Amicusl18
Companion Shield

Amicus18 Companion Shield for Proton

AMIcUS18 Companion Shi€ld ... e 2
Companion Shield OPtiONSiiiuiiiii e e aaas 3
Building the Companion Shield..........coviriiiiiiii e e e e 4

5 W 0 =T PP 7
B I 0 5T 1< S 11
I Y =T [Tl PPN 13
oI I BT 1= T N 16
L Lol BT g Y=o 0= o Lol T PPN 19
Sensing the Outside WOrId........cu i e e era e ra e 21
SWILCh INPUL (PUIEA-UP) . cen ittt e e e s e s s e ea s e ea s e eaa e eaaranseenasanen 21
SWitch INPUL (PUIEA-DOWN) .uueiiiii i ee e e e e s s e e s s e s e s e s s e e s e e e s ran e e s ernnasaaesennnan 24
RS 71! T 10 T=T oo T oYl 27
Analogue Meets Digital.......ccuiiiiiiiiiiii i e 30
Light Level Switch (CockroaCh MOAE)cuuuiiiiiiiiiiiiiis e eere et r e r e e e r e s e e e e s e ern e eneeaes 32
Light Level SWitch (MOth MOAE)......cuuuiiiiiiiii e e s s e e s e e e e e e e 35
B] 0=l LB ST g 1o PP 36
Thermostat (inCrease iN LEMPEIATUIE)cuu i e e e e e e e e e s aae s e e e eseanns 38
Thermostat (decrease in tEMPErature)v i e e 39
Thermostat (increase and decrease of tempPerature)c.coveeiiiiiiiiin 40
Digital Meets ANAlOGUEiiuuiiiriieiiers e e e s e e e e s e re s e a e e e s e ra s e rnesenneernns 42
Pulse Width MOdUIGEION (PWM).....coiiiiieeiiiieie et e e e e e e s e e e e e e e e e e s s e e e e e eeee e s e aeeseeeesnernnnnnn 42
10(3 7= T 1= 0 T 1 43
10{ 5 7= 0T 0 1L 2T 45
Two channels of PWM simultaneously (Pulsing LiIght)coieuiiiiiiiiii e 47
1

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

Amicus18 Companion Shield
A shield is a PCB that fits over the Amicus18 board and provides extra functionality, such as Ethernet,
Motor control, LCD, Smartcard, GPS, GSM etc...

All Arduino shields will physically fit on the Amicus18, however, Arduino source code is not compatible
with Amicus18, as they differ in two very crucial aspects. First, the Amicus18 uses a Microchip PIC® MCU
for it's microcontroller, while the Arduino uses an Atmel AVR microcontroller. The Arduino uses a subset
of the language C, where as the Amicus18’s supplied language is BASIC. However, there is no reason
why any suitable language cannot be used with Amicus18, in fact, it's encouraged.

The entry level shield, and in the authors opinion, the most useful, is the Companion shield. This is a
PCB laid out in the pattern of a solderless breadboard. The holes are single sided, which means that

components can easily be removed using solder mop braid, or a solder vacuum tool, if a mistake is
made, or components need to be re-used.

Reset Button

Power Indicator

PortA (ANx)

Another solution is to add a solderless breadboard to the Companion shield, thus allowing the full re-use
of components without the need for a soldering iron. Notice the use of header sockets instead of header
pins.

Power Socket (Stackable)

PortB Socket (Stackable)

Reset Button
PortC Socket (Stackable)

Power Indicator

Power Socket (Stackable)

PortA Socket (Stackable)
PortB PortC

EliEE®

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

Companion Shield Options
The companion shield is available as a blank PCB or ready built. However, there are two flavours of the

ready built boards, one with header sockets, and one with header pins. It all depends on what you need
to do with the companion shield. The illustrations below show the various flavours:

Blank Companion Shield

Companion Shield with Header Pins

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicusl18 Companion Shield for Proton
The two flavours of the shield allow the boards to be stackable or at the top of the stack:

=)
. i aa it
o e il
- g ji-A0

e

it

oL

The illustration above shows the Amicus18 board at the bottom of the stack, then a socketed shield,
then a pinned shield. A pinned shield could carry an LCD or other user interfacing device that would not
suit being stacked between other PCBs. The socket and pin headers used for the companion shield have
long legs, thus allowing plenty of clearance between the stacked PCBs, 12mm for the pinned header,
and 14mm for the socketed header.

Building the Companion Shield

If you are going to choose the blank companion shield, it must be pointed out that it contains surface
mount components (not supplied with it). These components are purely optional, but if you are consid-
ering using them, make sure you have the required skills to solder surface mount devices. It's not diffi-
cult, and there are plenty of SMT soldering tutorials on the internet.

Start by soldering the decoupling capacitors C5 and C9 on the board, both are 100nF 50 Volt ceramic
capacitors with an 0805 casing:

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

Next solder on the resistor R6 which is a 1KQ 1% 0805 casing type:

Next to solder is the power indicator LED, this is a red type 0805 casing, but any colour will do. Note
that resistor R6 is not required if the LED is omitted:

Take note of the orientation of the LED, make sure the Anode is located as in the above diagram. Re-
versing the LED won't harm it, it just won't illuminate.

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

The next component is the reset button, this is a standard PCB push to make type:

Then place either the header pins or the header sockets as the earlier diagram illustrate. These are
standard 2.54 (0.1") spacing Single Inline types (SIL).

You will require 5 of these:
1 x 4 way

1 x 6 way
3 x 8 way

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

First Program
We'll jump straight in at this point and produce our very first program that does something, but not us-
ing the companion shield just yet.

Open the ProtonIDE and type in the following code. Note that it is not required to type in the com-
mented texts. i.e. blue texts:

" Flash an LED connected to RBO
" Make sure the Amicusl8 board’s jumper Q3 is set to the GND position
Include "Amicusl8.inc"™ = Configure the compiler to use the Amicusl8 board
While 1 =1 Create an infinite loop
High PORTB.O Bring the LED pin high (illuminate the LED)
DelayMs 500 Wait 500ms (half a second)

Low PORTB.O Pull the LED pin low (Extinguish the LED)
DelayMs 500 Wait 500ms (half a second)
Wend Close the loop

Move jumper Q3 to the Gnd position, and place an LED into PortB pins RBO and RB1, with the Cathode
connected to RB1, and the Anode connected to RBO. The Cathode is identified by being the shorter of
the two wires, and also the body of the LED has a flattened side.

Anode (+)

Q3 to Gnd Position

Cathode (-)

Connect the USB cable to the Amicus18 board, and make sure its red Power LED is illuminated. Press
the Compile and Program button on the toolbar, or press F10. The code will then be compiled, and the
bootloader will open to place the compiled code into the Amicus18’s microcontroller. The LED will then
start flashing.

The above layout works as expected, however, some rules have been broken in so much as the LED
does not have a current limiting resistor in series with it. This means that the LED is seeing the full 3.3
Volts instead of it's working voltage of approx 2 Volts, and is pulling too much current from the micro-
controller’s IO pin. We can alleviate this situation by using the Companion Shield with a solderless
breadboard.

The correct method for connecting an LED is shown overleaf.

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

The circuit for the layout above is shown below:

PortB

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RBO

470

N
Power
Red LED

GND

The same program may be used with the layout above, but this time the LED is protected from over
voltage and over current.

" Flash an LED connected to RBO
" Make sure the Amicusl8 board’s jumper Q3 is set to the GND position
Include "Amicusl8.inc™ * Configure the compiler to use the Amicusl18 board
While 1 =1 Create an infinite loop
High PORTB.O Bring the LED pin high (illuminate the LED)
DelayMs 500 Wait 500ms (half a second)

Low PORTB.O Pull the LED pin low (Extinguish the LED)
DelayMs 500 Wait 500ms (half a second)
Wend Close the loop

Remember that you do not need to type in the comments. i.e. the blue text following the * character.

Once the program is typed into the IDE, press the toolbar's Compile and Program button to compile the
code and place it into the Amicus18’s microcontroller. As long as no typing errors have been made, the
LED will then begin to flash. If any errors are found the offending line will be highlighted and an error
message will be displayed on the bottom of the IDE.

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

How to choose the resistor value

A resistor is a device designed to cause resistance to an electric current and therefore cause a drop in
voltage across its terminals. If you imagine a resistor to be like a water pipe that is a lot thinner than
the pipe connected to it. As the water (the electric current) comes into the resistor, the pipe gets thin-
ner and the current coming out of the other end is therefore reduced. We use resistors to decrease
voltage or current to other devices. The value of resistance is known as an Ohm and its symbol is a
Greek Omega symbol Q.

In this case Digital Pin RBO is outputting 3.3 volts DC at 25mA (milliamps), and our LED requires a volt-
age of 2v and a current of 20mA. We therefore need to put in a resistor that will reduce the 3.3 volts to
2.2 volts, and the current from 25mA to 20mA if we want to display the LED at its maximum brightness.
If we want the LED to be dimmer we could use a higher value of resistance.

