
PRTOS

REAL TIME OPERATING SYSTEM

FOR

PROTON DEVELOPMENT SYSTEM

INTRODUCTION

RTOS is a Real Time Operating System designed specifically in PDS Basic. The system uses co-operative as

opposed to pre-emptive scheduling which means that the application code you write has to voluntarily release

back to the operating system at appropriate times.

Writing code for a RTOS requires a different mindset from that which used when writing a single threaded

application. However, once you have come to terms with this approach you will find that quite complex real

time systems can be developed quickly using the services of the operating system.

WHY SHOULD I USE RTOS?

RTOS can give you the potential opportunity to squeeze more from your PIC than you might expect from your

current single threaded application. For example, how often do your programs spend time polling for an input

or an event. If you could have the Operating System tell you when an event has taken place you could use that

polling time to do other things. This applies equally well to delays. By using RTOS you can write programs

which appears to be doing many things all apparently at the time.

Some of this can be achieved in a single threaded program by using interrupts but by using RTOS together with

interrupts you will have be able to quickly develop responsive applications which are easy to maintain,

RTOS FUNDAMENTALS

This section describes the fundamentals of the RTOS citing simple examples written using the PDS RTOS

syntax.

A typical program written in PDS Basic would use a looping main program calling subroutines from the main

loop. Time critical functions would be handled separately by interrupts. This is fine for simple programs but as

the programs become more complex the timing and interactions between the main loop background and the

interrupt driven foreground become increasingly more difficult to predict and debug.

RTOS gives you an alternative approach to this where your program is divided up into a number of smaller well

defined functions or tasks which can communicate with each other and which are managed by a single central

scheduler.

SOME BASIC DEFINITIONS

The fundamental building block of RTOS are Tasks. Tasks are a discrete set of instructions that will perform a

recognised function, e.g. Process a keypad entry, write to a display device, output to a peripheral or port etc.

It can be considered in effect a small program in its own right which runs within the main program. Most of

the functionality of a RTOS based program will be implemented in Tasks.

In RTOS a Task can have a Priority which determines its order of precedence with respect to other tasks. Thus

you can ensure your most time critical tasks get serviced in a timely manner.

Interrupts are events which occur in hardware which cause the program to stop what it was doing and vector

to a set of instructions (the Interrupt service routine ISR) which are written to respond to the interrupt. As

soon as these instructions have been executed the control is returned to the main program at the point where

it was interrupted.

A Context Switch occurs when one task is Suspended and another task is Started or Resumed. This is core

functionality to a RTOS. In the PDS RTOS the action of suspending is co-operative. This means that your tasks

must be written in a way that it will Yield back to RTOS in a timely manner. If the task fails to Yield back the

system will fail as the non-yielding task will run to the exclusion of all the others.

Tasks can call for a Delay which will suspend the task until the delay period has expired and will then resume

from where it left off. This is similar to the DelaymS or DelayuS functions in PDS except that during the delay

the processor can be assigned another task until that delay period is up. In practice it is most likely that delays

will be defined in the mS or 10s of milliseconds as delays in the low microseconds would make context

switching very inefficient.

An Event is the occurrence of something such as a serial data receipt, or an error has occurred or a long

calculation or process has completed. An event can be almost anything and can be raised (Signalled) by any

part of the program at any time. When a task waits on an event it can assign a Timeout so that the task can be

released from being stuck waiting for an event which isn’t going to happen for some reason.

Inter-task Communication provides a means for tasks to communicate with other tasks. PDS RTOS supports

Semaphores, Messages and Event Flags. (Currently only Semaphores are implemented). Semaphores can take

2 forms, Binary and Counting Semaphore. A binary semaphore can be used to signal actions like a button has

been pressed or a value is ready to be processed. The task waiting on the event will then suspend until the

event occurs when it will run. A counting semaphore can will carry a value typically it could be used to indicate

the number of bytes in an input buffer.

