Using Amicusl18 Hardware
With Proton

Using Amicus18 Hardware with the Proton compiler

AMICUSL8 HAardwWare OVEIVIEWiuiiiiiiiiiie ettt ettt et e et e e e e e e aaneaanas 3
The 8-pin POWET hEAAEr SOCKET: e ittt ettt e e e e e e e e eaea e eeans 4
The 4-pin POWETr NEAUET SOCKET: ... it it er e eeenns 4
THE POITA (ANX) SOCKET:ttt ettt ettt et et e et et et et e et e ea e ea e e e e e e e e e e e e e e eanaeanns 5
B I LT L0 L CORE Y0 Lot =] S OO 6
LI L= T 1ol = PP 7
Device Programming HEAUETiuiiiiiiie et e e e e e e e e et e et e et e eaeeaeea e antaennaes 8
Jumper and Pad SetEINGS 9
o 1o 1 RN 9
PAA Q2. e ettt e 9
U] 0] 0 1=T S @ X S PP PRPTPR 9
Serial Handshake CONNECTIONSiuiiii et ee e 10
Using the Proton Compiler with the Amicusl18 board..............ccooiiiiii. 11
Writing your first Amicus18 program using the Proton compiler.......................... 12
AMICUSLE CIrCUIT DIAQIaM ..ueieiie e et e e e e e e e eneneens 14
AMICUSLE PCB LAYOULitiiiteitieit et e e e e e e e e e e e e e et e et e et e et e et e en e en e an e e e e et e esneeaneenrneerneennns 15
Installing the AMICUSL8 USB DIIVELouiuiiiiiiie e e 16
Built in Amicusl18 Peripheral MaCrOSocuiuiiiiiii e e 20
ADC mMacCros INTroAUCTIONuii e e e e 21
BUSY A DD C ..ttt e e e ea e ea e e e a e ea e e e e e a e e e e e e e e e e e e e e e anns 21
L0 [0 1T =Y Y I L PPN 21
L0001 V7= 7Y I L PP 21
OPENADC ...ttt ettt ettt ettt ettt ettt e et e et et et e et et e eeeaae e, 22
== o /Y L O P 23
1] (O] T 1 Y I L PP 24
ST=] (01 P [0 Y7 1O PR 24
NI T O 1 (= = o] - 25
NI O 1 10157 o] 25
Timer MacroS INTroUCTION ... e 26
L0 (01T T 1T PRSP 26
L0 (o TSN 12 T o PPN 26
103 0 TST =) T3 T PP 26
(0 (01T T 0 1T 2 J PRSP 26
(0] 0= o1 T 011 £ O PP PPT 27
(@ 0T T T 21 28
(@] 0= 1 11141 72 29
(O] 0 1=T 0l T 41T o S P UPTUPTPR 30
== Lo LN o =T (O PP 31
== Lo N 0 =T o R P 31
[RY=T To I T 1= 31
L= T= o T 1= TP 31
L L C= I =T O PP 32
L L C= I =T o P 32
L AT (= I T2 =T 2 32
L = I =T o T P 33
BT A N0 1] O 1] o PP 33
T3 OSCLEN _ON. ..ottt et et et e et e et e et e et et e et e et e et e e e e e e eeee s 34
IR T 5 O 1 = N O PR 34
1

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

SPI MAacCroS INtrOUCTION. ...t e aeenes 35
(01 To ST = PP 35
D 1= L= 10)2 | 35
(O] 1] 0 N1 o PP UPRPRP 36
[LST= 1o 1] = PSP 37
L 0= = PP 37
Hardware PWM mMacro INtrodUCTION ... aeaas 38
(0017 = N g =1 (o o i PSPPI PP 38
(03 015 Y = [o 2P 38
(@] o= 21 o= 1o o i P 38
(0] 01T 0 Y o= 1[0 o 1PN 39
=T =1 oo 1 PP P PP PPRPN 39
L= AN T 1o S 41
2

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

Amicus18 Hardware Overview
The Amicus18 hardware is based upon the world famous Arduino board, however, the Amicus18 board
uses a Microchip PIC® microcontroller instead of an Atmel AVR type.

Peripheral and Digital 10 Power LED

Reset Button
Peripheral and Digital I/0

ICSP Interface (PICkit compatable)
Arduino Compatability Jumper
Powerful 64MHz Microcontroller

Power pins
-

-

USB Interf: d P 3
n ‘ace and Power Analogue and Digital I/0

& Power and I/0 pins

Over Current Protection @,6‘

Power Management Voltage Polarity Protection

5 Volts and 3.3 Volts Regulated Supplies
9 Volts DC (Centre Positive)

It has exactly the same dimensions as the Arduino, and all Arduino shields will physically fit on the
Amicus18 board.

The microcontroller used on the Amicusl8 is the Microchip PIC18F25K20, or the PIC18F25K22 which
each have 32768 bytes of flash memory, 1536 bytes of RAM, and operate at 64MHz, which equates to
16 MIPS (Million Instructions per Second).

There are up to eleven 10-bit ADC (Analogue to Digital Converter) inputs, and two 10-bit PWM (Pulse
Width Modulation) outputs, as well as comparators, USARTs (Universal Synchronous Asynchronous Re-
ceiver Transmitter), SPI (Serial Peripheral Interface), 1°C (Inter-Integrated Circuit), and up to six timers,
each with various internal operations attached to them.

Each of the microcontroller’'s 1/0 lines are brought out for use with external devices such as LEDs, Ser-
vos, Potentiometers, LCDs etc...

Communication with the Amicus18 board is through a USB interface, which presents itself as a standard
serial port on the PC. The microcontroller can be programmed directly through this port so there is no
need for a dedicated device programmer, however, if the need arises, there is an ICSP (In Circuit Serial
Programming) interface suitable for all programmers, but tailored for the Microchip PICkit2" program-
mer.

Power can be supplied to the board either via the USB port, or an external 9 Volt DC source. When
powered from the USB port, a maximum of 500mA (milliAmp) may be drawn, and the USB port is pro-
tected by a resetable fuse. When powered via a 9V source, a maximum of 800mA may be drawn.

The PIC18F25K20 microcontroller is a 3.3 volts type, while the PIC18F25K22 will operate with both 3.3
volts and 5 volts.

The Amicus18 board is extremely easy to use, in fact, no previous microcontroller experience is required
in order to get your first project up and running, as you'll find out later.

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

Amicus18 Sockets
As mentioned earlier, each of the microcontroller’'s 1/0 lines is brought to the outside world via 2.54mm
(0.1”) SIL sockets on the Amicus18 board. The operation of each block of pins is outlined below:

The 8-pin Power header socket:

RAG6 which is bit-6 of PortA. This pin defaults to the Clock Output Pin where the crystal is con-
nected. It may be used as an 1/0 pin only when an internal oscillator setting is chosen.

RA7 which is bit-7 of PortA. This pin defaults to the Clock Input Pin where the crystal is con-
nected. It may be used as an 1/0 pin only when an internal oscillator setting is chosen.

Microcontroller’s reset line, which also acts as bit-3 of PortE (RE3), and is also the voltage in-
put for a device programmer such as the PICkit2" or the PICkit3".

#® 3.3 Volts output. 500mA when powered via USB, or 800mA when powered by an external 9
Volts source.