To calculate what resistor we need to do this we use what is called "Ohms law” which is I = V/R where I
is current, V is voltage and R is resistance. Therefore to work out the resistance we arrange the formula
to be R = V/ I which is R = 1.1/0.02 which is 55 Ohms. V is 1.1 because we need the Voltage Drop,
which is the supply voltage (3.3 volts) minus the Forward Voltage (2.2 volts) of the LED (found in the
LED datasheet) which is 1.1 volts. We therefore need to find a 55Q resistor. However, 55Q resistors are
not easily found, so we'll find a one close to it, 47 Ohms will do.

A resistor is too small to put writing onto that could be readable by most people so instead resistors use
a colour code. Around the resistor you will typically find 4 coloured bands and by using the colour code
in the chart on the next page you can find out the value of a resistor or what colour codes a particular
resistance will be.

Colour 1st Band | 2nd Band | 3rd Band (multiplier) 4th Band (tolerance)

oo o0

Orange 3 3 x103

Yellow 4 4 x104

Violet 7

Grey 8 8 x108 £0.05%
White 9 9 x109

Gold x10-1 +5%
Silver x10-2 +10%
None +20%

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

We need a 47Q resistor, so if we look at the colour table we see that we need 4 in the first band, which
is Yellow, followed by a 7 in the next band which is Violet and we then need to multiply this by 100
which is Black in the 3™ band. The final band is irrelevant for our purposes as this is the tolerance. Our
resistor has a gold band and therefore has a tolerance of £5% which means the actual value of the re-
sistor can vary between 46.5Q and 47.5Q. We therefore need a resistor with a Yellow, Violet, Black,
Gold colour band combination which looks like this:

If we needed a 1K (or 1 kilo-ohm) resistor we would need a Brown, Black, Red combination (1, 0, +2
zeros). If we needed a 570K resistor the colours would be Green, Violet and Yellow.

In the same way, if you found a resistor and wanted to know what value it is you would do the same in
reverse. So if you found this resistor and wanted to find out what value it was so you could store it
away in your nicely labelled resistor storage box, we could look at the table to see it has a value of
2209.

The LED

The final component is an LED, which stands for Light Emitting Diode. A Diode is a device that permits
current to flow in only one direction. So, it is just like a valve in a water system, but in this case it's let-
ting electrical current to go in one direction, but if the current tried to reverse and go back in the oppo-
site direction the diode would stop it from doing so. Diodes can be useful to prevent accidental connec-
tion of a Power supply in a circuit, and damaging the components.

An LED is the same thing, but it also emits light. LEDs come in all kinds of different colours and bright-
ness’s and can also emit light in the ultraviolet and infrared part of the spectrum (like in the LEDs within
a TV remote control).

If you look carefully at the LED you will notice two things. One is that the legs are of different lengths
and also that on one side of the LED, instead of it being cylindrical, it is flattened. These are indicators
to show you which leg is the Anode (Positive) and which is the Cathode (Negative). The longer leg gets
connected to the Positive Supply (3.3 volts) and the leg with the flattened side goes to Ground (Gnd).

If you connect the LED the wrong way, it will not damage it,
but it is essential that you always place a resistor in series
with the LED to ensure that the correct current gets to the
LED. You can permanently damage the LED if you fail to do
this.

Epoxy lens/case
Wire bond
Reflective cavity

Semiconductor die

As well as single colour LEDs you can also obtain bi-colour
and tricolour LEDs. These will have several legs coming out of
them with one of them being common (i.e. common anode or
common cathode).

Anvil
Post

} Leadframe

Flat spot

Anode Cathode

10

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

2 LED Flasher

Adding a second LED is simple, and the code for driving them is not too difficult either:

Cathode (-)

Anode (+) —

47 Ohm each

47 Ohm each —,

Cathode (-) |

W7 OO0 000
W28 |)]0
2] (1000 0 O
%] O0O0000

T OV w 9 %

minisininintl | 5| -

Dumcztimﬂ_

00000 Ol
0000001+
O 0000 Dkl

! | l_Ll

JU%F

(o [

pgogodl
MDDDHH»L

Power RE

RESET

Anode (+)

11

06-10-2009

Version 1.0

Crownhill AssociatesLimited 2009 - All Rights Reserved

Amicus18 Companion Shield for Proton

The circuit for the two LED flasher layout is shown below:

PortB

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RBO

ROOOOOO0

Anode

P ower Cathode
GND

The code for driving the LEDs is shown below:

" Flash 2 LEDs connected to RB2 and RB3

Include "Amicusl8.inc" " Configure the compiler to use the Amicusl18 board
Symbol LED1 = PORTB.2 " LED 1 is placed on pin-2 of PortB
Symbol LED2 = PORTB.3 " LED 2 is placed on pin-3 of PortB
While 1 =1 " Create an infinite loop

High LED1 " Illuminate LED1

DelayMS 500 " Wait for half a second

Low LED1 " Extinguish LED1

High LED2 " Illuminate LED2

DelayMS 500 " Wait for half a second

Low LED2 " Extinguish LED2
Wend " Do it forever

12

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

4 LED Sequencer
Adding, and using, extra LEDs is also very simple, as illustrated below:

Cathode (-)

47 Ohm each

z -
(o
- A

NERERE o o ~
DOoUYYMm 00
) Doopoo oog |
c0000000000000000000000000000Oe
0000 w500 00000000000000000000d
|] [

IOofbopnooooooodide
OO0000000000o0oaoor

OO0 OMooRMMY MO0 0000o0O0o0ooooos
h[] e — | [OO0 000000000 OOON
10000 Eaeaeasasmeaes=) (000 00000000000001
0000000000000 0000000000oooooos
xO0O 00000 REaemssnsess) 000 0000000000000k
10000000000BESSa000000000000000
SQ*MLEQLLLLQ%%;%QMQLL e e
EE Eerr®
] ngggll
RESET

Power R6&

13

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

The two extra LEDs are connected to RBO and RB1 of PortB, as the circuit shows below:

PortB

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RBO

(e]e]elelel0l0le)

470 5479 5479

Anode
N

Power | g

GND §
A suitable program for the 4 LED sequencer is shown below:

" Illuminate 4 LEDs attached to PortB in sequence
" Make sure the Amicusl8 board’s jumper Q3 is set to the RB1 position

Include "Amicusl8.inc™ * Configure the compiler to use the Amicusl18 board

Low PORTB " Make PortB output low (Extinguish all four LEDs)
While 1 =1 " Create an infinite loop
PORTB = %00000001 * Illuminate the first LED
DelayMS 300 " Delay a pre-determined amount of time
PORTB = %00000010 * Illuminate the second LED
DelayMS 300 " Delay a pre-determined amount of time
PORTB = %00000100 " Illuminate the third LED
DelayMS 300 " Delay a pre-determined amount of time
PORTB = %00001000 " Illuminate the fourth LED
DelayMS 300 " Delay a pre-determined amount of time
Wend " Do it forever

The above program will illuminate each LED in turn.

14

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

A more advanced program to do the same thing is shown below:

" Illuminate 4 LEDs attached to PortB in sequence
" Using a more advanced method
" Make sure the Amicusl8 board’s jumper Q3 is set to the RB1 position

Include "Amicusl18.inc" * Configure the compiler to use the Amicusl8 board
Dim bPortShadow As Byte " Create a variable to hold the state of PortB
Dim bLoop As Byte " Create a variable for the bit counting loop
Low PORTB " Make PortB output low (Extinguish all four LEDs)
While 1 =1 " Create an infinite loop
bPortShadow = 1 " Set the initial state of PortB
PORTB = bPortShadow " Transfer the shadow variable to PortB
DelayMS 300 " Wait a pre-determined amount of time
For bLoop = 0 To 3 " Create a loop from O to 3
bPortShadow = bPortShadow << 1 * Shift a bit left one position
PORTB = bPortShadow " Transfer the shadow variable to PortB
DelayMS 300 " Wait a pre-determined amount of time
Next " Close the loop
Wend " Do it forever

There are many variations of the programs that can be used with the four LED circuit. The program be-
low sequences the LED’s up then down the line.

