RAM, but unless you have use of the remnants of the variable, it should be considered
as empty, and will be overwritten by the next Push command.

See also: Call, Goto, Push, Pop.

187

8-bit Proton Compiler Development Suite.

Goto

Syntax
Goto Label

Overview
Jump to a defined label and continue execution from there.

Parameters
Label is a user-defined label placed at the beginning of a line which must have a colon "' di-
rectly after it.

Example
IT Varl = 3 Then Goto Jumpover

{

code here executed only if Varl<>3

JumpOver:
{continue code execution}

In this example, if Varl=3 then the program jumps over all the code below it until it reaches the
label JumpOver where program execution continues as normal.

See also: Call, Gosub.

188

8-bit Proton Compiler Development Suite.

HbStart

Syntax
HbStart

Overview
Send a Start condition to the I1°C bus using the microcontroller's MSSP module.

Notes

Because of the subtleties involved in interfacing to some I1°C devices, the compiler's standard
Hbusin, and Hbusout commands were found lacking. Therefore, individual pieces of the I°C
protocol may be used in association with the new structure of Hbusin, and Hbusout. See rele-
vant sections for more information.

Example

" Interface to a 24LC32 serial eeprom
Device = 16F1829 " Use a device with an MSSP module
Dim MyLoop as Byte
Dim Array[10] as Byte

Transmit bytes to the 12C bus

HbStart " Send a Start condition

Hbusout %10100000 " Target an eeprom, and send a Write command
Hbusout O " Send the HighByte of the address

Hbusout O " Send the LowByte of the address

For MyLoop = 48 to 57 " Create a loop containing ASCIl1 0 to 9
Hbusout MyLoop " Send the value of MyLoop to the eeprom
Next " Close the loop
HbStop " Send a Stop condition
DelayMs 10 " Wait for the data to be entered into eeprom matrix

Receive bytes from the 12C bus

Hbusout %10100001
For MyLoop = 0 to 9 Create a loop
Array[MyLoop] = Hbusin Load an array with bytes received
IT MyLoop = 9 Then HbStop : Else : HbusAck " Ack or Stop ?
Next " Close the loop
Print At 1,1, Str Array " Display the Array as a String

Target an eeprom, and send a Read command

HbStart " Send a Start condition

Hbusout %10100000 " Target an eeprom, and send a Write command
Hbusout O " Send the HighByte of the address

Hbusout O " Send the LowByte of the address

HbRestart " Send a Restart condition

See also: HbusAck, HbRestart, HbStop, Hbusin, Hbusout.

189

8-bit Proton Compiler Development Suite.

HbStop

Syntax
HbStop

Overview
Send a Stop condition to the 1°C bus using the microcontroller's MSSP module.

HbRestart

Syntax
HbRestart

Overview
Send a Restart condition to the I1°C bus using the microcontroller's MSSP module.

HbusAck

Syntax
HbusAck

Overview
Send an Acknowledge condition to the I°C bus using the microcontroller's MSSP module.

HbusNack

Syntax
HbusNack

Overview
Send a Not Acknowledge condition to the 1°C bus using the microcontroller's MSSP module..

See also: HbStart, HbRestart, Hb Stop, Hbusin, Hbusout.

190

8-bit Proton Compiler Development Suite.

Hbusin

Syntax
Variable = Hbusin Control, { Address }

or
Variable = Hbusin

or

Hbusin Control, { Address }, [Variable {, Variable...}]
or

Hbusin Variable

Overview

Receives a value from the 1°C bus using the MSSP module, and places it into variable/s. If
variations two or four (see above) are used, then No Acknowledge, or Stop is sent after the
data. Variations one and three first send the control and optional address.

Parameters

Variable is a user defined variable or constant.

Control may be a constant value or a Byte sized variable expression.
Address may be a constant value or a variable expression.

The four variations of the Hbusin command may be used in the same BASIC program. The
second and fourth types (see ablve) are useful for simply receiving a single byte from the bus,
and must be used in conjunction with one of the low level commands. i.e. HbStart, HbRestart,
HbusAck, or HbStop. The first, and third types may be used to receive several values and
designate each to a separate variable, or variable type.

The Hbusin command operates as an 1°C master, using the microcontroller's MSSP module,
and may be used to interface with any device that complies with the 2-wire I1°C protocol.

The most significant 7-bits of control byte contain the control code and the slave address of the
device being interfaced with. Bit-0 is the flag that indicates whether a read or write command is
being implemented.

For example, if we were interfacing to an external eeprom such as the 24LC32, the control
code would be %10100001 or $A1. The most significant 4-bits (1010) are the eeprom's unique
slave address. Bits 2 to 3 reflect the three address pins of the eeprom. And bit-0 is set to signify
that we wish to read from the eeprom. Note that this bit is automatically set by the Hbusin
command, regardless of its initial setting.

191

8-bit Proton Compiler Development Suite.

Example
" Receive a byte from the 12C bus and place it into variable Varl.
Dim Varl as Byte " We"ll only read 8-bits
Dim Address as Word " 16-bit address required
Symbol Control %10100001 " Target an eeprom
Address = 20 " Read the value at address 20

Varl = Hbusin Control, Address " Read the byte from the eeprom

or

Hbusin Control, Address, [Varl] ~ Read the byte from the eeprom

Address, is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in
this position, the size of address is dictated by the size of the variable used (Byte or Word). In
the case of the previous eeprom interfacing, the 24LC32 eeprom requires a 16-bit address.
While the smaller types require an 8-bit address. Make sure you assign the right size address
for the device interfaced with, or you may not achieve the results you intended.

The value received from the bus depends on the size of the variables used, except for variation
three, which only receives a Byte (8-bits). For example: -

Dim Wrd as Word " Create a Word size variable
Wrd = Hbusin Control, Address

Will receive a 16-bit value from the bus. While: -

Dim Varl as Byte " Create a Byte size variable
Varl = Hbusin Control, Address

Will receive an 8-bit value from the bus.

Using the third variation of the Hbusin command allows differing variable assignments. For ex-
ample: -

Dim Varl as Byte
Dim Wrd as Word
Hbusin Control, Address, [Varl, Wrd]

Will receive two values from the bus, the first being an 8-bit value dictated by the size of vari-
able Varl which has been declared as a byte. And a 16-bit value, this time dictated by the size
of the variable Wrd which has been declared as a word. Of course, bit type variables may also
be used, but in most cases these are not of any practical use as they still take up a byte within
the eeprom.

The second and fourth variations allow all the subtleties of the 1°C protocol to be exploited, as
each operation may be broken down into its constituent parts. It is advisable to refer to the
datasheet of the device being interfaced to fully understand its requirements. See section on
HbStart, HbRestart, HbusAck, or HbStop, for example code.

192

8-bit Proton Compiler Development Suite.

Hbusin Declares
Declare Hbus_Bitrate Constant 100, 400, 1000

The standard speed for the 1°C bus is 100KHz. Some devices use a higher bus speed of
400KHz. The above Declare allows the I°C bus speed to be increased or decreased. Use this
Declare with caution, as too high a bit rate may exceed the device's specs, which will result in
intermittent transactions, or in some cases, no transactions at all. The datasheet for the device
used will inform you of its bus speed. The default bit rate is the standard 100KHz.

Declare HSDA_Pin Port . Pin

For devices that have PPS (Peripheral Pin Select), the port and pin used for the data line (SDA)
must be given, so that the compiler can seup the PPS SFRs before the program starts. This
may be any valid port on the microcontroller, but check the datasheet to see if the Port is valid
for the peripheral.

Declare HSCL_Pin Port . Pin

For devices that have PPS (Peripheral Pin Select), the port and pin used for the clock line
(SCL) must be given, so that the compiler can seup the PPS SFRs before the program starts.
This may be any valid port on the microcontroller, but check the datasheet to see if the Port is
valid for the peripheral.

Notes

Not all PICmicro™ devices contain an MSSP module, some only contain an SSP type, which
only allows I°C slave operations. These types of devices may not be used with any of the
HBUS commands. Therefore, always read and understand the datasheet for the PICmicro™
device used.

When the Hbusin command is used, the appropriate SDA and SCL Port and Pin are automati-
cally setup as inputs. On devices without PPS (Peripheral Pin Select), the SDA, and SCL lines
are predetermined as hardware pins on the PICmicro” , however, on devices with PPS, the
compiler sets up the appropriate SFRs using the HSDA_Pin and HSCL_Pin declares.

Because the I1°C protocol calls for an open-collector interface, pull-up resistors are required on
both the SDA and SCL lines. Values of 1KQ to 4.7KQ will suffice.

193

8-bit Proton Compiler Development Suite.

Str modifier with Hbusin

Using the Str modifier allows variations three and four of the Hbusin command to transfer the
bytes received from the 1°C bus directly into a byte array. If the amount of received characters
is not enough to fill the entire array, then a formatter may be placed after the array's name,
which will only receive characters until the specified length is reached. An example of each is
shown below: -

Dim Array[10] as Byte " Create an array of 10 bytes
Dim Address as Byte " Create a word sized variable

Hbusin %10100000, Address, [Str Array] =~ Load data into all the array

" Load data into only the first 5 elements of the array
Hbusin %10100000, Address, [Str Array\5]
HbStart " Send a Start condition
Hbusout %10100000 Target an eeprom, and send a WRITE command

Hbusout O Send the HighByte of the address
Hbusout O Send the LowByte of the address
HbRestart Send a Restart condition

Hbusout %10100001
Hbusin Str Array
HbStop

Target an eeprom, and send a Read command
Load all the array with bytes received
Send a Stop condition

An alternative ending to the above example is: -

Hbusin Str Array\5 " Load data into only the first 5 elements of the array
HbStop " Send a Stop condition

See also: HbusAck, HbRestart, HbStop, HbStart, Hbusout.

194

8-bit Proton Compiler Development Suite.

Hbusout

Syntax
Hbusout Control, { Address }, [Variable {, Variable...}]

or
Hbusout Variable

Overview

Transmit a value to the 1°C bus using the microcontroller's on-board MSSP module, by first
sending the control and optional address out of the clock pin (SCL), and data pin (SDA). Or al-
ternatively, if only one operator is included after the Hbusout command, a single value will be
transmitted, along with an Ack reception.

Parameters

Variable is a user defined variable or constant.

Control may be a constant value or a Byte sized variable expression.
Address may be a constant, variable, or expression.

The Hbusout command operates as an 1°C master and may be used to interface with any de-
vice that complies with the 2-wire I1°C protocol.

The most significant 7-bits of control byte contain the control code and the slave address of the
device being interfaced with. Bit-0 is the flag that indicates whether a read or write command is
being implemented.

For example, if we were interfacing to an external eeprom such as the 24LC32, the control
code would be %10100000 or $A0. The most significant 4-bits (1010) are the eeprom'’s unique
slave address. Bits 2 to 3 reflect the three address pins of the eeprom. And Bit-0 is clear to sig-
nify that we wish to write to the eeprom. Note that this bit is automatically cleared by the Hbu-
sout command, regardless of its initial value.

Example
" Send a byte to the 12C bus.

Dim Varl as Byte
Dim Address as Word

We"ll only read 8-bits
16-bit address required

Symbol Control = %10100000 " Target an eeprom

Address = 20 " Write to address 20

Varl = 200 * The value place into address 20
Hbusout Control, Address, [Varl] " Send the byte to the eeprom
DelayMs 10 " Allow time for allocation of byte

Address, is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in
this position, the size of address is dictated by the size of the variable used (Byte or Word). In
the case of the above eeprom interfacing, the 24LC32 eeprom requires a 16-bit address. While
the smaller types require an 8-bit address. Make sure you assign the right size address for the
device interfaced with, or you may not achieve the results you intended.

195

8-bit Proton Compiler Development Suite.

The value sent to the bus depends on the size of the variables used. For example: -

Dim Wrd as Word " Create a Word size variable
Hbusout Control, Address, [Wrd]

Will send a 16-bit value to the bus. While: -

Dim Varl as Byte " Create a Byte size variable
Hbusout Control, Address, [Varl]

Will send an 8-bit value to the bus.

Using more than one variable within the brackets allows differing variable sizes to be sent. For
example: -

Dim Varl as Byte
Dim Wrd as Word
Hbusout Control, Address, [Varl, Wrd]

Will send two values to the bus, the first being an 8-bit value dictated by the size of variable
Varl which has been declared as a byte. And a 16-bit value, this time dictated by the size of
the variable Wrd which has been declared as a word. Of course, Bit type variables may also be
used, but in most cases these are not of any practical use as they still take up a byte within the
eeprom.

A string of characters can also be transmitted, by enclosing them in quotes: -

Hbusout Control, Address, ["‘Hello World", Varl, Wrd]

Using the second variation of the Hbusout command, necessitates using the low level com-
mands i.e. HbStart, HbRestart, HbusAck, or HbStop.

Using the Hbusout command with only one value after it, sends a byte of data to the I°C bus,
and returns holding the Acknowledge reception. This acknowledge indicates whether the data
has been received by the slave device.

The Ack reception is returned in the PICmicro's CARRY flag, which is STATUS.O, and also
System variable PP4.0. A value of zero indicates that the data was received correctly, while a
one indicates that the data was not received, or that the slave device has sent a NAck return.
You must read and understand the datasheet for the device being interfacing to, before the Ack
return can be used successfully. An code snippet is shown below: -

" Transmit a byte to a 24LC32 serial eeprom
Dim PP4 as Byte System

HbStart " Send a Start condition

Hbusout %10100000 " Target an eeprom, and send a Write command

Hbusout O " Send the HighByte of the address

Hbusout O " Send the LowByte of the address

Hbusout "A" " Send the value 65 to the bus

ITf PP4.0 = 1 Then Goto Not Received * Has Ack been received OK ?

HbStop " Send a Stop condition

DelayMs 10 " Wait for the data to be entered into eeprom matrix

196

8-bit Proton Compiler Development Suite.

Str modifier with Hbusout.

The Str modifier is used for transmitting a string of bytes from a byte array variable. A string is
a set of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3
would be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A
byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string 1,2,3 would be stored in a byte
array containing three bytes (elements).

Below is an example that sends four bytes from an array: -

Dim MyArray[10] as Byte " Create a 10-byte array.

MyArray [0] = "A" " Load the first 4 bytes of the array
MyArray [1] " With the data to send

MyArray [2]
MyArray [3]
Hbusout %10100000, Address, [Str MyArray \4] " Send 4-byte string.

In1mn i
SEE

Note that we use the optional \n argument of Str. If we didn't specify this, the program would try
to keep sending characters until all 10 bytes of the array were transmitted. Since we do not
wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 4 bytes.

The above example may also be written as: -

Dim MyArray [10] as Byte
Str MyArray = "ABCD"

Create a 10-byte array.
Load the first 4 bytes of the array

HbStart Send a Start condition
Hbusout O Send the HighByte of the address
Hbusout O Send the LowByte of the address

Hbusout Str MyArray\4
HbStop

Send 4-byte string.
Send a Stop condition

Hbusout %10100000 " Target an eeprom, and send a Write command

The above example, has exactly the same function as the previous one. The only differences
are that the string is now constructed using the Str as a command instead of a modifier, and
the low-level Hbus commands have been used.

Notes
Not all PICmicro" devices contain an MSSP module, some only contain an SSP type, which
only allows I°C slave operations. These types of devices may not be used with any of the Hbus
commands. Therefore, always read and understand the datasheet for the PICmicro™ device
used.

197

8-bit Proton Compiler Development Suite.

Hbusout Declares
Declare Hbus_Bitrate Constant 100, 400, 1000

The standard speed for the 1°C bus is 100KHz. Some devices use a higher bus speed of
400KHz. The above Declare allows the 1°C bus speed to be increased or decreased. Use this
Declare with caution, as too high a bit rate may exceed the device's specs, which will result in
intermittent transactions, or in some cases, no transactions at all. The datasheet for the device
used will inform you of its bus speed. The default bit rate is the standard 100KHz.

