

8-bit Proton Compiler Development Suite.

 2

The author reserve’s the right to make changes to the products contained in this publication in
order to improve design, performance or reliability. Except for the limited warranty covering a
physical CD-ROM and/or Hardware License key supplied with this publication as provided in
the End-User License agreement, the information and material content of this publication are
provided “as is” without warranty of any kind express or implied including without limitation any
warranty concerning the accuracy adequacy or completeness of such information or material or
the results to be obtained from using such information or material. The author shall not be re-
sponsible for any claims attributable to errors omissions or other inaccuracies in the information
or materials contained in this publication and in no event shall the author be liable for direct,
indirect, or special incidental or consequential damages arising out of the use of such informa-
tion or material.

All terms mentioned in this manual that are known to be trademarks or service marks have
been appropriately marked. Use of a term in this publication should not be regarded as affect-
ing the validity of any trademark.

PICmicro™ is a trade name of Microchip Technologies Inc. www.microchip.com

Proton™ is a trade name of Rosatta technologies and Crownhill Associates Ltd.
www.crownhill.co.uk

Proton24™ is a trade name of Rosetta Technologies and Crownhill Associates Ltd.
www.crownhill.co.uk

EPIC™ is a trade name of microEngineering Labs Inc. www.microengineeringlabs.com

The Proton IDE was written by David Barker of Mecanique www.mecanique.co.uk

Proteus VSM © Copyright Labcenter Electronics Ltd www.labcenter.co.uk

Title image by Amie Reynolds.

Web URLs correct at time of writing.

The Proton compiler and documentation are written by Les Johnson.

If you should find any anomalies or omission in this document, please contact us, as we appre-
ciate your assistance in improving our products and services.

8-bit Proton Compiler Development Suite.

 3

Introduction
The Proton BASIC compiler was written with simplicity and flexibility in mind. Using BASIC,
which is almost certainly the easiest programming language around, you can now produce ex-
tremely powerful applications for your PICmicro™ without having to learn the relative complexity
of assembler, or wade through the gibberish that can be C.

The Proton IDE provides a seamless development environment, which allows you to write, de-
bug and compile your code within the same Windows environment, and by using a compatible
programmer, just one key press allows you to program and verify the resulting code in the
PICmicro™ of your choice!

The Proton compiler allows many devices without requiring a USB key. The supported free de-
vices are:

Free 12-bit core Devices:
PIC10F200, PIC10F202, PIC10F204, PIC10F206, PIC10F222, PIC12F508, PIC12F508A,
PIC12F509, PIC12F509A

Free Standard 14-bit core Devices:
PIC12F675, PIC12F683, PIC16F627, PIC16LF627, PIC16F627A, PIC16LF627A, PIC16F628,
PIC16LF628, PIC16F628A, PIC16LF628A, PIC16F684, PIC16LF684, PIC16F685,
PIC16LF685, PIC16F687, PIC16LF687, PIC16F688, PIC16LF688, PIC16F689, PIC16LF689,
PIC16F84, PIC16F84A, PIC16F87, PIC16LF87, PIC16F88, PIC16LF88, PIC16F876,
PIC16F876A, PIC16F877, PIC16F877A, PIC16F882, PIC16F883, PIC16F884, PIC16F886,
PIC16F887

Free Enhanced 14-bit core Devices:
PIC12F1552, PIC12LF1552, PIC12F1572, PIC12LF1572, PIC16F1614, PIC16LF1614,
PIC16F1826, PIC16LF1826, PIC16F1829, PIC16LF1829, PIC16F18323, PIC16LF18323,
PIC16F1937, PIC16LF1937

Free 18F devices:
PIC18F13K50, PIC18LF13K50, PIC18F14K50, PIC18LF14K50, PIC18F252, PIC18LF252,
PIC18F2550, PIC18LF2550, PIC18F25K20, PIC18LF25K20, PIC18F25K22, PIC18LF25K22,
PIC18F26K20, PIC18LF26K20, PIC18F26K22, PIC18LF26K22, PIC18F452, PIC18LF452,
PIC18F4550, PIC18LF4550, PIC18F45K20, PIC18LF45K20, PIC18F45K22, PIC18LF45K22,
PIC18F46K20, PIC18LF46K20, PIC18F46K22, PIC18LF46K22

These will be increased in time, and the most popular devices on the market will be added as
free devices. For other devices, the commercial compiler is available for a, relatively, small fee
that allows the author to develop it further.

8-bit Proton Compiler Development Suite.

 4

Contact Details
For your convenience we have set up a web site www.picbasic.org, where there is a section
for users of the Proton compiler, to discuss the compiler, and provide self help with programs
written for Proton BASIC, or download sample programs. The web site is well worth a visit now
and then, either to learn a bit about how other peoples code works or to request help should
you encounter any problems with programs that you have written.

Should you need to get in touch with us for any reason our details are as follows: -

Postal
Crownhill Associates Limited.
Old Station Yard
Station Road
Ely
Cambridgeshire.
CB6 3PZ.

Telephone
(+44) 01353 749990

Fax
(+44) 01353 749991

Email
sales@crownhill.co.uk

Web Sites
https://sites.google.com/view/rosetta-tech/home
www.protonbasic.co.uk
www.crownhill.co.uk

8-bit Proton Compiler Development Suite.

 5

Table of Contents.

Compiler Overview... 14

PICmicro™ Devices.. 14

Limited 12-bit Device Compatibility. ... 14

Programming Considerations for 12-bit core Devices. .. 15

Device Specific issues ... 16

Identifiers .. 17

Line Labels .. 17

Variables ... 18

Floating Point Math... 21
Floating Point To Integer Rounding ... 23
Floating Point Exception Flags ... 24

Aliases... 25

Constants .. 28

Symbols... 28

Numeric Representations .. 29

Quoted String of Characters .. 29

Ports and other Registers .. 29

General Format .. 30

A Typical basic Program Layout ... 31

Line Continuation Character '_' .. 32

Creating and using Arrays ... 33

Creating and using Strings .. 40

Creating and using Flash Memory Strings ... 46

Creating and using Eeprom Memory Strings with Edata ... 48

String Comparisons... 50

Relational Operators ... 53

Boolean Logic Operators ... 54

8-bit Proton Compiler Development Suite.

 6

Math Operators .. 55

Bitwise Reverse '@' ...63

Decimal Digit extract '?' ...63

Abs ..64

fAbs ...65

Acos...66

Asin ...67

Atan...68

Cos ..69

Dcd..70

Exp ..71

fRound ...72

ISin..73

ICos ...74

Isqr..75

Log ..76

Log10...77

Ncd ..78

Pow ...79

Sin ...80

Sqr...81

Tan ..82

Div32 ...83

8-bit Proton Compiler Development Suite.

 7

Compiler Commands and Directives .. 84

ADin.. 88

Asm..EndAsm... 90

Box ... 91

Branch... 92

BranchL... 93

Break .. 94

Bstart .. 96

Bstop .. 97

Brestart ... 97

BusAck .. 97

BusNack .. 97

Busin... 98

Busout..101

Button ..105

Call ..107

Cdata ...108

Circle..113

Clear ..114

ClearPin..115

ClearBit ..117

Cls ...118

Config ..119
Config1,Config2, Config3 and Config4.. 120

Continue...121

Context ..122

Counter ..124

cPtr8, cPtr16, cPtr32..125

Cread ...127

Cread8, Cread16, Cread32 ...128

Cursor ..130

Cwrite ..131

Dec ..132

8-bit Proton Compiler Development Suite.

 8

Declare...133
Oscillator Frequency Declare. .. 133
Misc Declares. ... 134
Adin Declares. ... 137
Busin - Busout Declares.. 137
Hbusin - Hbusout Declares.. 138
USART1 Declares for use with Hrsin, Hserin, Hrsout and Hserout. .. 139
USART2 Declares for use with Hrsin2, Hserin2, Hrsout2 and Hserout2. ... 140
USART3 Declares for use with Hrsin3, Hserin3, Hrsout3 and Hserout3. ... 141
USART4 Declares for use with Hrsin4, Hserin4, Hrsout4 and Hserout4. ... 142
Hpwm Declares. .. 144
Alphanumeric (Hitachi HD44780) LCD Print Declares. .. 145
Graphic LCD Declares. .. 147
KS0108 Graphic LCD specific Declares. .. 147
Toshiba T6963 Graphic LCD specific Declares. .. 148
Keypad Declare.. 150
Rsin - Rsout Declares. .. 151
Serin - Serout Declare. ... 152
Shin - Shout Declare. ... 153

DelayCs ..154

DelayMs ...155

DelayUs..156

Device ..157

Dig...158

Dim..159

Disable ...164

Do...Loop ...165

DTMFout ..167

Edata ...168

Enable..173

End ..175

Eread ...176

Ewrite ..177

For...Next...Step..178

Freqout ..180

GetBit...182

GetPin ..183

Gosub ..184

Goto...188

HbStart...189

HbStop ...190

HbRestart ...190

8-bit Proton Compiler Development Suite.

 9

HbusAck ...190

HbusNack ...190

Hbusin..191

Hbusout..195

High ...199

HPWM ..201

Hrsin, Hrsin2, Hrsin3, Hrsin4 ..202

Hrsout, Hrsout2, Hrsout3, Hrsout4..209

HrsoutLn, Hrsout2Ln, Hrsout3Ln, Hrsout4Ln ..213

Hserin, Hserin2, Hserin3, Hserin4 ...214

Hserout, Hserout2, Hserout3, Hserout4 ...220

HseroutLn, Hserout2Ln, Hserout3Ln, Hserout4Ln ...226

HSerial1_ChangeBaud..227

HSerial2_ChangeBaud..228

HSerial3_ChangeBaud..229

HSerial4_ChangeBaud..230

I2Cin ..231

I2Cout..233

If..Then..ElseIf..Else..EndIf ..236

Include...238

Inc ...240

Inkey ...241

Input..242

LCDread ...244

LCDwrite...246

Ldata..248

Len ..253

Left$..255

Line..257

LineTo..258

LoadBit...259

LookDown ..260

LookDownL...261

LookUp...262

LookUpL ...263

8-bit Proton Compiler Development Suite.

 10

Low..264

Lread ...266

Lread8, Lread16, Lread32 ..268

Mid$...270

On Goto ...272

On GotoL..274

On Gosub ...275

On_Hardware_Interrupt...277
Typical format of the interrupt handler with standard 14-bit core devices.. 278
Typical format of the interrupt handler with enhanced 14-bit core devices. ... 278
Typical format of the interrupt handler with 18F devices. .. 279

On_Low_Interrupt ...280

Output ...283

Org ..285

Oread...286

Owrite ..291

Pixel...293

Plot ..294

Pop ..296

Pot...298

Print...299
Using a KS0108 Graphic LCD... 304
Using a Toshiba T6963 Graphic LCD .. 309

Ptr8, Ptr16, Ptr32 ..312

PulseIn...315

PulseOut...316

Push...317

Pwm ..322

Random..323

RC5in ...324

RCin...325

Repeat...Until..328

Resume..329

Return..330

Right$..332

Rol ...334

Ror ..335

8-bit Proton Compiler Development Suite.

 11

Rsin ...336

Rsout ...341

RsoutLn..346

Seed ..347

Select..Case..EndSelect ..348

Serin ..350

Serout ..357

Servo ...365

SetBit ...367

SetPin...368

Set_OSCCAL ...370

Set ...371

Shin ...372

Shout ...374

Snooze ...376

Sleep..377

SonyIn ...379

Sound ..380

Sound2...381

Stop ...382

Strn..383

Str$..384

Sub-EndSub ..386

Swap..387

Symbol ...388

Toggle..389

ToLower ...391

ToUpper ...393

Toshiba_Command..395

Toshiba_UDG..399

UnPlot ..401

USBinit ...402

USBin ...403

USBout ...405

USBpoll...409

8-bit Proton Compiler Development Suite.

 12

Val ...410

AddressOf or VarPtr...412

While...Wend ..413

Xin ...414

Xout...416

Using the Optimiser ... 418

Using the Preprocessor ..420

Preprocessor Directives..420

Conditional Directives ($ifdef, $ifndef, $if, $endif, $else and $elseif)423

Proton IDE Overview ...426

Menu Bar..427

Main Toolbar...428

Edit Toolbar ..429

Code Explorer ...431

Results View ...434

Editor Options ...435

Highlighter Options..437

Compile and Program Options ..439

Installing a Programmer...440

Creating a custom Programmer Entry..441

Microcode Loader ..443

Loader Options..445

Loader Main Toolbar..446

IDE Plugins ...447

ASCII Table ..448

Hex View ..448

Assembler Window ..449

Assembler Main Toolbar...450

Assembler Editor Options ...451

Serial Communicator..452

Serial Communicator Main Toolbar..453

Labcenter Electronics Proteus VSM..456

ISIS Simulator Quick Start Guide ..456

8-bit Proton Compiler Development Suite.

 13

Amicus18 Hardware Overview... 460

Amicus18 Sockets..461
The 8-pin Power header socket: .. 461
The 4-pin Power header socket: .. 461
The PORTA (ANx) socket:... 462
The PORTC socket: .. 463
The PORTB socket: .. 464

Device Programming Header ..465

Jumper and Pad Settings..466

Serial Handshake Connections ..467

Using the Proton Compiler with the Amicus18 board...468

Writing your first Amicus18 program using the Proton compiler.......................................469

Amicus18 Circuit Diagram ..471

Amicus18 PCB Layout ..472

Installing the Amicus18 USB Driver ...473

Built in Amicus18 Peripheral Macros ..477
ADC macros Introduction.. 478
Timer macros Introduction.. 483
SPI macros Introduction ... 492
Hardware PWM macro Introduction ... 495

Using the Proton Compiler with MPLAB IDE™ .. 500

Protected Compiler Words... 509

8-bit Proton Compiler Development Suite.

 14

Compiler Overview

PICmicro™ Devices
The compiler supports 99% of the PICmicro™ range of devices, and takes full advantage of
their various features e.g. A/D Converter, data memory eeprom area, hardware multiply etc.

This manual is not intended to give details about individual microcontroller devices, therefore,
for further information visit the Microchip website at www.microchip.com, and download the
multitude of datasheets and application notes available.

Limited 12-bit Device Compatibility.
The 12-bit core microcontrollers have been available for a long time, and are at the heart of
many excellent, and complex projects. However, with their limited architecture, they were never
intended to be used for high level languages such as BASIC. Some of these limits include only
a two-level hardware stack and small amounts of general purpose RAM memory. The code
page size is also small at 512 bytes. There is also a limitation that calls and computed jumps
can only be made to the first half (256 words) of any code page. Therefore, these limitations
have made it necessary to eliminate some compiler commands and modify the operation of
others.

While many useful programs can be written for the 12-bit core devices using the compiler, there
will be some applications that are not suited to them. Choosing a 14-bit core device with more
resources will, in most instances, be the best solution, or better still, choose a suitable 18F de-
vice.

Some of the commands that are not supported for the 12-bit core devices are illustrated in the
table below: -
Command Reason for omission
Dwords Memory limitations
Floats Memory limitations
Signed Variables Memory limitations
Adin No internal ADCs
Cdata No write modify feature
Cls Limited stack size
Cread No write modify feature
Cursor Limited stack size
Cwrite No write modify feature
DTMFout Limited stack size
Edata No on-board EEPROM
Eread No on-board EEPROM
Ewrite No on-board EEPROM
Freqout Limited stack size
LCDread No graphic LCD support
LCDwrite No graphic LCD support
Hpwm No 12-bit MSSP modules
Hrsin No hardware serial port
Hrsout No hardware serial port
Hserin No hardware serial port
Hserout No hardware serial port
Interrupts No Interrupts
Pixel No graphic LCD support
Plot No graphic LCD support

8-bit Proton Compiler Development Suite.

 15

Serout Limited memory
Serin Limited memory
Sound2 Limited resources
UnPlot No graphic LCD support
USBin No 12-bit USB devices
USBout No 12-bit USB devices
Xin Limited stack size
Xout Limited stack size

Trying to use any of the above commands with 12-bit core devices will result in the compiler
producing numerous Syntax errors. If any of these commands are a necessity, then choose a
comparable standard or enhanced 14-bit core device.

The available commands that have had their operation modified are: -

 Print, Rsout, Busin, Busout

Most of the modifiers are not supported for these commands because of memory and stack
size limitations, this includes the At, and the Str modifier. However, the @, Dec and Dec3
modifiers are still available.

Programming Considerations for 12-bit core Devices.
Because of the limited architecture of the 12-bit core microcontrollers, programs compiled for
them by the compiler will be larger and slower than programs compiled for the 14-bit core de-
vices. The two main programming limitations that will most likely occur are running out of RAM
memory for variables, and running past the first 256 word limit for the library routines.

Even though the compiler arranges its internal system variables more intuitively than previous
versions, it still needs to create temporary variables for complex expressions etc. It also needs
to allocate extra RAM for use as a Software-Stack so that the BASIC program is still able to
nest Gosubs up to 4 levels deep.

Some of the older devices only have 25 bytes of RAM so there is very little space for user vari-
ables on those devices. Therefore, use variables sparingly, and always use the appropriately
sized variable for a specific task. i.e. Byte variable if 0-255 is required, Word variable if 0-
65535 required, Bit variables if a true or false situation is required. Try to alias any commonly
used variables, such as loops or temporary stores etc.

As was mentioned earlier, 12-bit core microcontrollers can call only into the first half (256
words) of a code page. Since the compiler's library routines are all accessed by calls, they must
reside entirely in the first 256 words of the code space. Many library routines, such as Busin,
are quite large. It may only take a few routines to outgrow the first 256 words of code space.
There is no work around for this, and if it is necessary to use more library routines that will fit
into the first half of the first code page, it will be necessary to move to a 14-bit core device in-
stead of the 12-bit core device.

No 32-bit or floating point variable support with 12-bit core devices.
Because of the profound lack of RAM space available on most 12-bit core devices, the Proton
compiler does not allow 32-bit Dword type variables to be used. For 32-bit support, use one of
the many 14-bit core, or 18F equivalent devices. Floating point variables are also not supported
with 12-bit core devices.

8-bit Proton Compiler Development Suite.

 16

Device Specific issues
Before venturing into your latest project, always read the datasheet for the specific device being
used, because some devices have features that may interfere with expected pin operations.

An example of a potential problem is that bit-4 of PORTA (PORTA.4) exhibits unusual behav-
iour when used as an output. This is because the pin has an open drain output rather than the
usual bipolar stage as in the rest of the output pins. This means it can pull to ground when set
to 0 (low), but it will simply float when set to a 1 (high), instead of going high.

To make this pin act as expected, add a pull-up resistor between the pin and 5 Volts. A typical
value resistor may be between 1KΩ and 33KΩ, depending on the device it is driving. If the pin
is used as an input, it behaves the same as any other pin.

Most devices allow low-voltage programming. This function, generally, takes over one of the
PORTB pins and can cause the device to act erratically if this pin is not pulled low. In normal
use, It's best to make sure that low-voltage programming is disabled at the time the device is
programmed. By default, the low voltage programming fuse is disabled, however, if the Config
directive is used, then it may inadvertently be omitted.

All of the microcontroller’s pins are set to inputs on power-up. If you need a pin to be an output,
set it to an output before you use it, or use a BASIC command that does it for you. Once again,
always read the PICmicro™ data sheets to become familiar with the particular part.

The name of the port pins on the 6-pin and 8-pin devices is GPIO. The name for the Tris regis-
ter is TrisIO: -

 GPIO.0 = 1 ' Set GPIO.0 high
 TRISIO = %101010 ' Manipulate ins and outs

However, these are also mapped as PORTB, therefore any reference to PORTB on these de-
vices will point to the relevant pin of GPIO.

Some of the more recent devices have PPS (Peripheral Pin Select), which allows the user to
choose a pin to use. It does add some extra complexity to a program, but the compiler tries to
help and any command that uses a peripheral will automatically adjust the PPS SFRs to suite.
Such as Hrsout, Hrsin, Hserout, Hserin, HPWM, Hbusin, or Hbusout.

8-bit Proton Compiler Development Suite.

 17

Identifiers
An identifier is a technical term for a name. Identifiers are used for line labels, variable names,
and constant aliases. An identifier is any sequence of letters, digits, and underscores, although
it must not start with a digit. Identifiers are not case sensitive, therefore label, LABEL, and Label
are all treated as equivalent. And while labels might be any number of characters in length, only
the first 32 are recognised.

Line Labels
In order to mark statements that the program may wish to reference with the Goto, Call, or
Gosub commands, the compiler uses line labels. Unlike many older BASICs, the compiler does
not allow or require line numbers and doesn’t require that each line be labelled. Instead, any
line may start with a line label, which is simply an identifier followed by a colon ':'.

Label:
 Print "Hello World"
 Goto Label

8-bit Proton Compiler Development Suite.

 18

Variables
Variables are where temporary data is stored in a BASIC program. They are created using the
Dim keyword. Because RAM space on 8-bit micrcontrollers is somewhat limited, choosing the
right size variable for a specific task is important. Variables may be Bits, Bytes, Words,
Dwords , SBytes, SWords, SDwords or Floats.

Space for each variable is automatically allocated in the microcontroller's RAM area. The for-
mat for creating a variable is as follows: -

 Dim Label as Size

Label is any identifier, (excluding keywords). Size is Bit, Byte, Word, Dword, SByte, SWord,
SDword or Float. Some examples of creating variables are: -

 Dim Cat as Bit ' Create a single bit variable (0 or 1)
 Dim Dog as Byte ' Create an 8-bit unsigned variable (0 to 255)
 Dim Rat as Word ' Create a 16-bit unsigned variable (0 to 65535)
 Dim Lrg_Rat as Dword ' Create a 32-bit unsigned variable (0 to 4294967295)

 Dim sDog as SByte ' Create an 8-bit signed variable (-128 to +127)
 Dim sRat as SWord ' Create a 16-bit signed variable (-32768 to +32767)
 Dim sLrg_Rat as SDword ' Create a 32-bit signed variable (-2147483648 to
 ' +2147483647)

 Dim Pointy_Rat as Float ' Create a 32-bit floating point variable

The number of variables available depends on the amount of RAM on a particular device and
the size of the variables within the BASIC program. The compiler will reserve RAM for its own
use and may also create additional temporary (System) variables for use when calculating
equations, or more complex command structures. Especially if floating point calculations are
carried out.

Intuitive Variable Handling.
The compiler handles its System variables intuitively, in that it only creates those that it re-
quires. Each of the compiler's built in library subroutines i.e. Print, Rsout etc, require a certain
amount of System RAM as internal variables. Previous versions of the compiler defaulted to 26
RAM spaces being created before a program had been compiled. However, with the 12-bit core
device compatibility, 26 RAM slots is more than some devices possess.

Try the following program, and look at the RAM usage message on the bottom Status bar.

 Dim MyWord as Word ' Create a Word variable i.e. 16-bits

 Do ' Create a loop
 High PORTB.0 ' Set bit 0 of PORTB high
 For MyWord = 1 to 20000 : Next ' Create a delay without using a library call
 Low PORTB.0 ' Set bit 0 of PORTB high
 For MyWord = 1 to 20000 : Next ' Create a delay without using a library call
 Loop ' Do it forever

Only two bytes of RAM were used, and those were the ones declared in the program as vari-
able MyWord.

8-bit Proton Compiler Development Suite.

 19

The compiler will increase its System RAM requirements as programs get larger, or more com-
plex structures are used, such as complex expressions, inline commands used in conditions,
Boolean logic used etc. However, with the limited RAM space available on some PICmicro™
devices, every byte counts.

There are certain reserved words that cannot be used as variable names, these are the system
variables used by the compiler.

The following reserved words should not be used as variable names, as the compiler will create
these names when required: -

PP0, PP0H, PP1, PP1H, PP2, PP2H, PP3, PP3H, PP4, PP4H, PP5, PP5H, PP6, PP6H,
PP7, PP7H, PP8, PP9H,GEN, GENH, GEN2, GEN2H, GEN3, GEN3H, GEN4, GEN4H, GPR,
BPF, BPFH.

RAM space required.
Each type of variable requires differing amounts of RAM memory for its allocation. The list be-
low illustrates this.

 Float Requires 4 bytes of RAM.
 Dword Requires 4 bytes of RAM.
 SDword Requires 4 bytes of RAM.
 Word Requires 2 bytes of RAM.
 SWord Requires 2 bytes of RAM.
 Byte Requires 1 byte of RAM.
 SByte Requires 1 byte of RAM.
 Bit Requires 1 byte of RAM for every 8 Bit variables created.

Each type of variable may hold a different minimum and maximum value.

• Bit type variables may hold a 0 or a 1. These are created 8 at a time, therefore declaring
a single Bit type variable in a program will not save RAM space, but it will save code
space, as Bit type variables produce the most efficient use of code for comparisons etc.

• Byte type variables may hold an unsigned value from 0 to 255, and are the usual work

horses of most programs. Code produced for Byte sized variables is very low compared
to signed or unsigned Word, DWord or Float types, and should be chosen if the pro-
gram requires faster, or more efficient operation.

• SByte type variables may hold a 2's complemented signed value from -128 to +127.

Code produced for SByte sized variables is very low compared to SWord, Float, or
SDword types, and should be chosen if the program requires faster, or more efficient
operation. However, code produced is usually larger for signed variables than unsigned
types.

• Word type variables may hold an unsigned value from 0 to 65535, which is usually large

enough for most applications. It still uses more memory than an 8-bit byte variable, but
not nearly as much as a Dword or SDword type.

• SWord type variables may hold a 2's complemented signed value from -32768 to

+32767, which is usually large enough for most applications. SWord type variables will
use more code space for expressions and comparisons, therefore, only use signed vari-
ables when required.

8-bit Proton Compiler Development Suite.

 20

• Dword type variables may hold an unsigned value from 0 to 4294967295 making this

the largest of the variable family types. This comes at a price however, as Dword calcu-
lations and comparisons will use more code space within the microcontroller Use this
type of variable sparingly, and only when necessary.

• SDword type variables may hold a 2's complemented signed value from -2147483648 to

+2147483647, also making this the largest of the variable family types. This comes at a
price however, as SDword expressions and comparisons will use more code space than
a regular Dword type. Use this type of variable sparingly, and only when necessary.

• Float type variables may theoretically hold a value from -1e37 to +1e38, but because of

the 32-bit architecture of the compiler, a maximum and minimum value should be
thought of as -2147483646.999 to +2147483646.999 making this the most varsatile of
the variable family types. However, more so than Dword types, this comes at a price as
floating point expressions and comparisons will use more code space within the
PICmicro™. Use this type of variable sparingly, and only when strictly necessary. Smaller
floating point values usually offer more accuracy.

See also : Aliases, Arrays, Dim, Constants Symbol, Floating Point Math.

8-bit Proton Compiler Development Suite.

 21

Floating Point Math
The Proton compiler can perform 32 x 32 bit IEEE 754 'Compliant' Floating Point calculations.

Declaring a variable as Float will enable floating point calculations on that variable.

 Dim MyFloat as Float

To create a floating point constant, add a decimal point. Especially if the value is a whole num-
ber.

 Symbol PI = 3.14 ' Create an obvious floating point constant

 Symbol FlNum = 5.0 ' Create a floating point value of a whole number

Please note. Floating point arithmetic is not the ultimate in accuracy, it is merely a means of
compressing a complex or large value into a small space (4 bytes in the compiler's case). Per-
fectly adequate results can usually be obtained from correct scaling of integer variables, with an
increase in speed and a saving of RAM and code space. 32 bit floating point math is extremely
microcontroller intensive since the PICmicro™ is only an 8 bit processor. It also consumes large
amounts of RAM, and code space for its operation, therefore always use floating point spar-
ingly, and only when strictly necessary. Floating point is not available on 12-bit core PICmicros
because of memory restrictions, and is most efficient when used with 18F devices because of
the more linear code and RAM specifications.

Floating Point Format
The Proton compiler uses the Microchip variation of IEEE 754 floating point format. The differ-
ences to standard IEEE 745 are minor, and well documented in Microchip application note
AN575 (downloadable from www.microchip.com).

Floating point numbers are represented in a modified IEEE-754 format. This format allows the
floating-point routines to take advantage of the PICmicro's architecture and reduce the amount
of overhead required in the calculations. The representation is shown below compared to the
IEEE-754 format: where s is the sign bit, y is the lsb of the exponent and x is a placeholder for
the mantissa and exponent bits.

The two formats may be easily converted from one to the other by manipulation of the Expo-
nent and Mantissa 0 bytes. The following assembly code shows an example of this operation.

 Format Exponent Mantissa 0 Mantissa 1 Mantissa 2
 IEEE-754 sxxx xxxx yxxx xxxx xxxx xxxx xxxx xxxx
 Microchip xxxx xxxy sxxx xxxx xxxx xxxx xxxx xxxx

IEEE-754 to Microchip
 Rlf Mantissa0
 Rlf Exponent
 Rrf Mantissa0

Microchip to IEEE-754
 Rlf Mantissa0
 Rrf Exponent
 Rrf Mantissa0

8-bit Proton Compiler Development Suite.

 22

Variables Used by the Floating Point Libraries.
Several 8-bit RAM registers are used by the math routines to hold the operands for and results
of floating point operations. Since there may be two operands required for a floating point op-
eration (such as multiplication or division), there are two sets of exponent and mantissa regis-
ters reserved (A and B). For argument A, PBP_AARGHHH holds the exponent and
PBP_AARGHH, PBP_AARGH and PBP_AARG hold the mantissa. For argument B,
PBP_BARGHHH holds the exponent and PBP_BARGHH, PBP_BARGH and PBP_BARG hold
the mantissa.

Floating Point Example Programs.

' Multiply two floating point values
 Device = 18F452
 Declare Xtal = 4
 Declare Hserial_Baud = 9600 ' Set the Baud rate for Hrsout

 Dim MyFloat as Float
 Symbol FlNum = 1.234 ' Create a floating point constant value

 MyFloat = FlNum * 10
 HrsoutLn Dec MyFloat
 Stop

' Add two floating point variables
 Device = 18F452
 Declare Xtal = 4
 Declare Hserial_Baud = 9600 ' Set the Baud rate for Hrsout

Dim MyFloat as Float
 Dim Flt1 as Float
 Dim Flt2 as Float

 Flt1 = 1.23
 Flt2 = 1000.1
 MyFloat = Flt1 + Flt2
 HrsoutLn Dec MyFloat
 Stop

' A digital volt meter, using the on-board ADC
 Device = 16F1829
 Declare Xtal = 4
 Declare Hserial_Baud = 9600 ' Set the Baud rate for Hrsout

Declare Adin_Res = 10 ' 10-bit result required

 Declare Adin_Tad = cFRC ' RC OSC chosen for the ADC
 Declare Adin_Delay = 50 ' Allow 50us sample time

Dim ADC_Raw as Word
 Dim Volts as Float
 Symbol Quanta = 5.0 / 1024 ' Calculate the quantising value

 ADCON1 = %10000000 ' Set analogue input on PORTA.0

Do ' Create a loop
 ADC_Raw = Adin 0 ' Get an ADC reading
 Volts = ADC_Raw * Quanta ' Convert it to a Voltage value
 HrsoutLn Dec2 Volts,"V" ' Transmit the decimal volts to a serial terminal
 DelayMs 300

Loop ' Do it forever

8-bit Proton Compiler Development Suite.

 23

Notes.
Any expression that contains a floating point variable or constant will be calculated as a floating
point. Even if the expression also contains integer constants or variables.

If the assignment variable is an integer variable, but the expression is of a floating point nature,
then the floating point result will be converted into an integer.

 Device = 16F1829
 Dim MyDword as Dword
 Dim MyFloat as Float
 Symbol PI = 3.14

MyFloat = 10
 MyDword = MyFloat + PI ' Float calculation will be 13.14, reduced to 13
 HrsoutLn Dec MyDword ' Transmit the integer result 13
 Stop

For a more in-depth explanation of floating point, download the Microchip application notes
AN575, and AN660. These can be found at www.microchip.com.

Code space requirements.
As mentioned above, floating point accuracy comes at a price of speed, and code space. Both
these issues are not a problem if an 18F device is used, however 14-bit core devices can pose
a problem. The compiler attempts to load the floating point libraries into low memory, along with
all the other library subroutines, but if it does not fit within the first 2048 bytes of code space,
and the PICmicro™ has more than 2048 bytes of code available, the floating point libraries will
be loaded into the top 1000 bytes of code memory. This is invisible to the user, however, the
compiler will warn that this is occurring in case that part of memory is being used by your BA-
SIC program.

Floating Point To Integer Rounding
Assigning a floating point variable to an integer type will be truncated to the nearest value by default.
For example:

FloatVar = 3.9
DwordVar = FloatVar

The variable DwordVar will hold the value of 3.

If rounding to the nearest integer value is required, use the fRound command.

8-bit Proton Compiler Development Suite.

 24

Floating Point Exception Flags
The floating point exception flags are accessible from within the BASIC program via the system variable
_FP_FLAGS. This must be brought into the BASIC program for the code to recognise it:

Dim _FP_FLAGS as Byte System

The exceptions are:

_FP_FLAGS.1 ' Floating point overflow
_FP_FLAGS.2 ' Floating point underflow
_FP_FLAGS.3 ' Floating point divide by zero
_FP_FLAGS.5 ' Domain error exception

The exception bits can be aliased for more readability within the program:

Symbol FpOverflow = _FP_FLAGS.1 ' Floating point overflow
 Symbol FpUnderFlow = _FP_FLAGS.2 ' Floating point underflow
 Symbol FpDiv0 = _FP_FLAGS.3 ' Floating point divide by zero
 Symbol FpDomainError = _FP_FLAGS.5 ' Domain error exception

After an exception is detected and handled in the program, the exception bit should be cleared so that
new exceptions can be detected, however, exceptions can be ignored because new operations are not
affected by old exceptions.

More Accurate Display or Conversion of Floating Point values.
By default, the compiler uses a relatively small routine for converting floating point values to
decimal, ready for Rsout, Print Str$ etc. However, because of its size, it does not perform any
rounding of the value first, and is only capable of converting relatively small values. i.e. approx
6 digits of accuracy. In order to produce a more accurate result, the compiler needs to use a
larger routine. This is implemented by using a Declare: -

Declare Float_Display_Type = Fast or Standard

Using the Fast model for the above declare will trigger the compiler into using the more accu-
rate floating point to decimal routine. Note that even though the routine is larger than the stan-
dard converter, it operates much faster.

The compiler defaults to Standard if the Declare is not issued in the BASIC program.

See also : Dim, Symbol, Aliases, Arrays, Constants .

8-bit Proton Compiler Development Suite.

 25

Aliases
The Symbol directive is the primary method of creating an alias, however Dim can be used to
create an alias to a variable. This is extremely useful for accessing the separate parts of a vari-
able.

 Dim Fido as Dog ' Fido is another name for Dog
 Dim Mouse as Rat.LowByte ' Mouse is the first byte (low byte) of word Rat
 Dim Tail as Rat.HighByte ' Tail is the second byte(high byte) of word Rat
 Dim Flea as Dog.0 ' Flea is bit-0 of Dog, which is aliased to Fido

There are modifiers that may also be used with variables. These are HighByte, LowByte,
Byte0, Byte1, Byte2, Byte3, Word0, Word1, SHighByte, SLowByte, SByte0, SByte1,
SByte2, SByte3, SWord0, and SWord1,

Word0, Word1, Byte2, Byte3, SWord0, SWord1, SByte2, and SByte3 may only be used in
conjunction with 32-bit Dword or SDword type variables.

HighByte and Byte1 are one and the same thing, when used with a Word or SWord type vari-
able, they refer to the unsigned High byte of a Word or SWord type variable: -

 Dim Wrd as Word ' Create an unsigned Word variable
 Dim Wrd_Hi as Wrd.HighByte
' Wrd_Hi now represents the unsigned high byte of variable Wrd

Variable Wrd_Hi is now accessed as a Byte sized type, but any reference to it actually alters
the high byte of Wrd.

SHighByte and SByte1 are one and the same thing, when used with a Word or SWord type
variable, they refer to the signed High byte of a Word or SWord type variable: -

 Dim Wrd as SWord ' Create a signed Word variable
 Dim Wrd_Hi as Wrd.SHighByte
' Wrd_Hi now represents the signed high byte of variable Wrd

Variable Wrd_Hi is now accessed as an SByte sized type, but any reference to it actually alters
the high byte of Wrd.

However, if Byte1 is used in conjunction with a Dword type variable, it will extract the second
byte. HighByte will still extract the high byte of the variable, as will Byte3. If SByte1 is used in
conjunction with an SDword type variable, it will extract the signed second byte. SHighByte
will still extract the signed high byte of the variable, as will SByte3.

The same is true of LowByte, Byte0, SLowByte and SByte0, but they refer to the unsigned
or signed Low Byte of a Word or SWord type variable: -

 Dim Wrd as Word ' Create an unsigned Word variable
 Dim Wrd_Lo as Wrd.LowByte
' Wrd_Lo now represents the low byte of variable Wrd

Variable Wrd_Lo is now accessed as a Byte sized type, but any reference to it actually alters
the low byte of Wrd.

8-bit Proton Compiler Development Suite.

 26

The modifier Byte2 will extract the 3rd unsigned byte from a 32-bit Dword or SDword type
variable as an alias. Likewise Byte3 will extract the unsigned high byte of a 32-bit variable.

 Dim Dwd as Dword ' Create a 32-bit unsigned variable named Dwd
 Dim Part1 as Dwd.Byte0 ' Alias unsigned Part1 to the low byte of Dwd
 Dim Part2 as Dwd.Byte1 ' Alias unsigned Part2 to the 2nd byte of Dwd
 Dim Part3 as Dwd.Byte2 ' Alias unsigned Part3 to the 3rd byte of Dwd
 Dim Part4 as Dwd.Byte3 ' Alias unsigned Part3 to the high (4th) byte of Dwd

The modifier SByte2 will extract the 3rd signed byte from a 32-bit Dword or SDword type vari-
able as an alias. Likewise SByte3 will extract the signed high byte of a 32-bit variable.

 Dim sDwd as SDword ' Create a 32-bit signed variable named sDwd
 Dim sPart1 as sDwd.SByte0 ' Alias signed Part1 to the low byte of sDwd
 Dim sPart2 as sDwd.SByte1 ' Alias signed Part2 to the 2nd byte of sDwd
 Dim sPart3 as sDwd.SByte2 ' Alias signed Part3 to the 3rd byte of sDwd
 Dim sPart4 as sDwd.SByte3 ' Alias signed Part3 to the 4th byte of sDwd

The Word0 and Word1 modifiers extract the unsigned low word and high word of a Dword or
SDword type variable, and is used the same as the Byten modifiers.

 Dim Dwd as Dword ' Create a 32-bit unsigned variable named Dwd
 Dim Part1 as Dwd.Word0 ' Alias unsigned Part1 to the low word of Dwd
 Dim Part2 as Dwd.Word1 ' Alias unsigned Part2 to the high word of Dwd

The SWord0 and SWord1 modifiers extract the signed low word and high word of a Dword or
SDword type variable, and is used the same as the SByten modifiers.

 Dim sDwd as SDword ' Create a 32-bit signed variable named sDwd
 Dim sPart1 as sDwd.SWord0 ' Alias Part1 to the low word of sDwd
 Dim sPart2 as sDwd.SWord1 ' Alias Part2 to the high word of sDwd

RAM space for variables is allocated within the microcontroller in the order that they are placed
in the BASIC code. For example: -

 Dim Var1 as Byte
 Dim Var2 as Byte

Places Var1 first, then Var2: -

 Var1 equ n
 Var2 equ n

This means that on a device with more than one RAM Bank, the first n variables will always be
in Bank0 (the value of n depends on the specific PICmicro™ used).

8-bit Proton Compiler Development Suite.

 27

Finer points for variable handling.
The position of the variable within Banks is usually of little importance if BASIC code is used,
however, if assembler routines are being implemented, always assign any variables used within
them first.

Problems may also arise if a Word, SWord, Dword, SDword or Float variable crosses a Bank
boundary. If this happens, a warning message will be displayed in the error window. Most of the
time, this will not cause any problems, however, to err on the side of caution, try and ensure
that Word, SWord, Dword, SDword or Float type variables are fully inside a Bank. This is
easily accomplished by placing a dummy Byte variable before the offending variable, or relo-
cating the offending variable within the list of Dim statements.

Word and SWord type variables have a low byte and a high byte. The high byte may be ac-
cessed by simply adding the letter H to the end of the variable's name. For example: -

 Dim Wrd as Word

Will produce the assembler code: -

 Wrd equ n
 WrdH equ n

To access the high byte of variable Wrd, use: -

 WrdH = 1

This is especially useful when assembler routines are being implemented, such as: -

 Movlw 1
 Movwf WrdH ‘ Load the high byte of Wrd with 1

Dword, SDWord and Float type variables have a low, mid1, mid2, and high byte. The high
byte may be accessed by by using Byte0, Byte1, Byte2, or Byte3. For example: -

 Dim MyDword as Dword

To access the high byte of variable MyDword, use: -

 MyDword.Byte3 = 1

The same is true of all the alias modifiers such as SWord0, Word0 etc...

Casting a variable from signed to unsigned and vice-versa is also possible using the modifiers.
For example:

 Dim MyDword as SDword ' Create a 32-bit signed variable

 MyDword.Byte3 = 1 ' Load the unsigned high byte with the value 1
 MyDword.SByte0 = -1 ' Load the signed low byte with the value -1
 MyDword.SWord0 = 128 ' Load the signed low and mid1 bytes with the value 128

8-bit Proton Compiler Development Suite.

 28

Constants
Named constants may be created in the same manner as variables. It can be more informative
to use a constant name instead of a constant number. Once a constant is declared, it cannot be
changed later, hence the name ‘constant'.

 Dim Label as Constant expression

 Dim Mouse as 1
 Dim Mice as Mouse * 400
 Dim Mosue_PI as Mouse + 2.14

Although Dim can be uses to create constants, Symbol is more often used.

Symbols
The Symbol directive provides yet another method for aliasing variables and constants. Sym-
bol cannot be used to create a variable. Constants declared using Symbol do not use any RAM
within the PICmicro™.

 Symbol Cat = 123
 Symbol Tiger = Cat ' Tiger now holds the value of Cat
 Symbol Mouse = 1 ' Same as Dim Mouse as 1
 Symbol TigOuse = Tiger + Mouse ' Add Tiger to Mouse to make Tigouse

Floating point constants may also be created using Symbol by simply adding a decimal point to
a value.

 Symbol PI = 3.14 ' Create a floating point constant named PI
 Symbol FlNum = 5.0 ' Create a floating point constant holding the value 5

Floating point constant can also be created using expressions.

 ' Create a floating point constant holding the result of the expression
 Symbol Quanta = 5.0 / 1024

If a variable or register's name is used in a constant expression then the variable's or register's
address will be substituted, not the value held in the variable or register: -

 Symbol Const = (PORTA + 1) ' Const will hold the value 6 (5+1)

Symbol is also useful for aliasing Ports and Registers: -

 Symbol LED = PORTA.1 ' LED now references bit-1 of PORTA
 Symbol T0IF = INTCON.2 ' T0IF now references bit-2 of INTCON register

The equal sign between the constant's name and the alias value is optional: -

 Symbol LED PORTA.1 ' Same as Symbol LED=PORTA.1

8-bit Proton Compiler Development Suite.

 29

Numeric Representations
The compiler recognises several different numeric representations: -

 Binary is prefixed by %. i.e. %0101
 Hexadecimal is prefixed by $ or 0x. i.e. $0A or 0x0A
 Character byte is surrounded by quotes. i.e. "a" represents a value of 97
 Decimal values need no prefix.
 Floating point is created by using a decimal point. i.e. 3.14

Quoted String of Characters
A Quoted String of Characters contains one or more characters (maximum 200) and is delim-
ited by double quotes. Such as "Hello World"

The compiler also supports a subset of C language type formatters within a quoted string of
characters. These are: -

\a Bell (alert) character $07
\b Backspace character $08
\f Form feed character $0C
\n New line character $0A
\r Carriage return character $0D
\t Horizontal tab character $09
\v Vertical tab character $0B
\\ Backslash $5C
\" Double quote character $22

Example: -

Hrsout "Hello World\n\r"

Strings are usually treated as a list of individual character values, and are used by commands
such as Print, Rsout, Busout, Ewrite etc. And of course, String variables.

Null Terminated
Null is a term used in computer languages for zero. So a null terminated String is a collection of
characters followed by a zero in order to signify the end of characters. For example, the string
of characters "Hello", would be stored as: -

"H", "e", "l", "l" ,"o", 0

Notice that the terminating null is the value 0 not the character "0".

Ports and other Registers
All of the PICmicro™ registers, including the ports, can be accessed just like any other byte-
sized variable. This means that they can be read from, written to or used in equations directly.

 PORTA = %01010101 ' Write value to PORTA

 Var1 = Wrd * PORTA ' Multiply variable Wrd with the contents of PORTA

8-bit Proton Compiler Development Suite.

 30

The compiler can also combine16-bit registers such as TMR1 into a Word type variable. Which
makes loading and reading these registers simple: -

' Combine TMR1L and TMR1H into unsigned Word variable wTimer1
 Dim wTimer1 as TMR1L.Word

 wTimer1 = 12345 ' Load TMR1L and TMR1H with the value 12345
or
 Wrd1 = wTimer1 ' Load Wrd1 with contents of TMR1

The .Word extension links registers TMR1L, and TMR1H, (which are assigned in the .ppi file
associated with the relevant device used).

Any hardware register that can hold a 16-bit result can be assigned as a Word type variable: -

' Combine ADRESL and ADRESH into unsigned Word variable wADC_Result
'
 Dim wADC_Result as ADRESL.Word
'
' Combine PRODL and PRODH into unsigned Word variable wMul_PROD
'
 Dim wMul_PROD as PRODL.Word

General Format
The compiler is not case sensitive, except when processing string constants such as "hello".

Multiple instructions and labels can be combined on the same line by separating them with co-
lons ':'.

The examples below show the same program as separate lines and as a single-line: -

Multiple-line version: -

 Output PORTB ' Make all pins on PORTB outputs
 For Var1 = 0 to 100 ' Count from 0 to 100
 PORTB = Var1 ' Make PORTB = Var1
 Next ' Continue counting until 100 is reached

Single-line version: -

 Output PORTB : For Var1 = 0 to 100 : PORTB = Var1 : Next

8-bit Proton Compiler Development Suite.

 31

A Typical basic Program Layout
The compiler is very flexible, and will allow most types of constant, declaration, or variable to be placed
anywhere within the BASIC program. However, it may not produce the correct results, or an unexpected
syntax error may occur due to a variable being declared after it is supposed to be used.

The recommended layout for a program is shown below.

 Device
{
 Declares
}
{
 Includes
}
{

Constants and Variables
}

GoTo Main ' Jump over the subroutines (if any)

{
 Subroutines go here
}
{
 Main:
 Main Program code goes here
}

For example:

 Device = 18F25K20
'---
 Declare Xtal = 20
 Declare Hserial_Baud = 9600
'---
' Load an ADC include file (if required)
 Include "ADC.inc"
'---
' Define Variables

Dim WordVar as Word ' Create a Word size variable
'---
' Define Constants and/or aliases

Symbol Value = 10 ' Create a constant
'---

GoTo Main ' Jump over the subroutine/s (if any)
'---
' Simple Subroutine
AddIt:

WordVar = WordVar + Value ' Add the constant to the variable
Return ' Return from the subroutine

'---
' Main Program Code
Main:
 WordVar = 10 ' Pre-load the variable

GoSub AddIt ' Call the subroutine
 HrsoutLn Dec WordVar ' Display the result on the serial terminal

Of course, it depends on what is within the include file as to where it should be placed within the pro-
gram, but the above outline will usually suffice. Any include file that requires placing within a certain po-
sition within the code should be documented to state this fact.

8-bit Proton Compiler Development Suite.

 32

Line Continuation Character '_'
Lines that are too long to display, may be split using the continuation character '_'. This will di-
rect the continuation of a command to the next line. Its use is only permitted after a comma de-
limiter: -

 Var1 = LookUp Var2,[1,2,3,_
 4,5,6,7,8]
or

 HrsoutLn "Hello World",_
 Dec Var1,_
 Hex Var2

8-bit Proton Compiler Development Suite.

 33

Creating and using Arrays
The Proton compiler supports multi part Byte, Word, Dword, SByte, Sword, SDword and
Float variables named arrays (Dword, SDword and Float arrays are only supported with 18F
and enhanced 14-bit core devices). An array is a group of variables of the same size (8-bits,
16-bits or 32-bits wide), sharing a single name, but split into numbered cells, called elements.

An array is defined using the following syntax: -

 Dim Name[length] as Byte
 Dim Name[length] as Word
 Dim Name[length] as Dword
 Dim Name[length] as SByte
 Dim Name[length] as SWord
 Dim Name[length] as Sdword
 Dim Name[length] as Float

where Name is the variable's given name, and the new argument, [length], informs the com-
piler how many elements you want the array to contain. For example: -

 Dim MyArray[10] as Byte ' Create a 10 element unsigned byte array
 Dim MyArray[10] as Word ' Create a 10 element unsigned word array
 Dim MyArray[10] as Dword ' Create a 10 element unsigned dword array
 Dim sMyArray[10] as SByte ' Create a 10 element signed byte array
 Dim sMyArray[10] as SWord ' Create a 10 element signed word array
 Dim sMyArray[10] as SDword ' Create a 10 element signed dword array
 Dim fMyArray[10] as Float ' Create a 10 element floatin point array

On 18F or enhanced core devices, arrays may have as many elements as RAM permits, how-
ever, with 12-bit core and standard 14-bit core devices, arrays may contain a maximum of 256
elements, (128 for word arrays when using standard 14-bit core devices). Because of the rather
complex way that some PICmicro's RAM cells are organised (i.e. Banks), there are a few rules
that need to be observed when creating arrays with standard 14-bit core devices.

PICmicro™ Memory Map Complexities.
Some microcontrollers have more RAM available for variable storage, however, accessing the
RAM on the standard 14-bit core devices is not as straightforward as one might expect. The
RAM is organised in Banks, where each Bank is 128 bytes in length. Crossing these Banks re-
quires bits 5 and 6 of the STATUS register to be manipulated. The larger devices such as the
16F877 have 512 RAM locations, but only 368 of these are available for variable storage, the
rest are known as Special Function Registers (SFRs) and are used to control certain aspects of
the microcontroller i.e. TRIS, IO ports, USART etc. The compiler attempts to make this complex
system of RAM Bank switching as transparent to the user as possible, and succeeds where
standard Bit, Byte, Word, and Dword variables are concerned. However, Array variables will
inevitably need to cross the Banks in order to create arrays larger than 96 bytes, which is the
largest section of RAM within Bank0. Coincidently, this is also the largest array size permissible
by most other compilers at the time of writing this manual.

8-bit Proton Compiler Development Suite.

 34

Large arrays (normally over 96 elements) require that their Starting address be located within
the first 255 bytes of RAM (i.e. within Bank0 and Bank2), the array itself may cross this bound-
ary. This is easily accomplished by declaring them at, or near the top of the list of variables.
The compiler does not manipulate the variable declarations. If a variable is placed first in the
list, it will be placed in the first available RAM slot within the microcontroller. This way, you, the
programmer maintains finite control of the variable usage. For example, commonly used vari-
ables should be placed near the top of the list of declared variables. An example of declaring
an array is illustrated below: -

 Device 16F1829 ' Choose a microcontroller with extra RAM
 Dim Small_Array[20] as Byte ' Create a small array of 20 elements
 Dim Var1 as Byte ' Create a standard Byte variable
 Dim Large_Array[256] as Byte ' Create a Byte array of 256 elements
or
 Dim Array1[120] as Byte ' Create an array of 120 elements
 Dim Array2[100] as Byte ' Create another smaller array of 100 elements

If an array cannot be resolved, then a warning will be issued informing you of the offending line:
Warning Array ‘array name' is declared at address ‘array address'. Which is over the 255
RAM address limit, and crosses Bank3 boundary!

Ignoring this warning will spell certain failure of your program.

The following array declaration will produce a warning when compiled for a 16F877 device: -

 Device 16F877 ' Choose a microcontroller with extra RAM
 Dim Array1[200] as Byte ' Create an array of 200 elements
 Dim Array2[100] as Byte ' Create another smaller array of 100 elements

Examining the assembler code produced, will reveal that Array1 starts at address 32 and fin-
ishes at address 295. This is acceptable and the compiler will not complain. Now look at Ar-
ray2, its start address is at 296 which is over the 255 address limit, thus producing a warning
message.

The above warning is easily remedied by re-arranging the variable declaration list: -

 Dim Array2[100] as Byte ' Create a small array of 100 elements
 Dim Array1[200] as Byte ' Create an array of 200 elements

Again, examining the asm code produced, now reveals that Array2 starts at address 32 and fin-
ishes at address 163. everything OK there then. And Array1 starts at address 164 and finishes
at address 427, again, its starting address was within the 255 limit so everything's OK there as
well, even though the array itself crossed several Banks. A simple re-arrangement of code
meant the difference between a working and not working program.

Of course, the smaller microcontrollers do not have this limitation as they do not have 255 RAM
cells anyway. Therefore, arrays may be located anywhere in the variable declaration list. The
same goes for the 18F devices, as these can address any area of their RAM.

8-bit Proton Compiler Development Suite.

 35

18F and enhanced 14-bit core device simplicity.
The 18F devices have no such complexities in their memory map as the standard 14-bit core
devices do. The memory is still banked, but each bank is 256 bytes in length, and runs linearly
from one to the other. Add to that, the ability to access all RAM areas using indirect addressing,
makes arrays extremely easy to use. If many large arrays are required in a program, then the
18F devices are highly recommended.

Once an array is created, its elements may be accessed numerically. Numbering starts at 0
and ends at n-1. For example: -

 MyArray[3] = 57
 HrsoutLn "MyArray[3] = ", Dec MyArray[3]

The above example will access the fourth element in the Byte array and display "MyArray[3] =
57" on the serial terminal. The true flexibility of arrays is that the index value itself may be a
variable. For example: -

 Device 16F88 ' We'll use a smaller device this time
 Dim MyArray[10] as Byte ' Create a 10-byte array.
 Dim Index as Byte ' Create a Byte variable.

For Index = 0 to 9 ' Repeat with Index= 0,1,2...9
 MyArray[Index] = Index * 10 ' Write Index*10 to each element of the array.
 Next
 For Index = 0 to 9 ' Repeat with Index= 0,1,2...9
 Print At 1, 1, Dec MyArray [Index] ' Show the contents of each element.
 DelayMs 500 ' Wait long enough to view the values
 Next
 Stop

If the above program is run, 10 values will be displayed, counting from 0 to 90 i.e. Index * 10.

A word of caution regarding arrays: If you're familiar with other BASICs and have used their ar-
rays, you may have run into the "subscript out of range" error. Subscript is simply another term
for the index value. It is considered 'out-of range' when it exceeds the maximum value for the
size of the array.

For example, in the example above, MyArray is a 10-element array. Allowable index values are
0 through 9. If your program exceeds this range, the compiler will not respond with an error
message. Instead, it will access the next RAM location past the end of the array.

If you are not careful about this, it can cause all sorts of subtle anomalies, as previously loaded
variables are overwritten. It's up to the programmer (you!) to help prevent this from happening.

Even more flexibility is allowed with arrays because the index value may also be an expression.

 Device 16F88 ' We'll use a smaller device
 Dim MyArray[10] as Byte ' Create a 10-byte array.
 Dim Index as Byte ' Create a Byte variable.

For Index = 0 to 8 ' Repeat with Index= 0,1,2...8
 MyArray[Index + 1] = Index * 10 ' Write Index*10 to each element of array
 Next
 For Index = 0 to 8 ' Repeat with Index= 0,1,2...8
 Print At 1, 1, Dec MyArray[Index + 1] ' Show the contents of elements
 DelayMs 500 ' Wait long enough to view the values
 Next
 Stop

8-bit Proton Compiler Development Suite.

 36

The expression within the square braces should be kept simple, and arrays are not allowed as
part of the expression.

Using Arrays in Expressions.
Of course, arrays are allowed within expressions themselves. For example: -

 Device = 16F88 ' We'll use a smaller device
 Device Xtal = 4
 Declare Hserial_Baud = 9600

Dim MyArray[10] as Byte ' Create a 10-byte array.

 Dim Index as Byte ' Create a Byte variable.
 Dim Var1 as Byte ' Create another Byte variable
 Dim MyResult as Byte ' Create a variable to hold result of expression

Index = 5 ' And Index now holds the value 5
 Var1 = 10 ' Variable Var1 now holds the value 10
 MyArray[Index] = 20 ' Load the 6th element of MyArray with value 20
 MyResult = (Var1 * MyArray[Index]) / 20 ' Do a simple expression
 HrsoutLn Dec MyResult ' Display result of expression
 Stop

The previous example will display 10 on the serial terminal, because the expression reads as: -

 (10 * 20) / 20

Var1 holds a value of 10, MyArray[Index] holds a value of 20, these two variables are multiplied
together which will yield 200, then they're divided by the constant 20 to produce a result of 10.

An index expression used within an array that is used within an expression itself is limited to
two operands.

8-bit Proton Compiler Development Suite.

 37

Arrays as Strings
Arrays may also be used as simple strings in certain commands, because after all, a string is
simply a byte array used to store text.

For this, the Str modifier is used.

The commands that support the Str modifier are: -

Busout - Busin
Hbusout - Hbusin
Hrsout - Hrsin
Owrite - Oread
Rsout - Rsin
Serout - Serin
Shout - Shin
Print

The Str modifier works in two ways, it outputs data from a pre-declared array in commands that
send data i.e. Rsout, Print etc, and loads data into an array, in commands that input informa-
tion i.e. Rsin, Serin etc. The following examples illustrate the Str modifier in each compatible
command.

Using Str with the Busin and Busout commands.

Refer to the sections explaining the Busin and Busout commands.

Using Str with the Hbusin and Hbusout commands.

Refer to the sections explaining the Hbusin and Hbusout commands.

Using Str with the Rsin command.

 Dim Array1[10] as Byte ' Create a 10-byte array named Array1
 Rsin Str Array1 ' Load 10 bytes of data directly into Array1

Using Str with the Rsout command.

 Dim Array1[10] as Byte ' Create a 10-byte array named Array1
 Rsout Str Array1 ' Send 10 bytes of data directly from Array1

Using Str with the Hrsin and Hrsout commands.

Refer to the sections explaining the Hrsout and Hrsin commands.

8-bit Proton Compiler Development Suite.

 38

Using Str with the Shout command.

 Symbol Data_Pin = PORTA.0 ' Alias the two lines for the Shout command
 Symbol Clk_Pin = PORTA.1
 Dim Array1[10] as Byte ' Create a 10-byte array named Array1

' Send 10 bytes of data from Array1
 Shout Data_Pin, Clk_Pin, MSBFirst, [Str Array1]

Using Str with the Shin command.

 Symbol Data_Pin = PORTA.0 ' Alias the two lines for the Shin command
 Symbol Clk_Pin = PORTA.1
 Dim Array1[10] as Byte ' Create a 10-byte array named Array1

' Load 10 bytes of data directly into Array1
 Shin Data_Pin, Clk_Pin, MSBPre, [Str Array1]

Using Str with the Print command.

 Dim Array1[10] as Byte ' Create a 10-byte array named Array1
 Print Str Array1 ' Send 10 bytes of data directly from Array1

Using Str with the Serout and Serin commands.

Refer to the sections explaining the Serin and Serout commands.

Using Str with the Oread and Owrite commands.

Refer to the sections explaining the Oread and Owrite commands.

The Str modifier has two forms for variable-width and fixed-width data, shown below: -

Str bytearray ASCII string from bytearray until byte = 0 (null terminated).

Or array length is reached.

Str bytearray\n ASCII string consisting of n bytes from bytearray.

null terminated means that a zero (null) is placed at the end of the string of ASCII characters to
signal that the string has finished.

The example below is the variable-width form of the Str modifier: -

 Dim MyArray[5] as Byte ' Create a 5 element array
 MyArray[0] = "A" ' Fill the array with ASCII
 MyArray[1] = "B"
 MyArray[2] = "C"
 MyArray[3] = "D"
 MyArray[4] = 0 ' Add the null Terminator
 Print Str MyArray ' Display the string

The code above displays "ABCD" on the LCD. In this form, the Str formatter displays each
character contained in the byte array until it finds a character that is equal to 0 (value 0, not
ASCII "0"). Note: If the byte array does not end with 0 (null), the compiler will read and

8-bit Proton Compiler Development Suite.

 39

output all RAM register contents until it cycles through all RAM locations for the declared length
of the byte array.

For example, the same code as before without a null terminator is: -

 Dim MyArray[4] as Byte ' Create a 4 element array
 MyArray[0] = "A" ' Fill the array with ASCII
 MyArray[1] = "B"
 MyArray[2] = "C"
 MyArray[3] = "D"
 Print Str MyArray ' Display the string

The code above will display the whole of the array, because the array was declared with only
four elements, and each element was filled with an ASCII character i.e. "ABCD".

To specify a fixed-width format for the Str modifier, use the form Str MyArray\n; where MyArray
is the byte array and n is the number of characters to display, or transmit. Changing the Print
line in the examples above to: -

 Print Str MyArray \ 2

would display "AB" on the LCD.

Str is not only used as a modifier, it is also a command, and is used for initially filling an array
with data. The above examples may be re-written as: -

 Dim MyArray[5] as Byte ' Create a 5 element array
 Str MyArray = "ABCD", 0 ' Fill array with ASCII, and null terminate it
 Print Str MyArray ' Display the string

Strings may also be copied into other strings: -

 Dim String1[5] as Byte ' Create a 5 element array
 Dim String2[5] as Byte ' Create another 5 element array
 Str String1 = "ABCD", 0 ' Fill array with ASCII, and null terminate it
 Str String2 = "EFGH", 0 ' Fill other array with ASCII, null terminate it
 Str String1 = Str String2 ' Copy String2 into String1
 Print Str String1 ' Display the string

The above example will display "EFGH", because String1 has been overwritten by String2.

Using the Str command with Busout, Hbusout, Shout, and Owrite differs from using it with
commands Serout, Print, Hrsout, and Rsout in that, the latter commands are used more for
dealing with text, or ASCII data, therefore these are null terminated.

The Hbusout, Busout, Shout, and Owrite commands are not commonly used for sending
ASCII data, and are more inclined to send standard 8-bit bytes. Thus, a null terminator would
cut short a string of byte data, if one of the values happened to be a 0. So these commands will
output data until the length of the array is reached, or a fixed length terminator is used i.e.
MyArray\n.

8-bit Proton Compiler Development Suite.

 40

Creating and using Strings
The Proton compiler supports String variables, but only when targeting an 18F or enhanced
14-bit core device.

The syntax to create a string is : -

 Dim String Name as String * String Length

String Name can be any valid variable name. See Dim .
String Length can be any value up to 255, allowing up to 255 characters to be stored.

The line of code below will create a String named MyString that can hold 20 characters: -

 Dim MyString as String * 20

Two or more strings can be concatenated (linked together) by using the plus (+) operator: -

 Device = 18F4520 ' A suitable device for Strings
' Create three strings capable of holding 20 characters
 Dim DestString as String * 20
 Dim SourceString1 as String * 20
 Dim SourceString2 as String * 20

 SourceString1 = "HELLO " ' Load String SourceString1 with the text HELLO
'
' Load String SourceString2 with the text WORLD
 SourceString2 = "WORLD"
' Add both Source Strings together. Place result into String DestString
'
 DestString = SourceString1 + SourceString2

The String DestString now contains the text "HELLO WORLD", and can be transmitted serially
or displayed on an LCD: -

 Print DestString

The Destination String itself can be added to if it is placed as one of the variables in the addi-
tion expression. For example, the above code could be written as: -

 Device = 18F452 ' A suitable device for Strings
'
' Create a String capable of holding 20 characters
'
 Dim DestString as String * 20
'
' Create another String capable of holding 20 characters
'
 Dim SourceString as String * 20

 DestString = "HELLO " ' Pre-load String DestString with the text HELLO
 SourceString = "WORLD" ' Load String SourceString with the text WORLD
' Concatenate DestString with SourceString
'
 DestString = DestString + SourceString
 Print DestString ' Display the result which is "HELLO WORLD"
 Stop

Note that Strings cannot be subtracted, multiplied or divided, and cannot be used as part of a
regular expression otherwise a syntax error will be produced.

8-bit Proton Compiler Development Suite.

 41

It's not only other strings that can be added to a string, the functions Cstr, Estr, Mid$, Left$,
Right$, Str$, ToUpper, and ToLower can also be used as one of variables to concatenate.

A few examples of using these functions are shown below: -

Cstr Example
' Use Cstr function to place a code memory string into a RAM String variable

 Device = 18F4520 ' A suitable device for Strings
' Create a String capable of holding 20 characters
 Dim DestString as String * 20
 Dim SourceString as String * 20 ' Create another String
 SourceString = "HELLO " ' Load the string with characters
 DestString = SourceString + Cstr CodeStr ' Concatenate the string
 Print DestString ' Display the result which is "HELLO WORLD"
 Stop
CodeStr:
 Cdata "WORLD",0

The above example is really only for demonstration because if a Label name is placed as one
of the parameters in a string concatenation, an automatic (more efficient) Cstr operation will be
carried out. Therefore the above example should be written as: -

More efficient Example of above code
' Place a code memory string into a String variable more efficiently than
' using Cstr

 Device = 18F4520 ' A suitable device for Strings
' Create a String capable of holding 20 characters
 Dim DestString as String * 20
 Dim SourceString as String * 20 ' Create another String
 SourceString = "HELLO " ' Load the string with characters
 DestString = SourceString + CodeStr ' Concatenate the string
 Print DestString ' Display the result which is "HELLO WORLD"
 Stop
CodeStr:
 Cdata "WORLD",0

A null terminated string of characters held in Data (on-board eeprom) memory can also be
loaded or concatenated to a string by using the Estr function: -

Estr Example
' Use the Estr function in order to place a
' Data memory string into a String variable
' Remember to place Edata before the main code
' so it’s recognised as a constant value

 Device = 18F4520 ' A suitable device for Strings
 Dim DestString as String * 20 ' Create a String for 20 characters
 Dim SourceString as String * 20 ' Create another String

Data_Str Edata "WORLD",0 ' Create a string in Data memory
 SourceString = "HELLO " ' Load the string with characters
 DestString = SourceString + Estr Data_Str ' Concatenate the strings
 Print DestString ' Display the result which is "HELLO WORLD"
 Stop

8-bit Proton Compiler Development Suite.

 42

Converting an integer or floating point value into a string is accomplished by using the Str$
function: -

Str$ Example
' Use the Str$ function in order to concatenate
' an integer value into a String variable

 Device = 18F4520 ' A suitable device for Strings
 Dim DestString as String * 30 ' Create a String for 30 characters
 Dim SourceString as String * 20 ' Create another String
 Dim Wrd1 as Word ' Create a Word variable

 Wrd1 = 1234 ' Load the Word variable with a value
 SourceString = "Value = " ' Load the string with characters
 DestString = SourceString + Str$(Dec Wrd1) ' Concatenate the string
 Print DestString ' Display the result which is "Value = 1234"
 Stop

Left$ Example
' Copy 5 characters from the left of SourceString
' and add to a quoted character string

 Device = 18F4520 ' A suitable device for Strings
 Dim SourceString as String * 20 ' Create a String
 Dim DestString as String * 20 ' Create another String

 SourceString = "Hello World" ' Load the source string with characters
 DestString = Left$(SourceString, 5) + " World"
 Print DestString ' Display the result which is "Hello World"
 Stop

Right$ Example
' Copy 5 characters from the right of SourceString
' and add to a quoted character string

 Device = 18F4520 ' A suitable device for Strings
 Dim SourceString as String * 20 ' Create a String
 Dim DestString as String * 20 ' Create another String

 SourceString = "Hello World" ' Load the source string with characters
 DestString = "Hello " + Right$(SourceString, 5)
 Print DestString ' Display the result which is "Hello World"
 Stop

Mid$ Example
' Copy 5 characters from position 4 of SourceString
' and add to quoted character strings

 Device = 18F4520 ' A suitable device for Strings
 Dim SourceString as String * 20 ' Create a String
 Dim DestString as String * 20 ' Create another String

 SourceString = "Hello World" ' Load the source string with characters
 DestString = "Hel" + Mid$(SourceString, 4, 5) + "rld"
 Print DestString ' Display the result which is "Hello World"
 Stop

8-bit Proton Compiler Development Suite.

 43

Converting a string into uppercase or lowercase is accomplished by the functions ToUpper and
ToLower: -

ToUpper Example
' Convert the characters in SourceString to upper case

 Device = 18F4520 ' A suitable device for Strings
 Dim SourceString as String * 20 ' Create a String
 Dim DestString as String * 20 ' Create another String

 SourceString = "hello world" ' Load source with lowercase characters
 DestString = ToUpper(SourceString)
 Print DestString ' Display the result which is "HELLO WORLD"
 Stop

ToLower Example
' Convert the characters in SourceString to lower case

 Device = 18F4520 ' A suitable device for Strings
 Dim SourceString as String * 20 ' Create a String
 Dim DestString as String * 20 ' Create another String

 SourceString = "HELLO WORLD" ' Load the string with uppercase characters
 DestString = ToLower(SourceString)
 Print DestString ' Display the result which is "hello world"
 Stop

Loading a String Indirectly
If the Source String is asigned or unsigned Byte, Word, Float or an Array variable, the value
contained within the variable is used as a pointer to the start of the Source String's address in
RAM.

Example
' Copy SourceString into DestString using a pointer to SourceString

 Device = 18F4520 ' A suitable device for Strings
 Dim SourceString as String * 20 ' Create a String
 Dim DestString as String * 20 ' Create another String
'
' Create a Word variable to hold the address of SourceString
'
 Dim StringAddr as Word

 SourceString = "Hello World" ' Load the source string with characters
'
' Locate the start address of SourceString in RAM
'
 StringAddr = AddressOf(SourceString)
 DestString = StringAddr ' Source string into the destination string
 Print DestString ' Display the result, which will be "Hello"
 Stop

8-bit Proton Compiler Development Suite.

 44

Slicing a String.
Each position within the string can be accessed the same as an unsigned Byte Array by using
square braces: -

 Device = 18F4520 ' A suitable device for Strings
 Dim SourceString as String * 20 ' Create a String

 SourceString[0] = "H" ' Place letter "H" as first character in the string
 SourceString[1] = "E" ' Place the letter "E" as the second character
 SourceString[2] = "L" ' Place the letter "L" as the third character
 SourceString[3] = "L" ' Place the letter "L" as the fourth character
 SourceString[4] = "O" ' Place the letter "O" as the fifth character
 SourceString[5] = 0 ' Add a null to terminate the string

 Print SourceString ' Display the string, which will be "HELLO"
 Stop

The example above demonstrates the ability to place individual characters anywhere in the
string. Of course, you wouldn't use the code above in an actual BASIC program.

A string can also be read character by character by using the same method as shown above: -

 Device = 18F4520 ' A suitable device for Strings
 Dim SourceString as String * 20 ' Create a String
 Dim Var1 as Byte

 SourceString = "HELLO" ' Load the source string with characters
'
' Copy character 1 from the source string and place it into Var1
'
 Var1 = SourceString[1]
 Print Var1 ' Display character extracted from string. Which will be "E"
 Stop

When using the above method of reading and writing to a string variable, the first character in
the string is referenced at 0 onwards, just like an unsigned Byte Array.

The example below shows a more practical String slicing demonstration.

' Display a string's text by examining each character individually
 Device = 18F4520 ' A suitable device for Strings
 Dim SourceString as String * 20 ' Create a String
 Dim Charpos as Byte ' Holds the position within the string

 SourceString = "Hello World" ' Load the source string with characters
 Charpos = 0 ' Start at position 0 within the string
 Repeat ' Create a loop
 Print SourceString[Charpos] ' Display character extracted from the string
 Inc Charpos ' Move to next position within the string
 Until Charpos = Len(SourceString) ' Keep looping until the end of string is found
 Stop

8-bit Proton Compiler Development Suite.

 45

Notes
A word of caution regarding Strings: If you're familiar with interpreted BASICs and have used
their String variables, you may have run into the "subscript out of range" error. This error occurs
when the amount of characters placed in the string exceeds its maximum size.

For example, in the examples above, most of the strings are capable of holding 20 characters.
If your program exceeds this range by trying to place 21 characters into a string only created for
20 characters, the compiler will not respond with an error message. Instead, it will access the
next RAM location past the end of the String.

If you are not careful about this, it can cause all sorts of subtle anomalies as previously loaded
variables are overwritten. It's up to the programmer (you!) to prevent this from happening by
ensuring that the String in question is large enough to accommodate all the characters re-
quired, but not too large that it uses up too much precious RAM.

The compiler will help by giving a reminder message when appropriate, but this can be ignored
if you are confident that the String is large enough.

See also : Creating and using Virtual Strings with Cdata
 Creating and using Virtual Strings with Edata
 Cdata, Len, Left$, Mid$, Right$
 String Comparisons, Str$, ToLower, ToUpper, AddressOf.

8-bit Proton Compiler Development Suite.

 46

Creating and using Flash Memory Strings
Some devices have the ability to read and write to their own flash memory. And although writ-
ing to this memory too many times is unhealthy for the PICmicro™, reading this memory is both
fast, and harmless. Which offers a unique form of data storage and retrieval, the Cdata com-
mand and the new Dim as Code directive proves this, as they uses the mechanism of reading
and storing in the microcntroller's flash memory.

Combining the unique features of the 'self modifying devices ' with a string format, the compiler
is capable of reducing the overhead of printing, or transmitting large amounts of text data. The
Cstr modifier may be used in commands that deal with text processing i.e. Print, Serout,
Hrsout, and Rsout .

The Cstr modifier is used in conjunction with the Cdata command. The Cdata command is
used for initially creating the string of characters: -

String1: Cdata "HELLO WORLD", 0

The above line of code will create, in flash memory, the values that make up the ASCII text
"HELLO WORLD", at address String1. Note the null terminator after the ASCII text.

 null terminated means that a zero (null) is placed at the end of the string of ASCII characters to
signal that the string has finished.

To display, or transmit this string of characters, the following command structure could be used:

 Print Cstr String1

The label that declared the address where the list of Cdata values resided, now becomes the
string's name. In a large program with lots of text formatting, this type of structure can save
quite literally hundreds of bytes of valuable code space.

Try both these small programs, and you'll see that using Cstr saves a few bytes of code: -

First the standard way of displaying text: -

 Device = 18F4520
 Cls
 Print "HELLO WORLD"
 Print "HOW ARE YOU?"
 Print "I AM FINE!"
 Stop

Now using the Cstr modifier: -

 Cls
 Print Cstr Text1
 Print Cstr Text2
 Print Cstr Text3
 Stop

Text1: Cdata "HELLO WORLD", 0
Text2: Cdata "HOW ARE YOU?", 0
Text3: Cdata "I AM FINE!", 0

8-bit Proton Compiler Development Suite.

 47

Again, note the null terminators after the ASCII text in the Cdata commands. Without these, the
microcontroller will continue to transmit data in an endless loop.

The term 'virtual string' relates to the fact that a string formed from the Cdata command cannot
(rather should not) be written too, but only read from.

Not only label names can be used with the Cstr modifier, constants, variables and expressions
can also be used that will hold the address of the Cdata 's label (a pointer). For example, the
program below uses a Word size variable to hold 2 pointers (address of a label, variable or ar-
ray) to 2 individual null terminated text strings formed by Cdata .

Example 1
' Use the Proton development board for the example
 Include "Proton_4.Inc"
 Dim Address as Word ' Pointer variable

 DelayMs 100 ' Wait for the LCD to stabilise
 Cls ' Clear the LCD

 Address = String1 ' Point address to string 1
 Print Cstr Address ' Display string 1
 Address = String2 ' Point Address to string 2
 Print Cstr Address ' Display string 2
 Stop

' Create the text to display in flash memory
String1:
 Cdata "Hello ", 0
String2:
 Cdata "World", 0

It is also possible to eliminate the Cstr modifier altogether and place the label’s name directly.
The compiler will see this as an implied Cstr and act accordingly. For example:

' Use the Proton development board for the example
 Include "Proton18_4.Inc"

 Dim CodeString1 as Code = "Hello ", 0
 Dim CodeString2 as Code = "World", 0

 Cls ' Clear the LCD

 Print CodeString1 ' Display CodeString1
 Print CodeString2 ' Display CodeString2
 Stop

8-bit Proton Compiler Development Suite.

 48

Creating and using Eeprom Memory Strings with Edata
Some 14-bit core and most 18F microcontrollers have on-board eeprom memory, and although
writing to this memory too many times is unhealthy for the device, reading this memory is both
fast and harmless. Which offers a great place for text storage and retrieval.

Combining the eeprom memory of a device with a string format, the compiler is capable of re-
ducing the overhead of printing, or transmitting large amounts of text data using a memory re-
source that is very often left unused and ignored. The Estr modifier may be used in commands
that deal with text processing i.e. Print, Serout, Hrsout, and Rsout and String handling etc.

The Estr modifier is used in conjunction with the Edata command, which is used to initially cre-
ate the string of characters: -

String1 Edata "HELLO WORLD", 0

The above line of code will create, in eeprom memory, the values that make up the ASCII text
"HELLO WORLD", at address String1 in Data memory. Note the null terminator after the ASCII
text.

To display, or transmit this string of characters, the following command structure could be used:

 Print Estr String1

The identifier that declared the address where the list of Edata values resided, now becomes
the string's name. In a large program with lots of text formatting, this type of structure can save
many bytes of valuable code space.

Try both these small programs, and you'll see that using Estr saves code space: -

First the standard way of displaying text: -

 Device 18F4520
 Cls
 Print "HELLO WORLD"
 Print "HOW ARE YOU?"
 Print "I AM FINE!"
 Stop

Now using the Estr modifier: -

Text1 Edata "HELLO WORLD", 0
Text2 Edata "HOW ARE YOU?", 0
Text3 Edata "I AM FINE!", 0

 Cls
 Print Estr Text1
 Print Estr Text2
 Print Estr Text3
 Stop

Again, note the null terminators after the ASCII text in the Edata commands. Without these, the
microcontroller will continue to transmit data in an endless loop.

8-bit Proton Compiler Development Suite.

 49

The term 'virtual string' relates to the fact that a string formed from the Edata command cannot
(rather should not) be written to often, but can be read as many times as wished without caus-
ing harm to the device.

Not only identifiers can be used with the Estr modifier, constants, variables and expressions
can also be used that will hold the address of the Edata's identifier (a pointer). For example, the
program below uses a Byte size variable to hold 2 pointers (address of a variable or array) to 2
individual null terminated text strings formed by Edata .

' Use the Proton development board for the example
 Include "Proton_4.Inc"

 Dim Address as Word ' Pointer variable
'
' Create the text to display in eeprom memory
'
String1 Edata "HELLO ", 0
String2 Edata "WORLD", 0

 DelayMs 100 ' Wait for the LCD to stabilise
 Cls ' Clear the LCD
 Address = String1 ' Point address to string 1
 Print Estr Address ' Display string 1
 Address = String2 ' Point Address to string 2
 Print Estr Address ' Display string 2
 Stop

Notes
Note that the identifying text must be located on the same line as the Edata directive or a syn-
tax error will be produced. It must also not contain a postfix colon as does a line label or it will
be treat as a line label. Think of it as an alias name to a constant.

Any Edata directives must be placed at the head of the BASIC program as is done with Sym-
bols, so that the name is recognised by the rest of the program as it is parsed. There is no need
to jump over Edata directives as you have to with Ldata or Cdata, because they do not occupy
code memory, but reside in high Data memory.

8-bit Proton Compiler Development Suite.

 50

String Comparisons
Just like any other variable type, String variables can be used within comparisons such as If-
Then, Repeat-Until, and While-Wend . In fact, it's an essential element of any programming
language. However, there are a few rules to obey because of the PICmicro's architecture.

Equal (=) or Not Equal (<>) comparisons are the only type that apply to Strings, because one
String can only ever be equal or not equal to another String. It would be unusual (unless your
using the C language) to compare if one String was greater or less than another.

So a valid comparison could look something like the lines of code below: -

 If String1 = String2 Then Print "Equal" : Else : Print "Not Equal"
or
 If String1 <> String2 Then Print "Not Equal" : Else : Print "Equal"

But as you've found out if you read the Creating Strings section, there is more than one type of
String in a PICmicro™. There is a String variable, a code memory string, and a quoted charac-
ter string .

Note that pointers to String variables are not allowed in comparisons, and a syntax error will be
produced if attempted.

Starting with the simplest of string comparisons, where one string variable is compared to an-
other string variable. The line of code would look similar to either of the two lines above.

Example 1
' Simple string variable comparison

 Device = 18F452 ' A suitable device for Strings
' Create a String capable of holding 20 characters
 Dim String1 as String * 20
 Dim String2 as String * 20 ' Create another String

 Cls
 String1 = "EGGS" ' Pre-load String String1 with the text EGGS
 String2 = "BACON" ' Load String String2 with the text BACON

 If String1 = String2 Then ' Is String1 equal to String2 ?
 Print At 1,1, " Equal " ' Yes. So display Equal on line 1 of the LCD
 Else ' Otherwise
 Print At 1,1, "Not Equal " ' Display Not Equal on line 1 of the LCD
 EndIf

 String2 = "EGGS" ' Now make the strings the same as each other
 If String1 = String2 Then ' Is String1 equal to String2 ?
 Print At 2,1, "Equal" ' Yes. So display Equal on line 2 of the LCD
 Else ' Otherwise
 Print At 2,1, "Not Equal " ' Display Not Equal on line 2 of the LCD
 EndIf
 Stop

The example above will display not Equal on line one of the LCD because String1 contains the
text "EGGS" while String2 contains the text "BACON", so they are clearly not equal.

8-bit Proton Compiler Development Suite.

 51

Line two of the LCD will show Equal because String2 is then loaded with the text "EGGS" which
is the same as String1, therefore the comparison is equal.

A similar example to the previous one uses a quoted character string instead of one of the
String variables.

Example 2
' String variable to Quoted character string comparison

 Device = 18F4520 ' A suitable device for Strings
 Declare Xtal = 16
 Declare Hserial_Baud = 9600

 Dim String1 as String * 20 ' Create a String for 20 characters

 String1 = "EGGS" ' Pre-load String String1 with the text EGGS

 If String1 = "BACON" Then ' Is String1 equal to "BACON" ?
 HrsoutLn "Equal" ' Yes. So display equal
 Else ' Otherwise…
 HrsoutLn "Not Equal" ' Display Not Equal
 EndIf

 If String1 = "EGGS" Then ' Is String1 equal to "EGGS" ?
 HrsoutLn "Equal" ' Yes. So display Equal
 Else ' Otherwise…
 HrsoutLn "Not Equal" ' Display Not Equal
 EndIf
 Stop

The example above produces exactly the same results as example1 because the first compari-
son is clearly not equal, while the second comparison is equal.

Example 3
' Use a string comparison in a Repeat-Until loop

 Device = 18F4520 ' A suitable device for Strings
 Declare Xtal = 16
 Declare Hserial_Baud = 9600

Dim SourceString as String * 20 ' Create a String
 Dim DestString as String * 20 ' Create another String
 Dim Charpos as Byte ' Character position within the strings

 Clear DestString ' Fill DestString with nulls
 SourceString = "Hello" ' Load String SourceString with the text Hello

 Repeat ' Create a loop
 '
 ' Copy SourceString into DestString one character at a time
 '

DestString[Charpos] = SourceString[Charpos]
 Inc Charpos ' Move to the next character in the strings
 Until DestString = "Hello" ' Stop when DestString is equal to the text "Hello"
 HrsoutLn DestString ' Display DestString
 Stop

8-bit Proton Compiler Development Suite.

 52

Example 4
' Compare a string variable to a string held in flash memory
 Device = 18F4520 ' A suitable device for Strings
 Declare Xtal = 16
 Declare Hserial_Baud = 9600

 Dim String1 as String * 20 ' Create a String for 20 characters

 String1 = "BACON" ' Pre-load String String1 with the text BACON
 If CodeString= "BACON" Then ' Is CodeString equal to "BACON"?
 HrsoutLn " Equal" ' Yes. So display Equal
 Else ' Otherwise…
 HrsoutLn "Not Equal" ' Display Not Equal
 EndIf

 String1 = "EGGS" ' Pre-load String String1 with the text EGGS
 If String1 = CodeString Then ' Is String1 equal to CodeString?
 HrsoutLn " Equal" ' Yes. So display Equal
 Else ' Otherwise…
 HrsoutLn "Not Equal" ' Display Not Equal
 EndIf
 Stop

CodeString:

Cdata "EGGS", 0

Example 5
' String comparisons using Select-Case
 Device = 18F4520 ' A suitable device for Strings
 Declare Xtal = 16
 Declare Hserial_Baud = 9600

Dim String1 as String * 20 ' Create a String for 20 characters

 String1 = "EGGS" ' Pre-load String String1 with the text EGGS
 Select String1 ' Start comparing the string
 Case "EGGS" ' Is String1 equal to EGGS?
 HrsoutLn "Found EGGS" ' Yes. So display it
 Case "BACON" ' Is String1 equal to BACON?
 HrsoutLn "Found BACON" ' Yes. So display it
 Case "COFFEE" ' Is String1 equal to COFFEE?
 HrsoutLn "Found COFFEE" ' Yes. So display it
 Case Else ' Default to...
 HrsoutLn "No Match" ' Displaying no match
 EndSelect
 Stop

See also : Creating and using Strings
 Creating and using Virtual Strings with Cdata
 Cdata, If-Then-Else-EndIf, Repeat-Until
 Select-Case, While-Wend, Do-Loop.

8-bit Proton Compiler Development Suite.

 53

Relational Operators
Relational operators are used to compare two values. The result can be used to make a deci-
sion regarding program flow.

The list below shows the valid relational operators accepted by the compiler:

Operator Relation Expression Type
 = Equality X = Y
 == Equality X == Y (Same as above Equality)
 <> Inequality X <> Y
 < Less than X < Y
 > Greater than X > Y
 <= Less than or Equal to X <= Y
 >= Greater than or Equal to X >= Y

See also : If-Then-Else-EndIf, Repeat-Until, Select-Case, While-Wend.

8-bit Proton Compiler Development Suite.

 54

Boolean Logic Operators
The If-Then-Else-EndIf, While-Wend, and Repeat-Until conditions now support the logical
operators and and or.

The operators and and or join the results of two conditions to produce a single true/false result.
and and or work the same as they do in everyday speech. Run the example below once with
and (as shown) and again, substituting or for and: -

 Dim Var1 as Byte
 Dim Var2 as Byte

 Cls
 Var1 = 5
 Var2 = 9
 If Var1 = 5 and Var2 = 10 Then Result_True
 Stop

Result_True:
 Print "Result Is True."
 Stop

The condition "Var1 = 5 and Var2 = 10" is not true. Although Var1 is 5, Var2 is not 10. and
works just as it does in plain English, both conditions must be true for the statement to be true.
or also works in a familiar way; if one or the other or both conditions are true, then the state-
ment is true. xor (short for exclusive-or) may not be familiar, but it does have an English coun-
terpart: If one condition or the other (but not both) is true, then the statement is true.

Parenthesis (or rather the lack of it!).
Every compiler has its quirky rules, and the Proton compiler is no exception. One of its quirks
means that parenthesis is not supported in a Boolean condition, or indeed with any of the If-
Then-Else-EndIf, While-Wend, and Repeat-Until conditions. Parenthesis in an expression
within a condition is allowed however. So, for example, the expression: -

 If (Var1 + 3) = 10 Then do something. Is allowed.
but: -
 If((Var1 + 3) = 10) Then do something. Is not allowed.

The boolean operands do have a precedence within a condition. The and operand has the
highest priority, then the or, then the xor. This means that a condition such as: -

 If Var1 = 2 and Var2 = 3 or Var3 = 4 Then do something

Will compare Var1 and Var2 to see if the and condition is true. It will then see if the or condition
is true, based on the result of the and condition.

Then operand always required.
The Proton compiler relies heavily on the Then part. Therefore, if the Then part of a condition
is left out of the code listing, a Syntax Error will be produced.

8-bit Proton Compiler Development Suite.

 55

Math Operators
The Proton compiler performs all math operations in full hierarchal order. Which means that
there is precedence to the operators. For example, multiplies and divides are performed before
adds and subtracts. To ensure the operations are carried out in the correct order use parenthe-
sis to group the operations: -

 A = ((B - C) * (D + E)) / F

All math operations are signed or unsigned depending on the variable type used, and per-
formed with 16, or 32-bit or floating point precision, again, depending on the variable types and
constant values used within the expression. The operators supported are: -

Standard operators
Addition '+' Adds variables and/or constants.
Subtraction '-' Subtracts variables and/or constants.
Multiply '*' Multiplies variables and/or constants.
Multiply High '**' Returns the high 16 bits of an unsigned 16-bit integer multiply.
Multiply Middle '*/' Returns the middle 16 bits of an unsigned 16-bit integer multiply.
Divide '/' Divides variables and/or constants.
Modulus '//'. Returns the remainder after dividing one integer value by another.

Logical operators
Bitwise and '&' Returns the logical AND of two values.
Bitwise or '|' Returns the logical OR of two values.
Bitwise xor '^' Returns the logical XOR of two values.
Bitwise Shift Left '<<' Shifts the bits of a value left a specified number of places.
Bitwise Shift Right '>>' Shifts the bits of a value right a specified number of places.
Bitwise Complement '~' Reverses the bits in a variable.
Bitwise Reverse '@' Reverses the order of the lowest bits in a value.

Proton operators
Abs. Returns the absolute value of a signed number.
Dcd. 2 n -power decoder of a four-bit value.
Decimal Digit Extract '?' Returns the specified decimal digit of a positive value.
Div32. 15-bit x 31 bit unsigned divide. (For PBP compatibility only)
Exp Return the exponential function of a floating point value.
Isqr Returns the Square Root of an integer value.
Ncd. Priority encoder of a 16-bit value.
Pow Computes a variable to the power of another.
Sqr Returns the Square Root of a floating point value.

Trigonometry functions
Acos Returns the Arc Cosine of a floating point value in radians.
Asin Returns the Arc Sine of a floating point value in radians.
Atan Returns the Arc Tangent of a floating point value in radians.
Cos Returns the Cosine of a floating point value in radians.
ISin Returns the Sine of an integer value in radians.
ICos Returns the Cosine of an integer value in radians.
Log Returns the Natural Log of a floating point value.
Log10 Returns the Log of a floating point value.
Sin Returns the Sine of a floating point value in radians.
Tan Returns the Tangent of a floating point value in radians.

8-bit Proton Compiler Development Suite.

 56

Add '+'

Syntax
Assignment Variable = Variable + Variable

Overview
Adds variables and/or constants, returning an unsigned or signed 8, 16, 32-bit or floating point
result.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Addition works exactly as you would expect with signed and unsigned integers as well as float-
ing point.

 Dim Value1 as Word
 Dim Value2 as Word

 Value1 = 1575
 Value2 = 976
 Value1 = Value1 + Value2 ' Add the numbers.
 HrsoutLn Dec Value1 ' Display the result

' 32-bit addition
 Dim Value1 as Word
 Dim Value2 as Dword

 Value1 = 1575
 Value2 = 9763647
 Value2 = Value2 + Value1 ' Add the numbers.
 HrsoutLn Dec Value1 ' Display the result

Subtract '-'

Syntax
Assignment Variable = Variable - Variable

Overview
Subtracts variables and/or constants, returning an unsigned or signed 8, 16, 32-bit or floating
point result.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Subtract works exactly as you would expect with signed and unsigned integers as well as float-
ing point.

 Dim Value1 as Word
 Dim Value2 as Word

 Value1 = 1000
 Value2 = 999
 Value1 = Value1 - Value2 ' Subtract the numbers.
 HrsoutLn Dec Value1 ' Display the result

8-bit Proton Compiler Development Suite.

 57

' 32-bit subtraction
 Dim Value1 as Word
 Dim Value2 as Dword

 Value1 = 1575
 Value2 = 9763647
 Value2 = Value2 - Value1 ' Subtract the numbers.
 HrsoutLn Dec Value1 ' Display the result

' 32-bit signed subtraction
 Dim Value1 as SDword
 Dim Value2 as SDword

 Value1 = 1575
 Value2 = 9763647
 Value1 = Value1 - Value2 ' Subtract the numbers.
 HrsoutLn SDec Value1 ' Display the result

Multiply '*'

Syntax
Assignment Variable = Variable * Variable

Overview
Multiplies variables and/or constants, returning an unsigned or signed 8, 16, 32-bit or floating
point result.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Multiply works exactly as you would expect with signed or unsigned integers from -2147483648
to +2147483647 as well as floating point. If the result of multiplication is larger than
2147483647 when using 32-bit variables, the excess bit will be lost.

 Dim Value1 as Word
 Dim Value2 as Word

 Value1 = 1000
 Value2 = 19
 Value1 = Value1 * Value2 ' Multiply Value1 by Value2.
 HrsoutLn Dec Value1 ' Display the result

' 32-bit multiplication
 Dim Value1 as Word
 Dim Value2 as Dword

Value1 = 100
 Value2 = 10000
 Value2 = Value2 * Value1 ' Multiply the numbers.
 HrsoutLn Dec Value1 ' Display the result

8-bit Proton Compiler Development Suite.

 58

Multiply High '**'

Syntax
Assignment Variable = Variable ** Variable

Overview
Multiplies 8 or 16-bit unsigned variables and/or constants, returning the high 16 bits of the re-
sult.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

When multiplying two 16-bit values, the result can be as large as 32 bits. Since the largest vari-
able supported by the compiler is 16-bits, the highest 16 bits of a 32-bit multiplication result are
normally lost. The ** (double-star) operand produces these upper 16 bits.

For example, suppose 65000 ($FDE8) is multiplied by itself. The result is 4,225,000,000 or
$FBD46240. The * (star, or normal multiplication) instruction would return the lower 16 bits,
$6240. The ** instruction returns $FBD4.

 Dim Value1 as Word
 Dim Value2 as Word

 Value1 = $FDE8
 Value2 = Value1 ** Value1 ' Multiply $FDE8 by itself
 HrsoutLn Hex Value2 ' Display the high 16 bits.

Notes.
This operand enables compatibility with BASIC STAMP code, and melab's compiler code, but is
rather obsolete considering the 32-bit capabilities of the Proton compiler.

Multiply Middle '*/'

Syntax
Assignment Variable = Variable */ Variable

Overview
Multiplies unsigned variables and/or constants, returning the middle 16 bits of the 32-bit result.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

The Multiply Middle operator (*/) has the effect of multiplying a value by a whole number and a
fraction. The whole number is the upper byte of the multiplier (0 to 255 whole units) and the
fraction is the lower byte of the multiplier (0 to 255 units of 1/256 each). The */ operand allows a
workaround for the compiler's integer-only math.

Suppose we are required to multiply a value by 1.5. The whole number, and therefore the up-
per byte of the multiplier, would be 1, and the lower byte (fractional part) would be 128, since
128/256 = 0.5. It may be clearer to express the */ multiplier in Hex as $0180, since hex keeps
the contents of the upper and lower bytes separate. Here's an example: -

8-bit Proton Compiler Development Suite.

 59

 Dim Value1 as Word
 Value1 = 100
 Value1 = Value1 */ $0180 ' Multiply by 1.5 [1 + (128/256)]
 HrsoutLn Dec Value1 ' Display result (150).

To calculate constants for use with the */ instruction, put the whole number portion in the upper
byte, then use the following formula for the value of the lower byte: -

 int(fraction * 256)

For example, take Pi (3.14159). The upper byte would be $03 (the whole number), and the
lower would be int(0.14159 * 256) = 36 ($24). So the constant Pi for use with */ would be
$0324. This isn't a perfect match for Pi, but the error is only about 0.1%.

Notes.
This operand enables compatibility with BASIC STAMP code, and melab's compiler code, but is
rather obsolete considering the 32-bit capabilities of the Proton compiler.

Divide '/'

Syntax
Assignment Variable = Variable / Variable

Overview
Divides variables and/or constants, returning an unsigned or signed 8, 16, 32-bit or floating
point result.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

The Divide operator (/) works exactly as you would expect with signed or unsigned integers
from -2147483648 to +2147483647 as well as floating point.

 Dim Value1 as Word
 Dim Value2 as Word

 Value1 = 1000
 Value2 = 5
 Value1 = Value1 / Value2 ' Divide the numbers.
 HrsoutLn Dec Value1 ' Display the result (200).

' 32-bit division
 Dim Value1 as Word
 Dim Value2 as Dword

 Value1 = 100
 Value2 = 10000
 Value2 = Value2 / Value1 ' Divide the numbers.
 HrsoutLn Dec Value1 ' Display the result

8-bit Proton Compiler Development Suite.

 60

Integer Modulus '//'

Syntax
Assignment Variable = Variable // Variable

Overview
Return the remainder left after dividing one unsigned or signed value by another.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Some division problems don't have a whole-number result; they return a whole number and a
fraction. For example, 1000/6 = 166.667. Integer math doesn't allow the fractional portion of the
result, so 1000/6 = 166. However, 166 is an approximate answer, because 166*6 = 996. The
division operation left a remainder of 4. The // returns the remainder of a given division opera-
tion. Numbers that divide evenly, such as 1000/5, produce a remainder of 0: -

 Dim Value1 as Word
 Dim Value2 as Word
 Value1 = 1000
 Value2 = 6
 Value1 = Value1 // Value2 ' Get remainder of Value1 / Value2.
 HrsoutLn Dec Value1 ' Display the result (4).

' 32-bit modulus
 Dim Value1 as Word
 Dim Value2 as Dword
 Value1 = 100
 Value2 = 99999
 Value2 = Value2 // Value1 ' Mod the numbers.
 HrsoutLn Dec Value1 ' Display the result

The modulus operator does not operate with floating point values or variables.

8-bit Proton Compiler Development Suite.

 61

Logical and '&'
The And operator (&) returns the bitwise and of two values. Each bit of the values is subject to
the following logic: -

 0 and 0 = 0
 0 and 1 = 0
 1 and 0 = 0
 1 and 1 = 1

The result returned by & will contain 1s in only those bit positions in which both input values
contain 1s: -

 Dim Value1 as Byte
 Dim Value2 as Byte
 Dim MyResult as Byte

 Value1 = %00001111
 Value2 = %10101101
 MyResult = Value1 & Value2
 HrsoutLn Bin MyResult ' Display and result (%00001101)

or

 HrsoutLn Bin (%00001111 & %10101101) ' Display and result (%00001101)

Bitwise operations are not permissible with floating point values or variables.

Logical or '|'
The Or operator (|) returns the bitwise or of two values. Each bit of the values is subject to the
following logic: -

 0 or 0 = 0
 0 or 1 = 1
 1 or 0 = 1
 1 or 1 = 1

The result returned by | will contain 1s in any bit positions in which one or the other (or both)
input values contain 1s: -

 Dim Value1 as Byte
 Dim Value2 as Byte
 Dim MyResult as Byte

 Value1 = %00001111
 Value2 = %10101001
 MyResult = Value1 | Value2
 HrsoutLn Bin MyResult ' Display or result (%10101111)

or

 HrsoutLn Bin (%00001111 | %10101001) ' Display or result (%10101111)

Bitwise operations are not permissible with floating point values or variables.

8-bit Proton Compiler Development Suite.

 62

Logical Xor '^'
The Xor operator (^) returns the bitwise xor of two values. Each bit of the values is subject to
the following logic: -

 0 xor 0 = 0
 0 xor 1 = 1
 1 xor 0 = 1
 1 xor 1 = 0

The result returned by ^ will contain 1s in any bit positions in which one or the other (but not
both) input values contain 1s: -

 Dim Value1 as Byte
 Dim Value2 as Byte
 Dim MyResult as Byte

 Value1 = %00001111
 Value2 = %10101001
 MyResult = Value1 ^ Value2
 HrsoutLn Bin MyResult ' Display xor result (%10100110)

or

 HrsoutLn Bin (%00001111 ^ %10101001) ' Display xor result (%10100110)

Bitwise operations are not permissible with floating point values or variables.

Bitwise Shift Left '<<'
Shifts the bits of a value to the left a specified number of places. Bits shifted off the left end of a
number are lost; bits shifted into the right end of the number are 0s. Shifting the bits of a value
left n number of times also has the effect of multiplying that number by two to the nth power.

For example 100 << 3 (shift the bits of the decimal number 100 left three places) is equivalent
to 100 * 2^3.

 Dim Value1 as Word
 Dim MyLoop as Byte

 Value1 = %1111111111111111
 For MyLoop = 1 to 16 ' Repeat with MyLoop = 1 to 16.
 HrsoutLn Bin Value1 << MyLoop ' Shift Value1 left MyLoop places.
 Next

Bitwise operations are not permissible with floating point values or variables. All bit shifts are
unsigned, regardless of the variable type used.

8-bit Proton Compiler Development Suite.

 63

Bitwise Shift Right '>>'
Shifts the bits of a variable to the right a specified number of places. Bits shifted off the right
end of a number are lost; bits shifted into the left end of the number are 0s. Shifting the bits of a
value right n number of times also has the effect of dividing that number by two to the nth
power.

For example 100 >> 3 (shift the bits of the decimal number 100 right three places) is equivalent
to 100 / 2^3.

 Dim Value1 as Word
 Dim MyLoop as Byte

 Value1 = %1111111111111111
 For MyLoop = 1 to 16 ' Repeat with MyLoop = 1 to 16.
 HrsoutLn Bin Value1 >> MyLoop ' Shift Value1 right MyLoop places.
 Next

Complement '~'
The Complement operator (~) inverts the bits of a value. Each bit that contains a 1 is changed
to 0 and each bit containing 0 is changed to 1. This process is also known as a "bitwise not".

 Dim Value1 as Word
 Dim Value2 as Word

 Value2 = %1111000011110000
 Value1 = ~Value2 ' Complement Value2.
 Print Bin16 Value1 ' Display the result

Complementing can be carried out with all variable types except Floats. Attempting to comple-
ment a floating point variable will produce a syntax error. All bit shifts are unsigned, regardless
of the variable type used.

Bitwise Reverse '@'

Reverses the order of the lowest bits in a value. The number of bits to be reversed is from 1 to
32. Its syntax is: -

 MyVar = %10101100 @ 4 ' Sets MyVar to %10100011
or

Dim MyDword as Dword
' Sets MyDword to %10101010000000001111111110100011

MyDword = %10101010000000001111111110101100 @ 4

Decimal Digit extract '?'
In this form, the ? operator is compatible with the BASIC Stamp, and the melab's PicBASIC Pro
compiler. It returns the specified decimal digit of a 16-bit positive value. Digits are numbered
from 0 (the rightmost digit) to 4 (the leftmost digit of a 16- bit number; 0 to 65535). Example: -

 MyWord = 9742
 HrsoutLn MyWord ? 2 ' Display digit 2 (7)
 For MyLoop = 0 to 4
 HrsoutLn MyWord ? MyLoop ' Display digits 0 through 4 of 9742.
 Next

Note
Decimal Digit Extract does not support Float type variables.

8-bit Proton Compiler Development Suite.

 64

Abs

Syntax
Assignment Variable = Abs(Variable)

Overview
Return the absolute value of a constant, variable or expression.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

32-bit Example
 Device = 18F25K22 ' Choose the device
 Declare Xtal = 16 ' Choose the oscillator frequency used
 Declare Hserial_Baud = 9600 ' Choose the Baud rate for HrsoutLn

 Dim Dwd1 as Dword ' Create an unsigned Dword variable
 Dim Dwd2 as Dword ' Create an unsigned Dword variable

 Dwd1 = -1234567 ' Load Dwd1 with value -1234567
 Dwd2 = Abs(Dwd1) ' Extract the absolute value from Dwd1
 HrsoutLn Dec Dwd2 ' Display the result, which is 1234567
 Stop

Floating Point example
 Device = 18F25K22 ' Choose the device
 Declare Xtal = 16 ' Choose the oscillator frequency used
 Declare Hserial_Baud = 9600 ' Choose the Baud rate for HrsoutLn

 Dim Flp1 as Float ' Create a Float variable
 Dim Flp2 as Float ' Create a Float variable

 Flp1 = -1234567 ' Load Flp1 with value -1234567
 Flp2 = Abs(Flp1) ' Extract the absolute value from Flp1
 HrsoutLn Dec Flp2 ' Display the result, which is 1234567
 Stop

Note
When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Abs(MyVar1)) + MyVar2

8-bit Proton Compiler Development Suite.