" Illuminate 4 LEDs attached to PortB in sequence
" Make sure the Amicusl8 board’s jumper Q3 is set to the RB1 position

Include "Amicusl18.inc" * Configure the compiler to use the Amicusl8 board
Dim bPortShadow As Byte " Create a variable to hold the state of PortB
Dim bLoop As Byte " Create a variable for the bit counting loop
bPortShadow = 1 " Set the initial state of PortB
Low PORTB " Make PortB output low (Extinguish all four LEDs)
PORTB = bPortShadow " Transfer the shadow variable to PortB
DelayMS 300 " Wait a pre-determined amount of time
While 1 =1 " Create an infinite loop
For bLoop = 0 To 3 " Create a loop from O to 3
bPortShadow = bPortShadow << 1 " Shift a bit left one position
PORTB = bPortShadow " Transfer the shadow variable to PortB
DelayMS 300 " Wait a pre-determined amount of time
Next " Close the loop
For bLoop = 3 To O Step -1 " Create a loop from 3 to O
bPortShadow = bPortShadow >> 1 " Shift a bit right one position
PORTB = bPortShadow " Transfer the shadow variable to PortB
DelayMS 300 " Wait a pre-determined amount of time
Next " Close the loop
Wend " Do it forever

15

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

8 LED Sequencer
A more sophisticated layout is shown below, in which eight LEDs are used. Notice how the use of differ-
ent colour LEDs adds a new twist:

Anode (+)

Cathode (-) —

A top down view of the above layout is shown below for extra clarity:

47 Ohm each —,

: A PO D0 PR DS BN B D T ve s s oo D)
|ﬁﬁﬂuﬁﬁxﬁuhMMMuMMuﬁuwruu|HHHH
pOO000N0NEESS00RESCCcoooonOOO0O00 00O
cOO00000000D00uO0o0ooNoNooonOnnde
OO NDEEms 0000000000000 0SS 000 Od
e[| [EE==s] (][] (===) -

1000 Q00Epo0

3]
© 0w ™
al][]

;LI;J_;LLL

€5

e et et

Note. Make sure the Amicus18’s Q3 jumper is set to the RB1 position.

16

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

PortB

RB6
RB5
RB4
RB3
RB2
RB1
RBO

Power
GND

(@]

The circuit for the eight LED layout is shown below:

(o]e)

Anode

Cathode

470 470

N
LED

N
LED

N
LED

A suitable program for the 8 LED sequencer is shown below:

Il1luminate 8 LEDs attached to PortB in sequence
Using discrete commands
Make sure the Amicusl8 board’s jumper Q3 is set to the RB1 position

Include "Amicusl8.inc"

Low PORTB

While 1 =
PORTB =
DelayMs
PORTB =
DelayMS
PORTB =
DelayMs
PORTB =
DelayMs
PORTB =
DelayMsS
PORTB =
DelayMs
PORTB =
DelayMS
PORTB =
DelayMs

Wend

1
%00000001
300
%00000010
300
%00000100
300
%00001000
300
%00010000
300
%00100000
300
%01000000
300
%10000000
300

Crownhill AssociatesLimited 2009 - All Rights Reserved

Version 1.0

Make PortB output low (Extinguish all the LEDs)

Create an infinite loop
Il1luminate the Ffirst LED
Delay a pre-determined amount
Il1luminate the second LED
Delay a pre-determined amount
I1luminate the third LED
Delay a pre-determined amount
Il1luminate the fourth LED
Delay a pre-determined amount
Il1luminate the fifth LED
Delay a pre-determined amount
Il1luminate the sixth LED
Delay a pre-determined amount
Il1luminate the seventh LED
Delay a pre-determined amount
Il1luminate the eighth LED
Delay a pre-determined amount
Close the loop

The above program will illuminate each LED in turn.

17

of

of

of

of

of

of

of

of

" Configure the compiler to use the Amicusl18 board

time

time

time

time

time

time

time

time

06-10-2009

Amicus18 Companion Shield for Proton

A more advanced program to do the same thing is shown below:

Il1luminate 8 LEDs attached to PortB in sequence
Using a more advanced method
Make sure the Amicusl8 board’s jumper Q3 is set to the RB1 position

Include "Amicusl8.inc" " Configure the compiler to use the Amicusl8 board
Dim bPortShadow As Byte " Create a variable to hold the state of PortB
Dim bLoop As Byte " Create a variable for the bit counting loop
Low PORTB " Make PortB output low (Extinguish all the LEDs)
While 1 =1 " Create an infinite loop
bPortShadow = 1 " Set the initial state of PortB
PORTB = bPortShadow " Transfer the shadow variable to PortB
DelayMS 300 " Wait a pre-determined amount of time
For bLoop = 0 To 6 " Create a loop from O to 6
bPortShadow = bPortShadow << 1 " Shift a bit left one position
PORTB = bPortShadow " Transfer the shadow variable to PortB
DelayMS 300 " Wait a pre-determined amount of time
Next " Close the loop
Wend " Do it forever

There are many variations of the programs that can be used with the eight LED circuit. The program
below sequences the LED’s up then down the line.

Il1luminate 8 LEDs attached to PortB in sequence
Make sure the Amicusl8 board’s jumper Q3 is set to the RB1 position

Include "Amicusl8.inc" " Configure the compiler to use the Amicusl8 board
Dim bPortShadow As Byte " Create a variable to hold the state of PortB
Dim bLoop As Byte " Create a variable for the bit counting loop
bPortShadow = 1 " Set the initial state of PortB
Low PORTB " Make PortB output low (Extinguish all the LEDs)
PORTB = bPortShadow " Transfer the shadow variable to PortB
DelayMS 300 " Wait a pre-determined amount of time
While 1 =1 " Create an infinite loop
For bLoop = 0 To 6 " Create a loop from O to 6
bPortShadow = bPortShadow << 1 * Shift a bit left one position
PORTB = bPortShadow " Transfer the shadow variable to PortB
DelayMS 300 " Wait a pre-determined amount of time
Next " Close the loop
For bLoop = 6 To O Step -1 " Create a loop from 6 to O
bPortShadow = bPortShadow >> 1 * Shift a bit right one position
PORTB = bPortShadow " Transfer the shadow variable to PortB
DelayMS 300 " Wait a pre-determined amount of time
Next " Close the loop
Wend " Do it forever

18

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

Traffic Light Sequencer

Using an adaptation of the 8 multi-coloured LED layout, we can create the sequence for a UK traffic
light. The layout is shown below, notice that the only difference is the removal of four LEDs and four
resistors:

Anode (+) Cathode ()

47 Ohm each

s Cathode (-) — 47 Ohm each

A B A) e B i i e o

Kmp.
o (@ @) HEEI i=ii=fi=()=l)

RESET Power RE

5 N 5 G:.‘E,‘tnma-un.:
[/[OMO0O0 MMMNOOOO0OO000O0oo0oOobooog
OO0 ESS 0000000000000 000000000O.
cOO0D0O0000000000O000000000O0000000000e
d /0 0==w= 0000000000000 O0OoOoooogod
e[<mmm>] OO0 O0O0O I O00000000O000000de
][] 00 000000000000 0O0000Os
}
E Y ! S J \

s MOO0MOOMOOO ODOo0Oooooooooooodde
h[(] C-eenenemsmsmsmsme-=) (000 000000000000 ON
0000 Fe—-——————————) (]]OO0O0000000000000
i0OO0O0OoooO0ooo0odogooooooooooooaoads:
RN NN = — — — — = RN NN]
I 1 e o e o e o e B .]| Ot

g8 & BR B3 > o0 B

Anode (+)

19

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

The circuit for the traffic light sequencer is shown below:

PortB

RB7 |OF
RB6 |Or
RB5 |Or
RB4 |Or
RB3 |Or
RB2 (O
RB1 O
RBO (O

470 470

4
[
&

Power e

GND%

The sequence of traffic lights in the UK is shown below:

HBHHR

The program below shows the steps required to reproduce the sequence of lights shown above:

LED LED LED

Simulate a single traffic light using Red, Yellow, and Green LEDs

Include "Amicusl8.inc" Configure the compiler to use the Amicusl8 board

Symbol Red = PORTB.O " Red LED is attached to RBO

Symbol Amber = PORTB.1 " Amber LED is attached to RB1

Symbol Green = PORTB.2 " Green LED is attached To RB2

Symbol Redlnterval = 4000 " Time that the Red light will stay on

Time that the Red and Amber lights will stay on

Symbol AmberRedInterval = RedlInterval / 4

" Time that the Amber light will stay on

Symbol AmberlInterval RedInterval - AmberRedlInterval

Symbol Greenlnterval 6000 " Time that the Green light will stay on

While 1 =1 " Create an infinite loop
High Red * Illuminate the Red LED
DelayMS Redlnterval " Wait for the appropriate length of time
High Amber " I1lluminate the Amber LED
DelayMS AmberRedlnterval " Wait for the appropriate length of time
Low Red " Extinguish the Red LED
DelayMS AmberlInterval " Wait for the appropriate length of time
High Green " Illuminate the Green LED
Low Amber " Extinguish the Amber LED
DelayMS Greenlnterval " Wait for the appropriate length of time
Low Green " Extinguish the Green LED
High Amber * Illuminate the Amber LED
DelayMS AmberlInterval " Wait for the appropriate length of time
Low Amber " Extinguish the Amber LED

Wend " Do it forever

Type in the program above, remembering that you do not need to type in the comments. Click on the
toolbar Compiler and Program button or press F10 to compile the code and load it into the Amicus18's
microcontroller. The three LEDs will then start sequencing.