5 Volts output. 500mA when powered via USB, or 800mA when powered by an external 9 Volts
source.

® Ground (O Volts).

® DC 9 Volts input. This may be used to power
the board.

The 4-pin Power header socket:
® Ground (0 Volts)
#® 3.3 Volts output. 500mA when powered via
USB, or 800mA when powered by an external
9 Volts source.
#® 5 Volts output. 500mA when powered via

USB, or 800mA when powered by an external
9 Volts source.

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

The PortA (Anx) socket:

® RAO which is bit-0 of digital PortA. This pin can also be configured as Input O (ANO) of the 10-bit
ADC (Analogue to Digital Converter). It can also be configured as the negative (-) input pin to ei-
ther Comparator 1 or 2.

® RA1 which is bit-1 of digital PortA. This pin can also be configured as Input 1 (AN1) of the 10-bit
ADC (Analogue to Digital Converter). It can also be configured as the negative (-) input pin to ei-
ther Comparator 1 or 2.

® RA2 which is bit-2 of digital PortA. This pin can also be configured as Input 2 (AN2) of the 10-bit
ADC (Analogue to Digital Converter). It can also be configured as the positive (+) input pin to
Comparator 2, or the output for the internal voltage reference.

RA3 which is bit-3 of digital PortA. This pin can also be configured as Input 3 (AN3) of the 10-bit
ADC (Analogue to Digital Converter). It can also be configured as the positive (+) input pin to
Comparator 1.

® RA4 which is bit-4 of digital PortA. This pin can also be configured as the input trigger for Timer
0. It can also be configured as the output pin of Comparator 1.

#® RA5 which is bit-5 of digital PortA. This pin can also be configured as Input 4 (AN4) of the 10-bit
ADC (Analogue to Digital Converter). It can also be configured as the output pin of Comparator 2.

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

The PortC socket:

#® RCO which is bit-0 of digital PortC. This pin can also be configured as the input for Timer 1.

® RC1 which is bit-1 of digital PortC. This pin can also be configured as the input for Timer 1, or
a PWM (Pulse Width Modulation) output.

® RC2 which is bit-2 of digital PortC. This pin can also act as a PWM (Pulse Width Modulation)
output.

® RC3 which is bit-3 of digital PortC. This pin can also be configured as the clock source for 1°C
(Inter-Integrated Circuit) or SP1 (Serial Peripheral Interface) communications.

® RC4 which is bit-4 of digital PortC. This pin can also be configured as the data source for 1°C
(Inter-Integrated Circuit) or the data output for SPI (Serial Peripheral Interface) communica-
tions.

® RC5 which is bit-5 of digital PortC. This pin can also be configured as the data input for SPI
(Serial Peripheral Interface) communications.

® RC6 which is bit-6 of digital PortC. This pin can also be configured as the USART (Universal
Synchronous Asynchronous Receiver Transmitter) output for serial communications.

RC7 which is bit-7 of digital PortC. This pin can also be configured as the USART (Universal
Synchronous Asynchronous Receiver Transmitter) input for serial communications.

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

The PortB socket:

® RBO which is bit-0 of digital PortB. This pin can also be configured as input 12 (AN12) of the 10-
bit ADC, or an external interrupt trigger.

® RB1 which is bit-1 of digital PortB. This pin can also be configured as input 10 (AN10) of the 10-
bit ADC, or an external interrupt trigger.

& RB2 which is bit-2 of digital PortB. This pin can also be configured as input 8 (AN8) of the 10-bit
ADC, or an external interrupt trigger.

® RB3 which is bit-3 of digital PortB. This pin can also be configured as input 9 (AN9) of thel0-bit
ADC, or an alternative PWM (Pulse Width Modulation) output.

® RB4 which is bit-4 of digital PortB. This pin can also be configured as input 11 (AN11) of the 10-
bit ADC, or an external interrupt trigger.

® RB5 which is bit-5 of digital PortB. This pin can also be configured as an external interrupt trigger.

® RB6 which is bit-6 of digital PortB. This pin can also be configured as an external interrupt trigger,
and is also the clock line for a device programmer such as the PICkit2"™ or the PICkit3".

® RB7 which is bit-7 of digital PortB. This pin can also be configured as an external interrupt trigger,
and is also the data line for a device programmer such as the PICkit2" or the PICkit3".

Each pin of the microcontroller is capable of sourcing or sinking 25mA, with a maximum of 100mA per
port.

The microcontroller’s architecture is very versatile, allowing several internal peripherals to share the
same pin, thus maximising the flexibility, but keeping the size of the device small. Each internal periph-
eral can be enabled, disabled and configured very easily from within the free BASIC compiler environ-
ment.

Although the microcontroller has a 3.3 Volts operating voltage, all 1/0 pins are 5 Volt tolerant.

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

Device Programming Header
The Amicus18 board has the ability to be programmed in circuit. This bypasses the built in bootloader,

and indeed, will overwrite it.

The header has been designed for a PICkit2"™ or PICkit3" programmer to fit straight onto it, however,
any other device programmer may be used with a suitable adapter. It must be remembered that the
microcontroller is a 3.3 Volt PIC18F25K20 type, therefore if a programmer other than a PICkit2" or a
PICKit3" is used, ensure that it supports this device, as a 5 Volt only programmer will damage the mi-
crocontroller.

The programming header’s location is shown below:

RB6 (PGC)

RB7 (PGD)

Gnd

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

Jumper and Pad Settings
The Amicus18 board has a jumper and two pads that can alter it's characteristics.

Pad Q1
This allows a 5 Volts type microcontroller to be used with the board instead of the supplied 3.3 Volt
type.

Pad Q2
This allows disconnection of the internal Reset for the microcontroller from the USB bootloader.

Jumper Q3

This allows maximum compatibility with existing Arduino shields. The PIC18F25K20 and PIC25K22 mi-
crocontrollers have more 1/0 lines than that of an Atmel, therefore, two of the pins on the PortB socket
operate differently on the Amicus18. RB1 is a Ground pin on the Arduino board, but this would waste a
valuable 1/0 pin if it were simply grounded. Instead, Jumper Q3 can be configured for RB1 or Ground.

by

By - r Tt

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

Serial Handshake Connections
The USB to serial device also emulates the handshaking lines of a conventional serial port. These are
shown below:

—_—

The Amicusl8 board uses the DTR line in-order to reset the microcontroller, however, the other lines
are available to use. The direction of each line is shown below:

DTR This is an output from the PC to the Amicus18 board.
RTS Thisis an output from the PC to the Amicus18 board.
DSR This is an input to the PC from the Amicus18 board.
DCD This is an input to the PC from the Amicus18 board.
CTS Thisis an input to the PC from the Amicus18 board.

10

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

Using the Proton Compiler with the Amicus18 board

Configuring the Proton compiler to work with the Amicus18 board is simplicity itself, as all the applica-
tions required are installed along with the compiler.

The Amicusl8 board's microcontroller has a built-in bootloader, so first we'll choose the correct boot-
loader from within the Proton IDE. On the toolbar, Click the small arrow on the Program button:

| +» Program I:” = Read \3‘ Werify ﬂ Eraze u{

1 |E| Install Mew Programmer... EF
MicroCode Loader

EF'D Labcenter Electronics PROTEUS V5R...

