

Using Amicus18 Hardware

With Proton

Using Amicus18 Hardware with the Proton compiler

 1
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Hardware Overview ..3
The 8-pin Power header socket: .. 4
The 4-pin Power header socket: .. 4
The PortA (Anx) socket:.. 5
The PortC socket:... 6
The PortB socket:... 7
Device Programming Header ... 8

Jumper and Pad Settings...9
Pad Q1.. 9
Pad Q2.. 9
Jumper Q3 .. 9

Serial Handshake Connections ..10

Using the Proton Compiler with the Amicus18 board..11

Writing your first Amicus18 program using the Proton compiler12

Amicus18 Circuit Diagram ...14
Amicus18 PCB Layout ..15

Installing the Amicus18 USB Driver ..16

Built in Amicus18 Peripheral Macros ...20

ADC macros Introduction ..21
BusyADC ..21
CloseADC ...21
ConvertADC..21
OpenADC ...22
ReadADC..23
SetChanADC ...24
SelChanConvADC ..24
ADC_IntEnable ...25
ADC_IntDisable...25

Timer macros Introduction..26
CloseTimer0 ...26
CloseTimer1 ...26
CloseTimer2 ...26
CloseTimer3 ...26
OpenTimer0 ...27
OpenTimer1 ...28
OpenTimer2 ...29
OpenTimer3 ...30
ReadTimer0..31
ReadTimer1..31
ReadTimer2..31
ReadTimer3..31
WriteTimer0 ...32
WriteTimer1 ...32
WriteTimer2 ...32
WriteTimer3 ...33
SetTmrCCPSrc ..33
T3_OSC1EN_ON..34
T3_OSC1EN_OFF ..34

Using Amicus18 Hardware with the Proton compiler

 2
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

SPI macros Introduction... 35
CloseSPI...35
DataReadySPI...35
OpenSPI...36
ReadSPI ...37
WriteSPI...37

Hardware PWM macro Introduction ... 38
CloseAnalog1..38
CloseAnalog2..38
OpenAnalog1..38
OpenAnalog2..39
WriteAnalog1..39
WriteAnalog2..41

Using Amicus18 Hardware with the Proton compiler

 3
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Hardware Overview
The Amicus18 hardware is based upon the world famous Arduino board, however, the Amicus18 board
uses a Microchip PIC® microcontroller instead of an Atmel AVR type.

It has exactly the same dimensions as the Arduino, and all Arduino shields will physically fit on the
Amicus18 board.

The microcontroller used on the Amicus18 is the Microchip PIC18F25K20, or the PIC18F25K22 which
each have 32768 bytes of flash memory, 1536 bytes of RAM, and operate at 64MHz, which equates to
16 MIPS (Million Instructions per Second).

There are up to eleven 10-bit ADC (Analogue to Digital Converter) inputs, and two 10-bit PWM (Pulse
Width Modulation) outputs, as well as comparators, USARTs (Universal Synchronous Asynchronous Re-
ceiver Transmitter), SPI (Serial Peripheral Interface), I2C (Inter-Integrated Circuit), and up to six timers,
each with various internal operations attached to them.

Each of the microcontroller’s I/O lines are brought out for use with external devices such as LEDs, Ser-
vos, Potentiometers, LCDs etc…

Communication with the Amicus18 board is through a USB interface, which presents itself as a standard
serial port on the PC. The microcontroller can be programmed directly through this port so there is no
need for a dedicated device programmer, however, if the need arises, there is an ICSP (In Circuit Serial
Programming) interface suitable for all programmers, but tailored for the Microchip PICkit2™ program-
mer.

Power can be supplied to the board either via the USB port, or an external 9 Volt DC source. When
powered from the USB port, a maximum of 500mA (milliAmp) may be drawn, and the USB port is pro-
tected by a resetable fuse. When powered via a 9V source, a maximum of 800mA may be drawn.

The PIC18F25K20 microcontroller is a 3.3 volts type, while the PIC18F25K22 will operate with both 3.3
volts and 5 volts.

The Amicus18 board is extremely easy to use, in fact, no previous microcontroller experience is required
in order to get your first project up and running, as you’ll find out later.

Using Amicus18 Hardware with the Proton compiler

 4
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Sockets
As mentioned earlier, each of the microcontroller’s I/O lines is brought to the outside world via 2.54mm
(0.1”) SIL sockets on the Amicus18 board. The operation of each block of pins is outlined below:

The 8-pin Power header socket:

 RA6 which is bit-6 of PortA. This pin defaults to the Clock Output Pin where the crystal is con-
nected. It may be used as an I/O pin only when an internal oscillator setting is chosen.

 RA7 which is bit-7 of PortA. This pin defaults to the Clock Input Pin where the crystal is con-

nected. It may be used as an I/O pin only when an internal oscillator setting is chosen.

 Microcontroller’s reset line, which also acts as bit-3 of PortE (RE3), and is also the voltage in-
put for a device programmer such as the PICkit2™ or the PICkit3™.

 3.3 Volts output. 500mA when powered via USB, or 800mA when powered by an external 9

Volts source.

 5 Volts output. 500mA when powered via USB, or 800mA when powered by an external 9 Volts
source.

 Ground (0 Volts).

 DC 9 Volts input. This may be used to power

the board.

The 4-pin Power header socket:

 Ground (0 Volts)

 3.3 Volts output. 500mA when powered via
USB, or 800mA when powered by an external
9 Volts source.

 5 Volts output. 500mA when powered via

USB, or 800mA when powered by an external
9 Volts source.

Using Amicus18 Hardware with the Proton compiler

 5
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

The PortA (Anx) socket:

 RA0 which is bit-0 of digital PortA. This pin can also be configured as Input 0 (AN0) of the 10-bit
ADC (Analogue to Digital Converter). It can also be configured as the negative (-) input pin to ei-
ther Comparator 1 or 2.

 RA1 which is bit-1 of digital PortA. This pin can also be configured as Input 1 (AN1) of the 10-bit

ADC (Analogue to Digital Converter). It can also be configured as the negative (-) input pin to ei-
ther Comparator 1 or 2.

 RA2 which is bit-2 of digital PortA. This pin can also be configured as Input 2 (AN2) of the 10-bit

ADC (Analogue to Digital Converter). It can also be configured as the positive (+) input pin to
Comparator 2, or the output for the internal voltage reference.

 RA3 which is bit-3 of digital PortA. This pin can also be configured as Input 3 (AN3) of the 10-bit

ADC (Analogue to Digital Converter). It can also be configured as the positive (+) input pin to
Comparator 1.

 RA4 which is bit-4 of digital PortA. This pin can also be configured as the input trigger for Timer

0. It can also be configured as the output pin of Comparator 1.

 RA5 which is bit-5 of digital PortA. This pin can also be configured as Input 4 (AN4) of the 10-bit
ADC (Analogue to Digital Converter). It can also be configured as the output pin of Comparator 2.