20

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

Sensing the Outside World

Interacting with the outside world is always desirable when using a microcontroller, whether it's choos-
ing a drink in a vending machine or deciding which way a pacman will move. The easiest method of out-
side influence is through the use of a switch or button.

However, there are certain rules that must be observed when adding a switch to a microcontroller’s pin.
When the pin is configured as an input, it can be brought high to 3.3 Volts or pulled low to ground,
however if neither of these states is performed, the pin is neither high or low and this is termed floating.
Even if a switch was placed from the microcontroller’s input pin to ground, when the switch is not being
operated the input pin can be high or low (floating).

What's required is a pull-up resistor or a pull-down resistor in order to force a single state when not in
use. A pull-up resistor is a weak resistance from the input pin to the 3.3 Volt line, while a pull-down
resistor is a weak resistance from the input pin to ground.

Switch Input (Pulled-Up)
The layout below shows a pull-up resistance:

Cathode (-) —

— 47 Ohm

22K Ohm

21

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

The circuit for the pulled-up switch input is shown below:

PortB
&Eg 8 Push Power
Button)
RB5 |Or . O\ Vin
RB4 |Or o0—— Q|GND
RB3 (O 4O|GND
RB2 |Or 22Ka 0|5V
RB1 (Or 3V3
RBO 8 Pull-Up 8 Rst
- Resistor
470
N
N
Power LED
GND

Open the Amicus IDE and type in the following program, or copy and paste from here:

Demonstrate a switch input using a pull-up resistor
Display state of the input pin RB4 when a push-button switch is operated

Include "Amicusl18.inc" "
Symbol Switch = PORTB.4 -

Configure the compiler to use the Amicusl8 board
Button is connected to RB4 (PortB.4)

Input Switch " Make the button pin an input
While 1 =1 " Create an infinite loop
HRSOut "Button = ', Binl Switch, 13 * Display the input state
DelayMS 500 " Delay for half a second
Wend " Do it forever

Click the toolbar icon Compile and Program or press F10 to build the code and place it into the
Amicus18'’s microcontroller.

Open the Amicus Serial Terminal by clicking on the toolbar, and open a connection to the Amicus18. Use
the default baud of 9600. The serial terminal’s window should show the text “Button = 1. This is
displaying the state of the pin where the button is attached. Press the button and the test will change to
“Button = 0:

W Amicus Serial Terminal
File Edit Options Transfers

w€# o 9|

Button = 1 ~
Button = 1
Button = 1
Button = 1

Button = 1 Button Pressed
Button = 1 /
Button = @

Button = @
Button = @
Button = @
Button = @
Button = @
Button = @
Button = @
Button = @
Button = @
Button = @

Button = 0 Button Released
Button = a/

Button = 1

Button = 1

Button = 1

Button = 1
Button = 1

v

Connected to COM15 at 9600 baud Bytes Txed : Bytes Rxed :440

22

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

Notice how the state of the pin is 0 when the button is pressed. This is because the weak pull-up resis-
tor (22Ka) holds the pin to 3.3 Volts when it's not being operated, and the button pulls the pin to
ground when it's operated.

Now that we know that the pin’s state is 0 when the button is operated, decisions can be made upon it.

The program below will flash the LED 10 times when the button is pressed:
" Demonstrate a switch input using a pull-up resistor
Flash an LED based upon a button press

Include "Amicusl8.inc" * Configure the compiler to use the Amicusl8 board
Dim Flash As Byte * Holds the amount of flashes

Symbol Switch = PORTB.4 " Button is connected to RB4 (PortB.4)

Symbol LED = PORTB.O " LED attached to RBO

GoTo Main ® Jump over the subroutine

" Subroutine to flash the LED

FlashLED:

For Flash = 0 To 9 " Create a loop of 10 iterations
High LED * I1lluminate the LED
DelayMS 100 * Wait 100 milliseconds
Low LED " Extinguish the LED
DelayMS 100 " Wait 100 milliseconds

Next " Close the loop

Return " Exit the subroutine

" Main program starts here

Main:
Input Switch " Make the button pin an input
While 1 =1 * Create an infinite loop
IT Switch = O Then * Is the button pressed ?
GoSub FlashLED " Yes. So flash the LED
EndIf
Wend " Do it forever

23

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

Switch Input (Pulled-Down)
The layout below shows a pull-down resistance:

Cathode (-) —

~— 22K Ohm

/— 47 Ohm /~ 22K Ohm

EBXNB = = 23 o oo hw N |
aJ 000 OO0 N000poooooooona
b O OO0O0O a0 OOo000000000s
cOJOO0O0O0d OO0 1 DO0QJO0000oOoooode
10O O00Cm=msS 10000000000
O00000O0O000000oofe

O g Oo0gO0000000000addr

ooogogog OO .. DD%DD:II:D:ID[:IDDG

WJOOO0OO00000000000000000000000000n

1JO000000000000000000000o00ocooooasq

infpoooogooooooonooogooooooooodgs

kOO0 ogbhoooobggoooogbuobgouooidkx

Daoudoooo0odod0gd0DEpo000000000a00a:
g8 SR RBBRBEssIFI RS ® ;b
ESa R e Bt S e TR [] A 2

W, L LV

— e A e

;;;;

24

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

The circuit for the above layout is shown below:

PortB
RB7 [OF
RB6 |C)- Power
RB5 |Or 22Ko 4O Vin
R4 O oo 9| N0
RB2 O‘ Resistor 1 O Y,
RB1 [Or o——(03v3
RBO | le;tsgn 4O/ Rst
470
N
N
Power LED
GND

Open the Amicus IDE and type in the following program, or copy and paste from here:

Demonstrate a switch input using a pull-down resistor
Display state of the input pin RB4 when a push-button switch is operated

Include "Amicusl8.inc" " Configure the compiler to use the Amicusl8 board
Symbol Switch = PORTB.4 " Button is connected to RB4 (PortB.4)
Input Switch * Make the button pin an input
While 1 =1 " Create an infinite loop
HRSOut "Button = ", Binl Switch, 13 " Display the input state
DelayMS 500 " Delay for half a second
Wend " Do it forever

Click the toolbar icon Compile and Program or press F10 to build the code and place it into the
Amicus18'’s microcontroller.

Open the Serial Terminal by clicking on the toolbar, and open a connection to the Amicus18. Use the
default baud of 9600. The serial terminal’s window should show the text “Button = 0. This is dis-
playing the state of the pin where the button is attached. Press the button and the test will change to
“Button = 1”:

‘W Amicus Serial Terminal
Fie Edit Options Transfers

b€ 7 &

Button
Button
Button
Button
Button
Button
Button
Button
Button
Button
Button
Button
Button
Button
Button
Button
Button
Button
Button
Button
Button
Button
Button
Button

000000 --sddddddaooooooe o

/Button Pressed

/ Button Released

oWonoEoNE NN RN EE NN

v

Connected to COM15 at 9600 baud Bytes Tued : | Bytes Rxed :275

25

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

Notice how the state of the pin is 1 when the button is pressed. This is because the weak pull-up resis-
tor (22Ka) holds the pin to ground when it's not being operated, and the button pulls the pin to 3.3
Volts when it's operated. This is the exact opposite of using a pull-up resistor.

Now that we know that the pin’s state is 1 (high) when the button is operated, decisions can be made
upon it.

The program below will flash the LED 10 times when the button is pressed:
" Demonstrate a switch input using a pull-down resistor
Flash an LED based upon a button press

Include "Amicusl8.inc"
Dim Flash As Byte
Symbol Switch = PORTB.4
Symbol LED = PORTB.O

Configure the compiler to use the Amicusl8 board
Holds the amount of flashes

Button is connected to RB4 (PortB.4)

LED attached to RBO

GoTo Main " Jump over the subroutine
" Subroutine to flash the LED
FlashLED:
For Flash = 0 To 9 " Create a loop of 10 iterations
High LED " Illuminate the LED
DelayMS 100 " Wait 100 milliseconds
Low LED " Extinguish the LED
DelayMS 100 " Wait 100 milliseconds
" Close the loop
" Exit the subroutine

Next
Return

" Main program starts here

Main:
Input Switch " Make the button pin an input
While 1 =1 " Create an infinite loop
IT Switch = 1 Then " Is the button pressed ?
GoSub FlashLED " Yes. So flash the LED
EndIf
Wend " Do it forever

26

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

Switch Debounce

Mechanical switches are frequently encountered in embedded processor applications, and are inexpen-
sive, simple, and reliable. However, such switches are also often very electrically noisy. This noise is
known as switch bounce, whereby the connection between the switch contacts makes and breaks sev-
eral, perhaps even hundreds, of times before settling to the final switch state. This can cause a single
switch push to be detected as several distinct switch pushes by the fast microcontroller used in the
Amicus18 board, especially with an edge-sensitive input. Think of advancing the TV channel, but instead
of getting the next channel, the selection skips ahead two or three.