Declare HSDA_Pin Port . Pin

For devices that have PPS (Peripheral Pin Select), the port and pin used for the data line (SDA)
must be given, so that the compiler can seup the PPS SFRs before the program starts. This
may be any valid port on the microcontroller, but check the datasheet to see if the Port is valid
for the peripheral.

Declare HSCL_Pin Port . Pin

For devices that have PPS (Peripheral Pin Select), the port and pin used for the clock line
(SCL) must be given, so that the compiler can seup the PPS SFRs before the program starts.
This may be any valid port on the microcontroller, but check the datasheet to see if the Port is
valid for the peripheral.

Notes

Not all PICmicro” devices contain an MSSP module, some only contain an SSP type, which
only allows I°C slave operations. These types of devices may not be used with any of the
HBUS commands. Therefore, always read and understand the datasheet for the PICmicro™
device used.

When the Hbusout command is used, the appropriate SDA and SCL Port and Pin are auto-
matically setup as inputs. On devices without PPS (Peripheral Pin Select), the SDA, and SCL

lines are predetermined as hardware pins on the PICmicro" , however, on devices with PPS,
the compiler sets up the appropriate SFRs using the HSDA_Pin and HSCL_Pin declares.

See also: HbusAck, HbRestart, HbStop, Hbusin, HbStart.

198

8-bit Proton Compiler Development Suite.

High

Syntax
High Port or Port.Bit or Pin Number

Overview
Place a Port or Port.Pin in a high output state. For a Port, this means setting it as an output and
filling it with 1's.

Parameters

Port can be any valid port.

Port.Bit can be any valid port and bit combination, i.e. PORTA.1

Pin Number can be a variable or constant that holds a value from 0 to the amount of I/O pins
on the device. A value of 0 will be PORTA.O, if present, 1 will be PORTA.1, 8 will be PORTB.0
etc...

Example 1
Symbol LED = PORTB.4
High LED
High 1 " Set Pin PORTA.1 high

Example 2

" Flash each of the pins on PORTA and PORTB
Device = 18F25K20
Declare Xtal = 16

Dim MyPin as Byte

For MyPin = 0 to 15 Create a loop for the pin to flash

High MyPin " Set the pin high

DelayMs 500 " Delay so that it can be seen

Low MyPin " Pull the pin low

DelayMs 500 " Delay so that it can be seen
Next

199

8-bit Proton Compiler Development Suite.

Notes.

Each pin numberhas a designated name. These are Pin_AO0, Pin_Al, Pin_A2,
Pin_BO...Pin_B7, Pin_CO0...Pin_C7, Pin_DQO...Pin_D7 to Pin_L7 etc... Each of the names has a
relevant constant value, for example, Pin_AO has the value 0, Pin_BO has the value 8, up to
Pin_L7, which has the value 87.

These can be used to pass a relevant pin number to a subroutine. For example:

" Flash an LED attached to PORTB.O via a subroutine

" Then flash an LED attached to PORTB.1 via the same subroutine
18F25K20

16

Device =
Declare Xtal =
Dim PinNumber As Byte " Holds the pin number to set high and low
Do
PinNumber = Pin_BO
Gosub FlashPin
PinNumber = Pin_B1
Gosub FlashPin
Loop

Create an infinite loop

Give the pin number to flash (PORTB.0)
Call the subroutine to flash the pin
Give the pin number to flash (PORTB.1)
Call the subroutine to flash the pin

" Do it forever

" Set a pin high then low for 500ms using a value as the pin to adjust
FlashPin:
High PinNumber

" Set the pin output high
DelayMs 500 "

Wait for 500 milliseconds
Pull the pin low
Wait for 500 milliseconds

Low PinNumber
DelayMs 500
Return

Example 2

" Clear then Set each pin of PORTC
Device = 18F25K20
Declare Xtal = 16

Dim PinNumber as Byte

Low PORTC -
Do -

Make PORTC output low before we start
Create a loop

For PinNumber = Pin_CO to Pin_C7
Low PinNumber "
DelayMs 100)

* Create a loop for 8 pins
Clear each pin of PORTC
Slow things down to see what®"s happening

Next " Close the loop
For PinNumber = Pin_CO to Pin_C7 " Create a loop for 8 pins
High PinNumber " Set each pin of PORTC
DelayMs 100 Slow things down to see what®"s happening

Next Close the loop
Loop Do it forever
See also: Clear, ClearPin, Dim, Low, Set, SetPin, Symbol, GetPin.

200

8-bit Proton Compiler Development Suite.

Hpwm

Syntax
Hpwm Channel, Dutycycle, Frequency

Overview

Output a pulse width modulated pulse train using the CCP modules Pwm hardware, available
on some PICmicros. The Pwm pulses produced can run continuously in the background while
the program is executing other instructions.

Parameters

Channel is a constant value that specifies which hardware Pwm channel to use. Some devices
have 1, 2 or 3 Pwm channels. On devices with 2 channels, the Frequency must be the same on
both channels. It must be noted, that this is a limitation of the PICmicro" not the compiler. The
data sheet for the particular device used shows the fixed hardware pin for each Channel. For
example, for a PIC16F877, Channel 1 is CCP1 which is pin PORTC.2. Channel 2 is CCP2
which is pin PORTC.1.

Dutycycle is a variable, constant (0-255), or expression that specifies the on/off (high/low) ratio
of the signal. It ranges from 0 to 255, where 0 is off (low all the time) and 255 is on (high) all the
time. A value of 127 gives a 50% duty cycle (square wave).

Frequency is a variable, constant (0-32767), or expression that specifies the desired frequency
of the Pwm signal. Not all frequencies are available at all oscillator settings. The highest fre-
guency at any oscillator speed is 32767Hz. The lowest usable Hpwm Frequency at each oscil-
lator setting is shown in the table below: -

Xtal frequency Lowest useable Pwm frequency

4MHz 145Hz
8MHz 489Hz
10MHz 611Hz
12MHz 733Hz
16MHz 977Hz
20MHz 1221Hz
24MHz 1465Hz
33MHz 2015Hz
40MHz 2442Hz
Example

Device = 16F1829
Declare Xtal = 20

Hpwm 1,127,1000 " Send a 50% duty cycle Pwm signal at 1KHz
DelayMs 500
Hpwm 1,64 ,2000 " Send a 25% duty cycle Pwm signal at 2KHz
Stop

Notes

Some devices, such as the PIC16F62x, and PIC18F4xx, have alternate pins that may be used
for Hpwm. The following Declares allow the use of different pins: -

Declare CCP1_Pin Port.Pin " Select Hpwm port and bit for CCP1 module.
Declare CCP2_Pin Port.Pin " Select Hpwm port and bit for CCP2 module.
Declare CCP3 _Pin Port.Pin " Select Hpwm port and bit for CCP3 module.
Declare CCP4 _Pin Port.Pin " Select Hpwm port and bit for CCP4 module.

See also: Pwm, Pulseout, Servo.

201

8-bit Proton Compiler Development Suite.

Hrsin, Hrsin2, Hrsin3, Hrsin4

Syntax
Variable = Hrsin, { Timeout, Timeout Label }

or
Hrsin { Timeout, Timeout Label }, { Parity Error Label }, Modifiers, Variable {, Variable... }

Overview
Receive one or more values from the serial port on devices that contain a USART peripheral. If
Hrsin2, Hrsin3, or Hrsout4 are used, the device must contain more than 1 USART.

Parameters

Timeout is an optional value for the length of time the Hrsin command will wait before jumping
to label Timeout Label. Timeout is specified in 1 millisecond units and has a maximum of 16-
bits.

Timeout Label is an optional valid BASIC label where Hrsin will jump to in the event that a
character has not been received within the time specified by Timeout.

Parity Error Label is an optional valid BASIC label where Hrsin will jump to in the event that a
Parity error is received. Parity is set using Declares. Parity Error detecting is not supported in
the inline version of Hrsin (first syntax example above).

Modifier is one of the many formatting modifiers, explained below.

Variable is a Bit, Byte, Word, or Dword variable, that will be loaded by Hrsin.

Example

" Receive values serially and timeout if no reception after 1 second
Device 16F1829
Declare Xtal = 4

Declare Hserial Baud = 9600 " Set baud rate to 9600
Declare Hserial_Clear = On " Clear the buffer before receiving
Dim Varl as Byte

Do
Varl = Hrsin, {1000, Timeout} " Receive a byte serially into Varl
HrsoutLn Dec Varl " Display the byte received
Loop " Loop forever
Timeout:
HrsoutLn "Timed Out" " Display an error if Hrsin timed out
Stop

Hrsin Modifiers.

As we already know, Rsin will wait for and receive a single byte of data, and store it in a vari-
able . If the PICmicro™ were connected to a PC running a terminal program and the user
pressed the "A" key on the keyboard, after the Hrsin command executed, the variable would
contain 65, which is the ASCII code for the letter "A"

What would happen if the user pressed the "1" key? The result would be that the variable would
contain the value 49 (the ASCII code for the character "1"). This is an important point to re-
member: every time you press a character on the keyboard, the computer receives the ASCII
value of that character. It is up to the receiving side to interpret the values as necessary.

202

8-bit Proton Compiler Development Suite.

In this case, perhaps we actually wanted the variable to end up with the value 1, rather than the
ASCII code 49.

The Hrsin command provides a modifier, called the decimal modifier, which will interpret this
for us. Look at the following code: -

Dim SerData as Byte
Hrsin Dec SerData

Notice the decimal modifier in the Hrsin command that appears just to the left of the SerData
variable. This tells Hrsin to convert incoming text representing decimal numbers into true deci-
mal form and store the result in SerData. If the user running the terminal software pressed the
"1", "2" and then "3" keys followed by a space or other non-numeric text, the value 123 will be
stored in the variable SerData, allowing the rest of the program to perform any numeric opera-
tion on the variable.

Without the decimal modifier, however, you would have been forced to receive each character
("1, "2" and "3") separately, and then would still have to do some manual conversion to arrive
at the number 123 (one hundred twenty three) before you can do the desired calculations on it.

The decimal modifier is designed to seek out text that represents decimal numbers. The char-
acters that represent decimal numbers are the characters "0" through "9". Once the Hrsin
command is asked to use the decimal modifier for a particular variable, it monitors the incoming
serial data, looking for the first decimal character. Once it finds the first decimal character, it will
continue looking for more (accumulating the entire multi-digit number) until is finds a non-
decimal numeric character. Remember that it will not finish until it finds at least one decimal
character followed by at least one non-decimal character.

To illustrate this further, examine the following examples (assuming we're using the same code
example as above): -

Serial input: "ABC"
Result: The program halts at the Hrsin command, continuously waiting for decimal text.

Serial input: "123" (with no characters following it)

Result: The program halts at the Hrsin command. It recognises the characters "1", "2" and "3"
as the number one hundred twenty three, but since no characters follow the "3", it waits con-
tinuously, since there's no way to tell whether 123 is the entire number or not.

Serial input: "123" (followed by a space character)

Result: Similar to the above example, except once the space character is received, the pro-
gram knows the entire number is 123, and stores this value in SerData. The Hrsin command
then ends, allowing the next line of code to run.

Serial input: "123A"

Result: Same as the example above. The "A" character, just like the space character, is the
first non-decimal text after the number 123, indicating to the program that it has received the
entire number.

203

8-bit Proton Compiler Development Suite.

Serial input: "ABCD123EFGH"

Result: Similar to examples 3 and 4 above. The characters "ABCD" are ignored (since they're
not decimal text), the characters "123" are evaluated to be the number 123 and the following
character, "E", indicates to the program that it has received the entire number.

The final result of the Dec modifier is limited to 16 bits (up to the value 65535). If a value larger
than this is received by the decimal modifier, the end result will be incorrect because the result
rolled-over the maximum 16-bit value. Therefore, Hrsin modifiers may not (at this time) be used
to load Dword (32-bit) variables.

The decimal modifier is only one of a family of conversion modifiers available with Hrsin See
below for a list of available conversion modifiers. All of the conversion modifiers work similar to
the decimal modifier (as described above). The modifiers receive bytes of data, waiting for the
first byte that falls within the range of characters they accept (e.g., "0" or "1" for binary, "0" to
"9" for decimal, "0" to "9" and "A" to "F" for hex. Once they receive a numeric character, they
keep accepting input until a non-numeric character arrives, or in the case of the fixed length
modifiers, the maximum specified number of digits arrives.

While very effective at filtering and converting input text, the modifiers aren't completely fool-
proof. As mentioned before, many conversion modifiers will keep accepting text until the first
non-numeric text arrives, even if the resulting value exceeds the size of the variable. After
Hrsin, a Byte variable will contain the lowest 8 bits of the value entered and a Word (16-bits)
would contain the lowest 16 bits. You can control this to some degree by using a modifier that
specifies the number of digits, such as Dec2, which would accept values only in the range of O
to 99.

Conversion Modifier Type of Number Numeric Characters Accepted
Dec{0..10} Decimal, optionally limited 0 through 9
to O - 10 digits
Hex{1..8} Hexadecimal, optionally limited O through 9,
to 1 - 8 digits A through F
Bin{l1..32} Binary, optionally limited 0,1
to 1 - 32 digits

A variable preceded by Bin will receive the ASCII representation of its binary value.
For example, if Bin Varl is specified and "1000" is received, Varl will be set to 8.

A variable preceded by Dec will receive the ASCII representation of its decimal value.
For example, if Dec Varl is specified and "123" is received, Varl will be set to 123.

A variable preceded by Hex will receive the ASCII representation of its hexadecimal value.
For example, if Hex Varl is specified and "FE" is received, Varl will be set to 254.

SKIP followed by a count will skip that many characters in the input stream.
For example, SKIP 4 will skip 4 characters.

The Hrsin command can be configured to wait for a specified sequence of characters before it
retrieves any additional input. For example, suppose a device attached to the PICmicro™ is
known to send many different sequences of data, but the only data you wish to observe hap-
pens to appear right after the unique characters, "XYZ". A modifier named Wait can be used for
this purpose: -

Hrsin Wait("'XYZ"), SerData

204

8-bit Proton Compiler Development Suite.

The above code waits for the characters "X", "Y" and "Z" to be received, in that order, then it
receives the next data byte and places it into variable SerData.

Str modifier.
The Hrsin command also has a modifier for handling a string of characters, named Str.

The Str modifier is used for receiving a string of characters into a byte array variable.

A string is a set of characters that are arranged or accessed in a certain order. The characters
"ABC" would be stored in a string with the "A" first, followed by the "B" then followed by the "C".
A byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string "ABC" would be stored in a byte
array containing three bytes (elements).

Below is an example that receives ten bytes and stores them in the 10-byte array, SERString: -

Dim SerString[10] as Byte " Create a 10-byte array.
Hrsin Str SerString " Fill the array with received data.
Print Str SerString " Display the string.

If the amount of received characters is not enough to fill the entire array, then a formatter may
be placed after the array's name, which will only receive characters until the specified length is
reached. For example: -

Dim SerString[10] as Byte " Create a 10-byte array.
Hrsin Str SerString\5 " Fill the first 5-bytes of the array
Print Str SerString\5 " Display the 5-character string.

The example above illustrates how to fill only the first n bytes of an array, and then how to dis-
play only the first n bytes of the array. n refers to the value placed after the backslash.

Because of its complexity, serial communication can be rather difficult to work with at times. Us-
ing the guidelines below when developing a project using the Hrsin and Hrsout commands
may help to eliminate some obvious errors: -

Always build your project in steps.

Start with small, manageable pieces of code, (that deal with serial communication) and test
them, one individually.

Add more and more small pieces, testing them each time, as you go.

Never write a large portion of code that works with serial communication without testing its
smallest workable pieces first.

Pay attention to timing.