There are a number of other features which are part of PDS RTOS but these will be covered later. However,

there is one important aspect that it is important to appreciate before we get into more detail. In a multi

tasking environment such as RTOS it is quite conceivable that two tasks could make a call to the same function.

This requires that the function can be used simultaneously by more than one task without corrupting its data.

PDS does not naturally generate re-entrant code and you will have to write any functions which require re-

entrancy with great care or protect the situation from occurring. However with PDS RTOS’s co-operative

scheduling or through the use of events this problem can be circumvented.

STRUCTURE OF A TASK

Typically a task is a piece of code which will perform an operation within the program repeatedly. A task in

PDS RTOS would look like this:

UsefulTask:

Repeat

‘Do something useful

OS_Yield ‘Context Switch

Forever

This code will perform its operation and then Yield to the operating system. RTOS will then decide when to

run it again. If there are no other tasks to run it will return to the original task. (Note the expression Forever is

a macro for “Until 1=1”) . In a co-operative RTOS every task must make a call back to the operating at least

once in its loop. OS_Yield is one of a number of mechanisms for relinquishing control back to the operating

system.

 In its simplest form a multitasking program could comprise just 2 or more tasks each taking their turn to run in

a Round-Robin sequence. This is of limited use and is functionally equivalent to a single threaded program

running in a main loop. However, RTOS allows Tasks to be assigned a priority which means you can ensure

that the processor is always executing the most import task at any point in time.

Clearly if all your tasks were assigned the highest priority you would be back to running a round-robin single

loop system again but in real life applications, tasks only need to run when a specific event occurs. E.g. User

entered data or a switch has changed state. When such actions occur the task which needs to respond to that

action must run. The quicker the response needed then the higher the priority assigned to the task. This is

where a multitasking RTOS starts to show significant advantages over the traditional single threaded structure.

TASK STATES

A Task can assume a number of states:

Dormant Task not created

Pending Task created but not started

Delayed Task has been started but is suspended for a period

Waiting Task has been started and is waiting an event

Ready Task has been started and is ready or eligible to run

Running Task is the current active task

Tasks have to be registered or Created in RTOS before they can be used. Details including the state of each

task are held by RTOS in Task control blocks (TCBs). Before a task is created the TCB state will be Dormant.

When a task is first created its state will be Pending. This means the task has been registered but has not yet

been started. Once started the task can have 4 states; Delayed meaning it is waiting for a certain number of

operating ticks, Waiting means it is waiting for an event to occur, Ready means its waiting to be run by the

scheduler. When a task is finally called by the scheduler its state will be Running.

 REAL LIFE EXAMPLE

Let’s look at a very basic example of a real program written for RTOS.

Device 18F452

Optimiser_Level = 3

Xtal = 20

Bootloader = Off

All_Digital = True

Create_Coff = On

Include "RTOS Defines.inc"

$define OSTASKS_COUNT 6 ' Maximum Task count is 256

$define OSPRIO_COUNT 8 ' Number of priority levels

$define OSENABLE_TIMER True ' Enables timer service

$define OSENABLE_TIMEOUTS True ' allow timeouts for events and counters

$define OSTICK_SOURCE T1 ' T0, T1, EXT

$define OSTIMER_PRESCALE Off ' Prescale value or off

$define OSTIMER_PRELOAD $3CB0 ' Preload value $D8E0

$define OSTICK_CTR_SIZE 2 ' Size of OS Tick Counter (bytes) (must be 1, 2 or 4

max)

$define OSENABLE_CYCLIC_TIMERS True ' allow cyclic timers to be created

$define OSENABLE_EVENTS True ' Enables Events

$define OSEVENTS_COUNT 2 ' Max number of events

$define OSENABLE_MESSAGES False ' Event Messages enabled

$define OSENABLE_SEMAPHORES True ' Event Semaphores enabled

$define OSENABLE_EVENT_FLAGS False ' Event Flags enabled

$define OSEVENT_FLAGS 1 ' Max Event flags supported

GoTo Start

Include "RTOS Vars.inc"