Classic solutions to switch bounce involved low pass filtering out of the fast switch bounce transitions
with a resistor-capacitor circuit, or using re-settable logic shift registers. While effective, these methods
add additional cost and increase circuit board complexity. Debouncing a switch in software eliminates
these issues.

A simple way to debounce a switch is to sample the switch until the signal is stable. How long to sample
requires some investigation of the switch characteristics, but usually 5ms is sufficiently long.

The following code demonstrates sampling the switch input every 1mS, waiting for 5 consecutive sam-
ples of the same value before determining that the switch was pressed. Note that the tactile switches
used for the layouts don’t bounce much, but it is good practice to debounce all system switches.

" Debounce a switch input (Pulled-Up)
" The LED will toggle On and Off whenever the switch is pressed

Include ""Amicusl8.inc" Configure the compiler to use the Amicusl8 board

Dim Switch_Count As Byte " Holds the switch counter amounts
Symbol DetectsInARow = 5 The amount of counts to perform

Symbol Switch_Pin = PORTB.4 * Pin where the switch is connected

Symbol LED = PORTB.O " Pin where the LED is connected
Main:
Low LED " Extinguish the LED

Input Switch_Pin Make the switch pin a input

While 1 =1 " Create an infinite loop
While Switch Pin <> 1 : Wend " Wait for switch to be released (Pulled-Up)

Switch _Count = 5

Repeat " Monitor switch input for 5 lows in a row to debounce
IT Switch _Pin = 0 Then " Pressed state detected ?
Inc Switch _Count " Yes. So increment the counter
Else " Otherwise...
Switch_Count = 0O " Reset the counter
EndIf
DelayMS 1 " Wait for 1ms
Until Switch _Count >= DetectsInARow " Exit when 5 iterations have been performed
Toggle LED " Toggle the LED On/Off
Wend " Do it forever

27

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

The same layout as the pulled-up switch demonstration can be used:

47 Ohm

22K Ohm

3 D
' e®?®?@®f®§d\\

22K Ohm

|) Cloey
00000 Oee
a0 '_Iaz"_l :

- 0 QA n T e
]

cJogooa
LB EROEE

The circuit for the debounced pulled-up switch input is shown below:

PortB
Egg O Push Power
Or Button i
RB5 |Or i O\ Vin
RB4 O} o——GND
RB3 |Or +O|GND
RB2 O 2Ka 0/5v
RB1 [Or 0| 3V3
RBO O Pull-Up | Rst
- Resistor
470
N
N
Power LED
GND
28

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

In order to detect and debounce a switch that is pulled down to ground through a resistor, the following
code can be used. It's essentially the same program as the pulled up version, but references to 0 now
reference 1, and vice-versa:

" Debounce a switch input (Pulled-Down)
" The LED will toggle On and Off whenever the switch is pressed

Include "Amicusl18.inc" " Configure the compiler to use the Amicusl8 board
Dim Switch_Count As Byte " Holds the switch counter amounts
Symbol DetectsInARow = 5 " The amount of counts to perform

Symbol Switch_Pin = PORTB.4 " Pin where the switch is connected

Symbol LED = PORTB.O " Pin where the LED is connected
Main:

Low LED " Extinguish the LED

Input Switch_Pin " Make the switch pin a input

While 1 =1 " Create an infinite loop

While Switch_Pin <> 0 : Wend " Wait for switch to be released (Pulled Down)

Switch_Count = 5

Repeat " Monitor switch input for 5 highs in a row to debounce
If Switch Pin = 1 Then " Pressed state detected ?
Inc Switch_Count " Yes. So increment the counter
Else " Otherwise. ..
Switch_Count = 0 " Reset the counter
EndIf
DelayMs 1 " Wait for 1ms
Until Switch_Count >= DetectsInARow " Exit when 5 iterations have been performed
Toggle LED " Toggle the LED On/Off
Wend " Do it forever

29

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

Analogue Meets Digital

Not everything in the microcontroller world is made up of ons or offs, sometimes the input required is of
an analogue nature i.e. a voltage. This is where an Analogue to Digital Converter (ADC) comes into it's
own. An ADC samples the incoming voltage and converts it to a binary representation. The Amicus18
has nine ADC inputs, each capable of producing a 10-bit sample (0 to 1023). The ADC can measure re-
sistance, current, sound, in fact anything that has a voltage.

To illustrate the use of the ADC peripheral, use the layout below:

100K Ohm Potentiometer

The circuit for the above layout is shown below:

PortA
AN4/AN5

ANO/RAO

Powe
Vin
GND
GND
5v
3V3
Rst

100K
Potentiometer

30

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

The program for the ADC demonstration is shown below:

Demonstrate an ADC (Analogue to Digital Converter) input
" Display the state of ANO (Channel 0 of the ADC) on the serial terminal

Include ""Amicusl8.inc" " Configure the compiler to use the Amicusl8 board
Dim ADC_Input As Word " Create a variable to hold the 10-bit ADC result
Include "Amicusl18 ADC.inc" " Load the Amicusl8 ADC macros into the program

" Open the ADC:

Fosc set for Fosc/32

Right justified for 10-bit operation
Tad value of 2

" Vref+ at Vcc : Vref- at Gnd

Make ANO an analogue input

OpenADC(ADC_FOSC_32 & ADC_RIGHT JUST & ADC_2_TAD, ADC_REF VDD_VSS, ADC_1ANA)

While 1 =1 " Create an infinite loop
ADC_Input = ReadADC(ADC_CHO) " Read the ADC from channel ANO
HRSOut "ADC = "', Dec ADC_Input, 13 " Display the ADC value
DelayMS 500 " Delay for half a second

Wend " Do it forever

Once the program is compiled and loaded into the Amicus18 board by clicking on the toolbar Compile
and Program or pressing F10, open the serial terminal and connect to the Amicus18 board’s com port:

¥ Amicus Serial Terminal
File Edit Options Transfers

€ 2 ¢ O

ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC
ADC

]
38\ Pot Fully Clockwise (0 Volts)
112

171
261
378
490
5085
586

516
5“\ Pot Mid Way (Approx 1.6 Volts)

589
684
820
904
937
1008
1020

1028
1020 = ™ Pot Fully Anti-Clockwise (3.3 Volts)
1020

Connected to COM15 at 9600 baud Bytes Txed : | Bytes Rxed :228

Turning the potentiometer anti-clockwise will increase the voltage to the ADC, therefore increasing the
ADC'’s value. Turning the potentiometer clockwise will decrease the voltage to the ADC, and decrease
the ADC’s value, as can be seen from the screenshot above.

Don’t worry too much is the ADC value isn't exactly 1023 for 3.3 Volts, as it’s only a tiny fraction of the
actual value, and this will make very little difference, if any, to most programs. This can be caused by
many things, wrong 7ad being used, wrong Fosc, losses in the wiring etc...

31

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

and one of the simplest of all light level detectors to use,

I

Amicus18 Companion Shield for Proton
We can use the ADC for a more practical example now that we know it works. We'll use an LDR (Light
Dependant Resistor) as the input to the ADC, and turn on an LED when the light level drops beyond a

certain level.
An LDR, as it's name suggests, alters it's resistance depending on the amount of light falling upon it. It's

one of the oldest methods of light detection

Light Level Switch (Cockroach Mode)
and one of least expensive.

And LDR layout is shown below:

M O L0 0 w

o
1000000 £
2000000 _
000000 O
MA_H__HDE______ od
WsOOOO0O0O OOl
e OO OO0 10
(7000000
‘Hulslsl=ls]s
Wo L0000
b0 0 O TE-L

|’j‘h
oo
100

100

000
Ol
100
-
1]
s

110 00000 Ih 0ol
20 (10000 0 W B S
i13(] Iufulnis
E B4 1010 |T* Lz
g O Sy
N 00 1RSI
Inisiuinty || -
mininininil >0 - |
000000 2
00000 D20l |
v 00000 DOz 2
\ 00000028
1 DoDooOz 5
/\ 100 000000248 .
& pocs] (][] DO0000 Dasl
K j | ZISiuisinisis 00000 D26l
£ O 00000 (00000 0Dag
S | < w281 00000 DO0000OO28
£ 2 pO000000| (000000
% 3 pOOOO000O| |DO0O0D0O0%
T O U T 9 w e

06-10-2009

32

10K Ohm —

Version 1.0

Crownhill AssociatesLimited 2009 - All Rights Reserved

Amicus18 Companion Shield for Proton

Don't worry if the LDR you use doesn't look like the one used in the layout as LDRs come in all shapes
and sizes, but they all perform the same task. However, their light level resistance may vary. But again,
this doesn't actually matter, as we'll be detecting changes in light level, not the level itself .