Be careful to calculate and overestimate the amount of time, operations should take within the
PICmicro™ for a given oscillator frequency. Misunderstanding the timing constraints is the
source of most problems with code that communicate serially. If the serial communication in
your project is bi-directional, the above statement is even more critical.

Pay attention to wiring.

Take extra time to study and verify serial communication wiring diagrams. A mistake in wiring
can cause strange problems in communication, or no communication at all. Make sure to con-
nect the ground pins (Vss) between the devices that are communicating serially.

205

8-bit Proton Compiler Development Suite.

Verify port setting on the PC and in the Hrsin / Hrsout commands.

Unmatched settings on the sender and receiver side will cause garbled data transfers or no
data transfers. This is never more critical than when a line transceiver is used(i.e. MAX232).
Always remember that a line transceiver inverts the serial polarity.

If the serial data received is unreadable, it is most likely caused by a baud rate setting error, or
a polarity error.

If receiving data from another device that is not a PICmicro", try to use baud rates of 9600 and
below, or alternatively, use a higher frequency crystal.

Because of additional overheads in the PICmicro™, and the fact that the Hrsin command only
offers a 2 level receive buffer for serial communication, received data may sometimes be
missed or garbled. If this occurs, try lowering the baud rate, or increasing the crystal frequency.
Using simple variables (not arrays) will also increase the chance that the PICmicro™ will receive
the data properly.

Declares
There are six Declare directives for use with Hrsin. These are: -

Declare Hrsin_Pin, Hrsin2_Pin, Hrsin3_Pin, or Hrsin4_Pin Port . Pin

For devices that have PPS (Peripheral Pin Select), the port and pin used for the RX lines must
be given, so that the compiler can seup the PPS SFRs before the program starts. This may be
any valid port on the microcontroller, but check the datasheet to see if the Port is valid for the
peripheral.

Declare Hserial_Baud, Hserial2_Baud, Hserial3_Baud, or Hserial4_Baud Constant value
Sets the Baud rate that will be used to transmit a value serially. The baud rate is calculated us-
ing the Xtal frequency declared in the program.

Declare Hserial RCSTA, Hserial2_RCSTA, Hserial3_RCSTA, or Hserial4_RCSTA Constant
value (0 to 255)

Sets the respective PICmicro™ hardware register RCSTA, to the value in the Declare. See the
Microchip data sheet for the device used for more information regarding this register.

Declare Hserial TXSTA, Hserial2 TXSTA, Hserial3 _TXSTA, or Hserial4 TXSTA Constant
value (0 to 255)

Sets the respective PICmicro™ hardware register, TXSTA, to the value in the Declare. See the
Microchip data sheet for the device used for more information regarding this register. The
TXSTA register BRGH bit (bit-2) controls the high speed mode for the baud rate generator.
Certain baud rates at certain oscillator speeds require this bit to be set to operate properly. To
do this, set Hserial TXSTA to a value of $24 instead of the normal $20.

Declare Hserial_Parity, Hserial2_Parity, Hserial3_Parity, or Hserial4_Parity Odd or Even
Enables/Disables parity on the serial port. For both Hserout and Hserin The default serial data
format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop bit) or
701 (7data bits, odd parity, 1 stop bit) may be enabled using the Hserial _Parity declare.

Declare Hserial Parity
Declare Hserial Parity

Even " Use if even parity desired
Odd " Use if odd parity desired

206

8-bit Proton Compiler Development Suite.

Declare Hserial_Clear, Hserial2_Clear, Hserial3_Clear, or Hserial4_Clear On or Off
Clear the overflow error bit before commencing a read.

Because the hardware serial port only has a 2-byte input buffer, it can easily overflow if bytes
are not read from it often enough. When this occurs, the USART stops accepting any new
bytes, and requires resetting. This overflow error can be reset by strobing the CREN bit within
the RCSTA register.

Example: -
RCSTA.4
RCSTA.4

or
Clear RCSTA.4
Set RCSTA.4

0
1

Alternatively, the Hserial_Clear declare can be used to automatically clear this error, even if no
error occurred. However, the program will not know if an error occurred while reading, therefore
some characters may be lost.

Declare Hserial Clear = On

207

8-bit Proton Compiler Development Suite.

Notes

Hrsin can only be used with devices that contain a hardware USART. See the specific device's
data sheet for further information concerning the serial input pin as well as other relevant pa-

rameters.

Since the serial transmission is done in hardware, it is not possible to set the levels to an in-
verted state to eliminate an RS232 driver. Therefore a suitable driver should be used with

Hrsin. Just such a circuit using a MAX232 is shown below.

L C3
‘T.' 1uF

5 Volts
O
€5 = ¢ 1 — 2
1uF F—ci+ vcc v+
1uF I_I—j C1-
C2 [F—ca+
1uF C2- MAX232
From PIC u
Serial Output O— T1lin Tlout
-] T2in T2out
To PIC O—1 R1out R1in
Serial Input —R2out R2in
GND

ov

15

14

7

B

8

e
Lo

‘T.' 1uF

9-way
D-Socket

O

A simpler, and somewhat more elegant transceiver circuit using only 5 discrete components is
shown in the diagram belc

+5V —»ﬂ:[]

SERIAL
IN

R1
o 4.7k
RB7 T1
BC147
T2 T Ly 2
BCR183 A
To o
RB6

R2
10k

R3
4.7k

SERIAL
ouT

See also :Declare, Rsin, Rsout, Serin, Serout, Hrsout, Hserin, Hserout.

208

8-bit Proton Compiler Development Suite.

Hrsout, Hrsout2, Hrsout3, Hrsout4

Syntax
Hrsout Item {, Item... }

Overview

Transmit one or more Items from the hardware serial port on devices that contain a USART pe-
ripheral. If Hrsout2, Hrsout3, or Hrsout4 are used, the device must contain more than 1
USART.

Parameters
Item may be a constant, variable, expression, string list, or inline command.
There are no operators as such, instead there are modifiers.

The modifiers are listed below: -
Modifier Operation

At ypos,xpos Paosition the cursor on a serial LCD
Cls Clear a serial LCD (also creates a 30ms delay)

Bin{1..32} Send binary digits

Dec{0..10} Send decimal digits (amount of digits after decimal point with floating point)
Hex{1..8} Send hexadecimal digits

Sbhin{1..32} Send signed binary digits

Sdec{0..10} Send signed decimal digits

Shex{1..8} Send signed hexadecimal digits

Ibin{1..32} Send binary digits with a preceding '%’ identifier

Idec{0..10} Send decimal digits with a preceding '#' identifier

Ihex{1..8} Send hexadecimal digits with a preceding '$' identifier
ISbin{1..32} Send signed binary digits with a preceding '%' identifier
ISdec{0..10} Send signed decimal digits with a preceding '#' identifier
IShex{1..8} Send signed hexadecimal digits with a preceding '$' identifier

Rep c\n Send character c repeated n times
Str array\n Send all or part of an array
Cstr cdata Send string data defined in a Cdata statement.

The numbers after the Bin, Dec, and Hex modifiers are optional. If they are omitted, then the
default is all the digits that make up the value will be displayed.

If a floating point variable is to be displayed, then the digits after the Dec modifier determine
how many remainder digits are send. i.e. numbers after the decimal point.

Dim MyFloat as Float
MyFloat = 3.145
Hrsout Dec2 MyFloat " Send 2 digits after the decimal point

The above program will transmit the ASCII characters “3.14”

If the digit after the Dec modifier is omitted, then 3 digits will be displayed after the decimal
point.

209

8-bit Proton Compiler Development Suite.

Dim MyFloat as Float
MyFloat = 3.1456
Hrsout Dec MyFloat " Send 3 digits after the decimal point

The above program will transmit the ASCII characters “3.145”

There is no need to use the Sdec modifier for signed floating point values, as the compiler's
Dec modifier will automatically display a minus result: -

Dim MyFloat as Float
MyFloat = -3.1456
Hrsout Dec MyFloat " Send 3 digits after the decimal point

The above program will transmit the ASCII characters “-3.145”
Hex or Bin modifiers cannot be used with floating point values or variables.

The Xpos and Ypos values in the At modifier both start at 1. For example, to place the text
"Hello World" on line 1, position 1, the code would be: -

Hrsout At 1, 1, "Hello World"

Example 1
Dim Varl as Byte
Dim Wrd as Word
Dim Dwd as Dword

Hrsout ""Hello World"
Hrsout *“Varl= ', Dec Varl
Hrsout *"Varl= ', Hex Varl
Hrsout "Varl= ", Bin Varl
Hrsout "Dwd= ', Hex6 Dwd

Display the text ""Hello World"

Display the decimal value of Varl

Display the hexadecimal value of Varl
Display the binary value of Varl

Display 6 hex characters of a Dword variable

Example 2

" Display a negative value on a serial LCD.
Symbol Negative = -200
Hrsout At 1, 1, Sdec Negative

Example 3
" Display a negative value on a serial LCD with a preceding identifier.
Hrsout At 1, 1, IShex -$1234

Example 3 will produce the text "$-1234" on the LCD.

Some microcontrollers have the ability to read and write to their own flash memory. And al-
though writing to this memory too many times is unhealthy for the PICmicro™, reading this
memory is both fast, and harmless. Which offers a unique form of data storage and retrieval,
the Cdata command proves this, as it uses the mechanism of reading and storing in the de-
vice's flash memory.

210

8-bit Proton Compiler Development Suite.

The Cstr modifier may be used in commands that deal with text processing i.e. Serout, Hse-
rout, and Print etc.

The Cstr modifier is used in conjunction with the Cdata command. The Cdata command is
used for initially creating the string of characters: -

Stringl: Cdata "‘Hello World™, O

The above line of case will create, in flash memory, the values that make up the ASCII text
"Hello World", at address String1. Note the null terminator after the ASCII text.

null terminated means that a zero (null) is placed at the end of the string of ASCII characters to
signal that the string has finished.

To display, or transmit this string of characters, the following command structure could be used:

Hrsout Cstr Stringl

The label that declared the address where the list of Cdata values resided, now becomes the
string's name. In a large program with lots of text formatting, this type of structure can save
quite literally hundreds of bytes of valuable code space.

The Str modifier is used for sending a string of bytes from a byte array variable. A string is a set
of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3 would
be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A byte ar-
ray is a similar concept to a string; it contains data that is arranged in a certain order. Each of
the elements in an array is the same size. The string 1,2,3 would be stored in a byte array con-
taining three bytes (elements).

Below is an example that displays four bytes (from a byte array): -

Dim MyArray[10] as Byte " Create a 10-byte array.

MyArray [0] = "H" " Load the first 5 bytes of the array
MyArray [1] = "e" " With the data to send

MyArray [2] = "I"

MyArray [3] = "I"

MyArray [4] = "o"

Hrsout Str MyArray\5 " Display a 5-byte string.

Note that we use the optional \n argument of Str. If we didn't specify this, the PICmicro" would
try to keep sending characters until all 10 bytes of the array were transmitted. Since we do not
wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 5 bytes.

The above example may also be written as: -

Dim MyArray [10] as Byte " Create a 10-byte array.
Str MyArray = "Hello" " Load the first 5 bytes of the array
Hrsout Str MyArray\5 " Send 5-byte string.

The above example, has exactly the same function as the previous one. The only difference is
that the string is now constructed using Str as a command instead of a modifier.

211

8-bit Proton Compiler Development Suite.

Declares
There are five Declare directives for use with Hrsout. These are: -

Declare Hrsout_Pin, Hrsout2_ Pin, Hrsout3 Pin, or Hrsout4 Pin Port . Pin

For devices that have PPS (Peripheral Pin Select), the port and pin used for the TX lines must
be given, so that the compiler can seup the PPS SFRs before the program starts. This may be
any valid port on the microcontroller, but check the datasheet to see if the Port is valid for the
peripheral.

Declare Hserial_Baud, Hserial2_Baud, Hserial3_Baud, or Hserial4_Baud Constant value
Sets the Baud rate that will be used to transmit a value serially. The baud rate is calculated us-
ing the Xtal frequency declared in the program.

Declare Hserial RCSTA, Hserial2_RCSTA, Hserial3_RCSTA, or Hserial4_RCSTA Constant
value (0 to 255)

Sets the respective PICmicro”™ hardware register RCSTA, to the value in the Declare. See the
Microchip data sheet for the device used for more information regarding this register.

Declare Hserial TXSTA, Hserial2 TXSTA, Hserial3 _TXSTA, or Hserial4 TXSTA Constant
value (0 to 255)

Sets the respective PICmicro™ hardware register, TXSTA, to the value in the Declare. See the
Microchip data sheet for the device used for more information regarding this register. The
TXSTA register BRGH bit (bit-2) controls the high speed mode for the baud rate generator.
Certain baud rates at certain oscillator speeds require this bit to be set to operate properly. To
do this, set Hserial TXSTA to a value of $24 instead of the normal $20.

Declare Hserial_Parity, Hserial2_Parity, Hserial3_Parity, or Hserial4_Parity Odd or Even
Enables/Disables parity on the serial port. For both Hserout and Hserin The default serial data
format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop bit) or
701 (7data bits, odd parity, 1 stop bit) may be enabled using the Hserial _Parity declare.

Declare Hserial Parity
Declare Hserial Parity

Even " Use if even parity desired
Odd " Use if odd parity desired

Notes

Hrsout can only be used with devices that contain a hardware USART. See the specific de-
vice's data sheet for further information concerning the serial input pin as well as other relevant
parameters.

Since the serial transmission is done in hardware, it is not possible to set the levels to an in-
verted state in order to eliminate an RS232 driver. Therefore a suitable driver should be used
with Hrsout. See Hrsin for circuits.

See also :Declare, Rsin, Rsout, Serin, Serout, Hrsin, Hserin, Hserout.

212

8-bit Proton Compiler Development Suite.

HrsoutLn, Hrsout2Ln, Hrsout3Ln, Hrsout4Ln

Syntax

HrsoutLn Item {, Item... }
Hrsout2Ln Item {, Item... }
Hrsout3Ln Item {, Item... }
Hrsout4Ln Item {, Item... }

Overview

Transmit one or more Items from the hardware serial port on devices that contain one or more
USART peripherals and terminate with a Carriage Return(13) or Carriage Return(13) Line
Feed(10) or Line Feed(10) Carriage Return(13). The syntax and operators are exactly the
same as Hrsout, Hrsout2, Hrsout3 and Hrsout4. If Hrsout2Ln, Hrsout3Ln, or Hrsout4Ln
are used, the device must contain more than 1 USART.

Parameters

Item may be a constant, variable, expression, string list, or inline command.

There are no operators as such, instead there are modifiers. See the section for Hrsout for
more details.

Declares
There are 4 declares for the HrsoutXLn commands. Each one is for the particular command.

CRLF or LFCR or CR
CRLF or LFCR or CR
CRLF or LFCR or CR
CRLF or LFCR or CR

Declare Hseriall Terminator
Declare Hserial2_Terminator
Declare Hserial3 Terminator
Declare Hserial4 Terminator

The parameter CR will transmit a single value of 13 at the end of transmission.
The parameter CRLF will transmit a value of 13 then 10 at the end of transmission.
The parameter LFCR will transmit a value of 10 then 13 at the end of transmission.

See also :Declare, Rsin, Rsout, Serin, Serout, Hrsout, Hrsin, Hserin, Hserout.

213

8-bit Proton Compiler Development Suite.

Hserin, Hserin2, Hserin3, Hserin4

Syntax
Hserin Timeout, Timeout Label, Parity Error Label, [Modifiers, Variable {, Variable... }]

Overview
Receive one or more values from the serial port on devices that contain a USART peripheral. If
Hserin2, Hserin3, or Hserin4 are used, the device must contain more than 1 USART.

Parameters

Timeout is an optional value for the length of time the Hserin command will wait before jump-
ing to label Timeout Label. Timeout is specified in 1 millisecond units and has a maximum of
16-bits.