 65

fAbs

Syntax
Assignment Variable = fAbs(Variable)

Overview
Return the absolute value of a constant, variable or expression as floating point.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Floating Point example
 Device = 18F25K22 ' Choose the device
 Declare Xtal = 16 ' Choose the oscillator frequency used
 Declare Hserial_Baud = 9600 ' Choose the Baud rate for HrsoutLn

 Dim Flp1 as Float ' Create a Float variable
 Dim Flp2 as Float ' Create a Float variable

 Flp1 = -1234567 ' Load Flp1 with value -1234567
 Flp2 = fAbs(Flp1) ' Extract the absolute value from Flp1
 HrsoutLn Dec Flp2 ' Display the result, which is 1234567
 Stop

Note
When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (fAbs(MyVar1)) + MyVar2

8-bit Proton Compiler Development Suite.

 66

Acos

Syntax
Assignment Variable = Acos(Variable)

Overview
Deduce the Arc Cosine of a floating point value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Arc Cosine (Inverse Co-
sine) extracted. The value expected and returned by the floating point Acos is in radians. The
value must be in the range of -1 to +1

Example
 Device = 18F25K22 ' Choose the device
 Declare Xtal = 16 ' Choose the oscillator frequency used
 Declare Hserial_Baud = 9600 ' Choose the Baud rate for HrsoutLn

Dim Floatin as Float ' Holds the value to Acos
 Dim Floatout as Float ' Holds the result of the Acos

 Floatin = 0.8 ' Load the variable
 Floatout = Acos(Floatin) ' Extract the Acos of the value
 HrsoutLn Dec Floatout ' Display the result
 Stop

Notes
Acos is not implemented with 12, or 14-bit core devices, however, with the extra functionality,
and more linear memory offered by the 18F devices, full 32-bit floating point Arc Cosine is im-
plemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk
of the microcontroller’s code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Acos(MyVar1)) + MyVar2

8-bit Proton Compiler Development Suite.

 67

Asin

Syntax
Assignment Variable = Asin(Variable)

Overview
Deduce the Arc Sine of a floating point value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Arc Sine (Inverse Sine) ex-
tracted. The value expected and returned by Asin is in radians. The value must be in the range
of -1 to +1

Example
 Device = 18F25K22 ' Choose the device
 Declare Xtal = 16 ' Choose the oscillator frequency used
 Declare Hserial_Baud = 9600 ' Choose the Baud rate for HrsoutLn

Dim Floatin as Float ' Holds the value to Asin
 Dim Floatout as Float ' Holds the result of the Asin

 Floatin = 0.8 ' Load the variable
 Floatout = Asin(Floatin) ' Extract the Asin of the value
 HrsoutLn Dec Floatout ' Display the result
 Stop

Notes
Asin is not implemented with 12, or 14-bit core devices, however, with the extra functionality,
and more linear memory offered by the 18F devices, full 32-bit floating point Arc Sine is imple-
mented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk
of the microcontroller’s code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Asin(MyVar1)) + MyVar2

8-bit Proton Compiler Development Suite.

 68

Atan

Syntax
Assignment Variable = Atan(Variable)

Overview
Deduce the Arc Tangent of a floating point value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Arc Tangent (Inverse Tan-
gent) extracted. The value expected and returned by the floating point Atan is in radians.

Example
 Device = 18F25K22 ' Choose the device
 Declare Xtal = 16 ' Choose the oscillator frequency used
 Declare Hserial_Baud = 9600 ' Choose the Baud rate for HrsoutLn

 Dim Floatin as Float ' Holds the value to Atan
 Dim Floatout as Float ' Holds the result of the Atan

 Floatin = 1 ' Load the variable
 Floatout = Atan(Floatin) ' Extract the Atan of the value
 HrsoutLn Dec Floatout ' Display the result
 Stop

Notes
Atan is not implemented with 12, or 14-bit core devices, however, with the extra functionality,
and more linear memory offered by the 18F devices, full 32-bit floating point Arc Tangent is im-
plemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk
of the microcontroller’s code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Atan(MyVar1)) + MyVar2

8-bit Proton Compiler Development Suite.

 69

Cos

Syntax
Assignment Variable = Cos(Variable)

Overview
Deduce the Cosine of a floating point value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Cosine extracted. The
value expected and returned by Cos is in radians.

Example
 Device = 18F25K22 ' Choose the device
 Declare Xtal = 16 ' Choose the oscillator frequency used
 Declare Hserial_Baud = 9600 ' Choose the Baud rate for HrsoutLn

Dim Floatin as Float ' Holds the value to Cos with
 Dim Floatout as Float ' Holds the result of the Cos

 Floatin = 123 ' Load the variable
 Floatout = Cos(Floatin) ' Extract the Cos of the value
 HrsoutLn Dec Floatout ' Display the result
 Stop

Notes
With 12, and 14-bit core devices, Cos returns the 8-bit cosine of a value, compatible with the
BASIC Stamp syntax. The result is in two's complement form (i.e. -127 to 127). Cos starts with
a value in binary radians, 0 to 255, instead of the customary 0 to 359 degrees.

However, with the extra functionality, and more linear memory offered by the 18F devices, full
32-bit floating point Cosine is implemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk
of the microcontroller’s code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Cos(MyVar1)) + MyVar2

8-bit Proton Compiler Development Suite.

 70

Dcd
2 n -power decoder of a four-bit value. Dcd accepts a value from 0 to 15, and returns a 16-bit
number with that bit number set to 1. For example: -

 Wrd1= Dcd 12 ' Set bit-12.
 HrsoutLn Bin16 Wrd1 ' Display result (%0001000000000000)

Dcd does not support Dword, or Float type variables. Therefore the highest value obtainable is
65535.

8-bit Proton Compiler Development Suite.

 71

Exp

Syntax
Assignment Variable = Exp(Variable)

Overview
Deduce the exponential function of a floating point value. This is e to the power of value where
e is the base of natural logarithms. Exp 1 is 2.7182818.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Example
 Device = 18F25K22 ' Choose the device
 Declare Xtal = 16 ' Choose the oscillator frequency used
 Declare Hserial_Baud = 9600 ' Choose the Baud rate for HrsoutLn

 Dim Floatin as Float ' Holds the value to Exp with
 Dim Floatout as Float ' Holds the result of the Exp

 Floatin = 1 ' Load the variable
 Floatout = Exp(Floatin) ' Extract the Exp of the value
 HrsoutLn Dec Floatout ' Display the result
 Stop

Notes
Exp is not implemented with 12, or 14-bit core devices, however, with the extra functionality,
and more linear memory offered by the 18F devices, full 32-bit floating point exponentials are
implemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk
of the microcontroller’s code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Exp(MyVar1)) + MyVar2

8-bit Proton Compiler Development Suite.

 72

fRound

Syntax
Assignment Variable = fRound(Variable)

Overview
Round a value, variable or expression to the nearest integer.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Example
 Device = 18F25K22 ' Choose the device
 Declare Xtal = 16 ' Choose the oscillator frequency used
 Declare Hserial_Baud = 9600 ' Choose the Baud rate for HrsoutLn

 Dim Floatin as Float ' Holds the value to round
 Dim Dwordout as Dword ' Holds the result of fRound

 Floatin = 1.9 ' Load the variable
 Dwordout = fRound(Floatin) ' Round to the nearest integer value
 HrsoutLn Dec Dwordout ' Display the integer result
 Stop

Notes
Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk
of the microcontroller’s code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (fRound(MyVar1)) + MyVar2

8-bit Proton Compiler Development Suite.

 73

ISin

Syntax
Assignment Variable = ISin(Variable)

Overview
Deduce the integer Sine of an integer value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Sine extracted. The value
expected and returned by ISin is in decimal radians (0 to 255).

Example

Device = 18F25K22 ' Choose the device
 Declare Xtal = 16 ' Choose the oscillator frequency used
 Declare Hserial_Baud = 9600 ' Choose the Baud rate for HrsoutLn

 Dim ByteIn as Byte ' Holds the value to ISin
 Dim ByteOut as Byte ' Holds the result of the ISin

 ByteIn = 123 ' Load the variable
 ByteOut = ISin(ByteIn) ' Extract the integer Sin of the value
 HrsoutLn Dec ByteOut ' Display the result
 Stop

Note
When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (ISin(MyVar1)) + MyVar2

8-bit Proton Compiler Development Suite.

 74

ICos

Syntax
Assignment Variable = ICos(Variable)

Overview
Deduce the integer Cosine of an integer value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Cosine extracted. The
value expected and returned by ICos is in decimal radians (0 to 255).

Example
 Device = 18F25K22 ' Choose the device
 Declare Xtal = 16 ' Choose the oscillator frequency used
 Declare Hserial_Baud = 9600 ' Choose the Baud rate for HrsoutLn

 Dim ByteIn as Byte ' Holds the value to ICos
 Dim ByteOut as Byte ' Holds the result of the Icos

 ByteIn = 123 ' Load the variable
 ByteOut = ICos(ByteIn) ' Extract the integer Cosine of the value
 HrsoutLn Dec ByteOut ' Display the result
 Stop

Note
When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (ICos(MyVar1)) + MyVar2

8-bit Proton Compiler Development Suite.

 75

Isqr

Syntax
Assignment Variable = ISqr(Variable)

Overview
Deduce the integer Square Root of an integer value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Square Root extracted.

Example
 Device = 18F25K22 ' Choose the device
 Declare Xtal = 16 ' Choose the oscillator frequency used
 Declare Hserial_Baud = 9600 ' Choose the Baud rate for HrsoutLn

 Dim ByteIn as Byte ' Holds the value to ISqr
 Dim ByteOut as Byte ' Holds the result of the Isqr

 ByteIn = 123 ' Load the variable
 ByteOut = ISqr(ByteIn) ' Extract the integer square root of the value
 HrsoutLn Dec ByteOut ' Display the result
 Stop

Note
When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Isqr(MyVar1)) + MyVar2

8-bit Proton Compiler Development Suite.

 76

Log

Syntax
Assignment Variable = Log(Variable)

Overview
Deduce the Natural Logarithm a floating point value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the natural logarithm ex-
tracted.

Example
 Device = 18F25K22 ' Choose the device
 Declare Xtal = 16 ' Choose the oscillator frequency used
 Declare Hserial_Baud = 9600 ' Choose the Baud rate for HrsoutLn

 Dim Floatin as Float ' Holds the value to Log with
 Dim Floatout as Float ' Holds the result of the Log

 Floatin = 1 ' Load the variable
 Floatout = Log(Floatin) ' Extract the Log of the value
 HrsoutLn Dec Floatout ' Display the result
 Stop

Notes
Log is not implemented with 12, or 14-bit core devices, however, with the extra functionality,
and more linear memory offered by the 18F devices, full 32-bit floating point Natural Logarithms
are implemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk
of the microcontroller’s code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Log(MyVar1)) + MyVar2

8-bit Proton Compiler Development Suite.

 77

Log10

Syntax
Assignment Variable = Log10(Variable)

Overview
Deduce the Logarithm a floating point value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Logarithm extracted.

Example
 Device = 18F25K22 ' Choose the device
 Declare Xtal = 16 ' Choose the oscillator frequency used
 Declare Hserial_Baud = 9600 ' Choose the Baud rate for HrsoutLn

 Dim Floatin as Float ' Holds the value to Log10 with
 Dim Floatout as Float ' Holds the result of the Log10

 Floatin = 1 ' Load the variable
 Floatout = Log10(Floatin) ' Extract the Log10 of the value
 HrsoutLn Dec Floatout ' Display the result
 Stop

Notes
Log10 is not implemented with 12, or 14-bit core devices, however, with the extra functionality,
and more linear memory offered by the 18F devices, full 32-bit floating point logarithms are im-
plemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk
of the microcontroller’s code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Log10(MyVar1)) + MyVar2

8-bit Proton Compiler Development Suite.

 78

Ncd
Priority encoder of a 16-bit value. Ncd takes a 16-bit value, finds the highest bit containing a 1
and returns the bit position plus one (1 through 16). If no bit is set, the input value is 0. Ncd re-
turns 0. Ncd is a fast way to get an answer to the question "what is the largest power of two that
this value is greater than or equal to?" The answer that Ncd returns will be that power, plus
one. Example: -

 Wrd1= %1101 ' Highest bit set is bit-3.
 HrsoutLn Dec Ncd Wrd1 ' Display the Ncd of Wrd1(4).

Ncd does not support Dword, or Float type variables.

8-bit Proton Compiler Development Suite.

 79

Pow

Syntax
Assignment Variable = Pow(Variable, Pow Variable)

Overview
Computes Variable to the power of Pow Variable.

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.
Pow Variable can be a constant, variable or expression.

Example
 Device = 18F25K22 ' Choose the device
 Declare Xtal = 16 ' Choose the oscillator frequency used
 Declare Hserial_Baud = 9600 ' Choose the Baud rate for HrsoutLn

 Dim PowOf as Float
 Dim Floatin as Float ' Holds the value to Pow with
 Dim Floatout as Float ' Holds the result of the Pow

 PowOf= 10
 Floatin = 2 ' Load the variable
 Floatout = Pow(Floatin,PowOf) ' Extract the Pow of the value
 HrsoutLn Dec Floatout ' Display the result
 Stop

Notes
Pow is not implemented with 12, or 14-bit core devices, however, with the extra functionality,
and more linear memory offered by the 18F devices, full 32-bit floating point power of is imple-
mented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk
of the microcontroller’s code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Pow(MyVar1, MyVar2)) + MyVar3

8-bit Proton Compiler Development Suite.

 80

Sin

Syntax
Assignment Variable = Sin(Variable)

Overview
Deduce the Sine of a floating point value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Sine extracted. The value
expected and returned by Sin is in radians.

Example
 Device = 18F25K22 ' Choose the device
 Declare Xtal = 16 ' Choose the oscillator frequency used
 Declare Hserial_Baud = 9600 ' Choose the Baud rate for HrsoutLn

 Dim Floatin as Float ' Holds the value to Sin
 Dim Floatout as Float ' Holds the result of the Sin

 Floatin = 123 ' Load the variable
 Floatout = Sin(Floatin) ' Extract the Sin of the value
 HrsoutLn Dec Floatout ' Display the result
 Stop

Notes
With 12, and 14-bit core devices, Sin returns the 8-bit sine of a value, compatible with the BA-
SIC Stamp syntax. The result is in two's complement form (i.e. -127 to 127). Sin starts with a
value in binary radians, 0 to 255, instead of the customary 0 to 359 degrees.

However, with the extra functionality, and more linear memory offered by the 18F devices, full
32-bit floating point Sine is implemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk
of the microcontroller’s code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Sin(MyVar1)) + MyVar2

8-bit Proton Compiler Development Suite.

 81

Sqr

Syntax
Assignment Variable = Sqr(Variable)

Overview
Deduce the Square Root of a floating point value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Squrare Root extracted.

Notes
With 12 and 14-bit core devices, Sqr returns an integer square root of a value, compatible with
the BASIC Stamp syntax. Remember that most square roots have a fractional part that the
compiler discards in doing its integer-only math. Therefore it computes the square root of 100
as 10 (correct), but the square root of 99 as 9 (the actual is close to 9.95). Example: -

 Var1 = Sqr Var2

or

 HrsoutLn Sqr 100 ' Display square root of 100 (10).
 HrsoutLn Sqr 99 ' Display of square root of 99 (9 due to truncation)

However, with the extra functionality, and more linear memory offered by the 18F devices, full
32-bit floating point Sqr is implemented.

Example
 Device = 18F25K22 ' Choose the device
 Declare Xtal = 16 ' Choose the oscillator frequency used
 Declare Hserial_Baud = 9600 ' Choose the Baud rate for HrsoutLn

 Dim Floatin as Float ' Holds the value to Sqr
 Dim Floatout as Float ' Holds the result of the Sqr

 Floatin = 600 ' Load the variable
 Floatout = Sqr(Floatin) ' Extract the Sqr of the value
 HrsoutLn Dec Floatout ' Display the result
 Stop

Notes
Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk
of the microcontroller’s code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Sqr(MyVar1)) + MyVar2

8-bit Proton Compiler Development Suite.

 82

Tan

Syntax
Assignment Variable = Tan(Variable)

Overview
Deduce the Tangent of a floating point value

Operands
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the Tangent extracted. The
value expected and returned by the floating point Tan is in radians.

Example
 Device = 18F25K22 ' Choose the device
 Declare Xtal = 16 ' Choose the oscillator frequency used
 Declare Hserial_Baud = 9600 ' Choose the Baud rate for HrsoutLn

 Dim Floatin as Float ' Holds the value to Tan
 Dim Floatout as Float ' Holds the result of the Tan

 Floatin = 1 ' Load the variable
 Floatout = Tan(Floatin) ' Extract the Tan of the value
 HrsoutLn Dec Floatout ' Display the result
 Stop

Notes
Tan is not implemented with 12, or 14-bit core devices, however, with the extra functionality,
and more linear memory offered by the 18F devices, full 32-bit floating point tangent is imple-
mented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk
of the microcontroller’s code memory is used with a single operator. This also means that float-
ing point trigonometry is comparatively slow to operate.

When implementing trigonometry, or other built in, functions within an expression, always wrap
them in parenthesis, otherwise the parser may consider the extra operands as part of the trigo-
nometry parameter and produce an incorrect result. For example:

 MyAssignment = (Tan(MyVar1)) + MyVar2

8-bit Proton Compiler Development Suite.

 83

Div32

In order to make the Proton compiler more compatible with code produced for the melab's
PicBASIC Pro compiler, the Div32 operator has been added. The melab's compiler's multiply
operand operates as a 16-bit x 16-bit multiply, thus producing a 32-bit result. However, since
the compiler only supports a maximum variable size of 16 bits (Word), access to the result had
to happen in 2 stages: -

 Var = Var1 * Var2 returns the lower 16 bits of the multiply

while…

 Var = Var1 ** Var2 returns the upper 16 bits of the multiply

There was no way to access the 32-bit result as a valid single value.

In many cases it is desirable to be able to divide the entire 32-bit result of the multiply by a 16-
bit number for averaging, or scaling. Div32 is actually limited to dividing a 31-bit unsigned inte-
ger (0 - 2147483647) by a 15-bit unsigned integer (0 - 32767). This ought to be sufficient in
most situations.

Because the melab's compiler only allows a maximum variable size of 16 bits (0 - 65535),
Div32 relies on the fact that a multiply was performed just prior to the Div32 command, and
that the internal compiler variables still contain the 32-bit result of the multiply. No other opera-
tion may occur between the multiply and the Div32 or the internal variables may be altered,
thus destroying the 32-bit multiplication result.

The following example demonstrates the operation of Div32:-

 Device = 18F25K22 ' Choose the device
 Declare Xtal = 16 ' Choose the oscillator frequency used
 Declare Hserial_Baud = 9600 ' Choose the Baud rate for HrsoutLn

 Dim Wrd1 as Word
 Dim Wrd2 as Word
 Dim Wrd3 as Word
 Dim Fake as Word ' Must be a Word type variable for result

 Wrd2 = 300
 Wrd3 = 1000

 Fake = Wrd2 * Wrd3 ' Operators ** or */ could also be used instead
 Wrd1= Div32 100
 HrsoutLn Dec Wrd1

The above program assigns Wrd2 the value 300 and Wrd3 the value 1000. When multiplied to-
gether, the result is 300000. However, this number exceeds the 16-bit word size of a variable
(65535). Therefore, the dummy variable, Fake, contains only the lower 16 bits of the result.
Div32 uses the compiler's internal (System) variables as the operands.

Note.
This operand enables a certain compatibility with melab's compiler code, but is rather obsolete
considering the 32-bit, and floating point capabilities of the Proton compiler.

8-bit Proton Compiler Development Suite.

 84

Compiler Commands and Directives

Peripheral and Interfacing Commands
Adin Read the on-board Analogue to Digital Converter peripheral.
Bstart Send a Start condition to the I2C bus.
Bstop Send a Stop condition to the I2C bus.
Brestart Send a Restart condition to the I2C bus.
BusAck Send an Acknowledge condition to the I2C bus.
BusNack Send an Not Acknowledge condition to the I2C bus.
Busin Read bytes from an I2C device.
Busout Write bytes to an I2C device.
Button Detect and debounce a key press.
ClearPin Clear a pin of a port using a variable as the pin number.
Counter Count the number of pulses occurring on a pin.
DTMFout Produce a DTMF Touch Tone note.
Freqout Generate one or two tones, of differing or the same frequencies.
GetPin Read a pin from a port using a variable as the index
HbStart Send a Start condition to the I2C bus using the MSSP module.
HbStop Send a Stop condition to the I2C bus using the MSSP module.
HbRestart Send a Restart condition to the I2C bus using the MSSP module.
HbusAck Send an Ack condition to the I2C bus using the MSSP module.
HbusNack Send a Not Ack condition to the I2C bus using the MSSP module.
Hbusin Read from an I2C device using the MSSP module.
Hbusout Write to an I2C device using the MSSP module.
High Make a pin or port high.
Hpwm Generate Pwm signals using the device’s CCP peripherals.
I2Cin Read bytes from an I2C device with user definable SDA\SCL lines.
I2Cout Write bytes to an I2C device with user definable SDA\SCL lines.
Inkey Scan a matrix keypad.
Input Make a pin or port an input.
Output Make a pin or port an output.
Oread Receive data from a device using the Dallas 1-wire protocol.
Owrite Send data to a device using the Dallas 1-wire protocol.
Low Make a pin or port low.
Pot Read a potentiometer on specified pin using an RC method.
PulseIn Measure the pulse width on a pin.
PulseOut Generate a pulse from a pin.
Pwm Output a pulse width modulated pulse train to pin.
RCin Measure a pulse width on a pin.
Servo Control a servo motor.
SetPin Set a pin of a port using a variable as the pin number.
Shin Synchronous serial input. i.e. SPI
Shout Synchronous serial output. i.e. SPI
Sound Generate a tone or white-noise from a specified pin.
Sound2 Generate 2 tones from 2 separate pins.
Toggle Reverse the state of a port's bit.
USBinit Initialise the USB on devices that contain a USB peripheral.
USBin Receive data via a USB endpoint on devices that contain a USB peripheral.
USBout Transmit data via a USB endpoint on devices that contain a USB peripheral.
Xin Receive data using the X10 protocol.
Xout Transmit data using the X10 protocol.

8-bit Proton Compiler Development Suite.

 85

LCD Commands
Box Draw a square on a graphic LCD.
Circle Draw a circle on a graphic LCD.
Cls Clear the LCD.
Cursor Position the cursor on the LCD.
LCDread Read a single byte from a Graphic LCD.
LCDwrite Write bytes to a Graphic LCD.
Line Draw a line in any direction on a graphic LCD.
LineTo Draw a straight line in any direction on a graphic LCD, starting from the

previous Line command's end position.
Pixel Read a single pixel from a Graphic LCD.
Plot Set a single pixel on a Graphic LCD.
Print Display characters on an LCD.
Toshiba_Command Send a command to a Toshiba T6963 graphic LCD.
Toshiba_UDG Create User Defined Graphics for Toshiba T6963 graphic LCD.
UnPlot Clear a single pixel on a Graphic LCD.

Async Serial Commands
Hrsin Receive data from the serial port on devices that contain a USART.
Hrsout Transmit data from the serial port on devices that contain a USART.
HrsoutLn Transmit data from the serial port on devices that contain a USART

and transmit a terminator value or values.
Hserin Receive data from the serial port on devices that contain a USART.
Hserout Transmit data from the serial port on devices that contain a USART.
HseroutLn Transmit data from the serial port on devices that contain a USART
 and transmit a terminator value or values.
Hrsin2 Same as Hrsin but using a 2nd USART if available.
Hrsout2 Same as Hrsout but using a 2nd USART if available.
Hrsout2Ln Same as HrsoutLn but using a 2nd USART if available.
Hserin2 Same as Hserin but using a 2nd USART if available.
Hserout2 Same as Hserout but using a 2nd USART if available.
Hserout2Ln Same as HseroutLn but using a 2nd USART if available.
Hrsin3 Same as Hrsin but using a 3rd USART if available.
Hrsout3 Same as Hrsout but using a 3rd USART if available.
Hrsout3Ln Same as HrsoutLn but using a 3rd USART if available.
Hserin3 Same as Hserin but using a 3rd USART if available.
Hserout3 Same as Hserout but using a 3rd USART if available.
Hserout3Ln Same as HseroutLn but using a 3rd USART if available.
Hrsin4 Same as Hrsin but using a 4th USART if available.
Hrsout4 Same as Hrsout but using a 4th USART if available.
Hrsout4Ln Same as HrsoutLn but using a 4th USART if available.
Hserin4 Same as Hserin but using a 4th USART if available.
Hserout4 Same as Hserout but using a 4th USART if available.
Hserout4Ln Same as HseroutLn but using a 4th USART if available.
Rsin Asynchronous serial input from a fixed pin and baud rate.
Rsout Asynchronous serial output to a fixed pin and baud rate.
RsoutLn Asynchronous serial output to a fixed pin and baud rate,

and transmit a terminator value or values.
Serin Receive asynchronous serial data (i.e. RS232 data).
Serout Transmit asynchronous serial data (i.e. RS232 data).

8-bit Proton Compiler Development Suite.

 86

Comparison and Loop Commands
Branch Computed Goto (equiv. to On..Goto).
BranchL Branch out of page (long Branch).
Break Exit a loop prematurely.
Continue Cause the next iteration of the enclosing loop to begin.
Do...Loop Execute a block of instructions until a condition is true.
For…To…Next…Step Repeatedly execute statements.
If..Then..ElseIf..Else..EndIf Conditionally execute statements.
On Gosub Call a Subroutine based on an Index value. For 18F devices only.
On Goto Jump to an address in code memory based on an Index value.
 (Primarily for smaller devices)
On GotoL Jump to an address in code memory based on an Index value.

(Primarily for larger devices)
Repeat...Until Execute a block of instructions until a condition is true.
Select..Case..EndSelect Conditionally run blocks of code.
While…Wend Execute statements while condition is true.

General BASIC Commands
AddressOf Get the address of a variable or label.
Call Call an assembly language subroutine.
Clear Place a variable or bit in a low state, or clear all RAM area.
ClearBit Clear a bit of a variable, using a variable index.
Dec Decrement a variable.
DelayCs Delay with a 1 instruction cycle resolution.
DelayMs Delay milliseconds.
DelayUs Delay microseconds.
Dig Return the value of a decimal digit.
GetBit Examine a bit of a variable, using a variable index.
Gosub Call a BASIC subroutine at a specified label.
Goto Continue execution at a specified label.
Inc Increment a variable.
LoadBit Set or Clear a bit of a variable, using a variable index.
Random Generate a pseudo-random number.
Return Continue at the statement following the last Gosub.
Rol Rotate a variable left, with or without the microcontroller’s Carry flag.
Ror Rotate a variable right, with or without the microcontroller’s Carry flag.
Seed Seed the random number generator, to obtain a more random result.
Set Place a variable or bit in a high state.
SetBit Set a bit of a variable, using a variable index.
Sleep Power down the processor for a period of time.
Snooze Power down the processor for short period of time.
Stop Stop program execution.
Swap Exchange the values of two variables.

8-bit Proton Compiler Development Suite.

 87

RAM String Variable Commands
Left$ Extract n amount of characters from the left of a String.
Mid$ Extract characters from a String beginning at n characters from the left.
Right$ Extract n amount of characters from the right of a String.
Str Load a byte array with values.
Strn Create a null terminated byte array.
Str$ Convert the contents of a variable to a null terminated String.
ToLower Convert the characters in a String to lower case.
ToUpper Convert the characters in a String to upper case.
Val Convert a null terminated String to an integer value.

Non-Volatile Data (Flash memory) Commands
cPtr8, cPtr16, cPtr32 Indirectly read flash memory using a variable as the address.
Cdata Place information into flash memory. For access by Cread.
Cread Read data from flash memory.
Cread8, Cread16, Cread32 Read a single or multi-byte value from an Cdata table
 with more efficiency than Cread.
Cwrite Write data to flash memory.
Edata Define initial contents of on-board eeprom.
Eread Read a value from on-board eeprom.
Ewrite Write a value to on-board eeprom.
Ldata Place information into flash memory. For access by Lread.
LookDown Search a constant lookdown table for a value.
LookDownL Search constant or variable lookdown table for a value.
LookUp Fetch a constant value from a lookup table.
LookUpL Fetch a constant or variable value from lookup table.
Lread Read a value from an Ldata table.
Lread8, Lread16, Lread32 Read a single or multi-byte value from an Ldata table

with more efficiency than Lread.

Directives
Asm-EndAsm Insert assembly language code section.
Config Set or Reset programming fuse configurations.
Declare Adjust library routine parameters.
Device Choose the type of PICmicro™ to compile for.
Dim Create a variable.
Disable Disable software interrupts previously Enabled.
Enable Enable software interrupts previously Disabled.
End Stop execution of the BASIC program.
Include Load a file into the source code.
On Interrupt Execute a subroutine using a Software interrupt

(On Interrupt is Legacy. Not Recommended).
On_Hardware_Interrupt Point to the subroutine that a hardware interrupt will jump too.
On_Low_Interrupt Point to a subroutine for a Low Priority interrupt on an 18F device.
Org Set Program Origin.
Resume Re-enable software interrupts and return.
Set_OSCCAL Calibrate the internal oscillator found on some PICmicro™ devices.
Sub-EndSub Create a subroutine unit
Symbol Create a constant.

8-bit Proton Compiler Development Suite.

 88

ADin

Syntax
Variable = ADin channel number

Overview
Read the value from the on-board Analogue to Digital Converter.

Parameters
Variable is a user defined variable.
Channel number can be a constant or a variable expression.

Example
' Read the value from AN0 of the ADC and place in variable ADC_Result.
 Device = 18F25K20
 Declare Xtal = 16

Declare Hserial_Baud = 9600 ' Set the Baud rate for HrsoutLn
Declare Adin_Res = 10 ' 10-bit ADC result required

 Declare Adin_Tad = FRC ' RC oscillator chosen for the ADC
Declare Adin_Stime = 50 ' Allow 50us sample time

Dim ADC_Result as Word ' Create a word variable to hold the ADC value

 ADCON1 = %10000000 ' Set analogue input on PORTA.0

ADC_Result = Adin 0 ' Place the conversion into variable ADC_Result
 HrsoutLn Dec ADC_Result ' Transmit the decimal ADC value

ADin Declares
There are three Declare directives for use with ADin. These are: -

Declare Adin_Res 8, 10, or 12.
Sets the number of bits in the result.

If this Declare is not used, then the default is the resolution of the PICmicro™ type used. For
example, the 16F87X range will result in a resolution of 10-bits, along with the 18F devices,
while the standard PICmicro™ types will produce an 8-bit result. Using the above Declare al-
lows an 8-bit result to be obtained from the 10-bit PICmicro™ types, but not 10-bits from the 8-
bit types.

Declare Adin_Tad 2_FOSC, 8_FOSC, 32_FOSC, 64_FOSC, or FRC.
Sets the ADC's clock source.

All compatible PICs have four options for the clock source used by the ADC. 2_FOSC,
8_FOSC, 32_FOSC, and 64_FOSC are ratios of the external oscillator, while FRC is the
PICmicro's internal RC oscillator. Instead of using the predefined names for the clock source,
values from 0 to 3 may be used. These reflect the settings of bits 0-1 in register ADCON0.

Care must be used when issuing this Declare, as the wrong type of clock source may result in
poor resolution, or no conversion at all. If in doubt use FRC which will produce a slight reduc-
tion in resolution and conversion speed, but is guaranteed to work first time, every time. FRC is
the default setting if the Declare is not issued in the BASIC listing.

Declare Adin_Stime 0 to 65535 microseconds (us).
Allows the internal capacitors to fully charge before a sample is taken. This may be a value
from 0 to 65535 microseconds (us).

8-bit Proton Compiler Development Suite.

 89

A value too small may result in a reduction of resolution. While too large a value will result in
poor conversion speeds without any extra resolution being attained.

A typical value for Adin_Stime is 50 to 100. This allows adequate charge time without loosing
too much conversion speed. But experimentation will produce the right value for your particular
requirement. The default value if the Declare is not used in the BASIC listing is 50.

Notes
Before the Adin command may be used, the appropriate Tris register must be manipulated to
set the desired pin to an input. Also, the ADCON1 register must be set according to which pin is
required as an analogue input, and in some cases, to configure the format of the conversion's
result. See the numerous Microchip datasheets for more information on these registers and
how to set them up correctly for the specific device used.

If multiple conversions are being implemented, then a small delay should be used after the
Adin command. This allows the ADC's internal capacitors to discharge fully: -

Do
ADC_Result = Adin 3 ' Place the conversion into variable ADC_Result

 DelayUs 2 ' Wait for 2us
 Loop ' Read the ADC forever

The circuit below shows a typical setup for a simple ADC test.

See also : Rcin, Pot.

RB7

VDD

RB6
RB5
RB4
RB3
RB2
RB1
RB0

RA4
RA3
RA2
RA1
RA0

MCLR

OSC1

OSC2

VSS

20

PIC16F876

C4
15pF

C2
0.1uF

C1
10uF

C3
15pF

Regulated 5 Volts

18

RC0
RC1
RC2
RC3
RC4
RC5
RC6
RC7

VSS

RA5

20MHz
Crystal

0v

R1
4.7k

17

16

15

14

13

12

11

28

27

26

25

24

23

22

21

7

6

5

4

3

2

19 8

10

9

1

To
Serial
LCD

VR1
100k
linear

8-bit Proton Compiler Development Suite.

 90

Asm..EndAsm

Syntax
 Asm
 assembler mnemonics
 EndAsm

 or

 @ assembler mnemonic

Overview
Incorporate in-line assembler in the BASIC code. The mnemonics are passed directly to the
assembler without the compiler interfering in any way. This allows a great deal of flexibility that
cannot always be achieved using BASIC commands alone.

When the Asm directive is found within the BASIC program, the RAM banks are reset before
the assembler code is operated upon. The same happens when the EndAsm directive is
found, in that the RAM banks are reset upon leaving the assembly code. However, this may not
always be required and can waste precious code memory.

Placing a dash after Asm or EndAsm will remove the RAM reset mnemonics.

Asm-
EndAsm

Only remove the RAM resets if you are confident enough to do so, as PICmicro™ devices have
fragmented RAM.

The compiler also allows simple assembler mnemonics to be used within the BASIC program
without wrapping them in Asm-EndAsm, however, the constants, labels, and variables used
must be valid BASIC types:

Dim MyVar As Byte

Movlw 10
Movwf MyVar

Note. It is important to remember that mnemonics within the BASIC program will not manipu-
late RAM banks or Flash pages, as the high level commands do, so always us with caution,
and understand the RAM and flash fragmentation of the device being used.

8-bit Proton Compiler Development Suite.

 91

Box

Syntax
Box Set_Clear, Xpos Start, Ypos Start, Size

Overview
Draw a square on a graphic LCD.

Parameters
Set_Clear may be a constant or variable that determines if the square will set or clear the pix-
els. A value of 1 will set the pixels and draw a square, while a value of 0 will clear any pixels
and erase a square .
Xpos Start may be a constant or variable that holds the X position for the centre of the square.
Can be a value from 0 to 127.
Ypos Start may be a constant or variable that holds the Y position for the centre of the square.
Can be a value from 0 to 63.
Size may be a constant or variable that holds the Size of the square (in pixels). Can be a value
from 0 to 255.

Example
' Draw a square at position 63,32 with a size of 20 pixels
' on a KS0108 graphic LCD
'
 Include "Proton_G4.int"

 Dim Xpos as Byte
 Dim Ypos as Byte
 Dim Size as Byte
 Dim SetClr as Byte

 DelayMs 100 ' Wait for the LCD to stabilise
 Cls ' Clear the LCD
 Xpos = 63
 Ypos = 32
 Size = 20
 SetClr = 1
 Box SetClr, Xpos, Ypos, Radius
 Stop

Notes
Because of the aspect ratio of the pixels on the graphic LCD (approx 1.5 times higher than
wide) the square will appear elongated.

See Also : Circle, Line, LineTo, Plot, UnPlot.

8-bit Proton Compiler Development Suite.

 92

Branch

Syntax
Branch Index, [Label1 {,...Labeln }]

Overview
Cause the program to jump to different locations based on a variable index. On a PICmicro™
device with only one page of memory.

Parameters
Index is a constant, variable, or expression, that specifies the address to branch to.
Label1,...Labeln are valid labels that specify where to branch to. A maximum of 255 labels
may be placed between the square brackets, 256 if using an 18F device.

Example

Device = 16F84
Dim Index as Byte

Start:
Index = 2 ' Assign Index a value of 2
Branch Index,[Lab_0, Lab_1, Lab_2] ' Jump to Lab_2 because Index = 2

Lab_0:
Index = 2 ' Index now equals 2

 Goto Start
Lab_1:

Index = 0 ' Index now equals 0
 Goto Start
Lab_2:

Index = 1 ' Index now equals 1
 Goto Start

The above example we first assign the index variable a value of 2, then we define our labels.
Since the first position is considered 0 and the variable index equals 2 the Branch command
will cause the program to jump to the third label in the brackets [Lab_2].

Notes
Branch operates the same as On x Goto. It's useful when you want to organise a structure
such as: -

 If Var1 = 0 Then Goto Lab_0 ' Var1 =0: go to label "Lab_0"
 If Var1 = 1 Then Goto Lab_1 ' Var1 =1: go to label "Lab_1"
 If Var1 = 2 Then Goto Lab_2 ' Var1 =2: go to label "Lab_2"

You can use Branch to organise this into a single statement: -

 Branch Var1, [Lab_0, Lab_1, Lab_2]

This works exactly the same as the above If...Then example. If the value is not in range (in this
case if Var1 is greater than 2), Branch does nothing. The program continues with the next in-
struction..

The Branch command is primarily for use with devices that have one page of memory (0-
2047). If larger devices are used and you suspect that the branch label will be over a page
boundary, use the BranchL command instead.

8-bit Proton Compiler Development Suite.

 93

BranchL

Syntax
BranchL Index, [Label1 {,...Labeln }]

Overview
Cause the program to jump to different locations based on a variable index. On a PICmicro™
device with more than one page of memory.

Parameters
Index is a constant, variable, or expression, that specifies the address to branch to.
Label1,...Labeln are valid labels that specify where to branch to. A maximum of 127 labels
may be placed between the square brackets, 256 if using an 18F device.

Example

Device = 16F1829
Dim Index as Byte

Start:
Index = 2 ' Assign Index a value of 2

' Jump to label 2 (Label_2) because Index = 2
BranchL Index,[Label_0, Label_1, Label_2]

Label_0:
Index = 2 ' Index now equals 2
Goto Start

Label_1:
Index = 0 ' Index now equals 0
Goto Start

Label_2:
Index = 1 ' Index now equals 1
Goto Start

The above example we first assign the index variable a value of 2, then we define our labels.
Since the first position is considered 0 and the variable index equals 2 the BranchL command
will cause the program to jump to the third label in the brackets [Label_2].

Notes
The BranchL command is mainly for use with PICmicro™ devices that have more than one
page of memory (greater than 2048). It may also be used on any PICmicro™ device, but does
produce code that is larger than Branch.

See also : Branch

8-bit Proton Compiler Development Suite.

 94

Break

Syntax
Break

Overview
Exit a For…Next, While…Wend, Repeat…Until or Do…Loop condition prematurely.

Example 1
' Break out of a For-Next loop when the count reaches 10

 Include "Proton_4.Inc" ' Demo using Proton Dev board
 Dim Var1 as Byte

 DelayMs 100 ' Wait for the LCD to stabilise
 Cls ' Clear the LCD
 For Var1 = 0 to 39 ' Create a loop of 40 revolutions
 Print At 1,1,Dec Var1 ' Print the revolutions on the LCD
 If Var1 = 10 Then Break ' Break out of the loop when Var1 = 10
 DelayMs 200 ' Delay so we can see what's happening
 Next ' Close the For-Next loop
 Print At 2,1,"Exited At ", Dec Var1 ' Display value when loop was broke
 Stop

Example 2
' Break out of a Repeat-Until loop when the count reaches 10

 Include "Proton_4.Inc" ' Demo using Proton Dev board
 Dim Var1 as Byte

 DelayMs 100 ' Wait for the LCD to stabilise
 Cls ' Clear the LCD
 Var1 = 0
 Repeat ' Create a loop
 Print At 1,1,Dec Var1 ' Print the revolutions on the LCD
 If Var1 = 10 Then Break ' Break out of the loop when Var1 = 10
 DelayMs 200 ' Delay so we can see what's happening
 Inc Var1
 Until Var1 > 39 ' Close the loop after 40 revolutions
 Print At 2,1,"Exited At ", Dec Var1 ' Display value when loop was broke
 Stop

8-bit Proton Compiler Development Suite.

 95

Example 3
' Break out of a While-Wend loop when the count reaches 10

 Include "Proton_4.Inc" ' Demo using Proton Dev board
 Dim Var1 as Byte
 DelayMs 100 ' Wait for the LCD to stabilise
 Cls ' Clear the LCD
 Var1 = 0
 While Var1 < 40 ' Create a loop of 40 revolutions
 Print At 1,1,Dec Var1 ' Print the revolutions on the LCD
 If Var1 = 10 Then Break ' Break out of the loop when Var1 = 10
 DelayMs 200 ' Delay so we can see what's happening
 Inc Var1
 Wend ' Close the loop
 Print At 2,1,"Exited At ", Dec Var1 ' Display value when loop was broke
 Stop

Notes
The Break command is similar to a Goto but operates internally. When the Break command is
encountered, the compiler will force a jump to the loop's internal exit label.

If the Break command is used outside of For…Next, Repeat…Until, While…Wend or
Do…Loop, an error will be produced.

If the Break command is used within a Select...EndSelect construct while this is itself inside a
loop, only the Select...EndSelect will be exited, not the loop.

See also : Continue, For…Next, While…Wend, Repeat…Until.

8-bit Proton Compiler Development Suite.

 96

Bstart

Syntax
Bstart

Overview
Send a Start condition to the I2C bus.

Notes
Because of the subtleties involved in interfacing to some I2C devices, the compiler's standard
Busin, and Busout commands were found lacking somewhat. Therefore, individual pieces of
the I2C protocol may be used in association with the new structure of Busin, and Busout. See
relevant sections for more information.

Example
' Interface to a 24LC32 serial eeprom
 Device = 16F1829
 Dim MyLoop as Byte
 Dim Array[10] as Byte
'
' Transmit bytes to the I2C bus
'
 Bstart ' Send a Start condition
 Busout %10100000 ' Target an eeprom, and send a Write command
 Busout 0 ' Send the High Byte of the address
 Busout 0 ' Send the Low Byte of the address
 For MyLoop = 48 to 57 ' Create a loop containing ASCII 0 to 9
 Busout MyLoop ' Send the value of MyLoop to the eeprom
 Next ' Close the loop
 Bstop ' Send a Stop condition
 DelayMs 10 ' Wait for the data to be entered into eeprom matrix
'
' Receive bytes from the I2C bus
'
 Bstart ' Send a Start condition
 Busout %10100000 ' Target an eeprom, and send a Write command
 Busout 0 ' Send the High Byte of the address
 Busout 0 ' Send the Low Byte of the address
 Brestart ' Send a Restart condition
 Busout %10100001 ' Target an eeprom, and send a Read command
 For MyLoop = 0 to 9 ' Create a loop
 Array[MyLoop] = Busin ' Load an array with bytes received
 If MyLoop = 9 Then Bstop : Else : BusAck ' Ack or Stop ?
 Next ' Close the loop
 Print At 1,1, Str Array ' Display the Array as a String
 Stop

See also: Bstop, Brestart, BusAck, Busin, Busout, HbStart, HbRestart, HbusAck,

Hbusin, Hbusout.

8-bit Proton Compiler Development Suite.

 97

Bstop

Syntax
Bstop

Overview
Send a Stop condition to the I2C bus.

Brestart

Syntax
Brestart

Overview
Send a Restart condition to the I2C bus.

BusAck

Syntax
BusAck

Overview
Send an Acknowledge condition to the I2C bus.

BusNack

Syntax
BusNack

Overview
Send a Not Acknowledge condition to the I2C bus.

See also: Bstop, Bstart, Brestart, Busin, Busout, HbStart, HbRestart, HbusAck,

Hbusin, Hbusout.

8-bit Proton Compiler Development Suite.

 98

Busin

Syntax
Variable = Busin Control, { Address }

or

Variable = Busin

or

Busin Control, { Address }, [Variable {, Variable…}]

or

Busin Variable

Overview
Receives a value from the I2C bus, and places it into variable/s. If versions two or four (see
above) are used, then No Acknowledge, or Stop is sent after the data. Versions one and three
first send the control and optional address.

Parameters
Variable is a user defined variable or constant.
Control may be a constant value or a Byte sized variable expression.
Address may be a constant value or a variable expression.

The four variations of the Busin command may be used in the same BASIC program. The sec-
ond and fourth types are useful for simply receiving a single byte from the bus, and must be
used in conjunction with one of the low level commands. i.e. Bstart, Brestart, BusAck, or
Bstop. The first, and third types may be used to receive several values and designate each to
a separate variable, or variable type.

The Busin command operates as an I2C master without using the microcontroller's MSSP pe-
ripheral, and may be used to interface with any device that complies with the 2-wire I2C proto-
col.

The most significant 7-bits of control byte contain the control code and the slave address of the
device being interfaced with. Bit-0 is the flag that indicates whether a read or write command is
being implemented.

For example, if we were interfacing to an external eeprom such as the 24LC32, the control
code would be %10100001 or $A1. The most significant 4-bits (1010) are the eeprom's unique
slave address. Bits 1 to 3 reflect the three address pins of the eeprom. And bit-0 is set to signify
that we wish to read from the eeprom. Note that this bit is automatically set by the Busin com-
mand, regardless of its initial setting.

Example
' Receive a byte from the I2C bus and place it into variable Var1.

 Dim Var1 as Byte ' We'll only read 8-bits
 Dim Address as Word ' 16-bit address required
 Symbol Control %10100001 ' Target an eeprom

8-bit Proton Compiler Development Suite.

 99

Address = 20 ' Read the value at address 20
Var1 = Busin Control, Address ' Read the byte from the eeprom

or

Busin Control, Address, [Var1] ' Read the byte from the eeprom

Address, is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in
this position, the size of address is dictated by the size of the variable used (Byte, Word, or
Dword). In the case of the previous eeprom interfacing, the 24LC32 eeprom requires a 16-bit
address. While the smaller types require an 8-bit address. Make sure you assign the right size
address for the device interfaced with, or you may not achieve the results you intended.

The value received from the bus depends on the size of the variables used, except for variation
three, which only receives a Byte (8-bits). For example: -

 Dim Wrd as Word ' Create a Word size variable
 Wrd = Busin Control, Address

Will receive a 16-bit value from the bus. While: -

 Dim Var1 as Byte ' Create a Byte size variable
 Var1 = Busin Control, Address

Will receive an 8-bit value from the bus.

Using the third variation of the Busin command allows differing variable assignments. For ex-
ample: -

 Dim Var1 as Byte
 Dim Wrd as Word
 Busin Control, Address, [Var1, Wrd]

Will receive two values from the bus, the first being an 8-bit value dictated by the size of vari-
able Var1 which has been declared as a byte. And a 16-bit value, this time dictated by the size
of the variable Wrd which has been declared as a word. Of course, Bit type variables may also
be used, but in most cases these are not of any practical use as they still take up a byte within
the eeprom.

The second and fourth variations allow all the subtleties of the I2C protocol to be exploited, as
each operation may be broken down into its constituent parts. It is advisable to refer to the
datasheet of the device being interfaced to fully understand its requirements. See section on
Bstart, Brestart, BusAck, or Bstop, for example code.

Declares
See Busout for declare explanations.

Notes
When the Busout command is used, the appropriate SDA and SCL Port and Pin are automati-
cally setup as inputs, and outputs.

Because the I2C protocol calls for an open-collector interface, pull-up resistors are required on
both the SDA and SCL lines. Values of 1KΩ to 4.7KΩ will suffice.

8-bit Proton Compiler Development Suite.

 100

You may imagine that it's limiting having a fixed set of pins for the I2C interface, but you must
remember that several different devices may be attached to a single bus, each having a unique
slave address. Which means there is usually no need to use up more than two pins on the
PICmicro™, in order to interface to many devices.

Str modifier with Busin
Using the Str modifier allows variations three and four of the Busin command to transfer the
bytes received from the I2C bus directly into a byte array. If the amount of received characters
is not enough to fill the entire array, then a formatter may be placed after the array's name,
which will only receive characters until the specified length is reached. An example of each is
shown below: -

 Dim Array[10] as Byte ' Define an array of 10 bytes
 Dim Address as Byte ' Create a word sized variable
 Busin %10100000, Address, [Str Array] ' Load data into all the array
'
' Load data into only the first 5 elements of the array
'
 Busin %10100000, Address, [Str Array\5]
 Bstart ' Send a Start condition
 Busout %10100000 ' Target an eeprom, and send a WRITE command
 Busout 0 ' Send the HighByte of the address
 Busout 0 ' Send the LowByte of the address
 Brestart ' Send a Restart condition
 Busout %10100001 ' Target an eeprom, and send a Read command
 Busin Str Array ' Load all the array with bytes received
 Bstop ' Send a Stop condition

An alternative ending to the above example is: -

 Busin Str Array\5 ' Load data into only the first 5 elements of the array
 Bstop ' Send a Stop condition

See also : BusAck, Bstart, Brestart, Bstop, Busout, HbStart, HbRestart, HbusAck,

Hbusin, Hbusout.

8-bit Proton Compiler Development Suite.

 101

Busout

Syntax
Busout Control, { Address }, [Variable {, Variable…}]

or

Busout Variable

Overview
Transmit a value to the I2C bus, by first sending the control and optional address out of the
clock pin (SCL), and data pin (SDA). Or alternatively, if only one operator is included after the
Busout command, a single value will be transmitted, along with an Ack reception.

Parameters
Variable is a user defined variable or constant.
Control may be a constant value or a Byte sized variable expression.
Address may be a constant, variable, or expression.

The Busout command operates as an I2C master using a bit-bashed (software only) method,
and may be used to interface with any device that complies with the 2-wire I2C protocol.

The most significant 7-bits of control byte contain the control code and the slave address of the
device being interfaced with. Bit-0 is the flag that indicates whether a read or write command is
being implemented.

For example, if we were interfacing to an external eeprom such as the 24LC32, the control
code would be %10100000 or $A0. The most significant 4-bits (1010) are the eeprom's unique
slave address. Bits 1 to 3 reflect the three address pins of the eeprom. And Bit-0 is clear to sig-
nify that we wish to write to the eeprom. Note that this bit is automatically cleared by the Bu-
sout command, regardless of its initial value.

Example
' Send a byte to the I2C bus.
 Dim Var1 as Byte ' We'll only read 8-bits
 Dim Address as Word ' 16-bit address required
 Symbol Control = %10100000 ' Target an eeprom

 Address = 20 ' Write to address 20
 Var1 = 200 ' The value place into address 20
 Busout Control, Address, [Var1] ' Send the byte to the eeprom
 DelayMs 10 ' Allow time for allocation of byte

Address, is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in
this position, the size of address is dictated by the size of the variable used (Byte, Word or
Dword). In the case of the above eeprom interfacing, the 24LC32 eeprom requires a 16-bit ad-
dress. While the smaller types require an 8-bit address. Make sure you assign the right size
address for the device interfaced with, or you may not achieve the results you intended.

8-bit Proton Compiler Development Suite.

 102

The value sent to the bus depends on the size of the variables used. For example: -

 Dim Wrd as Word ' Create a Word size variable
 Busout Control, Address, [Wrd]

Will send a 16-bit value to the bus. While: -

 Dim Var1 as Byte ' Create a Byte size variable
 Busout Control, Address, [Var1]

Will send an 8-bit value to the bus.

Using more than one variable within the brackets allows differing variable sizes to be sent. For
example: -

 Dim Var1 as Byte
 Dim Wrd as Word
 Busout Control, Address, [Var1, Wrd]

Will send two values to the bus, the first being an 8-bit value dictated by the size of variable
Var1 which has been declared as a byte. And a 16-bit value, this time dictated by the size of
the variable Wrd which has been declared as a word. Of course, Bit type variables may also be
used, but in most cases these are not of any practical use as they still take up a byte within the
eeprom.

A string of characters can also be transmitted, by enclosing them in quotes: -

 Busout Control, Address, ["Hello World", Var1, Wrd]

Using the second variation of the Busout command, necessitates using the low level com-
mands i.e. Bstart, Brestart, BusAck, or Bstop.

Using the Busout command with only one value after it, sends a byte of data to the I2C bus,
and returns holding the Acknowledge reception. This acknowledge indicates whether the data
has been received by the slave device.

The Ack reception is returned in the PICmicro's Carry flag, which is STATUS.0, and also Sys-
tem variable PP4.0. A value of zero indicates that the data was received correctly, while a one
indicates that the data was not received, or that the slave device has sent a NAck return. You
must read and understand the datasheet for the device being interfacing to, before the Ack re-
turn can be used successfully. An code snippet is shown below: -

' Transmit a byte to a 24LC32 serial eeprom
 Dim PP4 as Byte System ' Bring the system variable into the BASIC program
 Bstart ' Send a Start condition
 Busout %10100000 ' Target an eeprom, and send a Write command
 Busout 0 ' Send the High Byte of the address
 Busout 0 ' Send the Low Byte of the address
 Busout "A" ' Send the value 65 to the bus
 If PP4.0 = 1 Then Goto Not_Received ' Has Ack been received OK?
 Bstop ' Send a Stop condition
 DelayMs 10 ' Wait for the data to be entered into eeprom

8-bit Proton Compiler Development Suite.

 103

Str modifier with Busout.
The Str modifier is used for transmitting a string of bytes from a byte array variable. A string is
a set of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3
would be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A
byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string 1,2,3 would be stored in a byte
array containing three bytes (elements).

Below is an example that sends four bytes from an array: -

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 MyArray [0] = "A" ' Load the first 4 bytes of the array
 MyArray [1] = "B" ' With the data to send
 MyArray [2] = "C"
 MyArray [3] = "D"
 Busout %10100000, Address, [Str MyArray\4] ' Send 4-byte string.

Note that we use the optional \n argument of Str. If we didn't specify this, the program would try
to keep sending characters until all 10 bytes of the array were transmitted. Since we do not
wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 4 bytes.

The above example may also be written as: -

 Dim MyArray [10] as Byte ' Create a 10-byte array.
 Str MyArray = "ABCD" ' Load the first 4 bytes of the array
 Bstart ' Send a Start condition
 Busout %10100000 ' Target an eeprom, and send a Write command
 Busout 0 ' Send the HighByte of the address
 Busout 0 ' Send the LowByte of the address
 Busout Str MyArray\4 ' Send 4-byte string.
 Bstop ' Send a Stop condition

The above example, has exactly the same function as the previous one. The only differences
are that the string is now constructed using the Str as a command instead of a modifier, and
the low-level Hbus commands have been used.

Declares
There are three Declare directives for use with Busout.
These are: -

Declare SDA_Pin Port . Pin
Declares the port and pin used for the data line (SDA). This may be any valid port on the
PICmicro™. If this declare is not issued in the BASIC program, then the default Port and Pin is
PORTA.0

Declare SCL_Pin Port . Pin
Declares the port and pin used for the clock line (SCL). This may be any valid port on the
PICmicro™. If this declare is not issued in the BASIC program, then the default Port and Pin is
PORTA.1

These declares, as is the case with all the Declares, may only be issued once in any single
program, as they setup the I2C library code at design time.

8-bit Proton Compiler Development Suite.

 104

Declare Slow_Bus On - Off or 1 - 0
Slows the bus speed when using an oscillator higher than 4MHz.

The standard speed for the I2C bus is 100KHz. Some devices use a higher bus speed of
400KHz. If you use an 8MHz or higher oscillator, the bus speed may exceed the devices specs,
which will result in intermittent transactions, or in some cases, no transactions at all. Therefore,
use this Declare if you are not sure of the device's spec. The datasheet for the device used will
inform you of its bus speed.

Notes
When the Busout command is used, the appropriate SDA and SCL Port and Pin are automati-
cally setup as inputs, and outputs.

Because the I2C protocol calls for an open-collector interface, pull-up resistors are required on
both the SDA and SCL lines. Values of 1KΩ to 4.7KΩ will suffice.

You may imagine that it's limiting having a fixed set of pins for the I2C interface, but you must
remember that several different devices may be attached to a single bus, each having a unique
slave address. Which means there is usually no need to use up more than two pins on the
PICmicro™, in order to interface to many devices.

A typical use for the I2C commands is for interfacing with serial eeproms. Shown below is the
connections to the I2C bus of a 24LC32 serial eeprom.

See also : BusAck, Bstart, Brestart, Bstop, Busin, HbStart, HbRestart,
 HbusAck, Hbusin, Hbusout.

VCC
WP

SCL

A1
A2

VSS

24LC32

7

8

A0

SDA

1

2

3

4

6

5To RB1 or RC4
To RB0 or RC3

0v

+5 Volts

R2
4.7k

R1
4.7k

8-bit Proton Compiler Development Suite.

 105

Button

Syntax
Button Pin, DownState, Delay, Rate, Workspace, TargetState, Label

Overview
Debounce button input, perform auto-repeat, and branch to address if button is in target state.
Button circuits may be active-low or active-high.

Parameters
Pin is a Port.Bit, constant, or variable (0 - 15), that specifies the I/O pin to use. This pin will
automatically be set to input.
DownState is a variable, constant, or expression (0 or 1) that specifies which logical state oc-
curs when the button is pressed.
Delay is a variable, constant, or expression (0 - 255) that specifies how long the button must be
pressed before auto-repeat starts. The delay is measured in cycles of the Button routine. De-
lay has two special settings: 0 and 255. If Delay is 0, Button performs no debounce or auto-
repeat. If Delay is 255, Button performs debounce, but no auto-repeat.
Rate is a variable, constant, or expression (0 – 255) that specifies the number of cycles be-
tween auto-repeats. The rate is expressed in cycles of the Button routine.
Workspace is a byte variable used by Button for workspace. It must be cleared to 0 before be-
ing used by Button for the first time and should not be adjusted outside of the Button com-
mand.
TargetState is a variable, constant, or expression (0 or 1) that specifies which state the button
should be in for a branch to occur. (0 = not pressed, 1 = pressed).
Label is a label that specifies where to branch if the button is in the target state.

Example

Dim BtnVar as Byte ' Workspace for Button instruction.
Do ' Go to NoPress unless BtnVar = 0.

Button 0, 0, 255, 250, BtnVar, 0, NoPress
Print "* "

NoPress:
Loop

Notes
When a button is pressed, the contacts make or break a connection. A short (1 to 20ms) burst
of noise occurs as the contacts scrape and bounce against each other. Button’s debounce
feature prevents this noise from being interpreted as more than one switch action.

Button also reacts to a button press the way a computer keyboard does to a key press. When
a key is pressed, a character immediately appears on the screen. If the key is held down,
there’s a delay, then a rapid stream of characters appears on the screen. Button’s auto-repeat
function can be set up to work much the same way.

Button is designed for use inside a program loop. Each time through the loop, Button checks
the state of the specified pin. When it first matches DownState, the switch is debounced. Then,
as dictated by TargetState, it either branches to address (TargetState = 1) or doesn’t (Target-
State = 0).

8-bit Proton Compiler Development Suite.

 106

If the switch stays in DownState, Button counts the number of program loops that exe-
cute. When this count equals Delay, Button once again triggers the action specified by
TargetState and address. Thereafter, if the switch remains in DownState, Button waits
Rate number of cycles between actions. The Workspace variable is used by Button to
keep track of how many cycles have occurred since the pin switched to TargetState or
since the last auto-repeat.

Button does not stop program execution. In order for its delay and auto repeat functions
to work properly, Button must be executed from within a program loop.

Two suitable circuits for use with Button are shown below.

+5V

0V

47k
Pullup

To Pin of the
PIC

Push
Switch

+5V

0V

47k
Pulldown

To Pin of the
PIC

Push
Switch

Active LOW Active HIGH

8-bit Proton Compiler Development Suite.

 107

Call

Syntax
Call Label

Overview
Execute the assembly language subroutine named label.

Parameters
Label must be a valid label name.

Example
' Call an assembler routine
 Call Asm_Sub

 Asm
 Asm_Sub
 {mnemonics}
 Return
 EndAsm

Notes
The Gosub command is usually used to execute a BASIC subroutine. However, if your subrou-
tine happens to be written in assembler, the Call command should be used. The main differ-
ence between Gosub and Call is that when Call is used, the label's existence is not checked
until assembly time. Using Call, a label in an assembly language section can be accessed that
would otherwise be inaccessible to Gosub. This also means that any errors produced will be
assembler types.

The Call command adds Page and Bank switching instructions prior to actually calling the sub-
routine, however, if Call is used in an all assembler environment, the extra mnemonics preced-
ing the command can interfere with carefully sculptured code such as bit tests etc. By wrapping
the subroutine's name in parenthesis, the Bank and Page instructions are suppressed, and the
Call command becomes the Call mnemonic.

 Call(Subroutine_Name)

Only use the mnemonic variation of Call, if you know that your destination is within the same
Page as the section of code calling it. This is not an issue if using 18F devices, as they have a
more linear memory organisation.

See also : Gosub, Goto

8-bit Proton Compiler Development Suite.

 108

Cdata

Syntax
Cdata { alphanumeric data }

Overview
Place information directly into flash memory for access by Cread and Cwrite.

Parameters
alphanumeric data can be any value, alphabetic character, or string enclosed in quotes (") or
numeric data without quotes.

Example
 Device = 16F1829 ' A device with flash modifying features
 Dim MyChar as Byte
 Dim MyLoop as Byte

 For MyLoop = 0 to 10 ' Create a loop of 11
 MyChar = Cread Address + MyLoop ' Read memory location Address + MyLoop
 Print MyChar ' Display the value read
 Next
 Stop

Address:

Cdata "Hello World" ' Create a string of text in flash memory

The program above reads and displays 10 values from the address located by the Label ac-
companying the Cdata command. Resulting in "Hello World" being displayed.

Using the in-line command structure, the Cread and Print parts of the above program may be
written as: -

' Read and display memory location Address + MyLoop
 Print Cread Address + MyLoop

8-bit Proton Compiler Development Suite.

 109

The Cwrite command uses the same technique for writing to memory: -

 Device = 16F1829 ' A device with code modifying features
 Dim Dbyte as Byte
 Dim MyLoop as Byte

 Cwrite Address, ["HELLO WORLD"] ' Write string to code memory at location Address

For MyLoop = 0 to 9 ' Create a loop of 10
Print Cread Address + MyLoop ' Read and display flash memory Address + MyLoop

 Next
 Stop
'
' Reserve 10 spaces in flash memory
'
Address:

Cdata 32, 32, 32, 32, 32, 32, 32, 32, 32, 32

Notice the string text now allowed in the Cwrite command. This allows the whole PICmicro™ to
be used for data storage and retrieval if desired.

Important Note
Take care not to overwrite existing code when using the Cwrite command, and also remember
that the all PICmicro™ devices have a finite amount of write cycles (approx 1000). A single pro-
gram can easily exceed this limit, making that particular memory cell or cells inaccessible.

The configuration fuse setting WRTE must be enabled before Cdata, Cread and Cwrite may
be used. This enables the self-modifying feature. If the Config directive is used, then the
WRTE_ON fuse setting must be included in the list: -

 Config WDT_ON, XT_OSC, WRTE_ON

Because the 14-bit core devices are only capable of holding 14 bits to a Word, values greater
than 16383 ($3FFF) cannot be stored.

Formatting a Cdata table with an 18F device.
Sometimes it is necessary to create a data table with a known format for its values. For exam-
ple all values will occupy 4 bytes of data space even though the value itself would only occupy
1 or 2 bytes. Formatters are not supported with 14-bit core devices, because they can only hold
a maximum value of $3FFF (16383). i.e. 14-bits.

 Cdata 100000, 10000, 1000, 100, 10, 1

The above line of code would produce an uneven code space usage, as each value requires a
different amount of code space to hold the values. 100000 would require 4 bytes of code
space, 10000 and 1000 would require 2 bytes, but 100, 10, and 1 would only require 1 byte.

8-bit Proton Compiler Development Suite.

 110

Reading these values using Cread would cause problems because there is no way of knowing
the amount of bytes to read in order to increment to the next valid value.

The answer is to use formatters to ensure that a value occupies a predetermined amount of
bytes. These are: -

 Byte
 Word
 Dword
 Float

Placing one of these formatters before the value in question will force a given length.

Cdata Dword 100000, Dword 10000, Dword 1000 ,_
 Dword 100, Dword 10, Dword 1

Byte will force the value to occupy one byte of code space, regardless of its value. Any values
above 255 will be truncated to the least significant byte.

Word will force the value to occupy 2 bytes of code space, regardless of its value. Any values
above 65535 will be truncated to the two least significant bytes. Any value below 255 will be
padded to bring the memory count to 2 bytes.

Dword will force the value to occupy 4 bytes of code space, regardless of its value. Any value
below 65535 will be padded to bring the memory count to 4 bytes. The line of code shown
above uses the Dword formatter to ensure all the values in the Cdata table occupy 4 bytes of
code space.

Float will force a value to its floating point equivalent, which always takes up 4 bytes of code
space.

If all the values in an Cdata table are required to occupy the same amount of bytes, then a sin-
gle formatter will ensure that this happens.

 Cdata as Dword 100000, 10000, 1000, 100, 10, 1

The above line has the same effect as the formatter previous example using separate Dword
formatters, in that all values will occupy 4 bytes, regardless of their value. All four formatters
can be used with the as keyword.

The example below illustrates the formatters in use.

' Convert a Dword value into a string array
' Using only BASIC commands
' Similar principle to the Str$ command

 Include "Proton18_4.Inc" ' Use an 18F device
 Dim P10 as Dword ' Power of 10 variable
 Dim Cnt as Byte
 Dim J as Byte

 Dim Value as Dword ' Value to convert
 Dim String1[11] as Byte ' Holds the converted value

8-bit Proton Compiler Development Suite.

 111

 Dim Ptr as Byte ' Pointer within the Byte array

 DelayMs 100 ' Wait for the LCD to stabilise
 Cls ' Clear the LCD
 Clear ' Clear all RAM before we start
 Value = 1234576 ' Value to convert
 Gosub DwordToStr ' Convert Value to string
 Print Str String1 ' Display the result
 Stop
' Convert a Dword value into a string array
' Value to convert is placed in 'Value'
' Byte array 'String1' is built up with the ASCII equivalent

DwordToStr:
 Ptr = 0
 J = 0
 Repeat
 P10 = Cread DwordTbl + (J * 4)
 Cnt = 0

 While Value >= P10
 Value = Value - P10
 Inc Cnt
 Wend

 If Cnt <> 0 Then
 String1[Ptr] = Cnt + "0"
 Inc Ptr
 EndIf
 Inc J
 Until J > 8

 String1[Ptr] = Value + "0"
 Inc Ptr
 String1[Ptr] = 0 ' Add the null to terminate the string
 Return

' Cdata table is formatted for all 32-bit values.
' Which means each value will require 4 bytes of code space
Dword_TBL:

Cdata as Dword 1000000000, 100000000, 10000000, 1000000, 100000,_
 10000, 1000, 100, 10

Label names as an Address.
If a label's name is used in the list of values in a Cdata table, the label’s address will be used.
This is useful for accessing other tables of data using their address from a lookup table. See
the following example.

Note that this is not always permitted with standard 14-bit core devices, because they may not
be able to hold the larger value in a 14-bit word.

8-bit Proton Compiler Development Suite.

 112

' Display text from two Cdata tables
' Based on their address located in a separate table

Include "Proton18_4.Inc" ' Use an 18F device

Dim Address as Word
Dim DataByte as Byte

DelayMs 100 ' Wait for the LCD to stabilise
Cls ' Clear the LCD
Address = Cread AddrTable ' Locate the address of the first string
While ' Create an infinite loop

DataByte = Cread Address ' Read each character from the Cdata string
If DataByte = 0 Then Break ' Exit if null found
Print DataByte ' Display the character
Inc Address ' Next character

Wend ' Close the loop

Cursor 2,1 ' Point to line 2 of the LCD
 Address = Cread AddrTable + 2 ' Locate the address of the second string

While ' Create an infinite loop
DataByte = Cread Address ' Read each character from the Cdata string
If DataByte = 0 Then Break ' Exit if null found
Print DataByte ' Display the character
Inc Address ' Next character

Wend ' Close the loop
Stop

AddrTable: ' Table of address's

Cdata Word String1,Word String2
String1:

Cdata "HELLO",0
String2:

Cdata "WORLD",0

See also : Config, Cread, Cread8, Cread16, Cread32, Cwrite, Dim, Ldata, Lread, Lread8,
Lread16, Lread32.

8-bit Proton Compiler Development Suite.

 113

Circle

Syntax
Circle Set_Clear, Xpos, Ypos, Radius

Overview
Draw a circle on a graphic LCD.

Parameters
Set_Clear may be a constant or variable that determines if the circle will set or clear the pixels.
A value of 1 will set the pixels and draw a circle, while a value of 0 will clear any pixels and
erase a circle.
Xpos may be a constant or variable that holds the X position for the centre of the circle. Can be
a value from 0 to the X resolution of the display.
Ypos may be a constant or variable that holds the Y position for the centre of the circle. Can be
a value from 0 to the Y resolution of the display.
Radius may be a constant or variable that holds the Radius of the circle. Can be a value from 0
to 255.

Example
' Draw circle at pos 63,32 with radius of 20 pixels on a KS0108 LCD

 Include "Proton_G4.int" ' Use a KS0108 LCD

 Dim Xpos as Byte
 Dim Ypos as Byte
 Dim Radius as Byte
 Dim SetClr as Byte

 DelayMs 100 ' Wait for the LCD to stabilise
 Cls ' Clear the LCD
 Xpos = 63
 Ypos = 32
 Radius = 20
 SetClr = 1
 Circle SetClr, Xpos, Ypos, Radius
 Stop

Notes
Because of the aspect ratio of the pixels on the graphic LCD (approx 1.5 times higher than
wide) the circle will appear elongated.

See Also : Box, Line, Pixel, Plot, UnPlot.

8-bit Proton Compiler Development Suite.

 114

Clear

Syntax
Clear Variable or Variable.Bit or Pin Number

Clear

Overview
Place a variable or bit in a low state. For a variable, this means loading it with 0. For a bit this
means setting it to 0.

Clear has another purpose. If no variable is present after the command, all user RAM within the
device is cleared.

Parameters
Variable can be any variable or register.
Variable.Bit can be any variable and bit combination.
Pin Number can only be a constant that holds a value from 0 to the amount of I/O pins on the
device. A value of 0 will be PORTA.0, if present, 1 will be PORTA.1, 8 will be PORTB.0 etc…

Example1
 Clear ' Clear all RAM area
 Clear Var1.3 ' Clear bit 3 of Var1
 Clear Var1 ' Load Var1 with the value of 0
 Clear STATUS.0 ' Clear the carry flag high
 Clear Array ' Clear all of an Array variable. i.e. reset to zero’s
 Clear String1 ' Clear all of a String variable. i.e. reset to zero’s
 Clear 0 ' Clear PORTA.0.

Example 2
' Flash each of the pins on PORTA and PORTB
'
 Device = 18F25K20
 Declare Xtal = 16

 Dim MyPin as Byte

 Low PORTA
 Low PORTB
 For MyPin = 0 to 15 ' Create a loop for the pin to flash
 Set MyPin ' Set the pin
 DelayMs 500 ' Delay so that it can be seen
 Clear MyPin ' Clear the pin
 DelayMs 500 ' Delay so that it can be seen
 Next

Notes
There is a major difference between the Clear and Low command. Clear does not alter the
TRIS register if a Port is targeted.

See Also : Set, Low, High

8-bit Proton Compiler Development Suite.

 115

ClearPin

Syntax
ClearPin Pin Number

Overview
Pull a Port’s pin low using a variable as the pin’s number, but does not set it as an output.

Operands
Pin Number can be a variable or constant or expression that holds a value from 0 to the
amount of I/O pins on the device. A value of 0 will be PORTA.0, if present, 1 will be PORTA.1,
8 will be PORTB.0 etc…

Example
' Clear then Set each pin of PORTB
 Device = 16F1829
 Declare Xtal = 4
 Dim PinNumber as Byte

 High PORTB ' Make PORTB output high before we start
 Do ' Create a loop
 For PinNumber = 8 to 16 ' Create a loop for 8 pins
 ClearPin PinNumber ' Clear each pin of PORTB
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 For PinNumber = 8 to 16 ' Create a loop for 8 pins
 SetPin PinNumber ' Set each pin of PORTB
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 Loop ' Do it forever

Notes.
There are many ways to pull a pin of an I/O port low, however, each method requires a certain
amount of manipulation, either with rotates, or alternatively, the use of indirect addressing.
Each method has its merits, but requires a certain amount of knowledge to accomplish the task
correctly. The ClearPin command makes this task extremely simple using a variable as the pin
number, however, this is not necessarily the quickest method, or the smallest, but it is the easi-
est. For speed and size optimisation, there is no shortcut to experience.

To clear a known constant pin number of a port, access the pin directly using the Low com-
mand

Low PORTA.1

8-bit Proton Compiler Development Suite.

 116

Each pin number has a designated name. These are Pin_A0, Pin_A1, Pin_A2,
Pin_B0…Pin_B7, Pin_C0…Pin_C7, Pin_D0…Pin_D7 to Pin_L7 etc… Each of the names has a
relevant value, for example, Pin_A0 has the value 0, Pin_B0 has the value 8, up to Pin_L7,
which has the value 87.

These can be used to pass a relevant pin number to a subroutine. For example:
'
' Flash an LED attached to PORTB.0 via a subroutine
' Then flash an LED attached to PORTB.1 via the same subroutine
'

Device = 18F25K20
Declare Xtal = 16

Dim PinNumber As Byte ' Holds the pin number to set high and low

Do ' Create an infinite loop

PinNumber = Pin_B0 ' Give the pin number to flash (PORTB.0)
Gosub FlashPin ' Call the subroutine to flash the pin
PinNumber = Pin_B1 ' Give the pin number to flash (PORTB.1)
Gosub FlashPin ' Call the subroutine to flash the pin

 Loop ' Do it forever
'
' Make a pin high then low for 500ms using a variable as the pin to adjust
'
FlashPin:

Output PinNumber ' Make the pin an output
SetPin PinNumber ' Bring the pin high

 DelayMs 500 ' Wait for 500 milliseconds
ClearPin PinNumber ' Bring the pin low
DelayMs 500 ' Wait for 500 milliseconds
Return

Example 2
' Clear then Set each pin of PORTC

Device = 18F25K20
Declare Xtal = 16

Dim PinNumber as Byte

 High PORTC ' Make PORTC output high before we start
 Do ' Create a loop
 For PinNumber = Pin_C0 to Pin_C7 ' Create a loop for 8 pins
 ClearPin PinNumber ' Clear each pin of PORTC
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 For PinNumber = Pin_C0 to Pin_C7 ' Create a loop for 8 pins
 SetPin PinNumber ' Set each pin of PORTC
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 Loop ' Do it forever

See also : SetPin, High, Low.

8-bit Proton Compiler Development Suite.

 117

ClearBit

Syntax
ClearBit Variable, Index

Overview
Clear a bit of a variable or register using a variable index to the bit of interest.

Parameters
Variable is a user defined variable.
Index is a constant, variable, or expression that points to the bit within Variable that requires
clearing.

Example
' Clear then Set each bit of variable ExVar
 Device = 16F1829
 Declare Xtal = 4
 Dim ExVar as Byte
 Dim Index as Byte
 Cls
 ExVar = %11111111

 While ' Create an infinite loop

For Index = 0 to 7 ' Create a loop for 8 bits
 ClearBit ExVar,Index ' Clear each bit of ExVar
 Print At 1,1,Bin8 ExVar ' Display the binary result
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 For Index = 7 to 0 Step -1 ' Create a loop for 8 bits
 SetBit ExVar,Index ' Set each bit of ExVar
 Print At 1,1,Bin8 ExVar ' Display the binary result
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 Wend ' Do it forever

Notes
There are many ways to clear a bit within a variable, however, each method requires a certain
amount of manipulation, either with rotates, or alternatively, the use of indirect addressing using
the FSR, and INDF registers. Each method has its merits, but requires a certain amount of
knowledge to accomplish the task correctly. The ClearBit command makes this task extremely
simple using a register rotate method, however, this is not necessarily the quickest method, or
the smallest, but it is the easiest. For speed and size optimisation, there is no shortcut to ex-
perience.

To Clear a known constant bit of a variable or register, then access the bit directly using Port.n.

PORTA.1 = 0
or

Var1.4 = 0

If a Port is targeted by ClearBit, the Tris register is not affected.

See also : GetBit, LoadBit, SetBit.

8-bit Proton Compiler Development Suite.

 118

Cls

Syntax
Cls

Or if using a Toshiba T6963 graphic LCD

Cls Text
Cls Graphic

Overview
Clears the alphanumeric or graphic LCD and places the cursor at the home position i.e. line 1,
position 1 (line 0, position 0 for graphic LCDs).

Toshiba graphic LCDs based upon the T6963 chipset have separate RAM for text and graph-
ics. Issuing the word Text after the Cls command will only clear the TEXT RAM, while issuing
the word Graphic after the Cls command will only clear the Graphic RAM. Issuing the Cls
command on its own will clear both areas of RAM.

Example 1
' Clear an alphanumeric or KS0108 graphic LCD
 Cls ' Clear the LCD
 Print "HELLO" ' Display the word "HELLO" on the LCD
 Cursor 2, 1 ' Move the cursor to line 2, position 1
 Print "WORLD" ' Display the word "WORLD" on the LCD
 Stop

In the above example, the LCD is cleared using the Cls command, which also places the cur-
sor at the home position i.e. line 1, position 1. Next, the word HELLO is displayed in the top left
corner. The cursor is then moved to line 2 position 1, and the word WORLD is displayed.

Example 2
' Clear a Toshiba T6963 graphic LCD.
 Cls ' Clear all RAM within the LCD
 Print "Hello" ' Display the word “Hello” on the LCD
 Line 1,0,0,63,63 ' Draw a line on the LCD
 DelayMs 1000 ' Wait for 1 second
 Cls Text ' Clear only the text RAM, leaving the line displayed
 DelayMs 1000 ' Wait for 1 second
 Cls Graphic ' Now clear the line from the display
 Stop

Notes
The Cls command will also initialise any of the above LCDs. (set the ports to inputs/outputs
etc), however, this is most important to Toshiba graphic LCDs, and the Cls command should
always be placed at the head of the BASIC program, prior to issuing any command that inter-
faces with the LCD. i.e. Print, Plot etc.

See also : Cursor, Print, Toshiba_Command.

8-bit Proton Compiler Development Suite.

 119

Config

Syntax
Config { configuration fuse settings }

Overview
Enable or Disable particular fuse settings for the PICmicro™.

Parameters
configuration fuse settings vary from device to device, however, certain settings are standard
to most PICmicro™ types. Refer to the microcontroller’s datasheet for details.

Example
' Disable Watchdog timer and specify an HS_OSC etc, on a PIC16F877 device
 Config HS_OSC, WDT_OFF, PWRTE_ON, BODEN_OFF, LVP_OFF, _
 WRTE_ON, CP_OFF, DEBUG_OFF

18F Fuse Setting.
Because of the complexity that 18F devices require for adjusting their many fuses, the Config
directive is not suitable. Instead a more intuitive approach is adopted using the Config_Start
and Config_End directives: -

Config_Start
 OSC = HS ' Oscillator Selection HS
 OSCS = Off ' Osc. Switch Enable Disabled
 PWRT = On ' Power-up Timer Enabled
 BOR = Off ' Brown-out Reset Disabled
 BORV = 25 ' Brown-out Voltage 2.5V
 WDT = Off ' Watchdog Timer Disabled
 WDTPS = 128 ' Watchdog Postscaler 1:128
 CCP2MUX = On ' CCP2 MUX Enable (RC1)
 STVR = Off ' Stack Overflow Reset Disabled
 LVP = Off ' Low Voltage ICSP Disabled
 DEBUG = Off ' Background Debugger Enable Disabled
 CP0 = Off ' Code Protection Block 0 Disabled
 CP1 = Off ' Code Protection Block 1 Disabled
 CP2 = Off ' Code Protection Block 2 Disabled
 CP3 = Off ' Code Protection Block 3 Disabled
 CPB = Off ' Boot Block Code Protection Disabled
 CPD = Off ' Data EEPROM Code Protection Disabled
 WRT0 = Off ' Write Protection Block 0 Disabled
 WRT1 = Off ' Write Protection Block 1Disabled
 WRT2 = Off ' Write Protection Block 2 Disabled
 WRT3 = Off ' Write Protection Block 3 Disabled
 WRTB = Off ' Boot Block Write Protection Disabled
 WRTC = Off ' Configuration Register Write Protection Disabled
 WRTD = Off ' Data EEPROM Write Protection Disabled
 EBTR0 = Off ' Table Read Protection Block 0 Disabled
 EBTR1 = Off ' Table Read Protection Block 1 Disabled
 EBTR2 = Off ' Table Read Protection Block 2 Disabled
 EBTR3 = Off ' Table Read Protection Block 3 Disabled
 EBTRB = Off ' Boot Block Table Read Protection Disabled
Config_End

The configs shown are for the 18F452 device and differ from device to device.

8-bit Proton Compiler Development Suite.

 120

A complete list of Config fuse settings can be found in the "hlpPIC18ConfigSet.chm" file
downloadable from www.microchip.com.

The fuse setting text between Config_Start and Config_End will have the preceding Config
text added, then is passed directly to the assembler. Any errors in the fuse setting texts will re-
sult in Assembler errors being produced.

Notes
If the Config directive is not used within the BASIC program then default values are used.
These may be found in the .ppi files within the “Includes\PPI” folder.

When using either of the Config directives, always use all the fuse settings for the particular
PICmicro™ used. With 14-bit core (16F) devices, the compiler will always issue a reminder after
the Config directive has been issued, however, this may be ignored if you are confident that
you have assigned all the relevant fuse names.

Any fuse names that are omitted from the Config list will normally assume an Off or Disabled
state. However, this is not always the case, and unpredictable results may occur, or the
PICmicro™ may refuse to start up altogether.

Before programming the PICmicro™, always check the user configured fuse settings at pro-
gramming time to ensure that the settings are correct.

Always read the datasheet for the particular PICmicro™ of interest, before using this directive.

Config1,Config2, Config3 and Config4
Some enhanced 14-bit core devices have more than one configuration area, therefore addi-
tional Config directives have been added. These are Config1, Config2, Config3 and Config4.
Their use is exactly the same as the Config directive, but the fuse names depend on the de-
vice used:

Example:
' Alter the fuse settings for a 16F886 device
Config1 HS_OSC, WDT_OFF, DEBUG_OFF, FCMEN_OFF, IESO_OFF,_
 BOR_OFF, CPD_OFF, CP_OFF, MCLRE_ON, PWRTE_ON
Config2 WRT_OFF, BOR21V

Note that at the time of writing, all enhanced 14-bit core devices have 2 or more config areas.

http://www.microchip.com/

8-bit Proton Compiler Development Suite.

 121

Continue

Syntax
Continue

Overview
Cause the next iteration of For…Next, While...Wend or Repeat...Until or Do…Loop condi-
tions to occur. With a For…Next loop, Continue will jump to the Next part. With a
While…Wend loop, Continue will jump to the While part. With a Repeat…Until loop, Contnue
will jump to the Until part.

Example
' Create and display a For-Next loop's iterations, missing out number 10
 Device = 18F25K20
 Declare Xtal = 4

 Dim Index as Byte

 For Index = 0 to 19 ' Create a loop of 20 iterations
 If Index = 10 Then Continue ' Miss out number 10
 HrsoutLn Dec Index ' Display the counting loop
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop

See also : Break, For…Next, Repeat…Until, While…Wend.

8-bit Proton Compiler Development Suite.

 122

Context

Syntax
Context Save {Variable,Variable}
Context Restore

Overview
Save and restore important variables and device SFRs (Special Function Registers) while in-
side an interrupt. Context Restore will also exit the interrupt and hand control back to the main
program.

Parameters
Variable is an optional list of user-defined variables or SFRs that will also be saved before en-
tering the interrupt handling subroutine and restored after the interrupt has ended.

Example:
' Illustrate a typical use for Context Save and Context Restore

Device = 18F4520
Declare Xtal = 20

On_Hardware_Interrupt Goto ISR_Handler ' Point to the interrupt handler
Dim wTimer1 as TMR1L.Word ' Create a 16-bit Word from registers TMR1L/H

Goto Main ' Jump over any subroutines to main program

' ---------------------------------------
' A typical Interrupt handling subroutine
'
ISR_Handler:
 Context Save ' Save any variables used in the interrupt
 If PIR1bits_TMR1IF = 1 Then ' Is it a Timer1 overflow interrupt?
 Toggle PORTB.0 ' Yes. So. Toggle PORTB.0
 PIR1bits_TMR1IF = 0 ' Clear the Timer1 Overflow flag
 EndIf '
 Context Restore ' Restore any variables and exit the interrupt

' ---------------------------------------
' The main program starts here
'
Main:
 Low PORTB ' Make all of PORTB output low
'
' Setup a Timer1 interrupt

T1CONbits_RD16 = 1 ' Enable read/write of Timer1 in 16-bit mode
T1CONbits_T1CKPS1 = 0 ' \ Timer1 Prescaler to 1:4
T1CONbits_T1CKPS0 = 1 ' /
T1CONbits_T1OSCEN = 0 ' Disable External Oscillator
T1CONbits_TMR1CS = 0 ' Increment on the internal Clock
wTimer1 = 0 ' Clear Timer1
T1CONbits_TMR1ON = 1 ' Enable Timer1
PIE1bits_TMR1IE = 1 ' Enable the Timer1 overflow interrupt
INTCON1bits_PEIE = 1 ' Enable all peripheral interrupts
INTCON1bits_GIE = 1 ' Enable all interrupts

While ' Create an infinite loop

 PORTB.1 = 1 ' Set PORTB.1 high
DelayMS 200 ' Wait a while

 PORTB.1 = 0 ' Pull PORTB.1 low
 DelayMs 200 ' Wait a while
 Wend ' Do it forever

8-bit Proton Compiler Development Suite.

 123

Notes.
When an interrupt occurs, it will immediately leave the main program and jump to the interrupt
handling subroutine regardless of what the main program is doing. The main program generally
has no idea that an interrupt has occurred and if it was using any of the device’s resources or
the compiler’s system variables and the interrupt handler is doing the same, they will be altered
when the main program continues, with disastrous results.

This is the reason for context saving and restoring of the compiler’s internal system variables
and the device’s SFRs (Special Function Registers). Each compiler command generates vari-
ables for it to work upon, either for passing parameters or the actual working of the library rou-
tine. Some commands also make use of the device's SFRs, for example FSR or PRODL or
PRODH etc…

Of course, we don’t want to save every internal system variable or device SFR as this would
take far too much RAM and slow down the entry and exit of the interrupt while each was saved
and restored. What we want is to save and restore only the variables and SFRs that are used
within the interrupt handler itself. This may be a lot or a little, or none, depending on the pro-
gram within the interrupt handler subroutine.

The compiler examines the code between the Context Save and Context Restore commands
and keeps a record of the internal compiler system variables and SFRs used. There are ex-
cepts to this rule concerning SFRs which we'll deal with later.

The Context Save command should always be at the beginning of the interrupt handling sub-
routine, and this will save any variables in a specially created byte array.

Exceptions to the Rule.
Each of the compiler’s commands reports internally as to which compiler system variable and
SFR they use. However, this is not the case for any SFRs used as an assignment variable. For
example:

 PRODL = ByteIn1 + ByteIn2

It is also not the case for any PORT or TRIS registers.

For these SFRs to be saved and restored they will need to be added to the list of parameters
after the Context Save command:

 Context Save PRODL, PORTB, TRISB

See also : On_Hardware_Interrupt, On_Low_Interrupt.

8-bit Proton Compiler Development Suite.

 124

Counter

Syntax
Variable = Counter Pin, Period

Overview
Count the number of pulses that appear on pin during period, and store the result in variable.

Parameters
Variable is a user-defined variable.
Pin is a Port.Pin constant declaration i.e. PORTA.0.
Period may be a constant, variable, or expression.

Example
' Count the pulses that occur on PORTA.0 within a 100ms period
' and displays the results.

 Dim Wrd as Word ' Create a word size variable
 Symbol Pin = PORTA.0 ' Assign the input pin to PORTA.0
 Cls
MyLoop:
 Wrd = Counter Pin, 100 ' Variable Wrd now contains the Count
 Cursor 1, 1
 Print Dec Wrd, " " ' Display the decimal result on the LCD
 Goto MyLoop ' Do it indefinitely

Notes
The resolution of period is in milliseconds (ms). It obtains its scaling from the oscillator declara-
tion, Declare Xtal.

Counter checks the state of the pin in a concise loop, and counts the rising edge of a transition
(low to high).

With a 4MHz oscillator, the pin is checked every 20us, and every 4us with a 20MHz oscillator.
From this we can determine that the highest frequency of pulses that may be counted is: -

 25KHz using a 4MHz oscillator.
 125KHz using a 20MHz oscillator.

See also : PulseIn, Rcin.

8-bit Proton Compiler Development Suite.

 125

cPtr8, cPtr16, cPtr32

Syntax
Variable = cPtr8 (Address)
Variable = cPtr16 (Address)
Variable = cPtr32 (Address)

Overview
Indirectly read code memory using a variable to hold the 16-bit or 32-bit address. For enhanced
14-bit core devices and 18F devices only.

Operands
Variable is a user defined variable that holds the result of the indirectly addressed code mem-
ory area.
Address is a Word or Dword variable that holds the 16-bit or 32-bit address of the code mem-
ory area of interest.

Address can also post or pre increment or decrement:

 (MyAddress++) Post increment MyAddress after retreiving it’s RAM location.
 (MyAddress --) Post decrement MyAddress after retreiving it’s RAM location.
 (++MyAddress) Pre increment MyAddress before retreiving it’s RAM location.
 (--MyAddress) Pre decrement MyAddress before retreiving it’s RAM location.

cPtr8 will retrieve a value with an optional 8-bit post or pre increment or decrement.
cPtr16 will retrieve a value with an optional 16-bit post or pre increment or decrement.
cPtr32 will retrieve a value with an optional 32-bit post or pre increment or decrement.

8-bit Example.
'
' Read 8-bit values indirectly from code memory
'
 Device = 18F25K20 ' Choose an 18F device
 Declare Xtal = 16

 Declare Hserial_Baud = 9600 ' Set baud rate to 9600
'
' Create an 8-bit code memory array
'
 Dim CodeArray As Code = as Byte 1, 2, 3, 4, 5, 6, 7, 8, 9, 0
 Dim MyByte As Byte ' Create a byte variable
 Dim bIndex As Byte
 Dim wAddress As Word ' Create variable to hold 16-bit address
Main:
'
' Read from code memory
'
 wAddress = AddressOf(CodeArray) ' Load wAddress with address of memory
 While ' Create a loop
 MyByte = cPtr8(wAddress++) ' Retrieve from code with post increment
 If MyByte = 0 Then Break ' Exit when a null(0) is read from code
 HRSOutLn Dec MyByte ' Transmit the byte read from code
 Wend

8-bit Proton Compiler Development Suite.

 126

16-bit Example.
'
' Read 16-bit values indirectly from code memory
'
 Device = 18F25K20 ' Choose an 18F device
 Declare Xtal = 16

 Declare Hserial_Baud = 9600 ' Set baud rate to 9600
'
' Create a 16-bit code memory array
'
 Dim CodeArray As Code = as Word 100, 200, 300, 400, 500, 600, 700, 0
 Dim MyWord As Word ' Create a word variable
 Dim bIndex As Byte
 Dim wAddress As Word ' Create variable to hold 16-bit address

Main:
'
' Read from code memory
'
 wAddress = AddressOf(CodeArray) ' Load wAddress with address of memory
 While ' Create a loop
 MyWord = cPtr16(wAddress++) ' Retrieve from code with post increment
 If MyWord = 0 Then Break ' Exit when a null(0) is read from code
 HRSOutLn Dec MyWord ' Transmit the word read from code
 Wend

32-bit Example.
'
' Read 32-bit values indirectly from code memory
'
 Device = 18F25K20 ' Choose an 18F device
 Declare Xtal = 16

 Declare Hserial_Baud = 9600 ' Set baud rate to 9600
'
' Create a 32-bit code memory array
'
 Dim CodeArray As Code = as Dword 100, 200, 300, 400, 500, 600, 700, 0
 Dim MyDword As Dword ' Create a dword variable
 Dim bIndex As Byte
 Dim wAddress As Word ' Create variable to hold 16-bit address

Main:
'
' Read from code memory
'
 wAddress = AddressOf(CodeArray) ' Load wAddress with address of memory
 While ' Create a loop
 MyDword = cPtr32(wAddress++) ' Retrieve from code with post increment
 If MyDword = 0 Then Break ' Exit when a null(0) is read from code
 HRSOutLn Dec MyDword ' Transmit the dword read from code
 Wend

See also: AddressOf, Cread8, Cread16, Cread32.

8-bit Proton Compiler Development Suite.

 127

Cread

Syntax
Variable = Cread Address

Overview
Read data from anywhere in code memory.

Parameters
Variable is a user defined variable.
Address is a constant, variable, label, or expression that represents any valid address within
code memory

Example
' Read code memory locations within the device

 Device = 16F1829
 Dim Var1 as Byte
 Dim Wrd as Word
 Dim Address as Word

 Address = 1000 ' Address now holds the base address
 Var1 = Cread 1000 ' Read 8-bit data at address 1000 into Var1
 Wrd = Cread Address + 10 ' Read data at address 1000+10

Notes
The Cread command takes advantage of the self-modifying feature that is available in the lat-
est devices.

If a Float or Dword size variable is used as the assignment, then 32-bits will be read. If a Word
size variable is used as the assignment, then 16-bits will be read. If a Byte sized variable is
used as the assignment, then 8-bits will be read.

The configuration fuse setting WRTE must be enabled before Cdata, Cread, and Cwrite may
be used, this is the default setting. This enables the self-modifying feature. If the Config direc-
tive is used, then the WRTE_ON fuse setting must be included in the list: -

 Config WDT_ON, XT_OSC, WRTE_ON

See also : Cdata, Cread8, Cread16, Cread32, Config, Cwrite, Dim, Ldata, Lread, Lread8,
Lread16, Lread32.

8-bit Proton Compiler Development Suite.

 128

Cread8, Cread16, Cread32

Syntax
Variable = Cread8 Label [Offset Variable]

or

Variable = Cread16 Label [Offset Variable]

or

Variable = Cread32 Label [Offset Variable]

Overview
Read an 8, 16, or 32-bit value from a Cdata table using an offset of Offset Variable and place
into Variable, with more efficiency than using Cread . For device’s that can access their own
code memory.

Cread8 will access 8-bit values from an Cdata table.
Cread16 will access 16-bit values from an Cdata table.
Cread32 will access 32-bit values from an Cdata table, this also includes floating point values.

Parameters
Variable is a user defined variable or an Array.
Label is a label name preceding the Cdata statement of which values will be read from.
Offset Variable can be a constant value, variable, or expression that points to the location of
interest within the Cdata table.

Cread8 Example
' Extract the second value from within an 8-bit Cdata table
 Device = 18F452
 Dim Offset as Byte ' Create a Byte size variable for the offset
 Dim MyResult as Byte ' Create a Byte size variable to hold the result
 ' Create a table containing only 8-bit values

Dim Byte_Table as Code = as Byte 100, 200

 Cls ' Clear the LCD
 Offset = 1 ' Point to the second value in the Ldata table
' Read the 8-bit value pointed to by Offset
 MyResult = Cread8 Byte_Table[Offset]
 Print Dec MyResult ' Display the decimal result on the LCD
 Stop

8-bit Proton Compiler Development Suite.

 129

Cread16 Example
' Extract the second value from within a 16-bit Cdata table
 Device = 18F4520
 Dim Offset as Byte ' Create a Byte size variable for the offset
 Dim MyResult as Word ' Create a Word size variable to hold the result
 ' Create a table containing only 16-bit values

Dim WordTable as Code = as Word 1234, 5678

 Cls ' Clear the LCD
 Offset = 1 ' Point to the second value in the Ldata table
' Read the 16-bit value pointed to by Offset
 MyResult = Cread16 WordTable[Offset]
 Print Dec MyResult ' Display the decimal result on the LCD
 Stop

Cread32 Example
' Extract the second value from within a 32-bit Cdata table
 Device = 18F4520
 Dim Offset as Byte ' Create a Byte size variable for the offset
 Dim MyResult as Dword ' Create a Dword size variable to hold the result

' Create a table containing only 32-bit values

Dim DwordTable as Code = as Dword 12340, 56780

 Cls ' Clear the LCD
 Offset = 1 ' Point to the second value in the Ldata table
' Read the 32-bit value pointed to by Offset
 MyResult = Cread32 DwordTable[Offset]
 Print Dec MyResult ' Display the decimal result on the LCD
 Stop

Notes
Data storage in any program is of paramount importance, and although the standard Cread
command can access multi-byte values from a flash memory data table, it was not originally
intended as such, and is more suited to accessing character data or single 8-bit values. How-
ever, the Cread8, Cread16, and Cread32 commands are specifically written in order to effi-
ciently read data from an Cdata table, and use the least amount of code space in doing so,
thus increasing the speed of operation. Which means that wherever possible, Cread should be
replaced by Cread8, Cread16, or Cread32.

See also : Cdata, Cread, Dim, Ldata, Lread, Lread8, Lread16, Lread32.

8-bit Proton Compiler Development Suite.

 130

Cursor

Syntax
Cursor Line, Position

Overview
Move the cursor position on an Alphanumeric or Graphic LCD to a specified line (ypos) and po-
sition (xpos).

Parameters
Line is a constant, variable, or expression that corresponds to the line (Ypos) number from 1 to
maximum lines (0 to maximum lines if using a graphic LCD).
Position is a constant, variable, or expression that moves the position within the position
(Xpos) chosen, from 1 to maximum position (0 to maximum position if using a graphic LCD).

Example 1
 Dim Line as Byte
 Dim Xpos as Byte

 Line = 2
 Xpos = 1
 Cls ' Clear the LCD
 Print "Hello" ' Display the word "Hello" on the LCD
 Cursor Line, Xpos ' Move the cursor to line 2, position 1
 Print "World" ' Display the word "World" on the LCD

In the above example, the LCD is cleared using the Cls command, which also places the cur-
sor at the home position i.e. line 1, position 1. Next, the word "Hello" is displayed in the top left
corner. The cursor is then moved to line 2 position 1, and the word "World" is displayed.

Example 2
 Dim Xpos as Byte
 Dim Ypos as Byte
Again:
 Ypos = 1 ' Start on line 1
 For Xpos = 1 to 16 ' Create a loop of 16
 Cls ' Clear the LCD
 Cursor Ypos, Xpos ' Move the cursor to position Ypos,Xpos
 Print "*" ' Display the character
 DelayMs 100
 Next
 Ypos = 2 ' Move to line 2
 For Xpos = 16 to 1 Step -1 ' Create another loop, this time reverse
 Cls ' Clear the LCD
 Cursor Ypos, Xpos ' Move the cursor to position Ypos,Xpos
 Print "*" ' Display the character
 DelayMs 100
 Next
 Goto Again ' Repeat forever

Example 2 displays an asterisk character moving around the perimeter of a 2-line by 16 charac-
ter LCD.

See also : Cls, Print

8-bit Proton Compiler Development Suite.

 131

Cwrite

Syntax
Cwrite Address, [Variable {, Variable…}]

Overview
Write data to anywhere in code memory on devices that support it.

Parameters
Variable can be a constant, variable, or expression.
Address is a constant, variable, label, or expression that represents any valid code memory
address

Example
' Write to memory location 2000+ within the PICmicro

 Device = 16F877 ' Choose the PICmicro
 Declare Xtal = 4

Dim Var1 as Byte = 234
 Dim Wrd as Word = 1043

Dim Address as Word = 2000 ' Address now holds the base address

 Cwrite Address, [10, Var1, Wrd] ' Write to address 2000 +
 Org 2000

Notes
The Cwrite command takes advantage of the self-modifying feature that is available in most
devices.

If a Word size variable is used as the assignment, then a 14-bit Word will be written. If a Byte
sized variable is used as the assignment, then 8-bits will be written.

Because the 14-bit core devices are only capable of holding 14 bits to a Word, values greater
than 16383 ($3FFF) cannot be written. However, the 18F devices may hold values up to 65535
($FFFF).

The configuration fuse setting WRTE must be enabled before Cdata, Cread, and Cwrite may
be used, this is the default setting. This enables the self-modifying feature. If the Config direc-
tive is used, then the WRTE_ON fuse setting must be included in the list: -

 Config WDT_ON, XT_OSC, WRTE_ON

See also : Cdata, Config, Cread, Cread8, Cread16, Cread32, Dim.

8-bit Proton Compiler Development Suite.

 132

Dec

Syntax
Dec Variable

Overview
Decrement a variable i.e. Var1 = Var1 - 1

Parameters
Variable is a user defined variable

Example
 Device = 16F877 ' Choose the microcontroller
 Declare Xtal = 4

Dim Var1 as Byte = 11

Repeat ' Create a loop
 Dec Var1 ' Decrement the variable
 HrsoutLn Dec Var1 ' Transmit the decimal value serially
 DelayMs 200 ' A delay to see what’s happening
 Until Var1 = 0 ' Loop until the variable reaches 0

The above example shows the equivalent to the For-Next loop: -

 For Var1 = 10 to 0 Step -1
 Next

See also : Inc.

8-bit Proton Compiler Development Suite.

 133

Declare

Syntax
[Declare] code modifying directive = modifying value

Overview
Adjust certain aspects of the produced code at compile time, i.e. Crystal frequency, LCD port
and pins, serial baud rate etc.

Parameters
code modifying directive is a set of pre-defined words. See list below.
modifying value is the value that corresponds to the action. See list below.

The Declare directive is an indispensable part of the compiler. It moulds the library subroutines,
and passes essential user information to them.

Notes
The Declare directive usually alters the corresponding library subroutine at runtime. This
means that once the Declare is added to the BASIC program, it usually cannot be Undeclared
later, or changed in any way. However, there are some declares that alter the flow of code, and
can be enabled and disabled throughout the BASIC listing.

Oscillator Frequency Declare.
12-bit core device XTAL values:
Declare Xtal 4, 8, 10, 12, 16, or 20.

Standard 14-bit core device XTAL values:
Declare Xtal 3, 4, 7, 8, 10, 12, 14, 16, 19, 20, 22, or 24.

Enhanced 14-bit core device XTAL values:
Declare Xtal 3, 4, 7, 8, 10, 12, 14, 16, 19, 20, 22, 24, 32, 48, or 64.

18F device XTAL values:
Declare Xtal 3, 4, 7, 8, 10, 12, 14, 16, 19, 20, 22, 24, 25, 29, 32, 33, 40, 48, 64, 80, or 88.

Inform the compiler what frequency oscillator is being used.

Some commands are very dependant on the oscillator frequency, Rsin, Rsout, DelayMs, and
DelayUs being just a few. In order for the compiler to adjust the correct timing for these com-
mands, it must know what frequency crystal is being used.

The Xtal frequencies 3, 7, 14, 19 and 22 are for 3.58MHz, 7.2MHz, 14.32MHz, 19.66MHz,
22.1184MHz and 29.2MHz respectively.

If the Declare is not used in the program, then the default frequency will be of an unknown
state.

8-bit Proton Compiler Development Suite.

 134

Misc Declares.
Declare WatchDog = On or Off, or True or False, or 1, 0
The WatchDog Declare directive enables or disables the watchdog timer. It also sets the
PICmicro's Config fuses for no watchdog. In addition, it removes any ClrWdt mnemonics from
the assembled code, thus producing slightly smaller programs. The default for the compiler is
WatchDog Off, therefore, if the watchdog timer is required, then this Declare will need to be
invoked.

The WatchDog Declare can be issued multiple times within the BASIC code, enabling and
disabling the watchdog timer as and when required.

Declare BootLoader = On or Off, or True or False, or 1, 0
The BootLoader Declare directive enables or disables the special settings that a serial boot-
loader requires at the start of code space. This directive is ignored if a PICmicro™ without boot-
loading capabilities is targeted.

Disabling the bootloader will free a few bytes from the code produced. This doesn't seem a
great deal, however, these few bytes may be the difference between a working or non-working
program. The default for the compiler is BootLoader On

Declare Show_System_Variables = On or Off, or True or False, or 1, 0
When using the Proteus VSM to simulate BASIC code, it is sometimes beneficial to observe the
behaviour of the compiler's System variables that are used for its library routines. The
Show_System_Variables Declare enables or disables this option.

Declare Warnings = On or Off, or True or False, or 1, 0
The Warnings Declare directive enables or disables the compiler's warning messages. This
can have disastrous results if a warning is missed or ignored, so use this directive sparingly,
and at your own peril.