The circuit for the LDR layout is shown below:

PortB

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RBO

LED

N

Power
GND

The program for the Light Level Detector is shown below. The code will activate the LED when the LDR
sees a certain level of darkness, just like a cockroach:

" Illuminate an LED when an LDR connected to ANO sees darkness

" Altering the value within the If-Then condition will set the light level threshold
" Any value from O to 1023 is valid, however, larger values indicate darkness

Include "Amicusl18.inc" " Configure the compiler to use the Amicusl8 board
Dim LDR_Value As Word " Holds the 10-bit ADC value from the LDR
Symbol LED = PORTB.O " Pin where the LED is connected. i.e. bit-0 of PortB

Include "Amicusl8 ADC.inc" " Load the Amicusl8 ADC macros into the program

" Open the ADC:

" Fosc set for Fosc / 32

" Right justified for 10-bit operation
" Tad value of 2

" Vref+ at Vcc : Vref- at Gnd

" Make ANO an analogue input

OpenADC(ADC_FOSC_32 & ADC_RIGHT JUST & ADC_2_TAD, ADC_REF VDD VSS, ADC_1ANA)

While 1 =1 " Create an infinite loop
LDR_Value = ReadADC(ADC_CHO) " Read the ADC value from ANO
IT LDR_Value > 400 Then * Is the ADC value above 400. i1.e. getting darker
High LED " Yes. So illuminate the LED
Else " Otherwise. ..
Low LED " Extinguish the LED
EndIf
DelayUS 30 * Allow the ADC to recover
Wend " Do it forever

33

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

In order to change the level of darkness that the LDR will react too is simply a matter of changing the
value within the line “I¥ LDR_Value > 400 Then”. A larger value will illuminate the LED at darker

levels. The best way to calibrate the program is to examine the values produced by your particular LDR
in light an dark situations. The program below will display the LDR values on the serial terminal:

" Display the value produced from an LDR
Include "Amicusl8.inc" " Configure the compiler to use the Amicusl18 board
Dim LDR_Value As Word " Holds the 10-bit ADC value from the LDR
Include "Amicusl8 ADC.inc" " Load the Amicusl8 ADC macros into the program

" Open the ADC:

Fosc Set For internal RC Oscillator
Right justified for 10-bit operation
Tad value of 2

" Vref+ at Vcc : Vref- at Gnd

Make ANO an analogue input

OpenADC(ADC_FOSC_RC & ADC_RIGHT_JUST & ADC_2_ TAD, ADC_REF VDD VSS, ADC_1ANA)

While 1 =1 " Create an infinite loop
LDR_Value = ReadADC(ADC_CHO) " Read the ADC value from ANO
HRSOut Dec LDR Value, 13 " Display the value on the serial terminal
DelayMS 500 " Wait half a second

Wend " Do it forever

Once the code is compiled and loaded into the Amicus18, open the serial teminal:

¥ Amicus Serial Terminal D@@

File Edit Options Transfers

g€ 2 8 O

314
315

215 Light Level Dropped Here
339 /
640

7180
746
728
74y
754
743
703
694
644

321
314
314
313 Light Level Increased Here
315
315

316

Connected to COM15 at 9600 baud Bytes Txed : 0 | Bytes Rxed :92

As can be seen from the above screenshot, ambient light levels give an approximate value of 315, so
anything above this value will indicate a light level decrease. However, we don’t want to make it too
sensitive, so a value of 400 is ideal.

34

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

Light Level Switch (Moth Mode)
The same circuit and layout is used for the opposite reaction to light levels. The code below will illumi-
nate the LED when light levels increase, just like a moth to a flame.

" Illuminate an LED when an LDR connected to ANO sees light
" Altering the value within the I1f-Then condition will set the dark level threshold
" Any value from 0 to 1023 is valid, however, smaller values indicate lightness

Include "Amicusl8.inc" " Configure the compiler to use the Amicusl18 board
Dim LDR_Value As Word " Holds the 10-bit ADC value from the LDR
Symbol LED = PORTB.O " Pin where the LED is connected. i.e. bit-0 of PortB

Include "Amicusl8 ADC.inc" " Load the Amicusl8 ADC macros into the program
" Open the ADC:

" Fosc set for Fosc / 32

" Right justified for 10-bit operation
" Tad value of 2

" Vref+ at Vcc : Vref- at Gnd

" Make ANO an analogue input

OpenADC(ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_2_TAD, ADC_REF _VDD_VSS, ADC_1ANA)

While 1 =1 " Create an infinite loop
LDR_Value = ReadADC(ADC_CHO)" Read the ADC value from ANO
IT LDR_Value <= 400 Then " Is the ADC value less than 400. i.e. getting lighter

High LED " Yes. So illuminate the LED
Else " Otherwise. ..
Low LED " Extinguish the LED
EndIf
DelayUSs 30 " Allow the ADC to recover
Wend * Do it forever

The code is essentially the same as cockroach mode, except the LED illuminates when the ADC value is
less that 400, instead of greater than 400.

35

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

Temperature Sensor

One of the simplest, and least expensive, temperature sensors is a thermistor. This is a special type of
resistor that alters it's resistance based upon it's temperature. There are generally two types of thermis-
tor; an NTC type (Negative Temparature Coefficient), whose resistance drops as the temparature in-
creases, and a PTC type (Positive Temparature Coefficient), whose resistance increases as the tempara-
ture increases. For this demonstration, we'll use an NTC thermistor.

Just like there fixed resistance cousins, thermistors come in different packages and resistance-per-
temperature values. These range anywhere from a few hundred Ohms to tens of thousands of Ohms.

The device used in this demonstration is a bead thermistor with a resistance of 10KQ at a temperature
of 25° centigrade, but any thermistor will do with a few program code changes.

A thermistor layout is shown below:

47 Ohm
Thermistor (NTC)

10K Ohm

OO 00000000 0RO00000000000000000s
leoOOOD0OoOoO00oMOo0000000000000000Oec

_m?ﬁﬁﬂﬂfflﬁﬁﬂﬂ.—ljfﬁl—!l—!ﬂd

=gl OO0 O0C00000000000000000e
0¥ ooo00000000000@pOO000oooos

lﬁﬁ-_l:—lffl—!—.ﬂl—lijDDElEH}wf_‘—l
kOO0 000000000000==100000
CIEE] nO

1000l
I
I
]
O
1

B

10K Ohm

36

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

The circuit for the temperature layout is shown below:

PortB
RB7
PortA RB6
AN4/AN5 RB5
RA4 RB4
AN3/RA3 RB3
AN2/RA2 RB2
AN1/RA1 RB1
ANO/RAO RBO
Thermistor 470
Power
Vin|COr LED
GND (O <
GND (O 10Ka Power
5VIO
33 0 GND
Rst|Or

A program to display the the values produced from the thermistor on the serial terminal is shown below:
" Display the value of an NTC thermistor on the serial terminal
" The thermistor is connected To ANO (Channel 0 of the ADC)

Include "Amicusl18.inc" " Configure the compiler to use the Amicusl8 board
Include "Amicusl8 ADC.inc" " Load the Amicusl8 ADC macros into the program
Dim Thermistorin As Word " Create a variable to hold the 10-bit ADC result

" Open the ADC:

Fosc set for Fosc/32

Right justified for 10-bit operation
Tad value of O

- Vref+ at Vcc : Vref- at Gnd

Make ANO an analogue input

OpenADC(ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_O_TAD, ADC_REF _VDD_VSS, ADC_1ANA)

While 1 = 1 " Create an infinite loop
Thermistorin = ReadADC(ADC_CHO) " Read the ADC on ANO
HRSOut "Thermistor = ', Dec Thermistorin, 13 * Display the ADC value
DelayMS 500 " Delay for half a second

Wend " Do it forever

Once the program has been loaded into the Amicus18 board, open the serial terminal and connect to
the Amicus18’s com port:

"W Amicus Serial Terminal
Fle Edit Optons Transfers

€8 2 8 9

Therni ro= 70

n.:,,.;:t:,, - 7:1 D Room Temperature (Approx 21 degrees Centigrade)
Thermistor = 701

Thermistor = 700

Thermistor = 686

Thermistor = 6?5\ Finger Covering Thermistor (Increase in Temperature)
Thermistor = 656

Thermistor = 648

Thermistor = 645

Thermistor = 641

Thermistor = 638

Thermistor = 637

Thermistor = 627

Thermistor = 615

Thermistor = 621 94—

Thermistor = 628 Finger Removed from Thermistor (Decrease in Temperature)
Thermistor = 634
Thermistor = 640
Thermistor = 646
Thermistor = 651
Thermistor = 655
Thermistor = 660
Thermistor = 663
Thermistor = 667
I'lher»istm' = 669

w

Mot Connected Bytes Txed : | Bytes Rxed :425

The display shows the decrease in voltage with the increase in temperature when a finger covers the
thermistor, and is then removed. As can be seen, a thermistor is quite sensitive.