Using Amicus18 Hardware with the Proton compiler

 6
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

The PortC socket:

 RC0 which is bit-0 of digital PortC. This pin can also be configured as the input for Timer 1.

 RC1 which is bit-1 of digital PortC. This pin can also be configured as the input for Timer 1, or
a PWM (Pulse Width Modulation) output.

 RC2 which is bit-2 of digital PortC. This pin can also act as a PWM (Pulse Width Modulation)

output.

 RC3 which is bit-3 of digital PortC. This pin can also be configured as the clock source for I2C
(Inter-Integrated Circuit) or SPI (Serial Peripheral Interface) communications.

 RC4 which is bit-4 of digital PortC. This pin can also be configured as the data source for I2C

(Inter-Integrated Circuit) or the data output for SPI (Serial Peripheral Interface) communica-
tions.

 RC5 which is bit-5 of digital PortC. This pin can also be configured as the data input for SPI

(Serial Peripheral Interface) communications.

 RC6 which is bit-6 of digital PortC. This pin can also be configured as the USART (Universal
Synchronous Asynchronous Receiver Transmitter) output for serial communications.

 RC7 which is bit-7 of digital PortC. This pin can also be configured as the USART (Universal

Synchronous Asynchronous Receiver Transmitter) input for serial communications.

Using Amicus18 Hardware with the Proton compiler

 7
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

The PortB socket:

 RB0 which is bit-0 of digital PortB. This pin can also be configured as input 12 (AN12) of the 10-
bit ADC, or an external interrupt trigger.

 RB1 which is bit-1 of digital PortB. This pin can also be configured as input 10 (AN10) of the 10-

bit ADC, or an external interrupt trigger.

 RB2 which is bit-2 of digital PortB. This pin can also be configured as input 8 (AN8) of the 10-bit
ADC, or an external interrupt trigger.

 RB3 which is bit-3 of digital PortB. This pin can also be configured as input 9 (AN9) of the10-bit

ADC, or an alternative PWM (Pulse Width Modulation) output.

 RB4 which is bit-4 of digital PortB. This pin can also be configured as input 11 (AN11) of the 10-
bit ADC, or an external interrupt trigger.

 RB5 which is bit-5 of digital PortB. This pin can also be configured as an external interrupt trigger.

 RB6 which is bit-6 of digital PortB. This pin can also be configured as an external interrupt trigger,

and is also the clock line for a device programmer such as the PICkit2™ or the PICkit3™.

 RB7 which is bit-7 of digital PortB. This pin can also be configured as an external interrupt trigger,
and is also the data line for a device programmer such as the PICkit2™ or the PICkit3™.

Each pin of the microcontroller is capable of sourcing or sinking 25mA, with a maximum of 100mA per
port.

The microcontroller’s architecture is very versatile, allowing several internal peripherals to share the
same pin, thus maximising the flexibility, but keeping the size of the device small. Each internal periph-
eral can be enabled, disabled and configured very easily from within the free BASIC compiler environ-
ment.

Although the microcontroller has a 3.3 Volts operating voltage, all I/O pins are 5 Volt tolerant.

Using Amicus18 Hardware with the Proton compiler

 8
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Device Programming Header
The Amicus18 board has the ability to be programmed in circuit. This bypasses the built in bootloader,
and indeed, will overwrite it.

The header has been designed for a PICkit2™ or PICkit3™ programmer to fit straight onto it, however,
any other device programmer may be used with a suitable adapter. It must be remembered that the
microcontroller is a 3.3 Volt PIC18F25K20 type, therefore if a programmer other than a PICkit2™ or a
PICkit3™ is used, ensure that it supports this device, as a 5 Volt only programmer will damage the mi-
crocontroller.

The programming header’s location is shown below:

Using Amicus18 Hardware with the Proton compiler

 9
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Jumper and Pad Settings
The Amicus18 board has a jumper and two pads that can alter it’s characteristics.

Pad Q1
This allows a 5 Volts type microcontroller to be used with the board instead of the supplied 3.3 Volt
type.

Pad Q2
This allows disconnection of the internal Reset for the microcontroller from the USB bootloader.

Jumper Q3
This allows maximum compatibility with existing Arduino shields. The PIC18F25K20 and PIC25K22 mi-
crocontrollers have more I/O lines than that of an Atmel, therefore, two of the pins on the PortB socket
operate differently on the Amicus18. RB1 is a Ground pin on the Arduino board, but this would waste a
valuable I/O pin if it were simply grounded. Instead, Jumper Q3 can be configured for RB1 or Ground.

Using Amicus18 Hardware with the Proton compiler

 10
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Serial Handshake Connections
The USB to serial device also emulates the handshaking lines of a conventional serial port. These are
shown below:

The Amicus18 board uses the DTR line in-order to reset the microcontroller, however, the other lines
are available to use. The direction of each line is shown below:

 DTR This is an output from the PC to the Amicus18 board.
 RTS This is an output from the PC to the Amicus18 board.
 DSR This is an input to the PC from the Amicus18 board.
 DCD This is an input to the PC from the Amicus18 board.
 CTS This is an input to the PC from the Amicus18 board.

Using Amicus18 Hardware with the Proton compiler

 11
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using the Proton Compiler with the Amicus18 board

Configuring the Proton compiler to work with the Amicus18 board is simplicity itself, as all the applica-
tions required are installed along with the compiler.

The Amicus18 board's microcontroller has a built-in bootloader, so first we'll choose the correct boot-
loader from within the Proton IDE. On the toolbar, Click the small arrow on the Program button:

Choose the option "Install New Programmer" and a window will open:

Choose the Amicus18 Loader option and click Next.

The bootloader's executable will then be searched for:

Once it has been found the window will disappear and the job is done. In order to verify that the
Amicus18 bootloader has been allocated correctly, click the downward arrow on the program button
again:

Using Amicus18 Hardware with the Proton compiler

 12
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Writing your first Amicus18 program using the Proton compiler
Here’s a very small sample of the Proton BASIC language:

' Flash an LED connected to RB0
 Include "Amicus18.inc" ' Configure the compiler to use the Amicus18 board
 While 1 = 1 ' Create an infinite loop

High PORTB.0 ' Bring the LED pin high (illuminate the LED)
DelayMs 500 ' Wait 500ms (half a second)
Low PORTB.0 ' Pull the LED pin low (Extinguish the LED)
DelayMs 500 ' Wait 500ms (half a second)

 Wend ' Close the loop

As can be seen, the language is very simple to understand, but has a powerful command set, and pro-
duces true assembler code that talks to the microcontroller directly.