The Warnings Declare can be issued multiple times within the BASIC code, enabling and dis-
abling the warning messages at key points in the code as and when required.

Declare Hints = On or Off, or True or False, or 1, 0
The Hints Declare directive enables or disables the compiler's hint messages. The compiler
issues a hint for a reason, so use this directive sparingly, and at your own peril.

The Hints Declare can be issued multiple times within the BASIC code, enabling and disabling
the hint messages at key points in the code as and when required.

Declare Label_Bank_Resets = On or Off, or True or False, or 1, 0
The compiler has very intuitive RAM bank handling, however, if you think that an anomaly is
occurring due to misplaced or mishandled RAM bank settings, you can issue this Declare and
it will reset the RAM bank on every BASIC label, which will force the compiler to re-calculate its
bank settings. If nothing else, it will reassure you that bank handling is not the cause of the
problem, and you can get on with finding the cause of the programming problem. However, if it
does cure a problem then please let me know and I will make sure the anomaly is fixed as
quickly as possible.

Using this Declare will increase the size of the code produced, as it will place Bcf mnemonics
in the case of a 12 or 14-bit core device, and a Movlb mnemonic in the case of an 18F device.

8-bit Proton Compiler Development Suite.

 135

The Label_Bank_Resets Declare can be issued multiple times within the BASIC code, ena-
bling and disabling the bank resets at key points in the code as and when required. See Line
Lables for more information.

Declare Float_Display_Type = Fast or Standard
By default, the compiler uses a relatively small routine for converting floating point values to
decimal, ready for Rsout, Print, Str$ etc. However, because of its size, it does not perform any
rounding of the value first, and is only capable of converting relatively small values. i.e. approx
6 digits of accuracy. In order to produce a more accurate result, the compiler needs to use a
larger routine. This is implemented by using the above Declare.

Using the Fast model for the above Declare will trigger the compiler into using the more accu-
rate floating point to decimal routine. Note that even though the routine is larger than the stan-
dard converter, it actually operates much faster.

The compiler defaults to Standard if the Declare is not issued in the BASIC program.

Declare Create_Coff = On or Off, or True or False or 1, 0
When the Create_Coff Declare is set to On, the compiler produces a cof file (Common Object
File). This is used for simulating the BASIC code within the MPLAB™ IDE environment or the
ISIS simulator.

8-bit Proton Compiler Development Suite.

 136

Declare ICD_Req = On or Off, or True or False, or 1, 0
When the ICD_Req Declare is set to On, the compiler configures itself so that the Microchip
ICD2™ In-Circuit-Debugger, or PICkit2™ can be used. The ICD2 ™ and PICkit2 ™ are very inva-
sive to the program, in so much that they require certain RAM areas for itself. This can be up to
26 bytes on some PICmicros. They also require 2 call-stack levels, so be careful when using a
14-bit core device or you may overflow the call-stack with disastrous results.

With a 14-bit core device, the top of Bank0 RAM is reserved for the ICD, for 18F devices, the
RAM usage is not so noticeable because of its linear nature, but it still requires 12 bytes re-
served at the end of RAM.

The list below highlights the requirements for the ICD2 ™ with some devices that support it.

Device RAM Usage

P12F675 $54 - $5F
P12F629 $54 - $5F
P16F627A $70 - $7F
P16F628A $70 - $7F
P16F648A $70 - $7F
P16F630 $54 - $5F
P16F676 $54 - $5F
P16F87 $70 - $7F
P16F88 $70 - $7F
P16F818 $65 - $7F
P16F819 $65 - $7F
P16F870 $70 - $7F, $B5 - $BF
P16F871 $70 - $7F, $B5 - $BF
P16F872 $70 - $7F, $B5 - $BF
P16F873/873A $74 - $7F
P16F874/874A $74 - $7F
P16F876/876A $70 - $7F
P16F877/877A $70 - $7F
P18F242/442 $02F4 - $02FF
P18F252/452 $05F4 - $05FF
P18F248/448 $02F4 - $02FF
P18F258/458 $05F4 - $05FF
P18F1220 $F4 - $FF
P18F1320 $F4 - $FF
P18F2220/4220 $01F4 - $01FF
P18F2320/4320 $01F4 - $01FF

P18F2331/4331 $02F4 - $02FF
P18F2431/4431 $02F4 - $02FF
P18F2680/4680 $0CF4 - $0CFF
P18F6520/8520 $0EF4 - $0EFF
P18F6620/8620 $0EF4 - $0EFF
P18F6720/8720 $0EF4 - $0EFF

Whenever ICD2 ™ or PICkit2 ™ or PICkit3 ™ compatibility is enabled, the compiler will automati-
cally deduct the reserved RAM from the available RAM within the PICmicro™, therefore you
must take this into account when declaring variables. Remember, there aren't as many vari-
ables available with the ICD enabled.

8-bit Proton Compiler Development Suite.

 137

Adin Declares.
Declare Adin_Res 8, 10, or 12.
Sets the number of bits in the result.

If this Declare is not used, then the default is the resolution of the microcontroller used. Using
the above Declare allows an 8-bit result to be obtained from 10-bit or 12-bit microcontrollers,
but not 10-bits or 12-bits from the 8-bit types.

Declare Adin_Tad 2_FOSC, 8_FOSC, 32_FOSC, 64_FOSC or FRC.
Sets the ADC's clock source.

All compatible PICmicros have four options for the clock source used by the ADC; 2_FOSC,
8_FOSC, and 32_FOSC, are ratios of the external oscillator, while FRC is the PICmicro's inter-
nal RC oscillator. Instead of using the predefined names for the clock source, values from 0 to
3 may be used. These reflect the settings of bits 0-1 in register ADCON0.

Care must be used when issuing this Declare, as the wrong type of clock source may result in
poor resolution, or no conversion at all. If in doubt use FRC which will produce a slight reduc-
tion in resolution and conversion speed, but is guaranteed to work first time, every time. FRC is
the default setting if the Declare is not issued in the BASIC listing.

Declare Adin_Stime 0 to 65535 microseconds (us).
Allows the internal capacitors to fully charge before a sample is taken. This may be a value
from 0 to 65535 microseconds (us).

A value too small may result in a reduction of resolution. While too large a value will result in
poor conversion speeds without any extra resolution being attained.

A typical value for Adin_Stime is 50 to 100. This allows adequate charge time without loosing
too much conversion speed.

But experimentation will produce the right value for your particular requirement. The default
value if the Declare is not used in the BASIC listing is 50.

Busin - Busout Declares.
Declare SDA_Pin Port . Pin
Declares the port and pin used for the data line (SDA). This may be any valid port on the mi-
crocontroller. If this declare is not issued in the BASIC program, then the default Port and Pin is
PORTA.0

Declare SCL_Pin Port . Pin
Declares the port and pin used for the clock line (SCL). This may be any valid port on the mi-
crocontroller. If this declare is not issued in the BASIC program, then the default Port and Pin is
PORTA.1

Declare Slow_Bus On - Off or 1 - 0
Slows the bus speed when using an oscillator higher than 4MHz.

The standard speed for the I2C bus is 100KHz. Some devices use a higher bus speed of
400KHz. If you use an 8MHz or higher oscillator, the bus speed may exceed the devices specs,
which will result in intermittent writes or reads, or in some cases, none at all. Therefore, use this
Declare if you are not sure of the device's spec. The datasheet for the device used will inform
you of its bus speed.

8-bit Proton Compiler Development Suite.

 138

Declare Bus_SCL On - Off, 1 - 0 or True - False
Eliminates the necessity for a pull-up resistor on the SCL line.

The I2C protocol dictates that a pull-up resistor is required on both the SCL and SDA lines,
however, this is not always possible due to circuit restrictions etc, so once the Bus_SCL On
Declare is issued at the top of the program, the resistor on the SCL line can be omitted from
the circuit. The default for the compiler if the Bus_SCL Declare is not issued, is that a pull-up
resistor is required.

Hbusin - Hbusout Declares.
Declare Hbus_Bitrate Constant 100, 400, 1000 etc.
The standard speed for the I2C bus is 100KHz. Some devices use a higher bus speed of
400KHz. The above Declare allows the I2C bus speed to be increased or decreased. Use this
Declare with caution, as too high a bit rate may exceed the device's specs, which will result in
intermittent transactions, or in some cases, no transactions at all. The datasheet for the device
used will inform you of its bus speed. The default bit rate is the standard 100KHz.

Declare HSDA_Pin Port . Pin
For devices that have PPS (Peripheral Pin Select), the port and pin used for the data line (SDA)
must be given, so that the compiler can seup the PPS SFRs before the program starts. This
may be any valid port on the microcontroller, but check the datasheet to see if the Port is valid
for the peripheral.

Declare HSCL_Pin Port . Pin
For devices that have PPS (Peripheral Pin Select), the port and pin used for the clock line
(SCL) must be given, so that the compiler can seup the PPS SFRs before the program starts.
This may be any valid port on the microcontroller, but check the datasheet to see if the Port is
valid for the peripheral.

8-bit Proton Compiler Development Suite.

 139

USART1 Declares for use with Hrsin, Hserin, Hrsout and Hserout.

Declare Hserout_Pin Port . Pin
For devices that have PPS (Peripheral Pin Select), the port and pin used for the TX line must
be given, so that the compiler can seup the PPS SFRs before the program starts. This may be
any valid port on the microcontroller, but check the datasheet to see if the Port is valid for the
peripheral.

Declare Hserin_Pin Port . Pin
For devices that have PPS (Peripheral Pin Select), the port and pin used for the RX line must
be given, so that the compiler can seup the PPS SFRs before the program starts. This may be
any valid port on the microcontroller, but check the datasheet to see if the Port is valid for the
peripheral.

Declare Hserial_Baud Constant value
Sets the Baud rate that will be used to receive a value serially. The baud rate is calculated us-
ing the Xtal frequency declared in the program. The compiler will assign the best values to the
SFRs for the Baud rate required. Within the asm file listing are the Baud rate achieved and the
error percentage. Once compiled, press the F2 button and view the asm listing.

Declare Hserial_RCSTA Constant value (0 to 255)
Hserial_RCSTA, is an optional declare that sets the respective microcontroller hardware reg-
ister RCSTA, to the value in the Declare. See the device’s data sheet for more information re-
garding this register.

Declare Hserial_TXSTA Constant value (0 to 255)
Hserial_TXSTA, is an optional declare that sets the respective hardware register, TXSTA, to
the value in the Declare. See the device’s data sheet for more information regarding this regis-
ter. The TXSTA register’s BRGH bit controls the high speed mode for the baud rate generator.
Certain Baud rates at certain oscillator speeds require this bit to be set to operate properly. To
do this, set Hserial_TXSTA to a value of $24 instead of the default $20.

Declare Hserial_Parity Odd or Even
Enables/Disables parity on the serial port. For Hrsin, Hrsout, Hserin and Hserout. The default
serial data format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1
stop bit) or 7O1 (7data bits, odd parity, 1 stop bit) may be enabled using the Hserial_Parity
declare.

 Declare Hserial_Parity = Even ' Use if even parity desired
 Declare Hserial_Parity = Odd ' Use if odd parity desired

8-bit Proton Compiler Development Suite.

 140

Declare Hserial_Clear On or Off
Clear the overflow error bit before commencing a read.

Because the hardware serial port only has a 2-byte input buffer, it can easily overflow is charac-
ters are not read from it often enough. When this occurs, the USART stops accepting any new
characters, and requires resetting. This overflow error can be reset by strobing the CREN bit
within the RCSTA register. Example: -

 RCSTAbits_CREN = 0
 RCSTAbits_CREN = 1
or
 Clear RCSTAbits_CREN
 Set RCSTAbits_CREN

Alternatively, the Hserial_Clear declare can be used to automatically clear this error, even if no
error occurred. However, the program will not know if an error occurred while reading, therefore
some characters may be lost.

 Declare Hserial_Clear = On

USART2 Declares for use with Hrsin2, Hserin2, Hrsout2 and Hserout2.

Declare Hserout2_Pin Port . Pin
For devices that have PPS (Peripheral Pin Select), the port and pin used for the TX2 line must
be given, so that the compiler can seup the PPS SFRs before the program starts. This may be
any valid port on the microcontroller, but check the datasheet to see if the Port is valid for the
peripheral.

Declare Hserin2_Pin Port . Pin
For devices that have PPS (Peripheral Pin Select), the port and pin used for the RX2 line must
be given, so that the compiler can seup the PPS SFRs before the program starts. This may be
any valid port on the microcontroller, but check the datasheet to see if the Port is valid for the
peripheral.

Declare Hserial2_Baud Constant value
Sets the Baud rate that will be used to transmit a value serially. The baud rate is calculated us-
ing the Xtal frequency declared in the program. The compiler will assign the best values to the
SFRs for the Baud rate required. Within the asm file listing are the Baud rate achieved and the
error percentage. Once compiled, press the F2 button and view the asm listing.

Declare Hserial2_RCSTA Constant value (0 to 255)
Hserial2_RCSTA, is an optional declare that sets the respective hardware register RCSTA2,
to the value in the Declare. See the device’s data sheet for more information regarding this reg-
ister.

Declare Hserial2_TXSTA Constant value (0 to 255)
Hserial2_TXSTA, is an optional declare that sets the respective hardware register, TXSTA2,
to the value in the Declare. See the device’s data sheet for more information regarding this reg-
ister. The TXSTA2 register’s BRGH2 bit controls the high speed mode for the baud rate gen-
erator. Certain baud rates at certain oscillator speeds require this bit to be set to operate prop-
erly. To do this, set Hserial2_TXSTA to a value of $24 instead of the default $20.

8-bit Proton Compiler Development Suite.

 141

Declare Hserial2_Parity Odd or Even
Enables/Disables parity on the serial port. For Hrsout2, Hrsin2, Hserout2 and Hserin2. The
default serial data format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even
parity, 1 stop bit) or 7O1 (7data bits, odd parity, 1 stop bit) may be enabled using the Hse-
rial2_Parity declare.

 Declare Hserial2_Parity = Even ' Use if even parity desired
 Declare Hserial2_Parity = Odd ' Use if odd parity desired

Declare Hserial2_Clear On or Off
Clear the overflow error bit before commencing a read.

Because the hardware serial port only has a 2-byte input buffer, it can easily overflow is charac-
ters are not read from it often enough. When this occurs, the USART stops accepting any new
characters, and requires resetting. This overflow error can be reset by strobing the CREN bit
within the RCSTA2 register. Example: -

 RCSTA2bits_CREN = 0
 RCSTA2bits_CREN = 1
or
 Clear RCSTA2bits_CREN
 Set RCSTA2bits_CREN

Alternatively, the Hserial2_Clear declare can be used to automatically clear this error, even if
no error occurred. However, the program will not know if an error occurred while reading, there-
fore some characters may be lost.

 Declare Hserial2_Clear = On

USART3 Declares for use with Hrsin3, Hserin3, Hrsout3 and Hserout3.

Declare Hserout3_Pin Port . Pin
For devices that have PPS (Peripheral Pin Select), the port and pin used for the TX3 line must
be given, so that the compiler can seup the PPS SFRs before the program starts. This may be
any valid port on the microcontroller, but check the datasheet to see if the Port is valid for the
peripheral.

Declare Hserin3_Pin Port . Pin
For devices that have PPS (Peripheral Pin Select), the port and pin used for the RX3 line must
be given, so that the compiler can seup the PPS SFRs before the program starts. This may be
any valid port on the microcontroller, but check the datasheet to see if the Port is valid for the
peripheral.

Declare Hserial3_Baud Constant value
Sets the Baud rate that will be used to transmit a value serially. The baud rate is calculated us-
ing the Xtal frequency declared in the program. The compiler will assign the best values to the
SFRs for the Baud rate required. Within the asm file listing are the Baud rate achieved and the
error percentage. Once compiled, press the F2 button and view the asm listing.

Declare Hserial3_RCSTA Constant value (0 to 255)
Hserial2_RCSTA, is an optional declare that sets the respective hardware register RCSTA3,
to the value in the Declare. See the device’s data sheet for more information regarding this reg-
ister.

8-bit Proton Compiler Development Suite.

 142

Declare Hserial3_TXSTA Constant value (0 to 255)
Hserial3_TXSTA, is an optional declare that sets the respective hardware register, TXSTA3,
to the value in the Declare. See the device’s data sheet for more information regarding this reg-
ister. The TXSTA3 register’s BRGH bit controls the high speed mode for the baud rate genera-
tor. Certain Baud rates at certain oscillator speeds require this bit to be set to operate properly.
To do this, set Hserial3_TXSTA to a value of $24 instead of the default $20.

Declare Hserial3_Parity Odd or Even
Enables/Disables parity on the serial port. For Hrsout3, Hrsin3, Hserout3 and Hserin3. The
default serial data format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even
parity, 1 stop bit) or 7O1 (7data bits, odd parity, 1 stop bit) may be enabled using the Hse-
rial2_Parity declare.

 Declare Hserial3_Parity = Even ' Use if even parity desired
 Declare Hserial3_Parity = Odd ' Use if odd parity desired

Declare Hserial3_Clear On or Off
Clear the overflow error bit before commencing a read.

Because the hardware serial port only has a 2-byte input buffer, it can easily overflow is charac-
ters are not read from it often enough. When this occurs, the USART stops accepting any new
characters, and requires resetting. This overflow error can be reset by strobing the CREN bit
within the RCSTA3 register. Example: -

 RCSTA3bits_CREN = 0
 RCSTA3bits_CREN = 1
or
 Clear RCSTA3bits_CREN
 Set RCSTA3bits_CREN

Alternatively, the Hserial3_Clear declare can be used to automatically clear this error, even if
no error occurred. However, the program will not know if an error occurred while reading, there-
fore some characters may be lost.

 Declare Hserial3_Clear = On

USART4 Declares for use with Hrsin4, Hserin4, Hrsout4 and Hserout4.

Declare Hserout4_Pin Port . Pin
For devices that have PPS (Peripheral Pin Select), the port and pin used for the TX4 line must
be given, so that the compiler can seup the PPS SFRs before the program starts. This may be
any valid port on the microcontroller, but check the datasheet to see if the Port is valid for the
peripheral.

Declare Hserin4_Pin Port . Pin
For devices that have PPS (Peripheral Pin Select), the port and pin used for the RX4 line must
be given, so that the compiler can seup the PPS SFRs before the program starts. This may be
any valid port on the microcontroller, but check the datasheet to see if the Port is valid for the
peripheral.

Declare Hserial4_Baud Constant value
Sets the Baud rate that will be used to transmit a value serially. The baud rate is calculated us-
ing the Xtal frequency declared in the program. The compiler will assign the best values to the
SFRs for the Baud rate required. Within the asm file listing are the Baud rate achieved and the
error percentage. Once compiled, press the F2 button and view the asm listing.

8-bit Proton Compiler Development Suite.

 143

Declare Hserial4_RCSTA Constant value (0 to 255)
Hserial4_RCSTA, is an optional declare that sets the respective hardware register RCSTA4,
to the value in the Declare. See the device’s data sheet for more information regarding this reg-
ister.

Declare Hserial4_TXSTA Constant value (0 to 255)
Hserial4_TXSTA, is an optional declare that sets the respective hardware register, TXSTA4,
to the value in the Declare. See the device’s data sheet for more information regarding this reg-
ister. The TXSTA4 register’s BRGH bit controls the high speed mode for the Baud rate genera-
tor. Certain Baud rates at certain oscillator speeds require this bit to be set to operate properly.
To do this, set Hserial4_TXSTA to a value of $24 instead of the default $20.

Declare Hserial4_Parity Odd or Even
Enables/Disables parity on the serial port. For Hrsout4, Hrsin4, Hserout4 and Hserin4. The
default serial data format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even
parity, 1 stop bit) or 7O1 (7data bits, odd parity, 1 stop bit) may be enabled using the Hse-
rial4_Parity declare.

 Declare Hserial4_Parity = Even ' Use if even parity desired
 Declare Hserial4_Parity = Odd ' Use if odd parity desired

Declare Hserial4_Clear On or Off
Clear the overflow error bit before commencing a read.

Because the hardware serial port only has a 2-byte input buffer, it can easily overflow if bytes
are not read from it often enough. When this occurs, the USART stops accepting any new
characters, and requires resetting. This overflow error can be reset by strobing the CREN bit
within the RCSTA4 register. Example: -

 RCSTA4bits_CREN = 0
 RCSTA4bits_CREN = 1
or
 Clear RCSTA4bits_CREN
 Set RCSTA4bits_CREN

Alternatively, the Hserial4_Clear declare can be used to automatically clear this error, even if
no error occurred. However, the program will not know if an error occurred while reading, there-
fore some characters may be lost.

 Declare Hserial4_Clear = On

8-bit Proton Compiler Development Suite.

 144

Hpwm Declares.
Some devices have alternate pins that may be used for Hpwm. The following Declares allow
the use of different pins: -

Declare CCP1_Pin Port.Pin ' Select Hpwm port and bit for CCP1 module (ch 1)
Declare CCP2_Pin Port.Pin ' Select Hpwm port and bit for CCP2 module (ch 2)
Declare CCP3_Pin Port.Pin ' Select Hpwm port and bit for CCP3 module (ch 3)
Declare CCP4_Pin Port.Pin ' Select Hpwm port and bit for CCP4 module (ch 4)
Declare CCP5_Pin Port.Pin ' Select Hpwm port and bit for CCP5 module (ch 5)
Declare CCP6_Pin Port.Pin ' Select Hpwm port and bit for CCP6 module (ch 6)

Or

Declare HPWM1_Pin Port.Pin ' Select Hpwm port and bit for PWM1 module (ch 1)
Declare HPWM2_Pin Port.Pin ' Select Hpwm port and bit for PWM 2 module (ch 2)
Declare HPWM3_Pin Port.Pin ' Select Hpwm port and bit for PWM 3 module (ch 3)
Declare HPWM4_Pin Port.Pin ' Select Hpwm port and bit for PWM 4 module (ch 4)
Declare HPWM5_Pin Port.Pin ' Select Hpwm port and bit for PWM 5 module (ch 5)
Declare HPWM6_Pin Port.Pin ' Select Hpwm port and bit for PWM 6 module (ch 6)

Both texts after the declare; HPWMx_Pin or CCPx_Pin are valid for all devices that contain, ei-
ther CCP peripherals or PWM peripherals.

For devices that have PPS (Peripheral Pin Select), the compiler will manipulate the appropriate
SFRs before the program starts, so that the PWM signal is produced correctly.

8-bit Proton Compiler Development Suite.

 145

Alphanumeric (Hitachi HD44780) LCD Print Declares.
Declare LCD_DTPin Port . Pin
Assigns the Port and Pins that the LCD's DT lines will attach to.

The LCD may be connected to the microcontroller using either a 4-bit bus or an 8-bit bus. If an
8-bit bus is used, all 8 bits must be on one port. If a 4-bit bus is used, it must be connected to
either the bottom 4 or top 4 bits of one port. For example: -

 Declare LCD_DTPin PORTB.4 ' Used for 4-line interface.
 Declare LCD_DTPin PORTB.0 ' Used for 8-line interface.

In the above examples, PORTB is only a personal preference. The LCD's DT lines can be at-
tached to any valid port on the microcontroller. If the Declare is not used in the program, then
the default Port and Pin is PORTB.4, which assumes a 4-line interface.

Declare LCD_DataX_Pin Port . Pin
Assigns the individual Ports and Pins that the HD4470 LCD’s DT lines will attach to.

Unlike the above LCD_DTPin declares, the LCD’s data pins can also be attached to any se-
perate port and pin. For example:-

Declare LCD_Data0_Pin PORTA.0 ' Connect PORTA.0 to the LCD’s D0 line
Declare LCD_Data1_Pin PORTA.2 ' Connect PORTA.2 to the LCD’s D1 line
Declare LCD_Data2_Pin PORTA.4 ' Connect PORTA.4 to the LCD’s D2 line
Declare LCD_Data3_Pin PORTB.0 ' Connect PORTB.0 to the LCD’s D3 line
Declare LCD_Data4_Pin PORTB.1 ' Connect PORTB.1 to the LCD’s D4 line
Declare LCD_Data5_Pin PORTB.5 ' Connect PORTB.5 to the LCD’s D5 line
Declare LCD_Data6_Pin PORTC.0 ' Connect PORTC.0 to the LCD’s D6 line
Declare LCD_Data7_Pin PORTC.1 ' Connect PORTC.1 to the LCD’s D7 line

There are no default settings for these Declares and they must be used within the BASIC pro-
gram if required.

Declare LCD_ENPin Port . Pin
Assigns the Port and Pin that the LCD's EN line will attach to. This also assigns the graphic
LCD's EN pin, however, the default value remains the same as for the alphanumeric type, so
this will require changing.

If the Declare is not used in the program, then the default Port and Pin is PORTB.2.

Declare LCD_RSPin Port . Pin
Assigns the Port and Pins that the LCD's RS line will attach to. This also assigns the graphic
LCD's RS pin, however, the default value remains the same as for the alphanumeric type, so
this will require changing.

If the Declare is not used in the program, then the default Port and Pin is PORTB.3.

Declare LCD_Interface 4 or 8
Inform the compiler as to whether a 4-line or 8-line interface is required by the LCD.

If the Declare is not used in the program, then the default interface is a 4-line type.

8-bit Proton Compiler Development Suite.

 146

Declare LCD_Lines 1, 2, or 4
Inform the compiler as to how many lines the LCD has.

LCD's come in a range of sizes, the most popular being the 2 line by 16 character types. How-
ever, there are 4-line types as well. Simply place the number of lines that the particular LCD
has into the declare.

If the Declare is not used in the program, then the default number of lines is 2.

Declare LCD_CommandUS 1 to 65535
Time to wait (in microseconds) between commands sent to the LCD.

If the Declare is not used in the program, then the default delay is 2000us (2ms).

Declare LCD_DataUs 1 to 255
Time to wait (in microseconds) between data sent to the LCD.

If the Declare is not used in the program, then the default delay is 50us.

8-bit Proton Compiler Development Suite.

 147

Graphic LCD Declares.
Declare LCD_Type 0 or 1 or 2, Alpha or Graphic or KS0108 or Toshiba or T6963
Inform the compiler as to the type of LCD that the Print command will output to. If Graphic,
KS0108 or 1 is chosen then any output by the Print command will be directed to a graphic LCD
based on the KS0108 chipset. A value of 2, or the text Toshiba, or T6963 will direct the output
to a graphic LCD based on the Toshiba T6963 chipset. A value of 0 or Alpha, or if the Declare
is not issued, will target the standard Hitachi HD44780 alphanumeric LCD type

Targeting the graphic LCD will also enable commands such as Plot, UnPlot, LCDread,
LCDwrite, Pixel, Box, Circle and Line.

KS0108 Graphic LCD specific Declares.
Declare LCD_DTPort Port
Assign the port that will output the 8-bit data to the graphic LCD.

If the Declare is not used, then the default port is PORTB.

Declare LCD_RWPin Port . Pin
Assigns the Port and Pin that the graphic LCD's RW line will attach to.

If the Declare is not used in the program, then the default Port and Pin is PORTC.0.

Declare LCD_CS1Pin Port . Pin
Assigns the Port and Pin that the graphic LCD's CS1 line will attach to.

If the Declare is not used in the program, then the default Port and Pin is PORTC.0.

Declare LCD_CS2Pin Port . Pin
Assigns the Port and Pin that the graphic LCD's CS2 line will attach to.

If the Declare is not used in the program, then the default Port and Pin is PORTC.0.

Declare Internal_Font On - Off, 1 or 0
The graphic LCD's that are compatible with Proton are non-intelligent types, therefore, a sepa-
rate character set is required. This may be in one of two places, either externally, in an I2C
eeprom, or internally in a Cdata table.

If an external font is chosen, the I2C eeprom must be connected to the specified SDA and SCL
pins (as dictated by Declare SDA_Pin and Declare SCL_Pin).

If an internal font is chosen, it must be on a PICmicro™ device that has self modifying code fea-
tures, such as the 16F87X, or 18F range.

8-bit Proton Compiler Development Suite.

 148

The Cdata table that contains the font must have a label, named Font_Table: preceding it. For
example: -

Font_Table: Cdata $7E, $11, $11, $11, $7E, $0,_ ' Chr "A"
 $7F, $49, $49, $49, $36, $0 ' Chr "B"
 { rest of font table }

The font table may be anywhere in memory, however, it is best placed after the main program
code.

If the Declare is omitted from the program, then an external font is the default setting.

Declare Font_Addr 0 to 7
Set the slave address for the I2C eeprom that contains the font.

When an external source for the font is chosen, it may be on any one of 8 eeproms attached to
the I2C bus. So as not to interfere with any other eeproms attached, the slave address of the
eeprom carrying the font code may be chosen.

If the Declare is omitted from the program, then address 0 is the default slave address of the
font eeprom.

Declare GLCD_CS_Invert On - Off, 1 or 0
Some graphic LCD types have inverters on their CS lines. Which means that the LCD displays
left hand data on the right side, and vice-versa. The GLCD_CS_Invert Declare, adjusts the li-
brary LCD handling library subroutines to take this into account.

Declare GLCD_Strobe_Delay 0 to 65535 us (microseconds).
Create a delay of n microseconds between strobing the EN line of the graphic LCD. This can
help noisy, or badly decoupled circuits overcome random bits appearing on the LCD. The de-
fault if the Declare is not used in the BASIC program is a delay of 0.

Toshiba T6963 Graphic LCD specific Declares.
Declare LCD_DTPort Port
Assign the port that will output the 8-bit data to the graphic LCD.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_WRPin Port . Pin
Assigns the Port and Pin that the graphic LCD's WR line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_RDPin Port . Pin
Assigns the Port and Pin that the graphic LCD's RD line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_CEPin Port . Pin
Assigns the Port and Pin that the graphic LCD's CE line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

8-bit Proton Compiler Development Suite.

 149

Declare LCD_CDPin Port . Pin
Assigns the Port and Pin that the graphic LCD's CD line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_RSTPin Port . Pin
Assigns the Port and Pin that the graphic LCD's RST line will attach to.

The LCD’s RST (Reset) Declare is optional and if omitted from the BASIC code the compiler
will not manipulate it. However, if not used as part of the interface, you must set the LCD’s RST
pin high for normal operation.

Declare LCD_X_Res 0 to 255
LCD displays using the T6963 chipset come in varied screen sizes (resolutions). The compiler
must know how many horizontal pixels the display consists of before it can build its library sub-
routines.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_Y_Res 0 to 255
LCD displays using the T6963 chipset come in varied screen sizes (resolutions). The compiler
must know how many vertical pixels the display consists of before it can build its library subrou-
tines.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_Font_Width 6 or 8
The Toshiba T6963 graphic LCDs have two internal font sizes, 6 pixels wide by eight high, or 8
pixels wide by 8 high. The particular font size is chosen by the LCD’s FS pin. Leaving the FS
pin floating or bringing it high will choose the 6 pixel font, while pulling the FS pin low will
choose the 8 pixel font. The compiler must know what size font is required so that it can calcu-
late screen and RAM boundaries.

Note that the compiler does not control the FS pin and it is down to the circuit layout whether or
not it is pulled high or low. There is no default setting for this Declare and it must be used
within the BASIC program.

Declare LCD_RAM_Size 1024 to 65535
Toshiba graphic LCDs contain internal RAM used for Text, Graphic or Character Generation.
The amount of RAM is usually dictated by the display’s resolution. The larger the display, the
more RAM is normally present. Standard displays with a resolution of 128x64 typically contain
4096 bytes of RAM, while larger types such as 240x64 or 190x128 typically contain 8192 bytes
or RAM. The display’s datasheet will inform you of the amount of RAM present.

If this Declare is not issued within the BASIC program, the default setting is 8192 bytes.

8-bit Proton Compiler Development Suite.

 150

Declare LCD_Text_Pages 1 to n
As mentioned above, Toshiba graphic LCDs contain RAM that is set aside for text, graphics or
characters generation. In normal use, only one page of text is all that is required, however, the
compiler can re-arrange its library subroutines to allow several pages of text that is continuous.
The amount of pages obtainable is directly proportional to the RAM available within the LCD
itself. Larger displays require more RAM per page, therefore always limit the amount of pages
to only the amount actually required or unexpected results may be observed as text, graphic
and character generator RAM areas merge.

This Declare is purely optional and is usually not required. The default is 3 text pages if this
Declare is not issued within the BASIC program.

Declare LCD_Graphic_Pages 1 to n
Just as with text, the Toshiba graphic LCDs contain RAM that is set aside for graphics. In nor-
mal use, only one page of graphics is all that is required, however, the compiler can re-arrange
its library subroutines to allow several pages of graphics that is continuous. The amount of
pages obtainable is directly proportional to the RAM available within the LCD itself. Larger dis-
plays require more RAM per page, therefore always limit the amount of pages to only the
amount actually required or unexpected results may be observed as text, graphic and character
generator RAM areas merge.

This Declare is purely optional and is usually not required. The default is 1 graphics page if this
Declare is not issued within the BASIC program.

Declare LCD_Text_Home_Address 0 to n
The RAM within a Toshiba graphic LCD is split into three distinct uses, text, graphics and char-
acter generation. Each area of RAM must not overlap or corruption will appear on the display
as one uses the other’s assigned space. The compiler’s library subroutines calculate each area
of RAM based upon where the text RAM starts. Normally the text RAM starts at address 0,
however, there may be occasions when it needs to be set a little higher in RAM. The order of
RAM is; Text, Graphic, then Character Generation.

This Declare is purely optional and is usually not required. The default is the text RAM staring
at address 0 if this Declare is not issued within the BASIC program.

Keypad Declare.
Declare Keypad_Port Port
Assigns the Port that the keypad is attached to.

The keypad routine requires pull-up resistors, therefore, the best Port for this device is PORTB
which, sometimes, comes equipped with internal pull-ups. If the Declare is not used in the pro-
gram, then PORTB is the default Port.

8-bit Proton Compiler Development Suite.

 151

Rsin - Rsout Declares.
Declare Rsout_Pin Port . Pin
Assigns the Port and Pin that will be used to output serial data from the Rsout command. This
may be any valid port on the microcontroller.

If the Declare is not used in the program, then the default Port and Pin is PORTB.0.

Declare Rsin_Pin Port . Pin
Assigns the Port and Pin that will be used to input serial data by the Rsin command. This may
be any valid port on the microcontroller.

If the Declare is not used in the program, then the default Port and Pin is PORTB.1.

Declare Rsout_Mode True or Inverted or 1, 0
Sets the serial mode for the data transmitted by Rsout. This may be inverted or true. Alterna-
tively, a value of 1 may be substituted to represent inverted, and 0 for true.

If the Declare is not used in the program, then the default mode is inverted.

Declare Rsin_Mode True or Inverted or 1, 0
Sets the serial mode for the data received by Rsin. This may be inverted or true. Alternatively,
a value of 1 may be substituted to represent inverted, and 0 for true.

If the Declare is not used in the program, then the default mode is inverted.

Declare Serial_Baud 0 to 65535 bps (baud)
Informs the Rsin and Rsout routines as to what Baud rate to receive and transmit data.

Virtually any baud rate may be transmitted and received (within reason), but there are standard
bauds, namely: -

300, 600, 1200, 2400, 4800, 9600, and 19200.

When using a 4MHz crystal, the highest baud rate that is reliably achievable is 9600. However,
an increase in the oscillator speed allows higher baud rates to be achieved, including 38400
baud.

If the Declare is not used in the program, then the default baud is 9600.

Declare Rsout_Pace 0 to 65535 microseconds (us)
Implements a delay between characters transmitted by the Rsout command.

On occasion, the characters transmitted serially are in a stream that is too fast for the receiver
to catch, this results in missed characters. To alleviate this, a delay may be implemented be-
tween each individual character transmitted by Rsout.

If the Declare is not used in the program, then the default is no delay between characters.

8-bit Proton Compiler Development Suite.

 152

Declare Rsin_Timeout 0 to 65535 milliseconds (ms)
Sets the time, in ms, that Rsin will wait for a start bit to occur.

Rsin waits in a tight loop for the presence of a start bit. If no timeout parameter is issued, then it
will wait forever.

The Rsin command has the option of jumping out of the loop if no start bit is detected within the
time allocated by timeout.

If the Declare is not used in the program, then the default timeout value is 10000ms which is 10
seconds.

Serin - Serout Declare.
If communications are with existing software or hardware, its speed and mode will determine
the choice of baud rate and mode. In general, 7-bit/even-parity (7E) mode is used for text, and
8-bit/no-parity (8N) for byte-oriented data. Note: the most common mode is 8-bit/no-parity, even
when the data transmitted is just text. Most devices that use a 7-bit data mode do so in order to
take advantage of the parity feature. Parity can detect some communication errors, but to use it
you lose one data bit. This means that incoming data bytes transferred in 7E (even-parity)
mode can only represent values from 0 to 127, rather than the 0 to 255 of 8N (no-parity) mode.

The compiler's serial commands Serin and Serout have the option of still using a parity bit with
4 to 8 data bits. This is through the use of a Declare: -

With parity disabled (the default setting): -

 Declare Serial_Data 4 ' Set Serin and Serout data bits to 4
 Declare Serial_Data 5 ' Set Serin and Serout data bits to 5
 Declare Serial_Data 6 ' Set Serin and Serout data bits to 6
 Declare Serial_Data 7 ' Set Serin and Serout data bits to 7
 Declare Serial_Data 8 ' Set Serin and Serout data bits to 8 (default)

With parity enabled: -

 Declare Serial_Data 5 ' Set Serin and Serout data bits to 4
 Declare Serial_Data 6 ' Set Serin and Serout data bits to 5
 Declare Serial_Data 7 ' Set Serin and Serout data bits to 6
 Declare Serial_Data 8 ' Set Serin and Serout data bits to 7 (default)
 Declare Serial_Data 9 ' Set Serin and Serout data bits to 8

Serial_Data data bits may range from 4 bits to 8 (the default if no Declare is issued). Enabling
parity uses one of the number of bits specified.

Declaring Serial_Data as 9 allows 8 bits to be read and written along with a 9th parity bit.

Parity is a simple error-checking feature. When a serial sender is set for even parity (the mode
the compiler supports) it counts the number of 1s in an outgoing byte and uses the parity bit to
make that number even. For example, if it is sending the 7-bit value: %0011010, it sets the par-
ity bit to 1 in order to make an even number of 1s (four).

8-bit Proton Compiler Development Suite.

 153

The receiver also counts the data bits to calculate what the parity bit should be. If it matches
the parity bit received, the serial receiver assumes that the data was received correctly. Of
course, this is not necessarily true, since two incorrectly received bits could make parity seem
correct when the data was wrong, or the parity bit itself could be bad when the rest of the data
was correct.

Many systems that work exclusively with text use 7-bit/ even-parity mode. For example, to re-
ceive one data byte through bit-0 of PORTA at 9600 baud, 7E, inverted:

Shin - Shout Declare.
Declare Shift_DelayUs 0 - 65535 microseconds (us)
Extend the active state of the shift clock.

The clock used by Shin and Shout runs at approximately 45KHz dependent on the oscillator.
The active state is held for a minimum of 2 microseconds. By placing this declare in the pro-
gram, the active state of the clock is extended by an additional number of microseconds up to
65535 (65.535 milliseconds) to slow down the clock rate.

If the Declare is not used in the program, then the default is a very small clock delay.

8-bit Proton Compiler Development Suite.

 154

DelayCs

Syntax
DelayCs Length

Overview
Delay execution for an amount of instruction cycles.

Parameters
Length can only be a constant with a value from 1 to 1000.

Example
 DelayCs 100 ' Delay for 100 cycles

Notes
DelayCs is oscillator independent, as long as you inform the compiler of the crystal frequency
to use, using the Declare directive.

The length of a given instruction cycle is determined by the oscillator frequency. For example,
running the microcontroller at it’s default speed of 64MHz will result in an instruction cycle of
62.5ns (nano seconds).

Because of code memory paging overheads, DelayCs is only available when using enhanced
14-bit core or 18F devices.

See also : DelayUs, DelayMs, Sleep, Snooze.

8-bit Proton Compiler Development Suite.

 155

DelayMs

Syntax
DelayMs Length

Overview
Delay execution for length x milliseconds (ms). Delays may be up to 65535ms (65.535 sec-
onds) long.

Parameters
Length can be a constant, variable, or expression.

Example
 Device = 18F25K20

Declare Xtal = 16

Dim MyByte as Byte = 50
 Dim MyWord as Word = 1000

 DelayMs 100 ' Delay for 100ms
 DelayMs MyByte ' Delay for 50ms
 DelayMs MyWord ' Delay for 1000ms
 DelayMs MyWord + 10 ' Delay for 1010ms

Notes
DelayMs is oscillator independent, as long as you inform the compiler of the crystal frequency
to use, using the Declare directive.

See also : DelayUs, Sleep, Snooze.

8-bit Proton Compiler Development Suite.

 156

DelayUs

Syntax
DelayUs Length

Overview
Delay execution for length x microseconds (us). Delays may be up to 65535us (65.535 milli-
seconds) long.

Parameters
Length can be a constant, variable, or expression.

Example
 Device = 18F25K20

Declare Xtal = 16

Dim MyByte as Byte = 50
 Dim MyWord as Word = 1000

 DelayUs 1 ' Delay for 1us
 DelayUs 100 ' Delay for 100us
 DelayUs MyByte ' Delay for 50us
 DelayUs MyWord ' Delay for 1000us
 DelayUs MyWord + 10 ' Delay for 1010us

Notes
DelayUs is oscillator independent, as long as you inform the compiler of the crystal frequency
to use, using the Xtal directive.

If a constant is used as length, then delays down to 1us can be achieved, however, if a variable
is used as length, then there's a minimum delay time depending on the frequency of the crystal
used: -

 Crystal Freq Minimum Delay
 4MHz 24us
 8MHz 12us
 10MHz 8us
 16MHz 5us
 20MHz 2us
 24MHz 2us
 25MHz 2us
 32MHz 2us
 33MHz 2us
 40MHz 2us
 48MHz 2us

64MHz 2us

See also : Declare, DelayMs, DelayCs, Sleep, Snooze

8-bit Proton Compiler Development Suite.

 157

Device

Syntax
Device Device number

Overview
Inform the compiler which microcontroller is being used.

Parameters
Device number can be a 12-bit, 14-bit, enhanced 14-bit or 18F device. If a PIC24 or dsPIC de-
vice is chosen, the compiler will automatically use the Proton24.

Example

Device = 16F1829 ' Produce code for a 16F1829 device

 or

 Device = 16F684 ' Produce code for a 16F684 device

or

 Device = 12F508 ' Produce code for a 12-bit core 12F508 device

or

 Device = 18F4520 ' Produce code for a 18F4520 device

Device should be the first command placed in the program.

If the Device directive is not used in the BASIC program, the code produced will default to the
PIC18F25K20 device.

For an up-to-date list of compatible devices refer to the compiler’s PPI directory.

8-bit Proton Compiler Development Suite.

 158

Dig

Syntax
Variable = Dig Value, Digit number

Overview
Returns the value of a decimal digit.

Parameters
Value is an unsigned constant, 8-bit, 16-bit, 32-bit variable or expression, from which the digit
number is to be extracted.
Digit number is a constant, variable, or expression, that represents the digit to extract from
value. (0 - 4 with 0 being the rightmost digit).

Example
 Device = 18F25K20

Declare Xtal = 16

Dim MyValue as Byte

 Dim MyDigit as Byte

MyValue = 124
 MyDigit = Dig MyValue, 1 ' Extract the second digit's value
 HrsoutLn Dec MyDigit ' Transmit the value, which is 2

8-bit Proton Compiler Development Suite.

 159

Dim

Syntax
Dim Variable as Size

or

Dim Label as Code = comma delimited data

Overview
Declare a variable or alias or code memory table.

Parameters
Variable can be any alphanumeric character or string.
Size is the physical size of the variable, it may be Bit, Byte, Word, Dword, SByte, SWord,
SDword, Float, or String.
Label is a valid label name that will be associated with a code memory table.

Example
' Declare different sized variables
 Dim Var1 as Byte ' Create an unsigned 8-bit Byte variable
 Dim Wrd1 as Word ' Create an unsigned 16-bit Word variable
 Dim Dwrd1 as Dword ' Create an unsigned 32-bit Dword variable

 Dim sVar1 as SByte ' Create a signed 8-bit SByte variable
 Dim sWrd1 as SWord ' Create a signed 16-bit SWord variable
 Dim sDwrd1 as SDword ' Create a signed 32-bit SDword variable

 Dim BitVar as Bit ' Create a 1-bit Bit variable
 Dim MyFloat as Float ' Create a 32-bit floating point variable
 Dim StrnG as String*20 ' Create a 20 character string variable
 Dim MyCode as Code = 1,2,3,4,5,6,7 ' Place 7 bytes in code memory

Notes
Any variable that is declared without the 'as' text after it, will assume an 8-bit Byte type.

Dim should be placed near the beginning of the program. Any references to variables not de-
clared or before they are declared may, in some cases, produce errors.

Variable names, as in the case or labels, may freely mix numeric content and underscores.

 Dim MyVar as Byte
or
 Dim MY_Var as Word
or
 Dim My_Var2 as Bit

Variable names may start with an underscore, but must not start with a number. They can be
no more than 32 characters long. Any characters after this limit will cause a syntax error.

 Dim 2MyVar is not allowed.

8-bit Proton Compiler Development Suite.

 160

Variable names are not case sensitive, which means that the variable: -

 Dim MYVar

Is the same as…

 Dim MYVar

Dim can also be used to create Alias’s to other variables: -

 Dim MyByte as Byte ' Create a Byte sized variable
 Dim Var_Bit as MyByte.1 ' Var_Bit now represents Bit-1 of MyByte

Alias’s, as in the case of constants, do not require any RAM space, because they point to a
variable, or part of a variable that has already been declared.

RAM space required.
Each type of variable requires differing amounts of RAM memory for its allocation. The list be-
low illustrates this.

• String Requires the specified length of characters + 1.
• Float Requires 4 bytes of RAM.
• Dword Requires 4 bytes of RAM.
• SDword Requires 4 bytes of RAM.
• Word Requires 2 bytes of RAM.
• SWord Requires 2 bytes of RAM.
• Byte Requires 1 byte of RAM.
• SByte Requires 1 byte of RAM.
• Bit Requires 1 byte of RAM for every 8 Bit variables used.

Each type of variable may hold a different minimum and maximum value.

• String type variables are only useable with 18F and enhanced 14-bit core devices, and
can hold a maximum of 255 characters.

• Bit type variables may hold a 0 or a 1. These are created 8 at a time, therefore declaring

a single Bit type variable in a program will not save RAM space, but it will save code
space, as Bit type variables produce the most efficient use of code for comparisons etc.

• Byte type variables may hold an unsigned value from 0 to 255, and are the usual work

horses of most programs. Code produced for Byte sized variables is very low compared
to signed or unsigned Word, DWord or Float types, and should be chosen if the pro-
gram requires faster, or more efficient operation.

• SByte type variables may hold a 2's complemented signed value from -128 to +127.

Code produced for SByte sized variables is very low compared to SWord, Float, or
SDword types, and should be chosen if the program requires faster, or more efficient
operation. However, code produced is usually larger for signed variables than unsigned
types.

• Word type variables may hold an unsigned value from 0 to 65535, which is usually large

enough for most applications. It still uses more memory than an 8-bit byte variable, but
not nearly as much as a Dword or SDword type.

8-bit Proton Compiler Development Suite.

 161

• SWord type variables may hold a 2's complemented signed value from -32768 to

+32767, which is usually large enough for most applications. SWord type variables will
use more code space for expressions and comparisons, therefore, only use signed vari-
ables when required.

• Dword type variables may hold an unsigned value from 0 to 4294967295 making this

the largest of the variable family types. This comes at a price however, as Dword calcu-
lations and comparisons will use more code space within the microcontroller Use this
type of variable sparingly, and only when necessary.

• SDword type variables may hold a 2's complemented signed value from -2147483648 to

+2147483647, also making this the largest of the variable family types. This comes at a
price however, as SDword expressions and comparisons will use more code space than
a regular Dword type. Use this type of variable sparingly, and only when necessary.

• Float type variables may theoretically hold a value from -1e37 to +1e38, but because of

the 32-bit architecture of the compiler, a maximum and minimum value should be
thought of as -2147483646.999 to +2147483646.999 making this the most varsatile of
the variable family types. However, more so than Dword types, this comes at a price as
floating point expressions and comparisons will use more code space within the micro-
controller. Use this type of variable sparingly, and only when strictly necessary. Smaller
floating point values usually offer more accuracy.

There are modifiers that may also be used with variables. These are HighByte, LowByte,
Byte0, Byte1, Byte2, Byte3, Word0, Word1, SHighByte, SLowByte, SByte0, SByte1,
SByte2, SByte3, SWord0, and SWord1,

Word0, Word1, Byte2, Byte3, SWord0, SWord1, SByte2, and SByte3 may only be used in
conjunction with 32-bit Dword or SDword type variables.

HighByte and Byte1 are one and the same thing, when used with a Word or SWord type vari-
able, they refer to the unsigned High byte of a Word or SWord type variable: -

 Dim Wrd as Word ' Create an unsigned Word variable
 Dim Wrd_Hi as Wrd.HighByte
' Wrd_Hi now represents the unsigned high byte of variable Wrd

Variable Wrd_Hi is now accessed as a Byte sized type, but any reference to it actually alters
the high byte of Wrd.

SHighByte and SByte1 are one and the same thing, when used with a Word or SWord type
variable, they refer to the signed High byte of a Word or SWord type variable: -

 Dim Wrd as SWord ' Create a signed Word variable
 Dim Wrd_Hi as Wrd.SHighByte
' Wrd_Hi now represents the signed high byte of variable Wrd

Variable Wrd_Hi is now accessed as an SByte sized type, but any reference to it actually alters
the high byte of Wrd.

8-bit Proton Compiler Development Suite.

 162

However, if Byte1 is used in conjunction with a Dword type variable, it will extract the second
byte. HighByte will still extract the high byte of the variable, as will Byte3. If SByte1 is used in
conjunction with an SDword type variable, it will extract the signed second byte. SHighByte
will still extract the signed high byte of the variable, as will SByte3.

The same is true of LowByte, Byte0, SLowByte and SByte0, but they refer to the unsigned
or signed Low Byte of a Word or SWord type variable: -

 Dim Wrd as Word ' Create an unsigned Word variable
 Dim Wrd_Lo as Wrd.LowByte
' Wrd_Lo now represents the low byte of variable Wrd

Variable Wrd_Lo is now accessed as a Byte sized type, but any reference to it actually alters
the low byte of Wrd.

The modifier Byte2 will extract the 3rd unsigned byte from a 32-bit Dword or SDword type
variable as an alias. Likewise Byte3 will extract the unsigned high byte of a 32-bit variable.

 Dim Dwd as Dword ' Create a 32-bit unsigned variable named Dwd
 Dim Part1 as Dwd.Byte0 ' Alias unsigned Part1 to the low byte of Dwd
 Dim Part2 as Dwd.Byte1 ' Alias unsigned Part2 to the 2nd byte of Dwd
 Dim Part3 as Dwd.Byte2 ' Alias unsigned Part3 to the 3rd byte of Dwd
 Dim Part4 as Dwd.Byte3 ' Alias unsigned Part3 to the high (4th) byte of Dwd

The modifier SByte2 will extract the 3rd signed byte from a 32-bit Dword or SDword type vari-
able as an alias. Likewise SByte3 will extract the signed high byte of a 32-bit variable.

 Dim sDwd as SDword ' Create a 32-bit signed variable named sDwd
 Dim sPart1 as sDwd.SByte0 ' Alias signed Part1 to the low byte of sDwd
 Dim sPart2 as sDwd.SByte1 ' Alias signed Part2 to the 2nd byte of sDwd
 Dim sPart3 as sDwd.SByte2 ' Alias signed Part3 to the 3rd byte of sDwd
 Dim sPart4 as sDwd.SByte3 ' Alias signed Part3 to the 4th byte of sDwd

The Word0 and Word1 modifiers extract the unsigned low word and high word of a Dword or
SDword type variable, and is used the same as the Byten modifiers.

 Dim Dwd as Dword ' Create a 32-bit unsigned variable named Dwd
 Dim Part1 as Dwd.Word0 ' Alias unsigned Part1 to the low word of Dwd
 Dim Part2 as Dwd.Word1 ' Alias unsigned Part2 to the high word of Dwd

The SWord0 and SWord1 modifiers extract the signed low word and high word of a Dword or
SDword type variable, and is used the same as the SByten modifiers.

 Dim sDwd as SDword ' Create a 32-bit signed variable named sDwd
 Dim sPart1 as sDwd.SWord0 ' Alias Part1 to the low word of sDwd
 Dim sPart2 as sDwd.SWord1 ' Alias Part2 to the high word of sDwd

8-bit Proton Compiler Development Suite.

 163

RAM space for variables is allocated within the microcontroller in the order that they are placed
in the BASIC code. For example: -

 Dim Var1 as Byte
 Dim Var2 as Byte

Places Var1 first, then Var2: -

 Var1 equ n
 Var2 equ n

This means that on a device with more than one RAM Bank, the first n variables will always be
in Bank0 (the value of n depends on the specific PICmicro™ used).

The position of the variable within Banks is usually of little importance if BASIC code is used,
however, if assembler routines are being implemented, always assign any variables used within
them first.

Problems may also arise if a Word, Dword or Float variable crosses a RAM bank boundary. If
this happens, a warning message will be displayed in the error window. Most of the time, this
will not cause any problems, however, to err on the side of caution, try and ensure that Word,
Dword or Float type variables are fully inside a Bank. This is easily accomplished by placing a
dummy Byte variable before the offending Word, Dword or Float type variable, or relocating
the offending variable within the list of Dim statements.

See Also : Aliases, Declaring Arrays, Floating Point Math, Symbol,

Creating and using Strings .

8-bit Proton Compiler Development Suite.

 164

Disable

Disable software interrupt processing that was previously Enabled following this instruction.

Disable and Enable, and Resume are not actually commands in the truest sense of the word,
but flags that the compiler uses internally. They do not produce any code.

Device = 16F877
 Declare Xtal = 4

Symbol LED = PORTD.0

OPTION_REG = %00000111
 INTCON = %00100000

'
' Enable software interrupts, and point to interrupt handler
'
 On Interrupt Goto My_Software_Int

Stop

 Disable ' Disable interrupts in the handler
My_Software_Int:
 Toggle LED ' Toggle an LED when interrupted
 Resume ' Return to main program
 Enable ' Enable interrupts after the handler

Note.
Software interrupts are a remnant from earlier compiler versions and are not recommended for
new applications. See Managed Hardware Interrupts for a better method of interrupt handling.

See also : Software Interrupts in BASIC, Enable, Resume.

8-bit Proton Compiler Development Suite.

 165

Do...Loop

Syntax
Do
 Instructions
Loop

or

Do

Instructions
Loop Until Condition

or

Do

Instructions
Loop While Condition

Overview
Execute a block of instructions until a condition is true, or while a condition is false, or create an
infinite loop.

Example 1
 Device = 18F25K22
 Declare Xtal = 4

 Dim MyWord as Word
 MyWord = 1
 Do ' Create a loop
 HrsoutLn Dec MyWord
 DelayMs 200
 Inc MyWord
 Loop Until MyWord > 10 ' Loop until MyWord is greater than 10

Example 2

Device = 18F25K22
 Declare Xtal = 4

 Dim MyWord as Word
 MyWord = 1
 Do ' Create a loop
 HrsoutLn Dec MyWord
 DelayMs 200
 Inc MyWord
 Loop While MyWord < 11 ' Loop while MyWord is less than 11

8-bit Proton Compiler Development Suite.

 166

Example 3
 Device = 18F25K22
 Declare Xtal = 4

 Dim MyWord as Word
 MyWord = 1
 Do ' Create a loop
 HrsoutLn Dec MyWord
 DelayMs 200
 Inc MyWord
 Loop ' Loop forever

Notes.
Do-Loop differs from the While-Wend type in that, the Do loop will carry out the instructions
within the loop at least once like a Repeat-Until type, then continuously until the condition is
true, but the While loop only carries out the instructions if the condition is true.

Do-Loop is an ideal replacement to a For-Next loop, and can actually take less code space,
thus performing the loop faster.

The above example 2 and example 3 show the equivalent to the For-Next loop: -

 For MyWord = 1 to 10 : Next

See also : While...Wend, For...Next...Step.

8-bit Proton Compiler Development Suite.

 167

DTMFout

Syntax
DTMFout Pin, { OnTime }, { OffTime, } [Tone {, Tone…}]

Overview
Produce a DTMF Touch Tone sequence on Pin.

Parameters
Pin is a Port.Bit constant that specifies the I/O pin to use. This pin will be set to output during
generation of tones and set to input after the command is finished.
OnTime is an optional variable, constant, or expression (0 - 65535) specifying the duration, in
ms, of the tone. If the OnTime parameter is not used, then the default time is 200ms
OffTime is an optional variable, constant, or expression (0 - 65535) specifying the length of si-
lent delay, in ms, after a tone (or between tones, if multiple tones are specified). If the OffTime
parameter is not used, then the default time is 50ms
Tone may be a variable, constant, or expression (0 - 15) specifying the DTMF tone to generate.
Tones 0 through 11 correspond to the standard layout of the telephone keypad, while 12
through 15 are the fourth-column tones used by phone test equipment and in some radio appli-
cations.

Example

DTMFout PORTA.0, [7, 5, 7, 9, 4, 0] ' Call a number.

If the PICmicro™ was connected to the phone line correctly, the above command would dial
666-709. If you wanted to slow down the dialling in order to break through a noisy phone line or
radio link, you could use the optional OnTime and OffTime values: -

'Set the OnTime to 500ms and OffTime to 100ms

DTMFout PORTA.0, 500, 100, [5, 4, 5, 9, 2, 0] ' Call Slowly.

Notes DTMF tones are used to dial a telephone, or re-
motely control pieces of radio equipment. The PICmicro™
can generate these tones digitally using the DTMFout
command. However, to achieve the best quality tones, a
higher crystal frequency is required. A 4MHz type will
work but the quality of the sound produced will suffer. The
circuits illustrate how to connect a speaker or audio am-
plifier to hear the tones produced.

The PICmicro™ is a digital device, however, DTMF tones
are analogue waveforms, consisting of a mixture of two
sine waves at different audio frequencies. So how can a
digital device generate an analogue output? The
PICmicro™ creates and mixes two sine waves mathematically, then uses the resulting stream of
numbers to control the duty cycle of an extremely fast pulse-width modulation (Pwm) routine.
Therefore, what’s actually being produced from the I/O pin is a rapid stream of pulses. The pur-
pose of the filtering arrangements illustrated above is to smooth out the high-frequency Pwm,
leaving behind only the lower frequency audio. You should keep this in mind if you wish to inter-
face the PICmicro’s DTMF output to radios and other equipment that could be adversely af-
fected by the presence of high-frequency noise on the input. Make sure to filter the DTMF out-
put scrupulously. The circuits above are only a foundation; you may want to use an active low-
pass filter with a cut-off frequency of approximately 2KHz.

C2
0.1uF

R2
1k

To Audio
Amplifier

R1
1k

C1
0.1uF

From PIC
I/O pin

From PIC
I/O pin

Speaker
C1

10uF

C2
10uF

8-bit Proton Compiler Development Suite.

 168

Edata

Syntax
Edata Constant1 { ,...Constantn etc }

Overview
Places constants or strings directly into the on-board eeprom memory of compatible PICmicro's

Parameters
Constant1,Constantn are values that will be stored in the on-board eeprom. When using an
Edata statement, all the values specified will be placed in the eeprom starting at location 0. The
Edata statement does not allow you to specify an eeprom address other than the beginning lo-
cation at 0. To specify a location to write or read data from the eeprom other than 0 refer to the
Eread, Ewrite commands.

Example
' Stores the values 1000,20,255,15, and the ASCII values for
' H','e','l','l','o' in the eeprom starting at memory position 0.

 Edata 1000, 20, $FF, %00001111, "Hello"

Notes
16-bit, 32-bit and floating point values may also be placed into eeprom memory. These are
placed LSB first (Lowest Significant Byte). For example, if 1000 is placed into an Edata state-
ment, then the order is: -

 Edata 1000

In eeprom it looks like 232, 03

Alias's to constants may also be used in an Edata statement: -

 Symbol Alias = 200

 Edata Alias, 120, 254, "Hello World"

Addressing an Edata table.
Eeprom data starts at address 0 and works up towards the maximum amount that the
PICmicro™ will allow. However, it is rarely the case that the information stored in eeprom mem-
ory is one continuous piece of data. Eeprom memory is normally used for storage of several
values or strings of text, so a method of accessing each piece of data is essential. Consider the
following piece of code: -

 Edata "Hello"
 Edata "World"

Now we know that eeprom memory starts at 0, so the text "Hello" must be located at address 0,
and we also know that the text "Hello" is built from 5 characters with each character occupying
a byte of eeprom memory, so the text "World" must start at address 5 and also contains 5
characters, so the next available piece of eeprom memory is located at address 10. To access
the two separate text strings we would need to keep a record of the start and end address's of
each character placed in the tables.

8-bit Proton Compiler Development Suite.

 169

Counting the amount of eeprom memory used by each piece of data is acceptable if only a few
Edata tables are used in the program, but it can become tedious if multiple values and strings
are needing to be stored, and can lead to program glitches if the count is wrong.

Placing an identifying name before the Edata table will allow the compiler to do the byte count-
ing for you. The compiler will store the eeprom address associated with the table in the identify-
ing name as a constant value. For example: -

 Hello_Text Edata "Hello"
 World_Text Edata "World"

The name Hello_Text is now recognised as a constant with the value of 0, referring to address
0 that the text string "Hello" starts at. The World_Text is a constant holding the value 5, which
refers to the address that the text string "World" starts at.

Note that the identifying text must be located on the same line as the Edata directive or a syn-
tax error will be produced. It must also not contain a postfix colon as does a line label or it will
be treat as a line label. Think of it as an alias name to a constant.

Any Edata directives must be placed at the head of the BASIC program as is done with Sym-
bols, so that the name is recognised by the rest of the program as it is parsed. There is no need
to jump over Edata directives as you have to with Ldata or Cdata, because they do not occupy
code memory, but reside in high Data memory.

The example program below illustrates the use of eeprom addressing.

' Display two text strings held in eeprom memory

 Include "Proton_4.Inc" ' Demo on a Proton development board

Dim Char as Byte ' Holds the character read from eeprom
Dim Charpos as Byte ' Holds the address within eeprom memory

'
' Create a string of text in eeprom memory. null terminated
Hello Edata "HELLO ",0
'
' Create another string of text in eeprom memory. null terminated
World Edata "WORLD",0

DelayMs 100 ' Wait for the LCD to stabilise
 Cls ' Clear the LCD
 Charpos = Hello ' Point Charpos to the start of text "Hello"
 Gosub DisplayText ' Display the text "Hello"
 Charpos = World ' Point Charpos to the start of text "World"
 Gosub DisplayText ' Display the text "World"
 Stop ' We're all done
'
' Subroutine to read and display the text held at the address in Charpos
'
DisplayText:
 Do ' Create an infinite loop
 Char = Eread Charpos ' Read the eeprom data
 If Char = 0 Then Break ' Exit when null found
 Print Char ' Display the character
 Inc Charpos ' Move up to the next address
 Loop ' Close the loop
 Return ' Exit the subroutine

8-bit Proton Compiler Development Suite.

 170

Formatting an Edata table.
Sometimes it is necessary to create a data table with a known format for its values. For exam-
ple all values will occupy 4 bytes of data space even though the value itself would only occupy
1 or 2 bytes.

 Edata 100000, 10000, 1000, 100, 10, 1

The above line of code would produce an uneven data space usage, as each value requires a
different amount of data space to hold the values. 100000 would require 4 bytes of eeprom
space, 10000 and 1000 would require 2 bytes, but 100, 10, and 1 would only require 1 byte.

Reading these values using Eread would cause problems because there is no way of knowing
the amount of bytes to read in order to increment to the next valid value.

The answer is to use formatters to ensure that a value occupies a predetermined amount of
bytes.

These are: -

 Byte
 Word
 Dword
 Float

Placing one of these formatters before the value in question will force a given length.

Edata Dword 100000, Dword 10000 ,_
 Dword 1000, Dword 100, Dword 10, Dword 1

Byte will force the value to occupy one byte of eeprom space, regardless of its value. Any val-
ues above 255 will be truncated to the least significant byte.

Word will force the value to occupy 2 bytes of eeprom space, regardless of its value. Any val-
ues above 65535 will be truncated to the two least significant bytes. Any value below 255 will
be padded to bring the memory count to 2 bytes.

Dword will force the value to occupy 4 bytes of eeprom space, regardless of its value. Any
value below 65535 will be padded to bring the memory count to 4 bytes. The line of code
shown above uses the Dword formatter to ensure all the values in the Edata table occupy 4
bytes of eeprom space.

Float will force a value to its floating point equivalent, which always takes up 4 bytes of eeprom
space.

If all the values in an Edata table are required to occupy the same amount of bytes, then a sin-
gle formatter will ensure that this happens.

 Edata as Dword 100000, 10000, 1000, 100, 10, 1

The above line has the same effect as the formatter previous example using separate Dword
formatters, in that all values will occupy 4 bytes, regardless of their value. All four formatters
can be used with the as keyword.

8-bit Proton Compiler Development Suite.

 171

The example below illustrates the formatters in use.

' Convert a Dword value into a string array
' Using only BASIC commands
' Similar principle to the Str$ command

 Include "Proton_4.Inc"
 Dim P10 as Dword ' Power of 10 variable
 Dim Cnt as Byte
 Dim J as Byte

 Dim Value as Dword ' Value to convert
 Dim MyString[11] as Byte ' Holds the converted value
 Dim Ptr as Byte ' Pointer within the Byte array

 DelayMs 100 ' Wait for the LCD to stabilise
 Cls ' Clear the LCD
 Clear ' Clear all RAM before we start
 Value = 1234576 ' Value to convert
 Gosub DwordToStr ' Convert Value to string
 Print Str MyString ' Display the result
 Stop
'-------------------------
' Convert a Dword value into a string array
' Value to convert is placed in 'Value'
' Byte array 'MyString' is built up with the ASCII equivalent

DwordToStr:
 Ptr = 0
 J = 0
 Repeat
 P10 = Eread J * 4
 Cnt = 0

 While Value >= P10
 Value = Value - P10
 Inc Cnt
 Wend
 If Cnt <> 0 Then
 MyString[Ptr] = Cnt + "0"
 Inc Ptr
 EndIf
 Inc J
 Until J > 8
 MyString[Ptr] = Value + "0"
 Inc Ptr
 MyString[Ptr] = 0 ' Add the null to terminate the string
 Return

' Edata table is formatted for all 32 bit values.
' Which means each value will require 4 bytes of eeprom space
Edata as Dword 1000000000, 100000000, 10000000, 1000000,100000,_

 10000, 1000, 100, 10

8-bit Proton Compiler Development Suite.

 172

Label names as pointers in an Edata table.
If a label's name is used in the list of values in an Edata table, the labels address will be used.
This is useful for accessing other tables of data using their address from a lookup table. See
example below.

' Display text from two Cdata tables
' Based on their address located in a separate table

Include "Proton_4.Inc" ' Use a 14-bit core device

Dim Address as Word
Dim DataByte as Byte

DelayMs 100 ' Wait for the LCD to stabilise
Cls ' Clear the LCD
Address = Eread 0 ' Locate the address of the first string
Do ' Create an infinite loop

DataByte = Cread Address ' Read each character from the Cdata string
If DataByte = 0 Then Break ' Exit if null found
Print DataByte ' Display the character
Inc Address ' Next character

Loop ' Close the loop

Cursor 2,1 ' Point to line 2 of the LCD
Address = Eread 2 ' Locate the address of the second string
Do ' Create an infinite loop

DataByte = Cread Address ' Read each character from the Cdata string
If DataByte = 0 Then Break' Exit if null found
Print DataByte ' Display the character
Inc Address ' Next character

Loop ' Close the loop
Stop

'
' Table of address's located in eeprom memory
'

Edata as Word String1, String2
String1:

Cdata "Hello",0
String2:

Cdata "World",0

See also : Eread, Ewrite.

8-bit Proton Compiler Development Suite.

 173

Enable

Enable software interrupt processing that was previously Disabled following this instruction.

Disable and Enable, and Resume are not actually commands in the truest sense of the word,
but flags that the compiler uses internally. They do not produce any code.

 Device = 16F877
 Declare Xtal = 4

Symbol LED = PORTD.0

OPTION_REG = %00000111
 INTCON = %00100000

'
' Enable software interrupts, and point to interrupt handler
'
 On Interrupt Goto My_Software_Int

 Stop

 Disable ' Disable interrupts in the handler
My_Software_Int:
 Toggle LED ' Toggle an LED when interrupted
 Resume ' Return to main program
 Enable ' Enable interrupts after the handler

Note.
Software interrupts are a remnant from earlier compiler versions and are not recommended for
new applications. See Managed Hardware Interrupts for a better method of interrupt handling.

See also : Software Interrupts in BASIC, Disable, Resume.

8-bit Proton Compiler Development Suite.

 174

Software Interrupts in BASIC
Although the most efficient method of using an interrupt is in assembler, hardware interrupts
and BASIC are poor bedfellows. By far the easiest way to write an interrupt handler is to write it
in BASIC, in combination with the On Interrupt statement. This is not the same as the com-
piler's On_Interrupt statement, which initiates a Hardware interrupt. On Interrupt (two sepa-
rate words.. On Interrupt) informs the compiler to activate its internal interrupt handling and to
jump to the BASIC interrupt handler as soon as it's capable, after receiving an interrupt. How-
ever, there's no such thing as a free lunch, and there are some penalties to pay for the ease of
use that this method brings.

The statement On_Hardware_Interrupt are also recognised by the compiler in order to clarify
which type of interrupt is being implemented.

When On Interrupt is used, the compiler simply flags that the interrupt has happened and im-
mediately goes back to what it was doing, before it was rudely interrupted. Unlike a hardware
interrupt, it does not immediately jump to the interrupt handler. And since the compiler's com-
mands are non re-entrant, there could be a considerable delay before the interrupt is actually
handled.

For example, if the program has just started to execute a DelayMs 2000 command when an
interrupt occurs, the compiler will flag the interrupt and continue with the delay. It could be as
much as 2 seconds later before the interrupt handler is executed. Any time critical routines de-
pendant on the interrupt occurring regularly will be ruined. For example, multiplexing seven
segment display.

To minimise the above problem, use only statements that don't take long to execute. For ex-
ample, instead of DelayMs 2000, use DelayMs 1 in a For..Next, or Repeat..Until loop. This
will allow the compiler to complete each command more quickly and handle any awaiting inter-
rupts: -

 For Var1 = 0 to 199 : DelayMs 1 : Next ' Delay for 200ms

If interrupt processing needs to occur more regularly, then there is no choice but to use a hard-
ware interrupt, with all its quirks.

Exactly what happens when On Interrupt is used is this: A short interrupt handler is placed at
location 4 in the PICmicro™. This interrupt handler is simply a Return. What this does is send
the program back to what it was doing before the interrupt occurred. It does not require any
processor context saving. What it doesn't do is re-enable Global Interrupts as happens when
using a Retfie instruction.

A Call to a short subroutine is placed before each command in the BASIC program once an On
Interrupt statement is encountered. This short subroutine checks the state of the Global Inter-
rupt Enable bit (GIE). If it's off, an interrupt is awaiting so it vectors to the users interrupt han-
dler. Which is essentially a BASIC subroutine.

If it is still set, the program continues with the next BASIC statement, after which, the GIE bit is
checked again, and so forth.

Note.
Software interrupts are a remnant from earlier compiler versions and are not recommended for
new applications. See Managed Hardware Interrupts for a better method of interrupt handling.

See also : Enable, Disable, Resume.

8-bit Proton Compiler Development Suite.

 175

End

Syntax
End

Overview
The End statement stops compilation of source, and creates an infinite loop.

Notes
End stops the PICmicro™ processing by placing it into a continuous loop. The port pins remain
the same and the device is placed in low power mode.

See also : Stop, Sleep, Snooze.

8-bit Proton Compiler Development Suite.

 176

Eread

Syntax
Variable = Eread Address

Overview
Read information from the on-board eeprom available on some PICmicro™ types.

Parameters
Variable is a user defined variable.
Address is a constant, variable, or expression, that contains the address of interest within
eeprom memory.

Example
 Device = 16F877 ' A device with on-board eeprom
 Dim Var1 as Byte
 Dim Wrd1 as Word
 Dim Dwrd1 as Dword

 Edata 10, 354, 123456789 ' Place some data into the eeprom
 Var1 = Eread 0 ' Read the 8-bit value from address 0
 Wrd1= Eread 1 ' Read the 16-bit value from address 1
 Dwrd1 = Eread 3 ' Read the 32-bit value from address 3

Notes
If a Float, or Dword type variable is used as the assignment variable, then 4-bytes will be read
from the eeprom. Similarly, if a Word type variable is used as the assignment variable, then a
16-bit value (2-bytes)will be read from eeprom, and if a Byte type variable is used, then 8-bits
will be read. To read an 8-bit value while using a Word sized variable, use the LowByte modi-
fier: -

 Wrd1.LowByte = Eread 0 ' Read an 8-bit value
 Wrd1.HighByte = 0 ' Clear the high byte of Wrd

If a 16-bit (Word) size value is read from the eeprom, the address must be incremented by two
for the next read. Also, if a Float or Dword type variable is read, then the address must be in-
cremented by 4.

Most of the Flash PICmicro™ types have a portion of memory set aside for storage of informa-
tion. The amount of memory is specific to the individual PICmicro™ type, some, such as the
16F84, has 64 bytes, the 16F877 device has 256 bytes, and some of the 18F devices have
upwards of 512 bytes.

Eeprom memory is non-volatile, and is an excellent place for storage of long-term information,
or tables of values.

Reading data with the Eread command is almost instantaneous, but writing data to the eeprom
can take up to 10ms per byte.

See also : Edata, Ewrite

8-bit Proton Compiler Development Suite.

 177

Ewrite

Syntax
Ewrite Address, [Variable {, Variable…etc }]

Overview
Write information to the on-board eeprom available on some PICmicro™ types.

Parameters
Address is a constant, variable, or expression, that contains the address of interest within
eeprom memory.
Variable is a user defined variable.

Example
 Device = 16F628 ' A device with on-board eeprom
 Dim Var1 as Byte
 Dim Wrd1 as Word
 Dim Address as Byte

 Var1 = 200
 Wrd1= 2456
 Address = 0 ' Point to address 0 within the eeprom
 Ewrite Address, [Wrd, Var1] ' Write a 16-bit then an 8-bit value

Notes
If a Dword type variable is used, then a 32-bit value (4-bytes) will be written to the eeprom.
Similarly, if a Word type variable is used, then a 16-bit value (2-bytes) will be written to eeprom,
and if a Byte type variable is used, then 8-bits will be written. To write an 8-bit value while using
a Word sized variable, use the LowByte modifier: -

 Ewrite Address, [Wrd.LowByte, Var1]

If a 16-bit (Word) size value is written to the eeprom, the address must be incremented by two
before the next write: -

 For Address = 0 to 64 Step 2
 Ewrite Address, [Wrd]
 Next

Most of the Flash PICmicro™ types have a portion of memory set aside for storage of informa-
tion. The amount of memory is specific to the individual PICmicro™ type, some, such as the
16F84, has 64 bytes, while the 16F877, and 18FXXX devices have 256 bytes.

Eeprom memory is non-volatile, and is an excellent place for storage of long-term information,
or tables of values.

Writing data with the Ewrite command can take up to 10ms per byte, but reading data from the
eeprom is almost instantaneous,.

See also : Edata, Eread

8-bit Proton Compiler Development Suite.

 178

For...Next...Step

Syntax
For Variable = Startcount to Endcount [Step { Stepval }]
{code body}
Next

Overview
The For…Next loop is used to execute a statement, or series of statements a predetermined
amount of times.

Parameters
Variable refers to an index variable used for the sake of the loop. This index variable can itself
be used in the code body but beware of altering its value within the loop as this can cause
many problems.
Startcount is the start number of the loop, which will initially be assigned to the variable. This
does not have to be an actual number - it could be the contents of another variable.
Endcount is the number on which the loop will finish. This does not have to be an actual num-
ber, it could be the contents of another variable, or an expression.
Stepval is an optional constant or variable by which the variable increases or decreases with
each trip through the For-Next loop. If startcount is larger than endcount, then a minus sign
must precede stepval.

Example 1
' Display in decimal, all the values of Wrd within an upward loop
 Dim Wrd as Word

 For Wrd = 0 to 2000 Step 2 ' Perform an upward loop
 Print Dec Wrd ," " ' Display the value of Wrd
 Next ' Close the loop

Example 2
' Display in decimal, all the values of Wrd within a downward loop
 Dim Wrd as Word

 For Wrd = 2000 to 0 Step -2 ' Perform a downward loop
 Print Dec Wrd ," " ' Display the value of Wrd
 Next ' Close the loop

Example 3
' Display in decimal, all the values of Dwrd within a downward loop
 Dim Dwrd as Dword

 For Dwrd = 200000 to 0 Step -200 ' Perform a downward loop
 Print Dec Dwrd ," " ' Display the value of Dwrd
 Next ' Close the loop

8-bit Proton Compiler Development Suite.

 179

Example 4
' Display all of Wrd1 using a expressions as parts of the For-Next construct

 Dim Wrd1 as Word
 Dim Wrd2 as Word

 Wrd2 = 1000

 For Wrd1= Wrd2 + 10 to Wrd2 + 1000 ' Perform a loop
 Print Dec Wrd1," " ' Display the value of Wrd1
 Next ' Close the loop

Notes
You may have noticed from the above examples, that no variable is present after the Next
command. A variable after Next is purely optional.

For-Next loops may be nested as deeply as the memory on the PICmicro™ will allow. To break
out of a loop you may use the Goto command without any ill effects, which is exactly what the
Break command does: -

 For Var1 = 0 to 20 ' Create a loop of 21
 If Var1 = 10 Then Goto BreakOut ' Break out of loop when Var1 is 10
 Next ' Close the loop

BreakOut:
 Stop

See also : While...Wend, Repeat...Until.

8-bit Proton Compiler Development Suite.

 180

Freqout

Syntax
Freqout Pin, Period, Freq1 {, Freq2}

Overview
Generate one or two sine-wave tones, of differing or the same frequencies, for a specified pe-
riod.

Parameters
Pin is a Port-Bit combination that specifies which I/O pin to use.
Period may be a variable, constant, or expression (0 - 65535) specifying the amount of time to
generate the tone(s).
Freq1 may be a variable, constant, or expression (0 - 32767) specifying frequency of the first
tone.
Freq2 may be a variable, constant, or expression (0 - 32767) specifying frequency of the sec-
ond tone. When specified, two frequencies will be mixed together on the same I/O pin.

Example
' Generate a 2500Hz (2.5KHz) tone for 1 second (1000 ms) on bit 0 of PORTA.
 Freqout PORTA.0, 1000, 2500

' Play two tones at once for 1000ms. One at 2.5KHz, the other at 3KHz.
 Freqout PORTA.0, 1000, 2500, 30000

Notes
Freqout generates one or two sine waves using a pulse-width modulation algorithm. Freqout
will work with a 4MHz crystal, however, it is best used with higher frequency crystals, and oper-
ates accurately with a 20MHz crystal. The raw output from Freqout requires filtering, to elimi-
nate most of the switching noise. The circuits shown below will filter the signal in order to play
the tones through a speaker or audio amplifier.

The two circuits shown above, work by filtering out the high-frequency Pwm used to generate
the sine waves. Freqout works over a very wide range of frequencies (0 to 32767KHz) so at
the upper end of its range, the Pwm filters will also filter out most of the desired frequency. You
may need to reduce the values of the parallel capacitors shown in the circuit, or to create an
active filter for your application.

C2
0.1uF

R2
1k

To Audio
Amplifier

R1
1k

C1
0.1uF

From PIC
I/O pin

From PIC
I/O pin

Speaker
C1

10uF

C2
10uF

8-bit Proton Compiler Development Suite.

 181

Example 2
' Play a tune using Freqout to generate the notes

 Device = 16F1829
 Declare Xtal = 20

 Dim MyLoop as Byte ' Counter for notes.
 Dim Freq1 as Word ' Frequency1.
 Dim Freq2 as Word ' Frequency2

 Symbol C = 2092 ' C note
 Symbol D = 2348 ' D note
 Symbol E = 2636 ' E note
 Symbol G = 3136 ' G note
 Symbol R = 0 ' Silent pause.
 Symbol Pin = PORTA.0 ' Sound output pin

 ADCON1 = 7 ' Set PORTA and PORTE to all digital
 MyLoop = 0
 Repeat ' Create a loop for 29 notes within the LookUpL table.
 Freq1 = LookUpL MyLoop,[E,D,C,D,E,E,E,R,D,D,D,_
 R,E,G,G,R,E,D,C,D,E,E,E,E,D,D,E,D,C]
 If Freq1 = 0 Then
 Freq2 = 0
 Else
 Freq2 = Freq1 - 8
 EndIf
 Freqout Pin, 225, Freq1, Freq2
 Inc MyLoop
 Until MyLoop > 28

See also : DTMFout, Sound, Sound2.

8-bit Proton Compiler Development Suite.

 182

GetBit

Syntax
Variable = GetBit Variable, Index

Overview
Examine a bit of a variable, or register.

Parameters
Variable is a user defined variable.
Index is a constant, variable, or expression that points to the bit within Variable that requires
examining.

Example
' Examine and display each bit of variable ExVar
 Device = 16F1829
 Declare Xtal = 4

Dim ExVar as Byte
 Dim Index as Byte
 Dim Var1 as Byte

 ExVar = %10110111

 Do
 Cls
 Print At 1,1,Bin8 ExVar ' Display the original variable
 Cursor 2,1 ' Position the cursor at line 2
 For Index = 7 to 0 Step -1 ' Create a loop for 8 bits
 Var1 = GetBit ExVar,Index ' Examine each bit of ExVar
 Print Dec1 Var1 ' Display the binary result
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 Loop ' Do it forever

See also : ClearBit, LoadBit, SetBit.

8-bit Proton Compiler Development Suite.

 183

GetPin

Syntax
Variable = GetPin Pin Number

Overview
Read a pin of a port.

Parameters
Variable is a user defined variable.
Pin Number is a constant, variable, or expression that points to the pin of a port that requires
reading. A value of 0 will read PORTA.0, a value of 1 will read PORTA.1, a value of 8 will read
PORTB.0 etc… The pin will be made an input before reading commences.

Example
' Examine and display each pin of PORTB
 Device = 16F1829
 Declare Xtal = 4

Dim PinNumber as Byte
 Dim Var1 as Byte

Do
 For PinNumber = 8 to 15 ' Create a loop for 8 pins
 Var1 = GetPin PinNumber ' Examine each pin of PORTB
 Print Dec1 Var1 ' Display the binary result
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop

Loop ' Do it forever

8-bit Proton Compiler Development Suite.

 184

Gosub

Syntax
Gosub Label

or

Gosub Label [Variable, {Variable, Variable... etc}], Receipt Variable

Overview
Gosub jumps the program to a defined label and continues execution from there. Once the
program hits a Return command the program returns to the instruction following the Gosub
that called it and continues execution from that point.

If using an 18F device, parameters can be pushed onto a software stack before the call is
made, and a variable can be popped from the stack before continuing execution of the next
commands. Only the 18F devices have this mechanism, because they contain an FSR2 regis-
ter that is used as a stack pointer. The other 16F devices do not contain this SFR.

Parameters
Label is a user-defined label placed at the beginning of a line which must have a colon ':' di-
rectly after it.
Variable is a user defined variable of type Bit, Byte, Word, Dword, Float, String, Array or
Constant value, that will be pushed onto the stack before the call to a subroutine is performed.
Receipt Variable is a user defined variable of type Bit, Byte, Word, Dword, Float, String or
Array that will hold a value popped from the stack after the subroutine has returned.

Example 1
' Implement a standard subroutine call
 Goto Start ' Jump over the subroutines
SubA: { subroutine A code
 ……
 ……
 }
 Return

SubB: { subroutine B code
 ……
 ……
 }
 Return

' Actual start of the main program
Start:

Gosub SubA
 Gosub SubB
 Stop

See also : Sub-EndSub

8-bit Proton Compiler Development Suite.

 185

Example 2
' Call a subroutine with parameters
 Device = 18F25K20 ' Stack only suitable for 18F devices
 Declare Stack_Size = 20 ' Create a small stack capable of holding 20 bytes

 Dim Wrd1 as Word ' Create a Word variable
 Dim Wrd2 as Word ' Create another Word variable
 Dim Receipt as Word ' Create a variable to hold result

 Wrd1 = 1234 ' Load the Word variable with a value
 Wrd2 = 567 ' Load the other Word variable with a value
' Call the subroutine and return a value
 Gosub AddThem [Wrd1, Wrd2], Receipt
 Print Dec Receipt ' Display the result as decimal
 Stop

' Subroutine starts here. Add two parameters passed and return the result
AddThem:
 Dim AddWrd1 as Word ' Create two uniquely named variables
 Dim AddWrd2 as Word

 Pop AddWrd2 ' Pop the last variable pushed
 Pop AddWrd1 ' Pop the first variable pushed
 AddWrd1 = AddWrd1 + AddWrd2 ' Add the values together
 Return AddWrd1 ' Return the result of the addition

In reality, what's happening with the Gosub in the above program is simple, if we break it into
its constituent events: -

 Push Wrd1
 Push Wrd2
 Gosub AddThem
 Pop Receipt

Notes
Only one parameter can be returned from the subroutine, any others will be ignored.

If a parameter is to be returned from a subroutine but no parameters passed to the subroutine,
simply issue a pair of empty square braces: -

 Gosub Label [], Receipt

The same rules apply for the parameters as they do for Push, which is after all, what is hap-
pening.

Proton allows any amount of Gosubs in a program, but the 14-bit PICmicro™ architecture only
has an 8-level return address stack, which only allows 8 Gosubs to be nested. The compiler
only ever uses a maximum of 4-levels for its library subroutines, therefore do not use more than
4 Gosubs within subroutines. The 18F devices however, have a 28-level return address stack
which allows any combination of up to 28 GosubS to occur.

A subroutine must always end with a Return command.

8-bit Proton Compiler Development Suite.

 186

What is a Stack?
All microprocessors and most microcontrollers have access to a Stack, which is an area of
RAM allocated for temporary data storage. But this is sadly lacking on a PICmicro™ device.
However, the 18F devices have an architecture and low-level mnemonics that allow a Stack to
be created and used very efficiently.

A stack is first created in high memory by issuing the Stack_Size Declare.

 Declare Stack_Size = 40

The above line of code will reserve 40 bytes at the top of RAM that cannot be touched by any
BASIC command, other than Push and Pop. This means that it is a safe place for temporary
variable storage.

Taking the above line of code as an example, we can examine what happens when a variable
is pushed on to the 40 byte stack, and then popped off again.

First the RAM is allocated. For this explanation we will assume that a 18F452 PICmicro™ de-
vice is being used. The 18F452 has 1536 bytes of RAM that stretches linearly from address 0
to 1535. Reserving a stack of 40 bytes will reduce the top of memory so that the compiler will
only see 1495 bytes (1535 - 40). This will ensure that it will not inadvertently try and use it for
normal variable storage.

Pushing.
When a Word variable is pushed onto the stack, the memory map would look like the diagram
below: -

 Top of Memory |..............Empty RAM.............. | Address 1535
 ~ ~
 ~ ~
 |..............Empty RAM.............. | Address 1502
 |..............Empty RAM.............. | Address 1501
 | Low Byte address of Word variable | Address 1496
 Start of Stack | High Byte address of Word variable | Address 1495

The high byte of the variable is first pushed on to the stack, then the low byte. And as you can
see, the stack grows in an upward direction whenever a Push is implemented, which means it
shrinks back down whenever a Pop is implemented.

If we were to Push a Dword variable on to the stack as well as the Word variable, the stack
memory would look like: -

 Top of Memory |................Empty RAM.............| Address 1535
 ~ ~
 ~ ~
 |................Empty RAM.............| Address 1502
 |................Empty RAM.............| Address 1501
 | Low Byte address of Dword variable | Address 1500
 | Mid1 Byte address of Dword variable | Address 1499
 | Mid2 Byte address of Dword variable | Address 1498
 | High Byte address of Dword variable | Address 1497
 | Low Byte address of Word variable | Address 1496
 Start of Stack | High Byte address of Word variable | Address 1495

8-bit Proton Compiler Development Suite.

 187

Popping.
When using the Pop command, the same variable type that was pushed last must be popped
first, or the stack will become out of phase and any variables that are subsequently popped will
contain invalid data. For example, using the above analogy, we need to Pop a Dword variable
first. The Dword variable will be popped Low Byte first, then MID1 Byte, then MID2 Byte, then
lastly the High Byte. This will ensure that the same value pushed will be reconstructed correctly
when placed into its recipient variable. After the Pop, the stack memory map will look like: -

 Top of Memory |..............Empty RAM.............. | Address 1535
 ~ ~
 ~ ~
 |..............Empty RAM.............. | Address 1502
 |..............Empty RAM.............. | Address 1501
 | Low Byte address of Word variable | Address 1496
 Start of Stack | High Byte address of Word variable | Address 1495

If a Word variable was then popped, the stack will be empty, however, what if we popped a
Byte variable instead? the stack would contain the remnants of the Word variable previously
pushed. Now what if we popped a Dword variable instead of the required Word variable? the
stack would underflow by two bytes and corrupt any variables using those address's . The
compiler cannot warn you of this occurring, so it is up to you, the programmer, to ensure that
proper stack management is carried out. The same is true if the stack overflows. i.e. goes be-
yond the top of RAM. The compiler cannot give a warning.

Technical Details of Stack implementation.
The stack implemented by the compiler is known as an Incrementing Last-In First-Out Stack.
Incrementing because it grows upwards in memory. Last-In First-Out because the last variable
pushed, will be the first variable popped.

The stack is not circular in operation, so that a stack overflow will rollover into the PICmicro's
hardware register, and an underflow will simply overwrite RAM immediately below the Start of
Stack memory. If a circular operating stack is required, it will need to be coded in the main BA-
SIC program, by examination and manipulation of the stack pointer (see below).

Indirect register pair FSR2L and FSR2H are used as a 16-bit stack pointer, and are incre-
mented for every Byte pushed, and decremented for every Byte popped. Therefore checking
the FSR2 registers in the BASIC program will give an indication of the stack's condition if re-
quired. This also means that the BASIC program cannot use the FSR2 register pair as part of
its code, unless for manipulating the stack. Note that none of the compiler's commands, other
than Push and Pop, use FSR2.

Whenever a variable is popped from the stack, the stack's memory is not actually cleared, only
the stack pointer is moved. Therefore, the above diagrams are not quite true when they show
empty RAM, but unless you have use of the remnants of the variable, it should be considered
as empty, and will be overwritten by the next Push command.

See also : Call, Goto, Push, Pop.

8-bit Proton Compiler Development Suite.

 188

Goto

Syntax
Goto Label

Overview
Jump to a defined label and continue execution from there.

Parameters
Label is a user-defined label placed at the beginning of a line which must have a colon ':' di-
rectly after it.

Example
 If Var1 = 3 Then Goto Jumpover
 {
 code here executed only if Var1<>3
 ……
 ……
 }
JumpOver:
 {continue code execution}

In this example, if Var1=3 then the program jumps over all the code below it until it reaches the
label JumpOver where program execution continues as normal.

See also : Call, Gosub.

8-bit Proton Compiler Development Suite.

 189

HbStart

Syntax
HbStart

Overview
Send a Start condition to the I2C bus using the microcontroller's MSSP module.

Notes
Because of the subtleties involved in interfacing to some I2C devices, the compiler's standard
Hbusin, and Hbusout commands were found lacking. Therefore, individual pieces of the I2C
protocol may be used in association with the new structure of Hbusin, and Hbusout. See rele-
vant sections for more information.

Example
' Interface to a 24LC32 serial eeprom
'
 Device = 16F1829 ' Use a device with an MSSP module
 Dim MyLoop as Byte
 Dim Array[10] as Byte
'
' Transmit bytes to the I2C bus
'
 HbStart ' Send a Start condition
 Hbusout %10100000 ' Target an eeprom, and send a Write command
 Hbusout 0 ' Send the HighByte of the address
 Hbusout 0 ' Send the LowByte of the address
 For MyLoop = 48 to 57 ' Create a loop containing ASCII 0 to 9
 Hbusout MyLoop ' Send the value of MyLoop to the eeprom
 Next ' Close the loop
 HbStop ' Send a Stop condition
 DelayMs 10 ' Wait for the data to be entered into eeprom matrix
'
' Receive bytes from the I2C bus
'
 HbStart ' Send a Start condition
 Hbusout %10100000 ' Target an eeprom, and send a Write command
 Hbusout 0 ' Send the HighByte of the address
 Hbusout 0 ' Send the LowByte of the address
 HbRestart ' Send a Restart condition
 Hbusout %10100001 ' Target an eeprom, and send a Read command
 For MyLoop = 0 to 9 ' Create a loop
 Array[MyLoop] = Hbusin ' Load an array with bytes received
 If MyLoop = 9 Then HbStop : Else : HbusAck ' Ack or Stop ?
 Next ' Close the loop
 Print At 1,1, Str Array ' Display the Array as a String

See also : HbusAck, HbRestart, HbStop, Hbusin, Hbusout.

8-bit Proton Compiler Development Suite.

 190

HbStop

Syntax
HbStop

Overview
Send a Stop condition to the I2C bus using the microcontroller's MSSP module.

HbRestart

Syntax
HbRestart

Overview
Send a Restart condition to the I2C bus using the microcontroller's MSSP module.

HbusAck

Syntax
HbusAck

Overview
Send an Acknowledge condition to the I2C bus using the microcontroller's MSSP module.

HbusNack

Syntax
HbusNack

Overview
Send a Not Acknowledge condition to the I2C bus using the microcontroller's MSSP module..

See also : HbStart, HbRestart, HbStop, Hbusin, Hbusout.

8-bit Proton Compiler Development Suite.

 191

Hbusin

Syntax
Variable = Hbusin Control, { Address }

or

Variable = Hbusin

or

Hbusin Control, { Address }, [Variable {, Variable…}]

or

Hbusin Variable

Overview
Receives a value from the I2C bus using the MSSP module, and places it into variable/s. If
variations two or four (see above) are used, then No Acknowledge, or Stop is sent after the
data. Variations one and three first send the control and optional address.

Parameters
Variable is a user defined variable or constant.
Control may be a constant value or a Byte sized variable expression.
Address may be a constant value or a variable expression.

The four variations of the Hbusin command may be used in the same BASIC program. The
second and fourth types (see ablve) are useful for simply receiving a single byte from the bus,
and must be used in conjunction with one of the low level commands. i.e. HbStart, HbRestart,
HbusAck, or HbStop. The first, and third types may be used to receive several values and
designate each to a separate variable, or variable type.

The Hbusin command operates as an I2C master, using the microcontroller's MSSP module,
and may be used to interface with any device that complies with the 2-wire I2C protocol.

The most significant 7-bits of control byte contain the control code and the slave address of the
device being interfaced with. Bit-0 is the flag that indicates whether a read or write command is
being implemented.

For example, if we were interfacing to an external eeprom such as the 24LC32, the control
code would be %10100001 or $A1. The most significant 4-bits (1010) are the eeprom's unique
slave address. Bits 2 to 3 reflect the three address pins of the eeprom. And bit-0 is set to signify
that we wish to read from the eeprom. Note that this bit is automatically set by the Hbusin
command, regardless of its initial setting.

8-bit Proton Compiler Development Suite.

 192

Example
' Receive a byte from the I2C bus and place it into variable Var1.

 Dim Var1 as Byte ' We'll only read 8-bits
 Dim Address as Word ' 16-bit address required
 Symbol Control %10100001 ' Target an eeprom

Address = 20 ' Read the value at address 20
 Var1 = Hbusin Control, Address ' Read the byte from the eeprom

or

 Hbusin Control, Address, [Var1] ' Read the byte from the eeprom

Address, is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in
this position, the size of address is dictated by the size of the variable used (Byte or Word). In
the case of the previous eeprom interfacing, the 24LC32 eeprom requires a 16-bit address.
While the smaller types require an 8-bit address. Make sure you assign the right size address
for the device interfaced with, or you may not achieve the results you intended.

The value received from the bus depends on the size of the variables used, except for variation
three, which only receives a Byte (8-bits). For example: -

 Dim Wrd as Word ' Create a Word size variable
 Wrd = Hbusin Control, Address

Will receive a 16-bit value from the bus. While: -

 Dim Var1 as Byte ' Create a Byte size variable
 Var1 = Hbusin Control, Address

Will receive an 8-bit value from the bus.

Using the third variation of the Hbusin command allows differing variable assignments. For ex-
ample: -

 Dim Var1 as Byte
 Dim Wrd as Word
 Hbusin Control, Address, [Var1, Wrd]

Will receive two values from the bus, the first being an 8-bit value dictated by the size of vari-
able Var1 which has been declared as a byte. And a 16-bit value, this time dictated by the size
of the variable Wrd which has been declared as a word. Of course, bit type variables may also
be used, but in most cases these are not of any practical use as they still take up a byte within
the eeprom.

The second and fourth variations allow all the subtleties of the I2C protocol to be exploited, as
each operation may be broken down into its constituent parts. It is advisable to refer to the
datasheet of the device being interfaced to fully understand its requirements. See section on
HbStart, HbRestart, HbusAck, or HbStop, for example code.

8-bit Proton Compiler Development Suite.

 193

Hbusin Declares
Declare Hbus_Bitrate Constant 100, 400, 1000

The standard speed for the I2C bus is 100KHz. Some devices use a higher bus speed of
400KHz. The above Declare allows the I2C bus speed to be increased or decreased. Use this
Declare with caution, as too high a bit rate may exceed the device's specs, which will result in
intermittent transactions, or in some cases, no transactions at all. The datasheet for the device
used will inform you of its bus speed. The default bit rate is the standard 100KHz.

Declare HSDA_Pin Port . Pin
For devices that have PPS (Peripheral Pin Select), the port and pin used for the data line (SDA)
must be given, so that the compiler can seup the PPS SFRs before the program starts. This
may be any valid port on the microcontroller, but check the datasheet to see if the Port is valid
for the peripheral.

Declare HSCL_Pin Port . Pin
For devices that have PPS (Peripheral Pin Select), the port and pin used for the clock line
(SCL) must be given, so that the compiler can seup the PPS SFRs before the program starts.
This may be any valid port on the microcontroller, but check the datasheet to see if the Port is
valid for the peripheral.

Notes
Not all PICmicro™ devices contain an MSSP module, some only contain an SSP type, which
only allows I2C slave operations. These types of devices may not be used with any of the
HBUS commands. Therefore, always read and understand the datasheet for the PICmicro™
device used.

When the Hbusin command is used, the appropriate SDA and SCL Port and Pin are automati-
cally setup as inputs. On devices without PPS (Peripheral Pin Select), the SDA, and SCL lines
are predetermined as hardware pins on the PICmicro™ , however, on devices with PPS, the
compiler sets up the appropriate SFRs using the HSDA_Pin and HSCL_Pin declares.

Because the I2C protocol calls for an open-collector interface, pull-up resistors are required on
both the SDA and SCL lines. Values of 1KΩ to 4.7KΩ will suffice.

8-bit Proton Compiler Development Suite.

 194

Str modifier with Hbusin
Using the Str modifier allows variations three and four of the Hbusin command to transfer the
bytes received from the I2C bus directly into a byte array. If the amount of received characters
is not enough to fill the entire array, then a formatter may be placed after the array's name,
which will only receive characters until the specified length is reached. An example of each is
shown below: -

 Dim Array[10] as Byte ' Create an array of 10 bytes
 Dim Address as Byte ' Create a word sized variable

 Hbusin %10100000, Address, [Str Array] ' Load data into all the array
'
' Load data into only the first 5 elements of the array
'
 Hbusin %10100000, Address, [Str Array\5]
 HbStart ' Send a Start condition
 Hbusout %10100000 ' Target an eeprom, and send a WRITE command
 Hbusout 0 ' Send the HighByte of the address
 Hbusout 0 ' Send the LowByte of the address
 HbRestart ' Send a Restart condition
 Hbusout %10100001 ' Target an eeprom, and send a Read command
 Hbusin Str Array ' Load all the array with bytes received
 HbStop ' Send a Stop condition

An alternative ending to the above example is: -

 Hbusin Str Array\5 ' Load data into only the first 5 elements of the array
 HbStop ' Send a Stop condition

See also : HbusAck, HbRestart, HbStop, HbStart, Hbusout.

8-bit Proton Compiler Development Suite.

 195

Hbusout

Syntax
Hbusout Control, { Address }, [Variable {, Variable…}]

or

Hbusout Variable

Overview
Transmit a value to the I2C bus using the microcontroller's on-board MSSP module, by first
sending the control and optional address out of the clock pin (SCL), and data pin (SDA). Or al-
ternatively, if only one operator is included after the Hbusout command, a single value will be
transmitted, along with an Ack reception.

Parameters
Variable is a user defined variable or constant.
Control may be a constant value or a Byte sized variable expression.
Address may be a constant, variable, or expression.

The Hbusout command operates as an I2C master and may be used to interface with any de-
vice that complies with the 2-wire I2C protocol.

The most significant 7-bits of control byte contain the control code and the slave address of the
device being interfaced with. Bit-0 is the flag that indicates whether a read or write command is
being implemented.

For example, if we were interfacing to an external eeprom such as the 24LC32, the control
code would be %10100000 or $A0. The most significant 4-bits (1010) are the eeprom's unique
slave address. Bits 2 to 3 reflect the three address pins of the eeprom. And Bit-0 is clear to sig-
nify that we wish to write to the eeprom. Note that this bit is automatically cleared by the Hbu-
sout command, regardless of its initial value.

Example
' Send a byte to the I2C bus.

 Dim Var1 as Byte ' We'll only read 8-bits
 Dim Address as Word ' 16-bit address required
 Symbol Control = %10100000 ' Target an eeprom

Address = 20 ' Write to address 20
 Var1 = 200 ' The value place into address 20
 Hbusout Control, Address, [Var1] ' Send the byte to the eeprom
 DelayMs 10 ' Allow time for allocation of byte

Address, is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in
this position, the size of address is dictated by the size of the variable used (Byte or Word). In
the case of the above eeprom interfacing, the 24LC32 eeprom requires a 16-bit address. While
the smaller types require an 8-bit address. Make sure you assign the right size address for the
device interfaced with, or you may not achieve the results you intended.

8-bit Proton Compiler Development Suite.

 196

The value sent to the bus depends on the size of the variables used. For example: -

 Dim Wrd as Word ' Create a Word size variable
 Hbusout Control, Address, [Wrd]

Will send a 16-bit value to the bus. While: -

 Dim Var1 as Byte ' Create a Byte size variable
 Hbusout Control, Address, [Var1]

Will send an 8-bit value to the bus.

Using more than one variable within the brackets allows differing variable sizes to be sent. For
example: -

 Dim Var1 as Byte
 Dim Wrd as Word
 Hbusout Control, Address, [Var1, Wrd]

Will send two values to the bus, the first being an 8-bit value dictated by the size of variable
Var1 which has been declared as a byte. And a 16-bit value, this time dictated by the size of
the variable Wrd which has been declared as a word. Of course, Bit type variables may also be
used, but in most cases these are not of any practical use as they still take up a byte within the
eeprom.

A string of characters can also be transmitted, by enclosing them in quotes: -

 Hbusout Control, Address, ["Hello World", Var1, Wrd]

Using the second variation of the Hbusout command, necessitates using the low level com-
mands i.e. HbStart, HbRestart, HbusAck, or HbStop.

Using the Hbusout command with only one value after it, sends a byte of data to the I2C bus,
and returns holding the Acknowledge reception. This acknowledge indicates whether the data
has been received by the slave device.

The Ack reception is returned in the PICmicro's CARRY flag, which is STATUS.0, and also
System variable PP4.0. A value of zero indicates that the data was received correctly, while a
one indicates that the data was not received, or that the slave device has sent a NAck return.
You must read and understand the datasheet for the device being interfacing to, before the Ack
return can be used successfully. An code snippet is shown below: -

' Transmit a byte to a 24LC32 serial eeprom
 Dim PP4 as Byte System
 HbStart ' Send a Start condition
 Hbusout %10100000 ' Target an eeprom, and send a Write command
 Hbusout 0 ' Send the HighByte of the address
 Hbusout 0 ' Send the LowByte of the address
 Hbusout "A" ' Send the value 65 to the bus
 If PP4.0 = 1 Then Goto Not_Received ' Has Ack been received OK ?
 HbStop ' Send a Stop condition
 DelayMs 10 ' Wait for the data to be entered into eeprom matrix

8-bit Proton Compiler Development Suite.