Choose the option "Install New Programmer" and a window will open:

Install Mew Programmer
Available Programmers
ﬁ MicroCode Loader -
Amicusls Loader |:|
microEngineearing Labs USE, Serial, or EFIC
microEngineering Labs EFIC -

(@ Install selected programmer

(") Create a custom programmer entry

< Back Mext >] ’ Cancel

Choose the Amicus18 Loader option and click Next.

The bootloader's executable will then be searched for:

Folder Search

e

~ J{ Searching for programmer, please wait...
=y o\\D40g

Cancel

Once it has been found the window will disappear and the job is done. In order to verify that the

Amicusl18 bootloader has been allocated correctly, click the downward arrow on the program button
again:

| i = Program Hl Read Verify Erase

| % Install Mew Programmer...

MicroCode Loader
| Amicusld Loader b

H:lg Labcenter Electronics PROTEUS WSR...

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0

06-10-2009

Using Amicus18 Hardware with the Proton compiler
Writing your first Amicus18 program using the Proton compiler
Here’s a very small sample of the Proton BASIC language:

" Flash an LED connected to RBO
Include "Amicusl8.inc” = Configure the compiler to use the Amicusl8 board

While 1 =1 " Create an infinite loop
High PORTB.O " Bring the LED pin high (illuminate the LED)
DelayMs 500 " Wait 500ms (half a second)
Low PORTB.O " Pull the LED pin low (Extinguish the LED)
DelayMs 500 " Wait 500ms (half a second)

Wend " Close the loop

As can be seen, the language is very simple to understand, but has a powerful command set, and pro-
duces true assembler code that talks to the microcontroller directly.

Click the toolbar button Compile and Program, and watch as the compiler takes over automatically.
The program will be compiled and if there are no syntax errors, the bootloader will be invoked, which
will automatically locate the Amicus18 board connected to USB and program its microcontroller:

P =

colour_organ.hex

Writing Program to Amicus 18

6%

| Close |

Here’s a slightly more complex program:
" Pulse both LEDs, one decreases while the other increases brightness

Include "Amicusl18.inc" " Configure the compiler to use the Amicusl8 board
Include "Amicusl8 HpwmlO.inc"” * Load the Amicusl8 10-bit PWM macros into program

Dim wDutyCycle As Word " Holds the duty cycle of the PWM pulses
While 1 =1 " Create an infinite loop

" Increase LED1 illumination, while decreasing LED2 illumination

For wDutyCycle = 0 To 1023 " Cycle the full range of 10-bits
WriteAnalogl(wDutyCycle) " PWM on CCP1 (Bit-2 of PortC) (0 to 1023)
WriteAnalog2(1023 - wbutyCycle) " PWM on CCP2 (Bit-1 of PortC) (1023 to 0)
DelayMsS 5 " A small delay between duty cycle changes

Next " Close the loop

DelayMS 5

" Decrease LED1 illumination, while increasing LED2 illumination

For wDutyCycle = 1023 To O Step -1 ~ Cycle the full 10-bit range (reversed)

WriteAnalogl(wDutyCycle) * PWM on CCP1 (Bit-2 of PortC) (1023 to 0)

WriteAnalog2(1023 - wbutyCycle) * PWM on CCP2 (Bit-1 of PortC) (0 to 1023)

DelayMS 5 " A small delay between duty cycle changes
Next " Close the loop
Wend " Do it forever

12

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

The Amicus18 has its own serial terminal application that has some features specially developed for it.

This can be located by clicking on the IDE's View->Plugin menu option:

File Edit | View| Help

[Mew | Besults.., Paste |) Undo |~ Redo | éé Print | + Compile . Compile and Program
B Code Explorer.. M =] Test |= Amicusi8 ADC =) 3 Buttons ! Blink =l Amicusis =] FFT Interr
Untitled Loader.,

7” Loader Options...

Compile and Program Options...
iﬁ" Editor Options...

Toolbars 3
ASCI Table.., '
Amicus_Serial Terminal
IDE Assembler View... F2
IDE HEX View...
IDE Serial Communicataor... F4

Labcenter Electronics PROTEUS VSM.,, F12

Mecanique 3

Plugin Editaor...

Programs 3

Uninstall 3

13

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

19]|0JJUOJ0IIIIN [elias 01 dsn

T T

XNV/vHod 6r| s a31 pay 12| 812 |z
QOO >
OvH/0NY [O 0V /ONV/-ONIZTO SSA SSA 3dst 2dgt Leo2 duoot | duoot | Huoot
TVA/INY (O { Tvd /INV/-INIZTO " > 1sngd T T %A ' 7
zvareny (O —| 2V 7ZNV/+NIZO/H3ND /=3 - - - ==
EV/ENY |O | EVY /ENV/+NITO/+43A 1NOX12/22S0/ 9VY | 0SNgo mnogng =
svd (O 5 vd /1LNOTI/INO0L I_l 31 usain
Sva/vNY (O —| SV /¥NV/LNOZI/NIAATH/SS == AS+ 20 519 [OF——sl0 1950y
T 1 ZHINOT asa O 5192d
094 [O— €0 r= w — 09¥ /ZINV/0LT4/0LNI : ¥sd (O —14sd Hpus
puo/18Yd |(O—4 e o ¥ —— T9Y /OTNV/OTJ/-ENIZTO/ZINI NIMTO/TOSO/ LV | _ » sy O —S1Yd wagsn+|z H+a
zad O | 28 /8NV/aTd/ZINI oLy o|qeUs 1050 ¥1d O —41a Wagsn- | - -a
€9y |O —1 €94 /6NV/2d00/-ZNIZTO ilyvy o | —{oon
vad (O —| 78 /TINV/018%/dTd MYV e ©00T Saxy S o
say |O —1 S84 /I /WOd 994 Wol4 L@H axt OI19A|; 14 v-gsn
9gd O = 94y /2184/29d qmmﬁ Tuzezld asn4 yWoos
9jgenssay
L9 |O — 284 /6194/09d Hu\:oa JoN oL on
10
8Hod w9 — 00¥ /1¥0ETL/0SOTL 7
104 (O —| TOY /x2d00/ISOTL
204 O — 20d /1d00/v1d
€04 (O — €04 /108308 ddA/¥10W/ €38 |5 0 BSEANT BSEANT
0¥ |O <] 7O /vas/ias L asn eon 001
S04 O 5] §od /0ds o S 4353 A Y01
904 |0 — 904 /X130 o > 2
Lo¥ (O o] £0d /x¥/La PPA SOcHsg
1L
D)10d oz €
02XS¢248T2ld
(&[0
n 4UQ0T am@
e % & losuss abejjop
ano ano _ = @
NS+ NS+ EAE+ NG+ 7
EAE+ SAE+ . L .
= 13534/63 ano
@© NINO/LvY a3l pay
W 1NOXD/9vY ¥3MOd 4u00T NGZ/ANEE Ta ™ AGZ/HnEE 4u00T AGg/HNLY
m W_m>>on_ 1) 62 20 €2 10
) 3 oAt 7 7
- ad H ano o rﬂ_ ano H rﬂ L—— ndu
o — A oa
w POA @ NI . Aw 100 NI — O N,
bt SSA LOETSHEAN
IS ene+ ADAOEE as+ ADAO0S sa
O d5d/ L8 LTTTAL LTTTIATL v
@ 994/ 988 otN 6N uin
n
=) dSOl 20ld
9 Nsd
g