Click the toolbar button Compile and Program, and watch as the compiler takes over automatically.
The program will be compiled and if there are no syntax errors, the bootloader will be invoked, which
will automatically locate the Amicus18 board connected to USB and program its microcontroller:

Here’s a slightly more complex program:

' Pulse both LEDs, one decreases while the other increases brightness
'

Include "Amicus18.inc" ' Configure the compiler to use the Amicus18 board
Include "Amicus18_Hpwm10.inc" ' Load the Amicus18 10-bit PWM macros into program

Dim wDutyCycle As Word ' Holds the duty cycle of the PWM pulses
While 1 = 1 ' Create an infinite loop

'
' Increase LED1 illumination, while decreasing LED2 illumination
'

For wDutyCycle = 0 To 1023 ' Cycle the full range of 10-bits
WriteAnalog1(wDutyCycle) ' PWM on CCP1 (Bit-2 of PortC) (0 to 1023)
WriteAnalog2(1023 - wDutyCycle) ' PWM on CCP2 (Bit-1 of PortC) (1023 to 0)
DelayMS 5 ' A small delay between duty cycle changes

Next ' Close the loop
DelayMS 5

'
' Decrease LED1 illumination, while increasing LED2 illumination
'

For wDutyCycle = 1023 To 0 Step -1 ' Cycle the full 10-bit range (reversed)
WriteAnalog1(wDutyCycle) ' PWM on CCP1 (Bit-2 of PortC) (1023 to 0)
WriteAnalog2(1023 - wDutyCycle) ' PWM on CCP2 (Bit-1 of PortC) (0 to 1023)
DelayMS 5 ' A small delay between duty cycle changes

Next ' Close the loop
Wend ' Do it forever

Using Amicus18 Hardware with the Proton compiler

 13
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

The Amicus18 has its own serial terminal application that has some features specially developed for it.

This can be located by clicking on the IDE's View->Plugin menu option:

Using Amicus18 Hardware with the Proton compiler

 14
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

O
U

T

+
5V

+
3V

3
D

5
M

BR
S1

30
T C1

47
uF

/2
5V

C2
33

uF
/2

5V
C9

33
uF

/2
5V

R6 1K
Ω

C3 10
0n

F

9
 V

ol
ts

D
C

In
pu

t

D
1

Re
d

LE
D

V+

Agnd

4

3v
3o

ut

-U
SB

D
M

Vc
cI

O

R
es

et

TX
D

Vc
c

+
U

SB
D

M

R
XD

D
TR RT

S
D

SR
D

CD CT
S

Gnd
Gnd
Gnd

20 16 15 19 17

25
7

18
21

11

CB
U

S0

CB
U

S1

23 221093251

FT
2

3
2

R
L

R
5

1K
Ω

C1
1

10
0n

F

D
2

G
re

en
 L

ED

C1
0

10
0n

F
C8

10
0n

F

Vc
c

1

D
-

D
+

G
nd

2 3 4

U
SB

-A

Re
se

tt
ab

le
50

0m
A

Fu
se

F1

+
5V

R4 1K
Ω

D
3

Re
d

LE
D

U
5

+
5

V

T1
B

SH
2

0
5

+ -

8 4

1

3 2

+
5V

-+
7

65

C1
3

10
0n

F

R
1

10
KΩ

R
2

10
KΩ

U
6

a
LM

V
3

5
8

U
6

b
LM

V
3

5
8

P
SU V
ol

ta
ge

 S
en

so
r

U
SB

 t
o

Se
ri

al

Vd
d

R
E3

 /
M

CL
R
/V

pp

R
A

7
 /

O
SC

1/
CL

KI
N

R
A

6
 /

O
SC

2/
CL

KO
U

T

Vs
s20

U
1

P
IC

1
8F

2
5K

20

Vs
s

19
8

1091

18 17 16 15 14 13 12 11 28 27 26 25 24 23 22 21 7 6 5 4 3 2

VR
EF

+
/C

1I
N

+
/A

N
3/

 R
A

3

P1
D

/K
BI

0/
AN

11
/

R
B

4
PG

M
/K

BI
1/

 R
B

5

T1
O

SI
/C

CP
2*

/
R

C
1

T1
O

SO
/T

13
CK

I/
 R

C
0

D
T/

R
X/

 R
C

7

P1
A/

CC
P1

/
R

C
2

SC
K/

SC
L/

 R
C

3
SD

I/
SD

A/
 R

C
4

SD
O

/
R

C
5

CK
/T

X/
 R

C
6

PG
D

/K
BI

3/
 R

B
7

PG
C/

KB
I2

/
R

B
6

C1
2I

N
2-

/C
CP

2*
/A

N
9/

 R
B

3
IN

T2
/P

1B
/A

N
8/

 R
B

2
IN

T2
/C

12
IN

3-
/P

1C
/A

N
10

/
R

B
1

IN
T0

/F
LT

0/
AN

12
/

R
B

0

SS
/H

LV
D

IN
/C

2O
U

T/
AN

4/
 R

A
5

T0
CK

I/
C1

O
U

T/
 R

A
4

VR
EF

-/
CV

R
EF

/C
2I

N
+

/A
N

2/
 R

A
2

C1
2I

N
1-

/A
N

1/
 R

A
1

C1
2I

N
0-

/A
N

0/
 R

A
0

C7
15

pF
C6

15
pF

X1
16

M
H

z

P
IC

ki
t2

 I
C

S
P

P
O

W
ER

V
in

C5 10
0n

F

IN

G
N

D

U
1

0
TL

V
1

1
1

7
3

3
C

D
C

Y

IN
O

U
T

G
N

D

U
9

TL
V

1
1

1
7

5
0

C
D

C
Y

R
ES

ET

R
E3

/R
ES

ET
+

3V
3

+
5V

G
N

D
G

N
D

Vi
n

+
3V

3
+

5V

G
N

D

P
O

W
ER

N
C

R
B6

 /
PG

C
R

B7
 /

PG
D

Vs
s

Vd
d

Vp
p

D
TR

R
TS

D
SR

D
CD

CT
S

R
C7

R
C6

R
C5

R
C4

R
C3

R
C2

AN
4/

R
A5

R
A5

AN
3/

R
A3

AN
2/

R
A2

AN
1/

R
A1

AN
0/

R
A0

R
B7

R
B6

R
B5

R
B4

R
B3

R
B2

R
C1

R
C0

R
B1

/G
nd

R
B0

Q
3

Q
2

R
es

et
 E

n
ab

le

To
 R

C7

Fr
om

 R
C6

M
ic

ro
co

nt
ro

lle
r

R
3

1K
Ω

+
5V

+
3V

3

Q
1

G
N

D

R
A7

/C
KI

N
R

A6
/C

KO
U

T

R8 47
0Ω

R
9

10
0Ω R
7

10
0Ω

P
or

tC

P
or

tB

P
or

tA
/A

N
x

C4 10
0n

F

C1
2

10
0n

F

Amicus18 Circuit Diagram

Using Amicus18 Hardware with the Proton compiler

 15
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 PCB Layout

Using Amicus18 Hardware with the Proton compiler

 16
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Installing the Amicus18 USB Driver
The Amicus18 board uses an FTDI serial to USB device, which presents itself as a standard com port on
the PC. However, this requires USB drivers to be installed the first time the Amicus18 board is connected
to your computer. This is a simple process and a step by step guide is outlined below for a Windows XP
system. Note that Vista systems use the same principle, only windows and dialogues will change:

Plug the USB cable into a free USB port on the PC, and then into the Amicus18’s USB port.