Include "RTOS Macros.Inc"

Include "RTOS Main.bas"

Dim Ctr As Byte

Symbol T_Count = OSTCBP(1)

Symbol T_LEDOut = OSTCBP(2)

Symbol T_Delayed2 = OSTCBP(3)

Symbol T_OSCOut = OSTCBP(4)

Symbol T_Delayed = OSTCBP(5)

Symbol T_BinSem = OSTCBP(6)

Symbol E_LedCtrl = OSECBP(1)

CountTsk:

Repeat

 Inc Ctr

 If Ctr = $FF Then OSSignalBinSem E_LedCtrl

 OS_Yield

Forever

LEDOut:

Repeat

 PORTD = Ctr & $3F

 OS_Yield

Forever

DelayedTask:

Repeat

 Toggle PORTA.5

 OSStartTask T_OSCOut

 OS_Delay 2

 Toggle PORTA.5

 OSStopTask T_OSCOut

 OS_Delay 10

 OS_Replace DelayedTask2, 3

Forever

DelayedTask2:

Repeat

 Toggle PORTA.5

 OSStartTask T_LEDOut

 OS_Delay 1

 Toggle PORTA.5

 OSStopTask T_LEDOut

 OS_Delay 20

 OS_Replace DelayedTask, 2

Forever

BinSemTask:

Repeat

 OS_WaitBinSem E_LedCtrl,0

 OSStartTask T_LEDOut

 OS_Delay 1

 OSStopTask T_LEDOut

 OS_Delay 5

Forever

OSCOut:

Repeat

 PORTC = Ctr & $0F

 OS_Yield

Forever

'-----Start---

Start:

TRISA = %000000 ' All Port A Outputs

TRISB = %00000000 '

TRISD = %00000000 ' All port D pins output

TRISC = %11000000 ' Set port C to output

Ctr = $00 ' reset ctr

OSInit ' Initialise RTOS

OSCreateTask T_Count, CountTsk, 4

OSCreateTask T_LEDOut, LEDOut, 4

OSCreateTask T_OSCOut, OSCOut, 4

OSCreateTask T_Delayed, DelayedTask, 3

OSCreateTask T_BinSem, BinSemTask, 3

OSCreateBinSem E_LedCtrl, 0

OSStartTask T_LEDOut '

OSStartTask T_Count '

OSStartTask T_Delayed ' delayed will start and stop OSCOut

OSStartTask T_BinSem '

Repeat

 OSSched ' run scheduler continuously

Forever

REFERENCE

PDS RTOS uses a co-operative scheduler which requires that certain rules must be obeyed when writting

applications to run under RTOS. Ignoring these rules will stop RTOS working.

EVERY TASK MUST HAVE A CONTEXT SWITCH

PDS RTOS tasks must have at least one context switch. RTOS calls which will execute a context switch are

identified from other calls by the prefix "OS_". Non-context switching calls are prefixed just with "OS" i.e.

there is no underscore. Here is an example of a correctly constructed task.

MyTask:

Repeat

 Do something...

 OS_Delay 10

Forever

Here MyTask uses a context switch which will switch back to the OS through OS_Delay. The OS will then run

MyTask again after 10 OS ticks. Note the Repeat - Forever construct. All tasks should be written as an infinite

loop. The Forever keyword is an RTOS macro which equates to 'Until 1 = 1'.

Here are some examples of Task constructs which will fail under RTOS.

UncontrolledTask:

 Toggle PORTD.0

This task will not pass control back to RTOS and the application will continue to execute whatever instructions

follow.

GreedyTask:

Repeat

 Toggle PORTD.0

Forever

This task will continually loop but as it never calls a context switch control will never be returned to the OS and

no other tasks will run.