14
06-10-2009

Version 1.0

Crownhill AssociatesLimited 2009 - All Rights Reserved

Using Amicus18 Hardware with the Proton compiler

Amicusl18 PCB Layout

W m
c b
=] GND
S []
O ™ :I o < 3v3
4 O g (@]
() 0 = e + 1 0 5y
g 7°\° b
n —
é + O C Reset En GND
(=] » O s
a + =" 1pTR" @) L g 2
UL —o o 0D
5 RTS ® 2 >
c w
w o < 2 b N
d DCD -
AN12/INT@/RBO
¥ o CTS
- a AN19-INT1/RB1
RA6/CKOUT I 8 g n
AN8/INT2/RB2
RA7/CKIN
ANS/RB3
RE3/Reset
AN11-/RB4
3y3 x — A D
=X X 3 PGM/RBS
SV () -
o > 0 PGC/RB6
() = -
>z A o PGD/RB?7
o p ~J n
a o) —_
Vin ﬁ ®™ (0 T10SCO/RCO
ANx % T10SCI~/CCP2/RC1
RAB/ANG — CCP1/RC2
RA1/AN1 O o SCK/SCL/RC3
RA2/AN2 I—lo sDI1/spA-/RC4
P 4
RA3/AN3 « \ SDO/RCS
c o o
RA4-TOCKI Y Bl TX/RC6
RAS/AN4 Vss 3 & — RX/RC?
< @)
= 000D 8

15

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

Installing the Amicus18 USB Driver

The Amicus18 board uses an FTDI serial to USB device, which presents itself as a standard com port on
the PC. However, this requires USB drivers to be installed the first time the Amicus18 board is connected
to your computer. This is a simple process and a step by step guide is outlined below for a Windows XP
system. Note that Vista systems use the same principle, only windows and dialogues will change:

Plug the USB cable into a free USB port on the PC, and then into the Amicus18’s USB port.

Note. Make sure you plug the Amicus18 board into a powered USB HUB or direct to the PC’'s USB port,
as un-powered HUBs can only supply 100mA of power, instead of 500mA for powered HUBs.

The first window will inform you that a new device has been found on the USB port:

Found New Hardware Wizard

Welcome to the Found New
Hardware Wizard

This wizard helps you install software for:

Amicus18 Seral Port

i ')_ If your hardware came with an installation CD
g’ orfloppy disk, insert it now.

What do you want the wizard to do?

O Install the software automatically (Recommended)
(®) Install from a list or specific location {Advanced)

Click Next to continue.

[Net> | [Cancel |

Choose the option “Install from a list or specific location ”and click Next:

Found New Hardware Wizard

Please choose your search and installation options. \\

N,

(%) Search for the best driver in these locations.

Use the check boxes below to limit or expand the default search, which includes local
paths and removable media. The best driver found will be installed.

[] Search removable media floppy. CD-ROM..)
Include this location in the search:

C: v | Browse

(O Dont search. | will choose the driverto install.

Choose this option to select the device driver from a list. Windows does not guarantee that
the driver you choose will be the best match for your hardware.

[<Back || Nedt>] [Cancel |

16

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

Make sure the options are ticked as in the previous window and click on the Browse button:

Found New Hardware Wizard
(3) Search for the best driver in these locations.
Use the check baxes below to limi or expand the default search, which includes local
paths and removable media. The best driver found will be installed.
[] Search removable media floppy, CD-ROM..)
[#] Include this location in the search:
Ie- 1
c v :
: 7 Browse For Folder ?[X]
() Dont search. | will choose the driverto instal. e Rl ot oo dvers B yow e tNare
Choose this option to select the device driver from a list. Windows does not guarantee that
the driver you choose will be the best match for your hardware.
® [Abdio A
() ACD Systems
|C2) Acme CAD Converter
[<Back J[Met> | [Cancel @ L Adobe
®) Ahead
B D akvis
I Coloriage
& i) AmicusIDE
SR Aricus 16 USB Driver |
) amds4
) i386
I Docs
® 2 Indudes
& | Plugin
4 (™3 Analon Devices b
To view any subfolders, dick a plus sign above.
o J[conce]

Navigate to the compiler's install path which it defaults to “C:\Program Files\ProtonIDE” ,
"C:\Program Files (x86)\ProtonIDE" for Windows7 64-bit, and choose the “Amicusl8 USB

Driver” folder. Click OK:

The windows should look like the image below:

Found New Hardware Wizard
Please choose your search and installation options. .

(%) Search for the best driverin these locations.

Use the check boxes below to limit or expand the default search, which includes local
paths and removable media. The best driver found will be installed.

[[] Search removable media floppy. CD-ROM..)
Include this location in the search:
[C:\Program Files\AmicusIDE\Amicus18 USB Driver v | [Browse |

(O Dont search. | will choose the driver to install.

Choose this option to select the device driver from a list. Windows does not guarantee that
the driver you choose will be the best match for your hardware.

[:Back][Nead>][Cancell

17

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

Click the Mext button and the driver will begin to install.

You will see a windows message stating that the drivers have not been certified by Microsoft. This is
quite normal and nothing to be worried about, just click the Continue Anyway button:

e\ d
Please wait while the wizard installs the software... N
E \’

eb Amicus18 Serial Port

Hardware Installation

!E The software you are installing for this hardware:
Amicus18 Senal Port

has not passad Windows Logo testing to verfy its compatibility
with Windows XP. (Tell me why this testing is important)

mmddion d lhs wllmmay impair
bilize the

Lot

or
either immediately or in the future. ﬂuoodt s!londy
mumﬂslhﬂmﬂmthsnﬂdlﬂimmaﬂ
the | dor for software that has
passad'a\‘mdnn Logo testing.

| Continue Anyway | | STOP installation |

The driver will continue to install:

Found New Hardware Wizard

Please wait while the wizard installs the software... \\

%’ Amicus18 Serial Port

=/ L/
FTLang.dll
To C:A\WINDOWS\system32

(FEssssssnnnssnunwn SERNE R RRRERE)

18

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

Once the driver is complete it will show the window below:

Found New Hardware Wizard

Completing the Found New
Hardware Wizard

The wizard has finished installing the software for:

G Amicus18 Seral Port

Click Finish to close the wizard.

Click on the Finish button.

Note that the above procedure will need to be carried out twice for the driver to be fully installed, how-
ever, the second time, the files will have already been located on the hard drive, so it may not be nec-
essary to navigate to the driver folder:

Found New Hardware Wizard

Please choose your search and installation options. \

=

(%) Search for the best driver in these locations.

Use the check boxes below to limit or expand the default search, which includes local
paths and removable media. The best driver found will be installed.

[[] Search removable media floppy. CD-ROM..)
Include this location in the search:
C:\Program Files\AmicusIDE\Amicus 18 USB Diiver v

(O Dont search. | will choose the driver to install.

Choose this option to select the device driver from a list. Windows does not guarantee that
the driver you choose will be the best match for your hardware.

[<Back || Nedt>] [Cancel |

The USB drivers are now installed and will not require re-doing, unless the Amicus board is inserted into
a different USB port on the computer, in which case, choose the “Install the software automati-

cally” option on the initial driver install window.