Note. Make sure you plug the Amicus18 board into a powered USB HUB or direct to the PC’s USB port,
as un-powered HUBs can only supply 100mA of power, instead of 500mA for powered HUBs.

The first window will inform you that a new device has been found on the USB port:

Choose the option “Install from a list or specific location” and click Next:

Using Amicus18 Hardware with the Proton compiler

 17
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Make sure the options are ticked as in the previous window and click on the Browse button:

Navigate to the compiler’s install path which it defaults to “C:\Program Files\ProtonIDE” ,
"C:\Program Files (x86)\ProtonIDE" for Windows7 64-bit, and choose the “Amicus18 USB
Driver” folder. Click OK:

The windows should look like the image below:

Using Amicus18 Hardware with the Proton compiler

 18
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Click the Next button and the driver will begin to install.

You will see a windows message stating that the drivers have not been certified by Microsoft. This is
quite normal and nothing to be worried about, just click the Continue Anyway button:

The driver will continue to install:

Using Amicus18 Hardware with the Proton compiler

 19
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Once the driver is complete it will show the window below:

Click on the Finish button.

Note that the above procedure will need to be carried out twice for the driver to be fully installed, how-
ever, the second time, the files will have already been located on the hard drive, so it may not be nec-
essary to navigate to the driver folder:

The USB drivers are now installed and will not require re-doing, unless the Amicus board is inserted into
a different USB port on the computer, in which case, choose the “Install the software automati-
cally” option on the initial driver install window.

Using Amicus18 Hardware with the Proton compiler

 20
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Built in Amicus18 Peripheral Macros
The compiler has several built-in macros for configuring the most popular peripheral modules contained
with the Amicus18's microcontroller, these are the ADC (Analogue to Digital Converter), Timers, SPI (Se-
rial Peripheral Interface),

Using Amicus18 Hardware with the Proton compiler

 21
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

ADC macros Introduction
The ADC (Analogue to Digital Converter) peripheral on the Amicus18 is supported with the following
macros. The macros are a mixture of compiler types and preprocessor types, and can be found in “In-
cludes\Sources\Amicus18_ADC.inc”

A/D Converter Macros

 BusyADC Is A/D converter currently performing a conversion?
 CloseADC Disable the A/D converter.
 ConvertADC Start an A/D conversion.
 OpenADC Configure the A/D converter.
 ReadADC Read the results of an A/D conversion.
 SetChanADC Select A/D channel to be used.
 SelChanConvADC Select A/D channel to be used and start an A/D conversion.

BusyADC

Syntax
Variable = BusyADC()

Include file
Amicus18_ADC.inc

Overview
This macro indicates if the A/D peripheral is in the process of converting a value.

Return Value

 1 if the A/D peripheral is performing a conversion.
 0 if the A/D peripheral isn’t performing a conversion.

CloseADC

Syntax
CloseADC()

Include file
Amicus18_ADC.inc

Overview
This macro disables the A/D converter and A/D interrupt mechanism.

ConvertADC

Syntax
ConvertADC()

Include file
Amicus18_ADC.inc

Overview
This macro starts an A/D conversion. The BusyADC() macro or A/D interrupt may be used to detect
completion of the conversion. The result is held in registers ADRESL and ADRESH.

Using Amicus18 Hardware with the Proton compiler

 22
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

OpenADC

Syntax
OpenADC(pConfig, pConfig2, pPortConfig)

Include file
Amicus18_ADC.inc

Overview
This macro resets the A/D-related registers to the POR state and then Configures the clock, result for-
mat, voltage reference, port and channel.

Operators

 Pconfig A bitmask that is created by performing a bitwise AND operation (‘&’) with a value from
each of the categories listed below. These values are defined in the file Amicus18_ADC.inc.

A/D clock source:

ADC_FOSC_2 Fosc / 2
ADC_FOSC_4 Fosc / 4
ADC_FOSC_8 Fosc / 8
ADC_FOSC_16 Fosc / 16
ADC_FOSC_32 Fosc / 32
ADC_FOSC_64 Fosc / 64
ADC_FOSC_RC Internal RC Oscillator

A/D result justification:
ADC_RIGHT_JUST Result in Least Significant bits (Used for 10-bit ADC result)
ADC_LEFT_JUST Result in Most Significant bits (Used for 8-bit ADC result)

A/D acquisition time select:
ADC_0_TAD 0 Tad
ADC_2_TAD 2 Tad
ADC_4_TAD 4 Tad
ADC_6_TAD 6 Tad
ADC_8_TAD 8 Tad
ADC_12_TAD 12 Tad
ADC_16_TAD 16 Tad
ADC_20_TAD 20 Tad

 pConfig2 A bitmask that is created by performing a bitwise AND operation (‘&’), as shown in the

example at the end of this document, with a value from each of the categories listed below.
These values are defined in the file Amicus18_ADC.inc.

Channel:
ADC_CH0 Channel 0
ADC_CH1 Channel 1
ADC_CH2 Channel 2
ADC_CH3 Channel 3
ADC_CH4 Channel 4
ADC_CH5 Channel 5
ADC_CH6 Channel 6
ADC_CH7 Channel 7
ADC_CH8 Channel 8
ADC_CH9 Channel 9
ADC_CH10 Channel 10
ADC_CH11 Channel 11
ADC_CH12 Channel 12

Using Amicus18 Hardware with the Proton compiler

 23
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

A/D Vref+ and Vref- Configuration:

ADC_REF_VDD_VREFMINUS VREF+ = VDD & VREF- = Ext.
ADC_REF_VREFPLUS_VREFMINUS VREF+ = Ext. & VREF- = Ext.
ADC_REF_VREFPLUS_VSS VREF+ = Ext. & VREF- = VSS
ADC_REF_VDD_VSS VREF+ = VDD & VREF- = VSS

 pPortConfig The pPortConfig can have 8192 different combination, few are defined below:

ADC_0ANA All digital
ADC_1ANA analogue: AN0
ADC_2ANA analogue: AN0-AN1
ADC_3ANA analogue: AN0-AN2
ADC_4ANA analogue: AN0-AN3
ADC_5ANA analogue: AN0-AN4
ADC_6ANA analogue: AN0-AN5
ADC_7ANA analogue: AN0-AN6
ADC_8ANA analogue: AN0-AN7
ADC_9ANA analogue: AN0-AN8
ADC_10ANA analogue: AN0-AN9
ADC_11ANA analogue: AN0-AN10
ADC_12ANA analogue: AN0-AN11

Example
'
' Open the ADC:
' Fosc/32
' Right justified for 10-bit operation
' Tad value of 2
' Vref+ at Vcc : Vref- at Gnd
' Make AN0 an analogue input
OpenADC(ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_2_TAD, ADC_REF_VDD_VSS, ADC_1ANA)

ReadADC
Syntax
Variable = ReadADC(pChannel)

Include file
Amicus18_ADC.inc

Overview
This macro returns the Word (10 bit) result of the A/D conversion. Based on the configuration of the
A/D converter (e.g., using the OpenADC() macro).

Operator
pChannel is an optional ADC channel to take the reading from. This must be one of the values used for
the SetChanADC macro.

Example
 Dim wResult as Word

 wResult = ReadADC(ADC_CH0)

Using Amicus18 Hardware with the Proton compiler

 24
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

SetChanADC

Syntax
SetChanADC(pChannel)

Include file
Amicus18_ADC.inc

Overview
Selects the pin that will be used as input to the A/D Converter.

Operator
pChannel One of the following values (defined in Amicus18_ADC.inc):

ADC_CH0 Channel 0
ADC_CH1 Channel 1
ADC_CH2 Channel 2
ADC_CH3 Channel 3
ADC_CH4 Channel 4
ADC_CH5 Channel 5
ADC_CH6 Channel 6
ADC_CH7 Channel 7
ADC_CH8 Channel 8
ADC_CH9 Channel 9
ADC_CH10 Channel 10
ADC_CH11 Channel 11
ADC_CH12 Channel 12
ADC_CH13 Channel 13
ADC_CH14 Channel 14
ADC_CH15 Channel 15
ADC_CH_CTMU Channel 13
ADC_CH_VDDCORE Channel 14
ADC_CH_VBG Channel 15

SelChanConvADC

Syntax
SelChanConvADC(pChannel)

Include file
Amicus18_ADC.inc

Overview
Selects the pin that will be used as input to the A/D converter. And starts an A/D conversion. The
BusyADC() macro or A/D interrupt may be used to detect completion of the conversion.

Operator
pChannel One of the values used for the SetChanADC macro.

Example
 SelChanConvADC(ADC_CH0)

Using Amicus18 Hardware with the Proton compiler

 25
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

ADC_IntEnable() Enables the ADC interrupt i.e. sets PEIE and ADIE bits.
ADC_IntDisable() Disables the ADC interrupt i.e. clears ADIE bit.

Example use of the A/D Converter Macros:
 Include "Amicus18.inc" ' Configure the compiler to use the Amicus18 board
 Include "Amicus18_ADC.inc" ' Load the Amicus18 ADC macros into the program

 Dim Result as Word
'
' Open the ADC:
' Fosc / 32
' Right justified for 10-bit operation
' Tad value of 2
' Vref+ at Vcc : Vref- at Gnd
' Make AN0 an analogue input
'
 OpenADC(ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_2_TAD, ADC_REF_VDD_VSS, ADC_1ANA)
 DelayUs 2 ' Delay for 2 microSeconds
 Result = ReadADC(ADC_CH0) ' Read result of AN0
 CloseADC() ' Disable A/D converter

Using Amicus18 Hardware with the Proton compiler

 26
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Timer macros Introduction
The timer peripherals are supported with the following macros. The macros are a mixture of compiler
types and preprocessor types, and can be found in “Includes\Sources\Amicus18_Timers.inc”

 CloseTimerx Disable timer x.
 OpenTimerx Configure and enable timer x.
 ReadTimerx Read the value of timer x.
 WriteTimerx Write a value into timer x.
 SetTmrCCPSrc Configure the timer as a clock source to CCP module.

CloseTimer0

Syntax
CloseTimer0()

Include file
Amicus18_Timers.inc

Overview
This macro disables timer0 and it’s interrupt.

CloseTimer1

Syntax
CloseTimer1()

Include file
Amicus18_Timers.inc

Overview
This macro disables timer1 and it’s interrupt.

CloseTimer2

Syntax
CloseTimer2()

Include file
Amicus18_Timers.inc

Overview
This macro disables timer2 and it’s interrupt.

CloseTimer3

Syntax
CloseTimer3()

Include file
Amicus18_Timers.inc

Overview
This macro disables timer3 and it’s interrupt.

Using Amicus18 Hardware with the Proton compiler

 27
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

OpenTimer0

Syntax
OpenTimer0(pConfig)

Include file
Amicus18_Timers.inc

Overview
This macro configures timer0 according to the options specified and then enables it.

Operator
pConfig A bitmask that is created by performing either a bitwise AND operation (‘&’), which is user con-
figurable, with a value from each of the categories listed below. These values are defined in the file
Amicus18_Timers.inc.

Enable Timer0 Interrupt:
 TIMER_INT_ON Interrupt enabled
 TIMER_INT_OFF Interrupt disabled

Timer Width:
 T0_8BIT 8-bit mode
 T0_16BIT 16-bit mode

Clock Source:
 T0_SOURCE_EXT External clock source (I/O pin)
 T0_SOURCE_INT Internal clock source (Tosc)

External Clock Trigger (for T0_SOURCE_EXT):
 T0_EDGE_FALL External clock on falling edge
 T0_EDGE_RISE External clock on rising edge

Prescale Value:
 T0_PS_1_1 1:1 prescale
 T0_PS_1_2 1:2 prescale
 T0_PS_1_4 1:4 prescale
 T0_PS_1_8 1:8 prescale
 T0_PS_1_16 1:16 prescale
 T0_PS_1_32 1:32 prescale
 T0_PS_1_64 1:64 prescale
 T0_PS_1_128 1:128 prescale
 T0_PS_1_256 1:256 prescale

Example
 OpenTimer0(TIMER_INT_OFF & T0_8BIT & T0_SOURCE_INT & T0_PS_1_32)

Using Amicus18 Hardware with the Proton compiler

 28
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

OpenTimer1

Syntax
OpenTimer1(pConfig)

Include file
Amicus18_Timers.inc

Overview
This macro configures timer1 according to the options specified and then enables it.