Timeout Label is an optional valid BASIC label where Hserin will jump to in the event that a
character has not been received within the time specified by Timeout.

Parity Error Label is an optional valid BASIC label where Hserin will jump to in the event that
a Parity error is received. Parity is set using Declares. Parity Error detecting is not supported in
the inline version of Hserin (first syntax example above).

Modifier is one of the many formatting modifiers, explained below.

Variable is a Bit, Byte, Word, or Dword variable, that will be loaded by Hserin.

Example

" Receive values serially and timeout if no reception after 1 second
Device 16F1829
Declare Xtal = 4

Declare Hserial _Baud = 9600 " Set baud rate to 9600
Declare Hserial _Clear = On " Clear the buffer before receiving
Dim Varl as Byte

Do
Hserin 1000, Timeout, [Varil] " Receive a byte serially into Varl
HrsoutlLn Dec Varl " Display the byte received
Loop " Loop forever
Timeout:
HrsoutLn "Timed Out" " Display an error if Hserin timed out
Stop

Hserin Modifiers.

As we already know, Hserin will wait for and receive a single byte of data, and store it in a vari-
able . If the microcontroller was connected to a PC running a terminal program and the user
pressed the "A" key on the keyboard, after the Hserin command executed, the variable would
contain 65, which is the ASCII code for the letter "A"

What would happen if the user pressed the "1" key? The result would be that the variable would
contain the value 49 (the ASCII code for the character "1"). This is an important point to re-
member: every time you press a character on the keyboard, the computer receives the ASCII
value of that character. It is up to the receiving side to interpret the values as necessary. In this
case, perhaps we actually wanted the variable to end up with the value 1, rather than the ASCII
code 49.

214

8-bit Proton Compiler Development Suite.

The Hserin command provides a modifier, called the decimal modifier, which will interpret this
for us. Look at the following code: -

Dim SerData as Byte
Hserin [Dec SerData]

Notice the decimal modifier in the Hserin command that appears just to the left of the SerData
variable. This tells Hserin to convert incoming text representing decimal numbers into true
decimal form and store the result in SerData. If the user running the terminal software pressed
the "1", "2" and then "3" keys followed by a space or other non-numeric text, the value 123 will
be stored in the variable SerData, allowing the rest of the program to perform any numeric op-
eration on the variable.

Without the decimal modifier, however, you would have been forced to receive each character
("1", "2" and "3") separately, and then would still have to do some manual conversion to arrive
at the number 123 (one hundred twenty three) before you can do the desired calculations on it.

The decimal modifier is designed to seek out text that represents decimal numbers. The char-
acters that represent decimal numbers are the characters "0" through "9". Once the Hserin
command is asked to use the decimal modifier for a particular variable, it monitors the incoming
serial data, looking for the first decimal character. Once it finds the first decimal character, it will
continue looking for more (accumulating the entire multi-digit number) until is finds a non-
decimal numeric character. Remember that it will not finish until it finds at least one decimal
character followed by at least one non-decimal character.

To illustrate this further, examine the following examples (assuming we're using the same code
example as above): -

Serial input: "ABC"
Result: The program halts at the Hserin command, continuously waiting for decimal text.

Serial input: "123" (with no characters following it)

Result: The program halts at the Hserin command. It recognises the characters "1", "2" and
"3" as the number one hundred twenty three, but since no characters follow the "3", it waits
continuously, since there's no way to tell whether 123 is the entire number or not.

Serial input: "123" (followed by a space character)

Result: Similar to the above example, except once the space character is received, the pro-
gram knows the entire number is 123, and stores this value in SerData. The Hserin command
then ends, allowing the next line of code to run.

Serial input: "123A"

Result: Same as the example above. The "A" character, just like the space character, is the
first non-decimal text after the number 123, indicating to the program that it has received the
entire number.

Serial input: "ABCD123EFGH"

Result: Similar to examples 3 and 4 above. The characters "ABCD" are ignored (since they're
not decimal text), the characters "123" are evaluated to be the number 123 and the following
character, "E", indicates to the program that it has received the entire number.

The final result of the Dec modifier is limited to 16 bits (up to the value 65535). If a value larger
than this is received by the decimal modifier, the end result will be incorrect because the

215

8-bit Proton Compiler Development Suite.

result rolled-over the maximum 16-bit value. Therefore, Hserin modifiers may not (at this time)
be used to load Dword (32-bit) variables.

The decimal modifier is only one of a family of conversion modifiers available with Hserin See
below for a list of available conversion modifiers. All of the conversion modifiers work similar to
the decimal modifier (as described above). The modifiers receive bytes of data, waiting for the
first byte that falls within the range of characters they accept (e.g., "0" or "1" for binary, "0" to
"9" for decimal, "0" to "9" and "A" to "F" for hex. Once they receive a numeric character, they
keep accepting input until a non-numeric character arrives, or in the case of the fixed length
modifiers, the maximum specified number of digits arrives.

While very effective at filtering and converting input text, the modifiers aren't completely fool-
proof. As mentioned before, many conversion modifiers will keep accepting text until the first
non-numeric text arrives, even if the resulting value exceeds the size of the variable. After
Hserin, a Byte variable will contain the lowest 8 bits of the value entered and a Word (16-bits)
would contain the lowest 16 bits. You can control this to some degree by using a modifier that
specifies the number of digits, such as Dec2, which would accept values only in the range of 0
to 99.

Conversion Modifier Type of Number Numeric Characters Accepted

Dec{0..10} Decimal, optionally limited 0 through 9
to 0 - 10 digits

Hex{1..8} Hexadecimal, optionally limited O through 9,
to 1 - 8 digits A through F

Bin{l1..32} Binary, optionally limited 0,1
to 1 - 32 digits

A variable preceded by Bin will receive the ASCII representation of its binary value.
For example, if Bin Varl is specified and "1000" is received, Varl will be set to 8.

A variable preceded by Dec will receive the ASCII representation of its decimal value.
For example, if Dec Varl is specified and "123" is received, Varl will be set to 123.

A variable preceded by Hex will receive the ASCII representation of its hexadecimal value.
For example, if Hex Varl is specified and "FE" is received, Varl will be set to 254.

Skip followed by a count will skip that many characters in the input stream.
For example, Skip 4 will skip 4 characters.

The Hserin command can be configured to wait for a specified sequence of characters before it
retrieves any additional input. For example, suppose a device attached to the PICmicro™ is
known to send many different sequences of data, but the only data you wish to observe hap-
pens to appear right after the unique characters, "XYZ". A modifier named Wait can be used for
this purpose: -

Hserin [Wait('XYZ'), SerData]

The above code waits for the characters "X", "Y" and "Z" to be received, in that order, then it
receives the next data byte and places it into variable SerData.

216

8-bit Proton Compiler Development Suite.

Str modifier.
The Hserin command also has a modifier for handling a string of characters, named Str.

The Str modifier is used for receiving a string of characters into a byte array variable.

A string is a set of characters that are arranged or accessed in a certain order. The characters
"ABC" would be stored in a string with the "A" first, followed by the "B" then followed by the "C".
A byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string "ABC" would be stored in a byte
array containing three bytes (elements).

Below is an example that receives ten bytes and stores them in the 10-byte array, SerString: -

Dim SerString[10] as Byte " Create a 10-byte array.
Hserin [Str SerString] " Fill the array with received data.
Print Str SerString " Display the string.

If the amount of received characters is not enough to fill the entire array, then a formatter may
be placed after the array's name, which will only receive characters until the specified length is
reached. For example: -

Dim SerString[10] as Byte " Create a 10-byte array.
Hserin [Str SerString\5] " Fill the first 5-bytes of the array
Print Str SerString\5 " Display the 5-character string.

The example above illustrates how to fill only the first n bytes of an array, and then how to dis-
play only the first n bytes of the array. n refers to the value placed after the backslash.

Because of its complexity, serial communication can be rather difficult to work with at times. Us-
ing the guidelines below when developing a project using the Hserin and Hserout commands
may help to eliminate some obvious errors: -

Always build your project in steps.

Start with small, manageable pieces of code, (that deal with serial communication) and test
them, one individually.

Add more and more small pieces, testing them each time, as you go.

Never write a large portion of code that works with serial communication without testing its
smallest workable pieces first.

Pay attention to timing.

Be careful to calculate and overestimate the amount of time, operations should take within the
PICmicro™ for a given oscillator frequency. Misunderstanding the timing constraints is the
source of most problems with code that communicate serially. If the serial communication in
your project is bi-directional, the above statement is even more critical.

Pay attention to wiring.

Take extra time to study and verify serial communication wiring diagrams. A mistake in wiring
can cause strange problems in communication, or no communication at all. Make sure to con-
nect the ground pins (Vss) between the devices that are communicating serially.

217

8-bit Proton Compiler Development Suite.

Verify port setting on the PC and in the Hserin / Hserout commands.

Unmatched settings on the sender and receiver side will cause garbled data transfers or no
data transfers. This is never more critical than when a line transceiver is used(i.e. MAX232).
Always remember that a line transceiver inverts the serial polarity.

If the serial data received is unreadable, it is most likely caused by a baud rate setting error, or
a polarity error.

If receiving data from another device that is not a PICmicro", try to use baud rates of 9600 and
below, or alternatively, use a higher frequency crystal.

Because of additional overheads in the PICmicro™, and the fact that the Hserin command of-
fers a 2 level hardware receive buffer for serial communication, received data may sometimes
be missed or garbled. If this occurs, try lowering the baud rate, or increasing the crystal fre-
quency. Using simple variables (not arrays) will also increase the chance that the PICmicro™
will receive the data properly.

Declares
There are six Declare directives for use with Hserin . These are: -

Declare Hserin_Pin, Hserin2_Pin, Hserin3_Pin, or Hserin4_Pin Port . Pin

For devices that have PPS (Peripheral Pin Select), the port and pin used for the RX lines must
be given, so that the compiler can seup the PPS SFRs before the program starts. This may be
any valid port on the microcontroller, but check the datasheet to see if the Port is valid for the
peripheral.

Declare Hserial Baud, Hserial2_Baud, Hserial3_Baud, or Hserial4 Baud Constant value
Sets the Baud rate that will be used to transmit a value serially. The baud rate is calculated us-
ing the Xtal frequency declared in the program.

Declare Hserial RCSTA, Hserial2 RCSTA, Hserial3_RCSTA, or Hserial4 RCSTA Constant
value (0 to 255)

Sets the respective PICmicro” hardware register RCSTA, to the value in the Declare. See the
Microchip data sheet for the device used for more information regarding this register.

Declare Hserial TXSTA, Hserial2_TXSTA, Hserial3_TXSTA, or Hserial4 TXSTA Constant
value (0 to 255)

Sets the respective PICmicro™ hardware register, TXSTA, to the value in the Declare. See the
Microchip data sheet for the device used for more information regarding this register. The
TXSTA register BRGH bit (bit-2) controls the high speed mode for the baud rate generator.
Certain baud rates at certain oscillator speeds require this bit to be set to operate properly. To
do this, set Hserial TXSTA to a value of $24 instead of the normal $20.

Declare Hserial_Parity, Hserial2_Parity, Hserial3_Parity, or Hserial4_Parity Odd or Even
Enables/Disables parity on the serial port. For both Hserout and Hserin The default serial data
format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop bit) or
701 (7data bits, odd parity, 1 stop bit) may be enabled using the Hserial _Parity declare.

Declare Hserial Parity = Even " Use if even parity desired
Declare Hserial_Parity = 0dd " Use if odd parity desired

218

8-bit Proton Compiler Development Suite.

Declare Hserial_Clear, Hserial2_Clear, Hserial3_Clear, or Hserial4_Clear On or Off
Clear the overflow error bit before commencing a read.

Because the hardware serial port only has a 2-byte input buffer, it can easily overflow is charac-
ters are not read from it often enough. When this occurs, the USART stops accepting any new
characters, and requires resetting. This overflow error can be reset by strobing the CREN bit
within the RCSTA register.

Example: -
RCSTA.4

0
RCSTA.4 1

or
Clear RCSTA.4
Set RCSTA.4

Alternatively, the Hserial_Clear declare can be used to automatically clear this error, even if no
error occurred. However, the program will not know if an error occurred while reading, therefore
some characters may be lost.

Declare Hserial Clear = On

Notes

Hserin can only be used with devices that contain a hardware USART. See the specific de-
vice's data sheet for further information concerning the serial input pin as well as other relevant
parameters.

Since the serial transmission is done in hardware, it is not possible to set the levels to an in-
verted state to eliminate an RS232 driver. Therefore a suitable driver should be used with
Hserin . See Hrsin for suitable circuits.

See also :Declare, Hserout, Hrsin, Hrsout, Rsin, Rsout, Serin, Serout.

219

8-bit Proton Compiler Development Suite.

Hserout, Hserout2, Hserout3, Hserout4

Syntax

Hserout [Item {, Item... }]
Hserout2 [Item {, Iltem... }]
Hserout3 [Item {, Item... }]
Hserout4 [Item {, Iltem... }]

Overview

Transmit one or more Items from the hardware serial port on devices that contains one or more
USART peripherals. If Hserout2, Hserout3, or Hserout4 are used, the device must contain
more than 1 USART.

Parameters

Item may be a constant, variable, expression, string list, or inline command.

There are no operators as such, instead there are modifiers. For example, if an at sign'@"' pre-
cedes an Item, the ASCII representation for each digit is transmitted.

The modifiers are listed below: -
Modifier Operation

At ypos,xpos Position the cursor on a serial LCD
Cls Clear a serial LCD (also creates a 30ms delay)

Bin{1..32} Send binary digits

Dec{0..10} Send decimal digits (amount of digits after decimal point with floating point)
Hex{1..8} Send hexadecimal digits

Shin{1..32} Send signed binary digits

Sdec{0..10} Send signed decimal digits

Shex{1..8} Send signed hexadecimal digits

Ibin{1..32} Send binary digits with a preceding '%’ identifier

Idec{0..10} Send decimal digits with a preceding '#' identifier

Ihex{1..8} Send hexadecimal digits with a preceding '$' identifier
ISbin{1..32} Send signed binary digits with a preceding '%' identifier
ISdec{0..10} Send signed decimal digits with a preceding '#' identifier
IShex{1..8} Send signed hexadecimal digits with a preceding '$' identifier

Rep c\n Send character ¢ repeated n times
Str array\n Send all or part of an array
Cstr cdata Send string data defined in a Cdata statement.

The numbers after the Bin, Dec, and Hex modifiers are optional. If they are omitted, then the
default is all the digits that make up the value will be displayed.

If a floating point variable is to be displayed, then the digits after the Dec modifier determine
how many remainder digits are send. i.e. numbers after the decimal point.

Dim MyFloat as Float
MyFloat = 3.145
Hserout [Dec2 MyFloat] " Send 2 values after the decimal point

The above program will send 3.14

220

8-bit Proton Compiler Development Suite.

If the digit after the Dec modifier is omitted, then 3 values will be displayed after the decimal
point.

Dim MyFloat as Float
MyFloat = 3.1456
Hserout [Dec MyFloat] " Send 3 values after the decimal point

The above program will send 3.145

There is no need to use the SDec modifier for signed floating point values, as the compiler's
Dec modifier will automatically display a minus result: -

Dim MyFloat as Float
MyFloat = -3.1456
Hserout [Dec MyFloat] " Send 3 values after the decimal point

The above program will send -3.145
Hex or Bin modifiers cannot be used with floating point values or variables.