19

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

Built in Amicus18 Peripheral Macros
The compiler has several built-in macros for configuring the most popular peripheral modules contained

with the Amicus18's microcontroller, these are the ADC (Analogue to Digital Converter), Timers, SPI (Se-
rial Peripheral Interface),

20

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

ADC macros Introduction

The ADC (Analogue to Digital Converter) peripheral on the Amicusl18 is supported with the following
macros. The macros are a mixture of compiler types and preprocessor types, and can be found in “In-
cludes\Sources\Amicus18_ADC.inc”

A/D Converter Macros

BusyADC Is A/D converter currently performing a conversion?

® CloseADC Disable the A/D converter.

® ConvertADC Start an A/D conversion.

OpenADC Configure the A/D converter.

® ReadADC Read the results of an A/D conversion.

® SetChanADC Select A/D channel to be used.

SelChanConvADC Select A/D channel to be used and start an A/D conversion.

BusyADC

Syntax
Variable = BusyADC()

Include file
Amicus18_ADC.inc

Overview
This macro indicates if the A/D peripheral is in the process of converting a value.

Return Value
® 1 if the A/D peripheral is performing a conversion.
®& O if the A/D peripheral isn’'t performing a conversion.

CloseADC

Syntax
CloseADC()

Include file
Amicus18_ADC.inc

Overview
This macro disables the A/D converter and A/D interrupt mechanism.

ConvertADC

Syntax
ConvertADC()

Include file
Amicus18 ADC.inc

Overview
This macro starts an A/D conversion. The BusyADC() macro or A/D interrupt may be used to detect
completion of the conversion. The result is held in registers ADRESL and ADRESH.

21

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

OpenADC

Syntax
OpenADC(pConfig, pConfig2, pPortConfig)

Include file
Amicus18_ ADC.inc

Overview
This macro resets the A/D-related registers to the POR state and then Configures the clock, result for-
mat, voltage reference, port and channel.

Operators
® Pconfig A bitmask that is created by performing a bitwise AND operation (‘&’) with a value from
each of the categories listed below. These values are defined in the file Amicus18_ADC.inc.

A/D clock source:

ADC_FOSC_2 Fosc / 2
ADC_FOSC 4 Fosc/ 4
ADC_FOSC_8 Fosc/ 8

ADC_FOSC _16 Fosc / 16

ADC_FOSC_32 Fosc / 32

ADC_FOSC_64 Fosc / 64

ADC_FOSC_RC Internal RC Oscillator
A/D result justification:

ADC_RIGHT_JUST Result in Least Significant bits (Used for 10-bit ADC result)

ADC_LEFT_JUST Result in Most Significant bits (Used for 8-bit ADC result)
A/D acquisition time select:

ADC_0_TAD 0 Tad

ADC_2_TAD 2 Tad

ADC_4_TAD 4 Tad

ADC_6_TAD 6 Tad

ADC_8 TAD 8 Tad

ADC_12_TAD 12 Tad

ADC_16_TAD 16 Tad

ADC_20_TAD 20 Tad

® pConfig2 A bitmask that is created by performing a bitwise AND operation (‘&"), as shown in the
example at the end of this document, with a value from each of the categories listed below.
These values are defined in the file Amicus18_ ADC.inc.

Channel:
ADC_CHO Channel 0
ADC_CH1 Channel 1
ADC_CH2 Channel 2
ADC_CH3 Channel 3
ADC_CH4 Channel 4
ADC_CH5 Channel 5
ADC_CH6 Channel 6
ADC_CH7 Channel 7
ADC_CH8 Channel 8
ADC_CH9 Channel 9
ADC_CH10 Channel 10
ADC CH11 Channel 11
ADC _CH12 Channel 12

22

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

A/D Vref+ and Vref- Configuration:

ADC_REF_VDD_VREFMINUS VREF+ = VDD & VREF- = Ext.
ADC_REF_VREFPLUS_VREFMINUS VREF+ = Ext. & VREF- = Ext.
ADC_REF_VREFPLUS_VSS VREF+ = Ext. & VREF- = VSS
ADC_REF_VDD_VSS VREF+ = VDD & VREF- = VSS

® pPortConfig The pPortConfig can have 8192 different combination, few are defined below:

ADC_OANA All digital
ADC_1ANA analogue: ANO
ADC_2ANA analogue: ANO-AN1
ADC_3ANA analogue: ANO-AN2
ADC_4ANA analogue: ANO-AN3
ADC_5ANA analogue: ANO-AN4
ADC_6ANA analogue: ANO-AN5
ADC_7ANA analogue: ANO-ANG6
ADC_8ANA analogue: ANO-AN7
ADC_9ANA analogue: ANO-AN8

ADC_10ANA analogue: ANO-AN9
ADC_11ANA analogue: ANO-AN10
ADC_12ANA analogue: ANO-AN11

Example

Open the ADC:
Fosc/32
Right justified for 10-bit operation
Tad value of 2
Vref+ at Vcc : Vref- at Gnd
Make ANO an analogue input
OpenADC(ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_2_ TAD, ADC_REF _VDD_VSS, ADC_1ANA)

ReadADC
Syntax
Variable = ReadADC(pChannel)

Include file
Amicus18 ADC.inc

Overview
This macro returns the Word (10 bit) result of the A/D conversion. Based on the configuration of the
A/D converter (e.g., using the OpenADC() macro).

Operator
pChannelis an optional ADC channel to take the reading from. This must be one of the values used for
the SetChanADC macro.

Example
Dim wResult as Word

wResult = ReadADC(ADC_CHO)

23

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

SetChanADC

Syntax
SetChanADC(pChannel)

Include file
Amicus18_ ADC.inc

Overview
Selects the pin that will be used as input to the A/D Converter.

Operator
pChannel One of the following values (defined in Amicus18_ADC.inc):

ADC_CHO Channel 0
ADC _CH1 Channel 1
ADC_CH2 Channel 2
ADC_CH3 Channel 3
ADC _CH4 Channel 4
ADC_CH5 Channel 5
ADC_CH6 Channel 6
ADC_CH7 Channel 7
ADC_CHS8 Channel 8
ADC_CH9 Channel 9
ADC_CH10 Channel 10
ADC CH11 Channel 11
ADC CH12 Channel 12
ADC CH13 Channel 13
ADC _CH14 Channel 14
ADC_CH15 Channel 15
ADC_CH_CTMU Channel 13
ADC_CH_VDDCORE Channel 14
ADC_CH_VBG Channel 15

SelChanConvADC

Syntax
SelChanConvADC(pChannel)

Include file
Amicus18 ADC.inc

Overview
Selects the pin that will be used as input to the A/D converter. And starts an A/D conversion. The
BusyADC() macro or A/D interrupt may be used to detect completion of the conversion.

Operator
pChannel One of the values used for the SetChanADC macro.

Example
SelChanConvADC(ADC_CHO)

24

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

ADC_IntEnable() Enables the ADC interrupt i.e. sets PEIE and ADIE bits.
ADC_IntDisable() Disables the ADC interrupt i.e. clears ADIE bit.

Example use of the A/D Converter Macros:
Include ""Amicusl8.inc" * Configure the compiler to use the Amicusl8 board
Include "Amicusl8 ADC.inc" " Load the Amicusl8 ADC macros into the program

Dim Result as Word

Open the ADC:
Fosc /7 32
Right justified for 10-bit operation
Tad value of 2
Vref+ at Vcc : Vref- at Gnd
Make ANO an analogue input

OpenADC(ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_2_TAD, ADC_REF _VDD_VSS, ADC_1ANA)

DelayUs 2 " Delay for 2 microSeconds
Result = ReadADC(ADC_CHO) " Read result of ANO
CloseADCQ) * Disable A/D converter

25

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

Timer macros Introduction
The timer peripherals are supported with the following macros. The macros are a mixture of compiler
types and preprocessor types, and can be found in “Includes\Sources\Amicus18_ Timers.inc”

CloseTimerx Disable timer X.