Operator
pConfig A bitmask that is created by performing either a bitwise AND operation (‘&’), which is user con-
figurable, with a value from each of the categories listed below. These values are defined in the file
Amicus18_Timers.inc.

Enable Timer1 Interrupt:
 TIMER_INT_ON Interrupt enabled
 TIMER_INT_OFF Interrupt disabled

Timer Width:
 T1_8BIT_RW 8-bit mode
 T1_16BIT_RW 16-bit mode
Clock Source:
 T1_SOURCE_EXT External clock source (I/O pin)
 T1_SOURCE_INT Internal clock source (Tosc)

Prescaler:
 T1_PS_1_1 1:1 prescale
 T1_PS_1_2 1:2 prescale
 T1_PS_1_4 1:4 prescale
 T1_PS_1_8 1:8 prescale

Oscillator Use:
 T1_OSC1EN_ON Enable Timer1 oscillator
 T1_OSC1EN_OFF Disable Timer1 oscillator

Synchronise Clock Input:
 T1_SYNC_EXT_ON Sync external clock input
 T1_SYNC_EXT_OFF Don’t sync external clock input

Example
 OpenTimer1(TIMER_INT_ON & T1_8BIT_RW & T1_SOURCE_EXT & T1_PS_1_1)

Using Amicus18 Hardware with the Proton compiler

 29
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

OpenTimer2

Syntax
OpenTimer2(pConfig)

Include file
Amicus18_Timers.inc

Overview
This macro configures timer2 according to the options specified and then enables it.

Operator
pConfig A bitmask that is created by performing either a bitwise AND operation (‘&’), which is user con-
figurable, with a value from each of the categories listed below. These values are defined in the file
Amicus18_Timers.inc.

Enable Timer2 Interrupt:
 TIMER_INT_ON Interrupt enabled
 TIMER_INT_OFF Interrupt disabled

Prescale Value:
 T2_PS_1_1 1:1 prescale
 T2_PS_1_4 1:4 prescale
 T2_PS_1_16 1:16 prescale

Postscale Value:
 T2_POST_1_1 1:1 postscale
 T2_POST_1_2 1:2 postscale
 T2_POST_1_3 1:3 postscale
 T2_POST_1_4 1:4 postscale
 T2_POST_1_5 1:5 postscale
 T2_POST_1_6 1:6 postscale
 T2_POST_1_7 1:7 postscale
 T2_POST_1_8 1:8 postscale
 T2_POST_1_9 1:9 postscale
 T2_POST_1_10 1:10 postscale
 T2_POST_1_11 1:11 postscale
 T2_POST_1_12 1:12 postscale
 T2_POST_1_13 1:13 postscale
 T2_POST_1_14 1:14 postscale
 T2_POST_1_15 1:15 postscale
 T2_POST_1_16 1:16 postscale

Example
 OpenTimer2(TIMER_INT_OFF & T2_PS_1_1 & T2_POST_1_8)

Using Amicus18 Hardware with the Proton compiler

 30
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

OpenTimer3

Syntax
OpenTimer3(pConfig)

Include file
Amicus18_Timers.inc

Overview
This macro configures timer3 according to the options specified and then enables it.

Operator
pConfig A bitmask that is created by performing either a bitwise AND operation (‘&’), which is user con-
figurable, with a value from each of the categories listed below. These values are defined in the file
Amicus18_Timers.inc.

Enable Timer3 Interrupt:
 TIMER_INT_ON Interrupt enabled
 TIMER_INT_OFF Interrupt disabled

Timer Width:
 T3_8BIT_RW 8-bit mode
 T3_16BIT_RW 16-bit mode

Clock Source:
 T3_SOURCE_EXT External clock source (I/O pin)
 T3_SOURCE_INT Internal clock source (Tosc)

Prescale Value:
 T3_PS_1_1 1:1 prescale
 T3_PS_1_2 1:2 prescale
 T3_PS_1_4 1:4 prescale
 T3_PS_1_8 1:8 prescale

Synchronise Clock Input:
 T3_SYNC_EXT_ON Sync external clock input
 T3_SYNC_EXT_OFF Don’t sync external clock input

Example
 OpenTimer3(T3_8BIT_RW & T3_SOURCE_EXT & T3_PS_1_1 & T3_SYNC_EXT_OFF)

Using Amicus18 Hardware with the Proton compiler

 31
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

ReadTimer0

Syntax
Variable = ReadTimer0()

Include file
Amicus18_Timers.inc

Overview
This macro reads the value of the timer0 register pair.
Timer0: TMR0L,TMR0H

ReadTimer1

Syntax
Variable = ReadTimer1()

Include file
Amicus18_Timers.inc

Overview
This macro reads the value of the timer1 register pair.
Timer1: TMR1L,TMR1H

ReadTimer2

Syntax
 Var = ReadTimer2()

Include file
Amicus18_Timers.inc

Overview
This macro reads the value of the timer2 register.
Timer2: TMR2

ReadTimer3

Syntax
Variable = ReadTimer3()

Include file
Amicus18_Timers.inc

Overview
This macro reads the value of the timer3 register pair.
Timer3: TMR3L,TMR3H

Using Amicus18 Hardware with the Proton compiler

 32
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

WriteTimer0

Syntax
WriteTimer0(pTimer)

Include file
Amicus18_Timers.inc

Overview
This macro writes a value to the timer0 register pair:
Timer0: TMR0L,TMR0H

Operator
pTimer The value that will be loaded into timer0.

Example
 WriteTimer0(12340)

WriteTimer1

Syntax
WriteTimer1(pTimer)

Include file
Amicus18_Timers.inc

Overview
This macro writes a value to the timer1 register pair:
Timer1: TMR1L,TMR1H

Operator
pTimer The value that will be loaded into timer1.

Example
 WriteTimer1(12340)

WriteTimer2

Syntax
WriteTimer2(pTimer)

Include file
Amicus18_Timers.inc

Overview
This macro writes a value to the timer1 register:
Timer2: TMR2

Operator
pTimer The value that will be loaded into timer2.

Example
 WriteTimer2(100)

Using Amicus18 Hardware with the Proton compiler

 33
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

WriteTimer3

Syntax
WriteTimer3(pTimer)

Include file
Amicus18_Timers.inc

Overview
This macro writes a value to the timer1 register pair:
Timer3: TMR3L,TMR3H

Operator
pTimer The value that will be loaded into timer3.

Example
 WriteTimer3(10000)

SetTmrCCPSrc

Syntax
SetTmrCCPSrc(pConfig)

Include file
Amicus18_Timers.inc

Overview
This macro configures a timer as a clock source for the CCP module.

Operator
pConfig A constant value from the list below. The values are defined in the file TimerDefs.inc.