The Xpos and Ypos values in the At modifier both start at 1. For example, to place the text
"HELLO WORLD" on line 1, position 1, the code would be: -

Hserout [At 1, 1, "HELLO WORLD"]

Example 1
Dim Varl as Byte
Dim Wrd as Word
Dim Dwd as Dword

Hserout [""Hello World™]

Hserout [''Varl= ", Dec Varl]
Hserout [''Varl= ", Hex Varl]
Hserout ['Varl= ", Bin Varl]

Display the text "Hello World"
Display the decimal value of Varl
Display the hexadecimal value of Varl
Display the binary value of Varl

Display 6 hex characters of a Dword type variable

Hserout [''Dwd= ", Hex6 Dwd]

Example 2

" Display a negative value on a serial LCD.
Symbol Negative = -200
Hserout [At 1, 1, Sdec Negative]

Example 3
" Display a negative value on a serial LCD with a preceding identifier.
Hserout [At 1, 1, IShex -$1234]

Example 3 will produce the text "$-1234" on the LCD.
Some PICmicros” have the ability to read and write to their own flash memory. And although

writing to this memory too many times is unhealthy for the PICmicro", reading this memory is
both fast, and harmless.

221

8-bit Proton Compiler Development Suite.

Which offers a unique form of data storage and retrieval, the Cdata command proves this, as it
uses the mechanism of reading and storing in the PICmicro's = flash memory.

Combining the unique features of the ‘self modifying PICmicro's™ with a string format, the com-
piler is capable of reducing the overhead of printing, or transmitting large amounts of text data.
The Cstr modifier may be used in commands that deal with text processing i.e. Serout, Hrsout,
and Print etc.

The Cstr modifier is used in conjunction with the Cdata directive. The Cdata directive is used
for initially creating the string of characters: -

Stringl: Cdata "HELLO WORLD"™, O

The above line of case will create, in flash memory, the values that make up the ASCII text
"HELLO WORLD", at address Stringl. Note the null terminator after the ASCII text.

"Null terminated" means that a zero (null) is placed at the end of the string of ASCII characters
to signal that the string has finished.

To display, or transmit this string of characters, the following command structure could be used:

Hserout [Cstr Stringl]

The label that declared the address where the list of Cdata values resided, now becomes the
string's name. In a large program with lots of text formatting, this type of structure can save
quite literally hundreds of bytes of valuable code space.

Try both these small programs, and you'll see that using Cstr saves a few bytes of code: -

First the standard way of displaying text: -

Device = 16F1829

Hserout [""HELLO WORLD",13]
Hserout [""HOW ARE YOU?",13]
Hserout ["1 AM FINE!",13]
Stop

Now using the Cstr modifier: -

Hserout [Cstr TEXT1]
Hserout [Cstr TEXT2]
Hserout [Cstr TEXT3]
Stop

TEXT1: Cdata ""HELLO WORLD"™, 13, O

TEXT2: Cdata "“HOW ARE YOU?", 13, O
TEXT3: Cdata "1 AM FINE!™, 13, O

Again, note the null terminators after the ASCII text in the Cdata commands. Without these, the
microcontroller will continue to transmit data in an endless loop.

222

8-bit Proton Compiler Development Suite.

The term 'virtual string' relates to the fact that a string formed from the Cdata command cannot
be written too, but only read from.

The Str modifier is used for sending a string of bytes from a byte array variable. A string is a set
of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3 would
be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A byte ar-
ray is a similar concept to a string; it contains data that is arranged in a certain order. Each of
the elements in an array is the same size. The string 1,2,3 would be stored in a byte array con-
taining three bytes (elements).

Below is an example that displays four bytes (from a byte array): -

Dim MyArray[10] as Byte " Create a 10-byte array.

MyArray [O0] = "H" " Load the first 5 bytes of the array
MyArray [1] = "E" " With the data to send

MyArray [2] = "L"

MyArray [3] = "L"

MyArray [4] = "O"

Hserout [Str MyArray\5] " Display a 5-byte string.

Note that we use the optional \n argument of Str. If we didn't specify this, the PICmicro" would
try to keep sending characters until all 10 bytes of the array were transmitted. Since we do not
wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 5 bytes.

The above example may also be written as: -

Dim MyArray[10] as Byte " Create a 10-byte array.
Str MyArray = "HELLO" " Load the first 5 bytes of the array
Hserout [Str MyArray\5] * Send 5-byte string.

The above example, has exactly the same function as the previous one. The only difference is
that the string is now constructed using Str as a command instead of a modifier.

Declares
There are five Declare directives for use with Hserout, Hserout2, Hserout3, and Hserout4.
These are: -

Declare Hserout_Pin, Hserout2_Pin, Hserout3_Pin, or Hserout4_Pin Port . Pin

For devices that have PPS (Peripheral Pin Select), the port and pin used for the TX lines must
be given, so that the compiler can seup the PPS SFRs before the program starts. This may be
any valid port on the microcontroller, but check the datasheet to see if the Port is valid for the
peripheral.

Declare Hserial_Baud, Hserial2_Baud, Hserial3_Baud, or Hserial4_Baud Constant value
Sets the Baud rate that will be used to transmit a value serially. The baud rate is calculated us-
ing the Xtal frequency declared in the program.

Declare Hserial RCSTA, Hserial2_RCSTA, Hserial3_RCSTA, or Hserial4_RCSTA Constant
value (0 to 255)

Hserial RCSTA, sets the respective PICmicro" hardware register RCSTA, to the value in the
Declare. See the Microchip data sheet for the device used for more information regarding this
register.

223

8-bit Proton Compiler Development Suite.

Declare Hserial TXSTA, Hserial2_TXSTA, Hserial3_TXSTA, or Hserial4 TXSTA Constant
value (0 to 255)

Hserial _TXSTA, sets the respective PICmicro” hardware register, TXSTA, to the value in the
Declare. See the Microchip data sheet for the device used for more information regarding this
register. The TXSTA register BRGH bit (bit-2) controls the high speed mode for the baud rate
generator. Certain baud rates at certain oscillator speeds require this bit to be set to operate
properly. To do this, set Hserial TXSTA to a value of $24 instead of the normal $20.

224

8-bit Proton Compiler Development Suite.

Declare Hserial _Parity, Hserial2_Parity, Hserial3_Parity, or Hserial4_Parity Odd or Even
Enables/Disables parity on the serial port. For both Hserout and Hserin The default serial data
format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop bit) or
701 (7data bits, odd parity, 1 stop bit) may be enabled using the Hserial_Parity declare.

Even " Use if even parity desired
Odd " Use if odd parity desired

Declare Hserial Parity
Declare Hserial Parity

Notes
Hserout can only be used with devices that contain a hardware USART. See the specific de-

vice's data sheet for further information concerning the serial input pin as well as other relevant
parameters.

Since the serial transmission is done in hardware, it is not possible to set the levels to an in-
verted state in order to eliminate an RS232 driver. Therefore a suitable driver should be used
with Hserout . See Hrsin for circuit examples

See also :Declare, Rsin, Rsout, Serin, Serout, Hserin, Hserin2, Hserin3, Hserin4.

225

8-bit Proton Compiler Development Suite.

HseroutLn, Hserout2Ln, Hserout3Ln, Hserout4Ln

Syntax

HseroutLn [ltem {, Iltem... }]
Hserout2Ln [Item {, Item... }]
Hserout3Ln [Item {, Item... }]
Hserout4Ln [Item {, Item... }]

Overview

Transmit one or more Items from the hardware serial port on devices that contain one or more
USART peripherals and terminate with a Carriage Return(13) or Carriage Return(13) Line
Feed(10) or Line Feed(10) Carriage Return(13). The syntax and operators are exactly the
same as Hserout, Hserout2, Hserout3 and Hserout4. If Hserout2Ln, Hserout3Ln, or Hse-
routLn are used, the device must contain more than 1 USART.

Parameters
Item may be a constant, variable, expression, string list, modifier, or inline command. See the
section on Hserout for more details.

Declares
There are 4 declares for the HseroutXLn commands. Each one is for the particular command.

CRLF or LFCR or CR
CRLF or LFCR or CR
CRLF or LFCR or CR
CRLF or LFCR or CR

Declare Hseriall Terminator
Declare Hserial2_Terminator
Declare Hserial3 Terminator
Declare Hserial4 Terminator

The parameter CR will transmit a single value of 13 at the end of transmission.
The parameter CRLF will transmit a value of 13 then 10 at the end of transmission.
The parameter LFCR will transmit a value of 10 then 13 at the end of transmission.

See also :Declare, Rsin, Rsout, Serin, Serout, Hrsout, HrsoutLn, Hrsin, Hserin, Hserout.

226

8-bit Proton Compiler Development Suite.

HSeriall _ChangeBaud

Syntax
HSeriall _ChangeBaud Baud Value, { Display Actual Baud }

Overview
Changes the Baud rate of USART1 for the HRsout/HRsin and HSerout/HSerin commands.

Parameters

Baud Value is a constant value that signifies which Baud rate to set USART1 at.

Display Actual Baud is an optional constant of 0 or 1 that will produce a reminder message in
the IDE that indicates what the actual Baud rate is, and its error ratio.

Example
Device = 18F25K20
Declare Xtal = 20

Declare HSerial Baud = 9600 " Set the Baud rate for USART1 to 9600
HRsoutLn ""Hello World at 9600 Baud"

DelayMs 2000 " Wait for 2 seconds
HSeriall_ChangeBaud 115200 " Change the Baud rate to 115200
HRsoutLn ""Hello World at 115200 Baud"

Stop

227

8-bit Proton Compiler Development Suite.

HSerial2_ChangeBaud

Syntax
HSerial2_ChangeBaud Baud Value, { Display Actual Baud }

Overview
Changes the Baud rate of USART?2 for the HRsout2/HRsin2 and HSerout2/HSerin2 com-
mands.

Parameters

Baud Value is a constant value that signifies which Baud rate to set USART2 at.

Display Actual Baud is an optional constant of 0 or 1 that will produce a reminder message in
the IDE that indicates what the actual Baud rate is, and its error ratio.

Example
Device = 18F25K20
Declare Xtal = 20

Declare HSerial2_Baud = 9600 " Set the Baud rate for USART2 to 9600
Hrsout2Ln "Hello World at 9600 Baud"

DelayMs 2000 " Wait for 2 seconds
HSerial2_ChangeBaud 115200 " Change the Baud rate to 115200
Hrsout2Ln ""Hello World at 115200 Baud"

Stop

228

8-bit Proton Compiler Development Suite.

HSerial3_ChangeBaud

Syntax
HSerial3_ChangeBaud Baud Value, { Display Actual Baud }

Overview
Changes the Baud rate of USART3 for the HRsout3/HRsin3 and HSerout3/HSerin3 com-
mands.

Parameters

Baud Value is a constant value that signifies which Baud rate to set USART3 at.

Display Actual Baud is an optional constant of 0 or 1 that will produce a reminder message in
the IDE that indicates what the actual Baud rate is, and its error ratio.

Example
Device = 18F65J94 " Use a device that has 4 USARTs
Declare Xtal = 20
Declare HSerial3 Baud = 9600 " Set the Baud rate for USART3 to 9600
HRsout3Ln *""Hello World at 9600 Baud™
DelayMs 2000 " Wait for 2 seconds
HSerial3_ChangeBaud 115200 " Change the Baud rate to 115200
HRsoutLn "Hello World at 115200 Baud"
Stop

229

8-bit Proton Compiler Development Suite.

HSerial4 _ChangeBaud

Syntax
HSerial4_ChangeBaud Baud Value, { Display Actual Baud }

Overview
Changes the Baud rate of USART4 for the HRsout4/HRsin4 and HSerout4/HSerin4 com-
mands.

Parameters

Baud Value is a constant value that signifies which Baud rate to set USART4 at.

Display Actual Baud is an optional constant of 0 or 1 that will produce a reminder message in
the IDE that indicates what the actual Baud rate is, and its error ratio.

Example
Device = 18F65J94 " Use a device that has 4 USARTs
Declare Xtal = 20
Declare HSerial4 _Baud = 9600 " Set the Baud rate for USART4 to 9600

HRsout4Ln "Hello World at 9600 Baud"
DelayMs 2000 " Wait for 2 seconds

HSerial4_ChangeBaud 115200 " Change the Baud rate to 115200

Hrsout4Ln ""Hello World at 115200 Baud"
Stop

230

8-bit Proton Compiler Development Suite.

12Cin

Syntax
I2Cin SDA_Pin, SCL_Pin, Control, { Address }, [Variable {, Variable...}]

Overview
Receives a value from the 1°C bus, and places it into variable/s.

Parameters

SDA_Pin is a Port.Pin value that specifies the 1/0 pin that will be connected to the I1°C device's
data line (SDA). This pin's I/O direction will be changed to input and will remain in that state af-
ter the instruction is completed.

SCL_Pin is a Port.Pin value that specifies the 1/O pin that will be connected to the I°C device's
clock line (SCL). This pin's I/O direction will be changed to output.

Variable is a user defined variable of type Bit, Byte, Word, Dword, Float, Array.
Control is a constant value or a byte sized variable expression.

Address is an optional constant value or a variable expression.

The 12Cin command operates as an 1°C master, and may be used to interface with any device
that complies with the 2-wire 1°C protocol. The most significant 7-bits of control byte contain the
control code and the slave address of the device being interfaced with. Bit-0 is the flag that in-
dicates whether a read or write command is being implemented.

For example, if we were interfacing to an external eeprom such as the 24LC32, the control
code would be %10100001 or $A1. The most significant 4-bits (1010) are the eeprom'’s unique
slave address. Bits 1 to 3 reflect the three address pins of the eeprom. And bit-0 is set to signify
that we wish to read from the eeprom. Note that this bit is automatically set by the 12Cin com-
mand, regardless of its initial setting.

Example

" Receive a byte from the 12C bus and place it into variable Varl
Dim Varl as Byte " We"ll only read 8-bits
Dim Address as Word " 16-bit address required
Symbol Control %10100001 " Target an eeprom
Symbol SDA = PORTC.3 " Alias the SDA (Data) line
Symbol SCL = PORTC.4 " Alias the SSL (Clock) line
Address = 20 " Read the value at address 20

12Cin SDA, SCL, Control, Address, [Varl] " Read the byte from the eeprom

Address is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in
this position, the size of address is dictated by the size of the variable used (byte or word). In
the case of the previous eeprom interfacing, the 24LC32 eeprom requires a 16-bit address.
While the smaller types require an 8-bit address. Make sure you assign the right size address
for the device interfaced with, or you may not achieve the results you intended.

231

8-bit Proton Compiler Development Suite.

The 12Cin command allows differing variable assignments. For example: -

Dim Varl as Byte
Dim Wrd as Word
12Cin SDA, SCL, Control, Address, [Varl, Wrd]

The above example will receive two values from the bus, the first being an 8-bit value dictated
by the size of variable Varl which has been declared as a byte. And a 16-bit value, this time
dictated by the size of the variable Wrd which has been declared as a word. Of course, bit type
variables may also be used, but in most cases these are not of any practical use as they still
take up a byte within the eeprom.

Declares
See 12Cout for declare explanations.

Notes
When the 12Cin command is used, the appropriate SDA and SCL Port and Pin are automati-
cally setup as inputs, and outputs. Because the 1°C protocol calls for an open-collector inter-

face, pull-up resistors are required on both the SDA and SCL lines. Values of 4.7KQ to 10KQ
will suffice.

Str modifier with 12Cin

Using the Str modifier allows the 12Cin command to transfer the bytes received from the 1°C
bus directly into a byte array. If the amount of received characters is not enough to fill the entire
array, then a formatter may be placed after the array's name, which will only receive characters
until the specified length is reached. An example of each is shown below: -

Dim Array[10] as Byte " Define an array of 10 bytes
Dim Address as Byte " Create a word sized variable

Load data into all the array
12Cin SDA, SCL, %10100000, Address, [Str Array]
Load data into only the first 5 elements of the array

12Cin SDA, SCL, %10100000, Address, [Str Array\5]

See Also: BusAck, Bstart, Brestart, Bstop, Busout, HbStart, HbRestart
HbusAck, Hbusin, Hbusout, I2Cout

232

8-bit Proton Compiler Development Suite.