CONTEXT SWITCHES CAN ONLY OCCUR IN TASKS

The only state that is saved when Context switching in RTOS is the program counter. It is not good practice to

context switch from a subroutine called from a task because of the issues of possible re-entrancy and context

saving. Always wait until the function has returned back to the task before context switching.

MANAGE YOUR OWN VARIABLES

You should design your task so that it specifically saves any working variables that it needs when it resumes.

Alternatively write your task so that it context switches at a point where there is no need for any working

variables to be saved.

RTOS SERVICES

The following details all the user calls which can be made to RTOS. All services are accessed via a macro to

maintain a consistent calling interface.

CONTEXT SWITCHING SERVICES

All context switching services are prefixed with OS_. These calls should only ever be made from within a task

and will return to the scheduler.

OS_DELAY

Syntax: OS_Delay DelayTicks

Description: Stops the current Task and returns to scheduler which will resume the task after DelayTicks

of the OS. A DelayTicks of 0 will have the same effect as calling OS_STOP although this is not

the most efficient method of stopping a task.

Parameters: DelayTicks Word size variable

Requires: OSENABLE_TIMER services to be set true.

OS_DESTROY

Syntax: OS_Destroy

Description: Destroys the current task and returns to the scheduler. Removes the record of the task in

RTOS leaving the Task Control block to which it was assigned free to be used by another task.

You will have to call OSCreateTask before this task can be used again.

Parameters: None

OS_REPLACE

Syntax: OS_Replace TaskPtr, Priority

Description: Replaces the current task with the task specified at the priority specified and returns to the

scheduler. The new task will occupy the same Task Control Block as the existing task and so

will have the same TaskID.

Parameters: TaskPtr: Pointer to the New task to replace current task. (The Label of the new Task).

Priority: The priority to be assigned to the new task.

OS_SETPRIO

Syntax: OS_SetPrio Priority

Description: Changes the priority of the current task to the Priority level defined and returns to the

scheduler. If more than one task exists at the new priority level this task will added into the

list of tasks at the new priority.

Parameters: Priority: Byte variable defining the priority. Ranging from 0 (top priority) through to

OSPRIORTY_COUNT -1 (Lowest Priority)

OS_STOP

Syntax: OS_Stop

Description: Stops the current task and returns to the scheduler. The task can only be restarted from

OSStartTask and will the task will resume from its last position.

Parameters: none

OS_WAITBINSEM

Syntax: OS_WaitBinSem EventID, TimeOut

Description: Suspends task until the binary semaphore referenced in EventID has been signalled or the

Timeout has elapsed. If the Event is already signalled when the wait is called the Task will be

resumed if there is no other higher priority task waiting to run. If the wait times out the

Task will be resumed with the timeout flag set. If the Event is signalled, the Task will be

resumed with the timeout flag cleared.

 This function can only be called after the referenced event has been created.

Parameters: EventID: Pointer to the associated event control block

Timeout: a byte variable specifying the number of OS Ticks before timing out.

OS_WAITEFLAG

Syntax:

Description: Not implemented yet.

Parameters:

OS_WAITMSG

Syntax:

Description: Not implemented yet.

Parameters:

OS_WAITSEM

Syntax: OS_WaitSem EventID

Description: Suspends the current task on a counting semaphore. If the semaphore value is 0 it returns to

the scheduler. If the semaphore is non-zero it will decrement the semaphore value and

continue execution. If the timeout expires before the semaphore value has reached zero

continue execution with the timeout flag set.

Parameters: EventID: Pointer to the associated event control block.

OS_YIELD

Syntax: OS_Yield

Description: Unconditionally Yields to the scheduler. If no other task is waiting to run will resume at next

instruction after OS_Yield.

Parameters: None

NON-CONTEXT SWITCHING SERVICES

The following calls to RTOS do not initiate a context switch. In general these can be called from anywhere in

your application.

OSCREATEBINSEM

Syntax: OSCreateBinSem EventID, BinSem

Description: Register Assign an Event Control Block to a binary semaphore and set its initial value. (True

or False)

Parameters: EventID: Pointer to the associated event control block.