OpenTimerx Configure and enable timer x.

ReadTimerx Read the value of timer x.

WriteTimerx Write a value into timer x.

SetTmrCCPSrc Configure the timer as a clock source to CCP module.

CloseTimerO

Syntax
CloseTimer0()

Include file
Amicus18_Timers.inc

Overview
This macro disables timer0 and it's interrupt.

CloseTimerl

Syntax
CloseTimerl()

Include file
Amicus18_ Timers.inc

Overview
This macro disables timerl and it's interrupt.

CloseTimer2

Syntax
CloseTimer2()

Include file
Amicus18_Timers.inc

Overview
This macro disables timer2 and it's interrupt.

CloseTimer3

Syntax
CloseTimer3()

Include file
Amicus18_ Timers.inc

Overview
This macro disables timer3 and it's interrupt.

26

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

OpenTimerO

Syntax
OpenTimerO(pConfig)

Include file
Amicus18 Timers.inc

Overview
This macro configures timer0 according to the options specified and then enables it.

Operator

pConfig A bitmask that is created by performing either a bitwise AND operation (‘&’), which is user con-
figurable, with a value from each of the categories listed below. These values are defined in the file
Amicus18_Timers.inc.

Enable TimerO Interrupt:
TIMER_INT_ON Interrupt enabled
TIMER_INT_OFF Interrupt disabled

Timer Width:
TO 8BIT 8-bit mode
TO_16BIT 16-bit mode

Clock Source:
TO_SOURCE_EXT External clock source (1/0 pin)
TO_SOURCE_INT Internal clock source (Tosc)

External Clock Trigger (for TO_SOURCE_EXT):
TO_EDGE_FALL External clock on falling edge
TO_EDGE_RISE External clock on rising edge

Prescale Value:

TOPS 11 1:1 prescale
TOPS 12 1:2 prescale
TOPS 14 1:4 prescale
TO PS 1 8 1:8 prescale
TO PS 1 16 1:16 prescale
TO PS 1 32 1:32 prescale
TO_PS 1 64 1:64 prescale
TO PS 1 128 1:128 prescale
TO PS 1 256 1:256 prescale
Example

OpenTimerO(TIMER_INT_OFF & TO_8BIT & TO_SOURCE_INT & TO_PS_1_32)

27

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

OpenTimerl

Syntax
OpenTimer1(pConfig)

Include file
Amicus18_ Timers.inc

Overview
This macro configures timerl according to the options specified and then enables it.

Operator

pConfig A bitmask that is created by performing either a bitwise AND operation (‘&’), which is user con-
figurable, with a value from each of the categories listed below. These values are defined in the file
Amicus18_Timers.inc.

Enable Timerl Interrupt:

TIMER_INT_ON Interrupt enabled

TIMER _INT_OFF Interrupt disabled
Timer Width:

T1 8BIT_RW 8-bit mode

T1 16BIT_RW 16-bit mode

Clock Source:
T1 SOURCE_EXT External clock source (1/0 pin)

T1 SOURCE_INT Internal clock source (Tosc)
Prescaler:

T1LPS 11 1:1 prescale

T1PS 12 1:2 prescale

T1LPS 14 1:4 prescale

T1 PS 18 1:8 prescale

Oscillator Use:
T1 OSC1EN_ON Enable Timerl oscillator
T1 OSC1EN_OFF Disable Timerl oscillator

Synchronise Clock Input:
T1 SYNC_EXT_ON Sync external clock input
T1 SYNC_EXT_OFF Don't sync external clock input

Example
OpenTimerl(TIMER_INT_ON & T1 8BIT_RW & T1 SOURCE_EXT & T1_PS 1 1)

28

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

OpenTimer2

Syntax
OpenTimer2(pConfig)

Include file
Amicus18 Timers.inc

Overview
This macro configures timer2 according to the options specified and then enables it.

Operator

pConfig A bitmask that is created by performing either a bitwise AND operation (‘&’), which is user con-
figurable, with a value from each of the categories listed below. These values are defined in the file
Amicus18_Timers.inc.

Enable Timer2 Interrupt:
TIMER_INT_ON Interrupt enabled
TIMER_INT_OFF Interrupt disabled

Prescale Value:

T2 PS 11 1:1 prescale
T2 PS 1 4 1:4 prescale
T2_PS 1 16 1:16 prescale

Postscale Value:

T2 POST 1 1 1:1 postscale
T2 POST 1 2 1:2 postscale
T2 POST 1 3 1:3 postscale
T2 POST 1 4 1:4 postscale
T2 POST 1 5 1:5 postscale
T2 POST 1 6 1:6 postscale
T2 POST 1 7 1:7 postscale
T2 _POST 1 8 1:8 postscale
T2 POST 1 9 1:9 postscale
T2 POST 1 10 1:10 postscale
T2 _POST 1 11 1:11 postscale
T2 POST 1 12 1:12 postscale
T2 POST 1 13 1:13 postscale
T2 POST 1 14 1:14 postscale
T2 POST_1 15 1:15 postscale
T2 POST 1 16 1:16 postscale
Example

OpenTimer2(TIMER_INT_OFF & T2 _PS_ 1 1 & T2_POST_1_8)

29

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

OpenTimer3

Syntax
OpenTimer3(pConfig)

Include file
Amicus18_ Timers.inc

Overview
This macro configures timer3 according to the options specified and then enables it.

Operator

pConfig A bitmask that is created by performing either a bitwise AND operation (‘&’), which is user con-
figurable, with a value from each of the categories listed below. These values are defined in the file
Amicus18_Timers.inc.

Enable Timer3 Interrupt:

TIMER_INT_ON Interrupt enabled

TIMER _INT_OFF Interrupt disabled
Timer Width:

T3 8BIT_RW 8-bit mode

T3 _16BIT_RW 16-bit mode

Clock Source:
T3_SOURCE_EXT External clock source (1/0 pin)

T3_SOURCE_INT Internal clock source (Tosc)
Prescale Value:

T3PS 11 1:1 prescale

T3 PS 12 1:2 prescale

T3 PS 14 1:4 prescale

T3 PS 18 1:8 prescale

Synchronise Clock Input:
T3_SYNC_EXT_ON Sync external clock input
T3_SYNC_EXT_OFF Don't sync external clock input

Example
OpenTimer3(T3_8BIT_RW & T3_SOURCE_EXT & T3_PS 1 1 & T3 _SYNC_EXT_OFF)

30

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

ReadTimerO

Syntax
Variable = ReadTimer0()

Include file
Amicus18_Timers.inc

Overview
This macro reads the value of the timerO register pair.
Timer0: TMROL,TMROH

ReadTimerl

Syntax
Variable = ReadTimerl1()

Include file
Amicus18_Timers.inc

Overview
This macro reads the value of the timerl register pair.
Timerl: TMR1L,TMR1H

ReadTimer2

Syntax
Var = ReadTimer2()

Include file
Amicus18_Timers.inc

Overview
This macro reads the value of the timer2 register.
Timer2: TMR2

ReadTimer3

Syntax
Variable = ReadTimer3()

Include file
Amicus18_Timers.inc

Overview
This macro reads the value of the timer3 register pair.
Timer3: TMR3L,TMR3H

31

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

WriteTimerO

Syntax
WriteTimerO(pTimer)

Include file
Amicus18_Timers.inc

Overview
This macro writes a value to the timerQ register pair:
Timer0: TMROL,TMROH

Operator
pTimer The value that will be loaded into timerO.