 197

Str modifier with Hbusout.
The Str modifier is used for transmitting a string of bytes from a byte array variable. A string is
a set of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3
would be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A
byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string 1,2,3 would be stored in a byte
array containing three bytes (elements).

Below is an example that sends four bytes from an array: -

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 MyArray [0] = "A" ' Load the first 4 bytes of the array
 MyArray [1] = "B" ' With the data to send
 MyArray [2] = "C"
 MyArray [3] = "D"
 Hbusout %10100000, Address, [Str MyArray \4] ' Send 4-byte string.

Note that we use the optional \n argument of Str. If we didn't specify this, the program would try
to keep sending characters until all 10 bytes of the array were transmitted. Since we do not
wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 4 bytes.

The above example may also be written as: -

 Dim MyArray [10] as Byte ' Create a 10-byte array.
 Str MyArray = "ABCD" ' Load the first 4 bytes of the array
 HbStart ' Send a Start condition
 Hbusout %10100000 ' Target an eeprom, and send a Write command
 Hbusout 0 ' Send the HighByte of the address
 Hbusout 0 ' Send the LowByte of the address
 Hbusout Str MyArray\4 ' Send 4-byte string.
 HbStop ' Send a Stop condition

The above example, has exactly the same function as the previous one. The only differences
are that the string is now constructed using the Str as a command instead of a modifier, and
the low-level Hbus commands have been used.

Notes
Not all PICmicro™ devices contain an MSSP module, some only contain an SSP type, which
only allows I2C slave operations. These types of devices may not be used with any of the Hbus
commands. Therefore, always read and understand the datasheet for the PICmicro™ device
used.

8-bit Proton Compiler Development Suite.

 198

Hbusout Declares
Declare Hbus_Bitrate Constant 100, 400, 1000

The standard speed for the I2C bus is 100KHz. Some devices use a higher bus speed of
400KHz. The above Declare allows the I2C bus speed to be increased or decreased. Use this
Declare with caution, as too high a bit rate may exceed the device's specs, which will result in
intermittent transactions, or in some cases, no transactions at all. The datasheet for the device
used will inform you of its bus speed. The default bit rate is the standard 100KHz.

Declare HSDA_Pin Port . Pin
For devices that have PPS (Peripheral Pin Select), the port and pin used for the data line (SDA)
must be given, so that the compiler can seup the PPS SFRs before the program starts. This
may be any valid port on the microcontroller, but check the datasheet to see if the Port is valid
for the peripheral.

Declare HSCL_Pin Port . Pin
For devices that have PPS (Peripheral Pin Select), the port and pin used for the clock line
(SCL) must be given, so that the compiler can seup the PPS SFRs before the program starts.
This may be any valid port on the microcontroller, but check the datasheet to see if the Port is
valid for the peripheral.

Notes
Not all PICmicro™ devices contain an MSSP module, some only contain an SSP type, which
only allows I2C slave operations. These types of devices may not be used with any of the
HBUS commands. Therefore, always read and understand the datasheet for the PICmicro™
device used.

When the Hbusout command is used, the appropriate SDA and SCL Port and Pin are auto-
matically setup as inputs. On devices without PPS (Peripheral Pin Select), the SDA, and SCL
lines are predetermined as hardware pins on the PICmicro™ , however, on devices with PPS,
the compiler sets up the appropriate SFRs using the HSDA_Pin and HSCL_Pin declares.

See also : HbusAck, HbRestart, HbStop, Hbusin, HbStart.

8-bit Proton Compiler Development Suite.

 199

High

Syntax
High Port or Port.Bit or Pin Number

Overview
Place a Port or Port.Pin in a high output state. For a Port, this means setting it as an output and
filling it with 1's.

Parameters
Port can be any valid port.
Port.Bit can be any valid port and bit combination, i.e. PORTA.1
Pin Number can be a variable or constant that holds a value from 0 to the amount of I/O pins
on the device. A value of 0 will be PORTA.0, if present, 1 will be PORTA.1, 8 will be PORTB.0
etc…

Example 1
 Symbol LED = PORTB.4
 High LED
 High 1 ' Set Pin PORTA.1 high

Example 2
' Flash each of the pins on PORTA and PORTB
'
 Device = 18F25K20
 Declare Xtal = 16

 Dim MyPin as Byte

 For MyPin = 0 to 15 ' Create a loop for the pin to flash
 High MyPin ' Set the pin high
 DelayMs 500 ' Delay so that it can be seen
 Low MyPin ' Pull the pin low
 DelayMs 500 ' Delay so that it can be seen
 Next

8-bit Proton Compiler Development Suite.

 200

Notes.
Each pin numberhas a designated name. These are Pin_A0, Pin_A1, Pin_A2,
Pin_B0…Pin_B7, Pin_C0…Pin_C7, Pin_D0…Pin_D7 to Pin_L7 etc… Each of the names has a
relevant constant value, for example, Pin_A0 has the value 0, Pin_B0 has the value 8, up to
Pin_L7, which has the value 87.

These can be used to pass a relevant pin number to a subroutine. For example:
'
' Flash an LED attached to PORTB.0 via a subroutine
' Then flash an LED attached to PORTB.1 via the same subroutine
'

Device = 18F25K20
Declare Xtal = 16

Dim PinNumber As Byte ' Holds the pin number to set high and low

Do ' Create an infinite loop

PinNumber = Pin_B0 ' Give the pin number to flash (PORTB.0)
Gosub FlashPin ' Call the subroutine to flash the pin
PinNumber = Pin_B1 ' Give the pin number to flash (PORTB.1)
Gosub FlashPin ' Call the subroutine to flash the pin

 Loop ' Do it forever
'
' Set a pin high then low for 500ms using a value as the pin to adjust
'
FlashPin:
 High PinNumber ' Set the pin output high
 DelayMs 500 ' Wait for 500 milliseconds

Low PinNumber ' Pull the pin low
DelayMs 500 ' Wait for 500 milliseconds
Return

Example 2
' Clear then Set each pin of PORTC

Device = 18F25K20
Declare Xtal = 16

Dim PinNumber as Byte

 Low PORTC ' Make PORTC output low before we start
 Do ' Create a loop
 For PinNumber = Pin_C0 to Pin_C7 ' Create a loop for 8 pins
 Low PinNumber ' Clear each pin of PORTC
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 For PinNumber = Pin_C0 to Pin_C7 ' Create a loop for 8 pins
 High PinNumber ' Set each pin of PORTC
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 Loop ' Do it forever

See also : Clear, ClearPin, Dim, Low, Set, SetPin, Symbol, GetPin.

8-bit Proton Compiler Development Suite.

 201

Hpwm

Syntax
Hpwm Channel, Dutycycle, Frequency

Overview
Output a pulse width modulated pulse train using the CCP modules Pwm hardware, available
on some PICmicros. The Pwm pulses produced can run continuously in the background while
the program is executing other instructions.

Parameters
Channel is a constant value that specifies which hardware Pwm channel to use. Some devices
have 1, 2 or 3 Pwm channels. On devices with 2 channels, the Frequency must be the same on
both channels. It must be noted, that this is a limitation of the PICmicro™ not the compiler. The
data sheet for the particular device used shows the fixed hardware pin for each Channel. For
example, for a PIC16F877, Channel 1 is CCP1 which is pin PORTC.2. Channel 2 is CCP2
which is pin PORTC.1.
Dutycycle is a variable, constant (0-255), or expression that specifies the on/off (high/low) ratio
of the signal. It ranges from 0 to 255, where 0 is off (low all the time) and 255 is on (high) all the
time. A value of 127 gives a 50% duty cycle (square wave).
Frequency is a variable, constant (0-32767), or expression that specifies the desired frequency
of the Pwm signal. Not all frequencies are available at all oscillator settings. The highest fre-
quency at any oscillator speed is 32767Hz. The lowest usable Hpwm Frequency at each oscil-
lator setting is shown in the table below: -

 Xtal frequency Lowest useable Pwm frequency
 4MHz 145Hz
 8MHz 489Hz
 10MHz 611Hz
 12MHz 733Hz
 16MHz 977Hz
 20MHz 1221Hz
 24MHz 1465Hz
 33MHz 2015Hz
 40MHz 2442Hz

Example

Device = 16F1829
 Declare Xtal = 20

Hpwm 1,127,1000 ' Send a 50% duty cycle Pwm signal at 1KHz
 DelayMs 500
 Hpwm 1,64,2000 ' Send a 25% duty cycle Pwm signal at 2KHz
 Stop

Notes
Some devices, such as the PIC16F62x, and PIC18F4xx, have alternate pins that may be used
for Hpwm. The following Declares allow the use of different pins: -

Declare CCP1_Pin Port.Pin ' Select Hpwm port and bit for CCP1 module.
Declare CCP2_Pin Port.Pin ' Select Hpwm port and bit for CCP2 module.
Declare CCP3_Pin Port.Pin ' Select Hpwm port and bit for CCP3 module.
Declare CCP4_Pin Port.Pin ' Select Hpwm port and bit for CCP4 module.

See also : Pwm, Pulseout, Servo.

8-bit Proton Compiler Development Suite.

 202

Hrsin, Hrsin2, Hrsin3, Hrsin4

Syntax
Variable = Hrsin, { Timeout, Timeout Label }

or

Hrsin { Timeout, Timeout Label }, { Parity Error Label }, Modifiers, Variable {, Variable... }

Overview
Receive one or more values from the serial port on devices that contain a USART peripheral. If
Hrsin2, Hrsin3, or Hrsout4 are used, the device must contain more than 1 USART.

Parameters
Timeout is an optional value for the length of time the Hrsin command will wait before jumping
to label Timeout Label. Timeout is specified in 1 millisecond units and has a maximum of 16-
bits.
Timeout Label is an optional valid BASIC label where Hrsin will jump to in the event that a
character has not been received within the time specified by Timeout.
Parity Error Label is an optional valid BASIC label where Hrsin will jump to in the event that a
Parity error is received. Parity is set using Declares. Parity Error detecting is not supported in
the inline version of Hrsin (first syntax example above).
Modifier is one of the many formatting modifiers, explained below.
Variable is a Bit, Byte, Word, or Dword variable, that will be loaded by Hrsin.

Example
' Receive values serially and timeout if no reception after 1 second
 Device 16F1829
 Declare Xtal = 4

 Declare Hserial_Baud = 9600 ' Set baud rate to 9600
 Declare Hserial_Clear = On ' Clear the buffer before receiving
 Dim Var1 as Byte

Do
Var1 = Hrsin, {1000, Timeout} ' Receive a byte serially into Var1

 HrsoutLn Dec Var1 ' Display the byte received
 Loop ' Loop forever

Timeout:
 HrsoutLn "Timed Out" ' Display an error if Hrsin timed out
 Stop

Hrsin Modifiers.
As we already know, Rsin will wait for and receive a single byte of data, and store it in a vari-
able . If the PICmicro™ were connected to a PC running a terminal program and the user
pressed the "A" key on the keyboard, after the Hrsin command executed, the variable would
contain 65, which is the ASCII code for the letter "A"

What would happen if the user pressed the "1" key? The result would be that the variable would
contain the value 49 (the ASCII code for the character "1"). This is an important point to re-
member: every time you press a character on the keyboard, the computer receives the ASCII
value of that character. It is up to the receiving side to interpret the values as necessary.

8-bit Proton Compiler Development Suite.

 203

In this case, perhaps we actually wanted the variable to end up with the value 1, rather than the
ASCII code 49.

The Hrsin command provides a modifier, called the decimal modifier, which will interpret this
for us. Look at the following code: -

 Dim SerData as Byte
 Hrsin Dec SerData

Notice the decimal modifier in the Hrsin command that appears just to the left of the SerData
variable. This tells Hrsin to convert incoming text representing decimal numbers into true deci-
mal form and store the result in SerData. If the user running the terminal software pressed the
"1", "2" and then "3" keys followed by a space or other non-numeric text, the value 123 will be
stored in the variable SerData, allowing the rest of the program to perform any numeric opera-
tion on the variable.

Without the decimal modifier, however, you would have been forced to receive each character
("1", "2" and "3") separately, and then would still have to do some manual conversion to arrive
at the number 123 (one hundred twenty three) before you can do the desired calculations on it.

The decimal modifier is designed to seek out text that represents decimal numbers. The char-
acters that represent decimal numbers are the characters "0" through "9". Once the Hrsin
command is asked to use the decimal modifier for a particular variable, it monitors the incoming
serial data, looking for the first decimal character. Once it finds the first decimal character, it will
continue looking for more (accumulating the entire multi-digit number) until is finds a non-
decimal numeric character. Remember that it will not finish until it finds at least one decimal
character followed by at least one non-decimal character.

To illustrate this further, examine the following examples (assuming we're using the same code
example as above): -

Serial input: "ABC"
Result: The program halts at the Hrsin command, continuously waiting for decimal text.

Serial input: "123" (with no characters following it)
Result: The program halts at the Hrsin command. It recognises the characters "1", "2" and "3"
as the number one hundred twenty three, but since no characters follow the "3", it waits con-
tinuously, since there's no way to tell whether 123 is the entire number or not.

Serial input: "123" (followed by a space character)
Result: Similar to the above example, except once the space character is received, the pro-
gram knows the entire number is 123, and stores this value in SerData. The Hrsin command
then ends, allowing the next line of code to run.

Serial input: "123A"
Result: Same as the example above. The "A" character, just like the space character, is the
first non-decimal text after the number 123, indicating to the program that it has received the
entire number.

8-bit Proton Compiler Development Suite.

 204

Serial input: "ABCD123EFGH"
Result: Similar to examples 3 and 4 above. The characters "ABCD" are ignored (since they're
not decimal text), the characters "123" are evaluated to be the number 123 and the following
character, "E", indicates to the program that it has received the entire number.

The final result of the Dec modifier is limited to 16 bits (up to the value 65535). If a value larger
than this is received by the decimal modifier, the end result will be incorrect because the result
rolled-over the maximum 16-bit value. Therefore, Hrsin modifiers may not (at this time) be used
to load Dword (32-bit) variables.

The decimal modifier is only one of a family of conversion modifiers available with Hrsin See
below for a list of available conversion modifiers. All of the conversion modifiers work similar to
the decimal modifier (as described above). The modifiers receive bytes of data, waiting for the
first byte that falls within the range of characters they accept (e.g., "0" or "1" for binary, "0" to
"9" for decimal, "0" to "9" and "A" to "F" for hex. Once they receive a numeric character, they
keep accepting input until a non-numeric character arrives, or in the case of the fixed length
modifiers, the maximum specified number of digits arrives.

While very effective at filtering and converting input text, the modifiers aren't completely fool-
proof. As mentioned before, many conversion modifiers will keep accepting text until the first
non-numeric text arrives, even if the resulting value exceeds the size of the variable. After
Hrsin, a Byte variable will contain the lowest 8 bits of the value entered and a Word (16-bits)
would contain the lowest 16 bits. You can control this to some degree by using a modifier that
specifies the number of digits, such as Dec2, which would accept values only in the range of 0
to 99.

 Conversion Modifier Type of Number Numeric Characters Accepted
 Dec{0..10} Decimal, optionally limited 0 through 9
 to 0 - 10 digits
 Hex{1..8} Hexadecimal, optionally limited 0 through 9,
 to 1 - 8 digits A through F
 Bin{1..32} Binary, optionally limited 0, 1
 to 1 - 32 digits

A variable preceded by Bin will receive the ASCII representation of its binary value.
For example, if Bin Var1 is specified and "1000" is received, Var1 will be set to 8.

A variable preceded by Dec will receive the ASCII representation of its decimal value.
For example, if Dec Var1 is specified and "123" is received, Var1 will be set to 123.

A variable preceded by Hex will receive the ASCII representation of its hexadecimal value.
For example, if Hex Var1 is specified and "FE" is received, Var1 will be set to 254.

SKIP followed by a count will skip that many characters in the input stream.
For example, SKIP 4 will skip 4 characters.

The Hrsin command can be configured to wait for a specified sequence of characters before it
retrieves any additional input. For example, suppose a device attached to the PICmicro™ is
known to send many different sequences of data, but the only data you wish to observe hap-
pens to appear right after the unique characters, "XYZ". A modifier named Wait can be used for
this purpose: -

 Hrsin Wait("XYZ"), SerData

8-bit Proton Compiler Development Suite.

 205

The above code waits for the characters "X", "Y" and "Z" to be received, in that order, then it
receives the next data byte and places it into variable SerData.

Str modifier.
The Hrsin command also has a modifier for handling a string of characters, named Str.

The Str modifier is used for receiving a string of characters into a byte array variable.

A string is a set of characters that are arranged or accessed in a certain order. The characters
"ABC" would be stored in a string with the "A" first, followed by the "B" then followed by the "C".
A byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string "ABC" would be stored in a byte
array containing three bytes (elements).

Below is an example that receives ten bytes and stores them in the 10-byte array, SERString: -

 Dim SerString[10] as Byte ' Create a 10-byte array.
 Hrsin Str SerString ' Fill the array with received data.
 Print Str SerString ' Display the string.

If the amount of received characters is not enough to fill the entire array, then a formatter may
be placed after the array's name, which will only receive characters until the specified length is
reached. For example: -

 Dim SerString[10] as Byte ' Create a 10-byte array.
 Hrsin Str SerString\5 ' Fill the first 5-bytes of the array
 Print Str SerString\5 ' Display the 5-character string.

The example above illustrates how to fill only the first n bytes of an array, and then how to dis-
play only the first n bytes of the array. n refers to the value placed after the backslash.

Because of its complexity, serial communication can be rather difficult to work with at times. Us-
ing the guidelines below when developing a project using the Hrsin and Hrsout commands
may help to eliminate some obvious errors: -

Always build your project in steps.
Start with small, manageable pieces of code, (that deal with serial communication) and test
them, one individually.
Add more and more small pieces, testing them each time, as you go.
Never write a large portion of code that works with serial communication without testing its
smallest workable pieces first.

Pay attention to timing.
Be careful to calculate and overestimate the amount of time, operations should take within the
PICmicro™ for a given oscillator frequency. Misunderstanding the timing constraints is the
source of most problems with code that communicate serially. If the serial communication in
your project is bi-directional, the above statement is even more critical.

Pay attention to wiring.
Take extra time to study and verify serial communication wiring diagrams. A mistake in wiring
can cause strange problems in communication, or no communication at all. Make sure to con-
nect the ground pins (Vss) between the devices that are communicating serially.

8-bit Proton Compiler Development Suite.

 206

Verify port setting on the PC and in the Hrsin / Hrsout commands.
Unmatched settings on the sender and receiver side will cause garbled data transfers or no
data transfers. This is never more critical than when a line transceiver is used(i.e. MAX232).
Always remember that a line transceiver inverts the serial polarity.
If the serial data received is unreadable, it is most likely caused by a baud rate setting error, or
a polarity error.

If receiving data from another device that is not a PICmicro™, try to use baud rates of 9600 and
below, or alternatively, use a higher frequency crystal.

Because of additional overheads in the PICmicro™, and the fact that the Hrsin command only
offers a 2 level receive buffer for serial communication, received data may sometimes be
missed or garbled. If this occurs, try lowering the baud rate, or increasing the crystal frequency.
Using simple variables (not arrays) will also increase the chance that the PICmicro™ will receive
the data properly.

Declares
There are six Declare directives for use with Hrsin. These are: -

Declare Hrsin_Pin, Hrsin2_Pin, Hrsin3_Pin, or Hrsin4_Pin Port . Pin
For devices that have PPS (Peripheral Pin Select), the port and pin used for the RX lines must
be given, so that the compiler can seup the PPS SFRs before the program starts. This may be
any valid port on the microcontroller, but check the datasheet to see if the Port is valid for the
peripheral.

Declare Hserial_Baud, Hserial2_Baud, Hserial3_Baud, or Hserial4_Baud Constant value
Sets the Baud rate that will be used to transmit a value serially. The baud rate is calculated us-
ing the Xtal frequency declared in the program.

Declare Hserial_RCSTA, Hserial2_RCSTA, Hserial3_RCSTA, or Hserial4_RCSTA Constant
value (0 to 255)
Sets the respective PICmicro™ hardware register RCSTA, to the value in the Declare. See the
Microchip data sheet for the device used for more information regarding this register.

Declare Hserial_TXSTA, Hserial2_TXSTA, Hserial3_TXSTA, or Hserial4_TXSTA Constant
value (0 to 255)
Sets the respective PICmicro™ hardware register, TXSTA, to the value in the Declare. See the
Microchip data sheet for the device used for more information regarding this register. The
TXSTA register BRGH bit (bit-2) controls the high speed mode for the baud rate generator.
Certain baud rates at certain oscillator speeds require this bit to be set to operate properly. To
do this, set Hserial_TXSTA to a value of $24 instead of the normal $20.

Declare Hserial_Parity, Hserial2_Parity, Hserial3_Parity, or Hserial4_Parity Odd or Even
Enables/Disables parity on the serial port. For both Hserout and Hserin The default serial data
format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop bit) or
7O1 (7data bits, odd parity, 1 stop bit) may be enabled using the Hserial_Parity declare.

Declare Hserial_Parity = Even ' Use if even parity desired
Declare Hserial_Parity = Odd ' Use if odd parity desired

8-bit Proton Compiler Development Suite.

 207

Declare Hserial_Clear, Hserial2_Clear, Hserial3_Clear, or Hserial4_Clear On or Off
Clear the overflow error bit before commencing a read.

Because the hardware serial port only has a 2-byte input buffer, it can easily overflow if bytes
are not read from it often enough. When this occurs, the USART stops accepting any new
bytes, and requires resetting. This overflow error can be reset by strobing the CREN bit within
the RCSTA register.

Example: -
 RCSTA.4 = 0
 RCSTA.4 = 1
or
 Clear RCSTA.4
 Set RCSTA.4

Alternatively, the Hserial_Clear declare can be used to automatically clear this error, even if no
error occurred. However, the program will not know if an error occurred while reading, therefore
some characters may be lost.

 Declare Hserial_Clear = On

8-bit Proton Compiler Development Suite.

 208

Notes
Hrsin can only be used with devices that contain a hardware USART. See the specific device's
data sheet for further information concerning the serial input pin as well as other relevant pa-
rameters.

Since the serial transmission is done in hardware, it is not possible to set the levels to an in-
verted state to eliminate an RS232 driver. Therefore a suitable driver should be used with
Hrsin. Just such a circuit using a MAX232 is shown below.

A simpler, and somewhat more elegant transceiver circuit using only 5 discrete components is
shown in the diagram below.

See also : Declare, Rsin, Rsout, Serin, Serout, Hrsout, Hserin, Hserout.

6

2 15 3

7

4

89

+5V
R3

4.7k

R1
4.7k

R2
10k

+5V

To
RB6

To
RB7 SERIAL

IN

SERIAL
OUT

T1
BC147

T2
BCR183

C1
1uF

5 Volts

V+

V+VCC

GND

MAX232

10

9

12

11 14

15

13

8

7

6

5

4

3

21

16

C1+
C1-
C2+
C2-

V-

T1in
T2in
R1out
R2out

T1out
T2out
R1in
R2in

C2
1uF

C3
1uF

C4
1uF

6
21 53

7
4

8 9

RX TX GND

9-way
D-Socket

0V

From PIC
Serial Output

To PIC
Serial Input

C5
1uF

8-bit Proton Compiler Development Suite.

 209

Hrsout, Hrsout2, Hrsout3, Hrsout4

Syntax
Hrsout Item {, Item... }

Overview
Transmit one or more Items from the hardware serial port on devices that contain a USART pe-
ripheral. If Hrsout2, Hrsout3, or Hrsout4 are used, the device must contain more than 1
USART.

Parameters
Item may be a constant, variable, expression, string list, or inline command.
There are no operators as such, instead there are modifiers.

The modifiers are listed below: -

 Modifier Operation

 At ypos,xpos Position the cursor on a serial LCD
 Cls Clear a serial LCD (also creates a 30ms delay)

 Bin{1..32} Send binary digits
 Dec{0..10} Send decimal digits (amount of digits after decimal point with floating point)
 Hex{1..8} Send hexadecimal digits
 Sbin{1..32} Send signed binary digits
 Sdec{0..10} Send signed decimal digits
 Shex{1..8} Send signed hexadecimal digits
 Ibin{1..32} Send binary digits with a preceding '%' identifier
 Idec{0..10} Send decimal digits with a preceding '#' identifier
 Ihex{1..8} Send hexadecimal digits with a preceding '$' identifier
 ISbin{1..32} Send signed binary digits with a preceding '%' identifier
 ISdec{0..10} Send signed decimal digits with a preceding '#' identifier
 IShex{1..8} Send signed hexadecimal digits with a preceding '$' identifier

 Rep c\n Send character c repeated n times
 Str array\n Send all or part of an array
 Cstr cdata Send string data defined in a Cdata statement.

The numbers after the Bin, Dec, and Hex modifiers are optional. If they are omitted, then the
default is all the digits that make up the value will be displayed.

If a floating point variable is to be displayed, then the digits after the Dec modifier determine
how many remainder digits are send. i.e. numbers after the decimal point.

 Dim MyFloat as Float
 MyFloat = 3.145
 Hrsout Dec2 MyFloat ' Send 2 digits after the decimal point

The above program will transmit the ASCII characters “3.14”

If the digit after the Dec modifier is omitted, then 3 digits will be displayed after the decimal
point.

8-bit Proton Compiler Development Suite.

 210

 Dim MyFloat as Float
 MyFloat = 3.1456
 Hrsout Dec MyFloat ' Send 3 digits after the decimal point

The above program will transmit the ASCII characters “3.145”

There is no need to use the Sdec modifier for signed floating point values, as the compiler's
Dec modifier will automatically display a minus result: -

 Dim MyFloat as Float
 MyFloat = -3.1456
 Hrsout Dec MyFloat ' Send 3 digits after the decimal point

The above program will transmit the ASCII characters “-3.145”

Hex or Bin modifiers cannot be used with floating point values or variables.

The Xpos and Ypos values in the At modifier both start at 1. For example, to place the text
"Hello World" on line 1, position 1, the code would be: -

 Hrsout At 1, 1, "Hello World"

Example 1
 Dim Var1 as Byte
 Dim Wrd as Word
 Dim Dwd as Dword

 Hrsout "Hello World" ' Display the text "Hello World"
 Hrsout "Var1= ", Dec Var1 ' Display the decimal value of Var1
 Hrsout "Var1= ", Hex Var1 ' Display the hexadecimal value of Var1
 Hrsout "Var1= ", Bin Var1 ' Display the binary value of Var1
 Hrsout "Dwd= ", Hex6 Dwd ' Display 6 hex characters of a Dword variable

Example 2
' Display a negative value on a serial LCD.
 Symbol Negative = -200
 Hrsout At 1, 1, Sdec Negative

Example 3
' Display a negative value on a serial LCD with a preceding identifier.
 Hrsout At 1, 1, IShex -$1234

Example 3 will produce the text "$-1234" on the LCD.

Some microcontrollers have the ability to read and write to their own flash memory. And al-
though writing to this memory too many times is unhealthy for the PICmicro™, reading this
memory is both fast, and harmless. Which offers a unique form of data storage and retrieval,
the Cdata command proves this, as it uses the mechanism of reading and storing in the de-
vice's flash memory.

8-bit Proton Compiler Development Suite.

 211

The Cstr modifier may be used in commands that deal with text processing i.e. Serout, Hse-
rout, and Print etc.

The Cstr modifier is used in conjunction with the Cdata command. The Cdata command is
used for initially creating the string of characters: -

String1: Cdata "Hello World", 0

The above line of case will create, in flash memory, the values that make up the ASCII text
"Hello World", at address String1. Note the null terminator after the ASCII text.

null terminated means that a zero (null) is placed at the end of the string of ASCII characters to
signal that the string has finished.

To display, or transmit this string of characters, the following command structure could be used:

 Hrsout Cstr String1

The label that declared the address where the list of Cdata values resided, now becomes the
string's name. In a large program with lots of text formatting, this type of structure can save
quite literally hundreds of bytes of valuable code space.

The Str modifier is used for sending a string of bytes from a byte array variable. A string is a set
of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3 would
be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A byte ar-
ray is a similar concept to a string; it contains data that is arranged in a certain order. Each of
the elements in an array is the same size. The string 1,2,3 would be stored in a byte array con-
taining three bytes (elements).

Below is an example that displays four bytes (from a byte array): -

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 MyArray [0] = "H" ' Load the first 5 bytes of the array
 MyArray [1] = "e" ' With the data to send
 MyArray [2] = "l"
 MyArray [3] = "l"
 MyArray [4] = "o"
 Hrsout Str MyArray\5 ' Display a 5-byte string.

Note that we use the optional \n argument of Str. If we didn't specify this, the PICmicro™ would
try to keep sending characters until all 10 bytes of the array were transmitted. Since we do not
wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 5 bytes.

The above example may also be written as: -

 Dim MyArray [10] as Byte ' Create a 10-byte array.
 Str MyArray = "Hello" ' Load the first 5 bytes of the array
 Hrsout Str MyArray\5 ' Send 5-byte string.

The above example, has exactly the same function as the previous one. The only difference is
that the string is now constructed using Str as a command instead of a modifier.

8-bit Proton Compiler Development Suite.

 212

Declares
There are five Declare directives for use with Hrsout. These are: -

Declare Hrsout_Pin, Hrsout2_Pin, Hrsout3_Pin, or Hrsout4_Pin Port . Pin
For devices that have PPS (Peripheral Pin Select), the port and pin used for the TX lines must
be given, so that the compiler can seup the PPS SFRs before the program starts. This may be
any valid port on the microcontroller, but check the datasheet to see if the Port is valid for the
peripheral.

Declare Hserial_Baud, Hserial2_Baud, Hserial3_Baud, or Hserial4_Baud Constant value
Sets the Baud rate that will be used to transmit a value serially. The baud rate is calculated us-
ing the Xtal frequency declared in the program.

Declare Hserial_RCSTA, Hserial2_RCSTA, Hserial3_RCSTA, or Hserial4_RCSTA Constant
value (0 to 255)
Sets the respective PICmicro™ hardware register RCSTA, to the value in the Declare. See the
Microchip data sheet for the device used for more information regarding this register.

Declare Hserial_TXSTA, Hserial2_TXSTA, Hserial3_TXSTA, or Hserial4_TXSTA Constant
value (0 to 255)
Sets the respective PICmicro™ hardware register, TXSTA, to the value in the Declare. See the
Microchip data sheet for the device used for more information regarding this register. The
TXSTA register BRGH bit (bit-2) controls the high speed mode for the baud rate generator.
Certain baud rates at certain oscillator speeds require this bit to be set to operate properly. To
do this, set Hserial_TXSTA to a value of $24 instead of the normal $20.

Declare Hserial_Parity, Hserial2_Parity, Hserial3_Parity, or Hserial4_Parity Odd or Even
Enables/Disables parity on the serial port. For both Hserout and Hserin The default serial data
format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop bit) or
7O1 (7data bits, odd parity, 1 stop bit) may be enabled using the Hserial_Parity declare.

Declare Hserial_Parity = Even ' Use if even parity desired
Declare Hserial_Parity = Odd ' Use if odd parity desired

Notes
Hrsout can only be used with devices that contain a hardware USART. See the specific de-
vice's data sheet for further information concerning the serial input pin as well as other relevant
parameters.

Since the serial transmission is done in hardware, it is not possible to set the levels to an in-
verted state in order to eliminate an RS232 driver. Therefore a suitable driver should be used
with Hrsout. See Hrsin for circuits.

See also : Declare, Rsin, Rsout, Serin, Serout, Hrsin, Hserin, Hserout.

8-bit Proton Compiler Development Suite.

 213

HrsoutLn, Hrsout2Ln, Hrsout3Ln, Hrsout4Ln

Syntax
HrsoutLn Item {, Item... }
Hrsout2Ln Item {, Item... }
Hrsout3Ln Item {, Item... }
Hrsout4Ln Item {, Item... }

Overview
Transmit one or more Items from the hardware serial port on devices that contain one or more
USART peripherals and terminate with a Carriage Return(13) or Carriage Return(13) Line
Feed(10) or Line Feed(10) Carriage Return(13). The syntax and operators are exactly the
same as Hrsout, Hrsout2, Hrsout3 and Hrsout4. If Hrsout2Ln, Hrsout3Ln, or Hrsout4Ln
are used, the device must contain more than 1 USART.

Parameters
Item may be a constant, variable, expression, string list, or inline command.
There are no operators as such, instead there are modifiers. See the section for Hrsout for
more details.

Declares
There are 4 declares for the HrsoutXLn commands. Each one is for the particular command.

 Declare Hserial1_Terminator = CRLF or LFCR or CR
 Declare Hserial2_Terminator = CRLF or LFCR or CR
 Declare Hserial3_Terminator = CRLF or LFCR or CR
 Declare Hserial4_Terminator = CRLF or LFCR or CR

The parameter CR will transmit a single value of 13 at the end of transmission.
The parameter CRLF will transmit a value of 13 then 10 at the end of transmission.
The parameter LFCR will transmit a value of 10 then 13 at the end of transmission.

See also : Declare, Rsin, Rsout, Serin, Serout, Hrsout, Hrsin, Hserin, Hserout.

8-bit Proton Compiler Development Suite.

 214

Hserin, Hserin2, Hserin3, Hserin4

Syntax
Hserin Timeout, Timeout Label, Parity Error Label, [Modifiers, Variable {, Variable... }]

Overview
Receive one or more values from the serial port on devices that contain a USART peripheral. If
Hserin2, Hserin3, or Hserin4 are used, the device must contain more than 1 USART.

Parameters
Timeout is an optional value for the length of time the Hserin command will wait before jump-
ing to label Timeout Label. Timeout is specified in 1 millisecond units and has a maximum of
16-bits.
Timeout Label is an optional valid BASIC label where Hserin will jump to in the event that a
character has not been received within the time specified by Timeout.
Parity Error Label is an optional valid BASIC label where Hserin will jump to in the event that
a Parity error is received. Parity is set using Declares. Parity Error detecting is not supported in
the inline version of Hserin (first syntax example above).
Modifier is one of the many formatting modifiers, explained below.
Variable is a Bit, Byte, Word, or Dword variable, that will be loaded by Hserin.

Example
' Receive values serially and timeout if no reception after 1 second
 Device 16F1829
 Declare Xtal = 4

 Declare Hserial_Baud = 9600 ' Set baud rate to 9600
 Declare Hserial_Clear = On ' Clear the buffer before receiving
 Dim Var1 as Byte

Do
Hserin 1000, Timeout, [Var1] ' Receive a byte serially into Var1

 HrsoutLn Dec Var1 ' Display the byte received
 Loop ' Loop forever

Timeout:
 HrsoutLn "Timed Out" ' Display an error if Hserin timed out
 Stop

Hserin Modifiers.
As we already know, Hserin will wait for and receive a single byte of data, and store it in a vari-
able . If the microcontroller was connected to a PC running a terminal program and the user
pressed the "A" key on the keyboard, after the Hserin command executed, the variable would
contain 65, which is the ASCII code for the letter "A"

What would happen if the user pressed the "1" key? The result would be that the variable would
contain the value 49 (the ASCII code for the character "1"). This is an important point to re-
member: every time you press a character on the keyboard, the computer receives the ASCII
value of that character. It is up to the receiving side to interpret the values as necessary. In this
case, perhaps we actually wanted the variable to end up with the value 1, rather than the ASCII
code 49.

8-bit Proton Compiler Development Suite.

 215

The Hserin command provides a modifier, called the decimal modifier, which will interpret this
for us. Look at the following code: -

 Dim SerData as Byte
 Hserin [Dec SerData]

Notice the decimal modifier in the Hserin command that appears just to the left of the SerData
variable. This tells Hserin to convert incoming text representing decimal numbers into true
decimal form and store the result in SerData. If the user running the terminal software pressed
the "1", "2" and then "3" keys followed by a space or other non-numeric text, the value 123 will
be stored in the variable SerData, allowing the rest of the program to perform any numeric op-
eration on the variable.

Without the decimal modifier, however, you would have been forced to receive each character
("1", "2" and "3") separately, and then would still have to do some manual conversion to arrive
at the number 123 (one hundred twenty three) before you can do the desired calculations on it.

The decimal modifier is designed to seek out text that represents decimal numbers. The char-
acters that represent decimal numbers are the characters "0" through "9". Once the Hserin
command is asked to use the decimal modifier for a particular variable, it monitors the incoming
serial data, looking for the first decimal character. Once it finds the first decimal character, it will
continue looking for more (accumulating the entire multi-digit number) until is finds a non-
decimal numeric character. Remember that it will not finish until it finds at least one decimal
character followed by at least one non-decimal character.

To illustrate this further, examine the following examples (assuming we're using the same code
example as above): -

Serial input: "ABC"
Result: The program halts at the Hserin command, continuously waiting for decimal text.

Serial input: "123" (with no characters following it)
Result: The program halts at the Hserin command. It recognises the characters "1", "2" and
"3" as the number one hundred twenty three, but since no characters follow the "3", it waits
continuously, since there's no way to tell whether 123 is the entire number or not.

Serial input: "123" (followed by a space character)
Result: Similar to the above example, except once the space character is received, the pro-
gram knows the entire number is 123, and stores this value in SerData. The Hserin command
then ends, allowing the next line of code to run.

Serial input: "123A"
Result: Same as the example above. The "A" character, just like the space character, is the
first non-decimal text after the number 123, indicating to the program that it has received the
entire number.

Serial input: "ABCD123EFGH"
Result: Similar to examples 3 and 4 above. The characters "ABCD" are ignored (since they're
not decimal text), the characters "123" are evaluated to be the number 123 and the following
character, "E", indicates to the program that it has received the entire number.

The final result of the Dec modifier is limited to 16 bits (up to the value 65535). If a value larger
than this is received by the decimal modifier, the end result will be incorrect because the

8-bit Proton Compiler Development Suite.

 216

result rolled-over the maximum 16-bit value. Therefore, Hserin modifiers may not (at this time)
be used to load Dword (32-bit) variables.

The decimal modifier is only one of a family of conversion modifiers available with Hserin See
below for a list of available conversion modifiers. All of the conversion modifiers work similar to
the decimal modifier (as described above). The modifiers receive bytes of data, waiting for the
first byte that falls within the range of characters they accept (e.g., "0" or "1" for binary, "0" to
"9" for decimal, "0" to "9" and "A" to "F" for hex. Once they receive a numeric character, they
keep accepting input until a non-numeric character arrives, or in the case of the fixed length
modifiers, the maximum specified number of digits arrives.

While very effective at filtering and converting input text, the modifiers aren't completely fool-
proof. As mentioned before, many conversion modifiers will keep accepting text until the first
non-numeric text arrives, even if the resulting value exceeds the size of the variable. After
Hserin, a Byte variable will contain the lowest 8 bits of the value entered and a Word (16-bits)
would contain the lowest 16 bits. You can control this to some degree by using a modifier that
specifies the number of digits, such as Dec2, which would accept values only in the range of 0
to 99.

 Conversion Modifier Type of Number Numeric Characters Accepted
 Dec{0..10} Decimal, optionally limited 0 through 9
 to 0 - 10 digits
 Hex{1..8} Hexadecimal, optionally limited 0 through 9,
 to 1 - 8 digits A through F
 Bin{1..32} Binary, optionally limited 0, 1
 to 1 - 32 digits

A variable preceded by Bin will receive the ASCII representation of its binary value.
For example, if Bin Var1 is specified and "1000" is received, Var1 will be set to 8.

A variable preceded by Dec will receive the ASCII representation of its decimal value.
For example, if Dec Var1 is specified and "123" is received, Var1 will be set to 123.

A variable preceded by Hex will receive the ASCII representation of its hexadecimal value.
For example, if Hex Var1 is specified and "FE" is received, Var1 will be set to 254.

Skip followed by a count will skip that many characters in the input stream.
For example, Skip 4 will skip 4 characters.

The Hserin command can be configured to wait for a specified sequence of characters before it
retrieves any additional input. For example, suppose a device attached to the PICmicro™ is
known to send many different sequences of data, but the only data you wish to observe hap-
pens to appear right after the unique characters, "XYZ". A modifier named Wait can be used for
this purpose: -

 Hserin [Wait("XYZ"), SerData]

The above code waits for the characters "X", "Y" and "Z" to be received, in that order, then it
receives the next data byte and places it into variable SerData.

8-bit Proton Compiler Development Suite.

 217

Str modifier.
The Hserin command also has a modifier for handling a string of characters, named Str.

The Str modifier is used for receiving a string of characters into a byte array variable.

A string is a set of characters that are arranged or accessed in a certain order. The characters
"ABC" would be stored in a string with the "A" first, followed by the "B" then followed by the "C".
A byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string "ABC" would be stored in a byte
array containing three bytes (elements).

Below is an example that receives ten bytes and stores them in the 10-byte array, SerString: -

 Dim SerString[10] as Byte ' Create a 10-byte array.
 Hserin [Str SerString] ' Fill the array with received data.
 Print Str SerString ' Display the string.

If the amount of received characters is not enough to fill the entire array, then a formatter may
be placed after the array's name, which will only receive characters until the specified length is
reached. For example: -

 Dim SerString[10] as Byte ' Create a 10-byte array.
 Hserin [Str SerString\5] ' Fill the first 5-bytes of the array
 Print Str SerString\5 ' Display the 5-character string.

The example above illustrates how to fill only the first n bytes of an array, and then how to dis-
play only the first n bytes of the array. n refers to the value placed after the backslash.

Because of its complexity, serial communication can be rather difficult to work with at times. Us-
ing the guidelines below when developing a project using the Hserin and Hserout commands
may help to eliminate some obvious errors: -

Always build your project in steps.
Start with small, manageable pieces of code, (that deal with serial communication) and test
them, one individually.
Add more and more small pieces, testing them each time, as you go.
Never write a large portion of code that works with serial communication without testing its
smallest workable pieces first.

Pay attention to timing.
Be careful to calculate and overestimate the amount of time, operations should take within the
PICmicro™ for a given oscillator frequency. Misunderstanding the timing constraints is the
source of most problems with code that communicate serially. If the serial communication in
your project is bi-directional, the above statement is even more critical.

Pay attention to wiring.
Take extra time to study and verify serial communication wiring diagrams. A mistake in wiring
can cause strange problems in communication, or no communication at all. Make sure to con-
nect the ground pins (Vss) between the devices that are communicating serially.

8-bit Proton Compiler Development Suite.

 218

Verify port setting on the PC and in the Hserin / Hserout commands.
Unmatched settings on the sender and receiver side will cause garbled data transfers or no
data transfers. This is never more critical than when a line transceiver is used(i.e. MAX232).
Always remember that a line transceiver inverts the serial polarity.
If the serial data received is unreadable, it is most likely caused by a baud rate setting error, or
a polarity error.

If receiving data from another device that is not a PICmicro™, try to use baud rates of 9600 and
below, or alternatively, use a higher frequency crystal.
Because of additional overheads in the PICmicro™, and the fact that the Hserin command of-
fers a 2 level hardware receive buffer for serial communication, received data may sometimes
be missed or garbled. If this occurs, try lowering the baud rate, or increasing the crystal fre-
quency. Using simple variables (not arrays) will also increase the chance that the PICmicro™
will receive the data properly.

Declares
There are six Declare directives for use with Hserin . These are: -

Declare Hserin_Pin, Hserin2_Pin, Hserin3_Pin, or Hserin4_Pin Port . Pin
For devices that have PPS (Peripheral Pin Select), the port and pin used for the RX lines must
be given, so that the compiler can seup the PPS SFRs before the program starts. This may be
any valid port on the microcontroller, but check the datasheet to see if the Port is valid for the
peripheral.

Declare Hserial_Baud, Hserial2_Baud, Hserial3_Baud, or Hserial4_Baud Constant value
Sets the Baud rate that will be used to transmit a value serially. The baud rate is calculated us-
ing the Xtal frequency declared in the program.

Declare Hserial_RCSTA, Hserial2_RCSTA, Hserial3_RCSTA, or Hserial4_RCSTA Constant
value (0 to 255)
Sets the respective PICmicro™ hardware register RCSTA, to the value in the Declare. See the
Microchip data sheet for the device used for more information regarding this register.

Declare Hserial_TXSTA, Hserial2_TXSTA, Hserial3_TXSTA, or Hserial4_TXSTA Constant
value (0 to 255)
Sets the respective PICmicro™ hardware register, TXSTA, to the value in the Declare. See the
Microchip data sheet for the device used for more information regarding this register. The
TXSTA register BRGH bit (bit-2) controls the high speed mode for the baud rate generator.
Certain baud rates at certain oscillator speeds require this bit to be set to operate properly. To
do this, set Hserial_TXSTA to a value of $24 instead of the normal $20.

Declare Hserial_Parity, Hserial2_Parity, Hserial3_Parity, or Hserial4_Parity Odd or Even
Enables/Disables parity on the serial port. For both Hserout and Hserin The default serial data
format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop bit) or
7O1 (7data bits, odd parity, 1 stop bit) may be enabled using the Hserial_Parity declare.

Declare Hserial_Parity = Even ' Use if even parity desired
Declare Hserial_Parity = Odd ' Use if odd parity desired

8-bit Proton Compiler Development Suite.

 219

Declare Hserial_Clear, Hserial2_Clear, Hserial3_Clear, or Hserial4_Clear On or Off
Clear the overflow error bit before commencing a read.

Because the hardware serial port only has a 2-byte input buffer, it can easily overflow is charac-
ters are not read from it often enough. When this occurs, the USART stops accepting any new
characters, and requires resetting. This overflow error can be reset by strobing the CREN bit
within the RCSTA register.

Example: -
 RCSTA.4 = 0
 RCSTA.4 = 1
or
 Clear RCSTA.4
 Set RCSTA.4

Alternatively, the Hserial_Clear declare can be used to automatically clear this error, even if no
error occurred. However, the program will not know if an error occurred while reading, therefore
some characters may be lost.

 Declare Hserial_Clear = On

Notes
Hserin can only be used with devices that contain a hardware USART. See the specific de-
vice's data sheet for further information concerning the serial input pin as well as other relevant
parameters.

Since the serial transmission is done in hardware, it is not possible to set the levels to an in-
verted state to eliminate an RS232 driver. Therefore a suitable driver should be used with
Hserin . See Hrsin for suitable circuits.

See also : Declare, Hserout, Hrsin, Hrsout, Rsin, Rsout, Serin, Serout.

8-bit Proton Compiler Development Suite.

 220

Hserout, Hserout2, Hserout3, Hserout4

Syntax
Hserout [Item {, Item... }]
Hserout2 [Item {, Item... }]
Hserout3 [Item {, Item... }]
Hserout4 [Item {, Item... }]

Overview
Transmit one or more Items from the hardware serial port on devices that contains one or more
USART peripherals. If Hserout2, Hserout3, or Hserout4 are used, the device must contain
more than 1 USART.

Parameters
Item may be a constant, variable, expression, string list, or inline command.
There are no operators as such, instead there are modifiers. For example, if an at sign'@' pre-
cedes an Item, the ASCII representation for each digit is transmitted.

The modifiers are listed below: -

 Modifier Operation

 At ypos,xpos Position the cursor on a serial LCD
 Cls Clear a serial LCD (also creates a 30ms delay)

 Bin{1..32} Send binary digits
 Dec{0..10} Send decimal digits (amount of digits after decimal point with floating point)
 Hex{1..8} Send hexadecimal digits
 Sbin{1..32} Send signed binary digits
 Sdec{0..10} Send signed decimal digits
 Shex{1..8} Send signed hexadecimal digits
 Ibin{1..32} Send binary digits with a preceding '%' identifier
 Idec{0..10} Send decimal digits with a preceding '#' identifier
 Ihex{1..8} Send hexadecimal digits with a preceding '$' identifier
 ISbin{1..32} Send signed binary digits with a preceding '%' identifier
 ISdec{0..10} Send signed decimal digits with a preceding '#' identifier
 IShex{1..8} Send signed hexadecimal digits with a preceding '$' identifier

 Rep c\n Send character c repeated n times
 Str array\n Send all or part of an array
 Cstr cdata Send string data defined in a Cdata statement.

The numbers after the Bin, Dec, and Hex modifiers are optional. If they are omitted, then the
default is all the digits that make up the value will be displayed.

If a floating point variable is to be displayed, then the digits after the Dec modifier determine
how many remainder digits are send. i.e. numbers after the decimal point.

 Dim MyFloat as Float
 MyFloat = 3.145
 Hserout [Dec2 MyFloat] ' Send 2 values after the decimal point

The above program will send 3.14

8-bit Proton Compiler Development Suite.

 221

If the digit after the Dec modifier is omitted, then 3 values will be displayed after the decimal
point.

 Dim MyFloat as Float
 MyFloat = 3.1456
 Hserout [Dec MyFloat] ' Send 3 values after the decimal point

The above program will send 3.145

There is no need to use the SDec modifier for signed floating point values, as the compiler's
Dec modifier will automatically display a minus result: -

 Dim MyFloat as Float
 MyFloat = -3.1456
 Hserout [Dec MyFloat] ' Send 3 values after the decimal point

The above program will send -3.145

Hex or Bin modifiers cannot be used with floating point values or variables.

The Xpos and Ypos values in the At modifier both start at 1. For example, to place the text
"HELLO WORLD" on line 1, position 1, the code would be: -

 Hserout [At 1, 1, "HELLO WORLD"]

Example 1
 Dim Var1 as Byte
 Dim Wrd as Word
 Dim Dwd as Dword

 Hserout ["Hello World"] ' Display the text "Hello World"
 Hserout ["Var1= ", Dec Var1] ' Display the decimal value of Var1
 Hserout ["Var1= ", Hex Var1] ' Display the hexadecimal value of Var1
 Hserout ["Var1= ", Bin Var1] ' Display the binary value of Var1
'
' Display 6 hex characters of a Dword type variable
'
 Hserout ["Dwd= ", Hex6 Dwd]

Example 2
' Display a negative value on a serial LCD.
 Symbol Negative = -200
 Hserout [At 1, 1, Sdec Negative]

Example 3
' Display a negative value on a serial LCD with a preceding identifier.
 Hserout [At 1, 1, IShex -$1234]

Example 3 will produce the text "$-1234" on the LCD.

Some PICmicros™ have the ability to read and write to their own flash memory. And although
writing to this memory too many times is unhealthy for the PICmicro™, reading this memory is
both fast, and harmless.

8-bit Proton Compiler Development Suite.

 222

Which offers a unique form of data storage and retrieval, the Cdata command proves this, as it
uses the mechanism of reading and storing in the PICmicro's™ flash memory.

Combining the unique features of the ‘self modifying PICmicro's™' with a string format, the com-
piler is capable of reducing the overhead of printing, or transmitting large amounts of text data.
The Cstr modifier may be used in commands that deal with text processing i.e. Serout, Hrsout,
and Print etc.

The Cstr modifier is used in conjunction with the Cdata directive. The Cdata directive is used
for initially creating the string of characters: -

String1: Cdata "HELLO WORLD", 0

The above line of case will create, in flash memory, the values that make up the ASCII text
"HELLO WORLD", at address String1. Note the null terminator after the ASCII text.

"Null terminated" means that a zero (null) is placed at the end of the string of ASCII characters
to signal that the string has finished.

To display, or transmit this string of characters, the following command structure could be used:

 Hserout [Cstr String1]

The label that declared the address where the list of Cdata values resided, now becomes the
string's name. In a large program with lots of text formatting, this type of structure can save
quite literally hundreds of bytes of valuable code space.

Try both these small programs, and you'll see that using Cstr saves a few bytes of code: -

First the standard way of displaying text: -

 Device = 16F1829
 Hserout ["HELLO WORLD",13]
 Hserout ["HOW ARE YOU?",13]
 Hserout ["I AM FINE!",13]
 Stop

Now using the Cstr modifier: -

 Hserout [Cstr TEXT1]
 Hserout [Cstr TEXT2]
 Hserout [Cstr TEXT3]
 Stop

TEXT1: Cdata "HELLO WORLD", 13, 0
TEXT2: Cdata "HOW ARE YOU?", 13, 0
TEXT3: Cdata "I AM FINE!", 13, 0

Again, note the null terminators after the ASCII text in the Cdata commands. Without these, the
microcontroller will continue to transmit data in an endless loop.

8-bit Proton Compiler Development Suite.

 223

The term 'virtual string' relates to the fact that a string formed from the Cdata command cannot
be written too, but only read from.

The Str modifier is used for sending a string of bytes from a byte array variable. A string is a set
of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3 would
be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A byte ar-
ray is a similar concept to a string; it contains data that is arranged in a certain order. Each of
the elements in an array is the same size. The string 1,2,3 would be stored in a byte array con-
taining three bytes (elements).

Below is an example that displays four bytes (from a byte array): -

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 MyArray [0] = "H" ' Load the first 5 bytes of the array
 MyArray [1] = "E" ' With the data to send
 MyArray [2] = "L"
 MyArray [3] = "L"
 MyArray [4] = "O"
 Hserout [Str MyArray\5] ' Display a 5-byte string.

Note that we use the optional \n argument of Str. If we didn't specify this, the PICmicro™ would
try to keep sending characters until all 10 bytes of the array were transmitted. Since we do not
wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 5 bytes.

The above example may also be written as: -

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 Str MyArray = "HELLO" ' Load the first 5 bytes of the array
 Hserout [Str MyArray\5] ' Send 5-byte string.

The above example, has exactly the same function as the previous one. The only difference is
that the string is now constructed using Str as a command instead of a modifier.

Declares
There are five Declare directives for use with Hserout, Hserout2, Hserout3, and Hserout4.
These are: -

Declare Hserout_Pin, Hserout2_Pin, Hserout3_Pin, or Hserout4_Pin Port . Pin
For devices that have PPS (Peripheral Pin Select), the port and pin used for the TX lines must
be given, so that the compiler can seup the PPS SFRs before the program starts. This may be
any valid port on the microcontroller, but check the datasheet to see if the Port is valid for the
peripheral.

Declare Hserial_Baud, Hserial2_Baud, Hserial3_Baud, or Hserial4_Baud Constant value
Sets the Baud rate that will be used to transmit a value serially. The baud rate is calculated us-
ing the Xtal frequency declared in the program.

Declare Hserial_RCSTA, Hserial2_RCSTA, Hserial3_RCSTA, or Hserial4_RCSTA Constant
value (0 to 255)
Hserial_RCSTA, sets the respective PICmicro™ hardware register RCSTA, to the value in the
Declare. See the Microchip data sheet for the device used for more information regarding this
register.

8-bit Proton Compiler Development Suite.

 224

Declare Hserial_TXSTA, Hserial2_TXSTA, Hserial3_TXSTA, or Hserial4_TXSTA Constant
value (0 to 255)
Hserial_TXSTA, sets the respective PICmicro™ hardware register, TXSTA, to the value in the
Declare. See the Microchip data sheet for the device used for more information regarding this
register. The TXSTA register BRGH bit (bit-2) controls the high speed mode for the baud rate
generator. Certain baud rates at certain oscillator speeds require this bit to be set to operate
properly. To do this, set Hserial_TXSTA to a value of $24 instead of the normal $20.

8-bit Proton Compiler Development Suite.

 225

Declare Hserial_Parity, Hserial2_Parity, Hserial3_Parity, or Hserial4_Parity Odd or Even
Enables/Disables parity on the serial port. For both Hserout and Hserin The default serial data
format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop bit) or
7O1 (7data bits, odd parity, 1 stop bit) may be enabled using the Hserial_Parity declare.

 Declare Hserial_Parity = Even ' Use if even parity desired
 Declare Hserial_Parity = Odd ' Use if odd parity desired

Notes
Hserout can only be used with devices that contain a hardware USART. See the specific de-
vice's data sheet for further information concerning the serial input pin as well as other relevant
parameters.

Since the serial transmission is done in hardware, it is not possible to set the levels to an in-
verted state in order to eliminate an RS232 driver. Therefore a suitable driver should be used
with Hserout . See Hrsin for circuit examples

See also : Declare, Rsin, Rsout, Serin, Serout, Hserin, Hserin2, Hserin3, Hserin4.

8-bit Proton Compiler Development Suite.

 226

HseroutLn, Hserout2Ln, Hserout3Ln, Hserout4Ln

Syntax
HseroutLn [Item {, Item... }]
Hserout2Ln [Item {, Item... }]
Hserout3Ln [Item {, Item... }]
Hserout4Ln [Item {, Item... }]

Overview
Transmit one or more Items from the hardware serial port on devices that contain one or more
USART peripherals and terminate with a Carriage Return(13) or Carriage Return(13) Line
Feed(10) or Line Feed(10) Carriage Return(13). The syntax and operators are exactly the
same as Hserout, Hserout2, Hserout3 and Hserout4. If Hserout2Ln, Hserout3Ln, or Hse-
routLn are used, the device must contain more than 1 USART.

Parameters
Item may be a constant, variable, expression, string list, modifier, or inline command. See the
section on Hserout for more details.

Declares
There are 4 declares for the HseroutXLn commands. Each one is for the particular command.

 Declare Hserial1_Terminator = CRLF or LFCR or CR
 Declare Hserial2_Terminator = CRLF or LFCR or CR
 Declare Hserial3_Terminator = CRLF or LFCR or CR
 Declare Hserial4_Terminator = CRLF or LFCR or CR

The parameter CR will transmit a single value of 13 at the end of transmission.
The parameter CRLF will transmit a value of 13 then 10 at the end of transmission.
The parameter LFCR will transmit a value of 10 then 13 at the end of transmission.

See also : Declare, Rsin, Rsout, Serin, Serout, Hrsout, HrsoutLn, Hrsin, Hserin, Hserout.

8-bit Proton Compiler Development Suite.

 227

HSerial1_ChangeBaud

Syntax
HSerial1_ChangeBaud Baud Value, { Display Actual Baud }

Overview
Changes the Baud rate of USART1 for the HRsout/HRsin and HSerout/HSerin commands.

Parameters
Baud Value is a constant value that signifies which Baud rate to set USART1 at.
Display Actual Baud is an optional constant of 0 or 1 that will produce a reminder message in
the IDE that indicates what the actual Baud rate is, and its error ratio.

Example

Device = 18F25K20
 Declare Xtal = 20
 Declare HSerial_Baud = 9600 ' Set the Baud rate for USART1 to 9600

 HRsoutLn "Hello World at 9600 Baud"
 DelayMs 2000 ' Wait for 2 seconds

 HSerial1_ChangeBaud 115200 ' Change the Baud rate to 115200
 HRsoutLn "Hello World at 115200 Baud"
 Stop

8-bit Proton Compiler Development Suite.

 228

HSerial2_ChangeBaud

Syntax
HSerial2_ChangeBaud Baud Value, { Display Actual Baud }

Overview
Changes the Baud rate of USART2 for the HRsout2/HRsin2 and HSerout2/HSerin2 com-
mands.

Parameters
Baud Value is a constant value that signifies which Baud rate to set USART2 at.
Display Actual Baud is an optional constant of 0 or 1 that will produce a reminder message in
the IDE that indicates what the actual Baud rate is, and its error ratio.

Example

Device = 18F25K20
 Declare Xtal = 20
 Declare HSerial2_Baud = 9600 ' Set the Baud rate for USART2 to 9600

 Hrsout2Ln "Hello World at 9600 Baud"
 DelayMs 2000 ' Wait for 2 seconds

 HSerial2_ChangeBaud 115200 ' Change the Baud rate to 115200
 Hrsout2Ln "Hello World at 115200 Baud"
 Stop

8-bit Proton Compiler Development Suite.

 229

HSerial3_ChangeBaud

Syntax
HSerial3_ChangeBaud Baud Value, { Display Actual Baud }

Overview
Changes the Baud rate of USART3 for the HRsout3/HRsin3 and HSerout3/HSerin3 com-
mands.

Parameters
Baud Value is a constant value that signifies which Baud rate to set USART3 at.
Display Actual Baud is an optional constant of 0 or 1 that will produce a reminder message in
the IDE that indicates what the actual Baud rate is, and its error ratio.

Example

Device = 18F65J94 ' Use a device that has 4 USARTs
 Declare Xtal = 20
 Declare HSerial3_Baud = 9600 ' Set the Baud rate for USART3 to 9600

 HRsout3Ln "Hello World at 9600 Baud"
 DelayMs 2000 ' Wait for 2 seconds

 HSerial3_ChangeBaud 115200 ' Change the Baud rate to 115200
 HRsoutLn "Hello World at 115200 Baud"
 Stop

8-bit Proton Compiler Development Suite.

 230

HSerial4_ChangeBaud

Syntax
HSerial4_ChangeBaud Baud Value, { Display Actual Baud }

Overview
Changes the Baud rate of USART4 for the HRsout4/HRsin4 and HSerout4/HSerin4 com-
mands.

Parameters
Baud Value is a constant value that signifies which Baud rate to set USART4 at.
Display Actual Baud is an optional constant of 0 or 1 that will produce a reminder message in
the IDE that indicates what the actual Baud rate is, and its error ratio.

Example

Device = 18F65J94 ' Use a device that has 4 USARTs
 Declare Xtal = 20
 Declare HSerial4_Baud = 9600 ' Set the Baud rate for USART4 to 9600

 HRsout4Ln "Hello World at 9600 Baud"
 DelayMs 2000 ' Wait for 2 seconds

 HSerial4_ChangeBaud 115200 ' Change the Baud rate to 115200
 Hrsout4Ln "Hello World at 115200 Baud"
 Stop

8-bit Proton Compiler Development Suite.

 231

I2Cin

Syntax
I2Cin SDA_Pin, SCL_Pin, Control, { Address }, [Variable {, Variable…}]

Overview
Receives a value from the I2C bus, and places it into variable/s.

Parameters
SDA_Pin is a Port.Pin value that specifies the I/O pin that will be connected to the I2C device's
data line (SDA). This pin's I/O direction will be changed to input and will remain in that state af-
ter the instruction is completed.
SCL_Pin is a Port.Pin value that specifies the I/O pin that will be connected to the I2C device's
clock line (SCL). This pin's I/O direction will be changed to output.
Variable is a user defined variable of type Bit, Byte, Word, Dword, Float, Array.
Control is a constant value or a byte sized variable expression.
Address is an optional constant value or a variable expression.

The I2Cin command operates as an I2C master, and may be used to interface with any device
that complies with the 2-wire I2C protocol. The most significant 7-bits of control byte contain the
control code and the slave address of the device being interfaced with. Bit-0 is the flag that in-
dicates whether a read or write command is being implemented.

For example, if we were interfacing to an external eeprom such as the 24LC32, the control
code would be %10100001 or $A1. The most significant 4-bits (1010) are the eeprom's unique
slave address. Bits 1 to 3 reflect the three address pins of the eeprom. And bit-0 is set to signify
that we wish to read from the eeprom. Note that this bit is automatically set by the I2Cin com-
mand, regardless of its initial setting.

Example
' Receive a byte from the I2C bus and place it into variable Var1
'
 Dim Var1 as Byte ' We'll only read 8-bits
 Dim Address as Word ' 16-bit address required
 Symbol Control %10100001 ' Target an eeprom
 Symbol SDA = PORTC.3 ' Alias the SDA (Data) line
 Symbol SCL = PORTC.4 ' Alias the SSL (Clock) line

Address = 20 ' Read the value at address 20
 I2Cin SDA, SCL, Control, Address, [Var1] ' Read the byte from the eeprom

Address is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in
this position, the size of address is dictated by the size of the variable used (byte or word). In
the case of the previous eeprom interfacing, the 24LC32 eeprom requires a 16-bit address.
While the smaller types require an 8-bit address. Make sure you assign the right size address
for the device interfaced with, or you may not achieve the results you intended.

8-bit Proton Compiler Development Suite.

 232

The I2Cin command allows differing variable assignments. For example: -

 Dim Var1 as Byte
 Dim Wrd as Word
 I2Cin SDA, SCL, Control, Address, [Var1, Wrd]

The above example will receive two values from the bus, the first being an 8-bit value dictated
by the size of variable Var1 which has been declared as a byte. And a 16-bit value, this time
dictated by the size of the variable Wrd which has been declared as a word. Of course, bit type
variables may also be used, but in most cases these are not of any practical use as they still
take up a byte within the eeprom.

Declares
See I2Cout for declare explanations.

Notes
When the I2Cin command is used, the appropriate SDA and SCL Port and Pin are automati-
cally setup as inputs, and outputs. Because the I2C protocol calls for an open-collector inter-
face, pull-up resistors are required on both the SDA and SCL lines. Values of 4.7KΩ to 10KΩ
will suffice.

Str modifier with I2Cin
Using the Str modifier allows the I2Cin command to transfer the bytes received from the I2C
bus directly into a byte array. If the amount of received characters is not enough to fill the entire
array, then a formatter may be placed after the array's name, which will only receive characters
until the specified length is reached. An example of each is shown below: -

 Dim Array[10] as Byte ' Define an array of 10 bytes
 Dim Address as Byte ' Create a word sized variable
'
' Load data into all the array
'
 I2Cin SDA, SCL, %10100000, Address, [Str Array]
'
' Load data into only the first 5 elements of the array
'
 I2Cin SDA, SCL, %10100000, Address, [Str Array\5]

See Also: BusAck, Bstart, Brestart, Bstop, Busout, HbStart, HbRestart
 HbusAck, Hbusin, Hbusout, I2Cout

8-bit Proton Compiler Development Suite.

 233

I2Cout

Syntax
I2Cout SDA_Pin, SCL_Pin, Control, { Address }, [OutputData]

Overview
Transmit a value to the I2C bus, by first sending the control and optional address out of the
clock pin (SCL), and data pin (SDA).

Parameters
SDA_Pin is a Port.Pin value that specifies the I/O pin that will be connected to the I2C device's
data line (SDA). This pin's I/O direction will be changed to input and will remain in that state af-
ter the instruction is completed.
SCL_Pin is a Port.Pin value that specifies the I/O pin that will be connected to the I2C device's
clock line (SCL). This pin's I/O direction will be changed to output.
 Control is a constant value or a byte sized variable expression.
 Address is an optional constant, variable, or expression.
 OutputData is a list of variables, constants, expressions and modifiers that informs I2Cout
how to format outgoing data. I2Cout can transmit individual or repeating bytes, convert values
into decimal, hex or binary text representations, or transmit strings of bytes from variable ar-
rays.

These actions can be combined in any order in the OutputData list.

The I2Cout command operates as an I2C master and may be used to interface with any device
that complies with the 2-wire I2C protocol. The most significant 7-bits of control byte contain the
control code and the slave address of the device being interfaced with. Bit-0 is the flag that in-
dicates whether a read or write command is being implemented.

For example, if we were interfacing to an external eeprom such as the 24LC32, the control
code would be %10100000 or $A0. The most significant 4-bits (1010) are the eeprom's unique
slave address. Bits 1 to 3 reflect the three address pins of the eeprom. And Bit-0 is clear to sig-
nify that we wish to write to the eeprom. Note that this bit is automatically cleared by the I2Cout
command, regardless of its initial value.

Example
' Send a byte to the I2C bus.
 Dim Var1 as Byte ' We'll only read 8-bits
 Dim Address as Word ' 16-bit address required
 Symbol Control = %10100000 ' Target an eeprom
 Symbol SDA = PORTC.3 ' Alias the SDA (Data) line
 Symbol SCL = PORTC.4 ' Alias the SSL (Clock) line

Address = 20 ' Write to address 20
 Var1 = 200 ' The value place into address 20
 I2Cout SDA, SCL, Control, Address, [Var1] ' Send the byte to the eeprom
 DelayMs 10 ' Allow time for allocation of byte

Address is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in
this position, the size of address is dictated by the size of the variable used (byte or word). In
the case of the above eeprom interfacing, the 24LC32 eeprom requires a 16-bit address. While
the smaller types require an 8-bit address. Make sure you assign the right size address for the
device interfaced with, or you may not achieve the results you intended.

8-bit Proton Compiler Development Suite.

 234

The value sent to the bus depends on the size of the variables used. For example: -

 Dim Wrd as Word ' Create a Word size variable
 I2Cout SDA, SCL, Control, Address, [Wrd]

Will send a 16-bit value to the bus. While: -

 Dim Var1 as Byte ' Create a Byte size variable
 I2Cout SDA, SCL, Control, Address, [Var1]

Will send an 8-bit value to the bus. Using more than one variable within the brackets allows dif-
fering variable sizes to be sent. For example: -

 Dim Var1 as Byte
 Dim Wrd as Word
 I2Cout SDA, SCL, Control, Address, [Var1, Wrd]

Will send two values to the bus, the first being an 8-bit value dictated by the size of variable
Var1 which has been declared as a byte. And a 16-bit value, this time dictated by the size of
the variable Wrd which has been declared as a word. Of course, bit type variables may also be
used, but in most cases these are not of any practical use as they still take up a byte within the
eeprom.

A string of characters can also be transmitted, by enclosing them in quotes: -

I2Cout SDA, SCL, Control, Address, ["Hello World", Var1, Wrd]

Str modifier with I2Cout
The Str modifier is used for transmitting a string of bytes from a byte array variable. A string is
a set of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3
would be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A
byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string 1,2,3 would be stored in a byte
array containing three bytes (elements). Below is an example that sends four bytes from an ar-
ray: -

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 MyArray [0] = "A" ' Load the first 4 bytes of the array
 MyArray [1] = "B" ' With the data to send
 MyArray [2] = "C"
 MyArray [3] = "D"
'
' Send a 4-byte string
'
 I2Cout SDA, SCL, %10100000, Address, [Str MyArray\4]

Note that we use the optional \n argument of Str. If we didn't specify this, the program would try
to keep sending characters until all 10 bytes of the array were transmitted. Since we do not
wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 4 bytes.

8-bit Proton Compiler Development Suite.

 235

Declares
There are two Declare directives for use with I2Cout and I2Cin. These are: -

Declare I2C_Slow_Bus On - Off or 1 – 0
Slows the bus speed when using an oscillator higher than 4MHz. The standard speed for the
I2C bus is 100KHz. Some devices use a higher bus speed of 400KHz. If you use an 8MHz or
higher oscillator, the bus speed may exceed the devices specs, which will result in intermittent
transactions, or in some cases, no transactions at all. Therefore, use this Declare if you are not
sure of the device's spec. The datasheet for the device used will inform you of its bus speed.

Declare I2C_Bus_SCL On - Off, 1 - 0 or True - False
Eliminates the necessity for a pullup resistor on the SCL line.

The I2C protocol dictates that a pullup resistor is required on both the SCL and SDA lines, how-
ever, this is not always possible due to circuit restrictions etc, so once the I2C_Bus_SCL On
Declare is issued at the top of the program, the resistor on the SCL line can be omitted from
the circuit. The default for the compiler if the I2C_Bus_SCL Declare is not issued, is that a pul-
lup resistor is required.

Notes
When the I2Cout command is used, the appropriate SDA and SCL Port and Pin are automati-
cally setup as inputs, and outputs. Because the I2C protocol calls for an open-collector inter-
face, pull-up resistors are required on both the SDA and SCL lines. Values of 4.7KΩ to 10KΩ
will suffice.

You may imagine that it's limiting having a fixed set of pins for the I2C interface, but you must
remember that several different devices may be attached to a single bus, each having a unique
slave address. Which means there is usually no need to use up more than two pins on the
PICmicro™ in order to interface to many devices.

See Also: BusAck, Bstart, Brestart, Bstop, Busin, HbStart, HbRestart
 HbusAck, Hbusin, Hbusout, I2Cin

8-bit Proton Compiler Development Suite.

 236

If..Then..ElseIf..Else..EndIf

Syntax
If Comparison Then Instruction : { Instruction }

Or, you can use the single line form syntax:

If Comparison Then Instruction : { Instruction } : ElseIf Comparison Then Instruction : Else In-
struction

Or, you can use the block form syntax:

If Comparison Then
Instruction(s)
ElseIf Comparison Then
Instruction(s)
{
ElseIf Comparison Then
Instruction(s)
 }
Else
Instruction(s)
EndIf

The curly braces signify optional conditions.

Overview
Evaluates the comparison and, if it fulfils the criteria, executes expression. If comparison is not
fulfilled the instruction is ignored, unless an Else directive is used, in which case the code after
it is implemented until the EndIf is found.

When all the instruction are on the same line as the If-Then statement, all the instructions on
the line are carried out if the condition is fulfilled.

Parameters
Comparison is composed of variables, numbers and comparators.
Instruction is the statement to be executed should the comparison fulfil the If criteria

Example 1
 Symbol LED = PORTB.4
 Var1 = 3
 Low LED
 If Var1 > 4 Then High LED : DelayMs 500 : Low LED

In the above example, Var1 is not greater than 4 so the If criteria isn't fulfilled. Consequently,
the High LED statement is never executed leaving the state of port pin PORTB.4 low. How-
ever, if we change the value of variable Var1 to 5, then the LED will turn on for 500ms then off,
because Var1 is now greater than 4, so fulfils the comparison criteria.

A second form of If, evaluates the expression and if it is true then the first block of instructions
is executed. If it is false then the second block (after the Else) is executed.

8-bit Proton Compiler Development Suite.

 237

The program continues after the EndIf instruction.

The Else is optional. If it is missed out then if the expression is false the program continues af-
ter the EndIf line.

Example 2
 If X & 1 = 0 Then
 A = 0
 B = 1
 Else
 A = 1
 EndIf
 If Z = 1 Then
 A = 0
 B = 0
 EndIf

Example 3
 If X = 10 Then
 High LED1
 ElseIf X = 20 Then
 High LED2
 Else
 High LED3
 EndIf

A forth form of If, allows the Else or ElseIf to be placed on the same line as the If: -

 If X = 10 Then High LED1 : ElseIf X = 20 Then High LED2 : Else : High LED3

Notice that there is no EndIf instruction. The comparison is automatically terminated by the end
of line condition. So in the above example, if X is equal to 10 then LED1 will illuminate, if X
equals 20 then LED will illuminate, otherwise, LED3 will illuminate.

The If statement allows any type of variable, register or constant to be compared. A common
use for this is checking a Port bit: -

 If PORTA.0 = 1 Then High LED : Else : Low LED

Any commands on the same line after Then will only be executed if the comparison if fulfilled: -

 If Var1 = 1 Then High LED : DelayMs 500 : Low LED

Notes
A Goto command is optional after the Then: -

 If PORTB.0 = 1 Then Label

Then operand always required.
The Proton compiler relies heavily on the Then part. Therefore, if the Then part of a construct
is left out of the code listing, a Syntax Error will be produced.

See also : Boolean Logic Operators, Select..Case..EndSelect.

8-bit Proton Compiler Development Suite.

 238

Include

Syntax
Include "Filename"

Overview
Include another file at the current point in the compilation. All the lines in the new file are com-
piled as if they were in the current file at the point of the Include directive.

A common use for the include command is shown in the example below. Here a small master
program is used to include a number of smaller library files which are all compiled together to
make the overall program.

Parameter
Filename is any valid Proton file.

Example
' Main Program Includes sub files
 Include "StartCode.bas"
 Include "MainCode.bas"
 Include "EndCode.bas"

Notes
The file to be included into the BASIC listing may be in one of three places on the hard drive if a
specific path is not chosen.

 1… Within the BASIC program's directory.
 2… Within the Compiler's current directory.
 3… Within the Includes\Sources folder of the compiler's current directory.

 The list above also shows the order in which they are searched for.

Using Include files to tidy up your code.
If the include file contains assembler subroutines then it must always be placed at the begin-
ning of the program. This allows the subroutine/s to be placed within the first bank of memory
(0..2048), thus avoiding any bank boundary errors. Placing the include file at the beginning of
the program also allows all of the variables used by the routines held within it to be pre-
declared. This again makes for a tidier program, as a long list of variables is not present in the
main program.

There are some considerations that must be taken into account when writing code for an in-
clude file, these are: -

1). Always jump over the subroutines.

When the include file is placed at the top of the program this is the first place that the compiler
starts, therefore, it will run the subroutine/s first and the Return command will be pointing to a
random place within the code. To overcome this, place a Goto statement just before the sub-
routine starts.

8-bit Proton Compiler Development Suite.

 239

For example: -

 Goto Over_This_Subroutine ' Jump over the subroutine
' The subroutine is placed here

Over_This_Subroutine: ' Jump to here first

2). Variable and Label names should be as meaningful as possible.

For example. Instead of naming a variable MyLoop, change it to ISUB_MyLoop. This will help
eliminate any possible duplication errors, caused by the main program trying to use the same
variable or label name. However, try not to make them too obscure as your code will be harder
to read and understand, it might make sense at the time of writing, but come back to it after a
few weeks and it will be meaningless.

3). Comment, Comment, and Comment some more.

This cannot be emphasised enough. Always place a plethora of remarks and comments. The
purpose of the subroutine/s within the include file should be clearly explained at the top of the
program, also, add comments after virtually every command line, and clearly explain the pur-
pose of all variables and constants used. This will allow the subroutine to be used many weeks
or months after its conception. A rule of thumb that I use is that I can understand what is going
on within the code by reading only the comments to the right of the command lines.

8-bit Proton Compiler Development Suite.

 240

Inc

Syntax
Inc Variable

Overview
Increment a variable i.e. Var1 = Var1 + 1

Parameters
Variable is a user defined variable

Example
 Dim Var1 as Byte = 1

 Repeat
 Print Dec Var1, " "
 DelayMs 200
 Inc Var1
 Until Var1 > 10

The above example shows the equivalent to the For-Next loop: -

 For Var1 = 1 to 10 : Next

See also : Dec.

8-bit Proton Compiler Development Suite.

 241

Inkey

Syntax
Variable = Inkey

Overview
Scan a keypad and place the returned value into variable

Parameters
Variable is a user defined variable

Example
 Dim Var1 as Byte
 Var1 = Inkey ' Scan the keypad
 DelayMs 50 ' Debounce by waiting 50ms
 Print Dec Var1, " " ' Display the result on the LCD

Notes
Inkey will return a value between 0 and 16. If no key is pressed, the value returned is 16.

Using a LookUp command, the returned values can be re-arranged to correspond with the leg-
ends printed on the keypad: -

 Var1 = Inkey
 Key = LookUp Var1, [255,1,4,7,"*",2,5,8,0,3,6,9,"#",0,0,0]

The above example is only a demonstration, the values inside the LookUp command will need
to be re-arranged for the type of keypad used, and its connection configuration.

Declare
Declare Keypad_Port Port
 Assigns the Port that the keypad is attached to.

The keypad routine requires pull-up resistors, therefore, the best Port for this device is PORTB,
which comes equipped with internal pull-ups. If the Declare is not used in the program, then
PORTB is the default
Port.

The diagram illustrates a
typical connection of a
12-button keypad to a
PIC16F84. If a 16-button
type is used, then COL-
UMN 4 will connect to
PORTB.7 (RB7).

RB7VDD
RB6
RB5
RB4
RB3
RB2
RB1
RB0

13

RA4
RA3
RA2
RA1
RA0

MCLR

OSC1

OSC2

VSS

14

PIC16F84

C4
22pf

C1
10uf

C2
0.1uf

R1
4.7k

+5 Volts

C3
22pf

4MHz
Crystal

12

11

10

9

8

7

6

3

2

1

18

17

5

4

16

15

0v

1 2 3

654

7 8 9

0 #*

R2-R5
470

COLUMNS

R
O
W
S

8-bit Proton Compiler Development Suite.

 242

Input

Syntax
Input Port . Pin or Pin Number

Overview
Makes the specified Port or Pin an input.

Parameters
Port.Pin must be a Port, or Port.Pin constant declaration.
Pin Number can be any variable or constant holding 0 to the amount of I/O pins on the device.
A value of 0 will be PORTA.0, if present, 1 will be PORTA.1, 8 will be PORTB.0 etc…

Example 1
 Input PORTA.0 ' Make pin-0 of PORTA an input
 Input PORTA ' Make all of PORTA an input
 Input 0 ' Make pin-0 of PORTA an input

Input 8 ' Make pin-0 of PORTB an input

Example 2
' Flash each of the pins on PORTA and PORTB
'
 Device = 18F25K20
 Declare Xtal = 16

 Dim MyPin as Byte

 High PORTA
 High PORTB
 For MyPin = 0 to 15 ' Create a loop for the pin to flash
 Output MyPin ' Set the pin as an output
 DelayMs 500 ' Delay so that it can be seen
 Input MyPin ' Set the pin as an input
 DelayMs 500 ' Delay so that it can be seen
 Next

Notes
An Alternative method for making a particular pin an input is by directly modifying the TRIS reg-
ister: -

 TRISB.0 = 1 ' Set PORTB, bit-0 to an input

All of the pins on a port may be set to inputs by setting the whole Tris register at once: -

 TRISB = %11111111 ' Set all of PORTB to inputs

In the above examples, setting a TRIS bit to 1 makes the pin an input, and conversely, setting
the bit to 0 makes the pin an output.

8-bit Proton Compiler Development Suite.

 243

Each pin number has a designated name. These are Pin_A0, Pin_A1, Pin_A2,
Pin_B0…Pin_B7, Pin_C0…Pin_C7, Pin_D0…Pin_D7 to Pin_L7 etc… Each of the names has a
relevant value, for example, Pin_A0 has the value 0, Pin_B0 has the value 8, up to Pin_L7,
which has the value 87.

These can be used to pass a relevant pin number to a subroutine. For example:
'
' Flash an LED attached to PORTB.0 via a subroutine
' Then flash an LED attached to PORTB.1 via the same subroutine
'

Device = 18F25K20
Declare Xtal = 16

Dim PinNumber As Byte ' Holds the pin number to set high and low

Do ' Create an infinite loop

PinNumber = Pin_B0 ' Give the pin number to flash (PORTB.0)
Gosub FlashPin ' Call the subroutine to flash the pin
PinNumber = Pin_B1 ' Give the pin number to flash (PORTB.1)
Gosub FlashPin ' Call the subroutine to flash the pin

 Loop ' Do it forever
'
' Set a pin high then an input for 500ms using a value as the pin to adjust
'
FlashPin:
 High PinNumber ' Set the pin output high
 DelayMs 500 ' Wait for 500 milliseconds

Input PinNumber ' Make the pin an input
DelayMs 500 ' Wait for 500 milliseconds
Return

See also : Output, ClearPin, SetPin, High, Low.

8-bit Proton Compiler Development Suite.

 244

LCDread

Syntax
Variable = LCDread Ypos, Xpos

Or

Variable = LCDread Text Ypos, Xpos

Overview
Read a byte from a graphic LCD. Can also read Text RAM from a Toshiba T6963 LCD.

Parameters
Variable is a user defined variable.
Ypos :-
With a KS0108 graphic LCD this may be a constant, variable or expression within the range of
0 to 7 This corresponds to the line number of the LCD, with 0 being the top row.

With a Toshiba T6963 graphic LCD this may be a constant, variable or expression within the
range of 0 to the Y resolution of the display. With 0 being the top line.
Xpos: -
With a KS0108 graphic LCD this may be a constant, variable or expression with a value of 0 to
127. This corresponds to the X position of the LCD, with 0 being the far left column.
With a Toshiba graphic LCD this may be a constant, variable or expression with a value of 0 to
the X resolution of the display divided by the font width (LCD_X_Res / LCD_Font_Width). This
corresponds to the X position of the LCD, with 0 being the far left column.

Example
' Read and display the top row of the KS0108 graphic LCD
 Device = 16F1829
 Declare LCD_Type = KS0108 ' Target a KS0108 graphic LCD

 Dim Var1 as Byte
 Dim Xpos as Byte
 Cls ' Clear the LCD
 Print "Testing 1 2 3"
 For Xpos = 0 to 127 ' Create a loop of 128
 Var1 = LCDread 0, Xpos ' Read the LCD's top line
 Print At 1, 0, "Chr= ", Dec Var1," "
 DelayMs 100
 Next
 Stop

Notes
The graphic LCDs that are compatible with Proton are the KS0108, and the Toshiba T6963.
The standard KS0108 display has a pixel resolution of 64 x 128. The 64 being the Y axis, made
up of 8 lines each having 8-bits. The 128 being the X axis, made up of 128 positions. The To-
shiba LCDs are available with differing resolutions.

As with LCDwrite, the graphic LCD must be targeted using the LCD_Type Declare directive
before this command may be used.

8-bit Proton Compiler Development Suite.

 245

The Toshiba T6963 graphic LCDs split their graphic and text information within internal RAM.
This means that the LCDread command can also be used to read the textual information as
well as the graphical information present on the LCD. Placing the word Text after the LCDread
command will direct the reading process to Text RAM.

Example
' Read text from a Toshiba graphic LCD
 Device = 18F452
 Declare LCD_Type = Toshiba ' Use a Toshiba T6963 graphic LCD
'
' LCD interface pin assignments
'

Declare LCD_DTPort = PORTD ' LCD’s Data port
 Declare LCD_WRPin = PORTE.2 ' LCD’s WR line
 Declare LCD_RDPin = PORTE.1 ' LCD’s RD line
 Declare LCD_CEPin = PORTE.0 ' LCD’s CE line
 Declare LCD_CDPin = PORTA.1 ' LCD’s CD line
 Declare LCD_RSTPin = PORTA.0 ' LCD’s RESet line (Optional)
'
' LCD characteristics
'
 Declare LCD_X_Res = 128 ' LCD’s X Resolution
 Declare LCD_Y_Res = 64 ' LCD’s Y Resolution
 Declare LCD_Font_Width = 8 ' The width of the LCD’s font

 Dim Charpos as Byte ' The X position of the read
 Dim Char as Byte ' The byte read from the LCD

 DelayMs 100 ' Wait for the LCD to stabilise
 ADCON1 = 7 ' PORTA and PORTE to all digital mode
 Cls ' Clear the LCD

Print At 0,0," This is for Copying" ' Display text on top line of LCD
 For Charpos = 0 to 20 ' Create a loop of 21 cycles
 Char = LCDread Text 0,Charpos ' Read the top line of the LCD
 Print At 1,Charpos,Char ' Print the byte read on the second line
 DelayMs 100 ' A small delay so we can see things happen
 Next ' Close the loop

See also : LCDwrite for a description of the screen formats, Pixel, Plot,
 Toshiba_Command, Toshiba_UDG, UnPlot,
 see Print for LCD connections.

8-bit Proton Compiler Development Suite.

 246

LCDwrite

Syntax
LCDwrite Ypos, Xpos, [Value ,{ Value etc…}]

Overview
Write a byte to a graphic LCD.

Parameters
Ypos :-
With a KS0108 graphic LCD this may be a constant, variable or expression within the range of
0 to 7 This corresponds to the line number of the LCD, with 0 being the top row.

With a Toshiba T6963 graphic LCD this may be a constant, variable or expression within the
range of 0 to the Y resolution of the display. With 0 being the top line.
Xpos: -
With a KS0108 graphic LCD this may be a constant, variable or expression with a value of 0 to
127. This corresponds to the X position of the LCD, with 0 being the far left column.
With a Toshiba graphic LCD this may be a constant, variable or expression with a value of 0
to the X resolution of the display divided by the font width (LCD_X_Res / LCD_Font_Width).
This corresponds to the X position of the LCD, with 0 being the far left column.
Value may be a constant, variable, or expression, within the range of 0 to 255 (byte).

Example 1
' Display a line on the top row of a KS0108 graphic LCD
 Device = 16F1829
 Declare LCD_Type = KS0108 ' Target a KS0108 graphic LCD
 Dim Xpos as Byte

Cls ' Clear the LCD
 For Xpos = 0 to 127 ' Create a loop of 128
 LCDwrite 0, Xpos, [%11111111] ' Write to the LCD's top line
 DelayMs 100
 Next
 Stop

Example 2
' Display a line on the top row of a Toshiba 128x64 graphic LCD
 Device = 16F1829
 Declare LCD_Type = Toshiba ' Target a Toshiba graphic LCD
 Dim Xpos as Byte

Cls ' Clear the LCD
 For Xpos = 0 to 20 ' Create a loop of 21
 LCDwrite 0, Xpos, [%00111111] ' Write to the LCD's top line
 DelayMs 100
 Next
 Stop

Notes
The graphic LCDs that are compatible with Proton are the KS0108, and the Toshiba T6963.
The KS0108 display has a pixel resolution of 64 x 128. The 64 being the Y axis, made up of 8
lines each having 8-bits. The 128 being the X axis, made up of 128 positions. The Toshiba
LCDs are available with differing resolutions.

8-bit Proton Compiler Development Suite.

 247

There are important differences between the KS0108 and Toshiba screen formats. The dia-
grams below show these in more detail: -

The diagram below illustrates the position of one byte at position 0,0 on a KS0108 LCD screen.
The least significant bit is located at the top. The byte displayed has a value of 149 (10010101).

The diagram below illustrates the position of one byte at position 0,0 on a Toshiba T6963 LCD
screen in 8-bit font mode. The least significant bit is located at the right of the screen byte. The
byte displayed has a value of 149 (10010101).

The diagram below illustrates the position of one byte at position 0,0 on a Toshiba T6963 LCD
screen in 6-bit font mode. The least significant bit is located at the right of the screen byte. The
byte displayed still has a value of 149 (10010101), however, only the first 6 bits are displayed
(010101) and the other two are discarded.

See also : LCDread, Plot, Toshiba_Command, Toshiba_UDG, UnPlot
 see Print for LCD connections.

Xpos 0 - n

Ypos 0 - n

msb

Line 0

Line 1

Line 2

lsb

Toshiba T6963 LCD. (8-bit Font mode)

Xpos 0 - n

Ypos 0 - n

msb

Line 0

Line 1

Line 2

lsb

Toshiba T6963 LCD. (6-bit Font mode)

Xpos 0 - 127

Ypos 0 - 63

lsb

Line 0

Line 1

Line 2

msb

Samsung KS0108 graphic LCD

8-bit Proton Compiler Development Suite.

 248

Ldata

Syntax
Ldata { alphanumeric data }

Overview
Place information into code memory using the Retlw instruction when used with a standard 14-
bit core devices, and Flash (code) memory when using an 18F or enhanced 14-bit core device.
For access by Lread, Lread8, Lread16 or Lread32.

Parameters
alphanumeric data can be a 8,16, 32 bit value, or floating point values, or any alphabetic
character or string enclosed in quotes.

Example
 Device = 16F1829

 Dim Char as Byte
 Dim MyLoop as Byte

 Cls
 For MyLoop = 0 to 9 ' Create a loop of 10
 Char = Lread Label + MyLoop ' Read memory location Label + MyLoop
 Print Char ' Display the value read
 Next
 Stop

Label: Ldata "HELLO WORLD" ' Create a string of text in code memory

The program above reads and displays 10 values from the address located by the Label ac-
companying the Ldata command. Resulting in "HELLO WORL" being displayed.

Ldata is not simply used for character storage, it may also hold 8, 16, 32 bit, or floating point
values. The example below illustrates this: -

 Device = 16F628
 Dim Var1 as Byte
 Dim Wrd1 as Word
 Dim Dwd1 as Dword
 Dim Flt1 as Float

 Cls
 Var1 = Lread Bit8_Val ' Read the 8-bit value
 Print Dec Var1," "
 Wrd1= Lread Bit16_Val ' Read the 16-bit value
 Print Dec Wrd1
 Dwd1 = Lread Bit32_Val ' Read the 32-bit value
 Print At 2,1, Dec Dwd1," "
 Flt1 = Lread MyFloat_Val ' Read the floating point value
 Print Dec Flt1
 Stop

Bit8_Val: Ldata 123
Bit16_Val: Ldata 1234
Bit32_Val: Ldata 123456
MyFloat_Val: Ldata 123.456

8-bit Proton Compiler Development Suite.

 249

Floating point examples.
14-bit core example
' 14-bit read floating point data from a table and display the results
 Device = 16F1829
 Dim MyFloat as Float ' Create a Floating Point variable
 Dim Fcount as Byte

Cls ' Clear the LCD
 Fcount = 0 ' Clear the table counter
 Repeat ' Create a loop
 MyFloat = Lread FlTable + Fcount ' Read the data from the Ldata table
 Print At 1, 1, Dec3 MyFloat ' Display the data read
 Fcount = Fcount + 4 ' Point to next value, by adding 4 to counter
 DelayMs 1000 ' Slow things down
 Until MyFloat = 0.005 ' Stop when 0.005 is read
 Stop

FlTable:
 Ldata as Float 3.14, 65535.123, 1234.5678, -1243.456, -3.14, 998999.12,_
 0.005

18F device example
' 18F read floating point data from a table and display the results
 Device = 18F25K20
 Dim MyFloat as Float ' Create a Floating Point variable
 Dim Fcount as Byte

Cls ' Clear the LCD
 Fcount = 0 ' Clear the table counter
 Repeat ' Create a loop
 MyFloat = Lread FlTable + Fcount ' Read the data from the Ldata table
 Print At 1, 1, Dec3 MyFloat ' Display the data read
 Fcount = Fcount + 2 ' Point to next value, by adding 2 to counter
 DelayMs 1000 ' Slow things down
 Until MyFloat = 0.005 ' Stop when 0.005 is read
 Stop

FlTable:
 Ldata as Float 3.14, 65535.123, 1234.5678, -1243.456, -3.14, 998999.12,_
 0.005

Notes
Ldata tables should be placed at the end of the BASIC program. If an Ldata table is placed at
the beginning of the program, then a Goto command must jump over the tables, to the main
body of code.

 Goto OverDataTable

 Ldata 1,2,3,4,5,6

OverDataTable:

 { rest of code here}

With 14-bit core devices, an 8-bit value (0 - 255) in an Ldata statement will occupy a single
code space, however, 16-bit data (0 - 65535) will occupy two spaces, 32-bit and floating point
values will occupy 4 spaces. This must be taken into account when using the Lread command.
See 14-bit floating point example above.

8-bit Proton Compiler Development Suite.

 250

With 18F devices, an 8, and 16-bit value in an Ldata statement will occupy a single code
space, however, 32-bit and floating point values will occupy 2 spaces. This must be taken into
account when using the Lread command. See 16-bit floating point example above.

18F device requirements.
The compiler uses a different method of holding information in an Ldata statement when using
18F devices. It uses the unique capability of these devices to read from their own code space,
which offers optimisations when values larger than 8-bits are stored. However, because the
18F devices are Byte oriented, as opposed to the 14-bit types which are Word oriented. The
Ldata tables should contain an even number of values, or corruption may occur on the last
value read. For example: -

Even: Ldata 1,2,3,"123"

Odd: Ldata 1,2,3,"12"

An Ldata table containing an Odd amount of values will produce a compiler WARNING mes-
sage.

Formatting an Ldata table.
Sometimes it is necessary to create a data table with an known format for its values. For exam-
ple all values will occupy 4 bytes of code space even though the value itself would only occupy
1 or 2 bytes. I use the name Byte loosely, as 14-bit core devices use 14-bit Words, as opposed
to 18F devices that do actually use Bytes.

 Ldata 100000, 10000, 1000, 100, 10, 1

The above line of code would produce an uneven code space usage, as each value requires a
different amount of code space to hold the values. 100000 would require 4 bytes of code
space, 10000 and 1000 would require 2 bytes, but 100, 10, and 1 would only require 1 byte.

Reading these values using Lread would cause problems because there is no way of knowing
the amount of bytes to read in order to increment to the next valid value.

The answer is to use formatters to ensure that a value occupies a predetermined amount of
bytes. These are: -

 Byte
 Word
 Dword
 Float

Placing one of these formatters before the value in question will force a given length.

 Ldata Dword 100000, Dword 10000, Dword 1000 ,_
 Dword 100, Dword 10, Dword 1

Byte will force the value to occupy one byte of code space, regardless of its value. Any values
above 255 will be truncated to the least significant byte.

Word will force the value to occupy 2 bytes of code space, regardless of its value. Any values
above 65535 will be truncated to the two least significant bytes. Any value below 255 will be
padded to bring the memory count to 2 bytes.

8-bit Proton Compiler Development Suite.

 251

Dword will force the value to occupy 4 bytes of code space, regardless of its value. Any value
below 65535 will be padded to bring the memory count to 4 bytes. The line of code shown
above uses the Dword formatter to ensure all the values in the Ldata table occupy 4 bytes of
code space.

Float will force a value to its floating point equivalent, which always takes up 4 bytes of code
space.

If all the values in an Ldata table are required to occupy the same amount of bytes, then a sin-
gle formatter will ensure that this happens.

 Ldata as Dword 100000, 10000, 1000, 100, 10, 1

The above line has the same effect as the formatter previous example using separate Dword
formatters, in that all values will occupy 4 bytes, regardless of their value. All four formatters
can be used with the as keyword.

The example below illustrates the formatters in use.

' Convert a Dword value into a string array using only BASIC commands
' Similar principle to the Str$ command

 Include "Amicus18.Inc"

 Dim P10 as Dword ' Power of 10 variable
 Dim Cnt as Byte
 Dim J as Byte
 Dim Value as Byte ' Value to convert
 Dim String1[11] as Byte ' Holds the converted value
 Dim Ptr as Byte ' Pointer within the Byte array
 DelayMs 100 ' Wait for the LCD to stabilise
 Cls ' Clear the LCD
 Clear ' Clear all RAM before we start
 Value = 1234576 ' Value to convert
 Gosub DwordToStr ' Convert Value to string
 Print Str String1 ' Display the result
 Stop
'---
' Convert a Dword value into a string array. Value to convert is placed in
' Value
' Byte array 'String1' is built up with the ASCII equivalent

DwordToStr:
 Ptr = 0
 J = 0
 Repeat
 P10 = Lread DwordTbl + (J * 4)
 Cnt = 0
 While Value >= P10
 Value = Value - P10
 Inc Cnt
 Wend
 If Cnt <> 0 Then
 String1[Ptr] = Cnt + "0"

Inc Ptr
 EndIf
 Inc J
 Until J > 8

8-bit Proton Compiler Development Suite.

 252

String1[Ptr] = Value + "0"

 Inc Ptr
 String1[Ptr] = 0 ' Add the null to terminate the string
 Return
' Ldata table is formatted for all 32 bit values.
' Which means each value will require 4 bytes of code space
Dword_TBL:

Ldata as Dword 1000000000, 100000000, 10000000, 1000000, 100000, 10000,_
1000, 100, 10

Label names as pointers.
If a label's name is used in the list of values in an Ldata table, the label's address will be used.
This is useful for accessing other tables of data using their address from a lookup table. See
example below.

' Display text from two Ldata tables
' Based on their address located in a separate table

Include "Amicus18.Inc"
 Dim Address as Word

Dim DataByte as Byte

DelayMs 100 ' Wait for the LCD to stabilise
Cls ' Clear the LCD
Address = Lread AddrTable ' Locate the address of the first string
While ' Create an infinite loop
DataByte = Lread Address ' Read each character from the Ldata string

If DataByte = 0 Then Break ' Exit if null found
Print DataByte ' Display the character
Inc Address ' Next character

Wend ' Close the loop

Cursor 2,1 ' Point to line 2 of the LCD

 Address = Lread AddrTable + 2 ' Locate the address of the second string
 While ' Create an infinite loop
 DataByte = Lread Address ' Read each character from the Ldata string
 If DataByte = 0 Then Break ' Exit if null found
 Print DataByte ' Display the character
 Inc Address ' Next character
 Wend ' Close the loop

 Stop

AddrTable: ' Table of address's

Ldata as Word String1, String2
String1:
 Ldata "HELLO",0
String2:
 Ldata "WORLD",0

See also : Cdata, Cread, Data, Edata, Lread, Read, Restore.

8-bit Proton Compiler Development Suite.

 253

Len

Syntax
Variable = Len(Source String)

Overview
Find the length of a String. (not including the null terminator) .

Parameters
Variable is a user defined variable of type Bit, Byte, Word, Dword, Float or Array.
Source String can be a String variable, or a Quoted String of Characters. The Source String
can also be a Byte, Word, Float or Array variable, in which case the value contained within
the variable is used as a pointer to the start of the Source String's address in RAM. A third pos-
sibility for Source String is a label name, in which case a null terminated Quoted String of
Characters is read from a Cdata table.

Example 1
' Display the length of SourceString
 Device = 18F25K20 ' A suitable device for Strings
 Declare Xtal = 20
 Dim SourceString as String * 20 ' Create a String capable of 20 characters
 Dim Length as Byte

 SourceString = "HELLO WORLD" ' Load the source string with characters
 Length = Len(SourceString) ' Find the length
 Print Dec Length ' Display the result, which will be 11
 Stop

Example 2
' Display the length of a Quoted Character String
 Device = 18F25K20 ' A suitable device for Strings
 Declare Xtal = 20

 Dim Length as Byte

 Length = Len("HELLO WORLD") ' Find the length
 Print Dec Length ' Display the result, which will be 11
 Stop

Example 3
' Display the length of SourceString using a pointer to SourceString
 Device = 18F25K20 ' A suitable device for Strings
 Declare Xtal = 20

 Dim SourceString as String * 20 ' Create a String capable of 20 characters
 Dim Length as Byte ' Display the length of SourceString
 Dim SourceString as String * 20 ' Create a String capable of 20 characters
' Create a Word variable to hold the address of SourceString
 Dim StringAddr as Word

 SourceString = "HELLO WORLD" ' Load the source string with characters
 ' Locate the start address of SourceString in RAM

StringAddr = AddressOf(SourceString)
 Length = Len(StringAddr) ' Find the length
 Print Dec Length ' Display the result, which will be 11
 Stop

8-bit Proton Compiler Development Suite.

 254

Example 4
' Display the length of a Cdata string
 Device = 18F25K20 ' A suitable device for Strings
 Declare Xtal = 20

 Dim Length as Byte

 Length = Len(Source) ' Find the length
 Print Dec Length ' Display the result, which will be 11
 Stop
' Create a null terminated string of characters in code memory
Source:
 Cdata "HELLO WORLD", 0

See also : Creating and using Strings, Creating and using Virtual Strings with
 Cdata, Cdata, Left$, Mid$, Right$, Str$, ToLower, ToUpper, AddressOf.

8-bit Proton Compiler Development Suite.

 255

Left$

Syntax
Destination String = Left$ (Source String, Amount of characters)

Overview
Extract n amount of characters from the left of a source string and copy them into a destination
string.

Parameters
Destination String can only be a String variable, and should be large enough to hold the cor-
rect amount of characters extracted from the Source String.
Source String can be a String variable, or a Quoted String of Characters. See below for more
variable types that can be used for Source String.
Amount of characters can be any valid variable type, expression or constant value, that signi-
fies the amount of characters to extract from the left of the Source String. Values start at 1 for
the leftmost part of the string and should not exceed 255 which is the maximum allowable
length of a String variable.

Example 1.
' Copy 5 characters from the left of SourceString into DestString

 Device = 18F452 ' A suitable device for Strings
 Dim SourceString as String * 20 ' Create a String capable of 20 characters
 Dim DestString as String * 20 ' Create another String for 20 characters

 SourceString = "HELLO WORLD" ' Load the source string with characters
' Copy 5 characters from the source string into the destination string
 DestString = Left$ (SourceString, 5)
 Print DestString ' Display the result, which will be "HELLO"
 Stop

Example 2.
' Copy 5 chars from the left of a Quoted Character String into DestString

 Device = 18F452 ' A suitable device for Strings
 Dim DestString as String * 20 ' Create a String capable of 20 characters

' Copy 5 characters from the quoted string into the destination string
 DestString = Left$("HELLO WORLD", 5)
 Print DestString ' Display the result, which will be "HELLO"
 Stop

The Source String can also be a Byte, Word, Dword, Float or Array variable, in which case
the value contained within the variable is used as a pointer to the start of the Source String's
address in RAM.

8-bit Proton Compiler Development Suite.

 256

Example 3.
' Copy 5 characters from the left of SourceString into DestString using a
' pointer to SourceString

 Device = 18F452 ' A suitable device for Strings
 Dim SourceString as String * 20 ' Create a String capable of 20 characters
 Dim DestString as String * 20 ' Create another String for 20 characters
' Create a Word variable to hold the address of SourceString
 Dim StringAddr as Word

 SourceString = "HELLO WORLD" ' Load the source string with characters
' Locate the start address of SourceString in RAM
 StringAddr = AddressOf(SourceString)
' Copy 5 characters from the source string into the destination string
 DestString = Left$(StringAddr, 5)
 Print DestString ' Display the result, which will be "HELLO"
 Stop

A third possibility for Source String is a label name, in which case a null terminated Quoted
String of Characters is read from a Cdata table.

Example 4.
' Copy 5 characters from the left of a Cdata table into DestString

 Device = 18F452 ' A suitable device for Strings
 Dim DestString as String * 20 ' Create a String capable of 20 characters

 ' Copy 5 characters from label Source into the destination string
 DestString = Left$(Source, 5)
 Print DestString ' Display the result, which will be "HELLO"
 Stop

' Create a null terminated string of characters in code memory
Source:
 Cdata "HELLO WORLD", 0

See also : Creating and using Strings, Creating and using Virtual Strings with
 Cdata, Cdata, Len, Mid$, Right$, Str$, ToLower, ToUpper , AddressOf.

8-bit Proton Compiler Development Suite.