 T3_SOURCE_CCP Timer3 source for both CCP’s
 T1_CCP1_T3_CCP2 Timer1 source for CCP1 and Timer3 source for CCP2
 T1_SOURCE_CCP Timer1 source for both CCP’s

Example
 SetTmrCCPSrc(T34_SOURCE_CCP12)

Using Amicus18 Hardware with the Proton compiler

 34
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

T3_OSC1EN_ON

Syntax
T3_OSC1EN_ON()

Include file
Amicus18_Timers.inc

Overview
This Macro enables the oscillator associated with Timer1 as source of external clock input for Timer3.

T3_OSC1EN_OFF

Syntax
T3_OSC1EN_OFF()

Include file
Amicus18_Timers.inc

Overview
This Macro disables the oscillator associated with Timer1 and selects the signal on pin T13CKI as the
source of the external clock input for Timer3.

Example Use of the Timer0 Macro:

Include "Amicus18.inc" ' Configure the compiler to use the Amicus18 board
Include "Amicus18_Timers.Inc" ' Load the Amicus18 Timer Macros into the program

Dim Result As Word

' Configure Timer0
OpenTimer0(TIMER_INT_OFF & T0_SOURCE_INT & T0_PS_1_32 & T0_16BIT)

HRSOut "Press a Key\r"
While 1 = 1
 While Inkey = 16 : Wend ' Wait for a Keypress on the keypad
 Result = ReadTimer0() ' Read Timer0
 WriteTimer0(0) ' Reset Timer0
 HRSOut "Timer0 Value = ", Dec Result,13 ' Display the value of Timer0
 While InKey <> 16 : Wend ' Wait for the key to released
 DelayMS 50
Wend
CloseTimer0() ' Close timer0

Using Amicus18 Hardware with the Proton compiler

 35
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

SPI macros Introduction
The following macros are provided for the SPI™ peripheral:

 CloseSPI Disable the SSP module used for SPI™ communications.
 DataReadySPI Determine if a new value is available from the SPI buffer.
 OpenSPI Initialise the SSP module used for SPI communications.
 ReadSPI Read a byte from the SPI bus.
 WriteSPI Write a byte to the SPI bus.

CloseSPI

Syntax
CloseSPI()

Include file
Amicus18_SPI.inc

Overview
This Macro disables the SSP module. Pin I/O returns under the control of the appropriate TRIS and LAT
registers.

DataReadySPI

Syntax
Variable = DataReadySPI()

Include file
Amicus18_SPI.inc

Overview
This Macro determines if there is a byte to be read from the SSPBUF register.

Return Values
0 if there is no data in the SSPBUF register
1 if there is data in the SSPBUF register

Example
 While DataReadySPI() = 0 : Wend

Using Amicus18 Hardware with the Proton compiler

 36
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

OpenSPI

Syntax
OpenSPI(pSyncMode, pBusMode, pSmpPhase)

Include file
Amicus18_SPI.inc

Overview
This Macro sets up the SSP module for use with a SPIx bus device.

Operators
pSyncMode One of the following values, defined in Amicsu18_SPI.inc:

SPI_FOSC_4 SPI Master mode, clock = Fosc / 4, resulting in a 1MHz interface.
SPI_FOSC_16 SPI Master mode, clock = Fosc / 16, resulting in a 4MHz interface.
SPI_FOSC_64 SPI Master mode, clock = Fosc / 64, resulting in a 16MHz interface.
SPI_FOSC_TMR2 SPI Master mode, clock = TMR2 output / 2
SLV_SSON SPI Slave mode, /SS pin control enabled
SLV_SSOFF SPI Slave mode, /SS pin control disabled

pBusMode One of the following values, defined in SPIdefs.inc:

MODE_00 Setting for SPI bus Mode 0,0
MODE_01 Setting for SPI bus Mode 0,1
MODE_10 Setting for SPI bus Mode 1,0
MODE_11 Setting for SPI bus Mode 1,1

pSmpPhase One of the following values, defined in SPIdefs.inc:

SMPEND Input data sample at end of data out
SMPMID Input data sample at middle of data out

Example
 OpenSPI(SPI_FOSC_16, MODE_00, SMPEND)

Using Amicus18 Hardware with the Proton compiler

 37
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

ReadSPI

Syntax
Variable = ReadSPI()

Include file
Amicus18_SPI.inc

Overview
This macro initiates a SPI bus cycle for the acquisition of a byte of data.

WriteSPI

Syntax
WriteSPI(pDataOut)

Include file
Amicus18_SPI.inc

Overview
This Macro writes a single data byte out.

Operator
pDataOut Value to be written to the SPI bus.

Example of SPI macros
 Include "Amicus18.inc" ' Configure the compiler to use the Amicus18 board
 Include "Amicus18_SPI.inc" ' Load the Amicus18 SPI macros into the program

 Dim bTemp as Byte

 OpenSPI(SPI_FOSC_16 , MODE_01 , SMPMID)
 WriteSPI($55)
 bTemp = ReadSPI()
 DataReadySPI()
 CloseSPI()

Using Amicus18 Hardware with the Proton compiler

 38
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Hardware PWM macro Introduction
The PWM peripheral is supported with the following macros:

 CloseAnalog1 Disable the CCP1 peripheral
 CloseAnalog2 Disable the CCP2 peripheral
 OpenAnalog1 Enable and configure the CCP1 peripheral
 OpenAnalog2 Enable and configure the CCP2 peripheral
 WriteAnalog1 Output an 8-bit or 10-bit Pulse Width Modulated waveform from CCP1
 WriteAnalog2 Output an 8-bit or 10-bit Pulse Width Modulated waveform from CCP2

CloseAnalog1

Syntax
CloseAnalog1()

Include file
Amicus18_hpwm8.inc for 8-bit PWM
or
Amicus18_hpwm10.inc for 10-bit PWM

Overview
Disable the CCP1 peripheral and set its appropriate pin as an input.

CloseAnalog2

Syntax
CloseAnalog2()

Include file
Amicus18_hpwm8.inc for 8-bit PWM
or
Amicus18_hpwm10.inc for 10-bit PWM

Overview
Disable the CCP2 peripheral and set its appropriate pin as an input.

OpenAnalog1

Syntax
OpenAnalog1()

Include file
Amicus18_hpwm8.inc for 8-bit PWM
or
Amicus18_hpwm10.inc for 10-bit PWM

Overview
Enable and configure the CCP1 peripheral and set its appropriate pin as an output.

Using Amicus18 Hardware with the Proton compiler

 39
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

OpenAnalog2

Syntax
OpenAnalog2()

Include file
Amicus18_hpwm8.inc for 8-bit PWM
or
Amicus18_hpwm10.inc for 10-bit PWM

Overview
Enable and configure the CCP2 peripheral and set its appropriate pin as an output.