BinSem: Initial values assigned to the binary semaphore (True or False)

OSCREATECYCTMR

Syntax: OSCreateCycTmr TmrTaskPtr, TaskID, Delay, Period, Mode

Description: Assign a Task Control Block to a Cyclic timer. Cyclic Timers are structured like conventional

subroutines, starting with a start address and finishing with a Return.

Parameters: TmrTaskPtr: Start Address of the Cyclic Timer code.

TaskID: Pointer to the associated Task Control Block

Delay: Initial delay in OS Ticks before calling the task for the first time.

Period: The time in OS Ticks between successive calls of the Cyclic timer

Mode: The timer can have one of 2 modes operating mode, OSCT_ONE_SHOT and

OSCT_CONTINUOUS. If you don't want the Timer to start when you have created it Or

OSCT_DONT_START_CYCTMR with your chosen mode.

OSCYCTMRRUNNING

Syntax: OSCYCTMRRUNNING TaskID

Description: Returns True is Cyclic Timer referenced in TaskID is running.

OSCREATEEFLAG

Syntax:

Description: Not Implemented.

Parameters:

OSCREATEMSG

Syntax:

Description: Not Implemented.

Parameters:

OSCREATESEM

Syntax: OSCreateSem EventID, Sem

Description: Assign an Event Control Block to a counting semaphore and set its initial value.

Parameters: EventID: Pointer to the associated event control block.

Sem: Byte - Initial value assigned to the semaphore count.

Requirements: OSENABLE_EVENTS and OSENABLE_SEMAPHORES

OSCREATETASK

Syntax: OSCreateTask TaskPtr, Priority

Description: Assign a task control block to a the task defined in TaskPtr.

Parameters: TaskPtr: Address of the task you wish to assign. This would normally be the Label at the start

of the task.

Priority: Byte Variable defining the priority you wish the task to run at. The value must lie

between OSHIGHEST_PRIO and OSLOWEST_PRIO.

OSDESTROYCYCTMR

Syntax: OSDestroyCycTmr TaskID

Description: Destroys the Cyclic timer task identified by TaskID. Removes the reference to the cyclic timer

leaving the Task Control block to which it was assigned free to be used by another task. You

will have to call OSCreateCycTmr before this Cyclic Timer can be used again.

Parameters: TaskID: Pointer to the associated Task Control Block for the timer.

OSDESTROYTASK

Syntax: OSDestroyTask TaskID

Description: Destroys the task identified by TaskID. Removes the notification of the task in RTOS leaving

the Task Control block to which it was assigned free to be used by another task. You will

have to call OSCreateTask before this task can be used again.

Parameters: TaskID: Pointer to the associated Task Control Block for the Task.

OSGETPRIO

Syntax: OSGetPrio

Description: Returns the priority of the active task.

Parameters: None

OSGETPRIOTASK

Syntax: OSGetPrioTask TaskID

Description: Returns the priority of the task defined in TaskID.

Parameters: TaskID: Pointer to task control block of the referenced task

OSGETSTATE

Syntax: OSGetState

Description: Returns the state of the current task, always OSTCB_TASK_RUNNING. Included for

completeness only

Parameters: None

OSGETSTATETASK

Syntax: OSGetStateTask TaskID

Description: Returns the state of the task identified by TaskID. Possible values are:

OSTCB_DESTROYED Destroyed or uninitialised

OSTCB_TASK_STOPPED Task Stopped

OSTCB_TASK_DELAYED Delayed n OSticks

OSTCB_TASK_WAITING Waiting on an event

OSTCB_TASK_WAITING_TO Waiting and event with a timeout

OSTCB_TASK_ELIGABLE Ready to run

OSTCB_TASK_RUNNING Running

Parameters: TaskID: Pointer to task control block of the referenced task

OSGETTICKS

Syntax: OSGetTicks

Description: Returns the current system timer in ticks.