12Cout

Syntax
I2Cout SDA_Pin, SCL_Pin, Control, { Address }, [OutputData]

Overview
Transmit a value to the I°C bus, by first sending the control and optional address out of the
clock pin (SCL), and data pin (SDA).

Parameters

SDA_Pin is a Port.Pin value that specifies the 1/0 pin that will be connected to the I°C device's
data line (SDA). This pin's I/O direction will be changed to input and will remain in that state af-
ter the instruction is completed.

SCL_Pin is a Port.Pin value that specifies the 1/0 pin that will be connected to the I1°C device's
clock line (SCL). This pin's 1/O direction will be changed to output.

Control is a constant value or a byte sized variable expression.

Address is an optional constant, variable, or expression.

OutputData is a list of variables, constants, expressions and modifiers that informs 12Cout
how to format outgoing data. 12Cout can transmit individual or repeating bytes, convert values
into decimal, hex or binary text representations, or transmit strings of bytes from variable ar-
rays.

These actions can be combined in any order in the OutputData list.

The 12Cout command operates as an 1°C master and may be used to interface with any device
that complies with the 2-wire 1°C protocol. The most significant 7-bits of control byte contain the
control code and the slave address of the device being interfaced with. Bit-0 is the flag that in-
dicates whether a read or write command is being implemented.

For example, if we were interfacing to an external eeprom such as the 24LC32, the control
code would be %10100000 or $A0. The most significant 4-bits (1010) are the eeprom'’s unique
slave address. Bits 1 to 3 reflect the three address pins of the eeprom. And Bit-0 is clear to sig-
nify that we wish to write to the eeprom. Note that this bit is automatically cleared by the 12Cout
command, regardless of its initial value.

Example

" Send a byte to the 12C bus.
Dim Varl as Byte
Dim Address as Word
Symbol Control = %10100000

We"ll only read 8-bits
16-bit address required
Target an eeprom

Symbol SDA = PORTC.3 Alias the SDA (Data) line

Symbol SCL = PORTC.4 Alias the SSL (Clock) line

Address = 20 " Write to address 20

Varl = 200 " The value place into address 20

12Cout SDA, SCL, Control, Address, [Varl] ° Send the byte to the eeprom
DelayMs 10 " Allow time for allocation of byte

Address is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in
this position, the size of address is dictated by the size of the variable used (byte or word). In
the case of the above eeprom interfacing, the 24LC32 eeprom requires a 16-bit address. While
the smaller types require an 8-bit address. Make sure you assign the right size address for the
device interfaced with, or you may not achieve the results you intended.

233

8-bit Proton Compiler Development Suite.

The value sent to the bus depends on the size of the variables used. For example: -

Dim Wrd as Word " Create a Word size variable
12Cout SDA, SCL, Control, Address, [Wrd]

Will send a 16-bit value to the bus. While: -

Dim Varl as Byte " Create a Byte size variable
12Cout SDA, SCL, Control, Address, [Varl]

Will send an 8-bit value to the bus. Using more than one variable within the brackets allows dif-
fering variable sizes to be sent. For example: -

Dim Varl as Byte
Dim Wrd as Word
12Cout SDA, SCL, Control, Address, [Varl, Wrd]

Will send two values to the bus, the first being an 8-bit value dictated by the size of variable
Varl which has been declared as a byte. And a 16-bit value, this time dictated by the size of
the variable Wrd which has been declared as a word. Of course, bit type variables may also be
used, but in most cases these are not of any practical use as they still take up a byte within the
eeprom.

A string of characters can also be transmitted, by enclosing them in quotes: -

12Cout SDA, SCL, Control, Address, ["'Hello World"™, Varl, Wrd]

Str modifier with 12Cout

The Str modifier is used for transmitting a string of bytes from a byte array variable. A string is
a set of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3
would be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A
byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string 1,2,3 would be stored in a byte
array containing three bytes (elements). Below is an example that sends four bytes from an ar-
ray: -

Dim MyArray[10] as Byte " Create a 10-byte array.

MyArray [O] AT " Load the first 4 bytes of the array
MyArray [1] " With the data to send

MyArray [2]
MyArray [3]

I mn
ShE

Send a 4-byte string

12Cout SDA, SCL, %10100000, Address, [Str MyArray\4]
Note that we use the optional \n argument of Str. If we didn't specify this, the program would try

to keep sending characters until all 10 bytes of the array were transmitted. Since we do not
wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 4 bytes.

234

8-bit Proton Compiler Development Suite.

Declares
There are two Declare directives for use with 12Cout and 12Cin. These are: -

Declare 12C_Slow_Bus On -Offor1 -0

Slows the bus speed when using an oscillator higher than 4MHz. The standard speed for the
I°C bus is 100KHz. Some devices use a higher bus speed of 400KHz. If you use an 8MHz or
higher oscillator, the bus speed may exceed the devices specs, which will result in intermittent
transactions, or in some cases, no transactions at all. Therefore, use this Declare if you are not
sure of the device's spec. The datasheet for the device used will inform you of its bus speed.

Declare 12C _Bus_SCL On - Off, 1-0or True - False
Eliminates the necessity for a pullup resistor on the SCL line.

The I1°C protocol dictates that a pullup resistor is required on both the SCL and SDA lines, how-
ever, this is not always possible due to circuit restrictions etc, so once the 12C_Bus_SCL On
Declare is issued at the top of the program, the resistor on the SCL line can be omitted from
the circuit. The default for the compiler if the 12C_Bus_SCL Declare is not issued, is that a pul-
lup resistor is required.

Notes

When the 12Cout command is used, the appropriate SDA and SCL Port and Pin are automati-
cally setup as inputs, and outputs. Because the I1°C protocol calls for an open-collector inter-
face, pull-up resistors are required on both the SDA and SCL lines. Values of 4.7KQ to 10KQ
will suffice.

You may imagine that it's limiting having a fixed set of pins for the 1°C interface, but you must
remember that several different devices may be attached to a single bus, each having a unique
slave address. Which means there is usually no need to use up more than two pins on the
PICmicro " in order to interface to many devices.

See Also: BusAck, Bstart, Brestart, Bstop, Busin, HbStart, HbRestart
HbusAck, Hbusin, Hbusout, 12Cin

235

8-bit Proton Compiler Development Suite.

If.. Then..Elself..Else..EndlIf

Syntax
If Comparison Then Instruction : { Instruction }

Or, you can use the single line form syntax:

If Comparison Then Instruction : { Instruction } : Elself Comparison Then Instruction : Else In-
struction

Or, you can use the block form syntax:

If Comparison Then
Instruction(s)
Elself Comparison Then
Instruction(s)
{
Elself Comparison Then
Instruction(s)
}
Else
Instruction(s)
EndIf

The curly braces signify optional conditions.

Overview

Evaluates the comparison and, if it fulfils the criteria, executes expression. If comparison is not
fulfilled the instruction is ignored, unless an Else directive is used, in which case the code after
it is implemented until the Endlf is found.

When all the instruction are on the same line as the If-Then statement, all the instructions on
the line are carried out if the condition is fulfilled.

Parameters
Comparison is composed of variables, numbers and comparators.
Instruction is the statement to be executed should the comparison fulfil the If criteria

Example 1
Symbol LED = PORTB.4
Varl = 3
Low LED
IT Varl > 4 Then High LED : DelayMs 500 : Low LED

In the above example, Varl is not greater than 4 so the If criteria isn't fulfilled. Consequently,
the High LED statement is never executed leaving the state of port pin PORTB.4 low. How-
ever, if we change the value of variable Varl to 5, then the LED will turn on for 500ms then off,
because Varl is now greater than 4, so fulfils the comparison criteria.

A second form of If, evaluates the expression and if it is true then the first block of instructions
is executed. If it is false then the second block (after the Else) is executed.

236

8-bit Proton Compiler Development Suite.

The program continues after the EndlIf instruction.

The Else is optional. If it is missed out then if the expression is false the program continues af-
ter the EndIf line.

Example 2
ITf X & 1 =0 Then
A=0
B=1
Else
A=1
EndIf
If Z =1 Then
A=0
B=20
EndIf
Example 3
If X = 10 Then
High LED1
Elself X = 20 Then
High LED2
Else
High LED3
EndIf

A forth form of If, allows the Else or Elself to be placed on the same line as the If: -

IT X = 10 Then High LED1 : Elself X = 20 Then High LED2 : Else : High LED3

Notice that there is no EndlIf instruction. The comparison is automatically terminated by the end
of line condition. So in the above example, if X is equal to 10 then LED1 will illuminate, if X
equals 20 then LED will illuminate, otherwise, LED3 will illuminate.

The If statement allows any type of variable, register or constant to be compared. A common
use for this is checking a Port bit: -

IT PORTA.O = 1 Then High LED : Else : Low LED

Any commands on the same line after Then will only be executed if the comparison if fulfilled: -

IT Vvarl = 1 Then High LED : DelayMs 500 : Low LED

Notes
A Goto command is optional after the Then: -

If PORTB.0O = 1 Then Label
Then operand always required.
The Proton compiler relies heavily on the Then part. Therefore, if the Then part of a construct
Is left out of the code listing, a Syntax Error will be produced.

See also: Boolean Logic Operators, Select..Case..EndSelect.

237

8-bit Proton Compiler Development Suite.

Include

Syntax
Include "Filename"

Overview
Include another file at the current point in the compilation. All the lines in the new file are com-
piled as if they were in the current file at the point of the Include directive.

A common use for the include command is shown in the example below. Here a small master
program is used to include a number of smaller library files which are all compiled together to
make the overall program.

Parameter
Filename is any valid Proton file.

Example

" Main Program Includes sub files
Include "StartCode.bas"
Include "'MainCode.bas""
Include "EndCode.bas"

Notes
The file to be included into the BASIC listing may be in one of three places on the hard drive if a
specific path is not chosen.

1... Within the BASIC program's directory.
2... Within the Compiler's current directory.
3... Within the Includes\Sources folder of the compiler's current directory.

The list above also shows the order in which they are searched for.

Using Include files to tidy up your code.

If the include file contains assembler subroutines then it must always be placed at the begin-
ning of the program. This allows the subroutine/s to be placed within the first bank of memory
(0..2048), thus avoiding any bank boundary errors. Placing the include file at the beginning of
the program also allows all of the variables used by the routines held within it to be pre-
declared. This again makes for a tidier program, as a long list of variables is not present in the
main program.

There are some considerations that must be taken into account when writing code for an in-
clude file, these are: -

1). Always jump over the subroutines.
When the include file is placed at the top of the program this is the first place that the compiler
starts, therefore, it will run the subroutine/s first and the Return command will be pointing to a

random place within the code. To overcome this, place a Goto statement just before the sub-
routine starts.

238

8-bit Proton Compiler Development Suite.

For example: -

Goto Over_This_Subroutine * Jump over the subroutine
" The subroutine is placed here

Over_This_Subroutine: " Jump to here first
2). Variable and Label names should be as meaningful as possible.

For example. Instead of naming a variable MyLoop, change it to ISUB_MyLoop. This will help
eliminate any possible duplication errors, caused by the main program trying to use the same
variable or label name. However, try not to make them too obscure as your code will be harder
to read and understand, it might make sense at the time of writing, but come back to it after a
few weeks and it will be meaningless.

3). Comment, Comment, and Comment some more.

This cannot be emphasised enough. Always place a plethora of remarks and comments. The
purpose of the subroutine/s within the include file should be clearly explained at the top of the
program, also, add comments after virtually every command line, and clearly explain the pur-
pose of all variables and constants used. This will allow the subroutine to be used many weeks
or months after its conception. A rule of thumb that | use is that | can understand what is going
on within the code by reading only the comments to the right of the command lines.

239

8-bit Proton Compiler Development Suite.

Inc

Syntax
Inc Variable

Overview
Increment a variable i.e. Varl =Varl + 1

Parameters
Variable is a user defined variable

Example
Dim Varl as Byte = 1

Repeat
Print Dec varl, " "
DelayMs 200

Inc Varl
Until varl > 10

The above example shows the equivalent to the For-Next loop: -

For Varl = 1 to 10 : Next

See also :Dec.

240

8-bit Proton Compiler Development Suite.

Inkey

Syntax
Variable = Inkey

Overview
Scan a keypad and place the returned value into variable

Parameters
Variable is a user defined variable

Example
Dim Varl as Byte
Varl = Inkey " Scan the keypad
DelayMs 50 " Debounce by waiting 50ms
Print Dec Varl, " " " Display the result on the LCD
Notes

Inkey will return a value between 0 and 16. If no key is pressed, the value returned is 16.

Using a LookUp command, the returned values can be re-arranged to correspond with the leg-
ends printed on the keypad: -

Varl = Inkey
Key = LookUp Vvarl, [255,1,4,7,"*",2,5,8,0,3,6,9,"#",0,0,0]

The above example is only a demonstration, the values inside the LookUp command will need
to be re-arranged for the type of keypad used, and its connection configuration.

Declare
Declare Keypad_Port Port
Assigns the Port that the keypad is attached to.

The keypad routine requires pull-up resistors, therefore, the best Port for this device is PORTB,
which comes equipped with internal pull-ups. If the Declare is not used in the program, then
PORTB is the default

Port. C+5 Volts _
. . R1
The diagram illustrates a 4.7k 1
typical connection of a . VPD Re7 |2
12-button keypad to a MCLR - REO I roms]
PIC16F84. If a 16-button CL| | G2 amkz RB4 |2 w > s
type is used, then COL- om0 R e
UMN 4 will connect to J_ RB1 : alls 16 llx
PORTB.7 (RB7). = PIC16F84 O
T- RA4 & W
o3 ¢ 415 0sc2 ras = | L—And| 7 8 9 |ls
RA2 -
_22pfi 22pf RAL B
- vss RAO - L———AAA * 0 #
gv T ° COLUMNS

241

8-bit Proton Compiler Development Suite.

Input

Syntax
Input Port . Pin or Pin Number

Overview
Makes the specified Port or Pin an input.

Parameters

Port.Pin must be a Port, or Port.Pin constant declaration.

Pin Number can be any variable or constant holding 0 to the amount of I/O pins on the device.
A value of 0 will be PORTA.O, if present, 1 will be PORTA.1, 8 will be PORTB.O etc...

Example 1
Input PORTA.O
Input PORTA

Make pin-0 of PORTA an input
Make all of PORTA an input

Input O Make pin-0 of PORTA an input
Input 8 Make pin-0 of PORTB an input
Example 2

" Flash each of the pins on PORTA and PORTB
Device = 18F25K20
Declare Xtal = 16

Dim MyPin as Byte

High PORTA

High PORTB

For MyPin = O to 15
Output MyPin
DelayMs 500

Create a loop for the pin to flash
Set the pin as an output
Delay so that it can be seen

Input MyPin Set the pin as an input
DelayMs 500 Delay so that it can be seen
Next

Notes
An Alternative method for making a particular pin an input is by directly modifying the TRIS reg-
ister: -

TRISB.O =1 " Set PORTB, bit-0 to an input

All of the pins on a port may be set to inputs by setting the whole Tris register at once: -

TRISB = %11111111 = Set all of PORTB to inputs

In the above examples, setting a TRIS bit to 1 makes the pin an input, and conversely, setting
the bit to 0 makes the pin an output.

242

8-bit Proton Compiler Development Suite.

Each pin number has a designated name. These are Pin_A0, Pin_Al, Pin_A2,
Pin_BO...Pin_B7, Pin_CO0...Pin_C7, Pin_DQO...Pin_D7 to Pin_L7 etc... Each of the names has a
relevant value, for example, Pin_AO has the value 0, Pin_BO has the value 8, up to Pin_L7,
which has the value 87.