 257

Line

Syntax
Line Set_Clear, Xpos Start, Ypos Start, Xpos End, Ypos End

Overview
Draw a straight line in any direction on a graphic LCD.

Parameters
Set_Clear may be a constant or variable that determines if the line will set or clear the pixels. A
value of 1 will set the pixels and draw a line, while a value of 0 will clear any pixels and erase a
line.
Xpos Start may be a constant or variable that holds the X position for the start of the line. Can
be a value from 0 to 127.
Ypos Start may be a constant or variable that holds the Y position for the start of the line. Can
be a value from 0 to 63.
Xpos End may be a constant or variable that holds the X position for the end of the line. Can
be a value from 0 to 127.
Ypos End may be a constant or variable that holds the Y position for the end of the line. Can
be a value from 0 to 63.

Example
' Draw a line from 0,0 to 120,34

 Include "Proton_G4.INT"

 Dim Xpos_Start as Byte
 Dim Xpos_End as Byte
 Dim Ypos_Start as Byte
 Dim Ypos_End as Byte
 Dim SetClr as Byte

 DelayMs 100 ' Wait for the LCD to stabilise
 Cls ' Clear the LCD
 Xpos_Start = 0
 Ypos_Start = 0
 Xpos_End = 120
 Ypos_End = 34
 SetClr = 1
 Line SetClr, Xpos_Start, Ypos_Start, Xpos_End, Ypos_End
 Stop

See Also : Box, Circle.

8-bit Proton Compiler Development Suite.

 258

LineTo

Syntax
LineTo Set_Clear, Xpos End, Ypos End

Overview
Draw a straight line in any direction on a graphic LCD, starting from the previous Line com-
mand's end position.

Parameters
Set_Clear may be a constant or variable that determines if the line will set or clear the pixels. A
value of 1 will set the pixels and draw a line, while a value of 0 will clear any pixels and erase a
line.
Xpos End may be a constant or variable that holds the X position for the end of the line. Can
be a value from 0 to 127.
Ypos End may be a constant or variable that holds the Y position for the end of the line. Can
be a value from 0 to 63.

Example
' Draw a line from 0,0 to 120,34. Then from 120,34 to 0,63

 Include "Proton_G4.INT"

 Dim Xpos_Start as Byte
 Dim Xpos_End as Byte
 Dim Ypos_Start as Byte
 Dim Ypos_End as Byte
 Dim SetClr as Byte

 DelayMs 100 ' Wait for the LCD to stabilise
 Cls ' Clear the LCD
 Xpos_Start = 0
 Ypos_Start = 0
 Xpos_End = 120
 Ypos_End = 34
 SetClr = 1
 Line SetClr, Xpos_Start, Ypos_Start, Xpos_End, Ypos_End
 Xpos_End = 0
 Ypos_End = 63
 LineTo SetClr, Xpos_End, Ypos_End
 Stop

Notes
The LineTo command uses the compiler's internal system variables to obtain the end position
of a previous Line command. These X and Y coordinates are then used as the starting X and Y
coordinates of the LineTo command.

See Also : Line, Box, Circle.

8-bit Proton Compiler Development Suite.

 259

LoadBit

Syntax
LoadBit Variable, Index, Value

Overview
Clear, or Set a bit of a variable or register using a variable index to point to the bit of interest.

Parameters
Variable is a user defined variable, of type Byte, Word, or Dword.
Index is a constant, variable, or expression that points to the bit within Variable that requires
accessing.
Value is a constant, variable, or expression that will be placed into the bit of interest. Values
greater than 1 will set the bit.

Example
 ' Copy variable ExVar bit by bit into variable PT_Var
 Device = 16F1829
 Declare Xtal = 4
 Dim ExVar as Word
 Dim Index as Byte
 Dim Value as Byte
 Dim PT_Var as Word

 Do
 PT_Var = %0000000000000000
 ExVar = %1011011000110111
 Cls
 For Index = 0 to 15 ' Create a loop for 16 bits
 Value = GetBit ExVar, Index ' Examine each bit of variable ExVar
 LoadBit PT_Var, Index, Value ' Set or Clear each bit of PT_Var
 Print At 1,1,Bin16 ExVar ' Display the original variable
 Print At 2,1,Bin16 PT_Var ' Display the copied variable
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 Loop ' Do it forever

Notes
There are many ways to clear or set a bit within a variable, however, each method requires a
certain amount of manipulation, either with rotates, or alternatively, the use of indirect address-
ing using the FSR, and INDF registers. Each method has its merits, but requires a certain
amount of knowledge to accomplish the task correctly. The LoadBit command makes this task
extremely simple by taking advantage of the indirect method using FSR, and INDF, however,
this is not necessarily the quickest method, or the smallest, but it is the easiest. For speed and
size optimisation, there is no shortcut to experience.

To Clear a known constant bit of a variable or register, then access the bit directly using Port.n.
i.e. PORTA.1 = 0

To Set a known constant bit of a variable or register, then access the bit directly using Port.n.
i.e. PORTA.1 = 1

If a Port is targeted by LoadBit, the Tris register is not affected.

See also : ClearBit, GetBit, SetBit.

8-bit Proton Compiler Development Suite.

 260

LookDown

Syntax
Variable = LookDown Index, [Constant {, Constant…etc }]

Overview
Search constants(s) for index value. If index matches one of the constants, then store the
matching constant's position (0-N) in variable. If no match is found, then the variable is unaf-
fected.

Parameters
Variable is a user define variable that holds the result of the search.
Index is the variable/constant being sought.
Constant(s),... is a list of values. A maximum of 255 values may be placed between the square
brackets, 256 if using an 18F device.

Example
 Dim Value as Byte
 Dim MyResult as Byte
 Value = 177 ' The value to look for in the list
 MyResult = 255 ' Default to value 255
 MyResult = LookDown Value, [75,177,35,1,8,29,245]
 Print "Value matches ", Dec MyResult, " in list"

In the above example, Print displays, "Value matches 1 in list" because Value (177) matches
item 1 of [75,177,35,1,8,29,245]. Note that index numbers count up from 0, not 1; that is in the
list [75,177,35,1,8,29,245], 75 is item 0.

If the value is not in the list, then MyResult is unchanged.

Notes
LookDown is similar to the index of a book. You search for a topic and the index gives you the
page number. Lookdown searches for a value in a list, and stores the item number of the first
match in a variable.

LookDown also supports text phrases, which are basically lists of byte values, so they are also
eligible for Lookdown searches:

 Dim Value as Byte
 Dim MyResult as Byte

Value = 101 ' ASCII "e". the value to look for in the list
 MyResult = 255 ' Default to value 255
 MyResult = LookDown Value, ["Hello World"]

In the above example, MyResult will hold a value of 1, which is the position of character 'e'

See also : Cdata, Cread, Data, Edata, Eread, Ldata, LookDownL, LookUp, LookUpL,

Lread, Read, Restore.

8-bit Proton Compiler Development Suite.

 261

LookDownL

Syntax
Variable = LookDownL Index, {Operator} [Value {, Value…etc }]

Overview
A comparison is made between index and value; if the result is true, 0 is written into variable. If
that comparison was false, another comparison is made between value and value1; if the result
is true, 1 is written into variable. This process continues until a true is yielded, at which time the
index is written into variable, or until all entries are exhausted, in which case variable is unaf-
fected.

Parameters
Variable is a user define variable that holds the result of the search.
Index is the variable/constant being sought.
Value(s) can be a mixture of 16-bit constants, string constants and variables. Expressions may
not be used in the Value list, although they may be used as the index value. A maximum of 85
values may be placed between the square brackets, 256 if using an 18F device.
Operator is an optional comparison operator and may be one of the following: -

 = equal
 <> not equal
 > greater than
 < less than
 >= greater than or equal to
 <= less than or equal to

The optional operator can be used to perform a test for other than equal to ("=") while searching
the list. For example, the list could be searched for the first Value greater than the index pa-
rameter by using ">" as the operator. If operator is left out, "=" is assumed.

Example
 Var1 = LookDownL Wrd, [512, Wrd1, 1024]
 Var1 = LookDownL Wrd, < [10, 100, 1000]

Notes
Because LookDownL is more versatile than the standard LookDown command, it generates
larger code. Therefore, if the search list is made up only of 8-bit constants and strings, use
LookDown.

See also : Cdata, Cread, Cread8, Cread16, Cread32, Edata, Eread, Ldata, LookDown,

LookUp, LookUpL, Lread, Lread8, Lread16, Lread32.

8-bit Proton Compiler Development Suite.

 262

LookUp

Syntax
Variable = LookUp Index, [Constant {, Constant…etc }]

Overview
Look up the value specified by the index and store it in variable. If the index exceeds the high-
est index value of the items in the list, then variable remains unchanged.

Parameters
Variable may be a constant, variable, or expression. This is where the retrieved value will be
stored.
Index may be a constant of variable. This is the item number of the value to be retrieved from
the list.
Constant(s) may be any 8-bit value (0-255). A maximum of 255 values may be placed between
the square brackets, 256 if using an 18F device.

Example
' Create an animation of a spinning line.
 Dim Index as Byte
 Dim Frame as Byte
 Cls ' Clear the LCD

 Do
 For Index = 0 to 3 ' Create a loop of 4
 Frame = LookUp Index, ["|\-/"] ' Table of animation characters
 Print At 1, 1, Frame ' Display the character
 DelayMs 200 ' So we can see the animation
 Next ' Close the loop
 Loop ' Repeat forever

Notes
index starts at value 0. For example, in the LookUp command below. If the first value (10) is
required, then index will be loaded with 0, and 1 for the second value (20) etc.

 Var1 = LookUp Index, [10, 20, 30]

See also : Cdata, Cread, Cread8, Cread16, Cread32, Edata, Eread, Ldata, LookDown,

LookDownL, LookUpL, Lread, Lread8, Lread8, Lread32.

8-bit Proton Compiler Development Suite.

 263

LookUpL

Syntax
Variable = LookUpL Index, [Value {, Value…etc }]

Overview
Look up the value specified by the index and store it in variable. If the index exceeds the high-
est index value of the items in the list, then variable remains unchanged. Works exactly the
same as LookUp, but allows variable types or constants in the list of values.

Parameters
Variable may be a constant, variable, or expression. This is where the retrieved value will be
stored.
Index may be a constant of variable. This is the item number of the value to be retrieved from
the list.
Value(s) can be a mixture of 16-bit constants, string constants and variables. A maximum of 85
values may be placed between the square brackets, 256 if using an 18F device.

Example
 Dim Var1 as Byte
 Dim Wrd as Word
 Dim Index as Byte
 Dim Assign as Word

 Var1 = 10
 Wrd = 1234
 Index = 0 ' Point to the first value in the list (Wrd)
 Assign = LookUpL Index, [Wrd, Var1, 12345]

Notes
Expressions may not be used in the Value list, although they may be used as the Index value.

Because LookUpL is capable of processing any variable and constant type, the code produced
is a lot larger than that of LookUp. Therefore, if only 8-bit constants are required in the list, use
LookUp instead.

See also : Cdata, Cread, Cread8, Cread16, Cread32 Edata, Eread, Ldata, LookDown,

LookDownL, LookUp, Lread, Lread8, Lread16, Lread32.

8-bit Proton Compiler Development Suite.

 264

Low

Syntax
Low Port or Port.Bit or Pin Number

Overview
Place a Port.Pin in a low output state. For a port, this means setting it as an output and filling it
with 0's.

Parameters
Port can be any valid port.
Port.Bit can be any valid port and bit combination, i.e. PORTA.1
Pin Number can be a variable or constant that holds a value from 0 to the amount of I/O pins
on the device. A value of 0 will be PORTA.0, if present, 1 will be PORTA.1, 8 will be PORTB.0
etc…

Example 1
 Symbol LED = PORTB.4
 Low LED
 Low 1 ' Pull Pin PORTA.1 low

Example 2
' Flash each of the pins on PORTA and PORTB
'
 Device = 18F25K20
 Declare Xtal = 16

 Dim MyPin as Byte

 For MyPin = 0 to 15 ' Create a loop for the pin to flash
 High MyPin ' Set the pin high
 DelayMs 500 ' Delay so that it can be seen
 Low MyPin ' Pull the pin low
 DelayMs 500 ' Delay so that it can be seen
 Next

8-bit Proton Compiler Development Suite.

 265

Notes.
Each pin number has a designated name. These are Pin_A0, Pin_A1, PinA2….Pin_B0,
Pin_B7, Pin_C0, Pin_C7 to Pin_L7 etc… Each of the names has a relevant value, for example,
Pin_A0 has the value 0, Pin_B0 has the value 8, up to Pin_L7, which has the value 87.

These can be used to pass a relevant pin number to a subroutine. For example:
'
' Flash an LED attached to PORTB.0 via a subroutine
' Then flash an LED attached to PORTB.1 via the same subroutine
'

Device = 18F25K20
Declare Xtal = 16

Dim PinNumber As Byte ' Holds the pin number to set high and low

Do ' Create an infinite loop

PinNumber = Pin_B0 ' Give the pin number to flash (PORTB.0)
Gosub FlashPin ' Call the subroutine to flash the pin
PinNumber = Pin_B1 ' Give the pin number to flash (PORTB.1)
Gosub FlashPin ' Call the subroutine to flash the pin

 Loop ' Do it forever
'
' Set a pin high then low for 500ms using a variable as the pin to adjust
'
FlashPin:
 High PinNumber ' Set the pin output high
 DelayMs 500 ' Wait for 500 milliseconds

Low PinNumber ' Pull the pin output low
DelayMs 500 ' Wait for 500 milliseconds
Return

Example 2
' Clear then Set each pin of PORTC

Device = 18F25K20
Declare Xtal = 16

Dim PinNumber as Byte

 Low PORTC ' Make PORTC output low before we start
 Do ' Create a loop
 For PinNumber = Pin_C0 to Pin_C7 ' Create a loop for 8 pins
 Low PinNumber ' Clear each pin of PORTC
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 For PinNumber = Pin_C0 to Pin_C7 ' Create a loop for 8 pins
 High PinNumber ' Set each pin of PORTC
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 Loop ' Do it forever

See also : Dim, High, Symbol, Clear, ClearPin, Set, SetPin, GetPin.

8-bit Proton Compiler Development Suite.

 266

Lread

Syntax
Variable = Lread Label

Overview
Read a value from an Ldata table and place into Variable

Parameters
Variable is a user defined variable.
Label is a label name preceding the Ldata statement, or expression containing the Label
name.

Example

 Device = 16F1829
 Dim Char as Byte
 Dim MyLoop as Byte
 Cls
 For MyLoop = 0 to 9 ' Create a loop of 10
 Char = Lread Label + MyLoop ' Read memory location Label + MyLoop
 Print Char ' Display the value read
 Next
 Stop
Label: Ldata "HELLO WORLD" ' Create a string of text in code memory

The program above reads and displays 10 values from the address located by the Label ac-
companying the Ldata command. Resulting in "HELLO WORL" being displayed.

Ldata is not simply used for character storage, it may also hold 8, 16, 32 bit, or floating point
values. The example below illustrates this: -

 Device = 16F628
 Dim Var1 as Byte
 Dim Wrd1 as Word
 Dim Dwd1 as Dword
 Dim Flt1 as Float

Cls
 Var1 = Lread Bit8_Val ' Read the 8-bit value
 Print Dec Var1," "
 Wrd1= Lread Bit16_Val ' Read the 16-bit value
 Print Dec Wrd1
 Dwd1 = Lread Bit32_Val ' Read the 32-bit value
 Print At 2,1, Dec Dwd1," "
 Flt1 = Lread MyFloat_Val ' Read the floating point value
 Print Dec Flt1
 Stop

Bit8_Val: Ldata 123
Bit16_Val: Ldata 1234
Bit32_Val: Ldata 123456
MyFloat_Val: Ldata 123.456

8-bit Proton Compiler Development Suite.

 267

Floating point examples.
14-bit core example
' 14-bit read floating point data from a table and display the results
 Device = 16F1829
 Dim MyFloat as Float ' Create a Floating Point variable
 Dim Fcount as Byte
 Cls ' Clear the LCD
 Fcount = 0 ' Clear the table counter
 Repeat ' Create a loop
 MyFloat = Lread FlTable + Fcount ' Read the data from the Ldata table
 Print At 1, 1, Dec3 MyFloat ' Display the data read
 Fcount = Fcount + 4 ' Point to next value, by adding 4 to counter
 DelayMs 1000 ' Slow things down
 Until MyFloat = 0.005 ' Stop when 0.005 is read
 Stop
FlTable:
 Ldata as Float 3.14, 65535.123, 1234.5678, -1243.456, -3.14, 998999.12,_
 0.005

18F device example
' Read floating point data from a table and display the results
 Device = 18F452
 Dim MyFloat as Float ' Create a Floating Point variable
 Dim Fcount as Byte
 Cls ' Clear the LCD
 Fcount = 0 ' Clear the table counter
 Repeat ' Create a loop
 MyFloat = Lread FlTable + Fcount ' Read the data from the Ldata table
 Print At 1, 1, Dec3 MyFloat ' Display the data read
 Fcount = Fcount + 2 ' Point to next value, by adding 2 to counter
 DelayMs 1000 ' Slow things down
 Until MyFloat = 0.005 ' Stop when 0.005 is read
 Stop
FlTable:
 Ldata as Float 3.14, 65535.123, 1234.5678, -1243.456, -3.14, 998999.12,_
 0.005

Notes
Ldata tables should be placed at the end of the BASIC program. If an Ldata table is placed at
the beginning of the program, then a Goto command must jump over the tables, to the main
body of code.

 Goto OverDataTable
 Ldata 1,2,3,4,5,6
OverDataTable:

 { rest of code here}

With 14-bit core devices, an 8-bit value (0 - 255) in an Ldata statement will occupy a single
code space, however, 16-bit data (0 - 65535) will occupy two spaces, 32-bit and floating point
values will occupy 4 spaces. This must be taken into account when using the Lread command.
See 14-bit floating point example above.

With 18F devices, an 8, and 16-bit value in an Ldata statement will occupy a single code
space, however, 32-bit and floating point values will occupy 2 spaces. This must be taken into
account when using the Lread command. See previous 16-bit floating point example.

See also : Cdata, Cread, Cread8, Cread16, Cread32, Ldata.

8-bit Proton Compiler Development Suite.

 268

Lread8, Lread16, Lread32

Syntax
Variable = Lread8 Label [Offset Variable]

or

Variable = Lread16 Label [Offset Variable]

or

Variable = Lread32 Label [Offset Variable]

Overview
Read an 8, 16, or 32-bit value from an Ldata table using an offset of Offset Variable and place
into Variable, with more efficiency than using Lread . For PICmicro’s that can access their own
code memory, such as the 16F87x and all the 18F range.

Lread8 will access 8-bit values from an Ldata table.
Lread16 will access 16-bit values from an Ldata table.
Lread32 will access 32-bit values from an Ldata table, this also includes floating point values.

Parameters
Variable is a user defined variable of type Bit, Byte, Word, Dword, Float or Array.
Label is a label name preceding the Ldata statement of which values will be read from.
Offset Variable can be a constant value, variable, or expression that points to the location of
interest within the Ldata table.

Lread8 Example
' Extract the second value from within an 8-bit Ldata table
 Device = 16F1829
 Dim Offset as Byte ' Create a Byte size variable for the offset
 Dim MyResult as Byte ' Create a Byte size variable to hold the result

 Cls ' Clear the LCD
 Offset = 1 ' Point to the second value in the Ldata table
' Read the 8-bit value pointed to by Offset
 MyResult = Lread8 Byte_Table[Offset]
 Print Dec MyResult ' Display the decimal result on the LCD
 Stop

' Create a table containing only 8-bit values
Byte_Table: Ldata as Byte 100, 200

8-bit Proton Compiler Development Suite.

 269

Lread16 Example
' Extract the second value from within a 16-bit Ldata table
 Device = 16F1829
 Dim Offset as Byte ' Create a Byte size variable for the offset
 Dim MyResult as Word ' Create a Word size variable to hold the result

 Cls ' Clear the LCD
 Offset = 1 ' Point to the second value in the Ldata table
' Read the 16-bit value pointed to by Offset
 MyResult = Lread16 WordTable[Offset]
 Print Dec MyResult ' Display the decimal result on the LCD
 Stop

' Create a table containing only 16-bit values
WordTable: Ldata as Word 1234, 5678

Lread32 Example
' Extract the second value from within a 32-bit Ldata table
 Device = 16F1829
 Dim Offset as Byte ' Create a Byte size variable for the offset
 Dim MyResult as Dword ' Create a Dword size variable to hold the result

 Cls ' Clear the LCD
 Offset = 1 ' Point to the second value in the Ldata table
' Read the 32-bit value pointed to by Offset
 MyResult = Lread32 DwordTable[Offset]
 Print Dec MyResult ' Display the decimal result on the LCD
 Stop

' Create a table containing only 32-bit values
DwordTable: Ldata as Dword 12340, 56780

Notes
Data storage in any program is of paramount importance, and although the standard Lread
command can access multi-byte values from an Ldata table, it was not originally intended as
such, and is more suited to accessing character data or single 8-bit values. However, the
Lread8, Lread16, and Lread32 commands are specifically written in order to efficiently read
data from an Ldata table, and use the least amount of code space in doing so, thus increasing
the speed of operation. Which means that wherever possible, Lread should be replaced by
Lread8, Lread16, or Lread32.

See also : Cdata, Cread, Cread8, Cread16, Cread32, Ldata, Lread.

8-bit Proton Compiler Development Suite.

 270

Mid$

Syntax
Destination String = Mid$ (Source String, Position within String, Amount of characters)

Overview
Extract n amount of characters from a source string beginning at n characters from the left, and
copy them into a destination string.

Parameters
Destination String can only be a String variable, and should be large enough to hold the cor-
rect amount of characters extracted from the Source String.
Source String can be a String variable, or a Quoted String of Characters. See below for
more variable types that can be used for Source String.
Position within String can be any valid variable type, expression or constant value, that signi-
fies the position within the Source String from which to start extracting characters. Values start
at 1 for the leftmost part of the string and should not exceed 255 which is the maximum allow-
able length of a String variable.
Amount of characters can be any valid variable type, expression or constant value, that signi-
fies the amount of characters to extract from the left of the Source String. Values start at 1 and
should not exceed 255 which is the maximum allowable length of a String variable.

Example 1
' Copy 5 characters from position 4 of SourceString into DestString
'
 Device = 18F452 ' A suitable device for Strings
 Declare Hserial_Baud = 9600

Dim SourceString as String * 20 ' Create a String of 20 characters

 Dim DestString as String * 20 ' Create another String

 SourceString = "Hello World" ' Load the source string with characters
'
' Copy 5 characters from the source string into the destination string
'
 DestString = Mid$(SourceString, 4, 5)
 HrsoutLn DestString ' Display the result, which will be "Lo Wo"
 Stop

Example 2
' Copy 5 chars from position 4 of a Quoted Character String into DestString
'
 Device = 18F452 ' A suitable device for Strings
 Declare Hserial_Baud = 9600

Dim DestString as String * 20 ' Create a String of 20 characters

'
' Copy 5 characters from the quoted string into the destination string
'
 DestString = Mid$("Hello World", 4, 5)
 HrsoutLn DestString ' Display the result, which will be "Lo Wo"
 Stop

The Source String can also be a Byte, Word, Dword, Float or Array variable, in which case
the value contained within the variable is used as a pointer to the start of the Source String's
address in RAM.

8-bit Proton Compiler Development Suite.

 271

Example 3
' Copy 5 chars from position 4 of SourceString to DestString with a pointer
' to SourceString
'
 Device = 18F452 ' A suitable device for Strings
 Declare Hserial_Baud = 9600 ' Choose the Baud rate for HrsoutLn

Dim SourceString as String * 20 ' Create a String of 20 characters
 Dim DestString as String * 20 ' Create another String
' Create a Word variable to hold the address of SourceString
 Dim StringAddr as Word

 SourceString = "Hello World" ' Load the source string with characters
'
' Locate the start address of SourceString in RAM
'
 StringAddr = AddressOf(SourceString)
'
' Copy 5 characters from the source string into the destination string
'
 DestString = Mid$(StringAddr, 4, 5)
 HrsoutLn DestString ' Display the result, which will be "Lo Wo"
 Stop

A third possibility for Source String is a Label name, in which case a null terminated Quoted
String of Characters is read from a Cdata table.

Example 4
' Copy 5 characters from position 4 of a Cdata table into DestString
'
 Device = 18F452 ' A suitable device for Strings
 Declare Hserial_Baud = 9600 ' Choose the Baud rate for HrsoutLn

Dim DestString as String * 20 ' Create a String of 20 characters
'
' Copy 5 characters from label Source into the destination string
'
 DestString = Mid$(Source, 4, 5)
 HrsoutLn DestString ' Display the result, which will be "Lo Wo"
 Stop
'
' Create a null terminated string of characters in code memory
'
Source:
 Cdata "Hello World", 0

See also : Creating and using Strings, Creating and using Virtual Strings with Cdata,

Cdata, Len, Left$, Right$, Str$, ToLower, ToUpper, AddressOf.

8-bit Proton Compiler Development Suite.

 272

On Goto

Syntax
On Index Variable Goto Label1 {,...Labeln }

Overview
Cause the program to jump to different locations based on a variable index. On a PICmicro™
device with only one page of memory. Exactly the same functionality as Branch.

Parameters
Index Variable is a constant, variable, or expression, that specifies the label to jump to.
Label1...Labeln are valid labels that specify where to branch to. A maximum of 255 labels may
be placed after the Goto, 256 if using an 18F device.

Example

Device = 16F84
Dim Index as Byte

Cls ' Clear the LCD
Index = 2 ' Assign Index a value of 2

Start: ' Jump to label 2 (Label_2) because Index = 2
On Index Goto Label_0, Label_1, Label_2

Label_0:

Index = 2 ' Index now equals 2
Print At 1,1,"Label 0" ' Display the Label name on the LCD
DelayMs 500 ' Wait 500ms
Goto Start ' Jump back to Start

Label_1:
Index = 0 ' Index now equals 0
Print At 1,1,"Label 1" ' Display the Label name on the LCD
DelayMs 500 ' Wait 500ms
Goto Start ' Jump back to Start

Label_2:
Index = 1 ' Index now equals 1
Print At 1,1,"Label 2" ' Display the Label name on the LCD
DelayMs 500 ' Wait 500ms
Goto Start ' Jump back to Start

The above example we first assign the index variable a value of 2, then we define our labels.
Since the first position is considered 0 and the variable Index equals 2 the On Goto command
will cause the program to jump to the third label in the list, which is Label_2.

8-bit Proton Compiler Development Suite.

 273

Notes
On Goto is useful when you want to organise a structure such as: -

 If Var1 = 0 Then Goto Label_0 ' Var1 = 0: go to label "Label_0"
 If Var1 = 1 Then Goto Label_1 ' Var1 = 1: go to label "Label_1"
 If Var1 = 2 Then Goto Label_2 ' Var1 = 2: go to label "Label_2"

You can use On Goto to organise this into a single statement: -

 On Var1 Goto Label_0, Label_1, Label_2

This works exactly the same as the above If...Then example. If the value is not in range (in this
case if Var1 is greater than 2), On Goto does nothing. The program continues with the next in-
struction.

The On Goto command is primarily for use with PICmicro™ devices that have one page of
memory (0-2047). If larger PICmicros are used and you suspect that the branch label will be
over a page boundary, use the On GotoL command instead.

See also : Branch, BranchL, On GotoL, On Gosub.

8-bit Proton Compiler Development Suite.

 274

On GotoL

Syntax
On Index Variable GotoL Label1 {,...Labeln }

Overview
Cause the program to jump to different locations based on a variable index. On a PICmicro™
device with more than one page of memory, or 18F devices. Exactly the same functionality as
BranchL.

Parameters
Index Variable is a constant, variable, or expression, that specifies the label to jump to.
Label1...Labeln are valid labels that specify where to branch to. A maximum of 127 labels may
be placed after the GotoL, 256 if using an 18F device.

Example

Device = 16F1829 ' Use a larger PICmicro device
 Declare Hserial_Baud = 9600 ' Choose the Baud rate for HrsoutLn

Dim Index as Byte

Index = 2 ' Assign Index a value of 2
Start: ' Jump to label 2 (Label_2) because Index = 2

On Index GotoL Label_0, Label_1, Label_2

Label_0:

Index = 2 ' Index now equals 2
HrsoutLn "Label 0" ' Display the Label name
Goto Start ' Jump back to Start

Label_1:
Index = 0 ' Index now equals 0
HrsoutLn "Label 1" ' Display the Label name
Goto Start ' Jump back to Start

Label_2:
Index = 1 ' Index now equals 1
HrsoutLn "Label 2" ' Display the Label name
Goto Start ' Jump back to Start

The above example we first assign the index variable a value of 2, then we define our labels.
Since the first position is considered 0 and the variable Index equals 2 the On GotoL command
will cause the program to jump to the third label in the list, which is Label_2.

Notes
The On GotoL command is mainly for use with PICmicro™ devices that have more than one
page of memory (greater than 2048). It may also be used on any PICmicro™ device, but does
produce code that is larger than On Goto.

See also : Branch, BranchL, On Goto, On Gosub .

8-bit Proton Compiler Development Suite.

 275

On Gosub

Syntax
On Index Variable Gosub Label1 {,...Labeln }

Overview
Cause the program to Call a subroutine based on an index value. A subsequent Return will
continue the program immediately following the On Gosub command.

Parameters
Index Variable is a constant, variable, or expression, that specifies the label to call.
Label1...Labeln are valid labels that specify where to call. A maximum of 256 labels may be
placed after the Gosub.

Example
 Device = 18F452 ' Use an 18F PICmicro
 Declare Hserial_Baud = 9600 ' Choose the Baud rate for HrsoutLn

Dim Index as Byte

 Do ' Create an infinite loop
 For Index = 0 to 2 ' Create a loop to call all the labels

' Call the label depending on the value of Index
 On Index Gosub Label_0, Label_1, Label_2
 DelayMs 500 ' Wait 500ms after the subroutine has returned
 Next
 Loop ' Do it forever

Label_0:
 HrsoutLn "Label 0" ' Display the Label name
 Return
Label_1:
 HrsoutLn "Label 1" ' Display the Label name
 Return
Label_2:
 HrsoutLn "Label 2" ' Display the Label name
 Return

The above example, a loop is formed that will load the variable Index with values 0 to 2. The
On Gosub command will then use that value to call each subroutine in turn. Each subroutine
will Return to the DelayMs command, ready for the next scan of the loop.

8-bit Proton Compiler Development Suite.

 276

Notes
On Gosub is useful when you want to organise a structure such as: -

 If Var1 = 0 Then Gosub Label_0 ' Var1 = 0: call label "Label_0"
 If Var1 = 1 Then Gosub Label_1 ' Var1 = 1: call label "Label_1"
 If Var1 = 2 Then Gosub Label_2 ' Var1 = 2: call label "Label_2"

You can use On Gosub to organise this into a single statement: -

 On Var1 Gosub Label_0, Label_1, Label_2

This works exactly the same as the above If...Then example. If the value is not in range (in this
case if Var1 is greater than 2), On Gosub does nothing. The program continues with the next
instruction..

On Gosub is only supported with 18F devices because they are the only PICmicro™ devices
that allow code access to their return stack, which is required for the computed Return ad-
dress.

See also : Branch, BranchL, On Goto, On GotoL.

8-bit Proton Compiler Development Suite.

 277

On_Hardware_Interrupt

Syntax
On_Hardware_Interrupt Label

Overview
Point to the subroutine that will be called when a hardware interrupt occurs. High priority hard-
ware interrupt if using an 18F device.

Parameters
Label is a valid identifier

Example
' Flash an LED on PORTB.0 at a different rate to the LED on PORTB.1
'
 Device = 16F1829
 Declare Xtal = 4
 On_Hardware_Interrupt Goto ISR_Flash

 Goto Main ' Jump over the interrupt subroutine
' ---
' Timer0 overflow interrupt handler starts here
' Xor PORTB with 1, which will turn on the LED connected to PORTB.0
' with one interrupt and turn it off with the next interrupt
'
ISR_Flash:
 Context Save ' Save any variables or SFRs before the interrupt starts
 If INTCONbits_T0IF = 1 Then ' Is it TMR0 that caused the interrupt?
 PORTB = PORTB ^ 1 ' Yes. So. Xor PORTB.0
 INTCONbits_T0IF = 0 ' Clear the TMR0 overflow flag
 EndIf
 Context Restore ' Restore any variables or SFRs and exit the interrupt

' ---
' The main program loop starts here
'
Main:
 Low PORTB = 0 ' Make PORTB all outputs and pull it low
'
' Initiate the interrupt
'
 OPTION_REG = %00101111 ' Setup Timer0
 TMR0 = 0 ' Clear TMR0 initially
 INTCONbits_T0IE = 1 ' Enable a Timer0 overflow interrupt
 INTCONbits_GIE = 1 ' Enable global interrupts
 Do ' Create an infinite loop
 Clear PORTB.1 ' Extinguish the LED
 DelayMs 500 ' Wait a while
 Set PORTB.1 ' Illuminate the LED
 DelayMs 500 ' Wait a while
 Loop

8-bit Proton Compiler Development Suite.

 278

Typical format of the interrupt handler with standard 14-bit core devices.
The interrupt handler subroutine must always follow a fixed pattern.

• First, the contents of the STATUS, PCLATH, and Working Register (WREG) must be
saved, this is termed context saving, and is performed when the command Context
Save is issued. Variable space is automatically allocated for these registers in the
shared portion of memory located at the top of RAM Bank 0. The Context Save com-
mand also instructs the compiler to save any compiler system variables and device
SFRs (Special Function Registers) used within the interrupt handler. Note that "within
the interrupt handler" means code between Context Save and Context Restore. It will
not track any Goto or Gosub commands.

• Because a standard 14-bit core device has a single interrupt vector, the cause of the in-

terrupt must be ascertained by checking the appropriate flag. For example INTCON.T0IF
for a Timer0 overflow interrupt, and only perform the relevant code for the relevant inter-
rupt. This is accomplished by a simple If-EndIf. For example:

ISR_Handler:
 Context Save ' Save any variables or SFRs used
 If INTCONbits_T0IF = 1 Then ' Is it Timer0 that caused the interrupt?
 Print "Hello World" ' Yes. So do this code
 INTCONbits_T0IF = 0 ' Clear the Timer0 overflow flag
 EndIf
 Context Restore ' Restore any variables or SFRs used and exit

If more than one interrupt is enabled, multiple If-Endif conditions will be required within the sin-
gle interrupt handling subroutine.

• The previously saved STATUS, PCLATH, and Working register (WREG) must be re-
turned to their original conditions (context restoring) once the interrupt handler has per-
formed its task. The Context Restore command is used for this. It also returns the pro-
gram back to the main body code where the interrupt was called from. In other words it
performs an assembler Retfie instruction.

The above code snippet will cause several compiler system variables and device SFRs to be
saved and restored, thus causing little, or no, disturbance to the main body code.

Typical format of the interrupt handler with enhanced 14-bit core devices.
As with standard 14-bit core interrupts, the interrupt handler subroutine must follow a fixed pat-
tern.

• First, the Context Save command should be issued, as this will save any compiler sys-
tem variables and SFRs used. The microcontroller itself will save the contents of the
STATUS, PCLATH, BSR, FSR0L\H, FSR1L\H and WREG registers.

• As with standard 14-bit core devices, enhanced 14-bit core devices have a single inter-

rupt vector, therefore the same rules apply as outlined above concerning the establish-
ment of the cause of the interrupt. Not forgetting to clear any interrupt flag that needs
clearing before exiting the interrupt.

8-bit Proton Compiler Development Suite.

 279

• The Context Restore command should be issued at the end of the interrupt handler, as

long as its corresponding Context Save command was used previously. This will restore
any compiler system variables and SFRs, then exit the interrupt using the Retfie mne-
monic.

Note that the STATUS, PCLATH, BSR, FSR0L\H, FSR1L\H and WREG registers will automati-
cally be restored by the microcontroller once the interrupt is exited.

As with standard 14-bit core devices, any compiler variable or device SFR that is used by a
command will be saved and restored as long as they reside within the Context Save and Con-
text Restore commands. This is termed Managed Interrupts.

Note that the Context Save and Context Restore commands are not required unless man-
aged interrupts are implemented, in which case use the Retfie mnemonic to exit the interrupt
handler. However, you must be certain that the interrupt handler is not disturbing any compiler
system variables or SFRs, or your program will not run correctly.

Typical format of the interrupt handler with 18F devices.
As with both types of 14-bit core devices, the interrupt handler subroutine must also follow a
fixed pattern.

• First, the Context Save command should be issued, as this will save any compiler sys-
tem variables and SFRs used. The microcontroller itself will save the contents of the
STATUS, BSR and WREG registers for a high priority interrupt.

• 18F devices have two interrupt vectors for high and low priority interrupts, see

On_Low_Interrupt. However, both of these must follow the rules laid down for 14-bit
core devices, in that the cause of the interrupt must be ascertained before the appropri-
ate code is performed, and any interrupt flag that needs clearing must be cleared before
exiting the interrupt.

• The Context Restore command should be issued at the end of the interrupt handler, as

long as its corresponding Context Save command was used previously. This will restore
any compiler system variables and SFRs, then exit the interrupt using the Retfie 1
mnemonic.

Note that the STATUS, BSR and WREG registers will automatically be restored by the micro-
controller once the interrupt is exited from a high priority interrupt.

Upon exiting the interrupt, a simple Retfie 1 (Return From Interrupt Fast) mnemonic can be
used, as long as the Context Save command is not issued and it is certain that the interrupt
handling subroutine is not disturbing any compiler system variables or device SFRs.

Note.
On all devices, the code within the interrupt handler should be as quick and efficient as possible
because while it's processing the code, the main program is halted. When inside an interrupt,
care should be taken to ensure that the watchdog timer does not time-out, if it's enabled. Plac-
ing a ClrWdt mnemonic at the beginning of the interrupt handler will usually prevent this from
happening. An alternative approach would be to disable the watchdog timer altogether at pro-
gramming time, which is the default of the compiler.

8-bit Proton Compiler Development Suite.

 280

On_Low_Interrupt

Syntax
On_Low_Interrupt Label

Overview
Point to the subroutine that will be called when a Low Priority Hardware interrupt occurs on an
18F device.

Parameters
Label is a valid identifier

Example
' Demonstrate the use of context saving of the compiler's System variables
' Creates low and high priority interrupts incrementing on Timer0 and Timer1
' Within the interrupts a value is displayed and incremented
' In the foreground another value is incremented and transmitted serially
'

Include "Proton18_4.Inc" ' Use the Proton Board with an 18F device
'
' Point to the High Priority interrupt handler to the subroutine
'

On_Hardware_Interrupt Goto ISR_High
'
' Point to the Low Priority interrupt handler to the subroutine
'

On_Low_Interrupt Goto ISR_Low
'
' Create some variables
'

Dim HighCounter as Dword ' Counter for the high interrupt routine
Dim LowCounter as Dword ' Counter for the low interrupt routine
Dim ForeGroundCounter as Dword ' Counter for the Foreground routine
Dim wTimer0 as TMR0L.Word ' Create a 16-bit Word from registers TMR0L/H
Dim wTimer1 as TMR1L.Word ' Create a 16-bit Word from registers TMR1L/H

' --
 Goto Main ' Jump over any subroutines
'
' --
' High Priority Hardware Interrupt Handler
' Interrupt's on a Timer1 Overflow. Display on the LCD and increment a value
'
ISR_High:
'
' Save the compiler's system variables used in the interrupt routine only
' Also save any SFRs used
'

Context Save PORTD, TRISD
 If PIR1bits_TMR1IF = 1 Then ' Is it a Timer1 overflow interrupt?
 ' Yes. So Display the value on the LCD

 Print at 1,1,"High Int ", Dec HighCounter
 Inc HighCounter ' Increment the value
 PIR1bits_TMR1IF = 0 ' Clear the Timer1 Overflow flag

 EndIf
'
' Restore compiler's system variables used within the interrupt routine only
' and exit the interrupt
'

Context Restore

8-bit Proton Compiler Development Suite.

 281

' --
' Low Priority Hardware Interrupt Handler
' Interrupt's on a Timer0 Overflow
' Display on the LCD and increment a value
'
ISR_Low:
' Save the compiler's system variables used in the interrupt routine only
' Also save any SFR's used.
'
 Context Save PORTD, TRISD
 If INTCON1bits_TMR0IF = 1 Then ' Is it a Timer0 overflow interrupt?
 '
 ' Yes. So Disable Timer 1 High priority interrupt while we use the LCD
 '
 PIE1bits_TMR1IE = 0 ' Display the value on line 2 of the LCD
 Print at 2,1,"Low Int ", Dec LowCounter," "
 Inc LowCounter ' Increment the value
 PIE1bits_TMR1IE = 1 ' Re-Enable the Timer1 High priority interrupt
 INTCON1bits_TMR0IF = 0 ' Clear the Timer0 Overflow flag
 EndIf
'
' Restore the compiler's system variables used in the interrupt routine only ' and
exit the interrupt
'

Context Restore
'
' --
' The Main Program Loop Starts Here
'
Main:

Delayms 100 ' Wait for the LCD to stabilise
INTCON1 = 0 ' Disable Interrupts
Low PORTD ' Set PORTD to Output Low
HighCounter = 0
LowCounter = 0
ForeGroundCounter = 0
Cls ' Clear the LCD

'
' Setup Timer0
'

T0CONbits_T0PS2 = 0 ' \
T0CONbits_T0PS1 = 0 ' | Timer0 Prescaler to 1:4
T0CONbits_T0PS0 = 1 ' /
T0CONbits_PSA = 0 ' Assign the prescaler
T0CONbits_T0CS = 0 ' Increment on the internal Clk
T0CONbits_T08Bit = 0 ' Timer0 is configured as a 16-bit counter
wTimer0 = 0 ' Clear Timer0
T0CONbits_TMR0ON = 1 ' Enable Timer0

'
' Setup Timer1
'

T1CONbits_RD16 = 1 ' Enable Timer1 in 16-bit operation
T1CONbits_T1CKPS1 = 0 ' \ Timer1 Prescaler to 1:2
T1CONbits_T1CKPS0 = 0 ' /
T1CONbits_T1OSCEN = 0 ' Disable External Oscillator
T1CONbits_TMR1CS = 0 ' Increment on the internal Clk
wTimer1 = 0 ' Clear Timer1
T1CONbits_TMR1ON = 1 ' Enable Timer1

8-bit Proton Compiler Development Suite.

 282

'
' Setup the High and Low priority interrupts
'

INTCON1bits_TMR0IE = 1 ' Enable the Timer0 overflow interrupt
INTCON2bits_TMR0IP = 0 ' Timer0 Overflow Interrupt to Low priority
INTCON1bits_TMR1IE = 1 ' Enable the Timer1 overflow interrupt
IPR1bits_TMR1IP = 1 ' Timer1 Overflow Interrupt to High priority
RCONbits_IPEN = 1 ' Enable priority levels on interrupts
INTCON1bits_GIEL = 1 ' Enable low priority peripheral interrupts
INTCON1bits_GIE = 1 ' Enable all high priority interrupts

'
' Display value in foreground while interrupts do their thing in background
'

Do ' Create an infinite loop
 ' Display the value on serial terminal
 Hrsout "ForeGround ", Dec ForeGroundCounter, 13
 Inc ForeGroundCounter ' Increment the value
 Delayms 200

Loop ' Close the loop. i.e. do it forever

8-bit Proton Compiler Development Suite.

 283

Output

Syntax
Output Port or Port . Pin or Pin Number

Overview
Makes the specified Port or Port.Pin an output.

Parameters
Port.Pin must be a Port.Pin constant declaration.
Pin Number can be any variable or constant holding 0 to the amount of I/O pins on the device.
A value of 0 will be PORTA.0, if present, 1 will be PORTA.1, 8 will be PORTB.0 etc…

Example

Output PORTA.0 ' Make bit-0 of PORTA an output
 Output PORTA ' Make all of PORTA an output
 Output 0 ' Make pin-0 of PORTA an output
 Output 8 ' Make pin-0 of PORTB an output
 Output Pin_B0 ' Make pin-0 of PORTB an output

Example 2
' Flash each of the pins on PORTA and PORTB
'
 Device = 18F25K20
 Declare Xtal = 16

 Dim MyPin as Byte

 High PORTA ' Make all of PORTA output high
 High PORTB ' Make all of PORTB output high
 For MyPin = 0 to 15 ' Create a loop for the pin to flash
 Output MyPin ' Set the pin as an output
 DelayMs 500 ' Delay so that it can be seen
 Input MyPin ' Set the pin as an input
 DelayMs 500 ' Delay so that it can be seen
 Next

Notes
An Alternative method for making a particular pin an output is by directly modifying the Tris: -

 TRISB.0 = 0 ' Set PORTB, bit-0 to an output

All of the pins on a port may be set to output by setting the whole TRIS register at once: -

 TRISB = %00000000 ' Set all of PORTB to outputs

In the above examples, setting a TRIS bit to 0 makes the pin an output, and conversely, setting
the bit to 1 makes the pin an input.

8-bit Proton Compiler Development Suite.

 284

Each pin number has a designated name. These are Pin_A0, Pin_A1, Pin_A2,
Pin_B0…Pin_B7, Pin_C0…Pin_C7, Pin_D0…Pin_D7 to Pin_L7 etc… Each of the names has a
relevant value, for example, Pin_A0 has the value 0, Pin_B0 has the value 8, up to Pin_L7,
which has the value 87.

These can be used to pass a relevant pin number to a subroutine. For example:
'
' Flash an LED attached to PORTB.0 via a subroutine
' Then flash an LED attached to PORTB.1 via the same subroutine
'

Device = 18F25K20
Declare Xtal = 16

Dim PinNumber As Byte ' Holds the pin number to set high and low

Do ' Create an infinite loop

PinNumber = Pin_B0 ' Give the pin number to flash (PORTB.0)
Gosub FlashPin ' Call the subroutine to flash the pin
PinNumber = Pin_B1 ' Give the pin number to flash (PORTB.1)
Gosub FlashPin ' Call the subroutine to flash the pin

 Loop ' Do it forever
'
' Make the pin an output then an input for 500ms using a value as the pin to adjust
'
FlashPin:
 SetPin PinNumber ' Bring the pin high

Output PinNumber ' Make the pin an output
 DelayMs 500 ' Wait for 500 milliseconds

Input PinNumber ' Make the pin an input
DelayMs 500 ' Wait for 500 milliseconds
Return

See also : Input, ClearPin, SetPin, High, Low.

8-bit Proton Compiler Development Suite.

 285

Org

Syntax
Org Value

Overview
Set the program origin for subsequent code at the address defined in Value

Parameters
Value can be any constant value within the range of the particular microcontroller's memory.

Example
 Device 16F1829

 Org 2000 ' Set the origin to address 2000
 Cdata 120, 243, "Hello" ' Place data starting at address 2000

or

 Symbol Address = 2000

 Org Address + 1 ' Set the origin to address 2001
 Cdata 120, 243, "Hello" ' Place data starting at address 2001

Notes
If more complex values are required after the Org directive, such as assembler variables etc.
Use : -

 @ Org { assembler variables etc }

8-bit Proton Compiler Development Suite.

 286

Oread

Syntax
Oread Pin, Mode, [Inputdata]

Overview
Receive data from a device using the Dallas Semiconductor 1-wire protocol. The 1-wire proto-
col is a form of asynchronous serial communication developed by Dallas Semiconductor. It re-
quires only one I/O pin which may be shared between multiple 1-wire devices.

Parameters
Pin is a Port-Bit combination that specifies which I/O pin to use. 1-wire devices require only one
I/O pin (normally called DQ) to communicate. This I/O pin will be toggled between output and
input mode during the Oread command and will be set to input mode by the end of the Oread
command.
Mode is a numeric constant (0 - 7) indicating the mode of data transfer. The Mode argument
control's the placement of reset pulses and detection of presence pulses, as well as byte or bit
input. See notes below.
Inputdata is a list of variables or arrays to store the incoming data into.

Example

Dim MyResult as Byte
Symbol DQ = PORTA.0
Oread DQ, 1, [MyResult]

The above example code will transmit a 'reset' pulse to a 1-wire device (connected to bit 0 of
PORTA) and will then detect the device's 'presence' pulse and receive one byte and store it in
the variable MyResult.

Notes
The Mode operator is used to control placement of reset pulses (and detection of presence
pulses) and to designate byte or bit input. The table below shows the meaning of each of the 8
possible value combinations for Mode.

The correct value for Mode depends on the 1-wire device and the portion of the communication
that is being dealt with. Consult the data sheet for the device in question to determine the cor-
rect value for Mode. In many cases, however, when using the Oread command, Mode should
be set for either No Reset (to receive data from a transaction already started by an Owrite

Mode
Value Effect

0 No Reset, Byte mode
1 Reset before data, Byte mode
2 Reset after data, Byte mode
3 Reset before and after data, Byte mode
4 No Reset, Bit mode
5 Reset before data, Bit mode
6 Reset after data, Bit mode
7 Reset before and after data, Bit mode

8-bit Proton Compiler Development Suite.

 287

command) or a Reset after data (to terminate the session after data is received). However, this
may vary due to device and application requirements.

When using the Bit (rather than Byte) mode of data transfer, all variables in the InputData ar-
gument will only receive one bit. For example, the following code could be used to receive two
bits using this mode: -

Dim BitVar1 as Bit
Dim BitVar2 as Bit
Oread PORTA.0, 6, [BitVar1, BitVar2]

In the example code shown, a value of 6 was chosen for Mode. This sets Bit transfer and Reset
after data mode.

We could also have chosen to make the BitVar1 and BitVar2 variables each a Byte type, how-
ever, they would still only have received one bit each in the Oread command, due to the Mode
that was chosen.

The compiler also has a modifier for handling a string of data, named Str.

The Str modifier is used for receiving data and placing it directly into a byte array variable.

A string is a set of bytes that are arranged or accessed in a certain order. The values 1, 2, 3
would be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A
byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string 1 2 3 would be stored in a byte
array containing three bytes (elements).

Below is an example that receives ten bytes through a 1-wire interface and stores them in the
10-byte array, MyArray: -

Dim MyArray[10] as Byte ' Create a 10-byte array.
Oread DQ, 1, [Str MyArray]
Print Dec Str MyArray ' Display the values.

If the amount of received characters is not enough to fill the entire array, then a formatter may
be placed after the array's name, which will only receive characters until the specified length is
reached. For example: -

Dim MyArray[10] as Byte ' Create a 10-byte array.
Oread DQ, 1, [Str MyArray\5] ' Fill the first 5-bytes of array with data.
Print Str MyArray \5 ' Display the 5-value string.

The example above illustrates how to fill only the first n bytes of an array, and then how to dis-
play only the first n bytes of the array. n refers to the value placed after the backslash.

8-bit Proton Compiler Development Suite.

 288

Dallas 1-Wire Protocol.
The 1-wire protocol has a well defined standard for transaction sequences. Every transaction
sequence consists of four parts: -

 Initialisation.
 ROM Function Command.
 Memory Function Command.
 Transaction / Data.

Additionally, the ROM Function Command and Memory Function Command are always 8 bits
wide and are sent least-significant-bit first (LSB).

The Initialisation consists of a reset pulse (generated by the master) that is followed by a pres-
ence pulse (generated by all slave devices).

The reset pulse is controlled by the lowest two bits of the Mode argument in the Oread com-
mand. It can be made to appear before the ROM Function Command (Mode = 1), after the
Transaction / Data portion (Mode = 2), before and after the entire transaction (Mode = 3) or not
at all (Mode = 0).

Following the Initialisation, comes the ROM Function Command. The ROM Function Command
is used to address the desired 1-wire device. The above table shows a few common ROM
Function Commands. If only a single 1 wire device is connected, the Match ROM command
can be used to address it. If more than one 1-wire device is attached, the PICmicro™ will ulti-
mately have to address them individually using the Match ROM command.

The third part, the Memory Function Command, allows the PICmicro™ to address specific
memory locations, or features, of the 1-wire device. Refer to the 1-wire device's data sheet for a
list of the available Memory Function Commands.

Finally, the Transaction / Data section is used to read or write
data to the 1-wire device. The Oread command will read data
at this point in the transaction. A read is accomplished by
generating a brief low-pulse and sampling the line within
15us of the falling edge of the pulse. This is called a 'Read
Slot'.

The following program demonstrates interfacing to a Dallas Semiconductor DS1820 1-wire digi-
tal thermometer device using the compiler's 1-wire commands, and connections as per the dia-
gram to the right.

Command Value Action

Read ROM $33 Reads the 64-bit ID of the 1-wire device. This command can
only be used if there is a single 1-wire device on the line.

Match ROM $55 This command, followed by a 64-bit ID, allows the PICmicro
to address a specific 1-wire device.

Skip ROM $CC
Address a 1-wire device without its 64-bit ID. This command
can only be used if there is a single 1-wire device on the
line.

Search
ROM $F0

Reads the 64-bit IDs of all the 1-wire devices on the line. A
process of elimination is used to distinguish each unique
device.

DS1820
VDD

DQ

GND

3

1

2

R1
4.7k

+5 Volts

0v

To RA1
1 2 3

DS1820

1..GND
2..DQ
3..VCC

8-bit Proton Compiler Development Suite.

 289

The code reads the Counts Remaining and Counts per Degree Centigrade registers within the
DS1820 device in order to provide a more accurate temperature (down to 1/10th of a degree).

Device = 16F84
Declare Xtal = 4
Symbol DQ = PORTA.1 ' Place the DS1820 on bit-1 of PORTA
Dim Temp as Word ' Holds the temperature value
Dim C as Byte ' Holds the counts remaining value
Dim CPerD as Byte ' Holds the Counts per degree C value

Cls ' Clear the LCD before we start
Do

Owrite DQ, 1, [$CC, $44] ' Send Calculate Temperature command
Repeat

DelayMs 25 ' Wait until conversion is complete
Oread DQ, 4, [C] ' Keep reading low pulses until

Until C <> 0 ' the DS1820 is finished.
Owrite DQ, 1, [$CC, $BE] ' Send Read ScratchPad command
Oread DQ, 2,[Temp.LowByte,Temp.HighByte, C, C, C, C, C, CPerD]
'
' Calculate the temperature in degrees Centigrade
'
Temp = (((Temp >> 1) * 100) - 25) + (((CPerD - C) * 100) / CPerD)
Print At 1,1, Dec Temp / 100, ".", Dec2 Temp," ", At 1,8,"C"

Loop

Note.
The equation used in the program above will not work correctly with negative temperatures.
Also note that the 4.7kΩ pull-up resistor (R1) is required for correct operation.

Inline Oread Command.
The standard structure of the Oread command is: -

Oread Pin, Mode, [Inputdata]

However, this did not allow it to be used in conditions such as If-Then, While-Wend etc. There-
fore, there is now an additional structure to the Oread command: -

Var = Oread Pin, Mode

Operands Pin and Mode have not changed their function, but the result from the 1-wire read is
now placed directly into the assignment variable.

8-bit Proton Compiler Development Suite.

 290

Oread - Owrite Presence Detection.
Another important feature to both the Oread and Owrite commands is the ability to jump to a
section of the program if a presence is not detected on the 1-wire bus.

Owrite Pin, Mode, Label, [Outputdata]

Oread Pin, Mode, Label, [Inputdata]

Var = Oread Pin, Mode, Label

The Label parameter is an optional condition, but if used, it must reference a valid BASIC label.

' Skip ROM search & do temp conversion

Owrite DQ, 1, NoPresence, [$CC, $44]
While Oread DQ, 4, NoPresence != 0 : Wend ' Read busy-bit,' Still busy..?

' Skip ROM search & read scratchpad memory
Owrite DQ, 1, NoPresence, [$CC, $BE]
Oread DQ, 2, NoPresence, [Temp.Lowbyte, Temp.Highbyte] ' Read two bytes
Return

NoPresence:

Print "No Presence"
Stop

See also : Owrite.

8-bit Proton Compiler Development Suite.

 291

Owrite

Syntax
Owrite Pin, Mode, [Outputdata]

Overview
Send data to a device using the Dallas Semiconductor 1-wire protocol. The 1-wire protocol is a
form of asynchronous serial communication developed by Dallas Semiconductor. It requires
only one I/O pin which may be shared between multiple 1-wire d vices.

Parameters
Pin is a Port-Bit combination that specifies which I/O pin to use. 1-wire devices require only one
I/O pin (normally called DQ) to communicate. This I/O pin will be toggled between output and
input mode during the Owrite command and will be set to input mode by the end of the Owrite
command.
Mode is a numeric constant (0 - 7) indicating the mode of data transfer. The Mode operator
control's the placement of reset pulses and detection of presence pulses, as well as byte or bit
input. See notes below.
Outputdata is a list of variables or arrays transmit individual or repeating bytes.

Example

Symbol DQ = PORTA.0
Owrite DQ, 1, [$4E]

The above example will transmit a 'reset' pulse to a 1-wire device (connected to bit 0 of
PORTA) and will then detect the device's 'presence' pulse and transmit one byte (the value
$4E).

Notes
The Mode operator is used to control placement of reset pulses (and detection of presence
pulses) and to designate byte or bit input. The table below shows the meaning of each of the 8
possible value combinations for Mode.

The correct value for Mode depends on the 1-wire device and the portion of the communication
you're dealing with. Consult the data sheet for the device in question to determine the correct
value for Mode. In many cases, however, when using the Owrite command, Mode should be
set for a Reset before data (to initialise the transaction). However, this may vary due to device
and application requirements.

Mode
Value Effect

0 No Reset, Byte mode
1 Reset before data, Byte mode
2 Reset after data, Byte mode
3 Reset before and after data, Byte mode
4 No Reset, Bit mode
5 Reset before data, Bit mode
6 Reset after data, Bit mode
7 Reset before and after data, Bit mode

8-bit Proton Compiler Development Suite.

 292

When using the Bit (rather than Byte) mode of data transfer, all variables in the InputData ar-
gument will only receive one bit. For example, the following code could be used to receive two
bits using this mode: -

Dim BitVar1 as Bit
Dim BitVar2 as Bit
Owrite PORTA.0, 6, [BitVar1, BitVar2]

In the example code shown, a value of 6 was chosen for Mode. This sets Bit transfer and Reset
after data mode. We could also have chosen to make the BitVar1 and BitVar2 variables each a
Byte type, however, they would still only use their lowest bit (Bit0) as the value to transmit in the
Owrite command, due to the Mode value chosen.

The Str Modifier
The Str modifier is used for transmitting a string of bytes from a byte array variable. A string is
a set of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3
would be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A
byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string 1,2,3 would be stored in a byte
array containing three bytes (elements).

Below is an example that sends four bytes (from a byte array) through bit-0 of PORTA: -

Dim MyArray[10] as Byte ' Create a 10-byte array.
MyArray [0] = $CC ' Load the first 4 bytes of the array
MyArray [1] = $44 ' With the data to send
MyArray [2] = $CC
MyArray [3] = $4E
Owrite PORTA.0, 1, [Str MyArray\4] ' Send 4-byte string.

Note that we use the optional \n argument of Str. If we didn't specify this, the PICmicro™ would
try to keep sending characters until all 10 bytes of the array were transmitted. Since we do not
wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 4 bytes.

The above example may also be written as: -

Dim MyArray [10] as Byte ' Create a 10-byte array.
Str MyArray = $CC,$44,$CC,$4E ' Load the first 4 bytes of the array
Owrite PORTA.0, 1, [Str MyArray\4] ' Send 4-byte string.

The above example, has exactly the same function as the previous one. The only difference is
that the string is now constructed using the Str as a command instead of a modifier.

See also : Oread for example code, and 1-wire protocol.

8-bit Proton Compiler Development Suite.

 293

Pixel

Syntax
Variable = Pixel Ypos, Xpos

Overview
Read the condition of an individual pixel from a graphic LCD. The returned value will be 1 if the
pixel is set, and 0 if the pixel is clear.

Parameters
Variable is a user defined variable.
Xpos can be a constant, variable, or expression, pointing to the X-axis location of the pixel to
examine. This must be a value of 0 to the X resolution of the LCD. Where 0 is the far left row of
pixels.
Ypos can be a constant, variable, or expression, pointing to the Y-axis location of the pixel to
examine. This must be a value of 0 to the Y resolution of the LCD. Where 0 is the top column of
pixels.

Example
' Read a line of pixels from a KS0108 graphic LCD
 Device = 16F1829
 Declare LCD_Type = KS0108 ' Use a KS0108 Graphic LCD
 Declare Internal_Font = Off ' Use an external chr set
 Declare Font_Addr = 0 ' Eeprom's address is 0
'
' Graphic LCD Pin Assignments
'
 Declare LCD_DTPort = PORTD
 Declare LCD_RSPin = PORTC.2
 Declare LCD_RWPin = PORTE.0
 Declare LCD_ENPin = PORTC.5
 Declare LCD_CS1Pin = PORTE.1
 Declare LCD_CS2Pin = PORTE.2
'
' Character set eeprom Pin Assignments
'
 Declare SDA_Pin = PORTC.4
 Declare SCL_Pin = PORTC.3

 Dim Xpos as Byte
 Dim Ypos as Byte
 Dim MyResult as Byte

 ADCON1 = 7 ' PORTA and PORTE to all digital mode
 Cls
 Print At 0, 0, "Testing 1-2-3"
'
' Read the top row and display the result
'
 For Xpos = 0 to 127
 MyResult = Pixel 0, Xpos ' Read the top row
 Print At 1, 0, Dec MyResult
 DelayMs 400
 Next
 Stop

See also : LCDread, LCDwrite, Plot, UnPlot. See Print for circuit.

8-bit Proton Compiler Development Suite.

 294

Plot

Syntax
Plot Ypos, Xpos

Overview
Set an individual pixel on a graphic LCD.

Parameters
Xpos can be a constant, variable, or expression, pointing to the X-axis location of the pixel to
set. This must be a value of 0 to the X resolution of the LCD. Where 0 is the far left row of pix-
els.
Ypos can be a constant, variable, or expression, pointing to the Y-axis location of the pixel to
set. This must be a value of 0 to the Y resolution of the LCD. Where 0 is the top column of pix-
els.

Example
 Device = 16F1829
 Declare LCD_Type = KS0108 ' Use a KS0108 Graphic LCD
'
' Graphic LCD Pin Assignments
'
 Declare LCD_DTPort = PORTD
 Declare LCD_RSPin = PORTC.2
 Declare LCD_RWPin = PORTE.0
 Declare LCD_ENPin = PORTC.5
 Declare LCD_CS1Pin = PORTE.1
 Declare LCD_CS2Pin = PORTE.2

 Dim Xpos as Byte
'
' Draw a line across the LCD
'
 While ' Create an infinite loop
 For Xpos = 0 to 127
 Plot 20, Xpos
 DelayMs 10
 Next

'
' Now erase the line
'

 For Xpos = 0 to 127
 UnPlot 20, Xpos
 DelayMs 10
 Next
 Wend

 See also : LCDread, LCDwrite, Pixel, UnPlot. See Print for circuit.

8-bit Proton Compiler Development Suite.

 295

Graphic LCD pixel configuration for a 128x64 resolution display.

Xp
os

 0
 -

12
7

Ypos 0 - 630
0

63
0

12
7630

12
7

Li
ne

 0

Li
ne

 1

Li
ne

 2

Li
ne

 3

Li
ne

 4

Li
ne

 5

Li
ne

 6

Li
ne

 7

8-bit Proton Compiler Development Suite.

 296

Pop

Syntax
Pop Variable, {Variable, Variable etc}

Overview
Pull a single variable or multiple variables from a software stack.
If the Pop command is issued without a following variable, it will implement the assembler
mnemonic Pop, which manipulates the PICmicro's call stack.

Parameters
Variable is a user defined variable of type Bit, Byte, Word, Dword, Float, Array, or String.

The amount of bytes pushed on to the stack varies with the variable type used. The list below
shows how many bytes are pushed for a particular variable type, and their order.

Bit 1 Byte is popped containing the value of the bit pushed.
Byte 1 Byte is popped containing the value of the byte pushed.
Byte Array 1 Byte is popped containing the value of the byte pushed.
Word 2 Bytes are popped. Low Byte then High Byte containing
 the value of the word pushed.
Word Array 2 Bytes are popped. Low Byte then High Byte containing
 the value of the word pushed.
Dword Array 4 Bytes are popped. Low Byte, Mid1 Byte, Mid2 Byte then High Byte
 containing the value of the dword pushed.
Dword 4 Bytes are popped. Low Byte, Mid1 Byte, Mid2 Byte then High Byte
 containing the value of the dword pushed.
Float 4 Bytes are popped. Low Byte, Mid1 Byte, Mid2 Byte then High Byte
 containing the value of the float pushed.
String 2 Bytes are popped. Low Byte then High Byte that point to the
 start address of the string previously pushed.

Example 1
' Push two variables on to the stack then retrieve them

 Device = 18F452 ' Stack only suitable for 18F devices
 Declare Stack_Size = 20 ' Create a small stack capable of holding 20 bytes

 Dim Wrd as Word ' Create a Word variable
 Dim Dwd as Dword ' Create a Dword variable

 Wrd = 1234 ' Load the Word variable with a value
 Dwd = 567890 ' Load the Dword variable with a value
 Push Wrd, Dwd ' Push the Word variable then the Dword variable

 Clear Wrd ' Clear the Word variable
 Clear Dwd ' Clear the Dword variable

 Pop Dwd, Wrd ' Pop the Dword variable then the Word variable
 Print Dec Wrd, " ", Dec Dwd ' Display the variables as decimal
 Stop

8-bit Proton Compiler Development Suite.

 297

Example 2
' Push a String on to the stack then retrieve it

 Device = 18F452 ' Stack only suitable for 18F devices
 Declare Stack_Size = 10 ' Create a small stack capable of holding 10 bytes

 Dim SourceString as String * 20 ' Create a String variable
 Dim DestString as String * 20 ' Create another String variable

 SourceString = "Hello World" ' Load the String variable with characters

 Push SourceString ' Push the String variable's address

 Pop DestString ' Pop the previously pushed String into DestString
 Print DestString ' Display the string, which will be " Hello World "
 Stop

Example 3
' Push a Quoted character string on to the stack then retrieve it

 Device = 18F452 ' Stack only suitable for 18F devices
 Declare Stack_Size = 10 ' Create a small stack capable of holding 10 bytes

 Dim DestString as String * 20 ' Create a String variable

 Push " Hello World " ' Push the Quoted String of Characters on to the stack

 Pop DestString ' Pop the previously pushed String into DestString
 Print DestString ' Display the string, which will be "Hello World"
 Stop

See also : Push, Gosub, Return, See Push for technical details of stack manipulation.

8-bit Proton Compiler Development Suite.

 298

Pot

Syntax
Variable = Pot Pin, Scale

Overview
Read a potentiometer, thermistor, photocell, or other variable resistance.

Parameters
Variable is a user defined variable.
Pin is a Port.Pin constant that specifies the I/O pin to use.
Scale is a constant, variable, or expression, used to scale the instruction's internal 16-bit result.
The 16- bit reading is multiplied by (scale/ 256), so a scale value of 128 would reduce the range
by approximately 50%, a scale of 64 would reduce to 25%, and so on.

Example
 Dim Var1 as Byte

 Do
 Var1 = Pot PORTB.0, 100 ' Read potentiometer on pin 0 of PORTB.
 Print Dec Var1, " " ' Display the potentiometer reading
 Loop ' Repeat the process.

Notes
Internally, the Pot instruction calculates a 16-bit value, which is scaled down to an 8-bit value.
The amount by which the internal value must be scaled varies with the size of the resistor being
used.

The pin specified by Pot must be connected to one side of a resistor, whose other side is con-
nected through a capacitor to ground. A resistance measurement is taken by timing how long it
takes to discharge the capacitor through the resistor.

The value of scale must be determined by experimentation, however, this is easily accom-
plished as follows: -

Set the device under measure, the pot in this instance, to maximum resistance and read it with
scale set to 255. The value returned in Var1 can now be used as scale: -

 Var1 = Pot PORTB.0, 255

See also : Adin, RCin.

To
I/O Pin

5-50k

0.1uF

8-bit Proton Compiler Development Suite.

 299

Print

Syntax
Print Item {, Item... }

Overview
Send Text to an LCD module using the Hitachi HD44780 controller or a graphic LCD based on
the KS0108, or Toshiba T6963 chipsets.

Parameters
Item may be a constant, variable, expression, modifier, or string list.
There are no operators as such, instead there are modifiers. For example, if an at sign'@' pre-
cedes an Item, the ASCII representation for each digit is sent to the LCD.

The modifiers are listed below: -

Modifier Operation

At ypos (1 to n),xpos(1 to n) Position the cursor on the LCD
Cls Clear the LCD (also creates a 30ms delay)

Bin{1..32} Display binary digits
Dec{0..10} Display decimal digits
Hex{1..8} Display hexadecimal digits
Sbin{1..32} Display signed binary digits
Sdec{0..10} Display signed decimal digits
Shex{1..8} Display signed hexadecimal digits
Ibin{1..32} Display binary digits with a preceding '%' identifier
Idec{0..10} Display decimal digits with a preceding '#' identifier
Ihex{1..8} Display hexadecimal digits with a preceding '$' identifier
ISbin{1..32} Display signed binary digits with a preceding '%' identifier
ISdec{0..10} Display signed decimal digits with a preceding '#' identifier
IShex{1..8} Display signed hexadecimal digits with a preceding '$' identifier

Rep c\n Display character c repeated n times
Str array\n Display all or part of an array
Cstr cdata Display string data defined in a Cdata statement.

The numbers after the Bin, Dec, and Hex modifiers are optional. If they are omitted, then the
default is all the digits that make up the value will be displayed.

If a floating point variable is to be displayed, then the digits after the Dec modifier determine
how many remainder digits are printed. i.e. numbers after the decimal point.

 Dim MyFloat as Float
 MyFloat = 3.145
 Print Dec2 MyFloat ' Display 2 values after the decimal point

The above program will display 3.14

If the digit after the Dec modifier is omitted, then 3 values will be displayed after the decimal
point.

8-bit Proton Compiler Development Suite.

 300

 Dim MyFloat as Float
 MyFloat = 3.1456
 Print Dec MyFloat ' Display 3 values after the decimal point

The above program will display 3.145

There is no need to use the Sdec modifier for signed floating point values, as the compiler's
Dec modifier will automatically display a minus result: -

 Dim MyFloat as Float
 MyFloat = -3.1456
 Print Dec MyFloat ' Display 3 values after the decimal point

The above program will display -3.145

Hex or Bin modifiers cannot be used with floating point values or variables.

The Xpos and Ypos values in the At modifier both start at 1. For example, to place the text
"HELLO WORLD" on line 1, position 1, the code would be: -

 Print At 1, 1, "Hello World"

Example 1
 Dim Var1 as Byte
 Dim Wrd as Word
 Dim Dwd as Dword

 Print "Hello World" ' Display the text "Hello World"
 Print "Var1= ", Dec Var1 ' Display the decimal value of Var1
 Print "Var1= ", Hex Var1 ' Display the hexadecimal value of Var1
 Print "Var1= ", Bin Var1 ' Display the binary value of Var1
 Print "Dwd= ", Hex6 Dwd ' Display 6 hex characters of a Dword variable

Example 2
' Display a negative value on the LCD.
 Symbol Negative = -200
 Print At 1, 1, Sdec Negative

Example 3
' Display a negative value on the LCD with a preceding identifier.
 Print At 1, 1, IShex -$1234

Example 3 will produce the text "$-1234" on the LCD.

Some PICmicros such as the 16F87x, and 18FXXX range have the ability to read and write to
their own flash memory. And although writing to this memory too many times is unhealthy for
the PICmicro™, reading this memory is both fast, and harmless. Which offers a unique form of
data storage and retrieval, the Cdata command proves this, as it uses the mechanism of read-
ing and storing in the PICmicro's flash memory.

8-bit Proton Compiler Development Suite.

 301

Combining the unique features of the ‘self modifying PICmicro's' with a string format, the com-
piler is capable of reducing the overhead of printing, or transmitting large amounts of text data.
The Cstr modifier may be used in commands that deal with text processing i.e. Serout,
Hrsout, and RSOUT etc.

The Cstr modifier is used in conjunction with the Cdata command. The Cdata command is
used for initially creating the string of characters: -

String1: Cdata "HELLO WORLD", 0

The above line of case will create, in flash memory, the values that make up the ASCII text
"HELLO WORLD", at address String1. Note the null terminator after the ASCII text.

null terminated means that a zero (null) is placed at the end of the string of ASCII characters to
signal that the string has finished.

To display this string of characters, the following command structure could be used: -

 Print Cstr String1

The label that declared the address where the list of Cdata values resided, now becomes the
string's name. In a large program with lots of text formatting, this type of structure can save
quite literally hundreds of bytes of valuable code space.

Try both these small programs, and you'll see that using Cstr saves a few bytes of code: -

First the standard way of displaying text: -

 Device = 16F1829
 Cls
 Print "HELLO WORLD"
 Print "HOW ARE YOU?"
 Print "I AM FINE!"
 Stop

Now using the Cstr modifier: -

 Cls
 Print Cstr TEXT1
 Print Cstr TEXT2
 Print Cstr TEXT3
 Stop

TEXT1: Cdata "HELLO WORLD", 0
TEXT2: Cdata "HOW ARE YOU?", 0
TEXT3: Cdata "I AM FINE!", 0

Again, note the null terminators after the ASCII text in the Cdata commands. Without these, the
PICmicro™ will continue to transmit data in an endless loop.

The term 'virtual string' relates to the fact that a string formed from the Cdata command cannot
be written too, but only read from.

8-bit Proton Compiler Development Suite.

 302

The Str modifier is used for sending a string of bytes from a byte array variable. A string is a set
of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3 would
be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A byte ar-
ray is a similar concept to a string; it contains data that is arranged in a certain order. Each of
the elements in an array is the same size. The string 1,2,3 would be stored in a byte array con-
taining three bytes (elements).

Below is an example that displays four bytes (from a byte array): -

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 MyArray [0] = "H" ' Load the first 5 bytes of the array
 MyArray [1] = "E" ' With the data to send
 MyArray [2] = "L"
 MyArray [3] = "L"
 MyArray [4] = "O"
 Print Str MyArray\5 ' Display a 5-byte string.

Note that we use the optional \n argument of Str. If we didn't specify this, the PICmicro™ would
try to keep sending characters until all 10 bytes of the array were transmitted. Since we do not
wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 5 bytes.

The above example may also be written as: -

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 Str MyArray = "HELLO" ' Load the first 5 bytes of the array
 Print Str MyArray\5 ' Send 5-byte string.

The above example, has exactly the same function as the previous one. The only difference is
that the string is now constructed using Str as a command instead of a modifier.

Declares
There are several Declares for use with an alphanumeric LCD and Print: -

Declare LCD_Type 0 or 1 or 2, Alpha or Graphic or KS0108 or Toshiba or T6963
Inform the compiler as to the type of LCD that the Print command will output to. If Graphic,
KS0108 or 1 is chosen then any output by the Print command will be directed to a graphic LCD
based on the KS0108 chipset. A value of 2, or the text Toshiba, or T6963, will direct the output
to a graphic LCD based on the Toshiba T6963 chipset. A value of 0 or Alpha, or if the Declare
is not issued, will target the standard Hitachi HD44780 alphanumeric LCD type

Targeting the graphic LCD will also enable commands such as Plot, UnPlot, LCDread,
LCDwrite, Pixel, Box, Circle and Line.

Declare LCD_DTPin Port . Pin
Assigns the Port and Pins that the LCD's DT (data) lines will attach to.
The LCD may be connected to the PICmicro™ using either a 4-bit bus or an 8-bit bus. If an 8-bit
bus is used, all 8 bits must be on one port. If a 4-bit bus is used, it must be connected to either
the bottom 4 or top 4 bits of one port. For example: -

 Declare LCD_DTPin PORTB.4 ' Used for 4-line interface.

 Declare LCD_DTPin PORTB.0 ' Used for 8-line interface.

8-bit Proton Compiler Development Suite.

 303

In the previous examples, PORTB is only a personal preference. The LCD's DT lines may be
attached to any valid port on the PICmicro™. If the Declare is not used in the program, then the
default Port and Pin is PORTB.4, which assumes a 4-line interface.

Declare LCD_ENPin Port . Pin
Assigns the Port and Pin that the LCD's EN line will attach to.

If the Declare is not used in the program, then the default Port and Pin is PORTB.2.

Declare LCD_RSPin Port . Pin
Assigns the Port and Pins that the LCD's RS line will attach to.

If the Declare is not used in the program, then the default Port and Pin is PORTB.3.

Declare LCD_Interface 4 or 8
Inform the compiler as to whether a 4-line or 8-line interface is required by the LCD.

If the Declare is not used in the program, then the default interface is a 4-line type.

Declare LCD_Lines 1, 2, or 4
Inform the compiler as to how many lines the LCD has.

LCD's come in a range of sizes, the most popular being the 2 line by 16 character types. How-
ever, there are 4 line types as well. Simply place the number of lines that the particular LCD
has, into the declare.

If the Declare is not used in the program, then the default number of lines is 2.

Notes
If no modifier precedes an item in a Print command, then the character’s value is sent to the
LCD. This is useful for sending control codes to the LCD. For example: -

 Print $FE, 128

Will move the cursor to line 1, position 1 (HOME).

Below is a list of some useful control commands: -

 Control Command Operation

 $FE, 1 Clear display
 $FE, 2 Return home (beginning of first line)
 $FE, $0C Cursor off
 $FE, $0E Underline cursor on
 $FE, $0F Blinking cursor on
 $FE, $10 Move cursor left one position
 $FE, $14 Move cursor right one position
 $FE, $C0 Move cursor to beginning of second line
 $FE, $94 Move cursor to beginning of third line (if applicable)
 $FE, $D4 Move cursor to beginning of fourth line (if applicable)

8-bit Proton Compiler Development Suite.

 304

Note that if the command for clearing the LCD is used, then a small delay should follow it: -

 Print $FE, 1 : DelayMs 30

The above diagram shows the default connections for an alphanumeric LCD module. In this in-
stance, connected to the 16F84 PICmicro™.

Using a KS0108 Graphic LCD
Once a KS0108 graphic LCD has been chosen using the Declare LCD_Type directive, all
Print outputs will be directed to that LCD.

The standard modifiers used by an alphanumeric LCD may also be used with the graphics
LCD. Most of the above modifiers still work in the expected manner, however, the At modifier
now starts at Ypos 0 and Xpos 0, where values 0,0 will be the top left corner of the LCD.

There are also four new modifiers. These are: -

 Font 0 to n Choose the nth font, if available
 Inverse 0-1 Invert the characters sent to the LCD
 or 0-1 Or the new character with the original
 Xor 0-1 Xor the new character with the original

Once one of the four new modifiers has been enabled, all future Print commands will use that
particular feature until the modifier is disabled. For example: -

' Enable inverted characters from this point
 Print At 0, 0, Inverse 1, "Hello World"
 Print At 1, 0, "Still Inverted"
' Now use normal characters
 Print At 2, 0, Inverse 0, "Normal Characters"

If no modifiers are present, then the character's ASCII representation will be displayed: -

' Print characters A and B
 Print At 0, 0, 65, 66

RB7VDD
RB6
RB5
RB4
RB3
RB2
RB1
RB0

13

RA4
RA3
RA2
RA1
RA0

MCLR

OSC1

OSC2

VSS

14

PIC16F84

C4
22pF

C1
10uF

C2
0.1uF

R1
4.7k

5 Volts

C3
22pF

4mHz
Crystal

12

11

10

9

8

7

6

3

2

1

18

17

5

4

16

15

0V

INTELLIGENT LCD
MODULE

D
B

7
D

B
6

D
B

5
D

B
4

D
B

3
D

B
2

D
B

1
D

B
0

EN R
/W

R
S Vo Vd

d
Vs

s

Contrast
47K

linear

+5V

8-bit Proton Compiler Development Suite.

 305

Declares
There are nine declares associated with a KS0108 graphic LCD.

Declare LCD_DTPort Port
Assign the port that will output the 8-bit data to the graphic LCD.

If the Declare is not used, then the default port is PORTD.

Declare LCD_RWPin Port . Pin
Assigns the Port and Pin that the graphic LCD's RW line will attach to.

If the Declare is not used in the program, then the default Port and Pin is PORTE.0.

Declare LCD_CS1Pin Port . Pin
Assigns the Port and Pin that the graphic LCD's CS1 line will attach to.

If the Declare is not used in the program, then the default Port and Pin is PORTC.0.

Declare LCD_CS2Pin Port . Pin
Assigns the Port and Pin that the graphic LCD's CS2 line will attach to.

If the Declare is not used in the program, then the default Port and Pin is PORTC.2.

Note
Along with the new declares, two of the existing LCD declares must also be used. Namely,
RS_Pin and EN_Pin.

Declare Internal_Font On - Off, 1 or 0
The graphic LCDs that are compatible with Proton are non-intelligent types, therefore, a sepa-
rate character set is required. This may be in one of two places, either externally, in an I2C
eeprom, or internally in a Cdata table.

If the Declare is omitted from the program, then an external font is the default setting.

If an external font is chosen, the I2C eeprom must be connected to the specified SDA and SCL
pins (as dictated by Declare SDA and Declare SCL).

If an internal font is chosen, it must be on a PICmicro™ device that has self modifying code fea-
tures, such as the 16F87X range.

The Cdata table that contains the font must have a label, named Font_Table: preceding it. For
example: -

Font_Table:- '{ data for characters 0 to 64 }
 Cdata $7E, $11, $11, $11, $7E, $00,_ ' Chr 65 "A"
 $7F, $49, $49, $49, $36, $00 ' Chr 66 "B"
 { rest of font table }

Notice the dash after the font's label, this disables any bank switching code that may otherwise
disturb the location in memory of the Cdata table.

The font table may be anywhere in memory, however, it is best placed after the main program
code.

8-bit Proton Compiler Development Suite.

 306

The font is built up of an 8x6 cell, with only 5 of the 6 rows, and 7 of the 8 columns being used
for alphanumeric characters. See the diagram below.

If a graphic character is chosen (chr 0 to 31), the whole of the 8x6 cell is used. In this way,
large fonts and graphics may be easily constructed.

The character set itself is 128 characters long (0 -127). Which means that all the ASCII charac-
ters are present, including $, %, &, # etc.

There are two programs in the compiler's Samples directory, that are for use with internal and
external fonts. Int_Font.bas, contains a Cdata table that may be cut and pasted into your own
program if an internal font is chosen. Ext_Font.bas, writes the character set to a 24LC32 I2C
eeprom for use with an external font. Both programs are fully commented.

Declare Font_Addr 0 to 7
Set the slave address for the I2C eeprom that contains the font.

When an external source for the font is used, it may be on any one of 8 eeproms attached to
the I2C bus. So as not to interfere with any other eeproms attached, the slave address of the
eeprom carrying the font code may be chosen.

If the Declare is omitted from the program, then address 0 is the default slave address of the
font eeprom.

$
7
E

$
0
0

$
1
1

$
1
1

$
1
1

$
7
E

8-bit Proton Compiler Development Suite.

 307

Declare GLCD_CS_Invert On - Off, 1 or 0
Some graphic LCD types have inverters on the CS lines. Which means that the LCD displays
left-hand data on the right side, and vice-versa. The GLCD_CS_Invert Declare, adjusts the li-
brary LCD handling subroutines to take this into account.

Declare GLCD_Strobe_Delay 0 to 65535 microseconds (us).
If a noisy circuit layout is unavoidable when using a graphic LCD, then the above Declare may
be used. This will create a delay between the Enable line being strobed. This can ease random
data being produced on the LCD's screen. See below for more details on circuit layout for
graphic LCDs.

If the Declare is not used in the program, then no delay is created between strobes, and the
LCD is accessed at full efficiency.

Declare GLCD_Read_Delay 0 to 65535 microseconds (us).
Create a delay of n microseconds between strobing the EN line of the graphic LCD, when read-
ing from the GLCD. This can help noisy, or badly decoupled circuits overcome random bits be-
ing examined. The default if the Declare is not used in the BASIC program is a delay of 0.

Important
Because of the complexity involved with interfacing to the KS0108 graphic LCD, six of the eight
stack levels available on the 14-bit core devices, are used when the Print command is issued
with an external font. Therefore, be aware that if Print is used within a subroutine, you must
limit the amount of subroutine nesting that may take place.

If an internal font is implemented on a KS0108 graphic LCD, then only four stack levels are
used.

If any of the LCD’s pins are attached to any of the microcontroller’s analogue pins. i.e. PORTA
or PORTE, then these pins must be set to digital by manipulating the appropriate SFRs (Spe-
cial Function Registers)

8-bit Proton Compiler Development Suite.

 308

The diagram above shows a typical circuit arrangement for an external font with a KS0108
graphic LCD. The eeprom has a slave address of 0. If an internal font is used, then the eeprom
may be omitted.

VDD

MCLR

OSC1

OSC2

VSS

32

PIC16F877

C4
15pF

C2
0.1uF

C1
10uF

C3
15pF

5 Volts

RC2
RC3
RC4
RC5

VSS

20MHz
Crystal

0V

R1
4.7k

24

23

18

17

3112

14

13

1

RD0
RD1
RD2
RD3
RD4
RD5
RD6
RD7

RE0
RE1
RE2VDD

11

10

9

8

30

29

28

27

22

21

20

19

128x64
SAMSUNG KS0108
GRAPHIC LCD

D
B

7
D

B
6

D
B

5
D

B
4

D
B

3
D

B
2

D
B

1
D

B
0

E
N

R
/W

R
S V
o

V
cc

G
ndC
S

1
C

S
2

R
S

T
-V

ou
t

118

5 Volts

1k

Contrast
47k

VCC
WP

SCL

A1
A2

VSS

24LC32

7

8

A0

SDA

1

2

3

4

6

5

2x
4.7k

5 Volts

8-bit Proton Compiler Development Suite.

 309

Using a Toshiba T6963 Graphic LCD
Once a Toshiba graphic LCD has been chosen using the Declare LCD_Type directive, all
Print outputs will be directed to that LCD.

The standard modifiers used by an alphanumeric LCD may also be used with the graphics
LCD. Most of the modifiers still work in the expected manner, however, the At modifier now
starts at Ypos 0 and Xpos 0, where values 0,0 correspond to the top left corner of the LCD.

The KS0108 modifiers Font, Inverse, Or, and Xor are not supported because of the method
Toshiba LCD’s using the T6963 chipset implement text and graphics.

There are several Declares for use with a Toshiba graphic LCD, some optional and some
mandatory.

Declare LCD_DTPort Port Port
Assign the port that will output the 8-bit data to the graphic LCD.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_WRPin Port . Pin
Assigns the Port and Pin that the graphic LCD's WR line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_RDPin Port . Pin
Assigns the Port and Pin that the graphic LCD's RD line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_CEPin Port . Pin
Assigns the Port and Pin that the graphic LCD's CE line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_CDPin Port . Pin
Assigns the Port and Pin that the graphic LCD's CD line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_RSTPin Port . Pin
Assigns the Port and Pin that the graphic LCD's RST line will attach to.

The LCD’s RST (Reset) Declare is optional and if omitted from the BASIC code the compiler
will not manipulate it. However, if not used as part of the interface, you must set the LCD’s RST
pin high for normal operation.

Declare LCD_X_Res 0 to 255
LCD displays using the T6963 chipset come in varied screen sizes (resolutions). The compiler
must know how many horizontal pixels the display consists of before it can build its library sub-
routines.

There is no default setting for this Declare and it must be used within the BASIC program.

8-bit Proton Compiler Development Suite.

 310

Declare LCD_Y_Res 0 to 255
LCD displays using the T6963 chipset come in varied screen sizes (resolutions). The compiler
must know how many vertical pixels the display consists of before it can build its library subrou-
tines.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_Font_Width 6 or 8
The Toshiba T6963 graphic LCDs have two internal font sizes, 6 pixels wide by eight high, or 8
pixels wide by 8 high. The particular font size is chosen by the LCD’s FS pin. Leaving the FS
pin floating or bringing it high will choose the 6 pixel font, while pulling the FS pin low will
choose the 8 pixel font. The compiler must know what size font is required so that it can calcu-
late screen and RAM boundaries.

Note that the compiler does not control the FS pin and it is down to the circuit layout whether or
not it is pulled high or low. There is no default setting for this Declare and it must be used
within the BASIC program.

Declare LCD_RAM_Size 1024 to 65535
Toshiba graphic LCDs contain internal RAM used for Text, Graphic or Character Generation.
The amount of RAM is usually dictated by the display’s resolution. The larger the display, the
more RAM is normally present. Standard displays with a resolution of 128x64 typically contain
4096 bytes of RAM, while larger types such as 240x64 or 190x128 typically contain 8192 bytes
or RAM. The display’s datasheet will inform you of the amount of RAM present.

If this Declare is not issued within the BASIC program, the default setting is 8192 bytes.

Declare LCD_Text_Pages 1 to n
As mentioned above, Toshiba graphic LCDs contain RAM that is set aside for text, graphics or
characters generation. In normal use, only one page of text is all that is required, however, the
compiler can re-arrange its library subroutines to allow several pages of text that is continuous.
The amount of pages obtainable is directly proportional to the RAM available within the LCD
itself. Larger displays require more RAM per page, therefore always limit the amount of pages
to only the amount actually required or unexpected results may be observed as text, graphic
and character generator RAM areas merge.

This Declare is purely optional and is usually not required. The default is 3 text pages if this
Declare is not issued within the BASIC program.

Declare LCD_Graphic_Pages 1 to n
Just as with text, the Toshiba graphic LCDs contain RAM that is set aside for graphics. In nor-
mal use, only one page of graphics is all that is required, however, the compiler can re-arrange
its library subroutines to allow several pages of graphics that is continuous. The amount of
pages obtainable is directly proportional to the RAM available within the LCD itself. Larger dis-
plays require more RAM per page, therefore always limit the amount of pages to only the
amount actually required or unexpected results may be observed as text, graphic and character
generator RAM areas merge.

This Declare is purely optional and is usually not required. The default is 1 graphics page if this
Declare is not issued within the BASIC program.

8-bit Proton Compiler Development Suite.

 311

Declare LCD_Text_Home_Address 0 to n
The RAM within a Toshiba graphic LCD is split into three distinct uses, text, graphics and char-
acter generation. Each area of RAM must not overlap or corruption will appear on the display
as one uses the other’s assigned space. The compiler’s library subroutines calculate each area
of RAM based upon where the text RAM starts. Normally the text RAM starts at address 0,
however, there may be occasions when it needs to be set a little higher in RAM. The order of
RAM is; Text, Graphic, then Character Generation.

This Declare is purely optional and is usually not required. The default is the text RAM staring
at address 0 if this Declare is not issued within the BASIC program.

Notes
Unlike interfacing to the KS0108 graphic LCD, only four of the eight stack levels available on
the 14-bit core devices, are used when the Print command is issued.

If any of the LCD’s pins are attached to any of the PICmicro’s analogue pins. i.e. PORTA or
PORTE, then these pins must be set to digital by manipulating the appropriate SFRs (Special
Function Registers).

The diagram below shows a typical circuit for an interface with a Toshiba T6963 graphic LCD.

VDD

RA1
RA0

MCLR

OSC1

OSC2

VSS

32

PIC18F452

C4
15pF

C2
0.1uF

C1
10uF

C3
15pF

+5 Volts

VSS

20MHz
Crystal

0V

R1
4.7k

3

2

3112

14

13

1

RD0
RD1
RD2
RD3
RD4
RD5
RD6
RD7

RE0
RE1
RE2VDD

11

10

9

8

30

29

28

27

22

21

20

19

TOSHIBA T6963
GRAPHIC LCD

W
R

R
D

C
E

C
\D

R
S

T
D

0 D
1

D
2

D
3

D
4

D
5

D
6

D
7 FSV
ee

V
dd

1

V
ssFG

3 42 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-5 to 0 Volts
Contrast

Font
Selection
Closed - 8
Open - 6

8-bit Proton Compiler Development Suite.

 312

Ptr8, Ptr16, Ptr32

Syntax
Variable = Ptr8 (Address)
Variable = Ptr16 (Address)
Variable = Ptr32 (Address)

or

Ptr8 (Address) = Variable
Ptr16 (Address) = Variable
Ptr32 (Address) = Variable

Overview
Indirectly address RAM for loading or retrieving using a variable to hold the 16-bit address on
enhanced 14-bit core devices and 18F devices.

Operands
Variable is a user defined variable that holds the result of the indirectly address RAM area, or
the variable to place into the indirectly addressed RAM area.
Address is a Word variable that holds the 16-bit address of the RAM area of interest.

Address can also post or pre increment or decrement:

 (MyAddress++) Post increment MyAddress after retreiving it’s RAM location.
 (MyAddress --) Post decrement MyAddress after retreiving it’s RAM location.
 (++MyAddress) Pre increment MyAddress before retreiving it’s RAM location.
 (--MyAddress) Pre decrement MyAddress before retreiving it’s RAM location.

Ptr8 will load or retrieve a value with an optional 8-bit post or pre increment or decrement.
Ptr16 will load or retrieve a value with an optional 16-bit post or pre increment or decrement.
Ptr32 will load or retrieve a value with an optional 32-bit post or pre increment or decrement.

8-bit Example.
' Load and Read 8-bit values indirectly from/to RAM
'
 Device = 18F25K20 ' Choose an 18F device
 Declare Xtal = 16

 Declare Hserial_Baud = 9600 ' Set baud rate to 9600

 Dim MyByteArray[20] As Byte ' Create a byte array
 Dim MyByte As Byte ' Create a byte variable
 Dim bIndex As Byte
 Dim wAddress as Word ' Create a variable to hold address

8-bit Proton Compiler Development Suite.

 313

Main:
'
' Load into RAM
'
 wAddress = AddressOf(MyByteArray) ' Load wAddress with address of array
 For bIndex = 19 To 0 Step -1 ' Create a loop
 Ptr8(wAddress++) = bIndex ' Load RAM with address post increment
 Next
'
' Read from RAM
'
 wAddress = AddressOf(MyByteArray) ' Load wAddress with address of array
 While ' Create a loop
 MyByte = Ptr8(wAddress++) ' Retrieve from RAM with post increment
 HRSOut Dec MyByte, 13 ' Transmit the byte read from RAM
 If MyByte = 0 Then Break ' Exit when a null(0) is read from RAM
 Wend

16-bit Example.
' Load and Read 16-bit values indirectly from/to RAM
'
 Device = 18F25K20 ' Choose an 18F device
 Declare Xtal = 16

 Declare Hserial_Baud = 9600 ' Set baud rate to 9600

 Dim MyWordArray[20] As Word ' Create a word array
 Dim MyWord As Word ' Create a word variable
 Dim bIndex As Byte
 Dim wAddress as Word ' Create a variable to hold the address

Main:
'
' Load into RAM
'
 wAddress = AddressOf(MyWordArray) ' Load wAddress with address of array
 For bIndex = 19 To 0 Step -1 ' Create a loop
 Ptr16(wAddress++) = bIndex ' Load RAM with address post increment
 Next
'
' Read from RAM
'
 wAddress = AddressOf(MyWordArray) ' Load wAddress with address of array
 While ' Create a loop
 MyWord = Ptr16(wAddress++) ' Retrieve from RAM with post increment
 HRSOut Dec MyWord, 13 ' Transmit the word read from RAM
 If MyWord = 0 Then Break ' Exit when a null(0) is read from RAM
 Wend

8-bit Proton Compiler Development Suite.

 314

32-bit Example.
' Load and Read 32-bit values indirectly from RAM
'
 Device = 18F25K20 ' Choose an 18F device
 Declare Xtal = 16

 Declare Hserial_Baud = 9600 ' Set baud rate to 9600

 Dim MyDwordArray[20] As Dword ' Create a dword array
 Dim MyDword As Dword ' Create a dword variable
 Dim bIndex As Byte
 Dim wAddress as Word ' Create a variable to hold the address

Main:
'
' Load into RAM
'
 wAddress = AddressOf(MyDwordArray) ' Load wAddress with address of array
 For bIndex = 19 To 0 Step -1 ' Create a loop
 Ptr32(wAddress++) = bIndex ' Load RAM with address post increment
 Next
'
' Read from RAM
'
 wAddress = AddressOf(MyDwordArray) ' Load wAddress with address of array
 While ' Create a loop
 MyDword = Ptr32(wAddress++) ' Retrieve from RAM with post increment
 HRSOut Dec MyDword, 13 ' Transmit the dword read from RAM
 If MyDword = 0 Then Break ' Exit when a null(0) is read from RAM
 Wend

See also: AddressOf.

8-bit Proton Compiler Development Suite.

 315

PulseIn

Syntax
Variable = PulseIn Pin, State

Overview
Change the specified pin to input and measure an input pulse.

Parameters
Variable is a user defined variable. This may be a word variable with a range of 1 to 65535, or
a byte variable with a range of 1 to 255.
Pin is a Port.Pin constant that specifies the I/O pin to use.
State is a constant (0 or 1) or name High - Low that specifies which edge must occur before
beginning the measurement.

Example
 Dim Var1 as Byte
MyLoop:
 Var1 = PulseIn PORTB.0, 1 ' Measure a pulse on pin 0 of PORTB.
 Print Dec Var1, " " ' Display the reading
 Goto MyLoop ' Repeat the process.

Notes
PulseIn acts as a fast clock that is triggered by a change in state (0 or 1) on the specified pin.
When the state on the pin changes to the state specified, the clock starts counting. When the
state on the pin changes again, the clock stops. If the state of the pin doesn't change (even if it
is already in the state specified in the PulseIn instruction), the clock won't trigger. PulseIn waits
a maximum of 0.65535 seconds for a trigger, then returns with 0 in variable.

The variable can be either a Word or a Byte . If the variable is a word, the value returned by
PulseIn can range from 1 to 65535 units.

The units are dependant on the frequency of the crystal used. If a 4MHz crystal is used, then
each unit is 10us, while a 20MHz crystal produces a unit length of 2us.

If the variable is a byte and the crystal is 4MHz, the value returned can range from 1 to 255
units of 10µs. Internally, PulseIn always uses a 16-bit timer. When your program specifies a
byte, PulseIn stores the lower 8 bits of the internal counter into it. Pulse widths longer than
2550µs will give false, low readings with a byte variable. For example, a 2560µs pulse returns a
reading of 256 with a word variable and 0 with a byte variable.

See also : Counter, PulseOut, RCin.

8-bit Proton Compiler Development Suite.

 316

PulseOut

Syntax
PulseOut Pin, Period, { Initial State }

Overview
Generate a pulse on Pin of specified Period. The pulse is generated by toggling the pin twice,
thus the initial state of the pin determines the polarity of the pulse. Or alternatively, the initial
state may be set by using High-Low or 1-0 after the Period. Pin is automatically made an out-
put.

Parameters
Pin is a Port.Pin constant that specifies the I/O pin to use.
Period can be a constant of user defined variable. See notes.
State is an optional constant (0 or 1) or name High - Low that specifies the state of the outgo-
ing pulse.

Example
' Send a high pulse 1ms long (at 4MHz) to PORTB.5
'
 Low PORTB.5
 PulseOut PORTB.5, 100
'
' Send a high pulse 1ms long (at 4MHz) to PORTB.5
'
 PulseOut PORTB.5, 100, High

Notes
The resolution of PulseOut is dependent upon the oscillator frequency. If a 4MHz oscillator is
used, the Period of the generated pulse will be in 10us increments. If a 20MHz oscillator is
used, Period will have a 2us resolution. Declaring an Xtal value has no effect on PulseOut. The
resolution always changes with the actual oscillator speed.

See also : Counter , PulseIn, RCin.

8-bit Proton Compiler Development Suite.

 317

Push

Syntax
Push Variable, {Variable, Variable etc}

Overview
Place a single variable or multiple variables onto a software stack.
If the Push command is issued without a following variable, it will implement the assembler
mnemonic Push, which manipulates the PICmicro's call stack.

Parameters
Variable is a user defined variable of type Bit, Byte, Word, Dword, Float, Array, String, or
constant value.

The amount of bytes pushed on to the stack varies with the variable type used. The list below
shows how many bytes are pushed for a particular variable type, and their order.

Bit 1 Byte is pushed that holds the condition of the bit.
Byte 1 Byte is pushed.
Byte Array 1 Byte is pushed.
Word 2 Bytes are pushed. High Byte then Low Byte.
Word Array 2 Bytes are pushed. High Byte then Low Byte.
Dword Array 4 Bytes are pushed. High Byte then Low Byte.
Dword 4 Bytes are pushed. High Byte, Mid2 Byte, Mid1 Byte then Low Byte.
Float 4 Bytes are pushed. High Byte, Mid2 Byte, Mid1 Byte then Low Byte.
String 2 Bytes are pushed. High Byte then Low Byte that point to the

 start address of the string in memory.
Constant Amount of bytes varies according to the value pushed. High Byte first.

Example 1
' Push two variables on to the stack then retrieve them

 Device = 18F452 ' Stack only suitable for 18F devices
 Declare Stack_Size = 20 ' Create a small stack capable of holding 20 bytes

 Dim Wrd as Word ' Create a Word variable
 Dim Dwd as Dword ' Create a Dword variable

 Wrd = 1234 ' Load the Word variable with a value
 Dwd = 567890 ' Load the Dword variable with a value
 Push Wrd, Dwd ' Push the Word variable then the Dword variable

 Clear Wrd ' Clear the Word variable
 Clear Dwd ' Clear the Dword variable

 Pop Dwd, Wrd ' Pop the Dword variable then the Word variable
 Print Dec Wrd, " ", Dec Dwd ' Display the variables as decimal
 Stop

8-bit Proton Compiler Development Suite.

 318

Example 2
' Push a String on to the stack then retrieve it

 Device = 18F452 ' Stack only suitable for 18F devices
 Declare Stack_Size = 10 ' Create a small stack capable of holding 10 bytes

 Dim SourceString as String * 20 ' Create a String variable
 Dim DestString as String * 20 ' Create another String variable

 SourceString = "HELLO WORLD" ' Load the String variable with characters

 Push SourceString ' Push the String variable's address

 Pop DestString ' Pop the previously pushed String into DestString
 Print DestString ' Display the string, which will be "HELLO WORLD"
 Stop

Formatting a Push.
Each variable type, and more so, constant value, will push a different amount of bytes on to the
stack. This can be a problem where values are concerned because it will not be known what
size variable is required in order to Pop the required amount of bytes from the stack. For ex-
ample, the code below will push a constant value of 200 on to the stack, which requires 1 byte.

 Push 200

All well and good, but what if the recipient popped variable is of a Word or Dword type.

Pop Wrd

Popping from the stack into a Word variable will actually pull 2 bytes from the stack, however,
the code above has only pushed on byte, so the stack will become out of phase with the values
or variables previously pushed. This is not really a problem where variables are concerned, as
each variable has a known byte count and the user knows if a Word is pushed, a Word should
be popped.

The answer lies in using a formatter preceding the value or variable pushed, that will force the
amount of bytes loaded on to the stack. The formatters are Byte, Word, Dword or Float.

The Byte formatter will force any variable or value following it to push only 1 byte to the stack.

 Push Byte 12345

The Word formatter will force any variable or value following it to push only 2 bytes to the
stack:

 Push Word 123

The Dword formatter will force any variable or value following it to push only 4 bytes to the
stack: -

 Push Dword 123

8-bit Proton Compiler Development Suite.

 319

The Float formatter will force any variable or value following it to push only 4 bytes to the stack,
and will convert a constant value into the 4-byte floating point format: -

 Push Float 123

So for the Push of 200 code above, you would use: -

 Push Word 200

In order for it to be popped back into a Word variable, because the push would be the high byte
of 200, then the low byte.

If using the multiple variable Push, each parameter can have a different formatter preceding it.

 Push Word 200, Dword 1234, Float 1234

Note that if a floating point value is pushed, 4 bytes will be placed on the stack because this is
a known format.

What is a Stack?
All microprocessors and most microcontrollers have access to a Stack, which is an area of
RAM allocated for temporary data storage. But this is sadly lacking on a PICmicro™ device.
However, the 18F devices have an architecture and low-level mnemonics that allow a Stack to
be created and used very efficiently.

A stack is first created in high memory by issuing the Stack_Size Declare.

 Declare Stack_Size = 40

The above line of code will reserve 40 bytes at the top of RAM that cannot be touched by any
BASIC command, other than Push and Pop. This means that it is a safe place for temporary
variable storage.

Taking the above line of code as an example, we can examine what happens when a variable
is pushed on to the 40 byte stack, and then popped off again.

First the RAM is allocated. For this explanation we will assume that a 18F452 PICmicro™ de-
vice is being used. The 18F452 has 1536 bytes of RAM that stretches linearly from address 0
to 1535. Reserving a stack of 40 bytes will reduce the top of memory so that the compiler will
only see 1495 bytes (1535 - 40). This will ensure that it will not inadvertently try and use it for
normal variable storage.