37

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

Thermostat (increase in temperature)

We can use the information we have to trigger an external device, in this case an LED, when the ther-
mistor reaches a pre-determined value. We know that room temperature give an ADC value of approx
701, and any value lower than this is an increase in temperature, and a lower value is a decrease in
temperature, so even without knowing the actual temperature we can write some code:

Il1luminate an LED when the temperature increases
Also display the ADC value of the thermistor connected to ANO

Include "Amicusl8.inc" " Configure the compiler to use the Amicusl8 board
Include "Amicusl8 ADC.inc" " Load the Amicusl8 ADC macros into the program

Dim Thermistorin As Word " Create a variable to hold the 10-bit ADC result
Symbol LED = PORTB.O " Alias the name LED to pin RBO

" Open the ADC:

Fosc set for Fosc/32

Right justified for 10-bit operation
Tad value of O

" Vref+ at Vcc : Vref- at Gnd

Make ANO an analogue input

OpenADC(ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_O_TAD, ADC_REF_VDD_VSS, ADC_1ANA)

While 1 =1 " Create an infinite loop
Thermistorin = ReadADC(ADC_CHO) " Read the value from the thermistor
HRSOut "Therm = ", Dec Thermistorin, 13 " Display the ADC value on the terminal
IT Thermistorln < 600 Then " Has there been an increase in temperature?
High LED " Yes. So illuminate the LED
Else " Otherwise...
Low LED " Extinguish the LED
EndIf
Wend " Do it forever

Once the program is compiled and loaded into the Amicus18 board using the toolbar Compile and Pro-
gram or pressing F10, placing a finger over the thermistor, thus increasing the temperature, will illumi-
nate the LED. To adjust the threshold of the temperature trigger, alter the value within the code line:
“If Thermistorln < 600 Then”. A lower value will illuminate the LED at higher temparatures.

38

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

Thermostat (decrease in temperature)
In order to illuminate the LED at lower temperatures, use the program below:

" Illuminate an LED when the temperature decreases
Also display the ADC value of the thermistor connected to ANO

Include "Amicusl8.inc" * Configure the compiler to use the Amicusl8 board
Include "Amicusl8 ADC.inc" " Load the Amicusl8 ADC macros into the program

Dim Thermistoriln As Word " Create a variable to hold the 10-bit ADC result
Symbol LED = PORTB.O " Alias the name LED to pin RBO

" Open the ADC:

Fosc set for Fosc/32

Right justified for 10-bit operation
Tad value of O

" Vref+ at Vcc : Vref- at Gnd

Make ANO an analogue input

OpenADC(ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_O_TAD, ADC_REF VDD VSS, ADC_1ANA)

While 1 =1 " Create an infinite loop
Thermistorin = ReadADC(ADC_CHO) " Read the value from the thermistor
HRSOut "Therm = ", Dec ThermistorlIn, 13 " Display the ADC value on the terminal
IT Thermistorln >= 750 Then " Has there been a decrease in temperature?
High LED " Yes. So illuminate the LED
Else " Otherwise. ..
Low LED " Extinguish the LED
EndIf
Wend " Do it forever

Once the program is compiled and loaded into the Amicus18 board using the toolbar Compile and Pro-
gram or pressing F10, blowing over the thermistor, thus decreasing the temperature, will illuminate the
LED. To adjust the threshold of the temperature trigger, alter the value within the code line: “If
Thermistorln >= 750 Then”. A higher value will illuminate the LED at lower temparatures.

39

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

Thermostat (increase and decrease of temperature)

The layout and code below allows the demonstration of high, normal, and low temperature changes.
Both LEDs will be extinguished when the temperature is normal, the Red LED will illuminate when the
temperature rises above a pre-determined value, and the Green LED will illuminate when the tempera-
ture decreases beyond a pre-determined level:

47 Ohm

Thermistor (NTC)

10K Ohm

aininislnlnll
- 0 O 0O T o

ooogOdeh
aooonnfe

Ao

s oM
hWOOOoOOoOom
i0000000Y

iDoOO0Oo0o0oOoOo

-

e e e s e e

S, i i

10K Ohm —

40

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

The circuit for the thermistat layout is shown below:

PortB
RB7
PortA RB6
AN4/AN5 RB5
RA4 RB4
AN3/RA3 RB3
AN2/RA2 RB2
AN1/RA1 RB1
ANO/RAO RBO
Thermistor
Power
Vin |
GND |C
GND |CX 10Ka Power
5VICH
V30 GND
Rst|Or

The code for the two LED thermostat is shown below:

" Illuminate a Red LED when the temperature increases
Il1luminate a Green LED when the temperature decreases
" Also display the ADC value of the thermistor connected to ANO

Include "Amicusl8.inc" * Configure the compiler to use the Amicusl8 board
Include "Amicusl8 ADC.inc" " Load the Amicusl8 ADC macros into the program

Dim Thermistorin As Word " Create a variable to hold the 10-bit ADC result
Symbol GreenLED = PORTB.O * Alias the name GreenLED to pin RBO
Symbol RedLED = PORTB.1 " Alias the name RedLED to pin RB1

" Open the ADC:
Fosc set for Fosc/32

" Right justified for 10-bit operation
" Tad value of O
- Vref+ at Vcc : Vref- at Gnd

Make ANO an analogue input

OpenADC(ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_O_TAD, ADC_REF _VDD_VSS, ADC_1ANA)

While 1 =1 " Create an infinite loop
Thermistorin = ReadADC(ADC_CHO)" Read the value from the thermistor
HRSOut "Therm = ", Dec Thermistorin, 13 " Display the ADC value on the terminal
IT Thermistorin < 600 Then " Has there been an iIncrease in temperature ?
High RedLED " Yes. So illuminate the Red LED
Low GreenLED " Extinguish the Green LED
Elself Thermistorln > 750 Then " Has there been a decrease in temperature?
Low RedLED " Yes. So Extinguish the Red LED
High GreenLED * Illuminate the Green LED
Else " Otherwise. ..
Low GreenLED " Extinguish the Green LED
Low RedLED " Extinguish the Red LED
EndIf
Wend " Do it forever

41

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

Digital Meets Analogue
Sometimes the microcontroller needs to interface back to the real world with an analogue result. This is

termed Digital to Analogue Conversion, or DAC. This can be performed several ways; by using a dedi-
cated DAC peripheral device, by using a digital resistor device, or by using Pulse Width Modulation
(PWM). PWM is the method that is built into the Amicus18’s microcontroller, and requires no specialised
devices to be used, so we'll discuss this method here.

Pulse Width Modulation (PWM)
Pulse Width Modulation fakes a voltage by producing a series of pulses at regular intervals, and varying
the width of the pulses. The resulting average voltage is the result of the pulse widths. The Amicus18’s

microcontroller can produce a high voltage of 3.3 Volts and low of 0 Volts.

In the illustration below, the pin is pulsed high for the same length of time as it is pulsed low. The time
the pin is high (called the pulsewidth) is about half the total time it takes to go from low to high to low
again. This ratio is called the duty cycle. When the duty cycle is 50%, the average voltage is about half
the total voltage. i.e. 1.6 Volts.

A

_ _ Effective Voltage

Voltage

\4

Time

If the duty cycle is made less than 50% by pulsing on for a shorter amount of time, a lower effective
voltage is produced:

Voltage

_ Effective Voltage

»
>

Time

If the duty cycle is made greater than 50% by pulsing on for a longer amount of time, a higher effective
voltage is produced:

_ Effective Voltage

Voltage

\ 4

Time

In order to create a constant voltage instead of a series of pulses, we need a simple RC low pass filter.
As it's name suggests this consists of a Resistor and a Capacitor.

A filter is a circuit that allows voltage changes of only a certain frequency range to pass. For example, a
low-pass filter would block frequencies above a certain range. This means that if the voltage is changing
more than a certain number of times per second, these changes would not make it past the filter, and

only an average voltage would be seen.

42

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

There are calculations for the values of the resistor and capacitor used, but we won't go into that here,
but a search for RC filter on the internet will produce a huge amount of information. Here's two of them
that are valid at the time of writing:

http://www.cvs1.uklinux.net/cgi-bin/calculators/time_const.cgi
http://www.sengpielaudio.com/calculator-period.htm

Channel 1 PWM

In this discussion, we'll be using the compiler’s WriteAnalog macros, which produce either an 8-bit (0
to 255) or 10-bit (0 to 1023) output. It's important for further RC filter calculations to remember that
the 10-bit PWM macro’s operate at a frequency of 62.5KHz (62,500 Hertz), and the 8-bit PWM macros
operate at a frequency of 125KHz (125,000 Hertz), but only if the Amicus18 board is using it's default
oscillator speed of 64MHz. If the crystal is replaced with another value type, these frequencies will
change. See section 16 in the PIC18F25K20 microcontroller’s data sheet for further information concern-
ing the PWM peripherals.