The size of the return value will be determined by OSTICK_CTR_SIZE

Parameters: None

OSINIT

Syntax: OSInit

Description: This function must be called before calling any other RTOS functions. It initialises the RTOS

setting up the task and event control blocks and starting the timer and events if necessary.

OS_Init relies on a number of configuration settings which you must define prior to calling

OSInit. These are described more fully in the Configuration chapter.

Parameters: None

OSREADBINSEM

Syntax: OSReadBinSem EventID

Description: Returns the value (True or False) of the BinSem identified by EventID. This function has no

effect on the binary semaphore.

Parameters: EventID: Pointer to the associated event control block.

OSREADSEM

Syntax: OSReadSem EventID

Description: Returns the value $0 ..$FF of the counting semaphore specified in EventID. This function has

no effect on the binary semaphores

Parameters: EventID: Pointer to the associated event control block.

OSRESETCYCTMR

Syntax: OSResetCycTmr TaskID

Description: Resets the Cyclic timer specified in TaskID to its initial conditions after OSCreateCycTmr. This

means that the timer will start with the defined initial delay.

Parameters: TaskID: Pointer to task control block of the referenced task:

OSSCHED

Syntax: OSched

Description: Runs the highest priority eligible task. This function must be called continuously from your

main program to continue multitasking. It must be called after OSInit.

 Typically your main program would call OSSched like this:

 Repeat

 OSSched

Forever

Every time a task yields it will return to the main program which should call OSSched. If the

main program stops calling OSSched then multitasking will cease.

Parameters: None

OSSETPRIO

Syntax: OSSetPrio Priority

Description: Changes the priority of the current task.

Parameters: Priority: Byte variable defining the new priority

OSSETPRIOTASK

Syntax: OSSetPrioTask TaskID, Priority

Description: Changes the priority assigned to the task identified in TaskID.

Parameters: TaskID: Pointer to task control block of the referenced task

Priority: Byte variable defining the new priority.

 OSSETTICKS

Syntax: OSSetTicks TickValue

Description: Initialises the value of the OS Tick Counter to TickValue

Parameters: TickValue: Byte, Word or DWord depending on OS_TICK_SIZE

OSSIGNALBINSEM

Syntax: OSSignalBinSem EventID

Description: Signals a binary semaphore. If one or more tasks are waiting this semaphore the highest

priority t ask waiting will be made eligible to run. The task will run when it becomes the

highest priority eligible task.

Parameters: EventID: Pointer to the associated event control block.

OSSIGNALSEM

Syntax: OSSignalSem EventID

Description: Increments a counting semaphore. If one or more tasks are waiting this semaphore the

highest priority t ask waiting will be made eligible to run. The task will run when it becomes

the highest priority eligible task.

Parameters: EventID: Pointer to the associated event control block.

OSSTARTCYCTMR

Syntax: OSSStartCycTmr TaskID

Description: Starts a cyclic timer. If the timer has never been run since it was created or reset then the it

will start with the initial delay. If the timer had previously been run it will start with the

period value.

Parameters: TaskID: Pointer to task control block of the referenced task

OSSTARTTASK

Syntax: OSStartTask TaskID

Description: Starts a dormant or stopped task identified by TaskID

Parameters: TaskID: Pointer to task control block of the referenced task

OSSTOPCYCTMR

Syntax: OSStopCycTmr TaskID

Description: Stops a Cyclic Timer identified by TaskID

Parameters: TaskID: Pointer to task control block of the referenced task

OSSTOPTASK

Syntax: OSStopTask TaskID

Description: Makes a task identified by TaskID ineligible.

Parameters: TaskID: Pointer to task control block of the referenced task

OSTRYBINSEM

Syntax: OSTryBinSem EventID

Description: Behaves like OS_WaitBinSem but does not context switch from the current task.

As it doesn't context switch it can be used outside a task. Typically this would be used in a

ISR to handle an external event.