These can be used to pass a relevant pin number to a subroutine. For example:

" Flash an LED attached to PORTB.O via a subroutine
" Then flash an LED attached to PORTB.1l via the same subroutine

Device = 18F25K20
Declare Xtal = 16

Dim PinNumber As Byte Holds the pin number to set high and low

Do " Create an infinite loop
PinNumber = Pin_BO " Give the pin number to flash (PORTB.0O)
Gosub FlashPin " Call the subroutine to flash the pin
PinNumber = Pin_B1 " Give the pin number to flash (PORTB.1)
Gosub FlashPin " Call the subroutine to flash the pin
Loop * Do it forever

" Set a pin high then an input for 500ms using a value as the pin to adjust
FlashPin:
High PinNumber
DelayMs 500
Input PinNumber
DelayMs 500
Return

Set the pin output high
Wait for 500 milliseconds
Make the pin an input
Wait for 500 milliseconds

See also : Output, ClearPin, SetPin, High, Low.

243

8-bit Proton Compiler Development Suite.

LCDread

Syntax
Variable = LCDread Ypos, Xpos

Or
Variable = LCDread Text Ypos, Xpos

Overview
Read a byte from a graphic LCD. Can also read Text RAM from a Toshiba T6963 LCD.

Parameters

Variable is a user defined variable.

Ypos :-

With a KS0108 graphic LCD this may be a constant, variable or expression within the range of
0 to 7 This corresponds to the line number of the LCD, with O being the top row.

With a Toshiba T6963 graphic LCD this may be a constant, variable or expression within the
range of 0 to the Y resolution of the display. With 0 being the top line.

Xpos: -

With a KS0108 graphic LCD this may be a constant, variable or expression with a value of 0 to
127. This corresponds to the X position of the LCD, with 0 being the far left column.

With a Toshiba graphic LCD this may be a constant, variable or expression with a value of 0 to
the X resolution of the display divided by the font width (LCD_X_Res / LCD_Font_Width). This
corresponds to the X position of the LCD, with 0 being the far left column.

Example

" Read and display the top row of the KS0108 graphic LCD
Device = 16F1829
Declare LCD Type = KS0108 " Target a KS0108 graphic LCD

Dim Varl as Byte
Dim Xpos as Byte

Cls " Clear the LCD

Print "Testing 1 2 3"

For Xpos = 0 to 127 " Create a loop of 128
Varl = LCDread 0, Xpos " Read the LCD"s top line
Print At 1, O, "Chr= ", Dec Varl," "

DelayMs 100

Next

Stop

Notes

The graphic LCDs that are compatible with Proton are the KS0108, and the Toshiba T6963.
The standard KS0108 display has a pixel resolution of 64 x 128. The 64 being the Y axis, made
up of 8 lines each having 8-bits. The 128 being the X axis, made up of 128 positions. The To-
shiba LCDs are available with differing resolutions.

As with LCDwrite, the graphic LCD must be targeted using the LCD_Type Declare directive
before this command may be used.

244

8-bit Proton Compiler Development Suite.

The Toshiba T6963 graphic LCDs split their graphic and text information within internal RAM.
This means that the LCDread command can also be used to read the textual information as
well as the graphical information present on the LCD. Placing the word Text after the LCDread

command will direct the reading process to Text RAM.

Example

" Read text from a Toshiba graphic

See also :

Device = 18F452
Declare LCD Type = Toshiba

LCD interface pin assignments

Declare LCD DTPort = PORTD

Declare LCD_WRPin = PORTE.2
Declare LCD _RDPin = PORTE.1
Declare LCD_CEPin = PORTE.O
Declare LCD _CDPin = PORTA.1
Declare LCD _RSTPin = PORTA.O
LCD characteristics

Declare LCD X Res = 128
Declare LCD_ Y Res = 64

Declare LCD_Font_Width = 8

Dim Charpos as Byte
Dim Char as Byte

DelayMs 100
ADCON1 = 7
Cls

LCD

Use a

LCD’s
LCD’s
LCD’s
LCD’s
LCD’s
LCD’s

LCD’s
LCD’s

Toshiba T6963 graphic LCD

Data port

WR line

RD line

CE line

CD line

RESet line (Optional)

X Resolution
Y Resolution

The width of the LCD’s font

The X

position of the read

The byte read from the LCD

Wait for the LCD to stabilise

PORTA
Clear

and PORTE to all digital mode
the LCD

Print At 0,0," This is for Copying"™ " Display text on top line of LCD
" Create a loop of 21 cycles

For Charpos = 0 to 20

Char = LCDread Text 0,Charpos

Print At 1,Charpos,Char
DelayMs 100
Next

" Read the top line of the LCD

" Print the byte read on the second line

" A small delay so we can see things happen
" Close the loop

LCDwrite for a description of the screen formats, Pixel, Plot,

Toshiba_Command, Toshiba_UDG, UnPlot,

see Print for LCD connections.

245

8-bit Proton Compiler Development Suite.

LCDwrite

Syntax
LCDwrite Ypos, Xpos, [Value ,{ Value etc...}]

Overview
Write a byte to a graphic LCD.

Parameters

Ypos :-

With a KS0108 graphic LCD this may be a constant, variable or expression within the range of
0 to 7 This corresponds to the line number of the LCD, with 0 being the top row.

With a Toshiba T6963 graphic LCD this may be a constant, variable or expression within the
range of O to the Y resolution of the display. With O being the top line.

Xpos: -

With a KS0108 graphic LCD this may be a constant, variable or expression with a value of O to
127. This corresponds to the X position of the LCD, with 0 being the far left column.

With a Toshiba graphic LCD this may be a constant, variable or expression with a value of 0
to the X resolution of the display divided by the font width (LCD_X_Res / LCD_Font_Width).
This corresponds to the X position of the LCD, with 0 being the far left column.

Value may be a constant, variable, or expression, within the range of 0 to 255 (byte).

Example 1

" Display a line on the top row of a KS0108 graphic LCD
Device = 16F1829
Declare LCD Type = KS0108 " Target a KS0108 graphic LCD
Dim Xpos as Byte

Cls " Clear the LCD

For Xpos = 0 to 127 " Create a loop of 128
LCDwrite O, Xpos, [%11111111] " Write to the LCD"s top line
DelayMs 100

Next

Stop

Example 2

" Display a line on the top row of a Toshiba 128x64 graphic LCD
Device = 16F1829
Declare LCD _Type = Toshiba " Target a Toshiba graphic LCD
Dim Xpos as Byte

Cls " Clear the LCD

For Xpos = 0 to 20 " Create a loop of 21
LCDwrite O, Xpos, [%00111111] " Write to the LCD"s top line
DelayMs 100

Next

Stop

Notes

The graphic LCDs that are compatible with Proton are the KS0108, and the Toshiba T6963.
The KS0108 display has a pixel resolution of 64 x 128. The 64 being the Y axis, made up of 8
lines each having 8-bits. The 128 being the X axis, made up of 128 positions. The Toshiba
LCDs are available with differing resolutions.

246

8-bit Proton Compiler Development Suite.

There are important differences between the KS0108 and Toshiba screen formats. The dia-
grams below show these in more detail: -

The diagram below illustrates the position of one byte at position 0,0 on a KS0108 LCD screen.
The least significant bit is located at the top. The byte displayed has a value of 149 (10010101).

Xpos 0 - 127
Isb
Line 0
msb
= Line1
(@]
w
o
m .
w Line 2

Samsung KS0108 graphic LCD

The diagram below illustrates the position of one byte at position 0,0 on a Toshiba T6963 LCD
screen in 8-bit font mode. The least significant bit is located at the right of the screen byte. The
byte displayed has a value of 149 (10010101).

msb Isb XpOS 0-n
Line O
-<
©
o .
@ Line1l
o
S5
Line 2

Toshiba T6963 LCD. (8-bit Font mode)

The diagram below illustrates the position of one byte at position 0,0 on a Toshiba T6963 LCD
screen in 6-bit font mode. The least significant bit is located at the right of the screen byte. The
byte displayed still has a value of 149 (10010101), however, only the first 6 bits are displayed
(010101) and the other two are discarded.

msb Isb XpOS 0-n
o
Line 0
_<
©
o
o Line 1
o
>
Line 2

Toshiba T6963 LCD. (6-bit Font mode)

Seealso: LCDread, Plot, Toshiba_Command, Toshiba_UDG, UnPlot
see Print for LCD connections.

247

8-bit Proton Compiler Development Suite.

Ldata

Syntax
Ldata { alphanumeric data }

Overview

Place information into code memory using the Retlw instruction when used with a standard 14-
bit core devices, and Flash (code) memory when using an 18F or enhanced 14-bit core device.
For access by Lread, Lread8, Lread16 or Lread32.

Parameters
alphanumeric data can be a 8,16, 32 bit value, or floating point values, or any alphabetic
character or string enclosed in quotes.

Example
Device = 16F1829

Dim Char as Byte
Dim MyLoop as Byte

Cls
For MyLoop = O to 9 " Create a loop of 10
Char = Lread Label + MyLoop " Read memory location Label + MylLoop
Print Char " Display the value read
Next
Stop
Label: Ldata "HELLO WORLD" " Create a string of text in code memory

The program above reads and displays 10 values from the address located by the Label ac-
companying the Ldata command. Resulting in "HELLO WORL" being displayed.

Ldata is not simply used for character storage, it may also hold 8, 16, 32 bit, or floating point
values. The example below illustrates this: -

Device = 16F628
Dim Varl as Byte
Dim Wrdl as Word
Dim Dwdl as Dword
Dim FItl as Float

Cls

Varl = Lread Bit8 Val " Read the 8-bit value

Print Dec Varil,"

Wrdl= Lread Bitl6 Val " Read the 16-bit value

Print Dec Wrdl

Dwdl = Lread Bit32_Val " Read the 32-bit value

Print At 2,1, Dec Dwdi,™ "

FItl = Lread MyFloat Val " Read the floating point value
Print Dec FItl

Stop

Bit8 Val: Ldata 123
Bitl6_Val: Ldata 1234
Bit32_Val: Ldata 123456
MyFloat_Val: Ldata 123.456

248

8-bit Proton Compiler Development Suite.

Floating point examples.

14-bit core example

" 14-bit read floating point data from a table and display the results
Device = 16F1829
Dim MyFloat as Float " Create a Floating Point variable
Dim Fcount as Byte

Cls " Clear the LCD
Fcount = O " Clear the table counter
Repeat " Create a loop

MyFloat = Lread FITable + Fcount " Read the data from the Ldata table
Print At 1, 1, Dec3 MyFloat * Display the data read

Fcount = Fcount + 4 " Point to next value, by adding 4 to counter
DelayMs 1000 " Slow things down
Until MyFloat = 0.005 " Stop when 0.005 is read
Stop
FlTable:
Ldata as Float 3.14, 65535.123, 1234.5678, -1243.456, -3.14, 998999.12,
0.005

18F device example

" 18F read floating point data from a table and display the results
Device = 18F25K20

Dim MyFloat as Float " Create a Floating Point variable
Dim Fcount as Byte

Cls " Clear the LCD
Fcount = 0 " Clear the table counter
Repeat " Create a loop

MyFloat = Lread FlTable + Fcount * Read the data from the Ldata table
Print At 1, 1, Dec3 MyFloat " Display the data read

Fcount = Fcount + 2 " Point to next value, by adding 2 to counter
DelayMs 1000 * Slow things down
Until MyFloat = 0.005 " Stop when 0.005 is read
Stop
FlTable:
Ldata as Float 3.14, 65535.123, 1234.5678, -1243.456, -3.14, 998999.12,
0.005
Notes

Ldata tables should be placed at the end of the BASIC program. If an Ldata table is placed at
the beginning of the program, then a Goto command must jump over the tables, to the main
body of code.

Goto OverDataTable
Ldata 1,2,3,4,5,6
OverDataTable:

{ rest of code here}

With 14-bit core devices, an 8-bit value (0 - 255) in an Ldata statement will occupy a single
code space, however, 16-bit data (0 - 65535) will occupy two spaces, 32-bit and floating point
values will occupy 4 spaces. This must be taken into account when using the Lread command.
See 14-hbit floating point example above.

249

8-bit Proton Compiler Development Suite.

With 18F devices, an 8, and 16-bit value in an Ldata statement will occupy a single code
space, however, 32-bit and floating point values will occupy 2 spaces. This must be taken into
account when using the Lread command. See 16-bit floating point example above.

18F device requirements.

The compiler uses a different method of holding information in an Ldata statement when using
18F devices. It uses the unique capability of these devices to read from their own code space,
which offers optimisations when values larger than 8-bits are stored. However, because the
18F devices are Byte oriented, as opposed to the 14-bit types which are Word oriented. The
Ldata tables should contain an even number of values, or corruption may occur on the last
value read. For example: -

Even: Ldata 1,2,3,"123"

0dd: Ldata 1,2,3,"12"

An Ldata table containing an Odd amount of values will produce a compiler WARNING mes-
sage.

Formatting an Ldata table.

Sometimes it is necessary to create a data table with an known format for its values. For exam-
ple all values will occupy 4 bytes of code space even though the value itself would only occupy
1 or 2 bytes. | use the name Byte loosely, as 14-bit core devices use 14-bit Words, as opposed
to 18F devices that do actually use Bytes.

Ldata 100000, 10000, 1000, 100, 10, 1

The above line of code would produce an uneven code space usage, as each value requires a
different amount of code space to hold the values. 100000 would require 4 bytes of code
space, 10000 and 1000 would require 2 bytes, but 100, 10, and 1 would only require 1 byte.

Reading these values using Lread would cause problems because there is no way of knowing
the amount of bytes to read in order to increment to the next valid value.

The answer is to use formatters to ensure that a value occupies a predetermined amount of
bytes. These are: -

Byte
Word
Dword
Float

Placing one of these formatters before the value in question will force a given length.

Ldata Dword 100000, Dword 10000, Dword 1000 ,
Dword 100, Dword 10, Dword 1

Byte will force the value to occupy one byte of code space, regardless of its value. Any values
above 255 will be truncated to the least significant byte.

Word will force the value to occupy 2 bytes of code space, regardless of its value. Any values

above 65535 will be truncated to the two least significant bytes. Any value below 255 will be
padded to bring the memory count to 2 bytes.

250

8-bit Proton Compiler Development Suite.

Dword will force the value to occupy 4 bytes of code space, regardless of its value. Any value
below 65535 will be padded to bring the memory count to 4 bytes. The line of code shown
above uses the Dword formatter to ensure all the values in the Ldata table occupy 4 bytes of
code space.

Float will force a value to its floating point equivalent, which always takes up 4 bytes of code
space.

If all the values in an Ldata table are required to occupy the same amount of bytes, then a sin-
gle formatter will ensure that this happens.

Ldata as Dword 100000, 10000, 1000, 100, 10, 1

The above line has the same effect as the formatter previous example using separate Dword
formatters, in that all values will occupy 4 bytes, regardless of their value. All four formatters
can be used with the as keyword.

The example below illustrates the formatters in use.

" Convert a Dword value into a string array using only BASIC commands
" Similar principle to the Str$ command

Include "Amicusl8.Inc"

Dim P10 as Dword " Power of 10 variable

Dim Cnt as Byte

Dim J as Byte

Dim Value as Byte Value to convert

Dim Stringl[11] as Byte " Holds the converted value

Dim Ptr as Byte Pointer within the Byte array

DelayMs 100 " Wait for the LCD to stabilise
Cls " Clear the LCD

Clear * Clear all RAM before we start
Value = 1234576 * Value to convert

Gosub DwordToStr " Convert Value to string

Print Str Stringl " Display the result

Stop

Convert a Dword value into a string array. Value to convert is placed in
Value
Byte array "Stringl® is built up with the ASCII equivalent

DwordToStr:
Ptr = 0O
J=0
Repeat
P10 = Lread DwordTbl + (J * 4)
Cht = 0
While Value >= P10
Value = Value - P10
Inc Cnt
Wend
If Cnt <> 0 Then
Stringl[Ptr] = Cnt + "O"
Inc Ptr
EndIf
Inc J
until J > 8

251

8-bit Proton Compiler Development Suite.