Pushing.
When a Word variable is pushed onto the stack, the memory map would look like the diagram
below: -

Start of Stack

Top of MemoryEmpty RAM...................
~ ~
~ ~

...................Empty RAM...................

...................Empty RAM...................
Low Byte Address of Word Variable
High Byte Address of Word Variable

Address 1535

Address 1502
Address 1501
Address 1496
Address 1495

8-bit Proton Compiler Development Suite.

 320

The high byte of the variable is first pushed on to the stack, then the low byte. And as you can
see, the stack grows in an upward direction whenever a Push is implemented, which means it
shrinks back down whenever a Pop is implemented.

If we were to Push a Dword variable on to the stack as well as the Word variable, the stack
memory would look like: -

Popping.
When using the Pop command, the same variable type that was pushed last must be popped
first, or the stack will become out of phase and any variables that are subsequently popped will
contain invalid data. For example, using the above analogy, we need to Pop a Dword variable
first. The Dword variable will be popped Low Byte first, then MID1 Byte, then MID2 Byte, then
lastly the High Byte. This will ensure that the same value pushed will be reconstructed correctly
when placed into its recipient variable. After the Pop, the stack memory map will look like: -

If a Word variable was then popped, the stack will be empty, however, what if we popped a
Byte variable instead? the stack would contain the remnants of the Word variable previously
pushed. Now what if we popped a Dword variable instead of the required Word variable? the
stack would underflow by two bytes and corrupt any variables using those address's . The
compiler cannot warn you of this occurring, so it is up to you, the programmer, to ensure that
proper stack management is carried out. The same is true if the stack overflows. i.e. goes be-
yond the top of RAM. The compiler cannot give a warning.

Start of Stack

Top of MemoryEmpty RAM...................
~ ~
~ ~

....................Empty RAM...................

....................Empty RAM...................
Low Byte Address of Dword Variable
Mid1 Byte Address of Dword Variable

Address 1535

Address 1502
Address 1501
Address 1500
Address 1499

Mid2 Byte Address of Dword Variable
High Byte Address of Dword Variable
Low Byte Address of Word Variable
High Byte Address of Word Variable

Address 1498
Address 1497
Address 1496
Address 1495

Start of Stack

Top of MemoryEmpty RAM...................
~ ~
~ ~

...................Empty RAM...................

...................Empty RAM...................
Low Byte Address of Word Variable
High Byte Address of Word Variable

Address 1535

Address 1502
Address 1501
Address 1496
Address 1495

8-bit Proton Compiler Development Suite.

 321

Technical Details of Stack implementation.
The stack implemented by the compiler is known as an Incrementing Last-In First-Out Stack.
Incrementing because it grows upwards in memory. Last-In First-Out because the last variable
pushed, will be the first variable popped.

The stack is not circular in operation, so that a stack overflow will rollover into the PICmicro's
hardware register, and an underflow will simply overwrite RAM immediately below the Start of
Stack memory. If a circular operating stack is required, it will need to be coded in the main BA-
SIC program, by examination and manipulation of the stack pointer (see below).

Indirect register pair FSR2L and FSR2H are used as a 16-bit stack pointer, and are incre-
mented for every Byte pushed, and decremented for every Byte popped. Therefore checking
the FSR2 registers in the BASIC program will give an indication of the stack's condition if re-
quired. This also means that the BASIC program cannot use the FSR2 register pair as part of
its code, unless for manipulating the stack. Note that none of the compiler's commands, other
than Push and Pop, use FSR2.

Whenever a variable is popped from the stack, the stack's memory is not actually cleared, only
the stack pointer is moved. Therefore, the above diagrams are not quite true when they show
empty RAM, but unless you have use of the remnants of the variable, it should be considered
as empty, and will be overwritten by the next Push command.

See also : Pop, Gosub, Return .

8-bit Proton Compiler Development Suite.

 322

Pwm

Syntax
Pwm Pin, Duty, Cycles

Overview
Output pulse-width-modulation on a pin, then return the pin to input state.

Parameters
Pin is a Port.Pin constant that specifies the I/O pin to use.
Duty is a variable, constant (0-255), or expression, which specifies the analogue level desired
(0-5 volts).
Cycles is a variable or constant (0-255) which specifies the number of cycles to output. Larger
capacitors require multiple cycles to fully charge. Cycle time is dependant on Xtal frequency. If
a 4MHz crystal is used, then cycle takes approx 5 ms. If a 20MHz crystal is used, then cycle
takes approx 1 ms.

Notes
Pwm can be used to generate analogue voltages (0-5V) through a pin connected to a resistor
and capacitor to ground; the resistor-capacitor junction is the analogue output (see circuit).
Since the capacitor gradually discharges, Pwm should be executed periodically to refresh the
analogue voltage.

Pwm emits a burst of 1s and 0s whose ratio is proportional to the duty
value you specify. If duty is 0, then the pin is continuously low (0); if
duty is 255, then the pin is continuously high. For values in between,
the proportion is duty/255. For example, if duty is 100, the ratio of 1s to
0s is 100/255 = 0.392, approximately 39 percent.

When such a burst is used to charge a capacitor arranged, the voltage across the capacitor is
equal to:-

 (duty / 255) * 5.

So if duty is 100, the capacitor voltage is

 (100 / 255) * 5 = 1.96 volts.

This voltage will drop as the capaci-
tor discharges through whatever
load it is driving. The rate of dis-
charge is proportional to the current
drawn by the load; more current =
faster discharge. You can reduce
this effect in software by refreshing
the capacitor's charge with frequent
use of the Pwm command, or you
can buffer the output using an op-
amp to greatly reduce the need for
frequent Pwm cycles.

See also : Hpwm, Pulseout, Servo.

To
I/O Pin

Analogue
Voltage
Output

10k

10uF

RB7VDD
RB6
RB5
RB4
RB3
RB2
RB1
RB0

13

RA4
RA3
RA2
RA1
RA0

MCLR

OSC1

OSC2

VSS

14

PIC16F84

C4
22pf

C1
10uf

C2
0.1uf

R1
4.7k

Regulated 5 Volts

C3
22pf

4MHz
Crystal

12

11

10

9

8

7

6

3

2

1

18

17

5

4

16

14

0v

IN OUT

GND

78L05

C6
.1uf R2

10k

C5
1uf

LED

R3
470

LMC662
3

2

4

8

1

9 Volts
In

0- 5 Volts
Out

-

+

IC1
IC2

IC3

9 Volts

8-bit Proton Compiler Development Suite.

 323

Random

Syntax
Variable = Random

or

Random Variable

Overview
Generate a pseudo-randomised value.

Parameters
Variable is a user defined variable that will hold the pseudo-random value. The pseudo-random
algorithm used has a working length of 1 to 65535 (only zero is not produced).

Example

 Var1 = Random ' Get a random number into Var1
 Random Var1 ' Get a random number into Var1

See also: Seed.

8-bit Proton Compiler Development Suite.

 324

RC5in

Syntax
Variable = RC5in

Overview
Receive Philips RC5 infrared data from a predetermined pin. The pin is automatically made an
input.

Parameters
Variable can be a bit, byte, word, dword, or float variable, that will be loaded by RC5in. The
return data from the RC5in command consists of two bytes, the System byte containing the
type of remote used. i.e. TV, Video etc, and the Command byte containing the actual button
value. The order of the bytes is Command (low byte) then System (high byte). If a byte variable
is used to receive data from the infrared sensor then only the Command byte will be received.

Example
' Receive Philips RC5 data from an infrared sensor attached to PORTC.0
 Device = 16F1829
 Declare RC5in_Pin = PORTC.0 ' Choose port.pin for infrared sensor

Dim RC5_Word as Word ' Create a Word variable to receive the data
'
' Alias the Command byte to RC5_Word low byte
'
 Dim RC5_Command as RC5_Word.Lowbyte
'
' Alias the System byte to RC5_Word high byte
'
 Dim RC5_System as RC5_Word.Highbyte

 Cls ' Clear the LCD
 While ' Create an infinite loop
 Repeat
 RC5_Word = RC5In ' Receive a signal from the infrared sensor
 Until RC5_Command <> 255 ' Keep looking until a valid header found
 Print at 1,1,"System ",Dec RC5_System," " ' Display the System value
 Print at 2,1,"Command ",Dec RC5_Command," " ' Display the Command value
 Wend

There is a single Declare for use with RC5in: -

Declare RC5in_Pin Port . Pin
Assigns the Port and Pin that will be used to input infrared data by the RC5in command. This
may be any valid port on the PICmicro™.

If the Declare is not used in the program, then the default Port and Pin is PORTB.0.

Notes
The RC5in command will return with both Command and System bytes containing 255 if a valid
header was not received. The CARRY (STATUS.0) flag will also be set if an invalid header was
received. This is an ideal method of determining if the signal received is of the correct type.

RC5in is oscillator independent as long as the crystal frequency is declared at the top of the
program. If no Xtal Declare is used, then RC5in defaults to a 4MHz crystal frequency for its
timing.

8-bit Proton Compiler Development Suite.

 325

RCin

Syntax
Variable = RCin Pin, State

Overview
Count time while pin remains in state, usually used to measure the charge/ discharge time of
resistor/capacitor (RC) circuit.

Parameters
Pin is a Port.Pin constant that specifies the I/O pin to use. This pin will be placed into input
mode and left in that state when the instruction finishes.
State is a variable or constant (1 or 0) that will end the Rcin period. Text, High or Low may also
be used instead of 1 or 0.
Variable is a variable in which the time measurement will be stored.

Example
 Dim MyResult as Word ' Word variable to hold result.
 High PORTB.0 ' Discharge the cap
 DelayMs 1 ' Wait for 1 ms.
 MyResult = RCin PORTB.0, High ' Measure RC charge time.
 Print Dec MyResult, " " ' Display the value on an LCD.

Notes
The resolution of RCin is dependent upon the oscillator frequency. If a 4MHz oscillator is used,
the time in state is returned in 10us increments. If a 20MHz oscillator is used, the time in state
will have a 2us resolution. Declaring an Xtal value has no effect on RCin. The resolution always
changes with the actual oscillator speed. If the pin never changes state 0 is returned.

When RCin executes, it starts a counter. The counter stops as soon as the specified pin is no
longer in State (0 or 1). If pin is not in State when the instruction executes, RCin will return 1 in
Variable, since the instruction requires one timing cycle to discover this fact. If pin remains in
State longer than 65535 timing cycles RCin returns 0.

 Figure A Figure B

The diagrams above show two suitable RC circuits for use with RCin. The circuit in figure B is
preferred, because the PICmicro’s logic threshold is approximately 1.5 volts. This means that
the voltage seen by the pin will start at 5V then fall to 1.5V (a span of 3.5V) before RCin stops.
With the circuit in figure A, the voltage will start at 0V and rise to 1.5V (spanning only 1.5V) be-
fore RCin stops.

To
I/O Pin

R

C 220Ω

+5 Volts

To
I/O PinR

C 220Ω

+5 Volts

8-bit Proton Compiler Development Suite.

 326

For the same combination of R and C, the circuit shown in figure A will produce a higher result,
and therefore more resolution than figure B.

Before RCin executes, the capacitor must be put into the state specified in the RCin command.
For example, with figure B, the capacitor must be discharged until both plates (sides of the ca-
pacitor) are at 5V. It may seem strange that discharging the capacitor makes the input high, but
you must remember that a capacitor is charged when there is a voltage difference between its
plates. When both sides are at +5 Volts, the capacitor is considered discharged. Below is a
typical sequence of instructions for the circuit in figure A.

Dim MyResult as Word ' Word variable to hold result.
High PORTB.0 ' Discharge the cap
DelayMs 1 ' Wait for 1 ms.
MyResult = RCin PORTB.0, High ' Measure RC charge time.
Print Dec MyResult, " " ' Display the value on an LCD.

Using RCin is very straightforward, except for one detail: For a given R and C, what value will
RCin return? It’s actually rather easy to calculate, based on a value called the RC time con-
stant, or tau (τ) for short. Tau represents the time required for a given RC combination to
charge or discharge by 63 percent of the total change in voltage that they will undergo. More
importantly, the value τ is used in the generalized RC timing calculation. Tau’s formula is just R
multiplied by C: -

τ = R x C

The general RC timing formula uses τ to tell us the time required for an RC circuit to change
from one voltage to another: -

time = -τ * (ln (Vfinal / Vinitial))

In this formula ln is the natural logarithm. Assume we’re interested in a 10kΩ resistor and 0.1µF
cap. Calculate τ: -

τ = (10 x 103) x (0.1 x 10-6) = 1 x 10-3

The RC time constant is 1 x 10-3 or 1 millisecond. Now calculate the time required for this RC
circuit to go from 5V to 1.5V (as in figure B):

Time = -1 x 10-3* (ln(5.0v / 1.5v)) = 1.204 x 10-3

Using a 20MHz crystal, the unit of time is 2µs, that time (1.204 x 10-3) works out to 602 units.
With a 10kΩ resistor and 0.1µF capacitor, RCin would return a value of approximately 600.
Since Vinitial and Vfinal don't change, we can use a simplified rule of thumb to estimate RCin re-
sults for circuits similar to figure A: -

RCin units = 600 x R (in kΩ) x C (in µF)

Another useful rule of thumb can help calculate how long to charge/discharge the capacitor be-
fore RCin. In the example shown, that’s the purpose of the High and DelayMs commands. A
given RC charges or discharges 98 percent of the way in 4 time constants (4 x R x C).

8-bit Proton Compiler Development Suite.

 327

In both circuits, the charge/discharge current passes through a 220Ω series resistor and the
capacitor. So if the capacitor were 0.1µF, the minimum charge/discharge time should be: -

Charge time = 4 x 220 x (0.1 x 10-6) = 88 x 10-6

So it takes only 88µs for the cap to charge/discharge, which means that the 1ms
charge/discharge time of the example is more than adequate.

You may be wondering why the 220Ω resistor is necessary at all. Consider what would happen
if resistor R in figure A were a pot, and was adjusted to 0Ω. When the I/O pin went high to dis-
charge the cap, it would see a short direct to ground. The 220Ω series resistor would limit the
short circuit current to 5V/220Ω = 23mA and protect the PICmicro™ from any possible damage.

See also : Adin, Counter, Pot, PulseIn.

8-bit Proton Compiler Development Suite.

 328

Repeat...Until

Syntax
Repeat Condition
Instructions
Instructions
Until Condition

or

Repeat { Instructions : } Until Condition

Overview
Execute a block of instructions until a condition is true.

Example
 Var1 = 1
 Repeat
 Print Dec Var1, " "
 DelayMs 200
 Inc Var1
 Until Var1 > 10

or

 Repeat High LED : Until PORTA.0 = 1 ' Wait for a Port change

Notes
The Repeat-Until loop differs from the While-Wend type in that, the Repeat loop will carry out
the instructions within the loop at least once, then continuously until the condition is true, but
the While loop only carries out the instructions if the condition is true.

The Repeat-Until loop is an ideal replacement to a For-Next loop, and actually takes less code
space, thus performing the loop faster.

Two commands have been added especially for a Repeat loop, these are Inc and Dec.

 Inc. Increment a variable i.e. Var1 = Var1 + 1

 Dec. Decrement a variable i.e. Var1 = Var1 - 1

The above example shows the equivalent to the For-Next loop: -

 For Var1 = 1 to 10 : Next

See also : While...Wend, For...Next...Step.

8-bit Proton Compiler Development Suite.

 329

Resume

When the Resume statement is encountered at the end of the BASIC interrupt handler, it sets
the GIE bit to re-enable interrupts and returns to where the program was before the interrupt
occurred. Disable stops the compiler from inserting the Call to the interrupt checker before each
command. This allows sections of code to execute without the possibility of being interrupted.
Enable allows the insertion to continue.

A Disable should be placed before the interrupt handler so that it will not be restarted every
time the GIE bit is checked. If it is desired to turn off interrupts for some reason after On Inter-
rupt is encountered, you must not turn off the GIE bit. Turning off this bit informs the compiler
an interrupt has happened and it will execute the interrupt handler forever.

Instead use: -

 INTCON = $80

This disables all the individual interrupts but leaves the Global Interrupt Enable bit set.

A final note about interrupts in BASIC is if the program uses the command structure: -

Fin:

Goto Fin

You must remember the interrupt flag is checked before each instruction. It immediately jumps
to label Fin with no interrupt check. Other commands must be placed in the loop for the inter-
rupt check to happen: -

Fin:

DelayMs 1
 Goto Fin

Note.
Software interrupts are a remnant from earlier compiler versions and are not recommended for
new applications. See Managed Hardware Interrupts for a better method of interrupt handling.

See also : Software Interrupts in BASIC, Disable, Enable.

8-bit Proton Compiler Development Suite.

 330

Return

Syntax
Return

or

Return Variable

Availability
All devices. But a parameter return is only supported with 18F devices.

Overview
Return from a subroutine.

If using an 18F device, a parameter can be pushed onto a software stack before the return
mnemonic is implemented.

Variable is a user defined variable of type Bit, Byte, Word, Dword, Float, Array, String, or
Constant value, that will be pushed onto the stack before the subroutine is exited.

Example
' Call a subroutine with parameters
'
 Device = 18F452 ' Stack only suitable for 18F devices
 Declare Stack_Size = 20 ' Create a small stack capable of holding 20 bytes

 Dim Wrd1 as Word ' Create a Word variable
 Dim Wrd2 as Word ' Create another Word variable
 Dim Receipt as Word ' Create a variable to hold result

 Wrd1 = 1234 ' Load the Word variable with a value
 Wrd2 = 567 ' Load the other Word variable with a value
'
' Call the subroutine and return a value
'
 Gosub AddThem [Wrd1, Wrd2], Receipt
 Print Dec Receipt ' Display the result as decimal
 Stop
'
' Subroutine starts here. Add two parameters passed and return the result
'
AddThem:
 Dim AddWrd1 as Word ' Create two uniquely named variables
 Dim AddWrd2 as Word

 Pop AddWrd2 ' Pop the last variable pushed
 Pop AddWrd1 ' Pop the first variable pushed
 AddWrd1 = AddWrd1 + AddWrd2 ' Add the values together
 Return AddWrd1 ' Return the result of the addition

8-bit Proton Compiler Development Suite.

 331

In reality, what's happening with the Return in the above program is simple, if we break it into
its constituent events: -

 Push AddWrd1
 Return

Notes
The same rules apply for the variable returned as they do for Pop, which is after all, what is
happening when a variable is returned.

Return resumes execution at the statement following the Gosub which called the subroutine.

See also : Call, Gosub, Push, Pop .

8-bit Proton Compiler Development Suite.

 332

Right$

Syntax
Destination String = Right$ (Source String, Amount of characters)

Overview
Extract n amount of characters from the right of a source string and copy them into a destina-
tion string.

Overview
Destination String can only be a String variable, and should be large enough to hold the cor-
rect amount of characters extracted from the Source String.
Source String can be a String variable, or a Quoted String of Characters. See below for
more variable types that can be used for Source String.
Amount of characters can be any valid variable type, expression or constant value, that signi-
fies the amount of characters to extract from the right of the Source String. Values start at 1 for
the rightmost part of the string and should not exceed 255 which is the maximum allowable
length of a String variable.

Example 1
' Copy 5 characters from the right of SourceString into DestString
'
 Device = 18F452 ' A suitable device for Strings
 Dim SourceString as String * 20 ' Create a String of 20 characters
 Dim DestString as String * 20 ' Create another String

 SourceString = "HELLO WORLD" ' Load the source string with characters
'
' Copy 5 characters from the source string into the destination string
'
 DestString = Right$(SourceString, 5)
 Print DestString ' Display the result, which will be "WORLD"
 Stop

Example 2
' Copy 5 characters from right of a Quoted Character String to DestString
'
 Device = 18F452 ' A suitable device for Strings
 Dim DestString as String * 20 ' Create a String of 20 characters
'
' Copy 5 characters from the quoted string into the destination string
'
 DestString = Right$("HELLO WORLD", 5)
 Print DestString ' Display the result, which will be "WORLD"
 Stop

The Source String can also be a Byte, Word, Dword, Float or Array, variable, in which case
the value contained within the variable is used as a pointer to the start of the Source String's
address in RAM.

8-bit Proton Compiler Development Suite.

 333

Example 3
' Copy 5 characters from the right of SourceString into DestString using a
' pointer to SourceString

 Device = 18F452 ' A suitable device for Strings
 Dim SourceString as String * 20 ' Create a String of 20 characters
 Dim DestString as String * 20 ' Create another String
' Create a Word variable to hold the address of SourceString
 Dim StringAddr as Word

 SourceString = "HELLO WORLD" ' Load the source string with characters
' Locate the start address of SourceString in RAM
 StringAddr = AddressOf(SourceString)
' Copy 5 characters from the source string into the destination string
 DestString = Right$(StringAddr, 5)
 Print DestString ' Display the result, which will be "WORLD"
 Stop

A third possibility for Source String is a Label name, in which case a null terminated Quoted
String of Characters is read from a Cdata table.

Example 4
' Copy 5 characters from the right of a Cdata table into DestString

 Device = 18F452 ' A suitable device for Strings
 Dim DestString as String * 20 ' Create a String of 20 characters

' Copy 5 characters from label Source into the destination string
 DestString = Right$(Source, 5)
 Print DestString ' Display the result, which will be "WORLD"
 Stop

' Create a null terminated string of characters in code memory
Source:
 Cdata "Hello World", 0

See also : Creating and using Strings, Creating and using Virtual Strings with Cdata,

Cdata, Len, Left$, Mid$, Str$, ToLower, ToUpper, AddressOf.

8-bit Proton Compiler Development Suite.

 334

Rol

Syntax
Rol Variable {,Set or Clear}

Overview
Bitwise rotate a variable left, with or without the microcontroller’s Carry flag.

Parameters
Variable may be any standard variable type, but not an array or expression.
Set or Clear are optional parameters that will clear or set the Carry flag before the rotate.
If no parameter is placed after Variable, the current Carry flag state will be rotated into the LSB
(Least Significant Bit) of Variable.

Example.
' Demonstrate the Rol Command
'
 Device = 18F25K22
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' HrsoutLn Baud rate

 Dim Index As Byte
 Dim MyByte As Byte = %10000000
 Dim Byteout As Byte
'
' Rotate the carry flag through MyByte
 Rol MyByte
 Rol MyByte
 Rol MyByte
 Rol MyByte
 Rol MyByte
 Rol MyByte
 Rol MyByte
 Rol MyByte
'
' Set each bit of MyByte with every rotate
 MyByte = %00000000
 For Index = 0 To 7 ' Create a loop of 8 iterations
 Rol MyByte, Set ' Rotate MyByte and set the Least Significant Bit
 HRSOutLn Bin8 MyByte
 Next
 HRSOutLn "----------"
'
' Clear each bit of MyByte with every rotate
 MyByte = %11111111
 For Index = 0 To 7 ' Create a loop of 8 iterations
 Rol MyByte, Clear ' Rotate MyByte and clear the Least Significant Bit
 HRSOutLn Bin8 MyByte
 Next
 HRSOutLn "----------"
'
' Transfer the value of MyByte to Byteout, but reversed
 MyByte = %10000000
 Byteout = %00000000
 For Index = 0 To 7 ' Create a loop of 8 iterations
 Rol MyByte ' Rotate MyByte into the Carry bit of STATUS
 Ror Byteout ' Rotate the Carry bit into Byteout
 HRSOutLn Bin8 Byteout
 Next

See also: Ror.

8-bit Proton Compiler Development Suite.

 335

Ror

Syntax
Ror Variable {,Set or Clear}

Overview
Bitwise rotate a variable right, with or without the microcontroller’s Carry flag.

Parameters
Variable may be any standard variable type, but not an array or expression.
Set or Clear are optional parameters that will clear or set the Carry flag before the rotate.
If no parameter is placed after Variable, the current Carry flag state will be rotated into the MSB
(Most Significant Bit) of Variable.

Example.
' Demonstrate the Ror Command
'
 Device = 18F25K22
 Declare Xtal = 16
 Declare Hserial_Baud = 9600 ' HrsoutLn Baud rate

 Dim Index As Byte
 Dim MyByte As Byte = %00000001
 Dim Byteout As Byte
'
' Rotate the carry through MyByte
 Ror MyByte
 Ror MyByte
 Ror MyByte
 Ror MyByte
 Ror MyByte
 Ror MyByte
 Ror MyByte
 Ror MyByte
'
' Set each bit of MyByte with every rotate
 MyByte = %00000000
 For Index = 0 To 7 ' Create a loop of 8 iterations
 Ror MyByte, Set ' Rotate MyByte and set the Most Significant Bit
 HRSOutLn Bin8 MyByte
 Next
 HRSOutLn "----------"
'
' Clear each bit of MyByte with every rotate
 MyByte = %11111111
 For Index = 0 To 7 ' Create a loop of 8 iterations
 Ror MyByte, Clear ' Rotate MyByte and clear the Most Significant Bit
 HRSOutLn Bin8 MyByte
 Next
 HRSOutLn "----------"
'
' Transfer the value of MyByte to Byteout, but reversed
 MyByte = %00000001
 Byteout = %00000000
 For Index = 0 To 7 ' Create a loop of 8 iterations
 Ror MyByte ' Rotate MyByte into the Carry bit of STATUS
 Rol Byteout ' Rotate the Carry bit into Byteout
 HRSOutLn Bin8 Byteout
 Next

See also: Rol.

8-bit Proton Compiler Development Suite.

 336

Rsin

Syntax
Variable = Rsin, { Timeout Label }

 or

Rsin { Timeout Label }, Modifier..Variable {, Modifier.. Variable...}

Overview
Receive one or more bytes from a predetermined pin at a predetermined baud rate in standard
asynchronous format using 8 data bits, no parity and 1 stop bit (8N1). The pin is automatically
made an input.

Parameters
Modifiers may be one of the serial data modifiers explained below.
Variable can be any user defined variable.
An optional Timeout Label may be included to allow the program to continue if a character is
not received within a certain amount of time. Timeout is specified in units of 1 millisecond and is
specified by using a Declare directive.

Example
 Declare Rsin_Timeout = 2000 ' Timeout after 2 seconds
 Dim Var1 as Byte
 Dim Wrd as Word
 Var1 = Rsin, {Label}
 Rsin Var1, Wrd
 Rsin { Label }, Var1, Wrd

Label: { do something when timed out }

Declares
There are four Declares for use with Rsin. These are : -

Declare Rsin_Pin Port . Pin
Assigns the Port and Pin that will be used to input serial data by the Rsin command. This may
be any valid port on the PICmicro™.

If the Declare is not used in the program, then the default Port and Pin is PORTB.1.

Declare Rsin_Mode Inverted or True or 1, 0
Sets the serial mode for the data received by Rsin. This may be inverted or true. Alternatively,
a value of 1 may be substituted to represent inverted, and 0 for true.

If the Declare is not used in the program, then the default mode is Inverted.

Declare Serial_Baud 0 to 65535 bps (baud)
Informs the Rsin and Rsout routines as to what baud rate to receive and transmit data.

Virtually any baud rate may be transmitted and received, but there are standard bauds: -

 300, 600, 1200, 2400, 4800, 9600, and 19200.

8-bit Proton Compiler Development Suite.

 337

When using a 4MHz crystal, the highest baud rate that is reliably achievable is 9600. However,
an increase in the oscillator speed allows higher baud rates to be achieved, including 38400
baud.

If the Declare is not used in the program, then the default baud is 9600.

Declare Rsin_Timeout 0 to 65535 milliseconds (ms)
Sets the time, in milliseconds, that Rsin will wait for a start bit to occur.

Rsin waits in a tight loop for the presence of a start bit. If no timeout value is used, then it will
wait forever. The Rsin command has the option of jumping out of the loop if no start bit is de-
tected within the time allocated by timeout.

If the Declare is not used in the program, then the default timeout value is 10000ms or 10 sec-
onds.

Rsin Modifiers.
As we already know, Rsin will wait for and receive a single byte of data, and store it in a vari-
able . If the PICmicro™ were connected to a PC running a terminal program and the user
pressed the "A" key on the keyboard, after the Rsin command executed, the variable would
contain 65, which is the ASCII code for the letter "A"

What would happen if the user pressed the "1" key? The result would be that the variable would
contain the value 49 (the ASCII code for the character "1"). This is an important point to re-
member: every time you press a character on the keyboard, the computer receives the ASCII
value of that character. It is up to the receiving side to interpret the values as necessary. In this
case, perhaps we actually wanted the variable to end up with the value 1, rather than the ASCII
code 49.

The Rsin command provides a modifier, called the decimal modifier, which will interpret this for
us. Look at the following code: -

 Dim SerData as Byte
 Rsin Dec SerData

Notice the decimal modifier in the Rsin command that appears just to the left of the SerData
variable. This tells Rsin to convert incoming text representing decimal numbers into true deci-
mal form and store the result in SerData. If the user running the terminal software pressed the
"1", "2" and then "3" keys followed by a space or other non-numeric text, the value 123 will be
stored in the variable SerData, allowing the rest of the program to perform any numeric opera-
tion on the variable.

Without the decimal modifier, however, you would have been forced to receive each character
("1", "2" and "3") separately, and then would still have to do some manual conversion to arrive
at the number 123 (one hundred twenty three) before you can do the desired calculations on it.

The decimal modifier is designed to seek out text that represents decimal numbers. The char-
acters that represent decimal numbers are the characters "0" through "9". Once the Rsin com-
mand is asked to use the decimal modifier for a particular variable, it monitors the incoming se-
rial data, looking for the first decimal character. Once it finds the first decimal character, it will
continue looking for more (accumulating the entire multi-digit number) until is finds a non-
decimal numeric character. Remember that it will not finish until it finds at least one decimal
character followed by at least one non-decimal character.

8-bit Proton Compiler Development Suite.

 338

To illustrate this further, examine the following examples (assuming we're using the same code
example as above): -

Serial input: "ABC"
Result: The program halts at the Rsin command, continuously waiting for decimal text.

Serial input: "123" (with no characters following it)
Result: The program halts at the Rsin command. It recognises the characters "1", "2" and "3"
as the number one hundred twenty three, but since no characters follow the "3", it waits con-
tinuously, since there's no way to tell whether 123 is the entire number or not.

Serial input: "123" (followed by a space character)
Result: Similar to the above example, except once the space character is received, the pro-
gram knows the entire number is 123, and stores this value in SerData. The Rsin command
then ends, allowing the next line of code to run.

Serial input: "123A"
Result: Same as the example above. The "A" character, just like the space character, is the
first non-decimal text after the number 123, indicating to the program that it has received the
entire number.

Serial input: "ABCD123EFGH"
Result: Similar to examples 3 and 4 above. The characters "ABCD" are ignored (since they're
not decimal text), the characters "123" are evaluated to be the number 123 and the following
character, "E", indicates to the program that it has received the entire number.

The final result of the Dec modifier is limited to 16 bits (up to the value 65535). If a value larger
than this is received by the decimal modifier, the end result will be incorrect because the result
rolled-over the maximum 16-bit value. Therefore, Rsin modifiers may not (at this time) be used
to load Dword (32-bit) variables.

The decimal modifier is only one of a family of conversion modifiers available with Rsin See
below for a list of available conversion modifiers. All of the conversion modifiers work similar to
the decimal modifier (as described above). The modifiers receive bytes of data, waiting for the
first byte that falls within the range of characters they accept (e.g., "0" or "1" for binary, "0" to
"9" for decimal, "0" to "9" and "A" to "F" for hex. Once they receive a numeric character, they
keep accepting input until a non-numeric character arrives, or in the case of the fixed length
modifiers, the maximum specified number of digits arrives.

While very effective at filtering and converting input text, the modifiers aren't completely fool-
proof. As mentioned before, many conversion modifiers will keep accepting text until the first
non-numeric text arrives, even if the resulting value exceeds the size of the variable. After
Rsin, a Byte variable will contain the lowest 8 bits of the value entered and a Word (16-bits)
would contain the lowest 16 bits. You can control this to some degree by using a modifier that
specifies the number of digits, such as Dec2, which would accept values only in the range of 0
to 99.

 Conversion Modifier Type of Number Numeric Characters Accepted
 Dec{1..10} Decimal, optionally limited 0 through 9
 to 1 - 10 digits
 Hex{1..8} Hexadecimal, optionally limited 0 through 9,
 to 1 - 8 digits A through F
 Bin{1..32} Binary, optionally limited 0, 1 to 1 - 32 digits

8-bit Proton Compiler Development Suite.

 339

A variable preceded by Bin will receive the ASCII representation of its binary value.
For example, if Bin Var1 is specified and "1000" is received, Var1 will be set to 8.

A variable preceded by Dec will receive the ASCII representation of its decimal value.
For example, if Dec Var1 is specified and "123" is received, Var1 will be set to 123.

A variable preceded by Hex will receive the ASCII representation of its hexadecimal value.
For example, if Hex Var1 is specified and "FE" is received, Var1 will be set to 254.

SKIP followed by a count will skip that many characters in the input stream.
For example, SKIP 4 will skip 4 characters.

The Rsin command can be configured to wait for a specified sequence of characters before it
retrieves any additional input. For example, suppose a device attached to the PICmicro™ is
known to send many different sequences of data, but the only data you wish to observe hap-
pens to appear right after the unique characters, "XYZ". A modifier named Wait can be used for
this purpose: -

 Rsin Wait("XYZ"), SerData

The above code waits for the characters "X", "Y" and "Z" to be received, in that order, then it
receives the next data byte and places it into variable SerData.

Str modifier.
The Rsin command also has a modifier for handling a string of characters, named Str.

The Str modifier is used for receiving a string of characters into a byte array variable.

A string is a set of characters that are arranged or accessed in a certain order. The characters
"ABC" would be stored in a string with the "A" first, followed by the "B" then followed by the "C".
A byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string "ABC" would be stored in a byte
array containing three bytes (elements).

Below is an example that receives ten bytes and stores them in the 10-byte array, SerString: -

 Dim SerString[10] as Byte ' Create a 10-byte array.
 Rsin Str SerString ' Fill the array with received data.
 Print Str SerString ' Display the string.

If the amount of received characters is not enough to fill the entire array, then a formatter may
be placed after the array's name, which will only receive characters until the specified length is
reached. For example: -

 Dim SerString[10] as Byte ' Create a 10-byte array.
 Rsin Str SerString\5 ' Fill the first 5-bytes of the array
 Print Str SerString\5 ' Display the 5-character string.

The example above illustrates how to fill only the first n bytes of an array, and then how to dis-
play only the first n bytes of the array. n refers to the value placed after the backslash.

8-bit Proton Compiler Development Suite.

 340

Because of its complexity, serial communication can be rather difficult to work with at times. Us-
ing the guidelines below when developing a project using the Rsin and Rsout commands may
help to eliminate some obvious errors: -

Always build your project in steps.
Start with small, manageable pieces of code, (that deal with serial communication) and test
them, one individually.
Add more and more small pieces, testing them each time, as you go.
Never write a large portion of code that works with serial communication without testing its
smallest workable pieces first.

Pay attention to timing.
Be careful to calculate and overestimate the amount of time, operations should take within the
PICmicro™ for a given oscillator frequency. Misunderstanding the timing constraints is the
source of most problems with code that communicate serially. If the serial communication in
your project is bi-directional, the above statement is even more critical.

Pay attention to wiring.
Take extra time to study and verify serial communication wiring diagrams. A mistake in wiring
can cause strange problems in communication, or no communication at all. Make sure to con-
nect the ground pins (Vss) between the devices that are communicating serially.

Verify port setting on the PC and in the Rsin / Rsout commands.
Unmatched settings on the sender and receiver side will cause garbled data transfers or no
data transfers. This is never more critical than when a line transceiver is used(i.e. MAX232).
Always remember that a line transceiver inverts the serial polarity.
If the serial data received is unreadable, it is most likely caused by a baud rate setting error, or
a polarity error.

If receiving data from another device that is not a PICmicro™, try to use baud rates of 9600 and
below, or alternatively, use a higher frequency crystal.

Because of additional overheads in the PICmicro™, and the fact that the Rsin command offers
no hardware receive buffer for serial communication, received data may sometimes be missed
or garbled. If this occurs, try lowering the baud rate, or increasing the crystal frequency. Using
simple variables (not arrays) will also increase the chance that the PICmicro™ will receive the
data properly.

Notes
Rsin is oscillator independent as long as the crystal frequency is declared at the top of the pro-
gram. If no Xtal Declare is used, then Rsin defaults to a 4MHz crystal frequency for its bit tim-
ing.

See also : Declare, Rsout, Serin, Serout, Hrsin, Hrsout, Hserin, Hserout.

8-bit Proton Compiler Development Suite.

 341

Rsout

Syntax
Rsout Item {, Item... }

Overview
Send one or more Items to a predetermined pin at a predetermined baud rate in standard
asynchronous format using 8 data bits, no parity and 1 stop bit (8N1). The pin is automatically
made an output.

Parameters
Item may be a constant, variable, expression, or string list.
There are no operators as such, instead there are modifiers. For example, if an at sign'@' pre-
cedes an Item, the ASCII representation for each digit is transmitted.

The modifiers are listed below: -

 Modifier Operation
 At ypos,xpos Position the cursor on a serial LCD
 Cls Clear a serial LCD (also creates a 30ms delay)

 Bin{1..32} Send binary digits
 Dec{0..10} Send decimal digits (amount of digits after decimal point with floating point)
 Hex{1..8} Send hexadecimal digits
 Sbin{1..32} Send signed binary digits
 Sdec{0..10} Send signed decimal digits
 Shex{1..8} Send signed hexadecimal digits
 Ibin{1..32} Send binary digits with a preceding '%' identifier
 Idec{0..10} Send decimal digits with a preceding '#' identifier
 Ihex{1..8} Send hexadecimal digits with a preceding '$' identifier
 ISbin{1..32} Send signed binary digits with a preceding '%' identifier
 ISdec{0..10} Send signed decimal digits with a preceding '#' identifier
 IShex{1..8} Send signed hexadecimal digits with a preceding '$' identifier

 Rep c\n Send character c repeated n times
 Str array\n Send all or part of an array
 Cstr cdata Send string data defined in a Cdata statement.

The numbers after the Bin, Dec, and Hex modifiers are optional. If they are omitted, then the
default is all the digits that make up the value will be displayed.

If a floating point variable is to be displayed, then the digits after the Dec modifier determine
how many remainder digits are send. i.e. numbers after the decimal point.

 Dim MyFloat as Float
 MyFloat = 3.145
 Rsout Dec2 MyFloat ' Send 2 values after the decimal point

The above program will send 3.14

If the digit after the Dec modifier is omitted, then 3 values will be displayed after the decimal
point.

8-bit Proton Compiler Development Suite.

 342

 Dim MyFloat as Float
 MyFloat = 3.1456
 Rsout Dec MyFloat ' Send 3 values after the decimal point

The above program will send 3.145

There is no need to use the Sdec modifier for signed floating point values, as the compiler's
Dec modifier will automatically display a minus result: -

 Dim MyFloat as Float
 MyFloat = -3.1456
 Rsout Dec MyFloat ' Send 3 values after the decimal point

The above program will send -3.145

Hex or Bin modifiers cannot be used with floating point values or variables.

The Xpos and Ypos values in the At modifier both start at 1. For example, to place the text
"HELLO WORLD" on line 1, position 1, the code would be: -

 Rsout At 1, 1, "HELLO WORLD"

Example 1
 Dim Var1 as Byte
 Dim Wrd as Word
 Dim Dwd as Dword

 Rsout "Hello World" ' Display the text "Hello World"
 Rsout "Var1= ", Dec Var1 ' Display the decimal value of Var1
 Rsout "Var1= ", Hex Var1 ' Display the hexadecimal value of Var1
 Rsout "Var1= ", Bin Var1 ' Display the binary value of Var1
 Rsout "Dwd= ", Hex6 Dwd ' Display 6 hex characters of a Dword variable

Example 2
' Display a negative value on a serial LCD.
 Symbol Negative = -200
 Rsout At 1, 1, Sdec Negative

Example 3
' Display a negative value on a serial LCD with a preceding identifier.
 Rsout At 1, 1, IShex -$1234

Example 3 will produce the text "$-1234" on the LCD.

Some PICmicros such as the 16F87x, and 18FXXX range have the ability to read and write to
their own flash memory. And although writing to this memory too many times is unhealthy for
the PICmicro™, reading this memory is both fast, and harmless. Which offers a unique form of
data storage and retrieval, the Cdata command proves this, as it uses the mechanism of read-
ing and storing in the PICmicro's flash memory.

Combining the unique features of the ‘self modifying PICmicro's' with a string format, the com-
piler is capable of reducing the overhead of printing, or transmitting large amounts of text data.

8-bit Proton Compiler Development Suite.

 343

The Cstr modifier may be used in commands that deal with text processing i.e. Serout,
Hrsout, and Print etc.

The Cstr modifier is used in conjunction with the Cdata command. The Cdata command is
used for initially creating the string of characters: -

String1: Cdata "HELLO WORLD", 0

The above line of case will create, in flash memory, the values that make up the ASCII text
"HELLO WORLD", at address String1. Note the null terminator after the ASCII text.

null terminated means that a zero (null) is placed at the end of the string of ASCII characters to
signal that the string has finished.

To display, or transmit this string of characters, the following command structure could be used:

 Rsout Cstr String1

The label that declared the address where the list of Cdata values resided, now becomes the
string's name. In a large program with lots of text formatting, this type of structure can save
quite literally hundreds of bytes of valuable code space.

Try both these small programs, and you'll see that using Cstr saves a few bytes of code: -

First the standard way of displaying text: -

 Device = 16F1829

 Rsout "HELLO WORLD"
 Rsout "HOW ARE YOU?"
 Rsout "I AM FINE!"
 Stop

Now using the Cstr modifier: -

 Rsout Cstr TEXT1
 Rsout Cstr TEXT2
 Rsout Cstr TEXT3
 Stop

TEXT1: Cdata "HELLO WORLD", 13, 0
TEXT2: Cdata "HOW ARE YOU?", 13, 0
TEXT3: Cdata "I AM FINE!", 13, 0

Again, note the null terminators after the ASCII text in the Cdata commands. Without these, the
PICmicro™ will continue to transmit data in an endless loop.

The term 'virtual string' relates to the fact that a string formed from the Cdata command cannot
be written too, but only read from.

The Str modifier is used for sending a string of bytes from a byte array variable. A string is a set
of bytes sized values that are arranged or accessed in a certain order.

8-bit Proton Compiler Development Suite.

 344

The values 1, 2, 3 would be stored in a string with the value 1 first, followed by 2 then followed
by the value 3. A byte array is a similar concept to a string; it contains data that is arranged in a
certain order. Each of the elements in an array is the same size. The string 1,2,3 would be
stored in a byte array containing three bytes (elements).

Below is an example that displays four bytes (from a byte array): -

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 MyArray [0] = "H" ' Load the first 5 bytes of the array
 MyArray [1] = "E" ' With the data to send
 MyArray [2] = "L"
 MyArray [3] = "L"
 MyArray [4] = "O"
 Rsout Str MyArray\5 ' Display a 5-byte string.

Note that we use the optional \n argument of Str. If we didn't specify this, the PICmicro™ would
try to keep sending characters until all 10 bytes of the array were transmitted. Since we do not
wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 5 bytes.

The above example may also be written as: -

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 Str MyArray = "HELLO" ' Load the first 5 bytes of the array
 Rsout Str MyArray\5 ' Send 5-byte string.

The above example, has exactly the same function as the previous one. The only difference is
that the string is now constructed using Str as a command instead of a modifier.

Declares
There are four Declares for use with Rsout. These are : -

Declare Rsout_Pin Port . Pin
Assigns the Port and Pin that will be used to output serial data from the Rsout command. This
may be any valid port on the PICmicro™.

If the Declare is not used in the program, then the default Port and Pin is PORTB.0.

Declare Rsout_Mode Inverted or True/False or 1, 0
Sets the serial mode for the data transmitted by Rsout. This may be inverted or true. Alterna-
tively, a value of 1 may be substituted to represent inverted, and 0 for true.

If the Declare is not used in the program, then the default mode is INVERTED.

Declare Serial_Baud 0 to 65535 bps (baud)
Informs the Rsin and Rsout routines as to what baud rate to receive and transmit data.

Virtually any baud rate may be transmitted and received, but there are standard bauds: -

300, 600, 1200, 2400, 4800, 9600, and 19200.

8-bit Proton Compiler Development Suite.

 345

When using a 4MHz crystal, the highest baud rate that is reliably achievable is 9600. However,
an increase in the oscillator speed allows higher baud rates to be achieved, including 38400
baud.

If the Declare is not used in the program, then the default baud is 9600.

Declare Rsout_Pace 0 to 65535 microseconds (us)
Implements a delay between characters transmitted by the Rsout command.

On occasion, the characters transmitted serially are in a stream that is too fast for the receiver
to catch, this results in missed characters. To alleviate this, a delay may be implemented be-
tween each individual character transmitted by Rsout.

If the Declare is not used in the program, then the default is no delay between characters.

Notes
Rsout is oscillator independent as long as the crystal frequency is declared at the top of the
program. If no declare is used, then Rsout defaults to a 4MHz crystal frequency for its bit tim-
ing.

The At and Cls modifiers are primarily intended for use with serial LCD modules. Using the fol-
lowing command sequence will first clear the LCD, then display text at position 5 of line 2: -

 Rsout Cls, At 2, 5, "HELLO WORLD"

The values after the At modifier may also be variables.

See also : Declare, Rsin , Serin, Serout, Hrsin, Hrsout, Hserin, Hserout.

8-bit Proton Compiler Development Suite.

 346

RsoutLn

Syntax
RsoutLn Item {, Item... }

Overview
Transmit one or more Items to a predetermined pin at a predetermined baud rate in standard
asynchronous format using 8 data bits, no parity and 1 stop bit (8N1), and terminate with a Car-
riage Return(13) or Carriage Return(13) Line Feed(10) or Line Feed(10) Carriage Return(13)..
The pin is automatically made an output.

Parameters
Item may be a constant, variable, expression, string list, modifier, or inline command. See the-
section for Rsout for more details.

Declare
There is a declare for the RsoutLn command that dictates what values are used as the termi-
nator.

 Declare Serial_Terminator = CRLF or LFCR or CR

The parameter CR will transmit a single value of 13 at the end of transmission.
The parameter CRLF will transmit a value of 13 then 10 at the end of transmission.
The parameter LFCR will transmit a value of 10 then 13 at the end of transmission.

See also : Declare, Rsin , Serin, Serout, Hrsin, Hrsout, HrsoutLn, Hserin, Hserout.

8-bit Proton Compiler Development Suite.

 347

Seed

Syntax
Seed Value

Overview
Seed the random number generator, in order to obtain a more random result.

Parameters
Value can be a variable, constant or expression, with a value from 1 to 65535. A value of
$0345 is a good starting point.

Example
' Create and display a Random number
 Device = 16F1829
 Declare Xtal = 4

Dim MyRandom as Word

 Seed $0345
 Cls

 Do
 MyRandom = Random
 HrsoutLn Dec MyRandom
 DelayMs 500
 Loop

See also: Random.

8-bit Proton Compiler Development Suite.

 348

Select..Case..EndSelect

Syntax
Select Expression

 Case Condition(s)
 Instructions
 {
 Case Condition(s)
 Instructions

 Case Else
 Statement(s)
 }
EndSelect

The curly braces signify optional conditions.

Overview
Evaluate an Expression then continually execute a block of BASIC code based upon compari-
sons to Condition(s). After executing a block of code, the program continues at the line follow-
ing the EndSelect. If no conditions are found to be True and a Case Else block is included, the
code after the Case Else leading to the EndSelect will be executed.

Parameters
Expression can be any valid variable, constant, expression or inline command that will be
compared to the Conditions.
Condition(s) is a statement that can evaluate as True or False. The Condition can be a simple
or complex relationship, as described below. Multiple conditions within the same Case can be
separated by commas.
Instructions can be any valid BASIC command that will be operated on if the Case condition
produces a True result.

Example
' Load variable MyResult according to the contents of variable Var1
' MyResult will return a value of 255 if no valid condition was met
 Include "Proton_4.Inc" ' Use the Proton development board for the demo
 Dim Var1 as Byte
 Dim MyResult as Byte

 DelayMs 100 ' Wait for the LCD to stabilise
 Cls ' Clear the LCD
 MyResult = 0 ' Clear the MyResult variable before we start
 Var1 = 1 ' Variable to base the conditions upon
 Select Var1
 Case 1 ' Is Var1 equal to 1 ?

MyResult = 1 ' Load MyResult with 1 if yes
Case 2 ' Is Var1 equal to 2 ?

 MyResult = 2 ' Load MyResult with 2 if yes
 Case 3 ' Is Var1 equal to 3 ?
 MyResult = 3 ' Load MyResult with 3 if yes
 Case Else ' Otherwise...
 MyResult = 255 ' Load MyResult with 255
 EndSelect
 Print Dec MyResult ' Display the MyResult
 Stop

8-bit Proton Compiler Development Suite.

 349

Notes
Select..Case is simply an advanced form of the If..Then..ElseIf..Else construct, in which multi-
ple ElseIf statements are executed by the use of the Case command.

Taking a closer look at the Case command: -

 Case Conditional_Op Expression

Where Conditional_Op can be an = operator (which is implied if absent), or one of the standard
comparison operators <>, <, >, >= or <=. Multiple conditions within the same Case can be
separated by commas. If, for example, you wanted to run a Case block based on a value being
less than one or greater than nine, the syntax would look like: -

 Case < 1, > 9

Another way to implement Case is: -

 Case value1 to value2

In this form, the valid range is from Value1 to Value2, inclusive. So if you wished to run a Case
block on a value being between the values 1 and 9 inclusive, the syntax would look like: -

 Case 1 to 9

For those of you that are familiar with C or Java, you will know that in those languages the
statements in a Case block fall through to the next Case block unless the keyword break is en-
countered. In BASIC however, the code under an executed Case block jumps to the code im-
mediately after EndSelect.

Shown below is a typical Select...Case structure with its corresponding If..Then equivalent
code alongside.

 Select Var1
 Case 6, 9, 99, 66
 ' If Var1 = 6 or Var1 = 9 or Var1 = 99 or Var1 = 66 Then
 Print "or ValueS"
 Case 110 to 200
 ' ElseIf Var1 >= 110 and Var1 <= 200 Then
 Print "and ValueS"
 Case 100
 ' ElseIf Var1 = 100 Then
 Print "EQUAL Value"
 Case > 300
 ' ElseIf Var1 > 300 Then
 Print "GREATER Value"
 Case Else
 ' Else
 Print "DEFAULT Value"
 EndSelect
 ' EndIf

See also : If..Then..ElseIf..Else..EndIf.

8-bit Proton Compiler Development Suite.

 350

Serin

Syntax
Serin Rpin { \ Fpin }, Baudmode, { Plabel, } { Timeout, Tlabel, } [InputData]

Overview
Receive asynchronous serial data (i.e. RS232 data).

Parameters
Rpin is a Port.Bit constant that specifies the I/O pin through which the serial data will be re-
ceived. This pin will be set to input mode.
Fpin is an optional Port.Bit constant that specifies the I/O pin to indicate flow control status on.
This pin will be set to output mode.
Baudmode may be a variable, constant, or expression (0 - 65535) that specifies serial timing
and configuration.
Plabel is an optional label indicating where the program should jump to in the event of a parity
error. This argument should only be provided if Baudmode indicates that parity is required.
Timeout is an optional constant (0 - 65535) that informs Serin how long to wait for incoming
data. If data does not arrive in time, the program will jump to the address specified by Tlable.
Tlabel is an optional label that must be provided along with Timeout, indicating where the pro-
gram should go in the event that data does not arrive within the period specified by Timeout.
InputData is list of variables and modifiers that informs Serin what to do with incoming data.
Serin may store data in a variable, array, or an array string using the Str modifier.

Notes
One of the most popular forms of communication between electronic devices is serial commu-
nication. There are two major types of serial communication; asynchronous and synchronous.
The Rsin, Rsout, Serin and Serout commands are all used to send and receive asynchronous
serial data. While the Shin and Shout commands are for use with synchronous communica-
tions.

The term asynchronous means ‘no clock.’ More specifically, ‘asynchronous serial communica-
tion’ means data is transmitted and received without the use of a separate ‘clock’ line. Data can
be sent using as few as two wires; one for data and one for ground. The PC's serial ports (also
called COM ports or RS232 ports) use asynchronous serial communication. Note: the other
kind of serial communication, synchronous, uses at least three wires; one for clock, one for
data and one for ground.

RS232 is the electrical specification for the signals that PC serial ports use. Unlike standard
TTL logic, where 5 volts is a logic 1 and 0 volts is logic 0, RS232 uses -12 volts for logic 1 and
+12 volts for logic 0. This specification allows communication over longer wire lengths without
amplification.

Most circuits that work with RS232 use a line driver / receiver (transceiver). This component
does two things: -

 Convert the ±12 volts of RS-232 to TTL compatible 0 to 5 volt levels.
 Invert the voltage levels, so that 5 volts = logic 1 and 0 volts = logic 0.

By far, the most common line driver device is the MAX232 from Maxim semiconductor. With the
addition of a few capacitors, a complete 2-way level converter is realised. Figure 1 shows a
typical circuit for one of these devices. The MAX232 is not the only device available, there are

8-bit Proton Compiler Development Suite.

 351

other types that do not require any external capacitors at all. Visit Maxim’s excellent web site at
www.maxim.com, and download one of their many detailed datasheets.

Typical MAX232 RS232 line-transceiver circuit.

Because of the excellent IO capabilities of the PICmicro™ range of devices, and the adoption of
TTL levels on most modern PC serial ports, a line driver is often unnecessary unless long dis-
tances are involved between the transmitter and the receiver. Instead a simple current limiting
resistor is all that’s required. As shown below: -

Directly connected RS232 circuit.

You should remember that when using a line transceiver such as the MAX232, the serial mode
(polarity) is inverted in the process of converting the signal levels, however, if using the direct
connection, the mode is untouched. This is the single most common cause of errors when con-
necting serial devices, therefore you must make allowances for this within your software.

Asynchronous serial communication relies on precise timing. Both the sender and receiver
must be set for identical timing, this is commonly expressed in bits per second (bps) called
baud. Serin requires a value called Baudmode that informs it of the relevant characteristics of
the incoming serial data; the bit period, number of data and parity bits, and polarity.

The Baudmode argument for Serin accepts a 16-bit value that determines its characteristics: 1-
stop bit, 8-data bits/no-parity or 7-data bits/even-parity and most speeds from as low as 300
baud to 38400 baud (depending on the crystal frequency used). The following table shows how
Baudmode is calculated, while table 1 shows some common baudmodes for standard serial
baud rates.

C1
1uF

5 Volts

V+

V+VCC

GND

MAX232

10

9

12

11 14

15

13

8

7

6

5

4

3

21

16

C1+
C1-
C2+
C2-

V-

T1in
T2in
R1out
R2out

T1out
T2out
R1in
R2in

C2
1uF

C3
1uF

C4
1uF

6
21 53

7
4

8 9

RX TX GND

9-way
D-Socket

0V

From PIC
Serial Output

To PIC
Serial Input

C5
1uF

To PC
Serial Port

6
21 53

7
4

8 9

RX TX GND

9-way
D-Socket

From PIC
Serial Output

To PIC
Serial Input

To PC's
Serial Port

To PIC
Circuit's GND

R1
1K

R2
1K

http://www.maxim.com/

8-bit Proton Compiler Development Suite.

 352

Step 1. Determine the bit period. (bits 0 – 11) (1,000,000 / baud rate) – 20
Step 2. data bits and parity. (bit 13) 8-bit/no-parity = step 1 + 0

7-bit/even-parity = step 1 + 8192
Step 3. Select polarity. (bit 14) True (noninverted) = step 2 + 0

Inverted = step 2 + 16384
Baudmode calculation.

Add the results of steps 1, 2 3, and 3 to determine the correct value for the Baudmode opera-
tor.

BaudRate 8-bit no-parity
inverted

8-bit no-parity
true

7-bit even-parity
inverted

7-bit even-parity
true

300 19697 3313 27889 11505
600 18030 1646 26222 9838
1200 17197 813 25389 9005
2400 16780 396 24972 8588
4800 16572 188 24764 8380
9600 16468 84 24660 8276

Table 1. Common baud rates and corresponding Baudmodes.

If communications are with existing software or hardware, its speed and mode will determine
the choice of baud rate and mode. In general, 7-bit/even-parity (7E) mode is used for text, and
8-bit/no-parity (8N) for byte-oriented data. Note: the most common mode is 8-bit/no-parity, even
when the data transmitted is just text. Most devices that use a 7-bit data mode do so in order to
take advantage of the parity feature. Parity can detect some communication errors, but to use it
you lose one data bit. This means that incoming data bytes transferred in 7E (even-parity)
mode can only represent values from 0 to 127, rather than the 0 to 255 of 8N (no-parity) mode.

The compiler’s serial commands Serin and Serout, have the option of still using a parity bit
with 4 to 8 data bits. This is through the use of a Declare: -

With parity disabled (the default setting): -

Declare Serial_Data 4 ' Set Serin and Serout data bits to 4
Declare Serial_Data 5 ' Set Serin and Serout data bits to 5
Declare Serial_Data 6 ' Set Serin and Serout data bits to 6
Declare Serial_Data 7 ' Set Serin and Serout data bits to 7
Declare Serial_Data 8 ' Set Serin and Serout data bits to 8 (default)

With parity enabled: -

Declare Serial_Data 5 ' Set Serin and Serout data bits to 4
Declare Serial_Data 6 ' Set Serin and Serout data bits to 5
Declare Serial_Data 7 ' Set Serin and Serout data bits to 6
Declare Serial_Data 8 ' Set Serin and Serout data bits to 7 (default)
Declare Serial_Data 9 ' Set Serin and Serout data bits to 8

Serial_Data data bits may range from 4 bits to 8 (the default if no Declare is issued). Enabling
parity uses one of the number of bits specified.

8-bit Proton Compiler Development Suite.

 353

Declaring Serial_Data as 9 allows 8 bits to be read and written along with a 9th parity bit.

Parity is a simple error-checking feature. When a serial sender is set for even parity (the mode
the compiler supports) it counts the number of 1s in an outgoing byte and uses the parity bit to
make that number even. For example, if it is sending the 7-bit value: %0011010, it sets the par-
ity bit to 1 in order to make an even number of 1s (four).

The receiver also counts the data bits to calculate what the parity bit should be. If it matches
the parity bit received, the serial receiver assumes that the data was received correctly. Of
course, this is not necessarily true, since two incorrectly received bits could make parity seem
correct when the data was wrong, or the parity bit itself could be bad when the rest of the data
was correct.

Many systems that work exclusively with text use 7-bit/ even-parity mode. For example, to re-
ceive one data byte through bit-0 of PORTA at 9600 baud, 7E, inverted:

Serin PORTA.0, 24660, [SerData]

The above example will work correctly, however it doesn’t inform the program what to do in the
event of a parity error.

Below, is an improved version that uses the optional Plabel argument:

Serin PORTA.0, 24660, ParityError, [SerData]
Print Dec SerData
Stop

ParityError:
Print "Parity Error"
Stop

If the parity matches, the program continues at the Print instruction after Serin. If the parity
doesn’t match, the program jumps to the label P_ERROR. Note that a parity error takes prece-
dence over other InputData specifications (as soon as an error is detected, Serin aborts and
jumps to the Plabel routine).

In the examples above, the only way to end the Serin instruction (other than RESet or power-
off) is to give Serin the serial data it needs. If no serial data arrives, the program is stuck in an
endless loop. However, you can force Serin to abort if it doesn’t receive data within a specified
number of milliseconds.

For example, to receive a value through bit-0 of PORTA at 9600 baud, 8N, inverted and abort
Serin after 2 seconds (2000 ms) if no data arrives: -

Serin PORTA.0, 16468, 2000, TimeoutError, [SerData]
Print Cls, Dec MyResult
Stop

TimeoutError:
Print Cls, "Timed Out"

 Stop
If no serial data arrives within 2 seconds, Serin aborts and continues at the label to_ERROR.

Both Parity and Serial Timeouts may be combined. Below is an example to receive a value
through bit-0 of PORTA at 2400 baud, 7E, inverted with a 10-second timeout: -

8-bit Proton Compiler Development Suite.

 354

Dim SerData as Byte

Again:
Serin PORTA.0, 24660, ParityError, 10000, TimeoutError, [SerData]
Print Cls, Dec SerData
Goto Again

TimeoutError:
Print Cls, "Timed Out"
Goto Again

ParityError:
Print Cls, "Parity Error"
Goto Again

When designing an application that requires serial communication between PICs, you should
remember to work within these limitations: -

When the PICmicro™ is sending or receiving data, it cannot execute other instructions.
When the PICmicro™ is executing other instructions, it cannot send or receive data.
The compiler does not offer a serial buffer as there is in PCs. At lower crystal frequencies, and
higher serial rates, the PICmicro™ cannot receive data via Serin, process it, and execute an-
other Serin in time to catch the next chunk of data, unless there are significant pauses between
data transmissions.

These limitations can sometimes be addressed by using flow control; the Fpin option for Serin
and Serout. Through Fpin, Serin can inform another PICmicro™ sender when it is ready to re-
ceive data. (Fpin flow control follows the rules of other serial handshaking schemes, however
most computers other than the PICmicro™ cannot start and stop serial transmission on a byte-
by-byte basis. That is why this discussion is limited to communication between PICmicros.)

Below is an example using flow control with data through bit-0 of PORTA, and flow control
through bit-1 of PORTA, 9600 baud, N8, noninverted: -

Serin PORTA.0\PORTA.1, 84, [SerData]

When Serin executes, bit-0 of PORTA (Rpin) is made an input in preparation for incoming data,
and bit-1 of PORTA (Fpin) is made an output low, to signal “go” to the sender. After Serin fin-
ishes receiving data, bit-1 of PORTA is brought high to notify the sender to stop. If an inverted
BaudMode had been specified, the Fpin’s responses would have been reversed. The table be-
low illustrates the relationship of serial polarity to Fpin states.

Serial Polar-

ity
Ready to Receive

("Go")
Not Ready to Receive

("Stop")
Inverted Fpin is High (1) Fpin is Low (0)

Non-inverted Fpin is Low (0) Fpin is High (1)

See the following circuit for a flow control example using two 16F84 devices. In the demonstra-
tion program example, the sender transmits the whole word “HELLO!” in approx 6 ms. The re-
ceiver catches the first byte at most; by the time it got back from the first 1-second delay (De-
layMs 1000), the rest of the data would be long gone. With flow control, communication is flaw-
less since the sender waits for the receiver to catch up.

In the circuit below, the flow control pin (PORTA.1) is pulled to ground through a 10kΩ resistor.
This is to ensure that the sender sees a stop signal (0 for inverted communications) when the
receiver is first powered up.

8-bit Proton Compiler Development Suite.

 355

Communicating Communication between two PICs using flow control.

' Sender Code. Program into the Sender device.
 Do

Serout PORTA.0\PORTA.1, 16468, ["HELLO!"] ' Send the message.
DelayMs 2500 ' Delay for 2.5 seconds

Loop ' Repeat the message forever

' Receiver Code. Program into the Receiver device.

Dim Message as Byte
 Do

Serin PORTA.0\PORTA.1, 16468, [Message] ' Get 1 byte.
Print Message ' Display the byte on LCD.
DelayMs 1000 ' Delay for 1 second.

Loop Again ' Repeat forever

Serin Modifiers.
The Serin command can be configured to wait for a specified sequence of characters before it
retrieves any additional input. For example, suppose a device attached to the PICmicro™ is
known to send many different sequences of data, but the only data you wish to observe hap-
pens to appear right after the unique characters, “XYZ”. A modifier named Wait can be used for
this purpose: -

Serin PORTA.0, 16468, [Wait("XYZ"), SerData]

The above code waits for the characters “X”, “Y” and “Z” to be received, in that order, then it
receives the next data byte and p[laces it into variable SerData.

The compiler also has a modifier for handling a string of characters, named Str.

The Str modifier is used for receiving a string of characters into a byte array variable.

A string is a set of characters that are arranged or accessed in a certain order. The characters
"ABC" would be stored in a string with the "A" first, followed by the "B" then followed by the "C".
A byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string "ABC" would be stored in a byte
array containing three bytes (elements).

RB7VDD
RB6
RB5
RB4
RB3
RB2
RB1
RB0

13

RA4
RA3
RA2
RA1
RA0

MCLR

OSC1

OSC2

VSS

14

PIC16F84

C4
22pF

C1
10uF

C2
0.1uF

R1
4.7k

5 Volts

C3
22pF

4MHz
Crystal

12

11

10

9

8

7

6

3

2

1

18

17

5

4

16

15

0V

RB7 VDD
RB6
RB5
RB4
RB3
RB2
RB1
RB0

13

RA4
RA3
RA2
RA1
RA0

MCLR

OSC1

OSC2

VSS

14

PIC16F84

C8
22pF

C5
10uF

C6
0.1uF

R3
4.7k

5 Volts

C7
22pF

4MHz
Crystal

12

11

10

9

8

7

6

3

2

1

18

17

5

4

16

15

0V

R2
10k

SENDER RECEIVER

TO
LC

D
 M

O
D

U
LE

8-bit Proton Compiler Development Suite.

 356

Below is an example that receives ten bytes through bit-0 of PORTA at 9600 bps, N81/inverted,
and stores them in the 10-byte array, SerString: -

Dim SerString[10] as Byte ' Create a 10-byte array.
Serin PORTA.0, 16468, [Str SerString] ' Fill the array with data.
Print Str SerString ' Display the string.

If the amount of received characters is not enough to fill the entire array, then a formatter may
be placed after the array’s name, which will only receive characters until the specified length is
reached. For example: -

Dim SerString[10] as Byte ' Create a 10-byte array.
Serin PORTA.0, 16468, [Str SerString\5] ' Fill first 5-bytes of array
Print Str SerString\5 ' Display the 5-character string.

The example above illustrates how to fill only the first n bytes of an array, and then how to dis-
play only the first n bytes of the array. n refers to the value placed after the backslash.

Because of its complexity, serial communication can be rather difficult to work with at times. Us-
ing the guidelines below when developing a project using the Serin and Serout commands
may help to eliminate some obvious errors: -

Always build your project in steps.
Start with small, manageable pieces of code, (that deal with serial communication) and test
them, one individually.
Add more and more small pieces, testing them each time, as you go.
Never write a large portion of code that works with serial communication without testing its
smallest workable pieces first.
Pay attention to timing.
Be careful to calculate and overestimate the amount of time, operations should take within the
microcontroller for a given oscillator frequency. Misunderstanding the timing constraints is the
source of most problems with code that communicate serially. If the serial communication in
your project is bi-directional, the above statement is even more critical.
Pay attention to wiring.
Take extra time to study and verify serial communication wiring diagrams. A mistake in wiring
can cause strange problems in communication, or no communication at all. Make sure to con-
nect the ground pins (Vss) between the devices that are communicating serially.
Verify port setting on the PC and in the Serin / Serout commands.
Unmatched settings on the sender and receiver side will cause garbled data transfers or no
data transfers. This is never more critical than when a line transceiver is used(i.e. MAX232).
Always remember that a line transceiver inverts the serial polarity.

If the serial data received is unreadable, it is most likely caused by a baud rate setting error, or
a polarity error. If receiving data from another device that is not a PICmicro™, try to use baud
rates of 9600 and below, or alternatively, use a higher frequency crystal.

Because of additional overheads in the microcontroller, and the fact that the Serin command
offers no hardware receive buffer for serial communication, received data may sometimes be
missed or garbled. If this occurs, try lowering the baud rate, or increasing the crystal frequency.
Using simple variables (not arrays) will also increase the chance that the device will receive the
data properly.

See also : Hrsin, Hrsout, Hserin, Hserout, Rsin, Rsout.

8-bit Proton Compiler Development Suite.

 357

Serout

Syntax
Serout Tpin { \ Fpin }, Baudmode, { Pace, } { Timeout, Tlabel, } [OutputData]

Overview
Transmit asynchronous serial data (i.e. RS232 data).

Parameters
Tpin is a Port.Bit constant that specifies the I/O pin through which the serial data will be trans-
mitted. This pin will be set to output mode while operating. The state of this pin when finished is
determined by the driver bit in Baudmode.
Fpin is an optional Port.Bit constant that specifies the I/O pin to monitor for flow control status.
This pin will be set to input mode. Note: Fpin must be specified in order to use the optional
Timeout and Tlabel operators in the Serout command.
Baudmode may be a variable, constant, or expression (0 - 65535) that specifies serial timing
and configuration.
Pace is an optional variable, constant, or expression (0 - 65535) that determines the length of
the delay between transmitted bytes. Note: Pace cannot be used simultaneously with Timeout.
Timeout is an optional variable or constant (0 - 65535) that informs Serout how long to wait for
Fpin permission to send. If permission does not arrive in time, the program will jump to the ad-
dress specified by Tlable. Note: Fpin must be specified in order to use the optional Timeout and
Tlabel operators in the Serout command.
Tlabel is an optional label that must be provided along with Timeout. Tlabel indicates where the
program should jump to in the event that permission to send data is not granted within the pe-
riod specified by Timeout.
OutputData is list of variables, constants, expressions and modifiers that informs Serout how
to format outgoing data. Serout can transmit individual or repeating bytes, convert values into
decimal, hex or binary text representations, or transmit strings of bytes from variable arrays,
and Cdata constructs. These actions can be combined in any order in the OutputData list.

Notes
One of the most popular forms of communication between electronic devices is serial commu-
nication. There are two major types of serial communication; asynchronous and synchronous.
The Rsin, Rsout, Serin and Serout commands are all used to send and receive asynchronous
serial data. While the Shin and Shout commands are for use with synchronous communica-
tions.

The term asynchronous means ‘no clock.' More specifically, ‘asynchronous serial communica-
tion' means data is transmitted and received without the use of a separate ‘clock' line. Data can
be sent using as few as two wires; one for data and one for ground. The PC's serial ports (also
called COM ports or RS232 ports) use asynchronous serial communication. Note: the other
kind of serial communication, synchronous, uses at least three wires; one for clock, one for
data and one for ground.

RS232 is the electrical specification for the signals that PC serial ports use. Unlike standard
TTL logic, where 5 volts is a logic 1 and 0 volts is logic 0, RS232 uses -12 volts for logic 1 and
+12 volts for logic 0. This specification allows communication over longer wire lengths without
amplification.

8-bit Proton Compiler Development Suite.

 358

Most circuits that work with RS232 use a line driver / receiver (transceiver). This component
does two things: -

 Convert the ±12 volts of RS-232 to TTL compatible 0 to 5 volt levels.
 Invert the voltage levels, so that 5 volts = logic 1 and 0 volts = logic 0.

By far, the most common line driver device is the MAX232 from MAXIM semiconductor. With
the addition of a few capacitors, a complete 2-way level converter is realised (see Serin for cir-
cuit).

The MAX232 is not the only device available, there are other types that do not require any ex-
ternal capacitors at all. Visit Maxim's excellent web site at www.maxim.com
<http://www.maxim.com>, and download one of their many detailed datasheets.

Because of the excellent IO capabilities of the PICmicro™ range of devices, and the adoption of
TTL levels on most modern PC serial ports, a line driver is often unnecessary unless long dis-
tances are involved between the transmitter and the receiver. Instead a simple current limiting
resistor is all that's required (see Serin for circuit).

You should remember that when using a line transceiver such as the MAX232, the serial mode
(polarity) is inverted in the process of converting the signal levels, however, if using the direct
connection, the mode is untouched. This is the single most common cause of errors when con-
necting serial devices, therefore you must make allowances for this within your software.

Asynchronous serial communication relies on precise timing. Both the sender and receiver
must be set for identical timing, this is commonly expressed in bits per second (bps) called
baud. Serout requires a value called Baudmode that informs it of the relevant characteristics of
the incoming serial data; the bit period, number of data and parity bits, and polarity.

The Baudmode argument for Serout accepts a 16-bit value that determines its characteristics:
1-stop bit, 8-data bits/no-parity or 7-data bits/even-parity and virtually any speed from as low as
300 baud to 38400 baud (depending on the crystal frequency used). Table 2 below shows how
Baudmode is calculated, while table 3 shows some common baudmodes for standard serial
baud rates.

Step 1. Determine the bit period. (bits 0 – 11) (1,000,000 / baud rate) – 20
Step 2. data bits and parity. (bit 13) 8-bit/no-parity = step 1 + 0

7-bit/even-parity = step 1 + 8192
Step 3. Select polarity. (bit 14) True (noninverted) = step 2 + 0

Inverted = step 2 + 16384
Baudmode calculation.

Add the results of steps 1, 2 3, and 3 to determine the correct value for the Baudmode operator

BaudRate 8-bit no-parity
inverted

8-bit no-parity
true

7-bit even-parity
inverted

7-bit even-parity
true

300 19697 3313 27889 11505
600 18030 1646 26222 9838
1200 17197 813 25389 9005
2400 16780 396 24972 8588
4800 16572 188 24764 8380
9600 16468 84 24660 8276

8-bit Proton Compiler Development Suite.

 359

Note
For 'open' baudmodes used in networking, add 32768 to the values from the previous table.

If communications are with existing software or hardware, its speed and mode will determine
the choice of baud rate and mode. In general, 7-bit/even-parity (7E) mode is used for text, and
8-bit/no-parity (8N) for byte-oriented data. Note: the most common mode is 8-bit/no-parity, even
when the data transmitted is just text. Most devices that use a 7-bit data mode do so in order to
take advantage of the parity feature. Parity can detect some communication errors, but to use it
you lose one data bit. This means that incoming data bytes transferred in 7E (even-parity)
mode can only represent values from 0 to 127, rather than the 0 to 255 of 8N (no-parity) mode.

The compiler's serial commands Serout and Serin, have the option of still using a parity bit
with 4 to 8 data bits. This is through the use of a Declare: -

With parity disabled (the default setting): -

 Declare Serial_Data 4 ' Set Serout and Serin data bits to 4
 Declare Serial_Data 5 ' Set Serout and Serin data bits to 5
 Declare Serial_Data 6 ' Set Serout and Serin data bits to 6
 Declare Serial_Data 7 ' Set Serout and Serin data bits to 7
 Declare Serial_Data 8 ' Set Serout and Serin data bits to 8 (default)

With parity enabled: -

 Declare Serial_Data 5 ' Set Serout and Serin data bits to 4
 Declare Serial_Data 6 ' Set Serout and Serin data bits to 5
 Declare Serial_Data 7 ' Set Serout and Serin data bits to 6
 Declare Serial_Data 8 ' Set Serout and Serin data bits to 7 (default)
 Declare Serial_Data 9 ' Set Serout and Serin data bits to 8

Serial_Data data bits may range from 4 bits to 8 (the default if no Declare is issued). Enabling
parity uses one of the number of bits specified.

Declaring Serial_Data as 9 allows 8 bits to be read and written along with a 9th parity bit.

Parity is a simple error-checking feature. When the Serout command's Baudmode is set for
even parity (compiler default) it counts the number of 1s in the outgoing byte and uses the par-
ity bit to make that number even. For example, if it is sending the 7-bit value: %0011010, it sets
the parity bit to 1 in order to make an even number of 1s (four).

The receiver also counts the data bits to calculate what the parity bit should be. If it matches
the parity bit received, the serial receiver assumes that the data was received correctly. Of
course, this is not necessarily true, since two incorrectly received bits could make parity seem
correct when the data was wrong, or the parity bit itself could be bad when the rest of the data
was correct. Parity errors are only detected on the receiver side.

Normally, the receiver determines how to handle an error. In a more robust application, the re-
ceiver and transmitter might be set up in such that the receiver can request a re-send of data
that was received with a parity error.

8-bit Proton Compiler Development Suite.

 360

Serout Modifiers.
The example below will transmit a single byte through bit-0 of PORTA at 2400 baud, 8N1, in-
verted: -

 Serout PORTA.0, 16780, [65]

In the above example, Serout will transmit a byte equal to 65 (the ASCII value of the character
"A") through PORTA.0. If the PICmicro™ was connected to a PC running a terminal program
such as HyperTerminal set to the same baud rate, the character "A" would appear on the
screen. Always remembering that the polarity will differ if a line transceiver such as the
MAX232 is used.

What if you wanted the value 65 to appear on the PC's screen? As was stated earlier, it is up to
the receiving side (in serial communication) to interpret the values. In this case, the PC is inter-
preting the byte-sized value to be the ASCII code for the character "A". Unless you're also writ-
ing the software for the PC, you cannot change how the PC interprets the incoming serial data,
therefore to solve this problem, the data needs to be translated before it is sent.

The Serout command provides a modifier which will translate the value 65 into two ASCII
codes for the characters "6" and "5" and then transmit them: -

 Serout PORTA.0, 16780, [@ 65]

or

 Serout PORTA.0, 16780, [Dec 65]

Notice that the decimal modifier in the Serout command is the character @ or word Dec, both
these modifiers do the same thing, which is to inform Serout to convert the number into sepa-
rate ASCII characters which represent the value in decimal form. If the value 65 in the code
were changed to 123, the Serout command would send three bytes (49, 50 and 51) corre-
sponding to the characters "1", "2" and "3".

This is exactly the same modifier that is used in the Rsout and Print commands.

As well as the Dec modifier, Serout may use Hex, or Bin modifiers, again, these are the same
as used in the Rsout and Print commands. Therefore, please refer to the Rsout or Print
command descriptions for an explanation of these. The Serout command sends quoted text
exactly as it appears in the OutputData list:

 Serout PORTA.0, 16780, ["HELLO WORLD", 13]
 Serout PORTA.0, 16780, ["Num = ", Dec 100]

The above code will display "HELLO WORLD" on one line and "Num = 100" on the next line.
Notice that you can combine data to output in one Serout command, separated by commas. In
the example above, we could have written it as one line of code: -

Serout PORTA.0, 16780, ["HELLO WORLD", 13, "Num = ", Dec 100]

8-bit Proton Compiler Development Suite.

 361

Serout also has some other modifiers. These are listed below: -

 Modifier Operation

 At ypos,xpos Position the cursor on a serial LCD
 Cls Clear a serial LCD (also creates a 30ms delay)

 Bin{1..32} Send binary digits
 Dec{0..10} Send decimal digits (amount of digits after decimal point with floating point)
 Hex{1..8} Send hexadecimal digits
 Sbin{1..32} Send signed binary digits
 Sdec{0..10} Send signed decimal digits
 Shex{1..8} Send signed hexadecimal digits
 Ibin{1..32} Send binary digits with a preceding '%' identifier
 Idec{0..10} Send decimal digits with a preceding '#' identifier
 Ihex{1..8} Send hexadecimal digits with a preceding '$' identifier
 ISbin{1..32} Send signed binary digits with a preceding '%' identifier
 ISdec{0..10} Send signed decimal digits with a preceding '#' identifier
 IShex{1..8} Send signed hexadecimal digits with a preceding '$' identifier

 Rep c\n Send character c repeated n times

If a floating point variable is to be displayed, then the digits after the Dec modifier determine
how many remainder digits are printed. i.e. numbers after the decimal point.

 Dim MyFloat as Float
 MyFloat = 3.145
 Serout PORTA.0, 16780, [Dec2 MyFloat]' Send 2 values after decimal point

 The above program will send 3.14

If the digit after the Dec modifier is omitted, then 3 values will be displayed after the decimal
point.

 Dim MyFloat as Float
 MyFloat = 3.1456
 Serout PORTA.0, 16780, [Dec MyFloat] ' Send 3 values after decimal point

 The above program will send 3.145

There is no need to use the Sdec modifier for signed floating point values, as the compiler's
Dec modifier will automatically display a minus result: -

 Dim MyFloat as Float
 MyFloat = -3.1456
 Serout PORTA.0, 16780, [Dec MyFloat] ' Send 3 values after decimal point

 The above program will send -3.145

Hex or Bin modifiers cannot be used with floating point values or variables.

8-bit Proton Compiler Development Suite.

 362

Using Strings with Serout.
The Str modifier is used for transmitting a string of characters from a byte array variable. A
string is a set of characters that are arranged or accessed in a certain order. The characters
"ABC" would be stored in a string with the "A" first, followed by the "B" then followed by the "C".
A byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string "ABC" would be stored in a byte
array containing three bytes (elements).

Below is an example that transmits five bytes (from a byte array) through bit-0 of PORTA at
9600 bps, N81/inverted: -

 Dim SerString[10] as Byte ' Create a 10-byte array.
 SerString[0] = "H" ' Load the first 5 bytes of the array
 SerString[1] = "E" ' With the word "HELLO"
 SerString[2] = "L"
 SerString[3] = "L"
 SerString[4] = "O"
 Serout PORTA.0, 16468, [Str SerString\5] ' Send 5-byte string.

Note that we use the optional \n argument of Str. If we didn't specify this, the PICmicro™ would
try to keep sending characters until all 10 bytes of the array were transmitted, or it found a byte
equal to 0 (a null terminator). Since we didn't specify a last byte of 0 in the array, and we do not
wish the last five bytes to be transmitted, we chose to tell it explicitly to only send the first 5
characters.

The above example may also be written as: -

 Dim SerString[10] as Byte ' Create a 10-byte array.
 Str SerString = "HELLO", 0 ' Load the first 6 bytes of the array
 Serout PORTA.0, 16468, [Str SerString] ' Send first 5-bytes of string.

In the above example, we specifically added a null terminator to the end of the string (a zero).
Therefore, the Str modifier within the Serout command will output data until this is reached. An
alternative to this would be to create the array exactly the size of the text. In our example, the
array would have been 5 elements in length.

Another form of string is used by the Cstr modifier. Note: Because this uses the Cdata com-
mand to create the individual elements it is only for use with PICs that support self-modifying
features, such as the 16F87X, and 18XXXX range of devices.

Below is an example of using the Cstr modifier. Its function is the same as the above exam-
ples, however, no RAM is used for creating arrays.

 Serout PORTA.0, 16468, [Cstr SerString]

SerString: Cdata "HELLO", 0

The Cstr modifier will always be terminated by a null (i.e. zero at the end of the text or data). If
the null is omitted, then the Serout command will continue transmitting characters forever.

The Serout command can also be configured to pause between transmitted bytes. This is the
purpose of the optional Pace operator. For example (9600 baud N8, inverted): -

8-bit Proton Compiler Development Suite.

 363

 Serout PORTA.0, 16468, 1000, ["Send this message Slowly"]

Here, the PICmicro™ transmits the message "Send this message Slowly" with a 1 second delay
between each character.

A good reason to use the Pace feature is to support devices that require more than one stop
bit. Normally, the PICmicro™ sends data as fast as it can (with a minimum of 1 stop bit between
bytes). Since a stop bit is really just a resting state in the line (no data transmitted), using the
Pace option will effectively add multiple stop bits. Since the requirement for 2 or more stop bits
(on some devices) is really just a minimum requirement, the receiving side should receive this
data correctly.

Serout Flow Control.
When designing an application that requires serial communication between PICs, you need to
work within these limitations: -

When the PICmicro™ is sending or receiving data, it cannot execute other instructions.
When the PICmicro™ is executing other instructions, it cannot send or receive data.
The compiler does not offer a serial buffer as there is in PCs. At lower crystal frequencies, and
higher serial rates, the PICmicro™ cannot receive data via Serin, process it, and execute an-
other Serin in time to catch the next chunk of data, unless there are significant pauses between
data transmissions.

These limitations can sometimes be addressed by using flow control; the Fpin option for Serout
and Serin. Through Fpin, Serin can inform another PICmicro™ sender when it is ready to re-
ceive data and Serout (on the sender) will wait for permission to send. Fpin flow control follows
the rules of other serial handshaking schemes, however most computers other than the
PICmicro™ cannot start and stop serial transmission on a byte-by-byte basis. That is why this
discussion is limited to communication between PICmicros.

Below is an example using flow control with data through bit-0 of PORTA, and flow control
through bit-1 of PORTA, 9600 baud, N8, noninverted: -

 Serout PORTA.0\PORTA.1, 84, [SerData]

When Serin executes, bit-0 of PORTA (Tpin) is made an output in preparation for sending data,
and bit-1 of PORTA (Fpin) is made an input, to wait for the "go" signal from the receiver. The
table below illustrates the relationship of serial polarity to Fpin states.

Serial Polarity Ready to Receive ("Go") Not Ready to Receive ("Stop")
Inverted Fpin is High (1) Fpin is Low (0)

Non-inverted Fpin is Low (0) Fpin is High (1)

See Serin for a flow control circuit.

The Serout command supports open-drain and open-source output, which makes it possible to
network multiple PICs on a single pair of wires. These ‘open baudmodes' only actively drive the
Tpin in one state (for the other state, they simply disconnect the pin; setting it to an input
mode). If two PICs in a network had their Serout lines connected together (while a third device
listened on that line) and the PICs were using always-driven baudmodes, they could simultane-
ously output two opposite states (i.e. +5 volts and ground). This would create a short circuit.
The heavy current flow would likely damage the I/O pins or the PICs themselves.

8-bit Proton Compiler Development Suite.

 364

Since the open baudmodes only drive in one state and float in the other, there's no chance of
this kind of short happening.

The polarity selected for Serout determines which state is driven and which is open as shown
in the table below.

Serial Polarity State(0) State(1) Resistor Pulled to:
Inverted Open Driven Gnd (Vss)

Non-inverted Driven Open +5V (Vdd)

Since open baudmodes only drive to one state, they need a resistor to pull the networked line
into the opposite state, as shown in the above table and in the circuits below. Open baudmodes
allow the PICmicro™ to share a line, however it is up to your program to resolve other network-
ing issues such as who talks when, and how to detect, prevent and fix data errors.

See also : Rsin, Rsout, Hrsin, Hrsout, Hserin, Hserout, Serin.

8-bit Proton Compiler Development Suite.

 365

Servo

Syntax
Servo Pin, Rotation Value

Overview
Control a remote control type servo motor.

Parameters
Pin is a Port.Pin constant that specifies the I/O pin for the attachment of the motor's control
terminal.
Rotation Value is a 16-bit (0-65535) constant or Word variable that dictates the position of the
motor. A value of approx 500 being a rotation to the farthest position in a direction and approx
2500 being the farthest rotation in the opposite direction. A value of 1500 would normally centre
the servo but this depends on the motor type.

Example
' Control a servo motor attached to pin 3 of PORTA

 Device = 16F628 ' We'll use a 14-bit core device
 Declare Xtal = 20

Dim Pos as Word ' Servo Position

 Symbol Pin = PORTA.3 ' Alias the servo pin

 Cls ' Clear the LCD
 Pos = 1500 ' Centre the servo
 PORTA = 0 ' PORTA lines low to read buttons
 TRISA = %00000111 ' Enable the button pins as inputs
'
' Check any button pressed to move servo
'
 Do
 If PORTA.0 = 0 And Pos < 3000 Then Pos = Pos + 1 ' Move servo left
 If PORTA.1 = 0 Then Pos = 1500 ' Centre servo
 If PORTA.2 = 0 And Pos > 0 Then Pos = Pos - 1 ' Move servo right
 Servo Pin, Pos
 DelayMs 5 ' Servo update rate
 Print At 1, 1, "Position=", Dec Pos, " "
 Loop

Notes
Servos of the sort used in radio-controlled models are finding increasing applications in this ro-
botics age we live in. They simplify the job of moving objects in the real world by eliminating
much of the mechanical design. For a given signal input, you get a predictable amount of mo-
tion as an output.

To enable a servo to move it must be connected to a 5 Volt power supply capable of delivering
an ampere or more of peak current. It then needs to be supplied with a positioning signal. The
signal is normally a 5 Volt, positive-going pulse between 1 and 2 milliseconds (ms) long, re-
peated approximately 50 times per second.

The width of the pulse determines the position of the servo. Since a servo's travel can vary from
model to model, there is not a definite correspondence between a given pulse width and a par-
ticular servo angle, however most servos will move to the centre of their travel when receiving
1.5ms pulses.

8-bit Proton Compiler Development Suite.

 366

Servos are closed-loop devices. This means that they are constantly comparing their com-
manded position (proportional to the pulse width) to their actual position (proportional to the re-
sistance of an internal potentiometer mechanically linked to the shaft). If there is more than a
small difference between the two, the servo's electronics will turn on the motor to eliminate the
error. In addition to moving in response to changing input signals, this active error correction
means that servos will resist mechanical forces that try to move them away from a commanded
position. When the servo is unpowered or not receiving positioning pulses, the output shaft may
be easily turned by hand. However, when the servo is powered and receiving signals, it won't
move from its position.

Driving servos with Proton is extremely easy. The Servo command generates a pulse in
1microsecond (µs) units, so the following code would command a servo to its centred position
and hold it there: -

 Do
 Servo PORTA.0, 1500
 DelayMs 20
 Loop

The 20ms delay ensures that the program sends the pulse at the standard 50 pulse-per-second
rate. However, this may be lengthened or shortened depending on individual motor characteris-
tics.

The Servo command is oscillator independent and will always produce 1us pulses regardless
of the crystal frequency used.

See also : Pulseout.

8-bit Proton Compiler Development Suite.

 367

SetBit

Syntax
SetBit Variable, Index

Overview
Set a bit of a variable or register using a variable index to the bit of interest.

Parameters
Variable is a user defined variable, of type Byte, Word, or Dword.
Index is a constant, variable, or expression that points to the bit within Variable that requires
setting.

Example
' Clear then Set each bit of variable ExVar
 Device = 16F1829
 Declare Xtal = 4
 Dim ExVar as Byte
 Dim Index as Byte

 Cls
 ExVar = %11111111
 Do
 For Index = 0 to 7 ' Create a loop for 8 bits
 ClearBit ExVar,Index ' Clear each bit of ExVar
 Print At 1,1,Bin8 ExVar ' Display the binary result
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 For Index = 7 to 0 Step -1 ' Create a loop for 8 bits
 SetBit ExVar,Index ' Set each bit of ExVar
 Print At 1,1,Bin8 ExVar ' Display the binary result
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 Loop ' Do it forever

Notes
There are many ways to set a bit within a variable, however, each method requires a certain
amount of manipulation, either with rotates, or alternatively, the use of indirect addressing using
the FSR, and INDF registers. Each method has its merits, but requires a certain amount of
knowledge to accomplish the task correctly. The SetBit command makes this task extremely
simple using a register rotate method, however, this is not necessarily the quickest method, or
the smallest, but it is the easiest. For speed and size optimisation, there is no shortcut to ex-
perience.

To Set a known constant bit of a variable or register, then access the bit directly using Port.n.

PORTA.1 = 1
or

Var1.4 = 1

If a Port is targeted by SetBit, the Tris register is not affected.

See also : ClearBit, GetBit, LoadBit.

8-bit Proton Compiler Development Suite.

 368

SetPin

Syntax
SetPin Pin Number

Overview
Sets a Port’s pin high using a variable as the pin’s number, but does not make it an output.

Operands
Pin Number can be a variable or constant or expression that holds a value from 0 to the
amount of I/O pins on the device. A value of 0 will be PORTA.0, if present, 1 will be PORTA.1,
8 will be PORTB.0 etc…

Example
' Clear then Set each pin of PORTB

Device = 18F25K20
Declare Xtal = 16

Dim PinNumber as Byte

 High PORTB ' Make PORTB output high before we start
 Do ' Create a loop
 For PinNumber = 8 to 15 ' Create a loop for 8 pins
 ClearPin PinNumber ' Clear each pin of PORTB
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 For PinNumber = 8 to 15 ' Create a loop for 8 pins
 SetPin PinNumber ' Set each pin of PORTB
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 Loop ' Do it forever

Notes.
There are many ways to set a pin of an I/O port, however, each method requires a certain
amount of manipulation, either with rotates, or alternatively, the use of indirect addressing.
Each method has its merits, but requires a certain amount of knowledge to accomplish the task
correctly. The SetPin command makes this task extremely simple using a variable as the pin
number, however, this is not necessarily the quickest method, or the smallest, but it is the easi-
est. For speed and size optimisation, there is no shortcut to experience.

To set a known constant pin number of a port, access the pin directly using the High command

High PORTA.1

8-bit Proton Compiler Development Suite.

 369

Each pin number has a designated name. These are Pin_A0, Pin_A1, Pin_A2,
Pin_B0…Pin_B7, Pin_C0…Pin_C7, Pin_D0…Pin_D7 to Pin_L7 etc… Each of the names has a
relevant value, for example, Pin_A0 has the value 0, Pin_B0 has the value 8, up to Pin_L7,
which has the value 87.

These can be used to pass a relevant pin number to a subroutine. For example:
'
' Flash an LED attached to PORTB.0 via a subroutine
' Then flash an LED attached to PORTB.1 via the same subroutine
'

Device = 18F25K20
Declare Xtal = 16

Dim PinNumber As Byte ' Holds the pin number to set high and low

Do ' Create an infinite loop

PinNumber = Pin_B0 ' Give the pin number to flash (PORTB.0)
Gosub FlashPin ' Call the subroutine to flash the pin
PinNumber = Pin_B1 ' Give the pin number to flash (PORTB.1)
Gosub FlashPin ' Call the subroutine to flash the pin

 Loop ' Do it forever
'
' Make a pin high then low for 500ms using a variable as the pin to adjust
'
FlashPin:

Output PinNumber ' Make the pin an output
SetPin PinNumber ' Bring the pin high

 DelayMs 500 ' Wait for 500 milliseconds
ClearPin PinNumber ' Bring the pin low
DelayMs 500 ' Wait for 500 milliseconds
Return

Example 2
' Clear then Set each pin of PORTC

Device = 18F25K20
Declare Xtal = 16

Dim PinNumber as Byte

 High PORTC ' Make PORTC output high before we start
 Do ' Create a loop
 For PinNumber = Pin_C0 to Pin_C7 ' Create a loop for 8 pins
 ClearPin PinNumber ' Clear each pin of PORTC
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 For PinNumber = Pin_C0 to Pin_C7 ' Create a loop for 8 pins
 SetPin PinNumber ' Set each pin of PORTC
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 Loop ' Do it forever

See also : ClearPin, Low, High.

8-bit Proton Compiler Development Suite.

 370

Set_OSCCAL

Syntax
Set_OSCCAL

Overview
Calibrate the on-chip oscillator found on some PICmicro™ devices.

Notes
Some devices, such as the PIC12C67x or 16F62x range, have on-chip RC oscillators. These
devices contain an oscillator calibration factor in the last location of code space. The on-chip
oscillator may be fine-tuned by reading the data from this location and moving it into the OSC-
CAL register. The command Set_OSCCAL has been specially created to perform this task
automatically each time the program starts: -

 Device = 12C671
 Set_OSCCAL ' Set OSCCAL for 1K device 12C671

Add this command near the beginning of the program to perform the setting of OSCCAL.

If a UV erasable (windowed) device has been erased, the value cannot be read from memory.
To set the OSCCAL register on an erased part, add the following line near the beginning of the
program: -

 OSCCAL = $C0 ' Set OSCCAL register to $C0

The value $C0 is only an example. The part would need to be read before it is erased to obtain
the actual OSCCAL value for that particular device.

Always refer to the device’s data sheet for more information on OSCCAL.

8-bit Proton Compiler Development Suite.

 371

Set

Syntax
Set Variable or Variable.Bit or Pin Number

Overview
Place a variable or bit in a high state. For a variable, this means setting all the bits to 1. For a
bit this means setting it to 1.

Parameters
Variable can be any variable or register.
Variable.Bit can be any variable and bit combination.
Pin Number can be a variable or constant that holds a value from 0 to the amount of I/O pins
on the device. A value of 0 will be PORTA.0, if present, 1 will be PORTA.1, 8 will be PORTB.0
etc…

Example 1
 Set Var1.3 ' Set bit 3 of Var1
 Set Var1 ' Load Var1 with the value of 255
 Set STATUS.0 ' Set the carry flag high
 Set Array ' Set all of an Array variable. i.e. set to 255 or 65535
 Set String1 ' Set all of a String variable. i.e. set to spaces (ASCII 32)
 Set ' Load all RAM with 255
 Set 0 ' Set PORTA.0.

Example 2
' Flash each of the pins on PORTA and PORTB
'
 Device = 18F25K20
 Declare Xtal = 16

 Dim MyPin as Byte

 Low PORTA
 Low PORTB
 For MyPin = 0 to 15 ' Create a loop for the pin to flash
 Set MyPin ' Set the pin
 DelayMs 500 ' Delay so that it can be seen
 Clear MyPin ' Clear the pin
 DelayMs 500 ' Delay so that it can be seen
 Next

Notes
Set does not alter the TRIS register if a Port is targeted.
If no variable follows the Set command then all user RAM will be loaded with the value 255.

See also : Clear, High, Low.

8-bit Proton Compiler Development Suite.

 372

Shin

Syntax
Shin Data_Pin, Clk_Pin, mode, [result { \bits } { ,result { \bits }...}]

or

Var = Shin Data_Pin, Clk_Pin, mode, shifts

Overview
Shift data in from a synchronous-serial device. i.e. SPI.

Parameters
Data_Pin is a Port.Pin value that specifies the I/O pin that will be connected to the synchro-
nous-serial device's data output. This pin's I/O direction will be changed to input and will remain
in that state after the instruction is completed.
Clk_Pin is a Port.Pin value that specifies the I/O pin that will be connected to the synchronous-
serial device's clock input. This pin's I/O direction will be changed to output.
Mode is a constant that tells Shin the order in which data bits are to be arranged and the rela-
tionship of clock pulses to valid data. Below are the symbols, values, and their meanings: -

Symbol Value Description
MsbPre
MsbPre_L

0 Shift data in highest bit first. Read data before
sending clock. Clock idles low

LsbPre
LsbPre_L

1 Shift data in lowest bit first. Read data before send-
ing clock. Clock idles low

MsbPost
MsbPost_L

2 Shift data in highest bit first. Read data after send-
ing clock. Clock idles low

LsbPost
LsbPost_L

3 Shift data in highest bit first. Read data after send-
ing clock. Clock idles low

MsbPre_H 4 Shift data in highest bit first. Read data before
sending clock. Clock idles high

LsbPre_H 5 Shift data in lowest bit first. Read data before send-
ing clock. Clock idles high

MsbPost_H 6 Shift data in highest bit first. Read data after send-
ing clock. Clock idles high

LsbPost_H 7 Shift data in lowest bit first. Read data after sending
clock. Clock idles high

Result is a bit, byte, or word variable in which incoming data bits will be stored.
Bits is an optional constant specifying how many bits (1-16) are to be input by Shin. If no bits
entry is given, Shin defaults to 8 bits.
Shifts informs the Shin command as to how many bit to shift in to the assignment variable,
when used in the inline format.

Notes
Shin provides a method of acquiring data from synchronous-serial devices, without resorting to
the hardware SPI modules resident on some PICmicro™ types. Data bits may be valid after the
rising or falling edge of the clock line. This kind of serial protocol is commonly used by control-
ler peripherals such as ADCs, DACs, clocks, memory devices, etc.

The Shin instruction causes the following sequence of events to occur: -

8-bit Proton Compiler Development Suite.

 373

Makes the clock pin (cpin) output low.
Makes the data pin (dpin) an input.
Copies the state of the data bit into the msb (lsb-modes) or lsb (msb modes) either before (-pre
modes) or after (-post modes) the clock pulse.
Pulses the clock pin high.
Shifts the bits of the result left (msb- modes) or right (lsb-modes).
Repeats the appropriate sequence of getting data bits, pulsing the clock pin, and shifting the
result until the specified number of bits is shifted into the variable.

Making Shin work with a particular device is a matter of matching the mode and number of bits
to that device's protocol. Most manufacturers use a timing diagram to illustrate the relationship
of clock and data.

 Symbol CLK = PORTB.0
 Symbol DTA = PORTB.1
 Shin DTA, CLK, MsbPre, [Var1] ' Shift in msb-first, pre-clock.

In the above example, both Shin instructions are set up for msb-first operation, so the first bit
they acquire ends up in the msb (leftmost bit) of the variable.

The post-clock Shift in, acquires its bits after each clock pulse. The initial pulse changes the
data line from 1 to 0, so the post-clock Shiftin returns %01010101.

By default, Shin acquires eight bits, but you can set it to shift any number of bits from 1 to 16
with an optional entry following the variable name. In the example above, substitute this for the
first Shin instruction: -

 Shin DTA, CLK, MsbPre, [Var1\4] ' Shift in 4 bits.

Some devices return more than 16 bits. For example, most 8-bit shift registers can be daisy-
chained together to form any multiple of 8 bits; 16, 24, 32, 40... You can use a single Shin in-
struction with multiple variables.
Each variable can be assigned a particular number of bits with the
backslash (\) option. Modify the previous example: -

' 5 bits into Var1; 8 bits into Var2.
 Shin DTA, CLK, MsbPre, [Var1\5, Var2]
 Print "1st variable: ", Bin8 Var1
 Print "2nd variable: ", Bin8 Var2

Inline Shin Command.
The structure of the inline Shin command is: -

Var = Shin dpin, cpin, mode, shifts

DPin, CPin, and Mode have not changed in any way, however, the INLINE structure has a new
operand, namely Shifts. This informs the Shin command as to how many bit to shift in to the
assignment variable. For example, to shift in an 8-bit value from a serial device, we would use:

 Var1 = Shin DTA, CLK, MsbPre, 8

To shift 16-bits into a Word variable: -

 Wrd = Shin DTA, CLK, MsbPre, 16

8-bit Proton Compiler Development Suite.

 374

Shout

Syntax
Shout Data_Pin, Clk_Pin, Mode, [OutputData {\Bits} {,OutputData {\Bits}..}]

Overview
Shift data out to a synchronous serial device. i.e. SPI.

Parameters
Data_Pin is a Port.Pin value that specifies the I/O pin that will be connected to the synchronous
serial device's data input. This pin will be set to output mode.
Clk_Pin is a Port.Pin value that specifies the I/O pin that will be connected to the synchronous
serial device's clock input. This pin will be set to output mode.
Mode is a constant that tells Shout the order in which data bits are to be arranged. Below are
the symbols, values, and their meanings: -

Symbol Value Description
LsbFirst
LsbFirst _L 0 Shift data out lowest bit first.

Clock idles low
MsbFirst
MsbFirst_L 1 Shift data out highest bit first.

Clock idles low

LsbFirst _H 4 Shift data out lowest bit first.
Clock idles high

MsbFirst_H 5 Shift data out highest bit first.
Clock idles high

OutputData is a variable, constant, or expression containing the data to be sent.
Bits is an optional constant specifying how many bits are to be output by Shout. If no Bits entry
is given, Shout defaults to 8 bits.

Notes
Shin and Shout provide a method of acquiring data from synchronous serial devices. Data bits
may be valid after the rising or falling edge of the clock line. This kind of serial protocol is com-
monly used by controller peripherals like ADCs, DACs, clocks, memory devices, etc.

At their heart, synchronous-serial devices are essentially shift-registers; trains of flip flops that
receive data bits in a bucket brigade fashion from a single data input pin. Another bit is input
each time the appropriate edge (rising or falling, depending on the device) appears on the clock
line.

The Shout instruction first causes the clock pin to output low and the data pin to switch to out-
put mode. Then, Shout sets the data pin to the next bit state to be output and generates a
clock pulse. Shout continues to generate clock pulses and places the next data bit on the data
pin for as many data bits as are required for transmission.

Making Shout work with a particular device is a matter of matching the mode and number of
bits to that device's protocol. Most manufacturers use a timing diagram to illustrate the relation-
ship of clock and data. One of the most important items to look for is which bit of the data
should be transmitted first; most significant bit (MSB) or least significant bit (LSB).

8-bit Proton Compiler Development Suite.

 375

Example

 Shout DTA, CLK, MsbFirst, [250]

In the above example, the Shout command will write to I/O pin DTA (the Dpin) and will gener-
ate a clock signal on I/O CLK (the Cpin). The Shout command will generate eight clock pulses
while writing each bit (of the 8-bit value 250) onto the data pin (Dpin). In this case, it will start
with the most significant bit first as indicated by the Mode value of MsbFirst.

By default, Shout transmits eight bits, but you can set it to shift any number of bits from 1 to 16
with the Bits argument. For example: -

 Shout DTA, CLK, MsbFirst, [250\4]

Will only output the lowest 4 bits (%0000 in this case). Some devices require more than 16 bits.
To solve this, you can use a single Shout command with multiple values. Each value can be
assigned a particular number of bits with the Bits argument. As in: -

 Shout DTA, CLK, MsbFirst, [250\4, 1045\16]

The above code will first shift out four bits of the number 250 (%1111) and then 16 bits of the
number 1045 (%0000010000010101). The two values together make up a 20 bit value.

See also : Shin.

8-bit Proton Compiler Development Suite.

 376

Snooze

Syntax
Snooze Period

Overview
Enter sleep mode for a short period. Power consumption is reduced to a few µA assuming no
loads are being driven.