Example
WriteTimer0(12340)

WriteTimerl

Syntax
WriteTimerl(pTimer)

Include file
Amicus18_ Timers.inc

Overview
This macro writes a value to the timerl register pair:
Timerl: TMR1L,TMR1H

Operator
pTimer The value that will be loaded into timerl.

Example
WriteTimerl(12340)

WriteTimer2

Syntax
WriteTimer2(pTimer)

Include file
Amicus18_Timers.inc

Overview
This macro writes a value to the timerl register:
Timer2: TMR2

Operator
pTimer The value that will be loaded into timer2.

Example
WriteTimer2(100)

32

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

WriteTimer3

Syntax
WriteTimer3(pTimer)

Include file
Amicus18_Timers.inc

Overview
This macro writes a value to the timerl register pair:
Timer3: TMR3L,TMR3H

Operator
pTimer The value that will be loaded into timer3.

Example
WriteTimer3(10000)

SetTmrCCPSrc

Syntax
SetTmrCCPSrc(pConfig)

Include file
Amicus18_Timers.inc

Overview
This macro configures a timer as a clock source for the CCP module.

Operator
pConfig A constant value from the list below. The values are defined in the file TimerDefs.inc.

T3 _SOURCE_CCP Timer3 source for both CCP’s
T1 CCP1_T3 CCP2 Timerl source for CCP1 and Timer3 source for CCP2
T1 SOURCE_CCP Timerl source for both CCP’s

Example
SetTmrCCPSrc(T34_SOURCE_CCP12)

33

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

T3_OSC1EN_ON

Syntax
T3_OSC1EN_ON()

Include file
Amicus18_ Timers.inc

Overview
This Macro enables the oscillator associated with Timerl as source of external clock input for Timer3.

T3_OSC1EN_OFF

Syntax
T3_OSC1EN_OFFK()

Include file
Amicus18_ Timers.inc

Overview
This Macro disables the oscillator associated with Timerl and selects the signal on pin T13CKI as the
source of the external clock input for Timer3.

Example Use of the TimerO Macro:

Include "Amicusl8.inc" " Configure the compiler to use the Amicusl18 board
Include "Amicusl8 Timers.Inc"” * Load the Amicusl8 Timer Macros into the program

Dim Result As Word

" Configure TimerO
OpenTimerO(TIMER_INT_OFF & TO_SOURCE_INT & TO_PS 1 32 & TO_16BIT)

HRSOut "Press a Key\r"

While 1 = 1
While Inkey = 16 : Wend " Wait for a Keypress on the keypad
Result = ReadTimer0(Q) " Read Timer0O
WriteTimer0(0) " Reset Timer0
HRSOut "TimerO Value = ", Dec Result,13 " Display the value of TimerO
While InKey <> 16 : Wend " Wait for the key to released
DelayMS 50

Wend

CloseTimer0(Q) " Close timer0O

34

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

SPI macros Introduction
The following macros are provided for the SPI™ peripheral:

® CloseSPI Disable the SSP module used for SPI™ communications.
® DataReadySPI Determine if a new value is available from the SPI buffer.
® OpenSPI Initialise the SSP module used for SPI communications.
® ReadSPI Read a byte from the SPI bus.
® WriteSPI Write a byte to the SPI bus.

CloseSPI

Syntax

CloseSPI()

Include file

Amicus18_SPl.inc

Overview
This Macro disables the SSP module. Pin 1/0 returns under the control of the appropriate TRIS and LAT
registers.

DataReadySPI

Syntax
Variable = DataReadySPI()

Include file
Amicus18_SPl.inc

Overview
This Macro determines if there is a byte to be read from the SSPBUF register.

Return Values
0 if there is no data in the SSPBUF register
1 if there is data in the SSPBUF register

Example
While DataReadySPI() = 0 : Wend

35

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

OpenSPlI

Syntax
OpenSPI(pSyncMode, pBusMode, pSmpPhase)

Include file
Amicus18_SPl.inc

Overview
This Macro sets up the SSP module for use with a SPIx bus device.

Operators
pSyncMode One of the following values, defined in Amicsul8_ SPl.inc:

SPI_FOSC 4 SPI Master mode, clock = Fosc / 4, resulting in a 1MHz interface.
SPI_FOSC_16 SPI Master mode, clock = Fosc / 16, resulting in a 4MHz interface.
SPI_FOSC_64 SPI Master mode, clock = Fosc / 64, resulting in a 16MHz interface.
SPI_FOSC_TMR2 SPI Master mode, clock = TMR2 output / 2

SLV_SSON SPI Slave mode, /SS pin control enabled

SLV_SSOFF SPI Slave mode, /SS pin control disabled

pBusMode One of the following values, defined in SPldefs.inc:

MODE_00 Setting for SPI bus Mode 0,0
MODE_01 Setting for SPI bus Mode 0,1
MODE_10 Setting for SPI bus Mode 1,0
MODE_11 Setting for SPI bus Mode 1,1

pSmpPhase One of the following values, defined in SPldefs.inc:

SMPEND Input data sample at end of data out
SMPMID Input data sample at middle of data out
Example

OpenSP1(SPI_FOSC_16, MODE_00, SMPEND)

36

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

ReadSPI

Syntax
Variable = ReadSPI1()

Include file
Amicus18_ SPl.inc

Overview
This macro initiates a SPI bus cycle for the acquisition of a byte of data.

WriteSPI

Syntax
WriteSPI(pDataOut)

Include file
Amicus18_SPl.inc

Overview
This Macro writes a single data byte out.

Operator
pDataOut Value to be written to the SPI bus.

Example of SPI macros
Include "Amicusl18.inc" " Configure the compiler to use the Amicusl8 board

Include "Amicusl8 SPI.inc" " Load the Amicusl8 SPI macros into the program

Dim bTemp as Byte

OpenSPI(SP1_FOSC_16 , MODE_01 , SMPMID)
WriteSPI($55)

bTemp = ReadSPI()

DataReadySPI1 ()

CloseSP1(

37

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

Hardware PWM macro Introduction
The PWM peripheral is supported with the following macros:

CloseAnalogl Disable the CCP1 peripheral

CloseAnalog2 Disable the CCP2 peripheral

OpenAnalogl Enable and configure the CCP1 peripheral

OpenAnalog2 Enable and configure the CCP2 peripheral

WriteAnalogl Output an 8-bit or 10-bit Pulse Width Modulated waveform from CCP1
WriteAnalog2 Output an 8-bit or 10-bit Pulse Width Modulated waveform from CCP2

CloseAnalogl

Syntax
CloseAnalogl()

Include file

Amicus18 hpwma8.inc for 8-bit PWM
or

Amicus18 hpwm10.inc for 10-bit PWM

Overview
Disable the CCP1 peripheral and set its appropriate pin as an input.