Stringl[Ptr] = Value + 0"

Inc Ptr

Stringl[Ptr] =0 " Add the null to terminate the string
Return

" Ldata table is formatted for all 32 bit values.
" Which means each value will require 4 bytes of code space
Dword_TBL:
Ldata as Dword 1000000000, 100000000, 10000000, 1000000, 100000, 10000,_
1000, 100, 10

Label names as pointers.

If a label's name is used in the list of values in an Ldata table, the label's address will be used.
This is useful for accessing other tables of data using their address from a lookup table. See
example below.

" Display text from two Ldata tables
" Based on their address located In a separate table

Include "Amicusl18.Inc"
Dim Address as Word
Dim DataByte as Byte

DelayMs 100 " Wait for the LCD to stabilise

Cls
Address = Lread AddrTable
While
DataByte = Lread Address
IT DataByte = 0 Then Break
Print DataByte
Inc Address
Wend

Cursor 2,1
Address = Lread AddrTable + 2
While
DataByte = Lread Address
IT DataByte = 0 Then Break
Print DataByte
Inc Address
Wend

Stop

Clear the LCD

Locate the address of the first string
Create an infinite loop

Read each character from the Ldata string
Exit if null found

Display the character

Next character

Close the loop

Point to line 2 of the LCD

Locate the address of the second string
Create an infinite loop

Read each character from the Ldata string
Exit if null found

Display the character

Next character

Close the loop

AddrTable: Table of address®s
Ldata as Word Stringl, String2

Stringl:
Ldata ""HELLO"™,0

String2:
Ldata ""WORLD™,0

See also: Cdata, Cread, Data, Edata, Lread, Read, Restore.

252

8-bit Proton Compiler Development Suite.

Len

Syntax
Variable = Len(Source String)

Overview
Find the length of a String. (not including the null terminator) .

Parameters

Variable is a user defined variable of type Bit, Byte, Word, Dword, Float or Array.

Source String can be a String variable, or a Quoted String of Characters. The Source String
can also be a Byte, Word, Float or Array variable, in which case the value contained within
the variable is used as a pointer to the start of the Source String's address in RAM. A third pos-
sibility for Source String is a label name, in which case a null terminated Quoted String of
Characters is read from a Cdata table.

Example 1
" Display the length of SourceString
Device = 18F25K20 " A suitable device for Strings
Declare Xtal = 20
Dim SourceString as String * 20 " Create a String capable of 20 characters

Dim Length as Byte

SourceString = ""HELLO WORLD" " Load the source string with characters
Length = Len(SourceString) " Find the length
Print Dec Length " Display the result, which will be 11
Stop

Example 2

" Display the length of a Quoted Character String
Device = 18F25K20 " A suitable device for Strings

Declare Xtal = 20

Dim Length as Byte

Length = Len(""HELLO WORLD'™) " Find the length
Print Dec Length " Display the result, which will be 11
Stop
Example 3
" Display the length of SourceString using a pointer to SourceString
Device = 18F25K20 " A suitable device for Strings
Declare Xtal = 20
Dim SourceString as String * 20 " Create a String capable of 20 characters
Dim Length as Byte " Display the length of SourceString
Dim SourceString as String * 20 " Create a String capable of 20 characters

Create a Word variable to hold the address of SourceString
Dim StringAddr as Word

SourceString = ""HELLO WORLD™ " Load the source string with characters
" Locate the start address of SourceString in RAM
StringAddr = AddressOf(SourceString)

Length = Len(StringAddr) " Find the length
Print Dec Length " Display the result, which will be 11
Stop

253

8-bit Proton Compiler Development Suite.

E

xample 4
Display the length of a Cdata string
Device = 18F25K20 " A suitable device for Strings

Declare Xtal = 20

Dim Length as Byte

Length = Len(Source) " Find the length
Print Dec Length * Display the result, which will be 11
Stop

Create a null terminated string of characters in code memory

Source:

Cdata "HELLO WORLD™, O

See also: Creating and using Strings, Creating and using Virtual Strings with

Cdata, Cdata, Left$, Mid$, Right$, Str$, ToLower, ToUpper, AddressOf.

254

8-bit Proton Compiler Development Suite.

Left$

Syntax
Destination String = Left$ (Source String, Amount of characters)

Overview
Extract n amount of characters from the left of a source string and copy them into a destination
string.

Parameters

Destination String can only be a String variable, and should be large enough to hold the cor-
rect amount of characters extracted from the Source String.

Source String can be a String variable, or a Quoted String of Characters. See below for more
variable types that can be used for Source String.

Amount of characters can be any valid variable type, expression or constant value, that signi-
fies the amount of characters to extract from the left of the Source String. Values start at 1 for
the leftmost part of the string and should not exceed 255 which is the maximum allowable
length of a String variable.

Example 1.

" Copy 5 characters from the left of SourceString into DestString
Device = 18F452 " A suitable device for Strings
Dim SourceString as String * 20 " Create a String capable of 20 characters
Dim DestString as String * 20 " Create another String for 20 characters
SourceString = "HELLO WORLD™ " Load the source string with characters

Copy 5 characters from the source string into the destination string
DestString = Left$ (SourceString, 5)

Print DestString " Display the result, which will be "HELLO"
Stop
Example 2.
" Copy 5 chars from the left of a Quoted Character String into DestString
Device = 18F452 " A suitable device for Strings
Dim DestString as String * 20 " Create a String capable of 20 characters

" Copy 5 characters from the quoted string into the destination string
DestString = Left$("'HELLO WORLD', 5)
Print DestString " Display the result, which will be "HELLO"
Stop

The Source String can also be a Byte, Word, Dword, Float or Array variable, in which case

the value contained within the variable is used as a pointer to the start of the Source String's
address in RAM.

255

8-bit Proton Compiler Development Suite.

Example 3.
" Copy 5 characters from the left of SourceString into DestString using a

pointer to SourceString

Device = 18F452 " A suitable device for Strings
Dim SourceString as String * 20 " Create a String capable of 20 characters
Dim DestString as String * 20 " Create another String for 20 characters

Create a Word variable to hold the address of SourceString
Dim StringAddr as Word

SourceString = "HELLO WORLD" " Load the source string with characters
Locate the start address of SourceString in RAM

StringAddr = AddressOf(SourceString)

Copy 5 characters from the source string into the destination string

DestString = Left$(StringAddr, 5)

Print DestString " Display the result, which will be "HELLO"
Stop

A third possibility for Source String is a label name, in which case a null terminated Quoted
String of Characters is read from a Cdata table.

Example 4.
" Copy 5 characters from the left of a Cdata table into DestString
Device = 18F452 " A suitable device for Strings
Dim DestString as String * 20 " Create a String capable of 20 characters

" Copy 5 characters from label Source into the destination string

DestString = Left$(Source, 5)

Print DestString " Display the result, which will be "HELLO"
Stop

" Create a null terminated string of characters in code memory
Source:

Cdata "HELLO WORLD®™, O

See also: Creating and using Strings, Creating and using Virtual Strings with

Cdata, Cdata, Len, Mid$, Right$, Str$, ToLower, ToUpper , AddressOf.

256

8-bit Proton Compiler Development Suite.

Line

Syntax
Line Set_Clear, Xpos Start, Ypos Start, Xpos End, Ypos End

Overview
Draw a straight line in any direction on a graphic LCD.

Parameters

Set_Clear may be a constant or variable that determines if the line will set or clear the pixels. A
value of 1 will set the pixels and draw a line, while a value of O will clear any pixels and erase a
line.

Xpos Start may be a constant or variable that holds the X position for the start of the line. Can
be a value from 0 to 127.

Ypos Start may be a constant or variable that holds the Y position for the start of the line. Can
be a value from 0 to 63.

Xpos End may be a constant or variable that holds the X position for the end of the line. Can
be a value from 0 to 127.

Ypos End may be a constant or variable that holds the Y position for the end of the line. Can
be a value from 0 to 63.

Example
" Draw a line from 0,0 to 120,34

Include "Proton_G4.INT"

Dim Xpos_Start as Byte
Dim Xpos_End as Byte
Dim Ypos_Start as Byte
Dim Ypos_End as Byte
Dim SetClr as Byte

DelayMs 100 " Wait for the LCD to stabilise
Cls " Clear the LCD

Xpos_Start = 0

Ypos_Start = 0O

Xpos_End = 120
Ypos_End = 34

SetClr = 1
Line SetClr, Xpos_Start, Ypos_Start, Xpos_End, Ypos End
Stop

See Also : Box, Circle.

257

8-bit Proton Compiler Development Suite.

LineTo

Syntax
LineTo Set_Clear, Xpos End, Ypos End

Overview
Draw a straight line in any direction on a graphic LCD, starting from the previous Line com-
mand's end position.

Parameters

Set_Clear may be a constant or variable that determines if the line will set or clear the pixels. A
value of 1 will set the pixels and draw a line, while a value of O will clear any pixels and erase a
line.

Xpos End may be a constant or variable that holds the X position for the end of the line. Can
be a value from 0 to 127.

Ypos End may be a constant or variable that holds the Y position for the end of the line. Can
be a value from O to 63.

Example
" Draw a line from 0,0 to 120,34. Then from 120,34 to 0,63

Include "Proton_G4.INT"

Dim Xpos_Start as Byte
Dim Xpos_End as Byte
Dim Ypos_Start as Byte
Dim Ypos_End as Byte
Dim SetClr as Byte

DelayMs 100 " Wait for the LCD to stabilise
Cls " Clear the LCD

Xpos_Start = 0

Ypos_Start = 0

Xpos_End = 120

Ypos_End = 34

SetCIr = 1

Line SetClr, Xpos_Start, Ypos_Start, Xpos End, Ypos End
Xpos_End = 0O

Ypos_End = 63

LineTo SetClr, Xpos End, Ypos_End

Stop

Notes

The LineTo command uses the compiler's internal system variables to obtain the end position
of a previous Line command. These X and Y coordinates are then used as the starting X and Y
coordinates of the LineTo command.

See Also : Line, Box, Circle.

258

8-bit Proton Compiler Development Suite.

LoadBit

Syntax
LoadBit Variable, Index, Value

Overview
Clear, or Set a bit of a variable or register using a variable index to point to the bit of interest.

Parameters

Variable is a user defined variable, of type Byte, Word, or Dword.

Index is a constant, variable, or expression that points to the bit within Variable that requires
accessing.

Value is a constant, variable, or expression that will be placed into the bit of interest. Values
greater than 1 will set the bit.

Example
" Copy variable ExVar bit by bit into variable PT_Var
Device = 16F1829
Declare Xtal = 4
Dim ExVar as Word
Dim Index as Byte
Dim Value as Byte
Dim PT_Var as Word

Do

PT _Var = %0000000000000000

ExVar = %1011011000110111

Cls

For Index = 0 to 15
Value = GetBit ExVar, Index
LoadBit PT_Var, Index, Value
Print At 1,1,Binl6 ExVar
Print At 2,1,Binl6 PT Var
DelayMs 100

Create a loop for 16 bits

Examine each bit of variable ExVar

Set or Clear each bit of PT Var

Display the original variable

Display the copied variable

Slow things down to see what®s happening

Next Close the loop
Loop Do it forever
Notes

There are many ways to clear or set a bit within a variable, however, each method requires a
certain amount of manipulation, either with rotates, or alternatively, the use of indirect address-
ing using the FSR, and INDF registers. Each method has its merits, but requires a certain
amount of knowledge to accomplish the task correctly. The LoadBit command makes this task
extremely simple by taking advantage of the indirect method using FSR, and INDF, however,
this is not necessarily the quickest method, or the smallest, but it is the easiest. For speed and
size optimisation, there is no shortcut to experience.

To Clear a known constant bit of a variable or register, then access the bit directly using Port.n.
i.e. PORTA.1=0

To Set a known constant bit of a variable or register, then access the bit directly using Port.n.
l.e. PORTA.1=1

If a Port is targeted by LoadBit, the Tris register is not affected.

See also : ClearBit, GetBit, SetBit.

259

8-bit Proton Compiler Development Suite.

LookDown

Syntax
Variable = LookDown Index, [Constant {, Constant...etc }]

Overview

Search constants(s) for index value. If index matches one of the constants, then store the
matching constant's position (0-N) in variable. If no match is found, then the variable is unaf-
fected.

Parameters

Variable is a user define variable that holds the result of the search.

Index is the variable/constant being sought.

Constant(s),... is a list of values. A maximum of 255 values may be placed between the square
brackets, 256 if using an 18F device.

Example
Dim Value as Byte
Dim MyResult as Byte
Value = 177 " The value to look for in the list
MyResult = 255 " Default to value 255
MyResult = LookDown Value, [75,177,35,1,8,29,245]
Print "Value matches ', Dec MyResult, " in list"

In the above example, Print displays, "Value matches 1 in list" because Value (177) matches
item 1 of [75,177,35,1,8,29,245]. Note that index numbers count up from 0, not 1; that is in the
list [75,177,35,1,8,29,245], 75 is item 0.

If the value is not in the list, then MyResult is unchanged.

Notes

LookDown is similar to the index of a book. You search for a topic and the index gives you the
page number. Lookdown searches for a value in a list, and stores the item number of the first
match in a variable.

LookDown also supports text phrases, which are basically lists of byte values, so they are also
eligible for Lookdown searches:

Dim Value as Byte
Dim MyResult as Byte

Value = 101 " ASCII "e". the value to look for in the list
MyResult = 255 " Default to value 255
MyResult = LookDown Value, ["Hello World"]

In the above example, MyResult will hold a value of 1, which is the position of character 'e’

See also: Cdata, Cread, Data, Edata, Eread, Ldata, LookDownL, LookUp, LookUpL,
Lread, Read, Restore.

260

8-bit Proton Compiler Development Suite.

LookDownL

Syntax
Variable = LookDownL Index, {Operator} [Value {, Value...etc }]

Overview

A comparison is made between index and value; if the result is true, O is written into variable. If
that comparison was false, another comparison is made between value and valuel; if the result
is true, 1 is written into variable. This process continues until a true is yielded, at which time the
index is written into variable, or until all entries are exhausted, in which case variable is unaf-
fected.

Parameters

Variable is a user define variable that holds the result of the search.

Index is the variable/constant being sought.

Value(s) can be a mixture of 16-bit constants, string constants and variables. Expressions may
not be used in the Value list, although they may be used as the index value. A maximum of 85
values may be placed between the square brackets, 256 if using an 18F device.

Operator is an optional comparison operator and may be one of the following: -

= equal

<> not equal

> greater than

< less than

>= greater than or equal to
<= less than or equal to

The optional operator can be used to perform a test for other than equal to ("=") while searching
the list. For example, the list could be searched for the first Value greater than the index pa-

rameter by using ">" as the operator. If operator is left out, "=" is assumed.
Example

Varl = LookDownL Wrd, [512, Wrdl, 1024 7]

Varl = LookDownL Wrd, < [10, 100, 1000]
Notes

Because LookDownL is more versatile than the standard LookDown command, it generates
larger code. Therefore, if the search list is made up only of 8-bit constants and strings, use
LookDown.

See also: Cdata, Cread, Cread8, Cread16, Cread32, Edata, Eread, Ldata, LookDown,
LookUp, LookUpL, Lread, Lread8, Lread16, Lread32.

261

8-bit Proton Compiler Development Suite.

LookUp

Syntax
Variable = LookUp Index, [Constant {, Constant...etc }]

Overview
Look up the value specified by the index and store it in variable. If the index exceeds the high-
est index value of the items in the list, then variable remains unchanged.

Parameters
Variable may be a constant, variable, or expression. This is where the retrieved value will be

stored.
Index may be a constant of variable. This is