Parameters
Period is a variable or constant that determines the duration of the reduced power nap. The
duration is (2^period) * 18 ms. (Read as "2 raised to the power of ‘period', times 18 ms.") Period
can range from 0 to 7, resulting in the following snooze lengths: -

 Period Length of Snooze (approx)
 0 - 1 18ms
 1 - 2 36ms
 2 - 4 72ms
 3 - 8 144ms
 4 - 16 288ms
 5 - 32 576ms
 6 - 64 1152ms (1.152 seconds)
 7 - 128 2304ms (2.304 seconds)

Example

 Snooze 6 ' Low power mode for approx 1.152 seconds

Notes
Snooze intervals are directly controlled by the watchdog timer without compensation. Varia-
tions in temperature, supply voltage, and manufacturing tolerance of the device you are using
can cause the actual timing to vary by as much as -50% to +100%

See also : Sleep.

8-bit Proton Compiler Development Suite.

 377

Sleep

Syntax
Sleep { Length }

Overview
Places the microcontroller into low power mode for approx n seconds. i.e. power down but
leaves the port pins in their previous states.

Parameters
Length is an optional variable or constant (1-65535) that specifies the duration of sleep in sec-
onds. If length is omitted, then the Sleep command is assumed to be the assembler mnemonic,
which means the microcontroller will sleep continuously, or until the Watchdog timer wakes it
up.

Example
 Symbol LED = PORTA.0

 Do
 High LED ' Turn LED on.
 DelayMs 1000 ' Wait 1 second.
 Low LED ' Turn LED off.
 Sleep 60 ' Sleep for 1 minute.
 Loop

Notes
Sleep will place the device into a low power mode for the specified period of seconds. Period is
16 bits, so delays of up to 65,535 seconds are the limit (a little over 18 hours) Sleep uses the
Watchdog Timer so it is independent of the oscillator frequency. The smallest units is about 2.3
seconds and may vary depending on specific environmental conditions and the device used.

The Sleep command is used to put the microcontroller in a low power mode without resetting
the registers. Allowing continual program execution upon waking up from the Sleep period.

Waking a 14-bit core dedvice from Sleep
All the PICmicro™ range have the ability to be placed into a low power mode, consuming micro
Amps of current.

The command for doing this is Sleep. The compiler's Sleep command or the assembler's
Sleep instruction may be used. The compiler's Sleep command differs somewhat to the as-
sembler's in that the compiler's version will place the device into low power mode for approx n
seconds (where n is a value from 0 to 65535). The assembler's version still places the device
into low power mode, however, it does this forever, or until an internal or external source wakes
it. This same source also wakes the device when using the compiler's command.

Many things can wake the device from its sleep, the WatchDog Timer is the main cause and is
what the compiler's Sleep command uses.

Another method of waking the PICmicro™ is an external one, a change on one of the port pins.
We will examine more closely the use of an external source. There are several ways of waking
the microcontroller using an external source. One is a change on bits 4..7 of PORTB.

8-bit Proton Compiler Development Suite.

 378

Another is a change on bit-0 of PORTB. We shall first look at the wake up on change of
PORTB,bits-4..7.

As its name suggests, any change on these pins either high to low or low to high will wake the
device. However, to setup this mode of operation several bits within registers INTCON and
OPTION_REG need to be manipulated. One of the first things required is to enable the weak
PORTB pull-up resistors. This is accomplished by clearing the RBPU bit of OPTION_REG
(OPTION_REG.7). If this was not done, then the pins would be floating and random input
states would occur waking the microcontroller up prematurely. Although technically we are
enabling a form of interrupt, we are not interested in actually running an interrupt handler.
Therefore, we must make sure that Global interrupts are disabled, or the device will jump to an
interrupt handler every time a change occurs on PORTB. This is done by clearing the GIE bit
of INTCON (INTCON.7).

The interrupt we are concerned with is the RB port change type. This is enabled by setting the
RBIE bit of the INTCON register (INTCON.3). All this will do is set a flag whenever a change
occurs (and of course wake up the PICmicro™). The flag in question is RBIF, which is bit-0 of
the INTCON register. For now we are not particularly interested in this flag, however, if global
interrupts were enabled, this flag could be examined to see if it was the cause of the interrupt.
The RBIF flag is not cleared by hardware so before entering Sleep it should be cleared. It must
also be cleared before an interrupt handler is exited.

The Sleep command itself is then used. Upon a change of PORTB, bits 4..7 the device will
wake up and perform the next instruction (or command) after the Sleep command was issued.
A second external source for waking the device is a pulse applied to PORTB.0. This interrupt is
triggered by the edge of the pulse, high to low or low to high. The INTEDG bit of OPTION_REG
(OPTION_REG.6) determines what type of pulse will trigger the interrupt. If it is set, then a low
to high pulse will trigger it, and if it is cleared then a high to low pulse will trigger it.

To allow the PORTB.0 interrupt to wake the PICmicro™ the INTE bit must be set, this is bit-4 of
the INTCON register. This will allow the flag INTF (INTCON.1) to be set when a pulse with the
right edge is sensed. This flag is only of any importance when determining what caused the in-
terrupt. However, it is not cleared by hardware and should be cleared before the Sleep com-
mand is used (or the interrupt handler is exited). The program below will wake the microcontrol-
ler when a change occurs on PORTB, bits 4-7.

 Symbol LED = PORTB.0 ' Assign the LED's pin
 Symbol RBIF = INTCON.0 ' PORTB[4..7] Change Interrupt Flag
 Symbol RBIE = INTCON.3 ' PORTB[4..7] Change Interrupt Enable
 Symbol RBPU = OPTION_REG.7 ' PORTB pull-ups
 Symbol GIE = INTCON.7 ' Global interrupt enable/disable

Main:

GIE = 0 ' Turn Off global interrupts
 TRISB.4 = 1 ' Set PORTB.4 as an Input
 RBPU = 0 ' Enable PORTB Pull-up Resistors
 RBIE = 1 ' Enable PORTB[4..7] interrupt
Again:

DelayMs 100
 Low LED ' Turn off the LED
 RBIF = 0 ' Clear the PORTB[4..7] interrupt flag
 Sleep ' Put the PICmicro to sleep
 DelayMs 100 ' When it wakes up, delay for 100ms
 High LED ' Then light the LED
 Goto Again ' Do it forever

8-bit Proton Compiler Development Suite.

 379

SonyIn

Syntax
Variable = SonyIn

Overview
Receive Sony SIRC (Sony Infrared Remote Control) data from a predetermined pin. The pin is
automatically made an input.

Parameters
Variable - a bit, byte, word, dword, or float variable, that will be loaded by SonyIn. The return
data from the SonyIn command consists of two bytes, the System byte containing the type of
remote used. i.e. TV, Video etc, and the Command byte containing the actual button value. The
order of the bytes is Command (low byte) then System (high byte). If a byte variable is used to
receive data from the infrared sensor then only the Command byte will be received.

Example
' Receive Sony SIRC data from an infrared sensor attached to PORTC.0
 Device = 16F1829
 Declare SonyIn_Pin = PORTC.0 ' Choose port.pin for infrared sensor

 Dim SonyIn_Word as Word ' Create a Word variable to receive the SIRC data
'
' Alias the Command byte to SonyIn_Word low byte
'
 Dim SonyCommand as SonyIn_Word.Lowbyte
'
' Alias the System byte to SonyIn_Word high byte
'

Dim SonySystem as SonyIn_Word.Highbyte

Cls ' Clear the LCD
While ' Create an infinite loop

Repeat
SonyIn_Word = SonyIn ' Receive a signal from the infrared sensor

Until SonyCommand <> 255 ' Keep looking until a valid header found
Print at 1,1,"System ",Dec SonySystem," " ' Display the System value
Print at 2,1,"Command ",Dec SonyCommand," " ' Display the Command value

Wend

There is a single Declare for use with SonyIn: -

Declare SonyIn_Pin Port . Pin
Assigns the Port and Pin that will be used to input infrared data by the SonyIn command. This
may be any valid port on the device.

If the Declare is not used in the program, then the default Port and Pin is PORTB.0.

Notes
The SonyIn command will return with both Command and System bytes containing 255 if a
valid header was not received. The CARRY (STATUS.0) flag will also be set if an invalid
header was received. This is an ideal method of determining if the signal received is of the cor-
rect type.

SonyIn is oscillator independent as long as the crystal frequency is declared at the top of the
program. If no Xtal Declare is used, then SonyIn defaults to a 4MHz crystal frequency for its
timing.

8-bit Proton Compiler Development Suite.

 380

Sound

Syntax
Sound Pin, [Note,Duration {,Note,Duration...}]

Overview
Generates tone and/or white noise on the specified Pin. Pin is automatically made an output.

Parameters
Pin is a Port.Pin constant that specifies the output pin on the device.
Note can be an 8-bit variable or constant. 0 is silence. Notes 1-127 are tones. Notes 128-255
are white noise. Tones and white noises are in ascending order (i.e. 1 and 128 are the lowest
frequencies, 127 and 255 are the highest). Note 1 is approx 78.74Hz and Note 127 is approx
10,000Hz.
Duration can be an 8-bit variable or constant that determines how long the Note is played in
approx 10ms increments.

Example
' Star Trek The Next Generation...Theme and ship take-off
 Device = 16F1829
 Declare Xtal = 4

 Dim MyLoop as Byte
 Symbol Pin = PORTB.0

 Do

Sound Pin,[50,60,70,20,85,120,83,40,70,20,50,20,70,20,90,120,90,20,98,160]
 DelayMs 500
 For MyLoop = 128 to 255 ' Ascending white noises

Sound Pin, [MyLoop,2] ' For warp drive sound
 Next
 Sound Pin, [43,80,63,20,77,20,71,80,51,20,_
 90,20,85,140,77,20,80,20,85,20,_
 90,20,80,20,85,60,90,60,92,60,87,_
 60,96,70,0,10,96,10,0,10,96,10,0,_
 10,96,30,0,10,92,30,0,10,87,30,0,_
 10,96,40,0,20,63,10,0,10,63,10,0,_
 10,63,10,0,10,63,20]
 DelayMs 10000
 Loop

Notes
With the excellent I/O characteristics of the PICmicro™, a speaker can be driven through a ca-
pacitor directly from the pin of the microcontroller. The value of the capacitor should be deter-
mined based on the frequencies of interest and the speaker load. Piezo speakers can be driven
directly.

See also : Freqout, DTMFout, Sound2.

8-bit Proton Compiler Development Suite.

 381

Sound2

Syntax
Sound2 Pin2, Pin2, [Note1\Note2\Duration {,Note1,Note2\Duration...}]

Overview
Generate specific notes on each of the two defined pins. With the Sound2 command more
complex notes can be played by the microcontroller.

Parameters
Pin1 and Pin2 are Port.Pin constants that specify the output pins on the PICmicro™.
Note is a variable or constant specifying frequency in Hertz (Hz, 0 to 16000) of the tones.
Duration can be a variable or constant that determines how long the Notes are played. In
approx 1ms increments (0 to 65535).

Example 1
' Generate a 2500Hz tone and a 3500Hz tone for 1 second.
' The 2500Hz note is played from the first pin specified (PORTB.0),
' and the 3500Hz note is played from the second pin specified (PORTB.1).
 Device = 16F1829
 Declare Xtal = 20
 Symbol Pin1 = PORTB.0
 Symbol Pin2 = PORTB.1
 Sound2 Pin1, Pin2, [2500\3500\1000]
 Stop

Example 2
' Play two sets of notes 2500Hz and 3500Hz for 1 second
' and the second two notes, 2500Hz and 3500Hz for 2 seconds.
 Device = 16F1829
 Declare Xtal = 20
 Symbol Pin1 = PORTB.0
 Symbol Pin2 = PORTB.1
 Sound2 Pin1, Pin2, [2500\3500 1000, 2500\3500\2000]
 Stop

Notes
Sound2 generates two pulses at the required frequency one on each pin specified. The
Sound2 command can be used to play tones through a speaker or audio amplifier. Sound2
can also be used to play more complicated notes. By generating two frequencies on separate
pins, a more defined sound can be produced. Sound2 is somewhat dependent on the crystal
frequency used for its note frequency, and duration.

Sound2 does not require any filtering on the output, and produces a
cleaner note than Freqout. However, unlike Freqout, the note is not a
SINE wave. See diagram: -

See also : Freqout, DTMFout, Sound.

R1
220

R2
220

PIN 1

PIN 2

8-bit Proton Compiler Development Suite.

 382

Stop

Syntax
Stop

Overview
Stop halts program execution by sending the microcontroller into an infinite loop.

Example
 If A > 12 Then Stop
 { code data }

If variable A contains a value greater than 12 then stop program execution. code data will not
be executed.

Notes
Although Stop halts the microcontroller in its tracks it does not prevent any code listed in the
BASIC source after it from being compiled.

See also : End, Sleep, Snooze.

8-bit Proton Compiler Development Suite.

 383

Strn

Syntax
Strn Byte Array = Item

Overview
Load a Byte Array with null terminated data, which can be likened to creating a pseudo String
variable.

Parameters
Byte Array is the variable that will be loaded with values.
Item can be another Strn command, a Str command, Str$ command, or a quoted character
string

Example
' Load the Byte Array String1 with null terminated characters

 Include "Proton_4.Inc" ' Demonstration based on the Proton dev board
 Dim String1[21] as Byte ' Create a Byte array with 21 elements

 DelayMs 100 ' Wait for the LCD to stabilise
 Cls ' Clear the LCD
 Strn String1 = "HELLO WORLD"
 ' Load String1 with characters and null terminate it
 Print Str String1 ' Display the string
 Stop

See also: Arrays as Strings, Str$.

8-bit Proton Compiler Development Suite.

 384

Str$

Syntax
 Str Byte Array = Str$ (Modifier Variable)
or
 String = Str$ (Modifier Variable)

Overview
Convert a Decimal, Hex, Binary, or Floating Point value or variable into a null terminated string
held in a Byte array, or a String variable. For use only with the Str and Strn commands, and
real String variables.

Parameters
Modifier is one of the standard modifiers used with Print, Rsout, Hserout etc. See list below.
Variable is a variable that holds the value to convert. This may be a Bit, Byte, Word, Dword,
or Float.
Byte Array must be of sufficient size to hold the resulting conversion and a terminating null
character (0).
String must be of sufficient size to hold the resulting conversion.

Notice that there is no comma separating the Modifier from the Variable. This is because the
compiler borrows the format and subroutines used in Print. Which is why the modifiers are the
same: -

 Bin{1..32} Convert to binary digits
 Dec{1..10} Convert to decimal digits
 Hex{1..8} Convert to hexadecimal digits
 Sbin{1..32} Convert to signed binary digits
 Sdec{1..10} Convert to signed decimal digits
 Shex{1..8} Convert to signed hexadecimal digits
 Ibin{1..32} Convert to binary digits with a preceding '%' identifier
 Idec{1..10} Convert to decimal digits with a preceding '#' identifier
 Ihex{1..8} Convert to hexadecimal digits with a preceding '$' identifier
 ISbin{1..32} Convert to signed binary digits with a preceding '%' identifier
 ISdec{1..10} Convert to signed decimal digits with a preceding '#' identifier
 IShex{1..8} Convert to signed hexadecimal digits with a preceding '$' identifier

Example 1
' Convert a Word variable to a String of characters in a Byte array.
 Include "Proton_4.Inc" ' Use the Proton board for the demo
'
' Create a byte array to hold converted value, and null terminator
'
 Dim String1[11] as Byte
 Dim Wrd1 as Word

 DelayMs 100 ' Wait for the LCD to stabilise
 Cls ' Clear the LCD
 Wrd1 = 1234 ' Load the variable with a value
 Strn String1 = Str$(Dec Wrd1) ' Convert the Integer to a String
 Print Str String1 ' Display the string
 Stop

8-bit Proton Compiler Development Suite.

 385

Example 2
' Convert a Dword variable to a String of characters in a Byte array.
 Include "Proton_4.Inc" ' Use the Proton board for the demo
'
' Create a byte array to hold converted value, and null terminator
'
 Dim String1[11] as Byte
 Dim Dwd1 as Dword

 DelayMs 100 ' Wait for the LCD to stabilise
 Cls ' Clear the LCD
 Dwd1 = 1234 ' Load the variable with a value
 Strn String1 = Str$(Dec Dwd1) ' Convert the Integer to a String
 Print Str String1 ' Display the string
 Stop

Example 3
' Convert a Float variable to a String of characters in a Byte array.
 Include "Proton_4.Inc" ' Use the Proton board for the demo
' Create a byte array to hold converted value, and null terminator
 Dim String1[11] as Byte
 Dim Flt1 as Float

 DelayMs 100 ' Wait for the LCD to stabilise
 Cls ' Clear the LCD
 Flt1 = 3.14 ' Load the variable with a value
 Strn String1 = Str$(Dec Flt1) ' Convert the Float to a String
 Print Str String1 ' Display the string
 Stop

Example 4
' Convert a Word variable to a Binary String of characters in an array.
 Include "Proton_4.Inc" ' Use the Proton board for the demo
' Create a byte array to hold converted value, and null terminator
 Dim String1[34] as Byte
 Dim Wrd1 as Word

 DelayMs 100 ' Wait for the LCD to stabilise
 Cls ' Clear the LCD
 Wrd1 = 1234 ' Load the variable with a value
 Strn String1 = Str$(Bin Wrd1) ' Convert the Integer to a String
 Print Str String1 ' Display the string
 Stop

If we examine the resulting string (Byte Array) converted with example 2, it will contain: -

 character 1, character 2, character 3, character 4, 0

The zero is not character zero, but value zero. This is a null terminated string.
Notes
The Byte Array created to hold the resulting conversion, must be large enough to accommo-
date all the resulting digits, including a possible minus sign and preceding identifying character.
%, $, or # if the I version modifiers are used. The compiler will try and warn you if it thinks the
array may not be large enough, but this is a rough guide, and you as the programmer must de-
cide whether it is correct or not. If the size is not correct, any adjacent variables will be overwrit-
ten, with potentially catastrophic results.

See also : Creating and using Strings, Strn, Arrays as Strings.

8-bit Proton Compiler Development Suite.

 386

Sub-EndSub

Syntax
Sub Label Name()
 BASIC commands inside the Sub
EndSub

Overview
Create a subroutine.

Parameters
Label Name is the name of the subroutine.

Example
' Create a subroutine to flash an LED 10 times

Device = 16F1829
 Declare Xtal = 20

 Dim FlashAmount as Byte ' Create a variable for the amount of LED flashes
 Symbol LED = PORTB.0 ' Create a name for the LED’s Port and Pin

 Do ' Create a loop

FlashLED() ' Call the subroutine
 DelayMs 1000 ' Delay for 1 second

Loop ' Loop forever

' Create a subroutine that will flash an LED
'

Sub FlashLED()
 For FlashAmount = 1 to 10 ' A loop for the amount of flashes
 High LED ' Illuminate the LED
 DelayMs 500 ' Wait for half a second
 Low LED ' Extinguish the LED
 DelayMs 500 ' Wait for half a second
 Next ' Close the loop
EndSub ' End the subroutine and return from it

The EndSub directive will produce a Return command and exit the subroutine as normal.
There is also an ExitSub command that will create a Return command and return from the
subroutine.

' Create a subroutine that will flash an LED and exit when required
'

Sub FlashLED()
 For FlashAmount = 1 to 100 ' A loop for the amount of flashes
 High LED ' Illuminate the LED
 DelayMs 500 ' Wait for half a second
 Low LED ' Extinguish the LED
 DelayMs 500 ' Wait for half a second
 If FlashAmount >= 10 Then ExitSub ' Exit the subroutine after 10 flashes

Next ' Close the loop
EndSub ' End the subroutine and return from it

Calling a sub only requires the name, and a pair of parenthasis after it. This makes a program
easier to read:

MySub() ' Call the subroutine named MySub

See also : Gosub.

8-bit Proton Compiler Development Suite.

 387

Swap

Syntax
Swap Variable, Variable

Overview
Swap any two variable's values with each other.

Parameters
Variable is the variable to be swapped

Example
' If Dog = 2 and Cat = 10 then by using the swap command
' Dog will now equal 10 and Cat will equal 2.

 Var1 = 10 ' Var1 equals 10
 Var2 = 20 ' Var2 equals 20
 Swap Var1, Var2 ' Var2 now equals 20 and Var1 now equals 10

8-bit Proton Compiler Development Suite.

 388

Symbol

Syntax
Symbol Name { = } Value

Overview
Assign an alias to a register, variable, or constant value

Parameters
Name can be any valid identifier.
Value can be any previously declared variable, system register, or a Register.Bit combination.
The equals '=' symbol is optional, and may be omitted if desired.

When creating a program it can be beneficial to use identifiers for certain values that don't
change: -

 Symbol Meter = 1
 Symbol Centimetre = 100
 Symbol Millimetre = 1000

This way you can keep your program very readable and if for some reason a constant changes
later, you only have to make one change to the program to change all the values. Another good
use of the constant is when you have values that are based on other values.

 Symbol Meter = 1
 Symbol Centimetre = Meter / 100
 Symbol Millimetre = Centimetre / 10

In the example above you can see how the centimetre and millimetre were derived from the
Meter.

Another use of the Symbol command is for assigning Port.Bit constants: -

 Symbol LED = PORTA.0
 High LED

In the above example, whenever the text LED is encountered, Bit-0 of PORTA is actually refer-
enced.

Floating point constants may also be created using Symbol by simply adding a decimal point to
a value.

 Symbol PI = 3.14 ' Create a floating point constant named PI
 Symbol FlNum = 5.0 ' Create a floating point constant with the value 5

Floating point constant can also be created using expressions.

 ' Create a floating point constant holding the result of the expression
 Symbol Quanta = 5.0 / 1024

Notes
Symbol cannot create new variables, it simply aliases an identifier to a previously assigned
variable, or assigns a constant to an identifier.

8-bit Proton Compiler Development Suite.

 389

Toggle

Syntax
Toggle Port.Bit or Pin Number

Overview
Sets a pin to output mode and reverses the output state of the pin, changing 0 to 1 and 1 to 0.

Parameters
Port.Bit can be any valid Port and Bit combination.
Pin Number can be a variable or constant that holds a value from 0 to the amount of I/O pins
on the device. A value of 0 will be PORTA.0, if present, 1 will be PORTA.1, 8 will be PORTB.0
etc…

Example 1
 Do ' Create a loop

Toggle PORTB.0 ' Now reverse the pin
 DelayMs 500 ' Wait for half a second

Loop ' Do it forever

Example 2
' Flash each of the pins on PORTA and PORTB
'
 Device = 18F25K20
 Declare Xtal = 16

 Dim MyPin as Byte

 For MyPin = 0 to 15 ' Create a loop for the pin to flash
 Toggle MyPin ' Toggle the pin
 DelayMs 500 ' Delay so that it can be seen
 Toggle MyPin ' Toggle the pin
 DelayMs 500 ' Delay so that it can be seen
 Next

8-bit Proton Compiler Development Suite.

 390

Notes.
Each pin number has a designated name. These are Pin_A0, Pin_A1, PinA2….Pin_B0,
Pin_B7, Pin_C0, Pin_C7 to Pin_L7 etc… Each of the names has a relevant value, for example,
Pin_A0 has the value 0, Pin_B0 has the value 8, up to Pin_L7, which has the value 87.

These can be used to pass a relevant pin number to a subroutine. For example:
'
' Flash an LED attached to PORTB.0 via a subroutine
' Then flash an LED attached to PORTB.1 via the same subroutine
'

Device = 18F25K20
Declare Xtal = 16

Dim PinNumber As Byte ' Holds the pin number to set high and low

Do ' Create an infinite loop

PinNumber = Pin_B0 ' Give the pin number to flash (PORTB.0)
Gosub FlashPin ' Call the subroutine to flash the pin
PinNumber = Pin_B1 ' Give the pin number to flash (PORTB.1)
Gosub FlashPin ' Call the subroutine to flash the pin

 Loop ' Do it forever
'
' Set a pin high then low for 500ms using a variable as the pin to adjust
'
FlashPin:
 Toggle PinNumber ' Toggle the pin
 DelayMs 500 ' Wait for 500 milliseconds

Toggle PinNumber ' Toggle the pin
DelayMs 500 ' Wait for 500 milliseconds
Return

See also : High, Low.

8-bit Proton Compiler Development Suite.

 391

ToLower

Syntax
Destination String = ToLower (Source String)

Overview
Convert the characters from a source string to lower case.

Overview
Destination String can only be a String variable, and should be large enough to hold the cor-
rect amount of characters extracted from the Source String.
Source String can be a String variable, or a Quoted String of Characters. The Source String
can also be a Byte, Word, Dword, Float or Array, variable, in which case the value contained
within the variable is used as a pointer to the start of the Source String's address in RAM. A
third possibility for Source String is a Label name, in which case a null terminated Quoted
String of Characters is read from a Cdata table.

Example 1
' Convert the characters from SourceString to lowercase into DestString
'
 Device = 18F452 ' A suitable device for Strings
 Dim SourceString as String * 20 ' Create a String of 20 characters
 Dim DestString as String * 20 ' Create another String

 SourceString = "HELLO WORLD" ' Load the source string with characters
 DestString = ToLower (SourceString) ' Convert to lowercase
 Print DestString ' Display the result, which will be "hello world"
 Stop

Example 2
' Convert the characters from a Quoted Character String to lowercase
' into DestString
'
 Device = 18F452 ' A suitable device for Strings
 Dim DestString as String * 20 ' Create a String of 20 characters

 DestString = ToLower ("HELLO WORLD") ' Convert to lowercase
 Print DestString ' Display the result, which will be "hello world"
 Stop

Example 3
' Convert to lowercase from SourceString into DestString using a pointer to
' SourceString
'
 Device = 18F452 ' A suitable device for Strings
 Dim SourceString as String * 20 ' Create a String of 20 characters
 Dim DestString as String * 20 ' Create another String
'
' Create a Word variable to hold the address of SourceString
'
 Dim StringAddr as Word
 SourceString = "HELLO WORLD" ' Load the source string with characters
 ' Locate the start address of SourceString in RAM
 StringAddr = AddressOf(SourceString)
 DestString = ToLower(StringAddr) ' Convert to lowercase
 Print DestString ' Display the result, which will be "hello world"
 Stop

8-bit Proton Compiler Development Suite.

 392

Example 4
' Convert chars from a Cdata table to lowercase and place into DestString
'
 Device = 18F452 ' A suitable device for Strings
 Dim DestString as String * 20 ' Create a String of 20 characters

 DestString = ToLower (Source) ' Convert to lowercase
 Print DestString ' Display the result, which will be "hello world"
 Stop
'
' Create a null terminated string of characters in code memory
'
Source:
 Cdata "HELLO WORLD", 0

See also : Creating and using Strings, Creating and using Virtual Strings with Cdata,

Cdata, Len, Left$, Mid$, Right$, Str$, ToUpper, AddressOf.

8-bit Proton Compiler Development Suite.

 393

ToUpper

Syntax
Destination String = ToUpper (Source String)

Overview
Convert the characters from a source string to UPPER case.

Overview
Destination String can only be a String variable, and should be large enough to hold the cor-
rect amount of characters extracted from the Source String.
Source String can be a String variable, or a Quoted String of Characters . The Source String
can also be a Byte, Word, Dword, Float or Array, variable, in which case the value contained
within the variable is used as a pointer to the start of the Source String's address in RAM. A
third possibility for Source String is a Label name, in which case a null terminated Quoted
String of Characters is read from a Cdata table.

Example 1
' Convert the characters from SourceString to UpperCase and place into
' DestString
'
 Device = 18F452 ' A suitable device for Strings
 Dim SourceString as String * 20 ' Create a String of 20 characters
 Dim DestString as String * 20 ' Create another String

 SourceString = "hello world" ' Load the source string with characters
 DestString = ToUpper(SourceString) ' Convert to uppercase
 Print DestString ' Display the result, which will be "HELLO WORLD"
 Stop

Example 2
' Convert the chars from a Quoted Character String to UpperCase
' and place into DestString
'
 Device = 18F452 ' A suitable device for Strings
 Dim DestString as String * 20 ' Create a String of 20 characters

 DestString = ToUpper("hello world") ' Convert to uppercase
 Print DestString ' Display the result, which will be "HELLO WORLD"
 Stop

Example 3
' Convert to UpperCase from SourceString into DestString using a pointer to
' SourceString
'
 Device = 18F452 ' A suitable device for Strings
 Dim SourceString as String * 20 ' Create a String of 20 characters
 Dim DestString as String * 20 ' Create another String
'
' Create a Word variable to hold the address of SourceString
'
 Dim StringAddr as Word
 ' Load the source string with characters
 SourceString = "hello world"
 ' Locate the start address of SourceString in RAM
 StringAddr = AddressOf(SourceString)
 DestString = ToUpper(StringAddr) ' Convert to uppercase
 Print DestString ' Display the result, which will be "HELLO WORLD"
 Stop

8-bit Proton Compiler Development Suite.

 394

Example 4
' Convert chars from Cdata table to uppercase and place into DestString
'

Device = 18F452 ' A suitable device for Strings
 Dim DestString as String * 20 ' Create a String of 20 characters

 DestString = ToUpper(Source) ' Convert to uppercase
 Print DestString ' Display the result, which will be "HELLO WORLD"
 Stop
'
' Create a null terminated string of characters in code memory
Source:
 Cdata "hello world", 0

See also : Creating and using Strings, Creating and using Virtual Strings with Cdata,

Cdata, Len, Left$, Mid$, Right$, Str$, ToLower, AddressOf .

8-bit Proton Compiler Development Suite.

 395

Toshiba_Command

Syntax
Toshiba_Command Command, Value

Overview
Send a command with or without parameters to a Toshiba T6963 graphic LCD.

Parameters
Command can be a constant, variable, or expression, that contains the command to send to
the LCD. This will always be an 8-bit value.
Value can be a constant, variable, or expression, that contains an 8-bit or 16-bit parameter as-
sociated with the command. An 8-bit value will be sent as a single parameter, while a 16-bit
value will be sent as two parameters. Parameters are optional as some commands do not re-
quire any. Therefore if no parameters are included, only a command is sent to the LCD.

Because the size of the parameter is vital to the correct operation of specific commands, you
can force the size of the parameter sent by issuing either the text “Byte” or “Word” prior to the
parameter’s value.

Toshiba_Command $C0, Byte $FF01 ' Send the low byte of the 16-bit value.
Toshiba_Command $C0, Word $01 ' Send a 16-bit value regardless.

The explanation of each command is too lengthy for this document, however they can be found
in the Toshiba T6963 datasheet. The example program shown below contains a condensed list
of commands.

Example
' Pan two pages of text left and right on a 128x64 Toshiba T6963 graphic LCD
 Device = 18F452
 Declare LCD_Type = Toshiba ' Use a Toshiba T6963 graphic LCD
'
' LCD interface pin assignments
'
 Declare LCD_DTPort = PORTD ' LCD’s Data port
 Declare LCD_WRPin = PORTE.2 ' LCD’s WR line
 Declare LCD_RDPin = PORTE.1 ' LCD’s RD line
 Declare LCD_CEPin = PORTE.0 ' LCD’s CE line
 Declare LCD_CDPin = PORTA.1 ' LCD’s CD line
 Declare LCD_RSTPin = PORTA.0 ' LCD’s RESet line (Optional)
'
' LCD characteristics
'
 Declare LCD_Text_Pages = 2 ' Choose two text pages
 Declare LCD_RAM_Size = 8192 ' Amount of RAM the LCD contains
 Declare LCD_X_Res = 128 ' LCD’s X Resolution
 Declare LCD_Y_Res = 64 ' LCD’s Y Resolution
 Declare LCD_Font_Width = 6 ' The width of the LCD’s font
 Declare LCD_Text_Home_Address = 0 ' Text RAM starts at address 0

8-bit Proton Compiler Development Suite.

 396

' LCD Display Constants: -
' Register set commands:
 Symbol T_Cursor_POINTER_Set = $21 ' Cursor Pointer Set
' Offset Register Set (CGRAM start address offset)
 Symbol T_OFFset_REG_Set = $22
 Symbol T_Addr_POINTER_Set = $24 ' Address Pointer Set
' Control Word Set commands:
 Symbol T_Text_Home_Set = $40 ' Text Home Address Set
 Symbol T_Text_AREA_Set = $41 ' Text Area Set
 Symbol T_GRAPH_Home_Set = $42 ' Graphics Home address Set
 Symbol T_GRAPH_AREA_Set = $43 ' Graphics Area Set
' Mode Set commands:
 Symbol T_or_MODE = $80 ' or mode
 Symbol T_xor_MODE = $81 ' xor mode
 Symbol T_and_MODE = $83 ' and mode

Symbol T_Text_ATTR_MODE = $84 ' Text Attribute mode
Symbol T_INT_CG_MODE = $80 ' Internal CG ROM mode
Symbol T_EXT_CG_MODE = $88 ' External CG RAM mode

' Display Mode commands (or together required bits):
Symbol T_DISPLAY_OFF = $90 ' Display off
Symbol T_BLINK_ON = $91 ' Cursor Blink on
Symbol T_Cursor_ON = $92 ' Cursor on
Symbol T_Text_ON = $94 ' Text mode on
Symbol T_Graphic_ON = $98 ' Graphic mode on
Symbol T_Text_and_GRAPH_ON = $9C ' Text and graphic mode on

' Cursor Pattern Select:
Symbol T_Cursor_1LINE = $A0 ' 1 line cursor
Symbol T_Cursor_2LINE = $A1 ' 2 line cursor
Symbol T_Cursor_3LINE = $A2 ' 3 line cursor
Symbol T_Cursor_4LINE = $A3 ' 4 line cursor
Symbol T_Cursor_5LINE = $A4 ' 5 line cursor
Symbol T_Cursor_6LINE = $A5 ' 6 line cursor
Symbol T_Cursor_7LINE = $A6 ' 7 line cursor
Symbol T_Cursor_8LINE = $A7 ' 8 line cursor

' Data Auto Read/Write:
Symbol T_Data_AUTO_WR = $B0 ' Data write with auto increment of address
Symbol T_Data_AUTO_RD = $B1 ' Data read with auto increment of address
Symbol T_AUTO_Data_Reset = $B2 ' Disable auto read/write

' Data Read/Write:
Symbol T_Data_WR_Inc = $C0 ' Data write and increment address
Symbol T_Data_RD_Inc = $C1 ' Data read and increment address
Symbol T_Data_WR_Dec = $C2 ' Data write and decrement address
Symbol T_Data_RD_Dec = $C3 ' Data read and decrement address
Symbol T_Data_WR = $C4 ' Data write with no address change
Symbol T_Data_RD = $C5 ' Data read with no address change

' Screen Peek:
Symbol T_SCREEN_Peek = $E0 ' Read the display

' Screen Copy:
Symbol T_SCREEN_COPY = $E8 ' Copy a line of the display

' Bit Set/Reset (or with bit number 0-7):
Symbol T_Bit_Reset = $F0 ' Pixel clear
Symbol T_Bit_Set = $F8 ' Pixel set

8-bit Proton Compiler Development Suite.

 397

' Create two variables for the demonstration

Dim Pan_Loop as Byte ' Holds the amount of pans to perform
Dim Ypos as Byte ' Holds the Y position of the displayed text

'
' The Main program loop starts here
'

DelayMs 100 ' Wait for the LCD to stabilise
 Cls ' Clear and initialise the LCD
'
' Place text on two screen pages
'

For Ypos = 1 to 6
Print At Ypos, 0, " THIS IS PAGE ONE THIS IS PAGE TWO"

Next
'
' Draw a box around the display
'

Line 1, 0, 0, 127, 0 ' Top line
LineTo 1, 127, 63 ' Right line
LineTo 1, 0, 63 ' Bottom line
LineTo 1, 0, 0 ' Left line

'
' Pan from one screen to the next then back
'

While ' Create an infinite loop
For Pan_Loop = 0 to 22
 '

 ' Increment the Text home address
 '
 Toshiba_Command T_Text_Home_Set, Word Pan_Loop
 DelayMs 200
 Next

DelayMs 200
 For PAN_Loop = 22 to 0 Step –1
 '

' Decrement the Text home address
'

 Toshiba_Command T_Text_Home_Set, Word Pan_Loop
 DelayMs 200
 Next

DelayMs 200
Wend ' Do it forever

Notes
When the Toshiba LCD’s Declares are issued within the BASIC program, several internal vari-
ables and constants are automatically created that contain the Port and Bits used by the actual
interface and also some constant values holding valuable information concerning the LCD’s
RAM boundaries and setup. These variables and constants can be used within the BASIC or
Assembler environment. The internal variables and constants are: -

Variables.
_ _LCD_DTPort The Port where the LCD’s data lines are attached.
_ _LCD_WRPort The Port where the LCD’s WR pin is attached.
_ _LCD_RDPort The Port where the LCD’s RD pin is attached.
_ _LCD_CEPort The Port where the LCD’s CE pin is attached.
_ _LCD_CDPort The Port where the LCD’s CD pin is attached.
_ _LCD_RSTPort The Port where the LCD’s RST pin is attached.

8-bit Proton Compiler Development Suite.

 398

Constants.
_ _LCD_Type The type of LCD targeted. 0 = Alphanumeric, 1 = KS0108, 2 = Toshiba.
_ _LCD_WRPin The Pin where the LCD’s WR line is attached.
_ _LCD_RDPin The Pin where the LCD’s RD line is attached.
_ _LCD_CEPin The Pin where the LCD’s CE line is attached.
_ _LCD_CDPin The Pin where the LCD’s CD line is attached.
_ _LCD_RSTPin The Pin where the LCD’s RST line is attached.
_ _LCD_Text_Pages The amount of TEXT pages chosen.
_ _LCD_Graphic_Pages The amount of Graphic pages chosen.
_ _LCD_RAM_Size The amount of RAM that the LCD contains.
_ _LCD_X_Res The X resolution of the LCD. i.e. Horizontal pixels.
_ _LCD_Y_Res The Y resolution of the LCD. i.e. Vertical pixels.
_ _LCD_Font_Width The width of the font. i.e. 6 or 8.
_ _LCD_Text_AREA The amount of characters on a single line of TEXT RAM.
_ _LCD_Graphic_AREA The amount of characters on a single line of Graphic RAM.
_ _LCD_Text_Home_Address The Starting address of the TEXT RAM.
_ _LCD_Graphic_Home_Address The Starting address of the Graphic RAM.
_ _LCD_CGRAM_Home_Address The Starting address of the CG RAM.
_ _LCD_End_OF_Graphic_RAM The Ending address of Graphic RAM.
_ _LCD_CGRAM_OFFset The Offset value for use with CG RAM.

Notice that each name has TWO underscores preceding it. This should ensure that duplicate
names are not defined within the BASIC environment.

It may not be apparent straight away why the variables and constants are required, however,
the Toshiba LCDs are capable of many tricks such as panning, page flipping, text manipulation
etc, and all these require some knowledge of RAM boundaries and specific values relating to
the resolution of the LCD used.

See also : LCDRead, LCDWrite, Pixel, Plot, Toshiba_UDG,UnPlot.
 See Print for circuit.

8-bit Proton Compiler Development Suite.

 399

Toshiba_UDG

Syntax
Toshiba_UDG Character, [Value {, Values }]

Overview
Create User Defined Graphics for a Toshiba T6963 graphic LCD.

Parameters
Character can be a constant, variable, or expression, that contains the character to define.
User defined characters start from 160 to 255.
Value\s is a list of constants, variables, or expressions, that contain the information to build the
User Defined character. There are also some modifiers that can be used in order to access
UDG data from various tables.

Example
' Create four User Defined Characters using four different methods
 Device = 18F452
 Declare Xtal = 20

 Declare LCD_Type = T6963 ' Use a Toshiba T6963 graphic LCD
'
' LCD interface pin assignments
'
 Declare LCD_DTPort = PORTD ' LCD’s Data port
 Declare LCD_WRPin = PORTE.2 ' LCD’s WR line
 Declare LCD_RDPin = PORTE.1 ' LCD’s RD line
 Declare LCD_CEPin = PORTE.0 ' LCD’s CE line
 Declare LCD_CDPin = PORTA.1 ' LCD’s CD line
 Declare LCD_RSTPin = PORTA.0 ' LCD’s RESet line (Optional)
'
' LCD characteristics
'
 Declare LCD_X_Res = 128 ' LCD’s X Resolution
 Declare LCD_Y_Res = 64 ' LCD’s Y Resolution
 Declare LCD_Font_Width = 8 ' The width of the LCD’s font
 Dim UDG_3[8] as Byte ' Create a byte array to hold UDG data
 Dim DemoChar as Byte ' Create a variable for the demo loop
' Create some User Defined Graphic data in eeprom memory
UDG_1 Edata $18, $18, $3C, $7E, $DB, $99, $18, $18
'
' The main demo loop starts here
 DelayMs 100 ' Wait for the LCD to stabilise
 Cls ' Clear both text and graphics of the LCD
' Load the array with UDG data
 Str UDG_3 = $18, $18, $99, $DB, $7E, $3C, $18, $18
'
' Print user defined graphic chars 160, 161, 162, and 162 on the LCD
'
 Print At 1, 0, "Char 160 = ", 160
 Print At 2, 0, "Char 161 = ", 161
 Print At 3, 0, "Char 162 = ", 162
 Print At 4, 0, "Char 163 = ", 163

8-bit Proton Compiler Development Suite.

 400

Toshiba_UDG 160, [Estr UDG_1] ' Place UDG edata into character 160
Toshiba_UDG 161, [UDG_2] ' Place UDG cdata into character 161
Toshiba_UDG 162, [Str UDG_3\8] ' Place UDG array into character 162
' Place values into character 163
Toshiba_UDG 163, $0C, $18, $30, $FF, $FF, $30, $18, $0C]
While ' Create an infinite loop
 For DemoChar = 160 to 163 ' Cycle through characters 160 to 163
 Print At 0, 0, DemoChar ' Display the character
 DelayMs 200 ' A small delay
 Next ' Close the loop
Wend ' Do it forever
'
' Create some User Defined Graphic data in code memory
UDG_2: Cdata $30, $18, $0C, $FF, $FF, $0C, $18, $30

Notes
User Defined Graphic values can be stored in on-board eeprom memory by the use of Edata
tables, and retrieved by the use of the Estr modifier. Eight, and only Eight, values will be read
with a single Estr:

UDG_1 Edata $18, $18, $3C, $7E, $DB, $99, $18, $18
 Toshiba_UDG 160, [Estr UDG_1]

User Defined Graphic values can also be stored in code memory, on devices that can access
their own code memory, and retrieved by the use of a label name associated with a Cdata ta-
ble. Eight, and only Eight, values will be read with a single label name:

 Toshiba_UDG 161, [UDG_2]
UDG_2:

Cdata $30, $18, $0C, $FF, $FF, $0C, $18, $30

The use of the Str modifier will retrieve values stored in an array, however, this is not recom-
mended as it will waste precious RAM.

The Toshiba LCD’s font is designed in an 8x8 grid or a 6x8 grid depending on the font size
chosen. The diagram below shows a designed character and its associated values.

See also : LCDRead, LCDWrite, Pixel, Plot, Toshiba_Command, UnPlot.
 See Print for circuit.

msb
%00000000 = $18

lsb

6 x 8 Font

%00011000 = $18
%00111100 = $3C
%01111110 = $7E
%11011011 = $DB
%10011001 = $99
%00011000 = $18
%00000000 = $18

8 x 8 Font

8-bit Proton Compiler Development Suite.

 401

UnPlot

Syntax
UnPlot Ypos, Xpos

Overview
Clear an individual pixel on a graphic LCD.

Parameters
Xpos can be a constant, variable, or expression, pointing to the X-axis location of the pixel to
clear. This must be a value of 0 to the X resolution of the LCD. Where 0 is the far left row of
pixels.
Ypos can be a constant, variable, or expression, pointing to the Y-axis location of the pixel to
clear. This must be a value of 0 to the Y resolution of the LCD. Where 0 is the top column of
pixels.

Example
 Device = 16F1829
 Declare Xtal = 4

 Declare LCD_Type = KS0108 ' Use a KS0108 Graphic LCD
'
' Graphic LCD Pin Assignments
'
 Declare LCD_DTPort = PORTD
 Declare LCD_RSPin = PORTC.2
 Declare LCD_RWPin = PORTE.0
 Declare LCD_ENPin = PORTC.5
 Declare LCD_CS1Pin = PORTE.1
 Declare LCD_CS2Pin = PORTE.2

 Dim Xpos as Byte
 Cls ' Clear the LCD
'
' Draw a line across the LCD
'
 While ' Create an infinite loop
 For Xpos = 0 to 127
 Plot 20, Xpos
 DelayMs 10
 Next

'
' Now erase the line
'

 For Xpos = 0 to 127
 UnPlot 20, Xpos
 DelayMs 10
 Next

Wend

See also : LCDRead, LCDWrite, Pixel, Plot. See Print for circuit.

8-bit Proton Compiler Development Suite.

 402

USBinit

Syntax
USBinit

Overview
Initialise the USB peripheral and wait until the USB bus is configured and enabled.

Notes.
USBinit is optional within the BASIC program itself. If it is not used in the program, the compiler
will initialise the USB peripheral itself before the program starts.

If the device contains the OSCTUNE register, it will set bit PLLEN and enable the x4 PLL.

The benefit of adding USBinit within the BASIC program is that you will have the opportunity to
set or clear this bit as required.

See also : USBout, USBin, USBpoll, Config_Start…Config_End.

8-bit Proton Compiler Development Suite.

 403

USBin

Syntax
USBin Endpoint, Buffer, Countvar, Label

Overview
Receive USB data from the host computer and place it into Buffer.

Parameters
Endpoint is a constant value (0 - 15) that indicates which EndPoint to receive data from.
Buffer is a Byte array or String that will contain the bytes received. This may be up to 128
bytes in length if using CDC and 64 bytes for HID.
Countvar is a constant, variable or expression that indicates how many bytes are transferred
from the Buffer. The text Auto may be placed instead of the Countvar parameter. This will con-
figure the receiving bus to it’s maximum, which is 128 bytes for CDC and 64 bytes for HID.
Label is an optional valid BASIC label, that USBin will jump to in the event that no data is
available.

Example 1
' USB interface
 Dim Buffer[8] as Byte
Try_Again:
 USBin 1, Buffer, 4, Try_Again

Example 2
' USB demo program for CDC virtual serial emulation
' Wait for a byte from USB and transmit several characters
'
 Declare Reminders = Off
 Device = 18F26J50
 Declare Xtal = 48
 Declare Optimiser_Level = 1

 Include "CDC_Descriptor.inc" ' Include the CDC descriptors

 Dim Byteout As Byte = $41
 Dim Wordout As Word = $4142
 Dim DWordout As Dword = $41424344
 Dim RxBuffer[16] As Byte
 Dim TxBuffer As String * 16 = "Hello World\r"
 Dim CodeText As Code = "Hello World\r"

 OSCTUNE.6 = 1 ' Enable PLL for 18F87J50 family
 DelayMS 10
 USBInit ' Initialise USB

 While
IdleLoop:
 USBIn 3, RxBuffer, 16, IdleLoop ' Wait for USB input
' Transmit to a serial terminal
OutLoop1:
 USBOut 3, CodeText, Auto, OutLoop1
OutLoop2:
 USBOut 3, TxBuffer, Auto, OutLoop2
OutLoop3:
 USBOut 3, Byteout, 1, OutLoop3

8-bit Proton Compiler Development Suite.

 404

OutLoop4:
 USBOut 3, Wordout, 2, OutLoop4
OutLoop5:
 USBOut 3, DWordout, 4, OutLoop5
 Wend ' Wait for next buffer
' Configure the 18F26J50 for 48MHz operation using a 12MHz crystal
Config_Start
 CPUDIV = OSC1 ' No CPU System clock divide
 PLLDIV = 3 ' Divide by 3 (12 MHz oscillator input)
 OSC = HSPLL ' HS PLL oscillator x 4
 CP0 = OFF ' Program memory is not code-protected
 WDTEN = OFF ' Watchdog disabled
 DEBUG = OFF ' Hardware Debug disabled
 XINST = OFF ' Extended Instruction Set: Disabled
 T1DIG = OFF ' Secondary Oscillator clock source may not be selected
 LPT1OSC = ON ' Timer1 Oscillator: Low-power operation
 FCMEN = OFF ' Fail-Safe Clock Monitor: Disabled
 IESO = OFF ' Internal External Oscillator Switch Over Mode: Disable
 WDTPS = 128 ' Watchdog Postscaler: 1:128
 DSWDTOSC = INTOSCREF ' DSWDT uses INTRC
 RTCOSC = INTOSCREF ' RTCC Clock Select: RTCC uses INTRC
 DSBOREN = OFF ' Deep Sleep BOR Disabled
 DSWDTEN = OFF ' Deep Sleep Watchdog Timer: Disabled
 DSWDTPS = 128 ' Deep Sleep Watchdog Postscaler 1:128 (132 ms)
 IOL1WAY = OFF ' The IOLOCK bit can be set and cleared as needed
 MSSP7B_EN = MSK5 ' 5 Bit address masking mode
 WPCFG = OFF ' Configuration Words page not erase/write-protected
 WPDIS = OFF ' WPFP<5:0>/WPEND region ignored
Config_End

Two USB interface types have been implemented within the compiler; HID (Human Interface
Device) and CDC (Communication Device Class). These are chosen by the type of descriptor
used. For example, the CDC_Descriptor.Inc descriptor file will use the CDC interface, while
HID_Descriptor.Inc will use the HID interface. Both these files can be found within the com-
piler’s Includes\Sources folder.

The USBin command polls the USB interface before continuing, therefore there is not always a
need to use the USBpoll command.

The Label part of the USBin command is optional and can be omitted if required. Instead, the
Carry flag (STATUS.0) can be checked to see if the microcontroller or USB transceiver has
control of the Dual Port RAM buffer. The Carry will return clear if the microcontroller has control
of the buffer and is able to receive some data.

Upon exiting the USBin command, register PRODL will contain the amount of bytes received.

Notes.
The method used for USB is polled, meaning that no interrupt is working in the background.
However, this does mean that either a USBpoll, USBin, or USBout command needs to be
executed approximately every 10ms or the USB interface connection will be lost.

USB must work at an oscillator speed of 48MHz. Achieving this frequency is accomplished by
the use of the device’s divide and multiply configuration fuse settings. See the relevant data-
sheet for more information concerning these.

See also : USBinit, USBout, USBpoll, Config_Start…Config_End.

8-bit Proton Compiler Development Suite.

 405

USBout

Syntax
USBout Endpoint, Buffer, Countvar, Label

Overview
Take Countvar number of bytes from Buffer and send them to the USB Endpoint.

Parameters
Endpoint is a constant value (0 - 15) that indicates which EndPoint to transmit data from.
Buffer can be any of the compiler's variable or constant types, and contains the bytes to
transmit. This may be up to 128 bytes in length if using CDC and 64 bytes for HID.
Countvar is a constant, variable or expression that indicates how many bytes are transferred
from the Buffer. The text Auto may be placed instead of the Countvar value, which will transmit
data until a null is found, or until the correct amount of bytes are transmitted for the variable
size.
Label is an optional valid BASIC label, that USBout will jump to in the event that no data is
available.

Example
 Dim Buffer[8] as Byte
Try_Again:
 USBout 1, Buffer, 4, Try_Again

Notes.
The Label used for buffer control may be omitted and the microcontroller’s Carry flag
(STATUS.0) monitored instead:-

Repeat
 USBout 3, USB_BUFFER, 4 ' Transmit 4 bytes from USB_BUFFER

Until STATUS.0 = 0 ' Wait for control over the buffer RAM

The CountVar parameter can also be replaced with the text Auto, in which case a string of
characters terminated by a null (0) will be transmitted, or the amount of bytes that a particular
variable type used will be transmitted. The Countvar parameter can be omitted, in which case
Auto is implied: -

USBout 3, "Hello Wordl\n\r"

The buffer itself can take the form of any variable type of the compiler, and even the internal
USB buffer itself. The internal USB buffer is brought into the BASIC code named
__USBout_Buffer (note the two preceding underscores).

In the event that Auto has been used for the Countvar parameter, a Bit or Byte variable will
transmit 1 byte of data, a Word will transmit 2 bytes (lowest byte first), a Dword and Float will
transmit 4 bytes of data (lowest byte first).

The method used for USB is polled, meaning that no interrupt is working in the background.
However, this does mean that either a USBpoll, USBin, or USBout command needs to be
executed approximately every 10ms for HID and 5ms for CDC or the USB interface connection
will be lost.

8-bit Proton Compiler Development Suite.

 406

The USB library subroutines require the use of the DP (Dual Port) RAM starting at address
$0200 or $0400 depending on the device used. This leaves the RAM underneath DP RAM
available for the BASIC program. However, the DP USB buffers can also be accessed directly
from BASIC. __USBOUT_BUFFER, and __USBIN_BUFFER are declared automatically as
String type variables within the USB_Mem.inc file, located within the compiler
Inclcudes\Sources folder.

USB must work at an oscillator speed of 48MHz. Achieving this frequency is accomplished by
the use of the device’s divide and multiply configuration fuse settings. See the relevant data-
sheet for more information concerning these.

The USBout command polls the USB interface before transferring its data to the bus, and re-
turns with the Carry flag (STATUS.0) clear if it has control over the Dual Port buffer.

Repeat
 USBout 3, __USBout_BUFFER, Auto

Until STATUS.0 = 0

Two USB interface types have been implemented within the compiler; HID (Human Interface
Device) and CDC (Communication Device Class). These are chosen by the type of descriptor
used. For example, the CDC_Descriptor.Inc descriptor file will use the CDC interface, while
HID_Descriptor.Inc will use the HID interface. Both these files can be found within the com-
piler’s Includes\Sources folder.

VDD

D+

MCLR

OSC1

OSC2

VSS

32

PIC
18F4550

C2 *
220nF

C4

VSS

20MHz
Crystal

24

23

18

31

12

14

13

1

VDD
11

C1
100nF

USB Cable to
Computer

D-

Vusb +5V
GND

D-
D+

*C2 must always be fitted.
Without it the USB
connection will be erratic.

Disconnect
USB Cable's +5V line
if externally powered.

15pF

15pFC3

Typical circuit for self powered USB interface.

8-bit Proton Compiler Development Suite.

 407

Example.
' Demonstrate a HID (Human Interface Device) interface
' When connected to the PC, the mouse pointer will rotate in a small square

 Device = 18F4550 ' Choose a device with on-board full speed USB
 Declare Xtal = 48 ' Inform the compiler we’re operating at 48MHz

 Include "HID_Descriptor.inc" ' Include the HID descriptors

 Dim Buffer[4] As Byte
 Dim Loop_Count As Byte
 Dim Position As Byte
' High if microcontroller does not have control over the DP Buffer
 Symbol Carry_Flag = STATUS.0

'--
' The main program loop starts here
 DelayMS 10 ' Wait for things to stabilise
 Clear Buffer ' Clear the array before we start

 Repeat
 USBPoll ' Wait for USB to become attached
 Until USB_tConnected = 1 Or USB_tConfigured = 1
 While
 For Position = 0 To 3 ' Move through each position
 For Loop_Count = 0 To 31 ' 32 steps in each direction
 Select Position
 Case 0 ' Move Up?
 Buffer#1 = 0
 Buffer#2 = -2
 Case 1 ' Move Right?
 Buffer#1 = 2
 Buffer#2 = 0
 Case 2 ' Move Down?
 Buffer#1 = 0
 Buffer#2 = 2
 Case 3 ' Move Left?
 Buffer#1 = -2
 Buffer#2 = 0
 EndSelect
 Repeat
 USBOut 1, Buffer, 4 ' Send the Buffer to endpoint 1
 Until Carry_Flag = 0 ' Keep trying if we don’t have control
 Next
 Next
 Wend
'--
' Configure the 18F4550 for 48MHz operation using a 12MHz crystal
Config_Start
 PLLDIV = 3 ' Divide by 3 (12 MHz oscillator input)
 CPUDIV = OSC1_PLL2 ' [OSC1/OSC2 Src: /1][96 MHz PLL Src: /2]
 USBDIV = 1 ' USB clock source comes directly from the primary osc
 FOSC = HSPLL_HS ' HS oscillator, PLL enabled
 FCMEN = OFF ' Fail-Safe Clock Monitor disabled
 IESO = OFF ' Oscillator Switchover mode disabled

8-bit Proton Compiler Development Suite.

 408

 PWRT = ON ' PWRT enabled
 BOR = ON ' Brown-out Reset enabled in hardware only
 BORV = 3 ' Brown-out Voltage bits: Minimum setting
 VREGEN = ON ' USB voltage regulator enabled
 WDT = OFF ' Watchdog Timer Disabled - SW Controlled
 WDTPS = 128 ' Watchdog Timer Postscale Select bits: 1:128
 MCLRE = ON ' MCLR pin enabled, RE3 input pin disabled
 LPT1OSC = ON ' Timer1 configured for low-power operation
 PBADEN = OFF ' PORTB<4:0> pins are configured as digital I/O on Reset
 CCP2MX = ON ' CCP2 input/output is multiplexed with RC1
 STVREN = OFF ' Stack full/underflow will not cause Reset
 LVP = OFF ' Single-Supply ICSP disabled
 XINST = OFF ' Instruction set extension disabled
 DEBUG = OFF ' Background debugger disabled
 CP0 = OFF ' Block 0 (000800-001FFFh) not code-protected
 CP1 = OFF ' Block 1 (002000-003FFFh) not code-protected
 CP2 = OFF ' Block 2 (004000-005FFFh) not code-protected
 CP3 = OFF ' Block 3 (006000-007FFFh) not code-protected
 CPB = OFF ' Boot block (000000-0007FFh) not code-protected
 CPD = OFF ' Data EEPROM not code-protected
 WRT0 = OFF ' Block 0 (000800-001FFFh) not write-protected
 WRT1 = OFF ' Block 1 (002000-003FFFh) not write-protected
 WRT2 = OFF ' Block 2 (004000-005FFFh) not write-protected
 WRT3 = OFF ' Block 3 (006000-007FFFh) not write-protected
 WRTB = OFF ' Boot block (000000-0007FFh) not write-protected
 WRTC = OFF ' Config registers (300000-3000FFh) not write-protected
 WRTD = OFF ' Data eeprom not write-protected
 EBTR0 = OFF ' Block 0 not protected from table reads
 EBTR1 = OFF ' Block 1 not protected
 EBTR2 = OFF ' Block 2 not protected
 EBTR3 = OFF ' Block 3 not protected
 EBTRB = OFF ' Boot block not protected
Config_End

See also : USBinit, USBin, USBpoll, Config_Start…Config_End.

8-bit Proton Compiler Development Suite.

 409

USBpoll

Syntax
USBpoll

Overview
Poll the USB interface in order to keep it attached to the bus.

Notes
If the commands USBin or USBout are not used within a program loop, the interface will drop
off the bus, therefore issue the USBpoll command to stop this happening. This command
should be issued at least every 10ms if using a HID interface and at least once every 5ms for a
CDC interface.

Upon exiting the USBpoll command, the state of the bus can be checked via the USB variable
__USB_bDeviceState. This variable resides in a higher RAM bank of the PICmicro™ (as do all
of the USB variables), which means that bank switching will take place whenever it is ac-
cessed. For this reason, the USBpoll subroutine loads this variable into a variable within Ac-
cess RAM. The variable it uses is named USB_bStatus.

Several states are declared within the USB_Dev.Inc file located within the compiler’s Includes
folder. These are: -

DETACHED_STATE 0
ATTACHED_STATE 1
POWERED_STATE 2
DEFAULT_STATE 4
ADDRESS_PENDING_STATE 8
ADDRESS_STATE 16
CONFIGURED_STATE 32

Within the USB_Mem.inc file, there are several bits pre-declared for each of the above states.
The relevant ones are:

USB_tConnected ' Set if the USB is connected
USB_tConfigured ' Set if the USB is Configured

Example
' Wait the for USB interface to be recognised and attached

Repeat
 USBpoll

Until USB_tConnected = 1 Or USB_tConfigured = 1

With newer devices, testing the USB_tConnected bit is all that is required, however, for older
types such as the 18F4550, the USB_tConfigured bit has to be tested. For good measure, it
may be prudent to test both of them.

See also : USBinit, USBout, USBin, Config_Start…Config_End.

8-bit Proton Compiler Development Suite.

 410

Val

Syntax
Variable = Val (Array Variable, Modifier)

Overview
Convert a Byte Array or String containing Decimal, Hex, or Binary numeric text into its integer
equivalent.

Parameters
Array Variable is a byte array or string containing the alphanumeric digits to convert and ter-
minated by a null (i.e. value 0).
Modifier can be Hex, Dec, or Bin. To convert a Hex string, use the Hex modifier, for Binary,
use the Bin modifier, for Decimal use the Dec modifier.
Variable is a variable that will contain the converted value. Floating point characters and vari-
ables cannot be converted, and will be rounded down to the nearest integer value.

Example 1
' Convert a string of hexadecimal characters to an integer
 Include "Proton_4.Inc" ' Use the Proton board for the demo
 Dim String1[10] as Byte ' Create a byte array as a String
 Dim Wrd1 as Word ' Create a variable to hold result
 DelayMs 100 ' Wait for the LCD to stabilise
 Cls ' Clear the LCD
 Str String1 = "12AF",0 ' Load the String with Hex digits
 Wrd1 = Val(String1,Hex) ' Convert the String into an integer
 Print Hex Wrd1 ' Display the integer as Hex
 Stop

Example 2
' Convert a string of decimal characters to an integer
 Include "Proton_4.Inc" ' Use the Proton board for the demo
 Dim String1[10] as Byte ' Create a byte array as a String
 Dim Wrd1 as Word ' Create a variable to hold result
 DelayMs 100 ' Wait for the LCD to stabilise
 Cls ' Clear the LCD
 Str String1 = "1234",0 ' Load the String with Decimal digits
 Wrd1 = Val(String1,Dec) ' Convert the String into an integer
 Print Dec Wrd1 ' Display the integer as Decimal
 Stop

Example 3
' Convert a string of binary characters to an integer
 Include "Proton_4.Inc" ' Use the Proton board for the demo
 Dim String1[17] as Byte ' Create a byte array as a String
 Dim Wrd1 as Word ' Create a variable to hold result
 DelayMs 100 ' Wait for the LCD to stabilise
 Cls ' Clear the LCD
 Str String1 = "1010101010000000",0 ' Load the String with Binary
 Wrd1 = Val(String1,Bin) ' Convert the String into an integer
 Print Bin Wrd1 ' Display the integer as Binary
 Stop

8-bit Proton Compiler Development Suite.

 411

Notes
There are limitations with the Val command when used on a 14-bit core device, in that the array
must fit into a single RAM bank. But this is not really a problem, just a little thought when plac-
ing the variables will suffice. The compiler will inform you if the array is not fully located inside a
Bank, and therefore not suitable for use with the Val command.

This is not a problem with 18F devices, as they are able to access all their memory very easily.

The Val command is not recommended inside an expression, as the results are not predictable.
However, the Val command can be used within an If-Then, While-Wend, or Repeat-Until con-
struct, but the code produced is not as efficient as using it outside a construct, because the
compiler must assume a worst case scenario, and use Dword comparisons.

 Include "Proton_4.Inc" ' Use the Proton board for the demo
 Dim String1[10] as Byte ' Create a byte array as a String

DelayMs 100 ' Wait for the LCD to stabilise
 Cls ' Clear the LCD

 Str String1 = "123",0 ' Load the String with Dec digits
 If Val(String1,Hex) = 123 Then ' Compare the result
 Print At 1,1,Dec Val (String1,Hex)
 Else
 Print At 1,1,"not Equal"
 EndIf
 Stop

See also: Str, Strn, Str$.

8-bit Proton Compiler Development Suite.

 412

AddressOf or VarPtr

Syntax
Assignment Variable = VarPtr (Variable)
or
Assignment Variable = AddressOf (Variable)

Overview
Returns the address of the variable in RAM, or a label in code memory. Commonly known as a
pointer.

Parameters
Assignment Variable can be any of the compiler's variable types, and will receive the pointer
to the variable's address.
Variable can be any variable name used in the BASIC program.

Notes
Be careful if using AddressOf to locate the starting address of an array when using a standard
14-bit device, as arrays can cross bank boundaries, and the finishing address of the array may
be in a different bank to its start address. The compiler can track bank changes internally when
accessing arrays, but BASIC code generally cannot. For example, the most common use for
AddressOf is when implementing indirect addressing using the microcontroller's FSR and
INDF registers.

This is not the case with 18F devices, as the FSR0, 1, and 2 registers can access all memory
areas linearly.

When using AddressOf with an enhanced 14-bit core device it will return the address of a vari-
able or label plus the offsets required to make them linearly accessible. i.e. $2000 for RAM and
$8000 for code memory.

8-bit Proton Compiler Development Suite.

 413

While...Wend

Syntax
While Condition
Instructions
Instructions
Wend

or

While Condition { Instructions : } Wend

Overview
Execute a block of instructions while a condition is true.

Example

Var1 = 1
 While Var1 <= 10
 Print Dec Var1, " "
 Var1 = Var1 + 1
 Wend

or

 While PORTA.0 = 1: Wend ' Wait for a change on the Port

Notes
While-Wend, repeatedly executes Instructions While Condition is true. When the Condition is
no longer true, execution continues at the statement following the Wend. Condition may be any
comparison expression.

See also : If-Then, Repeat-Until, For-Next.

8-bit Proton Compiler Development Suite.

 414

Xin

Syntax
Xin DataPin, ZeroPin, {Timeout, Timeout Label}, [Variable{,...}]

Overview
Receive X-10 data and store the House Code and Key Code in a variable.

Parameters
DataPin is a constant (0 - 15), Port.Bit, or variable, that receives the data from an X-10 inter-
face. This pin is automatically made an input to receive data, and should be pulled up to 5 Volts
with a 4.7KΩ resistor.
ZeroPin is a constant (0 - 15), Port.Bit, or variable, that is used to synchronise to a zero-cross
event. This pin is automatically made an input to received the zero crossing timing, and should
also be pulled up to 5 Volts with a 4.7KΩ resistor.
Timeout is an optional value that allows program continuation if X-10 data is not received
within a certain length of time. Timeout is specified in AC power line half-cycles (approximately
8.33 milliseconds).
Timeout Label is where the program will jump to upon a timeout.

Example
 Dim HouseKey as Word
 Cls
MyLoop:
' Receive X-10 data, go to NoData if none
 Xin PORTA.2, PORTA.0, 10, NoData, [HouseKey]
' Display X-10 data on an LCD
 Print At 1, 1, "House=", Dec HouseKey.Byte1,"Key=", Dec HouseKey.Byte0
 Goto MyLoop ' Do it forever
NoData:
 Print "No Data"
 Stop

Xout and Xin Declares
In order to make the Xin command's results more in keeping with the BASIC Stamp interpreter,
two declares have been included for both Xin and Xout These are.

Declare Xout_Translate = On/Off, True/False or 1/0

and

Declare Xin_Translate = On/Off, True/False or 1/0

Notes
Xin processes data at each zero crossing of the AC power line as received on ZeroPin. If there
are no transitions on this line, Xin will effectively wait forever.

Xin is used to receive information from X-10 devices that can transmit the appropriate data. X-
10 modules are available from a wide variety of sources under several trade names. An inter-
face is required to connect the microcontroller to the AC power line. The TW-523 for two-way
X-10 communications is required by Xin. This device contains the power line interface and iso-
lates the microcontroller from the AC line.

8-bit Proton Compiler Development Suite.

 415

If Variable is a Word sized variable, then each House Code received will be stored in the up-
per 8-bits of the Word And each received Key Code will be stored in the lower 8-bits of the
Word variable. If Variable is a Byte sized variable, then only the Key Code will be stored.

The House Code is a number between 0 and 15 that corresponds to the House Code set on
the X-10 module A through P.

The Key Code can be either the number of a specific X-10 module or the function that is to be
performed by a module. In normal operation, a command is first sent, specifying the X-10 mod-
ule number, followed by a command specifying the desired function. Some functions operate
on all modules at once so the module number is unnecessary. Key Code numbers 0-15 corre-
spond to module numbers 1-16.

Warning. Under no circumstances should the microcontroller be connected directly to
the AC power line. Voltage potentials carried by the power line will not only instantly de-
stroy the microcontroller, but could also pose a serious health hazard.

See also : Xout.

8-bit Proton Compiler Development Suite.

 416

Xout

Syntax
Xout DataPin, ZeroPin, [HouseCode\KeyCode {\Repeat} {, ...}]

Overview
Transmit a HouseCode followed by a KeyCode in X-10 format.

Parameters
DataPin is a constant (0 - 15), Port.Bit, or variable, that transmits the data to an X-10 interface.
This pin is automatically made an output.
ZeroPin is a constant (0 - 15), Port.Bit, or variable, that is used to synchronise to a zero-cross
event. This pin is automatically made an input to received the zero crossing timing, and should
also be pulled up to 5 Volts with a 4.7KΩ resistor.
HouseCode is a number between 0 and 15 that corresponds to the House Code set on the X-
10 module A through P. The proper HouseCode must be sent as part of each command.
KeyCode can be either the number of a specific X-10 module, or the function that is to be per-
formed by a module. In normal use, a command is first sent specifying the X-10 module num-
ber, followed by a command specifying the function required. Some functions operate on all
modules at once so the module number is unnecessary. KeyCode numbers 0-15 correspond to
module numbers 1-16.
Repeat is an optional operator, and if it is not included, then a repeat of 2 times (the minimum)
is assumed. Repeat is normally reserved for use with the X-10 Bright and Dim commands.

Example
 Dim House as Byte
 Dim Unit as Byte
' Create some aliases of the keycodes
 Symbol UnitOn = %10010 ' Turn module on
 Symbol UnitOff = %11010 ' Turn module off
 Symbol UnitsOff = %11100 ' Turn all modules off
 Symbol LightsOn = %10100 ' Turn all light modules on
 Symbol LightsOff = %10000 ' Turn all light modules off
 Symbol Bright = %10110 ' Brighten light module
 Symbol DimIt = %11110 ' Dim light module
' Create aliases for the pins used
 Symbol DataPin = PORTA.1
 Symbol ZeroC = PORTA.0
 House = 0 ' Set house to 0 (A)
 Unit = 8 ' Set unit to 8 (9)
' Turn on unit 8 in house 0
 Xout DataPin ,ZeroC,[House \ Unit,House \ UnitOn]
' Turn off all the lights in house 0
 Xout DataPin ,ZeroC,[House \ LightsOff]
 Xout DataPin ,ZeroC,[House \ 0]
' Blink light 0 on and off every 10 seconds
MyLoop:
 Xout DataPin ,ZeroC,[House \ UnitOn]
 DelayMs 10000 ' Wait 10 seconds
 Xout DataPin ,ZeroC,[House \ UnitOff]
 DelayMs 10000 ' Wait 10 seconds
 Goto MyLoop

8-bit Proton Compiler Development Suite.

 417

Xout and Xin Declares
In order to make the Xout command's results more in keeping with the BASIC Stamp inter-
preter, two declares have been included for both Xin and Xout. These are.

Declare Xout_Translate = On/Off, True/False or 1/0
and

Declare Xin_Translate = On/Off, True/False or 1/0

Notes
Xout only transmits data at each zero crossing of the AC power line, as received on ZeroPin. If
there are no transitions on this line, Xout will effectively wait forever.

Xout is used to transmit information from X-10 devices that can receive the appropriate data.
X-10 modules are available from a wide variety of sources under several trade names. An inter-
face is required to connect the microcontroller to the AC power line. Either the PL-513 for send
only, or the TW-523 for two-way X-10 communications are required. These devices contain the
power line interface and isolate the PICmicro™ from the AC line.

The KeyCode numbers and their corresponding operations are listed below: -

 KeyCode KeyCode No. Operation
 UnitOn %10010 Turn module on
 UnitOff %11010 Turn module off
 UnitsOff %11100 Turn all modules off
 LightsOn %10100 Turn all light modules on
 LightsOff %10000 Turn all light modules off
 Bright %10110 Brighten light module
 Dim %11110 Dim light module

Wiring to the X-10 interfaces requires 4 connections. Output from the X-10 interface (zero
crossing and receive data) are open-collector, which is the reason for the pull-up resistors on
the microcontroller.

Wiring for each type of interface is shown below: -

PL-513 Wiring
 Wire No. Wire Colour Connection
 1 Black Zero crossing output
 2 Red Zero crossing common
 3 Green X-10 transmit common
 4 Yellow X-10 transmit input
TW-523 Wiring
 Wire No. Wire Colour Connection
 1 Black Zero crossing output
 2 Red Common
 3 Green X-10 receive output
 4 Yellow X-10 transmit input

Warning. Under no circumstances should the microcontroller be connected directly to
the AC power line. Voltage potentials carried by the power line will not only instantly de-
stroy the microcontroller, but could also pose a serious health hazard.

See also : Xin.

8-bit Proton Compiler Development Suite.

 418

Using the Optimiser
The underlying assembler code produced by the compiler is the single most important element
to a good language, because compact assembler not only means more can be squeezed into
the tight confines of the microcontroller, but also the code runs faster which allows more com-
plex operations to be performed. This is why the compiler now has a “dead code removal” pass
as standard which will remove redundant mnemonics, and replace certain combinations of
mnemonics with a single mnemonic. WREG tracking is also implemented as standard which
helps eliminate unnecessary loading of a constant value into the WREG.

And even though the compiler already produces good underlying assembler mnemonics, there
is always room for improvement, and that improvement is achieved by a separate optimising
pass.

The optimiser is enabled by issuing the Declare: -

Declare Optimiser_Level = n

Where n is the level of optimisation required.

The Declare should be placed at the top of the BASIC program, but anywhere in the code is
actually acceptable because once the optimiser is enabled it cannot be disabled later in the
same program.

As of version 3.3.3.0 of the compiler, the optimiser has 3 levels, 4 if you include Off as a level.

Level 0 disables the optimiser.

Level 1 Chooses the appropriate branching mnemonics when using an 18F device, and ac-
tively chooses the appropriate page switching mnemonics when using a 14-bit core (16F) de-
vice.

This is the single most important optimising pass for larger microcontrollers. For 18F types it
will replace Call with RCall and Goto with Bra whenever appropriate, saving 1 byte of code
space every time.

Level 2 Further re-arranging of branching operations.

Level 3 18F devices only. Re-arranges conditional branching operations. This is an important
optimising pass because a single program can implement many decision making mnemonics.

You must be aware that optimising code, especially paged code found in the larger standard
14-bit core (16F) devices can, in some circumstances, have a detrimental effect on a program if
it misses a page boundary, this is true of all optimisation on all compilers and is something that
you should take into account. This is why the 14-bit core optimiser is not an official part of the
compiler, and has been left in place because of current user requests.

Always try to write and test your program without the optimiser pass. Then once it’s working as
expected, enable the optimiser a level at a time. However, this is not always possible with lar-
ger programs that will not fit within the microcontroller without optimisation. In this circum-
stance, choose level 1 optimisation whenever the code is reaching the limits of the microcon-
troller, testing the code as you go along.

8-bit Proton Compiler Development Suite.

 419

Caveats
Of course there’s no such thing as a free lunch, and there are some features that cannot be
used when implementing the optimiser.

The main one is that the optimiser is not supported with 12-bit core devices.

Also, the Org directive is not allowed with 14-bit core (16F) devices when using the optimiser,
but can be used with 18F devices.

When using 18F devices, do not use the Movfw macro as this will cause problems withing the
Asm listing, use the correct mnemonic of Movf Var,w.

On all devices, do not use the assembler LIST and NOLIST directives, as the optimiser uses
these to sculpt the final Asm used.

Declare Dead_Code_Remove = On/Off

The above declare removes some redundant op-codes from the underlying Asm code.

Removal of redundant Bank Switching mnemonics.
Removal of redundant Movwf mnemonics if preceded by a Movf Var,w mnemonic.
Removal of reduntant Movf Var,W mnemonics if preceded by a Movwf mnemonic.
Removal of reduntant Andlw mnemomics if preceded by another Andlw mnemonic.
Replaced a Call-Return mnemonic pair with a single Goto mnemonic.

Note that the Optimiser for standard 14-bit core devices is no longer officially supported,
and only remains because of user requests.

8-bit Proton Compiler Development Suite.

 420

Using the Preprocessor
A preprocessor directive is a non executable statement that informs the compiler how to com-
pile. For example, some microcontroller have certain hardware features that others don’t. A
pre-processor directive can be used to inform the compiler to add or remove source code,
based on that particular devices ability to support that hardware.

It’s important to note that the preprocessor works with directives on a line by line basis. It is
therefore important to ensure that each directive is on a line of its own. Don’t place directives
and source code on the same line.

It’s also important not to mistake the compiler’s preprocessor with the assembler’s preproces-
sor. Any directive that starts with a dollar “$” is the compiler’s preprocessor, and any directive
that starts with a hash “#” is the assembler’s preprocessor. They cannot be mixed, as each has
no knowledge of the other.

Preprocessor directives can be nested in the same way as source code statements. For exam-
ple:

$ifdef MyValue
 $if MyValue = 10
 Symbol CodeConst = 10
 $else
 Symbol CodeConst = 0
 $endif
$endif

Preprocessor directives are lines included in the code of the program that are not BASIC lan-
guage statements but directives for the preprocessor itself. The preprocessor is actually a se-
perate entity to the compiler, and, as the name suggests, preprocesses the BASIC code before
the actual compiler sees it. Preprocessor directives are always preceded by a dollar sign “$”.

Preprocessor Directives
To define preprocessor macros the directive $define is used. Its format is:-

$define identifier replacement

When the preprocessor encounters this directive, it replaces any occurrence of identifier in the
rest of the code by replacement. This replacement can be an expression, a statement, a block,
or simply anything. The preprocessor does not understand BASIC, it simply replaces any oc-
currence of identifier by replacement.

$define TableSize 100
Dim Table1[TableSize] as Byte
Dim Table2[TableSize] as Byte

After the preprocessor has replaced TableSize, the code becomes equivalent to:-

Dim Table1[100] as Byte
Dim Table2[100] as Byte

8-bit Proton Compiler Development Suite.

 421

The use of $define as a constant definer is only one aspect of the preprocessor, and $define
can also work with parameters to define psuedo function macros. The syntax then is:-

$define identifier (parameter list) replacement

A simple example of a function-like macro is:-

$define RadToDeg(x) ((x) * 57.29578)

This defines a radians to degrees conversion which can be used as:-

Var1 = RadToDeg(34)

This is expanded in-place, so the caller does not need to clutter copies of the multiplication
constant througout the code.

Precedence
Note that the example macro RadToDeg(x) given above uses normally unnecessary paren-
theses both around the argument and around the entire expression. Omitting either of these
can lead to unexpected results. For example:-

Macro defined as:

$define RadToDeg(x) (x * 57.29578)
will expand

RadToDeg(a + b)
to

(a + b * 57.29578)

Macro defined as

$define RadToDeg(x) (x) * 57.29578
will expand

1 / RadToDeg(a)
to

1 / (a) * 57.29578

neither of which give the intended result.

Not all replacement tokens can be passed back to an assignment using the equals operator. If
this is the case, the code needs to be similar to BASIC Stamp syntax, where the assignment
variable is the last parameter:-

 $define GetMax(x,y,z) If x > y Then z = x : Else : z = y

This would replace any occurrence of GetMax followed by three parameter (argument) by the
replacement expression, but also replacing each parameter by its identifier, exactly as would be
expected of a function.

Dim Var1 as Byte
Dim Var2 as Byte
Dim Var3 as Byte

Var1 = 100
Var2 = 99
GetMax(Var1, Var2, Var3)

8-bit Proton Compiler Development Suite.

 422

The previous would be placed within the BASIC program as:-

Dim Var1 as Byte
Dim Var2 as Byte
Dim Var3 as Byte

Var1 = 100
Var2 = 99
If Var1 > Var2 Then Var3 = Var1 : Else : Var3 = Var2

Notice that the third parameter “Var3” is loaded with the result.

A macro lasts until it is undefined with the $undef preprocessor directive:-

$define TableSize 100
Dim Table1[TableSize] as Byte
$undef TableSize
$define TableSize 200
Dim Table2[TableSize] as Byte

This would generate the same code as:-

Dim Table1[100] as Byte
Dim Table2[200] as Byte

Because preprocessor replacements happen before any BASIC syntax check, macro defini-
tions can be a tricky feature, so be careful. Code that relies heavily on complicated macros may
be difficult to understand, since the syntax they expect is, on many occasions, different from the
regular expressions programmers expect in Proton BASIC.

Preprocessor directives only extend across a single line of code. As soon as a newline charac-
ter is found (end of line), the preprocessor directive is considered to end. The only way a pre-
processor directive can extend through more than one line is by preceding the newline charac-
ter at the end of the line by a comment character (‘) followed by a new line. No comment text
can follow the comment character. For example:-

$define GetMax(x,y,z) If x > y Then '
 z = x '
 Else '
 z = y '
 EndIf

GetMax(Var1, Var2, Var3)

The compiler will see:-

If Var1 > Var2 Then
Var3 = Var1

Else
Var3 = Var2

EndIf

Note that parenthasis is always required around the $define declaration and its use within the
program.

8-bit Proton Compiler Development Suite.

 423

If the replacement argument is not included within the $define directive, the identifier argument
will output nothing. However, it can be used as an identifier for conditional code:-

$define DoThis

$ifdef DoThis
{Rest of Code here}

$endif

$undef identifier
This removes any existing definition of the user macro identifier.

$eval expression
In normal operation, the $define directive simply replaces text, however, using the $eval direc-
tive allows constant value expressions to be evaluated before replacement within the BASIC
code. For example:-

$define Expression(Prm1) $eval Prm1 << 1

The above will evaluate the constant parameter Prm1, shifting it left one position.

Var1 = Expression(1)

Will be added to the BASIC code as:-

Var1 = 2

Because 1 shifted left one position is 2.

Several operators are available for use with an expression. These are +, -, *, -, ~, <<, >>, =, >,
<, >=, <=, <>, And, Or, Xor.

Conditional Directives ($ifdef, $ifndef, $if, $endif, $else and $elseif)
Conditional directives allow parts of the code to be included or discarded if a certain condition is
met.

$ifdef allows a section of a program to be compiled only if the macro that is specified as the
parameter has been defined, no matter what its value is. For example:-

$ifdef TableSize
Dim Table[TableSize] as Byte

$endif

In the above condition, the line of code Dim Table[TableSize] as Byte is only compiled
if TableSize was previously defined with $define, independent of its value. If it was not defined,
the line will not be included in the program compilation.

$ifndef serves for the exact opposite: the code between $ifndef and $endif directives is only
compiled if the specified identifier has not been previously defined. For example:-

$ifndef TableSize
$define TableSize 100

$endif
Dim Table[TableSize] as Byte

8-bit Proton Compiler Development Suite.

 424

In the previous code, when arriving at this piece of code, the TableSize directive has not been
defined yet. If it already existed it would keep its previous value since the $define directive
would not be executed.

A valuable use for $ifdef is that of a code guard with include files. This allows multiple insertions
of a file, but only the first will be used.

A typical code guard looks like:

$ifndef IncludeFileName
$define IncludeFileName
{ BASIC Code goes Here }

$endif

The logic of the above snippet is that if the include file has not previously been loaded into the
program, the $define IncludeFileName will not have been created, thus allowing the inclusion
of the code between $ifndef and $endif. However, if the include file has been previously
loaded, the $define will have already been created, and the condition will be false, thus not al-
lowing the code to be used.

IncludeFileName must be unique to each file. Therefore, it is recommended that a derivative of
the Include File’s name is used.

$if expression
This directive invokes the arithmetic evaluator and compares the result in order to begin a con-
ditional block. In particular, note that the logical value of expression is always true when it can-
not be evaluated to a number.

The $if directive as well as the $elseif directive can use quite complex logic. For example:-

$if _device = _18F452 or _device = _18F4520 and _core = 16
{ BASIC Code Here }

$endif

There are several built in user defines that will help separate blocks of code. These are:-

• _device. This holds the PICmicro™ device name, as a string. i.e. _18F452, _12F508,
_16F684 etc. Notice the preceding underscore

• _core. This holds the device’s core. i.e. 12 for 12-bit core devices, 14 for 14-bit core
(16F) devices, and 16 for 18F devices.

• _ecore This is valid if the device is an enhanced 14-bit core type
• _ram. This holds the amount of RAM contained in the device (in bytes).
• _code. This holds the amount of flash memory in the device. In words for 12 and 14-bit

core devices, and bytes for 18F devices.
• _eeprom. This holds the amount of eeprom memory the device contains.
• _ports. This holds the amount of I/O ports that the device has.
• _adc. This holds the amount of ADC channels the device has.
• _adcres. This holds the resolution of the device’s ADC. i.e. 8, 10, or 12.
• _uart. This holds the amount of UARTs or USARTS the device has. i.e. 0, 1, or 2
• _usb. This holds the amount of USB peripherals the device has. i.e. 0 or 1
• _flash. This informs of the ability for the device to access it’s own code memory. 0 = no

access, 1 = read and write, and 2 = read only

8-bit Proton Compiler Development Suite.

 425

The values for the user defines are taken from the compiler’s PPI files, and are only available if
the compiler’s Device directive is included within the BASIC program.

$else
This toggles the logical value of the current conditional block. What follows is evaluated if and
only if the preceding input was commented out.

$endif
This ends a conditional block started by the $if directive.

$elseif expression
This directive can be used to avoid nested $if conditions. $if..$elseif..$endif is equivalent to
$if..$else $if ..$endif $endif.

The $if, $else and $elseif directives serve to specify some condition to be met in order for the
portion of code they surround to be compiled. The condition that follows $if or $elseif can only
evaluate constant expressions, including macro expressions. For example:-

$if TableSize > 200
$undef TableSize
$define TableSize 200

$elseif TableSize < 50

$undef TableSize
$define TableSize 50

$else

$undef TableSize
$define TableSize 100

$endif

Dim Table[TableSize] as Byte

Notice how the whole structure of $if, $elseif and $else chained directives ends with $endif.

The behavior of $ifdef and $ifndef can also be achieved by using the special built-in user di-
rective _defined and ! _defined respectively, in any $if or $elseif condition. These allow more
flexability than $ifdef and $ifndef. For example:-

$if _defined (MyDefine) and _defined (AnotherDefine)
{ BASIC Code Here }

$endif

The argument for the _defined user directive must be surrounded by parenthasis. The preced-
ing character “!” means “not”.

$error message
This directive causes an error message with the current filename and line number. Subsequent
processing of the code is then aborted.

$error Error Message Here

8-bit Proton Compiler Development Suite.

 426

Proton IDE Overview
Proton IDE is a professional and powerful Integrated Development Environment (IDE) designed
specifically for the Proton compiler. Proton IDE is designed to accelerate product development
in a comfortable user friendly environment without compromising performance, flexibility or con-
trol.

Code Explorer
Possibly the most advanced code explorer for PICmicroTM based development on the market.
Quickly navigate your program code and device Special Function Registers (SFRs).

Compiler Results
Provides information about the device used, the amount of code and data used, the version
number of the project and also date and time. You can also use the results window to jump to
compilation errors.

Programmer Integration
The Proton IDE enables you to start your preferred programming software from within the de-
velopment environment . This enables you to compile and then program your microcontroller
with just a few mouse clicks (or keyboard strokes, if you prefer).

Integrated Bootloader
Quickly download a program into your microcontroller without the need of a hardware pro-
grammer. Bootloading can be performed in-circuit via a serial cable connected to your PC.

Real Time Simulation Support
Proteus Virtual System Modelling (VSM) combines mixed mode SPICE circuit simulation, ani-
mated components and microprocessor models to facilitate co-simulation of complete micro-
controller based designs. For the first time ever, it is possible to develop and test such designs
before a physical prototype is constructed.

Serial Communicator
A simple to use utility which enables you to transmit and receive data via a serial cable con-
nected to your PC and development board. The easy to use configuration window allows you to
select port number, baudrate, parity, byte size and number of stop bits. Alternatively, you can
use Serial Communicator favourites to quickly load pre-configured connection settings.

Online Updating
Online updates enable you to keep right up to date with the latest IDE features and fixes.

Plugin Architecture
The Proton IDE has been designed with flexibility in mind with support for IDE plugins.

Supported Operating Systems
Windows XP or Windows 7 or Windows 8 or Windows 10

Minimum Hardware Requirements
1 GHz Processor
1 GB RAM
40 GB hard drive space
16 bit graphics card.

8-bit Proton Compiler Development Suite.

 427

Menu Bar
File Menu

• New - Creates a new document. A header is automatically generated, showing informa-
tion such as author, copyright and date. To toggle this feature on or off, or edit the
header properties, you should select editor options.

• Open - Displays a open dialog box, enabling you to load a document into the Proton

IDE. If the document is already open, then the document is made the active editor page.

• Save - Saves a document to disk. This button is normally disabled unless the document
has been changed. If the document is 'untitled', a save as dialog is invoked. A save as
dialog is also invoked if the document you are trying to save is marked as read only.

• Save As - Displays a save as dialog, enabling you to name and save a document to

disk.
•

Close - Closes the currently active document.

• Close All - Closes all editor documents and then creates a new editor document.

• Reopen - Displays a list of Most Recently Used (MRU) documents.

• Print Setup - Displays a print setup dialog.

• Print Preview - Displays a print preview window.

• Print - Prints the currently active editor page.

• Exit - Enables you to exit the Proton IDE.

Edit Menu

• Undo - Cancels any changes made to the currently active document page.

• Redo - Reverse an undo command.

• Cut - Cuts any selected text from the active document page and places it into the clip-
board. This option is disabled if no text has been selected. Clipboard data is placed as
both plain text and RTF.

• Copy - Copies any selected text from the active document page and places it into the

clipboard. This option is disabled if no text has been selected. Clipboard data is placed
as both plain text and RTF.

• Paste - Paste the contents of the clipboard into the active document page. This option is

disabled if the clipboard does not contain any suitable text.

• Delete - Deletes any selected text. This option is disabled if no text has been selected.

• Select All - Selects the entire text in the active document page.

• Change Case - Allows you to change the case of a selected block of text.

8-bit Proton Compiler Development Suite.

 428

• Find - Displays a find dialog.

• Replace - Displays a find and replace dialog.

• Find Next - Automatically searches for the next occurrence of a word. If no search word

has been selected, then the word at the current cursor position is used. You can also se-
lect a whole phrase to be used as a search term. If the editor is still unable to identify a
search word, a find dialog is displayed.

View Menu

• Results - Display or hide the results window.

• Code Explorer - Display or hide the code explorer window.

• Loader - Displays the MicroCode Loader application.

• Loader Options - Displays the MicroCode Loader options dialog.

• Compile and Program Options - Displays the compile and program options dialog.

• Editor Options - Displays the application editor options dialog.

• Toolbars - Display or hide the main, edit and compile and program toolbars. You can
also toggle the toolbar icon size.

• Plugin - Display a drop down list of available IDE plugins.

Help Menu

• Help Topics - Displays the helpfile section for the toolbar.

• Online Forum - Opens your default web browser and connects to the online Proton Plus
developer forum.

• About - Display about dialog, giving both the Proton IDE and Proton compiler version

numbers.

Main Toolbar

New
Creates a new document. A header is automatically generated, showing information such as
author, copyright and date. To toggle this feature on or off, or edit the header properties, you
should select the editor options dialog from the main menu.

Open
Displays a open dialog box, enabling you to load a document into the Proton IDE. If the docu-
ment is already open, then the document is made the active editor page.

8-bit Proton Compiler Development Suite.

 429

Save
Saves a document to disk. This button is normally disabled unless the document has been
changed. If the document is 'untitled', a save as dialog is invoked. A save as dialog is also in-
voked if the document you are trying to save is marked as read only.

Cut
Cuts any selected text from the active document page and places it into the clipboard. This op-
tion is disabled if no text has been selected. Clipboard data is placed as both plain text and
RTF.

Copy
Copies any selected text from the active document page and places it into the clipboard. This
option is disabled if no text has been selected. Clipboard data is placed as both plain text and
RTF.

Paste
Paste the contents of the clipboard into the active document page. This option is disabled if the
clipboard does not contain any suitable text.

Undo
Cancels any changes made to the currently active document page.

Redo
Reverse an undo command.

Print
Prints the currently active editor page.

Edit Toolbar

Find
Displays a find dialog.

Find and Replace
Displays a find and replace dialog.

Indent
Shifts all selected lines to the next tab stop. If multiple lines are not selected, a single line is
moved from the current cursor position. All lines in the selection (or cursor position) are moved
the same number of spaces to retain the same relative indentation within the selected block.
You can change the tab width from the editor options dialog.

Outdent
Shifts all selected lines to the previous tab stop. If multiple lines are not selected, a single line is
moved from the current cursor position. All lines in the selection (or cursor position) are moved
the same number of spaces to retain the same relative indentation within the selected block.
You can change the tab width from the editor options dialog.

8-bit Proton Compiler Development Suite.

 430

Block Comment
Adds the comment character to each line of a selected block of text. If multiple lines are not se-
lected, a single comment is added to the start of the line containing the cursor.

Block Uncomment
Removes the comment character from each line of a selected block of text. If multiple lines are
not selected, a single comment is removed from the start of the line containing the cursor.

Compile and Program Toolbar

Compile
Pressing this button, or F9, will compile the currently active editor page. The compile button will
generate a *.hex file, which you then have to manually program into your microcontroller.
Pressing the compile button will automatically save all open files to disk. This is to ensure that
the compiler is passed an up to date copy of the file(s) your are editing.

Compile and Program
Pressing this button, or F10, will compile the currently active editor page. Pressing the compile
and program button will automatically save all open files to disk. This is to ensure that the com-
piler is passed an up to date copy of the file(s) your are editing.

Unlike the compile button, the Proton IDE will then automatically invoke a user selectable appli-
cation and pass the compiler output to it. The target application is normally a device program-
mer, for example, MicroCode Loader. This enables you to program the generated *.hex file into
your MCU. Alternatively, the compiler output can be sent to an IDE Plugin. For example, the
Labcenter Electronics Proteus VSM simulator. You can select a different programmer or Plugin
by pressing the small down arrow, located to the right of the compile and program button...

In the above example, MicroCode Loader has been selected as the default device programmer.
The compile and program drop down menu also enables you to install new programming soft-
ware. Just select the 'Install New Programmer...' option to invoke the programmer configuration
wizard. Once a program has been compiled, you can use F11 to automatically start your pro-
gramming software or plugin. You do not have to re-compile, unless of course your program
has been changed.

Loader Verify
This button will verify a *.hex file (if one is available) against the program resident on the micro-
controller. The loader verify button is only enabled if MicroCode Loader is the currently selected
programmer.

8-bit Proton Compiler Development Suite.

 431

Loader Read
This button will upload the code and data contents of a microcontroller to MicroCode Loader.
The loader read button is only enabled if MicroCode Loader is the currently selected program-
mer.

Loader Erase
This button will erase program memory for the 18Fxxx(x) series of microcontroller. The loader
erase button is only enabled if MicroCode Loader is the currently selected programmer.

Loader Information
This button will display the microcontroller loader firmware version. The loader information but-
ton is only enabled if MicroCode Loader is the currently selected programmer.

Code Explorer
The code explorer enables you to easily navigate your program code. The code explorer tree
displays your currently selected processor, include files, declares, constants, variables, alias
and modifiers, labels, macros and data labels.

Device Node
The device node is the first node in the explorer tree. It displays your currently selected proces-
sor type. For example, if you program has the declaration: -

Device = 16F1829

then the name of the device node will be 16F1829. You don't need to explicitly give the device
name in your program for it to be displayed in the explorer. For example, you may have an in-
clude file with the device type already declared. The code explorer looks at all include files to
determine the device type. The last device declaration encountered is the one used in the ex-
plorer window. If you expand the device node, then all Special Function Registers (SFRs) be-
longing to the selected device are displayed in the explorer tree.

8-bit Proton Compiler Development Suite.

 432

Include File Node
When you click on an include file, the IDE will automatically open that file for viewing and edit-
ing. Alternatively, you can just explorer the contents of the include file without having to open it.
To do this, just click on the icon and expand the node. For example: -

In the above example, clicking on the icon for MyInclude.bas has expanded the node to re-
veal its contents. You can now see that MyInclude.bas has two constant declarations called
TransferMax and TransferMin and also two variables called Index and Transfer. The include file
also contains another include file called proton_4.inc. Again, by clicking the icon, the contents
of proton_4.inc can be seen, without opening the file. Clicking on a declaration name will open
the include file and automatically jump to the line number. For example, if you were to click on
TransferMax, the include file MyInclude.bas would be opened and the declaration TransferMax
would be marked in the IDE editor window.

8-bit Proton Compiler Development Suite.

 433

When using the code explorer with include files, you can use the explorer history buttons to go
backwards or forwards. The explorer history buttons are normally located to the left of the main
editors file select tabs,

 History back button
 History forward button

Additional Nodes
Declares, constants, variables, alias and modifiers, labels, macros and data label explorer
nodes work in much the same way. Clicking on any of these nodes will take you to its declara-
tion. If you want to find the next occurrence of a declaration, you should enable automatically
select variable on code explorer click from View...Editor Options.

Selecting this option will load the search name into the 'find dialog' search buffer. You then just
need to press F3 to search for the next occurrence of the declaration in your program.
To sort the explorer nodes, right click on the code explorer and check the Sort Nodes option.

Explorer Warnings and Errors
The code explorer can identify duplicate declarations. If a declaration duplicate is found, the
explorer node icon changes from its default state to a . For example,

 Dim MyVar as Byte
 Dim MyVar as Byte

The above example is rather simplistic. It is more likely you see the duplicate declaration error
in you program without an obvious duplicate partner. That is, only one single duplicate error
symbol is being displayed in the code explorer. In this case, the declaration will have a dupli-
cate contained in an include file. For example,

The declaration TransferMax has been made in the main program and marked as a duplicate.
By exploring your include files, the problem can be identified. In this example, TransferMax has
already been declared in the include file MyInclude.bas

8-bit Proton Compiler Development Suite.

 434

Some features of the compiler of not available for some MCU types. For example, you cannot
have a string declaration when using a 14 core part (for example, the 16F1829). If you try to do
this, the explorer node icon changes from its default state and displays a . You will also see
this icon displayed if the SFR View feature for a device is not available.

Notes
The code explorer uses an optimised parse and pattern match strategy in order to update the
tree in real time. The explorer process is threaded so as not to interfere or slow down other IDE
tasks, such as typing in new code. However, if you run computationally expensive background
tasks on your machine (for example, circuit simulation) you will notice a drop in update per-
formance, due to the threaded nature of the code explorer.

Results View
The results view performs two main tasks. These are (a) display a list of error messages,
should either compilation or assembly fail and (b) provide a summary on compilation success.

Compilation Success View
By default, a successful compile will display the results success view. This provides information
about the device used, the amount of code and data used, the version number of the project
and also date and time.

If you don't want to see full summary information after a successful compile, select View...Editor
Options from the IDE main menu and uncheck display full summary after successful compile.
The number of program words (or bytes used, if its a 16 core device) and the number of data
bytes used will still be displayed in the IDE status bar.

Version Numbers
The version number is automatically incremented after a successful build. Version numbers are
displayed as major, minor, release and build. Each number will rollover if it reaches 256. For
example, if your version number is 1.0.0.255 and you compile again, the number displayed will
be 1.0.1.0. You might want to start you version information at a particular number. For example
1.0.0.0. To do this, click on the version number in the results window to invoke the version in-
formation dialog. You can then set the version number to any start value. Automatic increment-
ing will then start from the number you have specified. To disable version numbering, click on
the version number in the results window to invoke the version information dialog and then un-
check enable version information.

Date and Time
Date and time information is extracted from the generated *.hex file and is always displayed in
the results view.

Success - With Warnings!
A compile is considered successful if it generates a *.hex file. However, you may have gener-
ated a number of warning messages during compilation. Because you should not normally ig-
nore warning messages, the IDE will always display the error view, rather than the success
view, if warnings have been generated.

8-bit Proton Compiler Development Suite.

 435

To toggle between these different views, you can do one of the following click anywhere on the
IDE status bar right click on the results window and select the Toggle View option.

Compilation Error View
If your program generates warning or error messages, the error view is always displayed.

Clicking on each error or warning message will automatically highlight the offending line in the
main editor window. If the error or warning has occurred in an include file, the file will be
opened and the line highlighted. By default, the IDE will automatically highlight the first error
line found. To disable this feature, select View...Editor Options from the IDE main menu and
uncheck automatically jump to first compilation error. At the time of writing, some compiler er-
rors do not have line numbers bound to them. Under these circumstances, Proton IDE will be
unable to automatically jump to the selected line.

Occasionally, the compiler will generate a valid Asm file but warnings or errors are generated
during assembly. Proton IDE will display all assembler warnings or error messages in the error
view, but you will be unable to automatically jump to a selected line.

Editor Options
The editor options dialog enables you to configure and control many of the Proton IDE fea-
tures. The window is composed of four main areas, which are accessed by selecting the
General, Highlighter, Program Header and Online Updating tabs.

Show Line Numbers in Left Gutter
Display line numbers in the editors left hand side gutter. If enabled, the gutter width is in-
creased in size to accommodate a five digit line number.

Show Right Gutter
Displays a line to the right of the main editor. You can also set the distance from the left margin
(in characters). This feature can be useful for aligning your program comments.

Use Smart Tabs
Normally, pressing the tab key will advance the cursor by a set number of characters. With
smart tabs enabled, the cursor will move to a position along the current line which depends on
the text on the previous line. Can be useful for aligning code blocks.

Convert Tabs to Spaces
When the tab key is pressed, the editor will normally insert a tab control character, whose size
will depend on the value shown in the width edit box (the default is four spaces). If you then
press the backspace key, the whole tab is deleted (that is, the cursor will move back four
spaces). If convert tabs to spaces is enabled, the tab control character is replaced by the space
control character (multiplied by the number shown in the width edit box). Pressing the back-
space key will therefore only move the cursor back by one space. Please note that internally,
the editor does not use hard tabs, even if convert tabs to spaces is unchecked.

8-bit Proton Compiler Development Suite.

 436

Automatically Indent
When the carriage return key is pressed in the editor window, automatically indent will advance
the cursor to a position just below the first word occurrence of the previous line. When this fea-
ture is unchecked, the cursor just moves to the beginning of the next line.

Show Parameter Hints
If this option is enabled, small prompts are displayed in the main editor window when a particu-
lar compiler keyword is recognised. For example,

Parameter hints are automatically hidden when the first parameter character is typed. To view
the hint again, press F1. If you want to view more detailed context sensitive help, press F1
again.

Open Last File(s) When Application Starts
When checked, the documents that were open when Proton IDE was closed are automatically
loaded again when the application is restarted.

Display Full Filename Path in Application Title Bar
By default, Proton IDE only displays the document filename in the main application title bar
(that is, no path information is includes). Check display full pathname if you would like to dis-
play additional path information in the main title bar.

Prompt if File Reload Needed
Proton IDE automatically checks to see if a file time stamp has changed. If it has (for example,
and external program has modified the source code) then a dialog box is displayed asking if the
file should be reloaded. If prompt on file reload is unchecked, the file is automatically reloaded
without any prompting.

Automatically Select Variable on Code Explorer Click
By default, clicking on a link in the code explorer window will take you to the part of your pro-
gram where a declaration has been made. Selecting this option will load the search name into
the 'find dialog' search buffer. You then just need to press F3 to search for the next occurrence
of the declaration in your program.

Automatically Jump to First Compilation Error
When this is enabled, Proton IDE will automatically jump to the first error line, assuming any
errors are generated during compilation.

Automatically Change Identifiers to Match Declaration
When checked, this option will automatically change the identifier being typed to match that of
the actual declaration. For example, if you have the following declaration,

Dim MyIndex as Byte

and you type 'myindex' in the editor window, Proton IDE will automatically change 'myindex' to
'MyIndex'. Identifiers are automatically changed to match the declaration even if the declaration
is made in an include file.

8-bit Proton Compiler Development Suite.

 437

Please note that the actual text is not physically changed, it just changes the way it is displayed
in the editor window. For example, if you save the above example and load it into wordpad or
another text editor, it will still show as 'myindex'. If you print the document, the identifier will be
shown as 'MyIndex'. If you copy and paste into another document, the identifier will be shown
as 'MyIndex', if the target application supports formatted text (for example Microsoft Word).
In short, this feature is very useful for printing, copying and making you programs look consis-
tent throughout.

Clear Undo History After Successful Compile
If checked, a successful compilation will clear the undo history buffer. A history buffer takes up
system resources, especially if many documents are open at the same time. It's a good idea to
have this feature enabled if you plan to work on many documents at the same time.

Display Full Summary After Successful Compile
If checked, a successful compilation will display a full summary in the results window. Disabling
this option will still give a short summary in the IDE status bar, but the results window will not
be displayed.

Default Source Folder
Proton IDE will automatically go to this folder when you invoke the file open or save as dialogs.
To disable this feature, uncheck the 'Enabled' option, shown directly below the default source
folder.