WriteAnalog1

Syntax
WriteAnalog1(pValue)

Include file
Amicus18_hpwm8.inc for 8-bit PWM
or
Amicus18_hpwm10.inc for 10-bit PWM

Note. The CCP1 peripheral will be operating at the highest frequency possible for 8-bit (0 to 255) or 10-
bit (0 to 1023). With the default 64MHz oscillator this will be 62.5KHz for 10-bit and 250KHz for 8-bit.

Only one of the above include files may be used within a program an any one time.

Overview
Output an 8-bit or 10-bit PWM waveform from the CCP1 peripheral’s pin (RC2).

Operator
pValue a constant, variable, or expression that will alter the duty cycle of the PWM Waveform.

Using Amicus18 Hardware with the Proton compiler

 40
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Example
' An LED attached to RC2 will increase illumination, then dim, repeatedly
' The voltage produced by the PWM signal is displayed on the serial terminal
'
Include "Amicus18.inc" ' Configure the compiler to use the Amicus18 board
Include "Amicus18_Hpwm10.inc" ' Load the Amicus18 10-bit PWM macros into program
Declare Float_Display_Type = fast ' Faster, more accurate float display
Dim fVolts As Float ' Holds the Voltage calculation
Dim wTemp As Word ' Holds the duty cycle value for the PWM
'
' Quantasise the Voltage. i.e. Volts per-bit, based upon 3.3 Volts at 10-bits
'
Symbol Quanta = 3.3 / 1024
OpenAnalog1() ' Enable and configure the CCP1 peripheral
While 1 = 1 ' Create an infinite loop
 '
 ' Increase LED illumation
 ' Cycle the full range of 10-bits. i.e. 0 to 1023
 For wTemp = 0 To 1023
 WriteAnalog1(wTemp) ' PWM on CCP1 (Bit-2 of PortC)
 fVolts = wTemp * Quanta ' Calculate the Voltage
 HRSOut Dec wTemp, " = ", Dec fVolts, " Volts", 13 ' Display Voltage
 Next
 '
 ' Decrease LED illumination
 ' Cycle the full range of 10-bits (reversed). i.e. 1023 to 0
 For wTemp = 1023 To 0 Step -1
 WriteAnalog1 (wTemp) ' PWM on CCP1 (Bit-2 of PortC)
 fVolts = wTemp * Quanta ' Calculate the Voltage
 HRSOut Dec wTemp, " = ", Dec fVolts, " Volts", 13 ' Display Voltage
 Next
Wend ' Do it forever

A suitable layout for the above program built on the Companion Shield using a solderless breadboard is
shown below:

Using Amicus18 Hardware with the Proton compiler

 41
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

WriteAnalog2

Syntax
WriteAnalog2(pValue)

Include file
Amicus18_hpwm8.inc for 8-bit PWM
or
Amicus18_hpwm10.inc for 10-bit PWM

Note. The CCPx peripherals will be operating at the highest frequency possible for 8-bit (0 to 255) or
10-bit (0 to 1023). With the default 64MHz oscillator this will be 62.5KHz for 10-bit and 250KHz for 8-bit.

Only one of the above include files may be used within a program an any one time.

Overview
Output an 8-bit or 10-bit PWM waveform from the CCP2 peripheral’s pin (RC1).

Operator
pValue a constant, variable, or expression that will alter the duty cycle of the PWM Waveform.

Example
' An LED attached to RC1 will increase illumination, then dim, repeatedly
' The voltage produced by the PWM signal is displayed on the serial terminal
'
Include "Amicus18.inc" ' Configure the compiler to use the Amicus18 board
Include "Amicus18_Hpwm10.inc" ' Load the Amicus18 10-bit PWM macros into the program
Declare Float_Display_Type = fast ' Faster, more accurate float display

Dim fVolts As Float ' Holds the Voltage calculation
Dim wTemp As Word ' Holds the duty cycle value for the PWM
'
' Quantasise the Voltage. i.e. Volts per-bit, based upon 3.3 Volts at 10-bits
'
Symbol Quanta = 3.3 / 1023
OpenAnalog2() ' Enable and configure the CCP2 peripheral
While 1 = 1 ' Create an infinite loop
 '
 ' Increase LED illumation
 ' Cycle the full range of 10-bits. i.e. 0 to 1023
 For wTemp = 0 To 1023
 WriteAnalog2(wTemp) ' PWM on CCP2 (Bit-1 of PortC)
 fVolts = wTemp * Quanta ' Calculate the Voltage
 HRSOut Dec wTemp, " = ", Dec fVolts, " Volts", 13 ' Display Voltage
 Next
 '
 ' Decrease LED illumination
 ' Cycle the full range of 10-bits (reversed). i.e. 1023 to 0
 For wTemp = 1023 To 0 Step -1
 WriteAnalog2 (wTemp) ' PWM on CCP1 (Bit-1 of PortC)
 fVolts = wTemp * Quanta ' Calculate the Voltage
 HRSOut Dec wTemp, " = ", Dec fVolts, " Volts", 13 ' Display Voltage
 Next
Wend ' Do it forever

Using Amicus18 Hardware with the Proton compiler

 42
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

A suitable layout for the previous program built on the Companion Shield using a solderless breadboard
is shown below:

	
	Amicus18 Hardware Overview
	The 8-pin Power header socket:
	The 4-pin Power header socket:
	The PortA (Anx) socket:
	The PortC socket:
	The PortB socket:
	Device Programming Header

	Jumper and Pad Settings
	Pad Q1
	Pad Q2
	Jumper Q3

	Serial Handshake Connections
	Using the Proton Compiler with the Amicus18 board
	Writing your first Amicus18 program using the Proton compiler
	Amicus18 Circuit Diagram
	Amicus18 PCB Layout

	Installing the Amicus18 USB Driver
	Built in Amicus18 Peripheral Macros
	ADC macros Introduction
	CloseADC
	ConvertADC
	OpenADC
	ReadADC
	SetChanADC
	SelChanConvADC
	BusyADC

	Timer macros Introduction
	CloseTimer0
	CloseTimer1
	CloseTimer2
	CloseTimer3
	OpenTimer0
	OpenTimer1
	OpenTimer2
	OpenTimer3
	ReadTimer0
	ReadTimer1
	ReadTimer2
	ReadTimer3
	WriteTimer0
	WriteTimer1
	WriteTimer2
	WriteTimer3
	T3_OSC1EN_OFF
	T3_OSC1EN_ON
	SetTmrCCPSrc

	SPI macros Introduction
	WriteSPI
	ReadSPI
	OpenSPI
	DataReadySPI
	CloseSPI

	Hardware PWM macro Introduction
	WriteAnalog2
	WriteAnalog1
	OpenAnalog2
	OpenAnalog1
	CloseAnalog2
	CloseAnalog1