From the paragraph above, we know that if we use the 10-bit PWM macros, we will be operating at a
frequency of 62.5KHz. This relates to a duty cycle of 0.06 milliseconds (ms), or 16 microseconds (us).

If we choose a value of 47 Ohms for our resistor so that we don't loose too much current, we need a
capacitance value of 340.425nF (0.34uF). There is no common capacitor of that value so we'll choose a
close value, for example 330nF (0.33uF).

The circuit for a suitable RC low pass filter is shown below:

47Q

PWM
Pulses In Voltage Out
R
C
? 330nF

The Amicus18’s microcontroller has two PWM peripherals; PWM1 from PortC pin RC2, and PWM2 from
PortC pin RC1. Each pin can produce a differing duty cycle (average voltage), but each share the same
frequency.

A demo layout for channel 1 of the PWM is shown below:

330nf (0.33uF)

Cathode (-)

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

The circuit for the PWM1 layout is shown below:

PortC

RC7
RC6
RC5
RC4
RC3
RC2
RC1
RCO

R 470

&

Power c
330nF

Vin LED
GND
GND

5V

3v3

Rst

The PWM peripherals operate in the background, which means that once a PWM duty cycle is set, it
does not block any other instructions from occurring.

Type in the following code and program it into the Amicus18 board by clicking on the toolbar Compile
and Program, or pressing F10:

Include "Amicusl18 HpwmlO.inc"

WriteAnalogl(512)

The LED will now be glowing, but not at full brightness. What’s happening is that channel 1 of the PWM
has been instructed to set the duty cycle to 50%, which is half the full range of 1023, which is 512. Try
different values within the braces of the WriteAnalogl command and see what it does to the LED’s
brightness.

A more sophisticated program is shown below that will cycle the LED to full brightness then back to off
repeatedly:

" Amicusl18 10-bit Hardware PWM (Pulse Width Modulation) Demo Program

" An LED attached to Bit-2 of Portc (RC2) will increase illumination, then dim
Include "Amicusl8.inc" " Configure the compiler to use the Amicusl8 board
Include "Amicusl18 HpwmlO.inc"" Load the Amicusl8 10-bit PWM macros into program

Dim wDutyCycle As Word " Create a variable to hold the Duty Cycle
OpenAnalog1() " Enable and cofigure the CCP1 peripheral
While 1 =1 " Create an infinite loop

" Increase LED illumination

For wDutyCycle = 0 To 1023 * Cycle the full range of 10-bits. i.e. 0 to 1023
WriteAnalogl(wDutyCycle) * PWM on CCP1 (Bit-2 of PortC)

Next

" Decrease LED illumination
For wDutyCycle = 1023 To O Step -1 " Cycle the full range of 10-bits in reverse
WriteAnalogl(wDutyCycle) " PWM on CCP1 (Bit-2 of PortC)
Next
Wend " Do it forever

44

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

Channel 2 PWM

As has been mentioned, the Amicus18 has two hardware PWM channels, each can work independently
of each other when adjusting the duty cycle, but share a common operating frequency and resolution.
This is because they both operate from the microcontroller’s Timer 2 module.

Operating the second channel of the PWM peripheral uses exactly the same procedure as operating
channel 1, but uses a different pin of PortC (RC1).

A demo layout for channel 2 of the PWM is shown below:

330nf (0.33uF)

47 Ohm

Cathode (-)

The circuit for the above layout is shown below:

PortC

RC7
RC6

330nF

The PWM peripherals operate in the background, which means that once a PWM duty cycle is set, it
does not block any other instructions from occurring.

45

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

Type in the following code and program it into the Amicus18 board by clicking on the toolbar Compile
and Program, or pressing F10:

Include "Amicusl18 HpwmlO.inc"

WriteAnalog2(512)

The LED will now be glowing, but not at full brightness. What's happening is that channel 2 of the PWM
has been instructed to set the duty cycle to 50%, which is half the full range of 1023, which is 512. Try
different values within the braces of the WriteAnalog2 command and see what it does to the LED’s
brightness.

A more sophisticated program is shown below that will cycle the LED to full brightness then back to off
repeatedly:

" Amicusl18 10-bit Hardware PWM (Pulse Width Modulation) Demo Program

" An LED attached to Bit-1 of PortC (RC1) will increase illumination, then dim
Include "Amicusl8.inc" " Configure the compiler to use the Amicusl18 board
Include "Amicusl18 HpwmlO.inc"" Load the Amicusl8 10-bit PWM macros into program

Dim wDutyCycle As Word " Create a variable to hold the Duty Cycle
OpenAnalog2() " Enable and cofigure the CCP2 peripheral
While 1 =1 " Create an infinite loop

Increase LED illumination

For wDutyCycle = 0 To 1023 " Cycle the full range of 10-bits. i.e. 0 to 1023
WriteAnalog2(wDutyCycle) " PWM on CCP2 (Bit-1 of PortC)

Next

" Decrease LED illumination
For wDutyCycle = 1023 To O Step -1 " Cycle the full range of 10-bits in reverse
WriteAnalog2(wDutyCycle) " PWM on CCP2 (Bit-1 of PortC)
Next
Wend " Do it forever

46

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

Two channels of PWM simultaneously (Pulsing Light)
The layout below demonstrates both PWM channels operating simultaneously:

Cathode (-)

Cathode (-)
47 Ohm each

9

(\

BH

a0 00boobbobbouoboboooooaMdMbgbobbOodna
pO00C0000000O0O0000O000O000O000OO0O00O00O0Od8Os
0000000000000 0O00O0000O000OO0O000O00Oe-
dJ000000000000000000000b00pgooood
e[110000000 OOOOOOOOOOORONOOOOOOe
fO00000000000000000000 OpOoooaaar
(O 0O000O000000000O00O00000 O0000000Oe
WNJOOOOOoOOoOoOooooooooooo OO000O0000On
100000000 000000000| | Oooododn
inooono] | OdOoOooddd
kOJOOOon0O OOo0O00 000000k
ooogo [ooogooon

2 8 8 a

RESET Power RE

Cathode (-) —

47

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield for Proton

The circuit for the 2 PWMs layout is shown below:

PortC

RC7
RC6
RC5
RC4
RC3
RC2
RC1
RCO

QROOCOOOOQ

470 470

Power
Vin
GND
GND
5v
3Vv3
Rst

%

ED ED

The capacitors normally associated with PWM output have been dispensed with because the operating
frequency of the PWM channels is so high (62.5KHz) that no noticeable flicker from the pulses will be
observed on the LEDs.

The code to produce the pulsing of the LEDs is shown below:

" Pulse both LEDs, one decreases while the other increases brightness

Include "Amicusl8.inc" " Configure the compiler to use the Amicusl8 board
Include "Amicusl8 HpwmlO.inc" * Load the Amicusl8 10-bit PWM macros into program

Dim wDutyCycle As Word " Holds the duty cycle of the PWM pulses
OpenAnalogl() " Enable and cofigure the CCP1 peripheral
OpenAnalog2() " Enable and cofigure the CCP2 peripheral
While 1 =1 " Create an infinite loop

" Increase LED1 illumation, while decreasing LED2 illumination

For wDutyCycle = 0 To 1023 " Cycle the full range of 10-bits
WriteAnalogl(wDutyCycle) " PWM on CCP1 (Bit-2 of PortC) (0 to 1023)
WriteAnalog2(1023 - wbutyCycle) * PWM on CCP2 (Bit-1 of PortC) (1023 to 0)
DelayMS 5 " A small delay between duty cycle changes

Next " Close the loop

DelayMsS 5

" Decrease LED1 illumation, while increasing LED2 illumination

For wDutyCycle = 1023 To O Step -1 " Cycle the full 10-bit range (reversed)

WriteAnalogl(wDutyCycle) " PWM on CCP1 (Bit-2 of PortC) (1023 to 0)

WriteAnalog2(1023 - wDutyCycle) * PWM on CCP2 (Bit-1 of PortC) (0 to 1023)

DelayMS 5 " A small delay between duty cycle changes
Next " Close the loop
Wend " Do it forever

48

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

	Amicus18 Companion Shield
	Building the Companion Shield
	First Program
	2 LED Flasher
	4 LED Sequencer
	8 LED Sequencer
	 Traffic Light Sequencer

	Sensing the Outside World
	Switch Input (Pulled-Up)
	Switch Input (Pulled-Down)
	Switch Debounce

	Analogue Meets Digital
	Light Level Switch (Cockroach Mode)
	Light Level Switch (Moth Mode)
	Temperature Sensor
	Thermostat (increase in temperature)
	Thermostat (decrease in temperature)
	Thermostat (increase and decrease of temperature)

	Digital Meets Analogue
	Pulse Width Modulation (PWM)
	Channel 1 PWM
	Channel 2 PWM
	Two channels of PWM simultaneously (Pulsing Light)