Highlighter Options

Item Properties
The syntax highlighter tab lets you change the colour and attributes (for example, bold and
italic) of the following items: -

Comment
Device Name
Identifier
Keyword (Asm)
Keyword (Declare)
Keyword (Important)
Keyword (Macro Parameter)
Keyword (Proton)
Keyword (User)
Number
Number (Binary)
Number (Hex)
SFR
SFR (Bitname)
String
Symbol
Preprocessor

The point size is ranged between 6pt to 16pt and is global. That is, you cannot have different
point sizes for individual items.

8-bit Proton Compiler Development Suite.

 438

Reserved Word Formatting
This option enables you to set how Proton IDE displays keywords. Options include: -

Database Default - the IDE will display the keyword as declared in the applications keyword
database.

Uppercase - the IDE will display the keyword in uppercase.

Lowercase - the IDE will display the keyword in lowercase.

As Typed - the IDE will display the keyword as you have typed it.

Please note that the actual keyword text is not physically changed, it just changes the way it is
displayed in the editor window. For example, if you save your document and load it into word-
pad or another text editor, the keyword text will be displayed as you typed it. If you print the
document, the keyword will be formatted. If you copy and paste into another document, the
keyword will be formatted, if the target application supports formatted text (for example Micro-
soft Word).

Header options allows you to change the author and copyright name that is placed in a header
when a new document is created. For example: -

'* Name : Untitled.bas *
'* Author : J.R Hartley *
'* Notice : Copyright (c) 2016 MyCompany *
'* : All Rights Reserved *
'* Date : 06/03/16 *
'* Version : 1.0 *
'* Notes : *
'* : *
'**

If you do not want to use this feature, simply deselect the enable check box.

8-bit Proton Compiler Development Suite.

 439

Compile and Program Options

Compiler Tab

You can get the Proton IDE to locate a compiler directory automatically by clicking on the find
automatically button. The auto-search feature will stop when a compiler is found.

Alternatively, you can select the directory manually by selecting the find manually button. The
auto-search feature will search for a compiler and if one is found, the search is stopped and the
path pointing to the compiler is updated. If you have multiple versions of a compiler installed on
your system, use the find manually button. This ensures the correct compiler is used by the
IDE.

Programmer Tab

Use the programmer tab to install a new programmer, delete a programmer entry or edit the
currently selected programmer. Pressing the Install New Programmer button will invoke the
install new programmer wizard. The Edit button will invoke the install new programmer wizard
in custom configuration mode.

8-bit Proton Compiler Development Suite.

 440

Installing a Programmer
The Proton IDE enables you to start your preferred programming software from within the de-
velopment environment . This enables you to compile and then program your microcontroller
with just a few mouse clicks (or keyboard strokes, if you prefer). The first thing you need to do
is tell Proton IDE which programmer you are using. Select View...Options from the main menu
bar, then select the Programmer tab. Next, select the Add New Programmer button. This will
open the install new programmer wizard.

Select the programmer you want Proton IDE to use, then choose the Next button. Proton IDE
will now search your computer until it locates the required executable. If your programmer is not
in the list, you will need to create a custom programmer entry.
Your programmer is now ready for use. When you press the Compile and Program button on
the main toolbar, you program is compiled and the programmer software started. The *.hex
filename and target device is automatically set in the programming software (if this feature is
supported), ready for you to program your microcontroller.

You can select a different programmer, or install another programmer, by pressing the small
down arrow, located to the right of the compile and program button, as shown below

8-bit Proton Compiler Development Suite.

 441

Creating a custom Programmer Entry
In most cases, Proton IDE has a set of pre-configured programmers available for use. How-
ever, if you use a programmer not included in this list, you will need to add a custom program-
mer entry. Select View...Options from the main menu bar, then select the Programmer tab.
Next, select the Add New Programmer button. This will open the install new programmer wiz-
ard. You then need to select 'create a custom programmer entry', as shown below

Select Display Name
The next screen asks you to enter the display name. This is the name that will be displayed in
any programmer related drop down boxes. Proton IDE enables you to add and configure multi-
ple programmers. You can easily switch from different types of programmer from the compile
and program button, located on the main editor toolbar. The multiple programmer feature
means you do not have to keep reconfiguring your system when you switch programmers. Pro-
ton IDE will remember the settings for you. In the example below, the display name will be 'My
New Programmer'.

8-bit Proton Compiler Development Suite.

 442

Select Programmer Executable
The next screen asks for the programmer executable name. You do not have to give the full
path, just the name of the executable name will do.

Select Programmer Path
The next screen is the path to the programmer executable. You can let Proton IDE find it auto-
matically, or you can select it manually.

Select Parameters
The final screen is used to set the parameters that will be passed to your programmer. Some
programmers, for example, EPICWin™ allows you to pass the device name and hex filename.
Proton IDE enables you to 'bind' the currently selected device and *.hex file you are working on.

8-bit Proton Compiler Development Suite.

 443

For example, if you are compiling 'blink.bas' in the Proton IDE using a 16F628, you would want
to pass the 'blink.hex' file to the programmer and also the name of the microcontroller you in-
tend to program. Here is the EPICWin™ example: -

-pPIC$target-device$ $hex-filename$

When EPICWin™ is started, the device name and hex filename are 'bound' to $target-device$
and $hex-filename$ respectively. In the 'blink.bas' example, the actual parameter passed to the
programmer would be: -

-pPIC16F628 blink.hex

Parameter Summary
Parameter Description
$target-device$ Microcontroller name
$hex-filename$ Hex filename and path, DOS 8.3 format
$long-hex-filename$ Hex filename and path
$asm-filename$ Asm filename and path, DOS 8.3 format
$long-asm-filename$ Asm filename and path

Microcode Loader
Most of the modern PICmicros have the ability to write to their own program memory, without
the need of a hardware programmer. A small piece of software called a bootloader resides on
the target microcontroller, which allows user code and eeprom data to be transmitted over a
serial cable and written to the device. The MicroCode Loader application is the software which
resides on the computer. Together, these two components enable a user to program, verify and
read their program and eeprom data all in circuit.

When power is first applied to the microcontroller (or it is reset), the bootloader first checks to
see if the MicroCode Loader application has something for it to do (for example, program your
code into the target device). If it does, the bootloader gives control to MicroCode Loader until it
is told to exit. However, if the bootloader does not receive any instructions with the first few
hundred milliseconds of starting, the bootloader will exit and the code previously written to the
target device will start to execute.

The bootloader software resides in the upper 256 words of program memory (336 words for
18Fxxx devices), with the rest of the microcontroller code space being available for your pro-
gram. All eeprom data memory and microcontroller registers are available for use by your pro-
gram. Please note that only the program code space and eeprom data space may be pro-
grammed, verified and read by MicroCode Loader. The microcontroller ID location and configu-
ration fuses are not available to the loader process. Configuration fuses must therefore be set
at the time the bootloader software is programmed into the target microcontroller.

Hardware Requirements
MicroCode Loader communicates with the target microcontroller using its hardware Universal
Synchronous Asynchronous Receiver Transmitter (USART). You will therefore need a devel-
opment board that supports RS232 serial communication in order to use the loader. There are
many boards available which support RS232.

Whatever board you have, if the board has a 9 pin serial connector on it, the chances are it will
have a MAX232 or equivalent located on the board. This is ideal for MicroCode Loader to
communicate with the target device using a serial cable connected to your computer. Alterna-
tively, you can use the following circuit and build your own.

8-bit Proton Compiler Development Suite.

 444

Note: Components R1, R2, and the Reset switch are optional, and serve to reset the microcon-
troller automatically. If these components are not used, the connections to R2in and R2out of
the MAX232 may be omitted.

MicroCode Loader supports a host of devices capable of using a bootloader and the support
will grow as new devices devices become available.

MicroCode Loader comes with a number of pre-compiled *.hex files, ready for programming
into the target microcontroller. If you require a bootloader file with a different configuration,
please contact Mecanique.

Using the Bootloader is very easy. Before using this guide make sure that your target microcon-
troller is supported by the loader and that you also have suitable hardware.

Programming the Loader Firmware
Before using the Bootloader, you need to ensure that the bootloader firmware has been pro-
grammed onto the target microcontroller using a hardware programmer. This is a one off opera-
tion, after which you can start programming your target device over an RS232 serial connec-
tion. You need to make sure that the bootloader *.hex file matches the clock speed of your tar-
get microcontroller. For example, if you are using a 16F877 on a development board running at
20MHz, then you need to use the firmware file called 16F877_20.hex. If you don't do this, the
Bootloader will be unable to communicate with the target microcontroller. The Compiler comes
with a number of pre-compiled *.hex files, ready for programming into the target microcontroller.
The loader firmware files can be found in the MCLoader folder, located in your main IDE instal-
lation folder. Default fuse settings are embedded in the firmware *.hex file. You should not nor-
mally change these default settings. You should certainly never select the code protect fuse. If
the code protect fuse is set the Bootloader will be unable to program your *.hex file.

C1
1uF

+5 Volts

V+

V+VCC

GND

MAX232

10

9

12

11 14

15

13

8

7

6

5

4

3

21

16

C1+
C1-
C2+
C2-

V-

T1in
T2in
R1out
R2out

T1out
T2out
R1in
R2in

C2
1uF

C3
1uF

C4
1uF

6
21 53

7
4

8 9

RX TX GND

9-way
D-Socket

0V

PIC RC.6

PIC RC.7

C5
1uF

+5 Volts

R2
100Ω

R1
4.7kΩ

RESET

PIC MCLR

8-bit Proton Compiler Development Suite.

 445

Configuring the Loader
Assuming you now have the firmware installed on your microcontroller, you now just need to
tell MicroCode Loader which COM port you are going to use. To do this, select View...Loader
from the MicroCode IDE main menu. Select the COM port from the MicroCode Loader main
toolbar. Finally, make sure that MicroCode Loader is set as your default programmer.

Click on the down arrow, to the right of the Compile and Program button. Check the MicroCode
Loader option, like this: -

Using MicroCode Loader
Connect a serial cable between your computer and development board. Apply power to the
board.

Press 'Compile and Program' or F10 to compile your program. If there are no compilation er-
rors, the MicroCode Loader application will start. It may ask you to reset the development board
in order to establish communications with the resident microcontroller bootloader. This is per-
fectly normal for development boards that do not implement a software reset circuit. If required,
press reset to establish communications and program you microcontroller.

Loader Options
Loader options can be set by selecting the Options menu item, located on the main menu bar.

Program Code
Optionally program user code when writing to the target microcontroller. Uncheck this option to
prevent user code from being programmed. The default is On.

Program Data
Optionally program Eeprom data when writing to the target microcontroller. Uncheck this option
to prevent Eeprom data from being programmed. The default is On.

Verify Code When Programming
Optionally verify a code write operation when programming. Uncheck this option to prevent
user code from being verified when programming. The default is On.

Verify Data When Programming
Optionally verify a data write operation when programming. Uncheck this option to prevent user
data from being verified when programming. The default is On.

Verify Code
Optionally verify user code when verifying the loaded *.hex file. Uncheck this option to prevent
user code from being verified. The default is On.

Verify Data
Optionally verify Eeprom data when verifying the loaded *.hex file. Uncheck this option to pre-
vent Eeprom data from being verified. The default is On.

8-bit Proton Compiler Development Suite.

 446

Verify After Programming
Performs an additional verification operation immediately after the target microcontroller has
been programmed. The default is Off.

Run User Code After Programming
Exit the bootloader process immediately after programming and then start running the target
user code. The default is On.

Load File Before Programming
Optionally load the latest version of the *.hex file immediately before programming the target
microcontroller. The default is Off.

Baud Rate
Select the speed at which the computer communicates with the target microcontroller. By de-
fault, the Auto Detect option is enabled. This feature enables MicroCode Loader to determine
the speed of the target microcontroller and set the best communication speed for that device.

If you select one of the baud rates manually, it must match the baud rate of the loader software
programmed onto the target microcontroller. For devices running at less that 20MHz, this is
19200 baud. For devices running at 20MHz, you can select either 19200 or 115200 baud.

Loader Main Toolbar

Open Hex File
The open button loads a *.hex file ready for programming.

Program
The program button will program the loaded hex file code and eeprom data into the target mi-
crocontroller. When programming the target device, a verification is normally done to ensure
the integrity of the programmed user code and eeprom data. You can override this feature by
un-checking either Verify Code When Programming or Verify Data When Programming. You
can also optionally verify the complete *.hex file after programming by selecting the Verify After
Programming option.

Pressing the program button will normally program the currently loaded *.hex file. However, you
can load the latest version of the *.hex file immediately before programming by checking Load
File Before Programming option. You can also set the loader to start running the user code im-
mediately after programming by checking the Run User Code After Programming option. When
programming the target device, both user code and eeprom data are programmed by default
(recommended). However, you may want to just program code or eeprom data. To change the
default configuration, use the Program Code and Program Data options.

Should any problems arise when programming the target device, a dialog window will be dis-
played giving additional details. If no problems are encountered when programming the device,
the status window will close at the end of the write sequence.

Read
The read button will read the current code and eeprom data from the target microcontroller.
Should any problems arise when reading the target device, a dialog window will be displayed
giving additional details. If no problems are encountered when reading the device, the status
window will close at the end of the read sequence.

8-bit Proton Compiler Development Suite.

 447

Verify
The verify button will compare the currently loaded *.hex file code and eeprom data with the
code and eeprom data located on the target microcontroller. When verifying the target device,
both user code and eeprom data are verified by default. However, you may want to just verify
code or eeprom data. To change the default configuration, use the Verify Code and Verify Data
options.

Should any problems arise when verifying the target device, a dialog window will be displayed
giving additional details. If no problems are encountered when verifying the device, the status
window will close at the end of the verification sequence.

Erase
The erase button will erase all of the code memory on a PIC16F8x and PIC18Fxxx(x) micro-
controller.

Run User Code
The run user code button will cause the bootloader process to exit and then start running the
program loaded on the target microcontroller.

Loader Information
The loader information button displays the loader firmware version and the name of the target
microcontroller, for example PIC16F877.

Loader Serial Port
The loader serial port drop down box allows you to select the com port used to communicate
with the target microcontroller.

IDE Plugins
The Proton IDE has been designed with flexibility in mind. Plugins enable the functionality of
the IDE to be extended by through additional third party software, which can be integrated into
the development environment. Proton IDE comes with a default set of plugins which you can
use straight away. These are: -

ASCII Table
Assembler
Hex View
Serial Communicator
Labcenter Electronics Proteus VSM

To access a plugin, select the plugin icon just above the main editor window. A drop down list
of available plugins will then be displayed. Plugins can also be selected from the main menu, or
by right clicking on the main editor window.

Plugin Developer Notes
The plugin architecture has been designed to make writing third party plugins very easy, using
the development environment of your choice (for example Visual BASIC, C++ or Borland Del-
phi). This architecture is currently evolving and is therefore publicly undocumented until all of
the protocols have been finalised. As soon as the protocol details have been finalised, this
documentation will be made public. For more information, please feel free to contact us.

8-bit Proton Compiler Development Suite.

 448

ASCII Table
The American Standard Code for Information Interchange (ASCII) is a set of numerical codes,
with each code representing a single character, for example, 'a' or '$'.

The ASCII table plugin enables you to view these codes in either decimal, hexadecimal or bi-
nary. The first 32 codes (0..31) are often referred to as non-printing characters, and are dis-
played as grey text.

Hex View
The Hex view plugin enables you to view program code and EEPROM data for 14 and 16 core
devices.

The Hex View window is automatically updated after a successful compile, or if you switch pro-
gram tabs in the IDE. By default, the Hex view window remains on top of the main IDE window.
To disable this feature, right click on the Hex View window and uncheck the Stay on Top op-
tion.

8-bit Proton Compiler Development Suite.

 449

Assembler Window
The Assembler plugin allows you to view and modify the *.asm file generated by the compiler.
Using the Assembler window to modify the generated *.asm file is not really recommended,
unless you have some experience using assembler.

Assembler Menu Bar

File Menu
New - Creates a new document. A header is automatically generated, showing information
such as author, copyright and date.

• Open - Displays a open dialog box, enabling you to load a document into the Assembler
plugin. If the document is already open, then the document is made the active editor
page.

• Save - Saves a document to disk. This button is normally disabled unless the document

has been changed. If the document is 'untitled', a save as dialog is invoked. A save as
dialog is also invoked if the document you are trying to save is marked as read only.

• Save As - Displays a save as dialog, enabling you to name and save a document to

disk.

• Close - Closes the currently active document.

• Close All - Closes all editor documents and then creates a new editor document.

• Reopen - Displays a list of Most Recently Used (MRU) documents.

• Print Setup - Displays a print setup dialog.

• Print - Prints the currently active editor page.

• Exit - Enables you to exit the Assembler plugin.

Edit Menu

• Undo - Cancels any changes made to the currently active document page.

• Redo - Reverse an undo command.

• Cut - Cuts any selected text from the active document page and places it into the clip-
board.

• Copy - Copies any selected text from the active document page and places it into the

clipboard.

• Paste - Paste the contents of the clipboard into the active document page. This option is
disabled if the clipboard does not contain any suitable text.

• Delete - Deletes any selected text. This option is disabled if no text has been selected.

• Select All - Selects the entire text in the active document page.

8-bit Proton Compiler Development Suite.

 450

• Find - Displays a find dialog.

• Replace - Displays a find and replace dialog.

• Find Next - Automatically searches for the next occurrence of a word. If no search word

has been selected, then the word at the current cursor position is used. You can also se-
lect a whole phrase to be used as a search term. If the editor is still unable to identify a
search word, a find dialog is displayed.

View Menu

• Options - Displays the application editor options dialog.

• Toolbars - Display or hide the main and assemble and program toolbars. You can also
toggle the toolbar icon size.

Help Menu

• Help Topics - Displays the IDE help file.

• About - Display about dialog, giving the Assembler plugin version number.

Assembler Main Toolbar

New
Creates a new document. A header is automatically generated, showing information such as
author, copyright and date.

Open
Displays a open dialog box, enabling you to load a document into the Assembler plugin. If the
document is already open, then the document is made the active editor page.

Save
Saves a document to disk. This button is normally disabled unless the document has been
changed. If the document is 'untitled', a save as dialog is invoked. A save as dialog is also in-
voked if the document you are trying to save is marked as read only.

Cut
Cuts any selected text from the active document page and places it into the clipboard. This op-
tion is disabled if no text has been selected.

Copy
Copies any selected text from the active document page and places it into the clipboard. This
option is disabled if no text has been selected.

Paste
Paste the contents of the clipboard into the active document page. This option is disabled if the
clipboard does not contain any suitable text.

Undo
Cancels any changes made to the currently active document page.

8-bit Proton Compiler Development Suite.

 451

Redo
Reverse an undo command.

Assembler Editor Options

Show Line Numbers in Left Gutter
Display line numbers in the editors left hand side gutter. If enabled, the gutter width is in-
creased in size to accommodate a five digit line number.

Show Right Gutter
Displays a line to the right of the main editor. You can also set the distance from the left margin
(in characters). This feature can be useful for aligning your program comments.

Use Smart Tabs
Normally, pressing the tab key will advance the cursor by a set number of characters. With
smart tabs enabled, the cursor will move to a position along the current line which depends on
the text on the previous line. Can be useful for aligning code blocks.

Convert Tabs to Spaces
When the tab key is pressed, the editor will normally insert a tab control character, whose size
will depend on the value shown in the width edit box (the default is four spaces). If you then
press the backspace key, the whole tab is deleted (that is, the cursor will move back four
spaces). If convert tabs to spaces is enabled, the tab control character is replaced by the space
control character (multiplied by the number shown in the width edit box). Pressing the back-
space key will therefore only move the cursor back by one space. Please note that internally,
the editor does not use hard tabs, even if convert tabs to spaces is unchecked.

Automatically Indent
When the carriage return key is pressed in the editor window, automatically indent will advance
the cursor to a position just below the first word occurrence of the previous line. When this fea-
ture is unchecked, the cursor just moves to the beginning of the next line.

Show Parameter Hints
If this option is enabled, small prompts are displayed in the main editor window when a particu-
lar compiler keyword is recognised.

8-bit Proton Compiler Development Suite.

 452

Open Last File(s) When Application Starts
When checked, the documents that were open when the Assembler plugin was closed are
automatically loaded again when the application is restarted.

Display Full Filename Path in Application Title Bar
By default, the Assembler plugin only displays the document filename in the main application
title bar (that is, no path information is included). Check display full pathname if you would like
to display additional path information in the main title bar.

Prompt if File Reload Needed
The Assembler plugin automatically checks to see if a file time stamp has changed. If it has (for
example, and external program has modified the source code) then a dialog box is displayed
asking if the file should be reloaded. If prompt on file reload is unchecked, the file is automati-
cally reloaded without any prompting.

Automatically Jump to First Compilation Error
When this is enabled, the Assembler plugin will automatically jump to the first error line, assum-
ing any errors are generated during compilation.

Clear Undo History After Successful Compile
If checked, a successful compilation will clear the undo history buffer. A history buffer takes up
system resources, especially if many documents are open at the same time. It's a good idea to
have this feature enabled if you plan to work on many documents at the same time.

Default Source Folder
The Assembler plugin will automatically go to this folder when you invoke the file open or save
as dialogs. To disable this feature, uncheck the 'Enabled' option, shown directly below the de-
fault source folder.

Serial Communicator
The Serial Communicator plugin is a simple to use utility which enables you to transmit and
receive data via a serial cable connected to your PC and development board. The easy to use
configuration window allows you to select port number, baudrate, parity, byte size and number
of stop bits. Alternatively, you can use Serial Communicator favourites to quickly load pre-
configured connection settings.

Menu options

File Menu

• Clear - Clears the contents of either the transmit or receive window.

• Open - Displays a open dialog box, enabling you to load data into the transmit window.

• Save As - Displays a save as dialog, enabling you to name and save the contents of the
receive window.

• Exit - Enables you to exit the Serial Communicator software.

Edit Menu

• Undo - Cancels any changes made to either the transmit or receive window.

• Cut - Cuts any selected text from either the transmit or receive window.

8-bit Proton Compiler Development Suite.

 453

• Copy - Copies any selected text from either the transmit or receive window.

• Paste - Paste the contents of the clipboard into either the transmit or receive window.

This option is disabled if the clipboard does not contain any suitable text.

• Delete - Deletes any selected text. This option is disabled if no text has been selected.

View Menu

• Configuration Window - Display or hide the configuration window.

• Toolbars - Display small or large toolbar icons.

Help Menu

• Help Topics - Displays the serial communicator help file.

• About - Display about dialog, giving software version information.

Serial Communicator Main Toolbar

Clear
Clears the contents of either the transmit or receive window.

Open
Displays a open dialog box, enabling you to load data into the transmit window.

Save As
Displays a save as dialog, enabling you to name and save the contents of the receive window.

Cut
Cuts any selected text from either the transmit or receive window.

Copy
Copies any selected text from either the transmit or receive window.

Paste
Paste the contents of the clipboard into either the transmit or receive window. This option is
disabled if the clipboard does not contain any suitable text.

Connect
Connects the Serial Communicator software to an available serial port. Before connecting, you
should ensure that your communication options have been configured correctly using the
configuration window.

Disconnect
Disconnect the Serial Communicator from a serial port.

8-bit Proton Compiler Development Suite.

 454

Configuration
The configuration window is used to select the COM port you want to connect to and also set
the correct communications protocols.

Clicking on a configuration link will display a drop down menu, listing available options. A sum-
mary of selected options is shown below the configuration links. For example, in the image
above, summary information is displayed under the heading 19200 Configuration.

Favourites
Pressing the favourite icon will display a number of options allowing you to add, manage or
load configuration favourites.

Add to Favourites
Select this option if you wish to save your current configuration. You can give your configuration
a unique name, which will be displayed in the favourite drop down menu. For example, 9600
Configuration or 115200 Configuration

Manage Favourites
Select this option to remove a previously saved configuration favourite.

Notes
After pressing the connect icon on the main toolbar, the configuration window is automatically
closed and opened again when disconnect is pressed. If you don't want the configuration win-
dow to automatically close, right click on the configuration window and un-check the Auto-Hide
option.

8-bit Proton Compiler Development Suite.

 455

Transmit Window
The transmit window enables you to send serial data to an external device connected to a PC
serial port. In addition to textual data, the send window also enables you to send control char-
acters. To display a list of transmit options, right click on the transmit window.

Clear
Clear the contents of the transmit window.

Word Wrap
This option allows you to wrap the text displayed in the transmit window.

Auto Clear After Transmit
Enabling this option will automatically clear the contents of the transmit window when data is
sent.

Transmit on Carriage Return
This option will automatically transmit data when the carriage return key is pressed. If this op-
tion is disabled, you will need to manually press the send button or press F4 to transmit.

Line Terminator
You can append your data with a number of line terminations characters. These include CR,
CR and LF, LF and CR, null and No Terminator.

Parse Control Characters
When enabled, the parse control characters option enables you to send control characters in
your message, using either a decimal or hexadecimal notation. For example, if you want to
send hello world followed by a carriage return and line feed character, you would use hello
world#13#10 for decimal, or hello worldDA for hex. Only numbers in the range 0 to 255 will
be converted. For example, sending the message letter #9712345 will be interpreted as letter
a12345.

If the sequence of characters does not form a legal number, the sequence is interpreted as
normal characters. For example, hello world#here I am. If you don't want characters to be in-
terpreted as a control sequence, but rather send it as normal characters, then all you need to
do is use the tilde symbol (~). For example, letter ~#9712345 would be sent as letter
#9712345.

8-bit Proton Compiler Development Suite.

 456

Receive Window
The receive window is used to capture data sent from an external device (for example, a PIC
MCU) to your PC. To display a list of transmit options, right click on the receive window.

Clear
Clear the contents of the receive window.

Word Wrap
When enabled, incoming data is automatically word wrapped.

Notes
In order to advance the cursor to the next line in the receive window, you must transmit either a
CR ($D) or a CR LF pair ($D $A) from your external device.

Labcenter Electronics Proteus VSM
Proteus Virtual System Modelling (VSM) combines mixed mode SPICE circuit simulation, ani-
mated components and microprocessor models to facilitate co-simulation of complete micro-
controller based designs. For the first time ever, it is possible to develop and test such designs
before a physical prototype is constructed.

The Proton Plus Development Suite comes shipped with a free demonstration version of the
Proteus simulation environment and also a number of pre-configured Virtual Hardware Boards
(VHB). Unlike the professional version of Proteus, you are unable to make any changes to the
pre-configured boards or create your own boards.
If you already have a full version of Proteus VSM installed on your system (6.5.0.5 or higher),
then this is the version that will be used by the IDE. If you don't have the full version, the IDE
will default to using the demonstration installation.

System Requirements
Windows XP or Vista
512MB RAM (1 GB or higher recommended)
500 MHz Processor

Further Information
You can find out more about the simulator supplied with the Proton Development Suite from
Labcenter Electronics

ISIS Simulator Quick Start Guide
This brief tutorial aims to outline the steps you need to take in order to use Labcenter Electron-
ics Proteus Virtual System Modelling (VSM) with the Proton IDE. The first thing you need to do
is load or create a program to simulate. In this worked example, we will keep things simple and
use a classic flashing LED program. In the IDE, press the New toolbar button and type in the
following: -

Device = 16F1829
Declare Xtal = 20
Symbol LED = PORTD.0
MainProgram:
High LED

http://www.labcenter.co.uk/products/crowhill.htm

8-bit Proton Compiler Development Suite.

 457

Delayms 500
Low LED
Delayms 500
Goto MainProgram

You now need to make sure that the output of the compile and program process is re-directed
to the simulator. Normally, pressing compile and program will create a *.hex file which is then
sent to your chosen programmer. However, we want the output to be sent to the simulator, not
a device programmer. To do this, press the small down arrow to the right of the compile and
program toolbar icon and check the Labcenter Electronics Proteus VSM option, as shown be-
low: -

After selecting the above option, save your program and then press the compile and program
toolbar button to build your project. This will then start the Virtual Hardware Board (VHB) Ex-
plorer, as shown below: -

VHB Explorer is the IDE plugin that co-ordinates activity between the IDE and the simulator. Its
primary purpose is to bind a Virtual Hardware Board to your program. In this example, the pro-
gram has been built for the 16F877 MCU which flashes an LED connected to PORTD.0. To run
the simulation for this program, just double click on the PIC16_ALCD_VHB hardware board
item. This will invoke the Proteus simulator which will then automatically start executing your
program using the selected board.

Additional Integration Tips
If you followed the Proteus VSM quick start guide, you will know how easy it is to load you pro-
gram into the simulation environment with the Virtual Hardware Board (VHB) Explorer. How-
ever, one thing you might have noticed is that each time you press compile and program the
VHB Explorer is always displayed. If you are using the same simulation board over and over
again, manually having to select the board using VHB Explorer can become a little tiresome.

8-bit Proton Compiler Development Suite.

 458

Virtual Hardware Boards Favourites
The good news is that every time you select a board using VHB Explorer, it is saved as a VHB
Explorer favourite. You can access VHB Explorer favourites from within Proton IDE by right
clicking on the main editor window and selecting the Virtual Hardware Boards option, as shown
below : -

In the quick start guide, the program was bound to a simulation board called
PIC16_ALCD_VHB. If we check this favourite and then press compile and program, VHB Ex-
plorer is not displayed. Instead, you project is loaded immediately into the Proteus simulation
environment. You can have more than one board bound to your project, allowing you to quickly
switch between target simulation boards during project development.

To add additional boards to your project, manually start VHB Explorer by selecting the plugin
icon and clicking on the Labcenter Electronics Proteus VSM... option. When VHB Explorer
starts, just double click on the board you want to be bound to your current project. Your new
board selection will be displayed next time you right click on the main editor window and select
Virtual Hardware Boards. You can delete a favourite board by manually starting VHB Explorer
and pressing the Favourites toolbar icon. Choose the Manage Favourites option to remove the
virtual hardware board from the favourites list.

8-bit Proton Compiler Development Suite.

 459

Proton
Amicus18

Hardware Overview

8-bit Proton Compiler Development Suite.

 460

Amicus18 Hardware Overview
The Amicus18 hardware is based upon the Arduino board, however, the Amicus18 board uses
a Microchip PIC® microcontroller instead of an Atmel AVR type. The preferred language for the
Amicsu18 board is the Proton BASIC compiler, and the devie used within the Amicus18 board
is freely avalable within the Proton compiler.

It has exactly the same dimensions as the Arduino, and all Arduino shields will physically fit on
the Amicus18 board.

The microcontroller used on the Amicus18 is the Microchip PIC18F25K20, or the PIC18F25K22
which each have 32768 bytes of flash memory, 1536 bytes of RAM, and operate at 64MHz,
which equates to 16 MIPS (Million Instructions per Second).

There are up to eleven 10-bit ADC (Analogue to Digital Converter) inputs, and two 10-bit PWM
(Pulse Width Modulation) outputs, as well as comparators, USARTs (Universal Synchronous
Asynchronous Receiver Transmitter), SPI (Serial Peripheral Interface), I2C (Inter-Integrated
Circuit), and up to six timers, each with various internal operations attached to them.

Each of the microcontroller’s I/O lines are brought out for use with external devices such as
LEDs, Servos, Potentiometers, LCDs etc…

Communication with the Amicus18 board is through a USB interface, which presents itself as a
standard serial port on the PC. The microcontroller can be programmed directly through this
port so there is no need for a dedicated device programmer, however, if the need arises, there
is an ICSP (In Circuit Serial Programming) interface suitable for all programmers, but tailored
for the Microchip PICkit2™ programmer.

Power can be supplied to the board either via the USB port, or an external 9 Volt DC source.
When powered from the USB port, a maximum of 500mA (milliAmp) may be drawn, and the
USB port is protected by a resetable fuse. When powered via a 9V source, a maximum of
800mA may be drawn.

The PIC18F25K20 microcontroller is a 3.3 volts type, while the PIC18F25K22 will operate with
both 3.3 volts and 5 volts.

The Amicus18 board is extremely easy to use, in fact, no previous microcontroller experience is
required in order to get your first project up and running, as you’ll find out later.

8-bit Proton Compiler Development Suite.

 461

Amicus18 Sockets
As mentioned earlier, each of the microcontroller’s I/O lines is brought to the outside world via
2.54mm (0.1”) SIL sockets on the Amicus18 board. The operation of each block of pins is out-
lined below:

The 8-pin Power header socket:

 RA6 which is bit-6 of PORTA. This pin defaults to the Clock Output Pin where the crys-
tal is connected. It may be used as an I/O pin only when an internal oscillator setting is
chosen.

 RA7 which is bit-7 of PORTA. This pin defaults to the Clock Input Pin where the crystal

is connected. It may be used as an I/O pin only when an internal oscillator setting is
chosen.

 Microcontroller’s reset line, which also acts as bit-3 of PORTE (RE3), and is also the

voltage input for a device programmer such as the PICkit2™ or the PICkit3™.

 3.3 Volts output. 500mA when powered via USB, or 800mA when powered by an ex-
ternal 9 Volts source.

 5 Volts output. 500mA when powered via USB, or 800mA when powered by an exter-

nal 9 Volts source.

 Ground (0 Volts).

 DC 9 Volts input. This may be used to power the
board.

The 4-pin Power header socket:

 Ground (0 Volts)

 3.3 Volts output. 500mA when powered via USB, or
800mA when powered by an external 9 Volts source.

 5 Volts output. 500mA when powered via USB, or 800mA when powered by an exter-

nal 9 Volts source.

8-bit Proton Compiler Development Suite.

 462

The PORTA (ANx) socket:

 RA0 which is bit-0 of digital PORTA. This pin can also be configured as Input 0 (AN0) of

the 10-bit ADC (Analogue to Digital Converter). It can also be configured as the negative
(-) input pin to either Comparator 1 or 2.

 RA1 which is bit-1 of digital PORTA. This pin can also be configured as Input 1 (AN1) of

the 10-bit ADC (Analogue to Digital Converter). It can also be configured as the negative
(-) input pin to either Comparator 1 or 2.

 RA2 which is bit-2 of digital PORTA. This pin can also be configured as Input 2 (AN2) of

the 10-bit ADC (Analogue to Digital Converter). It can also be configured as the positive
(+) input pin to Comparator 2, or the output for the internal voltage reference.

 RA3 which is bit-3 of digital PORTA. This pin can also be configured as Input 3 (AN3) of

the 10-bit ADC (Analogue to Digital Converter). It can also be configured as the positive
(+) input pin to Comparator 1.

 RA4 which is bit-4 of digital PORTA. This pin can also be configured as the input trigger

for Timer 0. It can also be configured as the output pin of Comparator 1.

 RA5 which is bit-5 of digital PORTA. This pin can also be configured as Input 4 (AN4) of
the 10-bit ADC (Analogue to Digital Converter). It can also be configured as the output
pin of Comparator 2.

8-bit Proton Compiler Development Suite.

 463

The PORTC socket:

 RC0 which is bit-0 of digital PORTC. This pin can also be configured as the input for
Timer 1.

 RC1 which is bit-1 of digital PORTC. This pin can also be configured as the input for

Timer 1, or a PWM (Pulse Width Modulation) output.

 RC2 which is bit-2 of digital PORTC. This pin can also act as a PWM (Pulse Width
Modulation) output.

 RC3 which is bit-3 of digital PORTC. This pin can also be configured as the clock

source for I2C (Inter-Integrated Circuit) or SPI (Serial Peripheral Interface) communi-
cations.

 RC4 which is bit-4 of digital PORTC. This pin can also be configured as the data

source for I2C (Inter-Integrated Circuit) or the data output for SPI (Serial Peripheral In-
terface) communications.

 RC5 which is bit-5 of digital PORTC. This pin can also be configured as the data input

for SPI (Serial Peripheral Interface) communications.

 RC6 which is bit-6 of digital PORTC. This pin can also be configured as the USART
(Universal Synchronous Asynchronous Receiver Transmitter) output for serial com-
munications.

 RC7 which is bit-7 of digital PORTC. This pin can also be configured as the USART

(Universal Synchronous Asynchronous Receiver Transmitter) input for serial commu-
nications.

8-bit Proton Compiler Development Suite.

 464

The PORTB socket:

 RB0 which is bit-0 of digital PORTB. This pin can also be configured as input 12 (AN12)
of the 10-bit ADC, or an external interrupt trigger.

 RB1 which is bit-1 of digital PORTB. This pin can also be configured as input 10 (AN10)

of the 10-bit ADC, or an external interrupt trigger.

 RB2 which is bit-2 of digital PORTB. This pin can also be configured as input 8 (AN8) of
the 10-bit ADC, or an external interrupt trigger.

 RB3 which is bit-3 of digital PORTB. This pin can also be configured as input 9 (AN9) of

the10-bit ADC, or an alternative PWM (Pulse Width Modulation) output.

 RB4 which is bit-4 of digital PORTB. This pin can also be configured as input 11 (AN11)
of the 10-bit ADC, or an external interrupt trigger.

 RB5 which is bit-5 of digital PORTB. This pin can also be configured as an external inter-

rupt trigger.

 RB6 which is bit-6 of digital PORTB. This pin can also be configured as an external inter-
rupt trigger, and is also the clock line for a device programmer such as the PICkit2™ or
the PICkit3™.

 RB7 which is bit-7 of digital PORTB. This pin can also be configured as an external inter-

rupt trigger, and is also the data line for a device programmer such as the PICkit2™ or the
PICkit3™.

Each pin of the microcontroller is capable of sourcing or sinking 25mA, with a maximum of
100mA per port.

The microcontroller’s architecture is very versatile, allowing several internal peripherals to
share the same pin, thus maximising the flexibility, but keeping the size of the device small.
Each internal peripheral can be enabled, disabled and configured very easily from within the
free Proton BASIC compiler environment.

Although the PIC18F25K20 microcontroller has a 3.3 Volts operating voltage, some I/O pins
are 5 Volt tolerant. Alternatively, use a PIC18F25K22 device for full 5 Volt operation.

8-bit Proton Compiler Development Suite.

 465

Device Programming Header
The Amicus18 board has the ability to be programmed in circuit. This bypasses the built in
bootloader, and indeed, will overwrite it.

The header has been designed for a PICkit2™ or PICkit3™ programmer to fit straight onto it,
however, any other device programmer may be used with a suitable adapter. It must be re-
membered that the microcontroller is a 3.3 Volt PIC18F25K20 type, therefore if a programmer
other than a PICkit2™ or a PICkit3™ is used, ensure that it supports this device, as a 5 Volt only
programmer will damage the microcontroller.

The programming header’s location is shown below:

8-bit Proton Compiler Development Suite.

 466

Jumper and Pad Settings
The Amicus18 board has a jumper and two pads that can alter it’s characteristics.

Pad Q1
This allows a 5 Volts type microcontroller to be used with the board instead of the supplied 3.3
Volt type. For example, a PIC18F25K22.

Pad Q2
This allows disconnection of the internal Reset for the microcontroller from the USB bootloader.

Jumper Q3
This allows maximum compatibility with existing Arduino shields. The PIC18F25K20 and
PIC25K22 microcontrollers have more I/O lines than that of an Atmel, therefore, two of the pins
on the PortB socket operate differently on the Amicus18. RB1 is a Ground pin on the Arduino
board, but this would waste a valuable I/O pin if it were simply grounded. Instead, Jumper Q3
can be configured for RB1 or Ground.

8-bit Proton Compiler Development Suite.

 467

Serial Handshake Connections
The USB to serial device also emulates the handshaking lines of a conventional serial port.
These are shown below:

The Amicus18 board uses the DTR line in-order to reset the microcontroller, however, the other
lines are available to use. The direction of each line is shown below:

 DTR This is an output from the PC to the Amicus18 board.
 RTS This is an output from the PC to the Amicus18 board.
 DSR This is an input to the PC from the Amicus18 board.
 DCD This is an input to the PC from the Amicus18 board.
 CTS This is an input to the PC from the Amicus18 board.

8-bit Proton Compiler Development Suite.

 468

Using the Proton Compiler with the Amicus18 board

Configuring the Proton compiler to work with the Amicus18 board is simplicity itself, as all the
applications required are installed along with the compiler.

The Amicus18 board's microcontroller has a built-in bootloader, so first we'll choose the correct
bootloader from within the Proton IDE. On the toolbar, Click the small arrow on the Program
button:

Choose the option "Install New Programmer" and a window will open:

Choose the Amicus18 Loader option and click Next.

The bootloader's executable will then be searched for:

Once it has been found the window will disappear and the job is done. In order to verify that the
Amicus18 bootloader has been allocated correctly, click the downward arrow on the program button
again:

8-bit Proton Compiler Development Suite.

 469

Writing your first Amicus18 program using the Proton compiler
Here’s a very small sample of the Proton BASIC language:

' Flash an LED connected to RB0
 Include "Amicus18.inc" ' Configure the compiler to use the Amicus18 board

Do ' Create an infinite loop
High PORTB.0 ' Bring the LED pin high (illuminate the LED)
DelayMs 500 ' Wait 500ms (half a second)
Low PORTB.0 ' Pull the LED pin low (extinguish the LED)
DelayMs 500 ' Wait 500ms (half a second)

 Loop ' Close the loop

As can be seen, the language is very simple to understand, but has a powerful command set,
and produces true assembler code that talks to the microcontroller directly.

Click the toolbar button Compile and Program, and watch as the compiler takes over auto-
matically. The program will be compiled and if there are no syntax errors, the bootloader will be
invoked, which will automatically locate the Amicus18 board connected to USB and program its
microcontroller:

Here’s a slightly more complex program:
'
' Pulse two LEDs, one decreases brightness, while the other increases brightness
'

Include "Amicus18.inc" ' Configure the compiler to use the Amicus18 board
Include "Amicus18_Hpwm10.inc" ' Load the Amicus18 10-bit PWM macros into program

Dim wDutyCycle As Word ' Holds the duty cycle of the PWM pulses

Do ' Create an infinite loop

'
' Increase LED1 illumination, while decreasing LED2 illumination
'
For wDutyCycle = 0 To 1023 ' Cycle the full range of 10-bits

WriteAnalog1(wDutyCycle) ' PWM on CCP1 (Bit-2 of PortC) (0 to 1023)
WriteAnalog2(1023 - wDutyCycle) ' PWM on CCP2 (Bit-1 of PortC) (1023 to 0)
DelayMS 5 ' A small delay between duty cycle changes

Next ' Close the loop
DelayMS 5
'
' Decrease LED1 illumination, while increasing LED2 illumination
'
For wDutyCycle = 1023 To 0 Step -1 ' Cycle the full 10-bit range (reversed)

WriteAnalog1(wDutyCycle) ' PWM on CCP1 (Bit-2 of PortC) (1023 to 0)
WriteAnalog2(1023 - wDutyCycle) ' PWM on CCP2 (Bit-1 of PortC) (0 to 1023)
DelayMS 5 ' A small delay between duty cycle changes

Next ' Close the loop
Loop ' Do it forever

8-bit Proton Compiler Development Suite.

 470

The Amicus18 has its own serial terminal application that has some features specially devel-
oped for it.

This can be located by clicking on the IDE's View->Plugin menu option:

8-bit Proton Compiler Development Suite.

 471

O
U

T

+
5

V
+

3
V

3
D

5
M

BR
S1

30
T C1

47
uF

/2
5V

C2
33

uF
/2

5V
C9

33
uF

/2
5V

R6 1K
Ω

C3 10
0n

F

9
 V

ol
ts

D
C

In
p

u
t

D
1

Re
d

LE
D

V+

Agnd

4

3v
3o

ut

-U
SB

D
M

Vc
cI

O

R
es

et

TX
D

Vc
c

+
U

SB
D

M

R
XD

D
TR R
TS

D
SR

D
CD CT

S

Gnd
Gnd
Gnd

20 16 15 19 17

25
7

18
21

11

CB
U

S0

CB
U

S1

23 221093251

FT
2

3
2

R
L

R
5

1K
Ω

C1
1

10
0n

F

D
2

G
re

en
 L

ED

C1
0

10
0n

F
C8

10
0n

F

Vc
c

1

D
-

D
+

G
nd

2 3 4

U
SB

-A

Re
se

tt
ab

le
50

0m
A

Fu
se

F1

+
5

V

R4 1K
Ω

D
3

Re
d

LE
D

U
5

+
5

V

T1
B

SH
2

0
5

+ -

8 4

1

3 2

+
5

V

-+
7

65

C1
3

10
0n

F

R
1

10
KΩ

R
2

10
KΩ

U
6

a
LM

V
3

5
8

U
6

b
LM

V
3

5
8

P
SU V
ol

ta
ge

 S
en

so
r

U
SB

 t
o

Se
ri

al

Vd
d

R
E3

 /
M

CL
R

/V
pp

R
A

7
 /

O
SC

1/
CL

KI
N

R
A

6
 /

O
SC

2/
CL

KO
U

T

Vs
s20

U
1

P
IC

1
8

F2
5

K
2

0

Vs
s

19
8

1091

18 17 16 15 14 13 12 11 28 27 26 25 24 23 22 21 7 6 5 4 3 2

VR
EF

+
/C

1I
N

+
/A

N
3/

 R
A

3

P1
D

/K
BI

0/
AN

11
/

R
B

4
PG

M
/K

BI
1/

 R
B

5

T1
O

SI
/C

CP
2*

/
R

C
1

T1
O

SO
/T

13
CK

I/
 R

C
0

D
T/

R
X/

 R
C

7

P1
A/

CC
P1

/
R

C
2

SC
K/

SC
L/

 R
C

3
SD

I/
SD

A/
 R

C
4

SD
O

/
R

C
5

CK
/T

X/
 R

C
6

PG
D

/K
BI

3/
 R

B
7

PG
C/

KB
I2

/
R

B
6

C1
2I

N
2-

/C
CP

2*
/A

N
9/

 R
B

3
IN

T2
/P

1B
/A

N
8/

 R
B

2
IN

T2
/C

12
IN

3-
/P

1C
/A

N
10

/
R

B
1

IN
T0

/F
LT

0/
AN

12
/

R
B

0

SS
/H

LV
D

IN
/C

2O
U

T/
AN

4/
 R

A
5

T0
CK

I/
C1

O
U

T/
 R

A
4

VR
EF

-/
CV

R
EF

/C
2I

N
+

/A
N

2/
 R

A
2

C1
2I

N
1-

/A
N

1/
 R

A
1

C1
2I

N
0-

/A
N

0/
 R

A
0

C7
15

pF
C6

15
pF

X1
16

M
H

z

P
IC

ki
t2

 I
C

S
P

P
O

W
ER

V
in

C5 10
0n

F

IN

G
N

D

U
1

0
TL

V
1

1
1

7
3

3
C

D
C

Y

IN
O

U
T

G
N

D

U
9

TL
V

1
1

1
7

5
0

C
D

C
Y

R
ES

ET

R
E3

/R
ES

ET
+

3V
3

+
5V

G
N

D
G

N
D

Vi
n

+
3V

3
+

5V

G
N

D

P
O

W
ER

N
C

R
B6

 /
PG

C
R

B7
 /

PG
D

Vs
s

Vd
d

Vp
p

D
TR

R
TS

D
SR

D
CD

CT
S

R
C7

R
C6

R
C5

R
C4

R
C3

R
C2

AN
4/

R
A5

R
A5

AN
3/

R
A3

AN
2/

R
A2

AN
1/

R
A1

AN
0/

R
A0

R
B7

R
B6

R
B5

R
B4

R
B3

R
B2

R
C1

R
C0

R
B1

/G
nd

R
B0

Q
3

Q
2

R
es

et
 E

n
ab

le

To
 R

C7

Fr
om

 R
C6

M
ic

ro
co

n
tr

ol
le

r

R
3

1K
Ω

+
5

V
+

3
V

3

Q
1

G
N

D

R
A7

/C
KI

N
R

A6
/C

KO
U

T

R8 47
0Ω

R
9

10
0Ω R
7

10
0Ω

P
or

tC

P
or

tB

P
or

tA
/A

N
x

C4 10
0n

F

C1
2

10
0n

F

Amicus18 Circuit Diagram

8-bit Proton Compiler Development Suite.

 472

Amicus18 PCB Layout

8-bit Proton Compiler Development Suite.

 473

Installing the Amicus18 USB Driver
The Amicus18 board uses an FTDI serial to USB device, which presents itself as a standard
com port on the PC. However, this requires USB drivers to be installed the first time the
Amicus18 board is connected to your computer. This is a simple process and a step by step
guide is outlined below for a Windows XP system. Note that Vista systems use the same prin-
ciple, only windows and dialogues will change:

Plug the USB cable into a free USB port on the PC, and then into the Amicus18’s USB port.

Note. Make sure you plug the Amicus18 board into a powered USB HUB or direct to the PC’s
USB port, as un-powered HUBs can only supply 100mA of power, instead of 500mA for pow-
ered HUBs.

The first window will inform you that a new device has been found on the USB port:

Choose the option “Install from a list or specific location” and click Next:

8-bit Proton Compiler Development Suite.

 474

Make sure the options are ticked as in the previous window and click on the Browse button:

Navigate to the compiler’s install path which it defaults to “C:\Program Files\ProtonIDE” ,
"C:\Program Files (x86)\ProtonIDE" for Windows7 64-bit, and choose the “Amicus18 USB
Driver” folder. Click OK:

The windows should look like the image below:

8-bit Proton Compiler Development Suite.

 475

Click the Next button and the driver will begin to install.

You will see a windows message stating that the drivers have not been certified by Microsoft.
This is quite normal and nothing to be worried about, just click the Continue Anyway button:

The driver will continue to install:

8-bit Proton Compiler Development Suite.

 476

Once the driver is complete it will show the window below:

Click on the Finish button.

Note that the above procedure will need to be carried out twice for the driver to be fully in-
stalled, however, the second time, the files will have already been located on the hard drive, so
it may not be necessary to navigate to the driver folder:

The USB drivers are now installed and will not require re-doing, unless the Amicus board is in-
serted into a different USB port on the computer, in which case, choose the “Install the soft-
ware automatically” option on the initial driver install window.

8-bit Proton Compiler Development Suite.

 477

Built in Amicus18 Peripheral Macros
The Proton compiler has several built-in macros for configuring the most popular peripheral
modules contained with the Amicus18's microcontroller, these are the ADC (Analogue to Digital
Converter), Timers, and SPI (Serial Peripheral Interface).

8-bit Proton Compiler Development Suite.

 478

ADC macros Introduction
The ADC (Analogue to Digital Converter) peripheral on the Amicus18 is supported with the fol-
lowing macros. The macros are a mixture of compiler types and preprocessor types, and can
be found in “Includes\Sources\Amicus18_ADC.inc”

A/D Converter Macros

 BusyADC Is A/D Converter currently performing a Conversion?
 CloseADC Disable the A/D Converter.
 ConvertADC Start an A/D Conversion.
 OpenADC Configure the A/D Converter.
 ReadADC Read the results of an A/D Conversion.
 SetChanADC Select A/D channel to be used.
 SelChanConvADC Select A/D channel to be used and start an A/D Conversion.

BusyADC
Syntax
Variable = BusyADC()

Include file
Amicus18_ADC.inc

Overview
This macro indicates if the A/D peripheral is in the process of converting a value.

Return Value

 1 if the A/D peripheral is performing a conversion.
 0 if the A/D peripheral isn’t performing a conversion.

CloseADC
Syntax
CloseADC()

Include file
Amicus18_ADC.inc

Overview
This macro disables the A/D converter and A/D interrupt mechanism.

ConvertADC
Syntax
ConvertADC()

Include file
Amicus18_ADC.inc

Overview
This macro starts an A/D conversion. The BusyADC() macro or A/D interrupt may be used to
detect completion of the conversion. The result is held in registers ADRESL and ADRESH.

8-bit Proton Compiler Development Suite.

 479

OpenADC
Syntax
OpenADC(pConfig, pConfig2, pPortConfig)

Include file
Amicus18_ADC.inc

Overview
This macro resets the A/D-related registers to the POR state and then Configures the clock,
result format, voltage reference, port and channel.

Parameters

 pConfig A bitmask that is created by performing a bitwise AND operation (‘&’) with a
value from each of the categories listed below. These values are defined in the file
Amicus18_ADC.inc.

A/D clock source:

ADC_FOSC_2 Fosc / 2
ADC_FOSC_4 Fosc / 4
ADC_FOSC_8 Fosc / 8
ADC_FOSC_16 Fosc / 16
ADC_FOSC_32 Fosc / 32
ADC_FOSC_64 Fosc / 64
ADC_FOSC_RC Internal RC Oscillator

A/D result justification:
ADC_RIGHT_JUST Result in Least Significant bits (Used for 10-bit ADC result)
ADC_LEFT_JUST Result in Most Significant bits (Used for 8-bit ADC result)

A/D acquisition time select:
ADC_0_TAD 0 Tad
ADC_2_TAD 2 Tad
ADC_4_TAD 4 Tad
ADC_6_TAD 6 Tad
ADC_8_TAD 8 Tad
ADC_12_TAD 12 Tad
ADC_16_TAD 16 Tad
ADC_20_TAD 20 Tad

 pConfig2 A bitmask that is created by performing a bitwise AND operation (‘&’), as

shown in the example at the end of this document, with a value from each of the catego-
ries listed below. These values are defined in the file Amicus18_ADC.inc.

Channel:
ADC_CH0 Channel 0
ADC_CH1 Channel 1
ADC_CH2 Channel 2
ADC_CH3 Channel 3
ADC_CH4 Channel 4
ADC_CH5 Channel 5
ADC_CH6 Channel 6
ADC_CH7 Channel 7
ADC_CH8 Channel 8
ADC_CH9 Channel 9
ADC_CH10 Channel 10
ADC_CH11 Channel 11
ADC_CH12 Channel 12

8-bit Proton Compiler Development Suite.

 480

A/D Vref+ and Vref- Configuration:

ADC_REF_VDD_VREFMINUS VREF+ = VDD & VREF- = Ext.
ADC_REF_VREFPLUS_VREFMINUS VREF+ = Ext. & VREF- = Ext.
ADC_REF_VREFPLUS_VSS VREF+ = Ext. & VREF- = VSS
ADC_REF_VDD_VSS VREF+ = VDD & VREF- = VSS

 pPortConfig The pPortConfig can have 8192 different combinations, defined below:

ADC_0ANA All digital
ADC_1ANA analogue: AN0
ADC_2ANA analogue: AN0-AN1
ADC_3ANA analogue: AN0-AN2
ADC_4ANA analogue: AN0-AN3
ADC_5ANA analogue: AN0-AN4
ADC_6ANA analogue: AN0-AN5
ADC_7ANA analogue: AN0-AN6
ADC_8ANA analogue: AN0-AN7
ADC_9ANA analogue: AN0-AN8
ADC_10ANA analogue: AN0-AN9
ADC_11ANA analogue: AN0-AN10
ADC_12ANA analogue: AN0-AN11

Example
'
' Open the ADC:
' Fosc/32
' Right justified for 10-bit operation
' Tad value of 2
' Vref+ at Vcc : Vref- at Gnd
' Make AN0 an analogue input
OpenADC(ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_2_TAD, ADC_REF_VDD_VSS, ADC_1ANA)

ReadADC
Syntax
Variable = ReadADC(pChannel)

Include file
Amicus18_ADC.inc

Overview
This macro returns the Word (10 bit) result of the A/D conversion. Based on the configuration of
the A/D converter (e.g., using the OpenADC() macro).

Operator
pChannel is an optional ADC channel to take the reading from. This must be one of the values
used for the SetChanADC macro.

Example
 Dim wResult as Word

 wResult = ReadADC(ADC_CH0)

8-bit Proton Compiler Development Suite.

 481

SetChanADC
Syntax
SetChanADC(pChannel)

Include file
Amicus18_ADC.inc

Overview
Selects the pin that will be used as input to the A/D Converter.

Operator
pChannel One of the following values (defined in Amicus18_ADC.inc):

ADC_CH0 Channel 0
ADC_CH1 Channel 1
ADC_CH2 Channel 2
ADC_CH3 Channel 3
ADC_CH4 Channel 4
ADC_CH5 Channel 5
ADC_CH6 Channel 6
ADC_CH7 Channel 7
ADC_CH8 Channel 8
ADC_CH9 Channel 9
ADC_CH10 Channel 10
ADC_CH11 Channel 11
ADC_CH12 Channel 12
ADC_CH13 Channel 13
ADC_CH14 Channel 14
ADC_CH15 Channel 15
ADC_CH_CTMU Channel 13
ADC_CH_VDDCORE Channel 14
ADC_CH_VBG Channel 15

SelChanConvADC
Syntax
SelChanConvADC(pChannel)

Include file
Amicus18_ADC.inc

Overview
Selects the pin that will be used as input to the A/D converter. And starts an A/D conversion.
The BusyADC() macro or A/D interrupt may be used to detect completion of the conversion.

Operator
pChannel One of the values used for the SetChanADC macro.

Example
 SelChanConvADC(ADC_CH0)

8-bit Proton Compiler Development Suite.

 482

ADC_IntEnable() Enables the ADC interrupt i.e. sets PEIE and ADIE bits.
ADC_IntDisable() Disables the ADC interrupt i.e. clears ADIE bit.

Example use of the A/D Converter Macros:
 Include "Amicus18.inc" ' Configure the compiler to use the Amicus18 board
 Include "Amicus18_ADC.inc" ' Load the Amicus18 ADC macros into the program

 Dim ADC_Result as Word
'
' Open the ADC:
' Fosc / 32
' Right justified for 10-bit operation
' Tad value of 2
' Vref+ at Vcc : Vref- at Gnd
' Make AN0 an analogue input
'
 OpenADC(ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_2_TAD, ADC_REF_VDD_VSS, ADC_1ANA)
 DelayUs 2 ' Delay for 2 microSeconds
 ADC_Result = ReadADC(ADC_CH0) ' Read result of AN0
 CloseADC() ' Disable A/D converter

8-bit Proton Compiler Development Suite.

 483

Timer macros Introduction
The timer peripherals are supported with the following macros. The macros are a mixture of
compiler types and preprocessor types, and can be found in:
“Includes\Sources\Amicus18_Timers.inc”

 CloseTimerx Disable timer x.
 OpenTimerx Configure and enable timer x.
 ReadTimerx Read the value of timer x.
 WriteTimerx Write a value into timer x.
 SetTmrCCPSrc Configure the timer as a clock source to CCP module.

CloseTimer0
Syntax
CloseTimer0()

Include file
Amicus18_Timers.inc

Overview
This macro disables timer0 and it’s interrupt.

CloseTimer1
Syntax
CloseTimer1()

Include file
Amicus18_Timers.inc

Overview
This macro disables timer1 and it’s interrupt.

CloseTimer2
Syntax
CloseTimer2()

Include file
Amicus18_Timers.inc

Overview
This macro disables timer2 and it’s interrupt.

CloseTimer3
Syntax
CloseTimer3()

Include file
Amicus18_Timers.inc

Overview
This macro disables timer3 and it’s interrupt.

8-bit Proton Compiler Development Suite.

 484

OpenTimer0
Syntax
OpenTimer0(pConfig)

Include file
Amicus18_Timers.inc

Overview
This macro configures timer0 according to the options specified and then enables it.

Operator
pConfig A bitmask that is created by performing either a bitwise AND operation (‘&’), which is
user configurable, with a value from each of the categories listed below. These values are de-
fined in the file Amicus18_Timers.inc.

Enable Timer0 Interrupt:
 TIMER_INT_ON Interrupt enabled
 TIMER_INT_OFF Interrupt disabled

Timer Width:
 T0_8BIT 8-bit mode
 T0_16BIT 16-bit mode

Clock Source:
 T0_SOURCE_EXT External clock source (I/O pin)
 T0_SOURCE_INT Internal clock source (Tosc)

External Clock Trigger (for T0_SOURCE_EXT):
 T0_EDGE_FALL External clock on falling edge
 T0_EDGE_RISE External clock on rising edge

Prescale Value:
 T0_PS_1_1 1:1 prescale
 T0_PS_1_2 1:2 prescale
 T0_PS_1_4 1:4 prescale
 T0_PS_1_8 1:8 prescale
 T0_PS_1_16 1:16 prescale
 T0_PS_1_32 1:32 prescale
 T0_PS_1_64 1:64 prescale
 T0_PS_1_128 1:128 prescale
 T0_PS_1_256 1:256 prescale

Example
 OpenTimer0(TIMER_INT_OFF & T0_8BIT & T0_SOURCE_INT & T0_PS_1_32)

8-bit Proton Compiler Development Suite.

 485

OpenTimer1
Syntax
OpenTimer1(pConfig)

Include file
Amicus18_Timers.inc

Overview
This macro configures timer1 according to the options specified and then enables it.

Operator
pConfig A bitmask that is created by performing either a bitwise AND operation (‘&’), which is
user configurable, with a value from each of the categories listed below. These values are de-
fined in the file Amicus18_Timers.inc.

Enable Timer1 Interrupt:
 TIMER_INT_ON Interrupt enabled
 TIMER_INT_OFF Interrupt disabled

Timer Width:
 T1_8BIT_RW 8-bit mode
 T1_16BIT_RW 16-bit mode
Clock Source:
 T1_SOURCE_EXT External clock source (I/O pin)
 T1_SOURCE_INT Internal clock source (Tosc)

Prescaler:
 T1_PS_1_1 1:1 prescale
 T1_PS_1_2 1:2 prescale
 T1_PS_1_4 1:4 prescale
 T1_PS_1_8 1:8 prescale

Oscillator Use:
 T1_OSC1EN_ON Enable Timer1 oscillator
 T1_OSC1EN_OFF Disable Timer1 oscillator

Synchronise Clock Input:
 T1_SYNC_EXT_ON Sync external clock input
 T1_SYNC_EXT_OFF Don’t sync external clock input

Example
 OpenTimer1(TIMER_INT_ON & T1_8BIT_RW & T1_SOURCE_EXT & T1_PS_1_1)

8-bit Proton Compiler Development Suite.

 486

OpenTimer2
Syntax
OpenTimer2(pConfig)

Include file
Amicus18_Timers.inc

Overview
This macro configures timer2 according to the options specified and then enables it.

Operator
pConfig A bitmask that is created by performing either a bitwise AND operation (‘&’), which is
user configurable, with a value from each of the categories listed below. These values are de-
fined in the file Amicus18_Timers.inc.

Enable Timer2 Interrupt:
 TIMER_INT_ON Interrupt enabled
 TIMER_INT_OFF Interrupt disabled

Prescale Value:
 T2_PS_1_1 1:1 prescale
 T2_PS_1_4 1:4 prescale
 T2_PS_1_16 1:16 prescale

Postscale Value:
 T2_POST_1_1 1:1 postscale
 T2_POST_1_2 1:2 postscale
 T2_POST_1_3 1:3 postscale
 T2_POST_1_4 1:4 postscale
 T2_POST_1_5 1:5 postscale
 T2_POST_1_6 1:6 postscale
 T2_POST_1_7 1:7 postscale
 T2_POST_1_8 1:8 postscale
 T2_POST_1_9 1:9 postscale
 T2_POST_1_10 1:10 postscale
 T2_POST_1_11 1:11 postscale
 T2_POST_1_12 1:12 postscale
 T2_POST_1_13 1:13 postscale
 T2_POST_1_14 1:14 postscale
 T2_POST_1_15 1:15 postscale
 T2_POST_1_16 1:16 postscale

Example
 OpenTimer2(TIMER_INT_OFF & T2_PS_1_1 & T2_POST_1_8)

8-bit Proton Compiler Development Suite.

 487

OpenTimer3
Syntax
OpenTimer3(pConfig)

Include file
Amicus18_Timers.inc

Overview
This macro configures timer3 according to the options specified and then enables it.

Operator
pConfig A bitmask that is created by performing either a bitwise AND operation (‘&’), which is
user configurable, with a value from each of the categories listed below. These values are de-
fined in the file Amicus18_Timers.inc.

Enable Timer3 Interrupt:
 TIMER_INT_ON Interrupt enabled
 TIMER_INT_OFF Interrupt disabled

Timer Width:
 T3_8BIT_RW 8-bit mode
 T3_16BIT_RW 16-bit mode

Clock Source:
 T3_SOURCE_EXT External clock source (I/O pin)
 T3_SOURCE_INT Internal clock source (Tosc)

Prescale Value:
 T3_PS_1_1 1:1 prescale
 T3_PS_1_2 1:2 prescale
 T3_PS_1_4 1:4 prescale
 T3_PS_1_8 1:8 prescale

Synchronise Clock Input:
 T3_SYNC_EXT_ON Sync external clock input
 T3_SYNC_EXT_OFF Don’t sync external clock input

Example
 OpenTimer3(T3_8BIT_RW & T3_SOURCE_EXT & T3_PS_1_1 & T3_SYNC_EXT_OFF)

8-bit Proton Compiler Development Suite.

 488

ReadTimer0
Syntax
Variable = ReadTimer0()

Include file
Amicus18_Timers.inc

Overview
This macro reads the value of the Timer0 register pair.
Timer0: TMR0L,TMR0H

ReadTimer1
Syntax
Variable = ReadTimer1()

Include file
Amicus18_Timers.inc

Overview
This macro reads the value of the Timer1 register pair.
Timer1: TMR1L,TMR1H

ReadTimer2
Syntax
Variable = ReadTimer2()

Include file
Amicus18_Timers.inc

Overview
This macro reads the value of the Timer2 register.
Timer2: TMR2

ReadTimer3
Syntax
Variable = ReadTimer3()

Include file
Amicus18_Timers.inc

Overview
This macro reads the value of the Timer3 register pair.
Timer3: TMR3L,TMR3H

8-bit Proton Compiler Development Suite.

 489

WriteTimer0
Syntax
WriteTimer0(pTimer)

Include file
Amicus18_Timers.inc

Overview
This macro writes a value to the timer0 register pair:
Timer0: TMR0L,TMR0H

Operator
pTimer The value that will be loaded into timer0.

Example
 WriteTimer0(12340)

WriteTimer1
Syntax
WriteTimer1(pTimer)

Include file
Amicus18_Timers.inc

Overview
This macro writes a value to the timer1 register pair:
Timer1: TMR1L,TMR1H

Operator
pTimer The value that will be loaded into timer1.

Example
 WriteTimer1(12340)

WriteTimer2
Syntax
WriteTimer2(pTimer)

Include file
Amicus18_Timers.inc

Overview
This macro writes a value to the timer1 register:
Timer2: TMR2

Operator
pTimer The value that will be loaded into timer2.

Example
 WriteTimer2(100)

8-bit Proton Compiler Development Suite.

 490

WriteTimer3
Syntax
WriteTimer3(pTimer)

Include file
Amicus18_Timers.inc

Overview
This macro writes a value to the timer1 register pair:
Timer3: TMR3L,TMR3H

Operator
pTimer The value that will be loaded into timer3.

Example
 WriteTimer3(10000)

SetTmrCCPSrc
Syntax
SetTmrCCPSrc(pConfig)

Include file
Amicus18_Timers.inc

Overview
This macro configures a timer as a clock source for the CCP module.

Operator
pConfig A constant value from the list below. The values are defined in the file TimerDefs.inc.

 T3_SOURCE_CCP Timer3 source for both CCP’s
 T1_CCP1_T3_CCP2 Timer1 source for CCP1 and Timer3 source for CCP2
 T1_SOURCE_CCP Timer1 source for both CCP’s

Example
 SetTmrCCPSrc(T34_SOURCE_CCP12)

8-bit Proton Compiler Development Suite.

 491

T3_OSC1EN_ON
Syntax
T3_OSC1EN_ON()

Include file
Amicus18_Timers.inc

Overview
This Macro enables the oscillator associated with Timer1 as source of external clock input for
Timer3.

T3_OSC1EN_OFF
Syntax
T3_OSC1EN_OFF()

Include file
Amicus18_Timers.inc

Overview
This Macro disables the oscillator associated with Timer1 and selects the signal on pin T13CKI
as the source of the external clock input for Timer3.

Example Use of the Timer0 Macro:

Include "Amicus18.inc" ' Configure the compiler to use the Amicus18 board
Include "Amicus18_Timers.Inc" ' Load the Amicus18 Timer Macros into the program

Dim MyResult As Word

' Configure Timer0
OpenTimer0(TIMER_INT_OFF & T0_SOURCE_INT & T0_PS_1_32 & T0_16BIT)

HRSOutLn "Press a Key"
Do
 While Inkey = 16 : Wend ' Wait for a Keypress on the keypad
 MyResult = ReadTimer0() ' Read Timer0
 WriteTimer0(0) ' Reset Timer0
 HRSOutLn "Timer0 Value = ", Dec MyResult ' Display the value of Timer0
 While InKey <> 16 : Wend ' Wait for the key to released
 DelayMS 50
Loop
CloseTimer0() ' Close Timer0

8-bit Proton Compiler Development Suite.

 492

SPI macros Introduction
The following macros are provided for the SPI™ peripheral:

 CloseSPI Disable the SSP module used for SPI™ communications.
 DataReadySPI Determine if a new value is available from the SPI buffer.
 OpenSPI Initialise the SSP module used for SPI communications.
 ReadSPI Read a byte from the SPI bus.
 WriteSPI Write a byte to the SPI bus.

CloseSPI
Syntax
CloseSPI()

Include file
Amicus18_SPI.inc

Overview
This Macro disables the SSP module. Pin I/O returns under the control of the appropriate TRIS
and LAT registers.

DataReadySPI
Syntax
Variable = DataReadySPI()

Include file
Amicus18_SPI.inc

Overview
This Macro determines if there is a byte to be read from the SSPBUF register.

Return Values
0 if there is no data in the SSPBUF register
1 if there is data in the SSPBUF register

Example
 While DataReadySPI() = 0 : Wend

8-bit Proton Compiler Development Suite.

 493

OpenSPI
Syntax
OpenSPI(pSyncMode, pBusMode, pSmpPhase)

Include file
Amicus18_SPI.inc

Overview
This Macro sets up the SSP module for use with a SPIx bus device.

Parameters
pSyncMode One of the following values, defined in Amicsu18_SPI.inc:

SPI_FOSC_4 SPI Master mode, clock = Fosc / 4, resulting in a 1MHz interface.
SPI_FOSC_16 SPI Master mode, clock = Fosc / 16, resulting in a 4MHz interface.
SPI_FOSC_64 SPI Master mode, clock = Fosc / 64, resulting in a 16MHz interface.
SPI_FOSC_TMR2 SPI Master mode, clock = TMR2 output / 2
SLV_SSON SPI Slave mode, /SS pin control enabled
SLV_SSOFF SPI Slave mode, /SS pin control disabled

pBusMode One of the following values, defined in SPIdefs.inc:

MODE_00 Setting for SPI bus Mode 0,0
MODE_01 Setting for SPI bus Mode 0,1
MODE_10 Setting for SPI bus Mode 1,0
MODE_11 Setting for SPI bus Mode 1,1

pSmpPhase One of the following values, defined in SPIdefs.inc:

SMPEND Input data sample at end of data out
SMPMID Input data sample at middle of data out

Example
 OpenSPI(SPI_FOSC_16, MODE_00, SMPEND)

8-bit Proton Compiler Development Suite.

 494

ReadSPI
Syntax
Variable = ReadSPI()

Include file
Amicus18_SPI.inc

Overview
This macro initiates a SPI bus cycle for the acquisition of a byte of data.

WriteSPI
Syntax
WriteSPI(pDataOut)

Include file
Amicus18_SPI.inc

Overview
This Macro writes a single data byte out.

Operator
pDataOut Value to be written to the SPI bus.

Example of SPI macros
 Include "Amicus18.inc" ' Configure the compiler to use the Amicus18 board
 Include "Amicus18_SPI.inc" ' Load the Amicus18 SPI macros into the program

 Dim bTemp as Byte

 OpenSPI(SPI_FOSC_16, MODE_01, SMPMID)
 WriteSPI($55)
 bTemp = ReadSPI()
 DataReadySPI()
 CloseSPI()

8-bit Proton Compiler Development Suite.

 495

Hardware PWM macro Introduction
The PWM peripheral is supported with the following macros:

 CloseAnalog1 Disable the CCP1 peripheral
 CloseAnalog2 Disable the CCP2 peripheral
 OpenAnalog1 Enable and configure the CCP1 peripheral
 OpenAnalog2 Enable and configure the CCP2 peripheral
 WriteAnalog1 Output an 8-bit or 10-bit Pulse Width Modulated waveform from CCP1
 WriteAnalog2 Output an 8-bit or 10-bit Pulse Width Modulated waveform from CCP2

CloseAnalog1
Syntax
CloseAnalog1()

Include file
Amicus18_hpwm8.inc for 8-bit PWM
or
Amicus18_hpwm10.inc for 10-bit PWM

Overview
Disable the CCP1 peripheral and set its appropriate pin as an input.

CloseAnalog2
Syntax
CloseAnalog2()

Include file
Amicus18_hpwm8.inc for 8-bit PWM
or
Amicus18_hpwm10.inc for 10-bit PWM

Overview
Disable the CCP2 peripheral and set its appropriate pin as an input.

OpenAnalog1
Syntax
OpenAnalog1()

Include file
Amicus18_hpwm8.inc for 8-bit PWM
or
Amicus18_hpwm10.inc for 10-bit PWM

Overview
Enable and configure the CCP1 peripheral and set its appropriate pin as an output.

8-bit Proton Compiler Development Suite.

 496

OpenAnalog2
Syntax
OpenAnalog2()

Include file
Amicus18_hpwm8.inc for 8-bit PWM
or
Amicus18_hpwm10.inc for 10-bit PWM

Overview
Enable and configure the CCP2 peripheral and set its appropriate pin as an output.

WriteAnalog1
Syntax
WriteAnalog1(pValue)

Include file
Amicus18_hpwm8.inc for 8-bit PWM
or
Amicus18_hpwm10.inc for 10-bit PWM

Note. The CCP1 peripheral will be operating at the highest frequency possible for 8-bit (0 to
255) or 10-bit (0 to 1023). With the default 64MHz oscillator this will be 62.5KHz for 10-bit and
250KHz for 8-bit.

Only one of the above include files may be used within a program an any one time.

Overview
Output an 8-bit or 10-bit PWM waveform from the CCP1 peripheral’s pin (RC2).

Operator
pValue a constant, variable, or expression that will alter the duty cycle of the PWM Waveform.

8-bit Proton Compiler Development Suite.

 497

Example
' An LED attached to RC2 will increase illumination, then dim, repeatedly
' The voltage produced by the PWM signal is displayed on the serial terminal
'
Include "Amicus18.inc" ' Configure the compiler to use the Amicus18 board
Include "Amicus18_Hpwm10.inc" ' Load the Amicus18 10-bit PWM macros into program
Declare Float_Display_Type = fast ' Faster, more accurate float display
Dim fVolts As Float ' Holds the Voltage calculation
Dim wTemp As Word ' Holds the duty cycle value for the PWM
'
' Quantasise the Voltage. i.e. Volts per-bit, based upon 3.3 Volts at 10-bits
'
Symbol Quanta = 3.3 / 1024
OpenAnalog1() ' Enable and configure the CCP1 peripheral
Do ' Create an infinite loop
 '
 ' Increase LED illumation
 ' Cycle the full range of 10-bits. i.e. 0 to 1023
 For wTemp = 0 To 1023
 WriteAnalog1(wTemp) ' PWM on CCP1 (Bit-2 of PORTC)
 fVolts = wTemp * Quanta ' Calculate the Voltage
 HRSOutLn Dec wTemp, " = ", Dec fVolts, " Volts" ' Display Voltage
 Next
 '
 ' Decrease LED illumination
 ' Cycle the full range of 10-bits (reversed). i.e. 1023 to 0
 For wTemp = 1023 To 0 Step -1
 WriteAnalog1 (wTemp) ' PWM on CCP1 (Bit-2 of PORTC)
 fVolts = wTemp * Quanta ' Calculate the Voltage
 HRSOutLn Dec wTemp, " = ", Dec fVolts, " Volts" ' Display Voltage
 Next
Loop ' Do it forever

A suitable layout for the above program built on the Companion Shield using a solderless
breadboard is shown below:

8-bit Proton Compiler Development Suite.

 498

WriteAnalog2
Syntax
WriteAnalog2(pValue)

Include file
Amicus18_hpwm8.inc for 8-bit PWM
or
Amicus18_hpwm10.inc for 10-bit PWM

Note. The CCPx peripherals will be operating at the highest frequency possible for 8-bit (0 to
255) or 10-bit (0 to 1023). With the default 64MHz oscillator this will be 62.5KHz for 10-bit and
250KHz for 8-bit.

Only one of the above include files may be used within a program an any one time.

Overview
Output an 8-bit or 10-bit PWM waveform from the CCP2 peripheral’s pin (RC1).

Operator
pValue a constant, variable, or expression that will alter the duty cycle of the PWM Waveform.

Example
' An LED attached to RC1 will increase illumination, then dim, repeatedly
' The voltage produced by the PWM signal is displayed on the serial terminal
'
Include "Amicus18.inc" ' Configure the compiler to use the Amicus18 board
Include "Amicus18_Hpwm10.inc" ' Load the Amicus18 8-bit PWM macros into program
Declare Float_Display_Type = fast ' Faster, more accurate float display

Dim fVolts As Float ' Holds the Voltage calculation
Dim wTemp As Word ' Holds the duty cycle value for the PWM
'
' Quantasise the Voltage. i.e. Volts per-bit, based upon 3.3 Volts at 10-bits
'
Symbol Quanta = 3.3 / 1023
OpenAnalog2() ' Enable and configure the CCP2 peripheral
Do ' Create an infinite loop
 '
 ' Increase LED illumation
 ' Cycle the full range of 10-bits. i.e. 0 to 1023
 For wTemp = 0 To 1023
 WriteAnalog2(wTemp) ' PWM on CCP2 (Pin-1 of PORTC)
 fVolts = wTemp * Quanta ' Calculate the Voltage
 HRSOutLn Dec wTemp, " = ", Dec fVolts, " Volts" ' Display Voltage
 Next
 '
 ' Decrease LED illumination
 ' Cycle the full range of 10-bits (reversed). i.e. 1023 to 0
 For wTemp = 1023 To 0 Step -1
 WriteAnalog2 (wTemp) ' PWM on CCP2 (Pin-1 of PORTC)
 fVolts = wTemp * Quanta ' Calculate the Voltage
 HRSOutLn Dec wTemp, " = ", Dec fVolts, " Volts" ' Display Voltage
 Next
Loop ' Do it forever

8-bit Proton Compiler Development Suite.

 499

A suitable layout for the previous program built on the Companion Shield using a solderless
breadboard is shown below:

8-bit Proton Compiler Development Suite.

 500

Using the Proton Compiler with MPLAB IDE™
The compiler can be used within the MPLAB™ IDE environment and allows single stepping of
the code on a high-level basis. i.e. BASIC lines of code, or the use of the ICD2, PICkit 2,
PICkit3, or a device Programmer.

We’ll walk through the method of operation step by step.

First, download a copy of the latest MPLAB™ IDE because this method will only work on ver-
sions 8.0 onwards. The release at the time of writing is 8.60, and it is recommend to use this
version. MPLAB™ can be downloaded from www.microchip.com

Locate the files tlchill.ini and proton.mtc within the compiler’s folder (default location C:\Program
Files\ProtonIDE\PDS) and copy them into MPLAB’s folder “Core\MTC Suites”, overwriting any
previous files. MPLAB™ will default to location C:\Program Files\Microchip\MPLAB IDE, there-
fore, the legacy folder should be located at:

C:\Program Files\Microchip\MPLAB IDE\Core\MTC Suites.

Once these files have been copied, locate and run the file Mplab_Proton.reg, which can also be
found within the compiler’s folder. This will add entries into the registry that will register the Pro-
ton Compiler as a toolsuite within MPLAB™. If using a 64-bit OS, run the file
Mplab_Proton_64.reg instead.

Open MPLAB™, then click on the Project Wizard menu option.

This will open the intro window as shown below.

8-bit Proton Compiler Development Suite.

 501

For this demonstration program, the microcontroller of choice is the 16F628A, so in the step 1
window, choose the 16F628A device.

By default the device chosen in this window will be the device that the compiler uses, regard-
less of a Device directive within the BASIC listing. The Device directive will be ignored (see
end of document to disable this).

Click Next, then choose the Proton Compiler toolsuite, and browse to where the Proton com-
piler’s executable is stored.

The default location for this is C:\Program Files\ProtonIDE\PDS.

Browse to the file named PrPlus.exe and enter this in the Location window. It should be within
the compiler's folder.

After clicking Next, a project name and location needs to be chosen in the step 3 window. The
name given to the demonstration project is MPLAB_Test, and it’s located, in this case, in the
compiler’s source code folder. But it can be placed virtually anywhere on the hard drive as long
as it is not nested too deeply.

8-bit Proton Compiler Development Suite.

 502

Now we need to add the BASIC file to the project. The BASIC file for the demonstration is
named MP_Test.bas.

Clicking Next a few times after step 4 will create the project. But no BASIC filename has been
loaded into the IDE, so right click on Source File option located in the MPLAB_Test.mcw win-
dow, and choose the appropriate BASIC file.

8-bit Proton Compiler Development Suite.

 503

Double click on the MP_Test.bas text in the MPLAB_Text.mcw window, and the BASIC file will
be opened ready to compile. Choose Project then Build or (Ctrl F10) to compile the program.

For this demonstration the Logic Analyser will be used. Choose View->Simulator Logic Ana-
lyser from the menu bar.

The logic analyser window will then appear.

8-bit Proton Compiler Development Suite.

 504

Click on the Channels button and choose the Port and Pin used in the BASIC program. i.e.
PORTB.4.

Run the simulator using the animate icon.

And the logic analyser will show the condition of PORTB.4.

8-bit Proton Compiler Development Suite.

 505

Disabling the Automatic Device Selection.
By default, MPLAB™ forces the compiler to ignore any Device directives within the BASIC pro-
gram in favour of whatever device is chosen in the Configure->Select Device Options menu.
This can be disabled by right clicking on the filename within the MCW window and choosing
Build Options.

You will be presented with a configuration window containing a single switch.

Untick the On switch and click Apply.

The microcontroller that the compiler recognises is now issued by the Device directive within
the BASIC program, therefore ensure that MPLAB™ is configured for the correct device for any
simulations of programming.

8-bit Proton Compiler Development Suite.

 506

An Easier Method
There is another way to simulate within MPLAB™ without going through the tedious process of
creating a project.

When the directive Declare Create_Coff = On is placed within the BASIC program, a cof
file (common Object File) is produced during compilation. A cof file has all the information re-
quired for simulation, and is as close as it gets to a standard format.

Open MPLAB™, and close any open projects, this is an important procedure. You should now
be presented with an empty workspace. Choose the debugger of choice from the debugger
toolbar menu.

Then choose the appropriate device that the BASIC program is compiled for, by clicking on the
configure->select device toolbar menu.

8-bit Proton Compiler Development Suite.

 507

You can now choose the device from a list.

Open the folder where the BASIC file was situated, and drag the file with the extension '.cof' on
to the the MPLAB™ workspace. It will be automatically opened to show the BASIC file.

The program can now be simulated, either by animation or single stepping. However, there are
still 2 steps to carry out that will improve the simulation. Click on the debugger toolbar menu,
and choose the bottom option. i.e. settings.

When the window shows, click the Animation/Realtime Updates tab.

8-bit Proton Compiler Development Suite.

 508

Tick Enable Realtime watch updates, and move the step time closer to the fastest side. i.e. far
left.

Now click on the Osc/Trace tab, and choose the oscillator frequency used in the BASIC pro-
gram.

Click Apply for the settings to take effect, then OK.

You can now open watch windows, dissasemby listings etc, and watch the variables update as
the simulation is in progress.

8-bit Proton Compiler Development Suite.

 509

Protected Compiler Words

Below is a list of protected words that the compiler or assembler uses internally. Be sure not to
use any of these words as variable or label names, otherwise errors will be produced.

(A)
Abs, Access_Upper_64K, Acos, Actual_Banks, ADC_Resolution, Adcin, Addlw, Addwf,
Addwfc, Adin, Adin_Delay, Adin_Res, Adin_Stime, Adin_Tad, All_Digital, Andlw, Asin, Asm,
Atan, Auto_Context_Save, Available_RAM
(B)
Bank0_End, Bank0_Start, Bank10_End, Bank10_Start, Bank11_End, Bank11_Start,
Bank12_End, Bank12_Start, Bank13_End, Bank13_Start, Bank14_End, Bank14_Start,
Bank15_End, Bank15_Start, Bank1_End, Bank1_Start, Bank2_End, Bank2_Start, Bank3_End,
Bank3_Start, Bank4_End, Bank4_Start, Bank5_End, Bank5_Start, Bank6_End, Bank6_Start,
Bank7_End, Bank7_Start, Bank8_End, Bank8_Start, Bank9_End, Bank9_Start,
Bank_Select_Switch, BankiSel, BankSel, Bc, Bcf, Bin, Bin1, Bin10, Bin11, Bin12, Bin13, Bin14,
Bin15, Bin16, Bin17, Bin18, Bin19, Bin2, Bin20, Bin21, Bin22, Bin23, Bin24, Bin25, Bin26,
Bin27, Bin28, Bin29, Bin3, Bin30, Bin31, Bin32, Bin4, Bin5, Bin6, Bin7, Bin8, Bin9, Bit, Bn, Bnc,
Bnn, Bnov, Bnz, Bootloader, Bov, Box, Bra, Branch, Branchl, Break, Brestart, Bsf, Bstart,
Bstop, Btfsc, Btfss, Btg, Bus_DelayMs, Bus_SCL, BusAck, Busin, Busout, Button, But-
ton_Delay, Byte, Byte_Math, BZ, Bit_Bit, Bit_Byte, Bit_Dword, Bit_Float, Bit_Word, Bit_Wreg,
Byte_Bit, Byte_Byte, Byte_Dword, Byte_Float, Byte_Word, Byte_Wreg, Brw
(C)
Call, Case, Cblock, CCP1_Pin, CCP2_Pin, CCP3_Pin, CCP4_Pin, CCP5_Pin, Cdata, Cerase,
CF_ADPort, CF_ADPort_Mask, CF_CD1Pin, CF_CE1Pin, CF_DTPort, CF_Init, CF_OEPin,
CF_RDYPin, CF_Read, CF_Read_Write_Inline, CF_RSTPin, CF_Sector, CF_WEPin,
CF_Write, Chr$, Circle, Clear, ClearBit, ClearPin, Clrf, Clrw, Cls, Code, Comf, Config, Con-
stant, Context, Continue, Core, Cos, Count, Counter, Cpfseq, Cpfsgt, Cpfslt, Cread, Cread8,
Cread16, Cread32, Cursor, Cwrite, Callw, cPtr8, cPtr16, cPtr32
(D)
Da, Data, Daw, Db, Dc, Dcd, Dcfsnz, De, Dead_Code_Remove, Dword_Bit, Dword_Byte,
Dword_Dword, Dword_Float, Dword_Word, Dword_Wreg,
Debug_Req, Debugin, Dec, Dec, Dec1, Dec1, Dec10, Dec2, Dec2, Dec3, Dec3, Dec4, Dec4,
Dec5, Dec5, Dec6, Dec6, Dec7, Dec7, Dec8, Dec8, Dec9, Decf, Decfsz, Declare, Dectrment,
Define, Delayms, Delayus, DelayCs, Device, Dig, Dim, Disable, Div32, Djc, Djnc, Djnz, Djz, Dt,
DTMfout, Dw, Dword, Do
(E)
Edata, Eeprom_Size, Else, ElseIf, Enable, End, EndAsm, EndIf, EndM,
EndSelect, equ, Eread, Error, ErrorLevel, Ewrite, ExitM, Exp, Expand
(F)
Fill, Fix16_8Add, Fix16_8Div, Fix16_8Greater, Fix16_8GreaterEqual, Fix16_8Less,
Fix16_8LessEqual, Fix16_8Mul, Fix16_8Sub, Fix16_8ToFloat, Fix16_8ToInt, Fix8_8Add,
Fix8_8Div, Fix8_8Greater Fix8_8GreaterEqual, Fix8_8Less, Fix8_8LessEqual, Fix8_8Mul,
Fix8_8Sub, Fix8_8ToFloat, Fix8_8ToInt, Flash_Capable, Float, Float_Display_Type,
Float_Rounding, FloatToFix16_8, FloatToFix8_8, Font_Addr, For, Freqout, Float_Bit,
Float_Byte, Float_Dword, Float_Float, Float_Word, Float_Wreg

8-bit Proton Compiler Development Suite.

 510

(G)
Get#Proton#Version, GetBit, GLCD_CS_Invert, GLCD_Fast_Strobe, GLCD_Read_Delay,
GLCD_Strobe_Delay, Gosub, Goto, GetPin
(H)
HbRestart, HbStart, HbStop, Hbus_Bitrate, HbusAck, Hbusin, Hbusout, Hex, Hex1, Hex2,
Hex3, Hex4, Hex4, Hex5, Hex6, Hex7, Hex8, High, High_Int_Sub_End, High_Int_Sub_Start,
HighLow_Tris_Reverse, Hpwm, Hrsin, Hrsin2, Hrsin3, Hrsin4, Hrsout, Hrsout2, Hrsout3,
Hrsout4, HrsoutLn, Hrsout2Ln, Hrsout3Ln, Hrsout4Ln
Hserial4_Baud, Hserial4_Clear, Hserial4_Parity, Hserial4_RCSTA,
Hserial4_SPBRG, Hserial4_TXSTA, Hserial3_Baud, Hserial3_Clear, Hserial3_Parity,
Hserial3_RCSTA, Hserial3_SPBRG, Hserial3_TXSTA, Hserial2_Baud, Hserial2_Clear,
Hserial2_Parity, Hserial2_RCSTA, Hserial2_SPBRG, Hserial2_TXSTA, Hserial_Baud,
Hserial_Clear, Hserial_Parity, Hserial_RCSTA, Hserial_SPBRG, Hserial_TXSTA,
Hserin, Hserin2, Hserin3, Hserin4, Hserout, Hserout2, Hserout3, Hserout4, HseroutLn,
Hserout2Ln, Hserout3Ln, Hserout4Ln, Hserial1_ChangeBaud, Hserial2_ChangeBaud,
Hserial3_ChangeBaud, Hserial4_ChangeBaud
(I)
I2C_Bus_SCL, I2C_Slow_Bus, I2Cin, I2Cout, I2CWrite, I2CRead, ICD_Req, Icos,
Idata, If, Ijc, Ijnc, Ijnz, Ijz, Inc, Incf, Incfsz, Include, Increment, Infsnz,
Inkey, Input, Int_Sub_End, Int_Sub_Start, Internal_Bus, Internal_Font,
IntToFix16_8, IntToFix8_8, Iorlw, Iorwf, IrIn, IrIn_Pin, Isin, ISqr
(K)
Keyboard_CLK_Pin, Keyboard_DTA_Pin, Keyboard_IN, Keypad_Port
(L)
Label_Word, Label_Bank_Resets, LCD_CDPin, LCD_CEPin, LCD_CommandUS,
LCD_CS1Pin, LCD_CS2Pin, LCD_DataUs, LCD_DTPin, LCD_DTPort, LCD_ENPin,
LCD_Font_HEIGHT, LCD_Font_Width, LCD_Graphic_Pages, LCD_Interface, LCD_Lines,
LCD_RAM_Size, LCD_RDPin, LCD_RSPin, LCD_RSTPin, LCD_RWPin,
LCD_Text_Home_Address, LCD_Text_Pages, LCD_Type, LCD_WRPin, LCD_X_Res,
LCD_Y_Res, LCDread, LCDwrite, Ldata, Left$, Len, Let, Lfsr, Lslf, Lsrf,
Library_Core, Line, LineTo, LoadBit, Local, Log, Log10, LookDown,
LookDownL, LookUp, LookUpL, Low, Low_Int_Sub_End, Low_Int_Sub_Start, Lread, Lread16,
Lread32, Lread8, Lread64, Loop
(M)
Macro_Params, Max, Mid$, Min, Mouse_CLK_Pin, Mouse_Data_Pin, Mouse_In, Movf, Movff,
Movlw, Movwf, Mssp_Type, Mullw, Mulwf, Movwi, Moviw
(N)
Ncd, Negf, Next, Nop, Num_Bit, Num_Byte, Num_Dword, Num_Float, Num_FSR,
Num_FSR0, Num_FSR2, Num_Word, Num_Wreg
(O)
On_Hard_Interrupt, On_Hardware_Interrupt, On_Interrupt, On_Low_Interrupt,
On_Soft_Interrupt, On_Software_Interrupt,
Onboard_Adc, Onboard_Uart, Onboard_Usb, Optimise_Bit_Test,
Optimiser_Level, Oread, Org, Output, Owin, Owout, Owrite
(P)
Page, PageSel, Pause, PauseUS, Peek, PIC_Pages, Pixel, PLL_Req, Plot, Poke, Pop,
Portb_Pullups, Pot, Pow, Print, Prm_1, Prm_10, Prm_11, Prm_12, Prm_13, Prm_14, Prm_15,
Prm_2, Prm_3, Prm_4, Prm_5, Prm_6, Prm_7, Prm_8, Prm_9, Prm_Count, Pro-
ton_Start_Address, PulsIn, PulseIn, Pulsin_Maximum, PulseOut, Push, Pwm, Ptr8, Ptr16,
Ptr32, Pin_A0, Pin_A1, Pin_A2, Pin_A3, Pin_A4, Pin_A5, Pin_A6, Pin_A7, Pin_B0, Pin_B1,
Pin_B2, Pin_B3, Pin_B4, Pin_B5, Pin_B6, Pin_B7, Pin_C0, Pin_C1, Pin_C2, Pin_C3, Pin_C4,
Pin_C5, Pin_C6, Pin_C7, Pin_D0, Pin_D1, Pin_D2, Pin_D3, Pin_D4, Pin_D5, Pin_D6, Pin_D7,

8-bit Proton Compiler Development Suite.

 511

Pin_E0, Pin_E1, Pin_E2, Pin_E3, Pin_E4, Pin_E5, Pin_E6, Pin_E7, Pin_F0, Pin_F1, Pin_F2,
Pin_F3, Pin_F4, Pin_F5, Pin_F6, Pin_F7, Pin_G0, Pin_G1, Pin_G2, Pin_G3, Pin_G4, Pin_G5,
Pin_G6, Pin_G7, Pin_H0, Pin_H1, Pin_H2, Pin_H3, Pin_H4, Pin_H5, Pin_H6, Pin_H7, Pin_J0,
Pin_J1, Pin_J2, Pin_J3, Pin_J4, Pin_J5, Pin_J6, Pin_J7, Pin_K0, Pin_K1, Pin_K2, Pin_K3,
Pin_K4, Pin_K5, Pin_K6, Pin_K7, Pin_L0, Pin_L1, Pin_L2, Pin_L3, Pin_L4, Pin_L5, Pin_L6,
Pin_L7
 (R)
RAM_Bank, RAM_Banks, Random, RC5in, RC5in_Extended, RC5in_Pin, RCall, RCin,
RcTime, Read, Rem, Remarks, Reminders, Rep, Repeat, Res,
Reserve_RAM, Reset_Bank, Restore, Resume, Retfie, Retlw, Return,
Return_Type, Return_Var, Rev, Right$, Rlcf, Rlf, Rlncf, Rol, Ror, Rrcf, Rrf, Rrncf, Rsin,
Rsin_Mode, Rsin_Pin, Rsin_Timeout, Rsout, RsoutLn, Rsout_Baud,
Rsout_Mode, Rsout_Pace, Rsout_Pin, Return_Bit, Return_Byte,
Return_Dword, Return_Float, Return_Word, Return_Wreg
(S)
SBreak, SCL_Pin, SDA_Pin, Seed, Select, Serial_Baud, Serial_Data,
Serial_Parity, Serin, Serout, Servo, Set, Set_Bank, Set_Defaults, Set_OSCCAL, SetBit, SetPin,
Setf, Shift_DelayUs, ShiftIn, Shin, Shout, Show_Expression_Parts, Show_System_Variables,
Signed_Dword_Terms, Sin, Single_Page_Model, SizeOf, Sleep, Slow_Bus,
Small_Micro_Model, Snooze, SonyIn, SonyIn_Pin, Sound, Sound2, Sqr, Stack_Size, Stamp
_Cos, Stamp_Sin, Stamp _Sqr, Step, Stop, Str, Str$, Str$, StrCmp, String, Strn, Subfwb,
Sublw, Subwf, Subwfb, Swap, Swapf, Symbol, Sbyte, Sword, SDword
(T)
Tan, Tblrd, Tblwt, TCase, Then, to, Toggle, ToLower, Toshiba_Command, Toshiba_UDG,
ToUpper, Tstfsz
(U)
Udata, UnPlot, Unsigned_Dwords, Until, Upper, USB_At_TOM, USB_Class_File,
USB_Count_Errors, USB_Descriptor,
USB_Self_Power_Pin, USB_Sense_Pin, USB_Show_Enum, USB_Type, USBin,
USBin_Auto_Poll, USBin_Buffer_Length, USBin_Buffer_Start, USbinit,
USBout, USBout_Auto_Poll, USBout_ Buffer _Length, USBout _Buffer_Start, USBpoll,
USBService
(V)
Val, Var, Variable, VarPtr
(W)
Wait, Warnings, WatchDog, Wend, While, Word, Write, Word_Bit, Word_Byte, Word_Dword,
Word_Float, Word_Word, Word_Wreg, Wreg_Bit, Wreg_Byte, Wreg_Dword, Wreg_Float,
Wreg_Word
(X)
Xin, Xorlw, Xorwf, Xout, Xtal

_adc, _adcres, _code, _core, _defined, _device, _eeprom, _flash, _mssp, _ports, _ram, _uart
_usb, _xtal

	Compiler Overview
	PICmicro™ Devices
	Programming Considerations for 12-bit core Devices.
	Device Specific issues
	Identifiers
	Line Labels
	Variables
	Floating Point Math
	Aliases
	Constants
	Symbols
	Numeric Representations
	Quoted String of Characters
	Ports and other Registers
	General Format
	A Typical basic Program Layout
	Line Continuation Character '_'
	Creating and using Arrays
	Creating and using Strings
	Creating and using Flash Memory Strings
	Creating and using Eeprom Memory Strings with Edata
	String Comparisons
	Relational Operators
	Boolean Logic Operators
	Math Operators
	Bitwise Reverse '@'
	Decimal Digit extract '?'
	Abs
	fAbs
	Acos
	Asin
	Atan
	Cos
	Dcd
	Exp
	fRound
	ISin
	ICos
	Isqr
	Log
	Log10
	Ncd
	Pow
	Sin
	Sqr
	Tan
	Div32

	Compiler Commands and Directives
	ADin
	Asm..EndAsm
	Box
	Branch
	BranchL
	Break
	Bstart
	Bstop
	Brestart
	BusAck
	BusNack
	Busin
	Busout
	Button
	Call
	Cdata
	Circle
	Clear
	ClearPin
	ClearBit
	Cls
	Config
	Config1,Config2, Config3 and Config4

	Continue
	Context
	Counter
	cPtr8, cPtr16, cPtr32
	Cread
	Cread8, Cread16, Cread32
	Cursor
	Cwrite
	Dec
	Declare
	Oscillator Frequency Declare.
	Misc Declares.
	Adin Declares.
	Busin - Busout Declares.
	Hbusin - Hbusout Declares.
	USART1 Declares for use with Hrsin, Hserin, Hrsout and Hserout.
	USART2 Declares for use with Hrsin2, Hserin2, Hrsout2 and Hserout2.
	USART3 Declares for use with Hrsin3, Hserin3, Hrsout3 and Hserout3.
	USART4 Declares for use with Hrsin4, Hserin4, Hrsout4 and Hserout4.
	Hpwm Declares.
	Alphanumeric (Hitachi HD44780) LCD Print Declares.
	Graphic LCD Declares.
	KS0108 Graphic LCD specific Declares.
	Toshiba T6963 Graphic LCD specific Declares.
	Keypad Declare.
	Rsin - Rsout Declares.
	Serin - Serout Declare.
	Shin - Shout Declare.

	DelayCs
	DelayMs
	DelayUs
	Device
	Dig
	Dim
	Disable
	Do...Loop
	DTMFout
	Edata
	Enable
	End
	Eread
	Ewrite
	For...Next...Step
	Freqout
	GetBit
	GetPin
	Gosub
	Goto
	HbStart
	HbStop
	HbRestart
	HbusAck
	HbusNack
	Hbusin
	Hbusout
	High
	Hpwm
	Hrsin, Hrsin2, Hrsin3, Hrsin4
	Hrsout, Hrsout2, Hrsout3, Hrsout4
	HrsoutLn, Hrsout2Ln, Hrsout3Ln, Hrsout4Ln
	Hserin, Hserin2, Hserin3, Hserin4
	Hserout, Hserout2, Hserout3, Hserout4
	HseroutLn, Hserout2Ln, Hserout3Ln, Hserout4Ln
	HSerial1_ChangeBaud
	HSerial2_ChangeBaud
	HSerial3_ChangeBaud
	HSerial4_ChangeBaud
	I2Cin
	I2Cout
	If..Then..ElseIf..Else..EndIf
	Include
	Inc
	Inkey
	Input
	LCDread
	LCDwrite
	Ldata
	Len
	Left$
	Line
	LineTo
	LoadBit
	LookDown
	LookDownL
	LookUp
	LookUpL
	Low
	Lread
	Lread8, Lread16, Lread32
	Mid$
	On Goto
	On GotoL
	On Gosub
	On_Hardware_Interrupt
	Typical format of the interrupt handler with standard 14-bit core devices.
	Typical format of the interrupt handler with enhanced 14-bit core devices.
	Typical format of the interrupt handler with 18F devices.

	On_Low_Interrupt
	Output
	Org
	Oread
	Owrite
	Pixel
	Plot
	Pop
	Pot
	Print
	Ptr8, Ptr16, Ptr32
	PulseIn
	PulseOut
	Push
	Pwm
	Random
	RC5in
	RCin
	Repeat...Until
	Resume
	Return
	Right$
	Rol
	Ror
	Rsin
	Rsout
	RsoutLn
	Seed
	Select..Case..EndSelect
	Serin
	Serout
	Servo
	SetBit
	SetPin
	Set_OSCCAL
	Set
	Shin
	Shout
	Snooze
	Sleep
	SonyIn
	Sound
	Sound2
	Stop
	Strn
	Str$
	Sub-EndSub
	Swap
	Symbol
	Toggle
	ToLower
	ToUpper
	Toshiba_Command
	Toshiba_UDG
	UnPlot
	USBinit
	USBin
	USBout
	USBpoll
	Val
	AddressOf or VarPtr
	While...Wend
	Xin
	Xout

	Using the Optimiser
	Using the Preprocessor
	Preprocessor Directives
	Conditional Directives ($ifdef, $ifndef, $if, $endif, $else and $elseif)

	Proton IDE Overview
	Menu Bar
	Main Toolbar
	Edit Toolbar
	Code Explorer
	Results View
	Editor Options
	Highlighter Options
	Compile and Program Options
	Installing a Programmer
	Creating a custom Programmer Entry
	Microcode Loader
	Loader Options
	Loader Main Toolbar
	IDE Plugins
	ASCII Table
	Hex View
	Assembler Window
	Assembler Main Toolbar
	Assembler Editor Options
	Serial Communicator
	Serial Communicator Main Toolbar
	Labcenter Electronics Proteus VSM
	ISIS Simulator Quick Start Guide

	Amicus18 Hardware Overview
	Amicus18 Sockets
	The 8-pin Power header socket:
	The 4-pin Power header socket:
	The PORTA (ANx) socket:
	The PORTC socket:
	The PORTB socket:

	Device Programming Header
	Jumper and Pad Settings
	Pad Q1
	Pad Q2
	Jumper Q3

	Serial Handshake Connections
	Using the Proton Compiler with the Amicus18 board
	Writing your first Amicus18 program using the Proton compiler
	Amicus18 Circuit Diagram
	Amicus18 PCB Layout
	Installing the Amicus18 USB Driver
	Built in Amicus18 Peripheral Macros
	ADC macros Introduction
	BusyADC
	CloseADC
	ConvertADC
	OpenADC
	ReadADC
	SetChanADC
	SelChanConvADC

	Timer macros Introduction
	CloseTimer0
	CloseTimer1
	CloseTimer2
	CloseTimer3
	OpenTimer0
	OpenTimer1
	OpenTimer2
	OpenTimer3
	ReadTimer0
	ReadTimer1
	ReadTimer2
	ReadTimer3
	WriteTimer0
	WriteTimer1
	WriteTimer2
	WriteTimer3
	SetTmrCCPSrc
	T3_OSC1EN_ON
	T3_OSC1EN_OFF

	SPI macros Introduction
	CloseSPI
	DataReadySPI
	OpenSPI
	ReadSPI
	WriteSPI

	Hardware PWM macro Introduction
	CloseAnalog1
	CloseAnalog2
	OpenAnalog1
	OpenAnalog2
	WriteAnalog1
	WriteAnalog2

	Using the Proton Compiler with MPLAB IDE™
	Protected Compiler Words