CloseAnalog2

Syntax
CloseAnalog2()

Include file

Amicus18_hpwma8.inc for 8-bit PWM
or

Amicus18 hpwm10.inc for 10-bit PWM

Overview
Disable the CCP2 peripheral and set its appropriate pin as an input.

OpenAnalogl

Syntax
OpenAnalogl()

Include file

Amicus18 hpwma8.inc for 8-bit PWM
or

Amicus18_hpwm10.inc for 10-bit PWM

Overview
Enable and configure the CCP1 peripheral and set its appropriate pin as an output.

38

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

OpenAnalog?2

Syntax
OpenAnalog2()

Include file

Amicus18_hpwma8.inc for 8-bit PWM
or

Amicus18 hpwm10.inc for 10-bit PWM

Overview
Enable and configure the CCP2 peripheral and set its appropriate pin as an output.

WriteAnalogl

Syntax
WriteAnalogl1(pValue)

Include file

Amicus18 hpwm8.inc for 8-bit PWM
or

Amicus18 hpwm10.inc for 10-bit PWM

Note. The CCP1 peripheral will be operating at the highest frequency possible for 8-bit (0 to 255) or 10-
bit (0 to 1023). With the default 64MHz oscillator this will be 62.5KHz for 10-bit and 250KHz for 8-bit.

Only one of the above include files may be used within a program an any one time.

Overview
Output an 8-bit or 10-bit PWM waveform from the CCP1 peripheral’s pin (RC2).

Operator
pValue a constant, variable, or expression that will alter the duty cycle of the PWM Waveform.

39

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

Example
" An LED attached to RC2 will increase illumination, then dim, repeatedly

" The voltage produced by the PWM signal is displayed on the serial terminal

Include "Amicusl8.inc" " Configure the compiler to use the Amicusl18 board
Include "Amicusl8 HpwmlO.inc" " Load the Amicusl8 10-bit PWM macros into program
Declare Float _Display Type = fast ~ Faster, more accurate float display

Dim fVolts As Float " Holds the Voltage calculation

Dim wTemp As Word " Holds the duty cycle value for the PWM

" Quantasise the Voltage. i.e. Volts per-bit, based upon 3.3 Volts at 10-bits

Symbol Quanta = 3.3 / 1024
OpenAnalogl() " Enable and configure the CCP1l peripheral

While 1 =1 " Create an infinite loop

" Increase LED illumation
" Cycle the full range of 10-bits. i1.e. 0 to 1023
For wTemp = O To 1023

WriteAnalogl(wTemp) " PWM on CCP1 (Bit-2 of PortC)

fVolts = wTemp * Quanta " Calculate the Voltage

HRSOut Dec wTemp, " = ", Dec fVolts, " Volts™, 13 * Display Voltage
Next

" Decrease LED illumination
" Cycle the full range of 10-bits (reversed). i1.e. 1023 to O

For wTemp = 1023 To O Step -1

WriteAnalogl (wTemp) " PWM on CCP1 (Bit-2 of PortC)
fVolts = wTemp * Quanta " Calculate the Voltage
HRSOut Dec wTemp, " = ", Dec fVolts, " Volts"™, 13 " Display Voltage
Next
Wend * Do it forever

A suitable layout for the above program built on the Companion Shield using a solderless breadboard is
shown below:

40

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

WriteAnalog2

Syntax
WriteAnalog2(pValue)

Include file

Amicus18_hpwma8.inc for 8-bit PWM
or

Amicus18 hpwm10.inc for 10-bit PWM

Note. The CCPx peripherals will be operating at the highest frequency possible for 8-bit (0 to 255) or
10-bit (0 to 1023). With the default 64MHz oscillator this will be 62.5KHz for 10-bit and 250KHz for 8-bit.

Only one of the above include files may be used within a program an any one time.

Overview
Output an 8-bit or 10-bit PWM waveform from the CCP2 peripheral’s pin (RC1).

Operator
pValue a constant, variable, or expression that will alter the duty cycle of the PWM Waveform.

Example

" An LED attached to RC1 will increase illumination, then dim, repeatedly

" The voltage produced by the PWM signal is displayed on the serial terminal

Include "Amicusl18.inc" " Configure the compiler to use the Amicusl8 board
Include "Amicusl18 HpwmlO.inc" " Load the Amicusl8 10-bit PWM macros into the program
Declare Float Display Type = fast " Faster, more accurate float display

Dim fVolts As Float " Holds the Voltage calculation
Dim wTemp As Word " Holds the duty cycle value for the PWM

" Quantasise the Voltage. i.e. Volts per-bit, based upon 3.3 Volts at 10-bits

Symbol Quanta = 3.3 / 1023
OpenAnalog2() " Enable and configure the CCP2 peripheral
While 1 =1 " Create an infinite loop

* Increase LED illumation
" Cycle the full range of 10-bits. i1.e. 0 to 1023
For wTemp = O To 1023

WriteAnalog2(wTemp) " PWM on CCP2 (Bit-1 of PortC)

fVolts = wTemp * Quanta " Calculate the Voltage

HRSOut Dec wTemp, ' = "', Dec fVolts, " Volts™, 13 " Display Voltage
Next

" Decrease LED illumination
" Cycle the full range of 10-bits (reversed). i.e. 1023 to O
For wTemp = 1023 To O Step -1

WriteAnalog2 (wTemp) " PWM on CCP1 (Bit-1 of PortC)
fVolts = wTemp * Quanta " Calculate the Voltage
HRSOut Dec wTemp, ' = ", Dec fVolts, " Volts'", 13 " Display Voltage
Next
Wend " Do it forever

41

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Using Amicus18 Hardware with the Proton compiler

A suitable layout for the previous program built on the Companion Shield using a solderless breadboard
is shown below:

42

Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

	
	Amicus18 Hardware Overview
	The 8-pin Power header socket:
	The 4-pin Power header socket:
	The PortA (Anx) socket:
	The PortC socket:
	The PortB socket:
	Device Programming Header

	Jumper and Pad Settings
	Pad Q1
	Pad Q2
	Jumper Q3

	Serial Handshake Connections
	Using the Proton Compiler with the Amicus18 board
	Writing your first Amicus18 program using the Proton compiler
	Amicus18 Circuit Diagram
	Amicus18 PCB Layout

	Installing the Amicus18 USB Driver
	Built in Amicus18 Peripheral Macros
	ADC macros Introduction
	CloseADC
	ConvertADC
	OpenADC
	ReadADC
	SetChanADC
	SelChanConvADC
	BusyADC

	Timer macros Introduction
	CloseTimer0
	CloseTimer1
	CloseTimer2
	CloseTimer3
	OpenTimer0
	OpenTimer1
	OpenTimer2
	OpenTimer3
	ReadTimer0
	ReadTimer1
	ReadTimer2
	ReadTimer3
	WriteTimer0
	WriteTimer1
	WriteTimer2
	WriteTimer3
	T3_OSC1EN_OFF
	T3_OSC1EN_ON
	SetTmrCCPSrc

	SPI macros Introduction
	WriteSPI
	ReadSPI
	OpenSPI
	DataReadySPI
	CloseSPI

	Hardware PWM macro Introduction
	WriteAnalog2
	WriteAnalog1
	OpenAnalog2
	OpenAnalog1
	CloseAnalog2
	CloseAnalog1