Parameters: EventID: Pointer to the associated event control block.

OSTRYSEM

Syntax: OSTrySem EventID

Description: Behaves like OS_WaitSem but does not context switch from the current task.

As it doesn't context switch it can be used outside a task. Typically this would be used in a

ISR to handle outgoing data.

Parameters: EventID: Pointer to the associated event control block.

OTHER MACROS

This section describes some additional macros which are provided to simplify usage.

OSTCBP(X) Returns a pointer value to a specific Task Control Block (TCB) within the TCB array. Use this

to create an alias to a TCB.

E.g. Symbol MyTaskPtr = OSTCBP(3)

 OSCreateTask MyTaskPtr, MyTask

OSECBP(X) Returns a pointer value to a specific Event Control Block (ECB) within the ECB array.

OSEFCBP(X) Returns a pointer value to a specific Event Flag Control Block (EFCB)

CONFIGURATION

PDS RTOS provides a number of configuration options which you can use to tailor the RTOS features to suit
your requirements and minimise the size of your program.

These settings use the PDS pre-processor commands and should be placed at the beginning of your main
program.

OSTASKS_COUNT

Syntax: $define OSTASKS_COUNT N (where N is an integer between 0 and 32)

Description: Sets the maximum number of tasks supported. RTOS will allocate 8 bytes of RAM per task up

to a maximum of 32 tasks (256 bytes). If OSTASKS_COUNT is not defined it will default to 4
tasks.

OSPRIO_COUNT

 Syntax: $define OSPRIO_COUNT N (where N is an integer between 0 and 15)

Description: Sets the number of priority levels supported. RTOS will allocate 3 bytes of RAM for each

priority level up to a maximum of 16 levels (48 bytes). If OSPRIO_COUNT is not defined it will
default to 4 priority levels.

OSENABLE_TIMER

Syntax: $define OSENABLE_TIMER True/False

Description: Enables the RTOS timer services. Timer services are required to use Delays, Timeouts or

Cyclic Timers. If not defined OSENABLE_TIMER will default to False.

 This option must be set true to use any of the following options:
 OSENABLE_TIMEOUTS, OSTICK_SOURCE, OSTIMER_PRESCALE, OSTIMER_PRLOAD,

OSTICK_CTR_SIZE, OSENABLE_CYCLIC_TIMERS.

OSENABLE_TIMEOUTS

 Syntax: $define OSENABLE_TIMEOUTS True/False

Description: Enables timeouts to be used on OS_Wait... calls. If not defined will OSENABLE_TIOMEOUTS

will default to False.

OSTICK_SOURCE

Syntax: $define OSTICK_SOURCE T0/T1/EXT

Description: Defines the tick source for RTOS. OSTICK_SOURCE values of T0 or T1 will define the tick

source as Timer0 or Timer1. To configure the timers use OSTIMER_PRESCALE and
OSTIMER_PRELOAD.

 Setting the OSTICK_SOURCE value to EXT allows you to choose an external interrupt source

for the RTOS Tick Source. This will bypass the RTOS tick initialisation and interrupt handling

and use instead user defined initialisation and interrupt service routine. During RTOS

initialisation RTOS will call OSTICK_EXT_INIT. The On_Hardware_Interrupt will jump to a

user define ISR called OSTICK_EXT_HDLR. This ISR will be responsible for context saving,

detecting the interrupt, flagging a Tick to RTOS and any other interrupt processing required.

To flag an RTOS tick set OSTick_Flag true. This will be cleared by RTOS when it has

processed the Tick.

OSTIMER_PRESCALE

Syntax: $define OSTIMER_PRESCALE Off/0..7

Description: This parameter allows you to choose a Timer Prescale value. For Timer0 the value can range

from 0 to 7 and for Timer1 the value can range from 0 to 3. If undefined OSTIMER_PRESCALE
will default to Off.

OSTIMER_PRELOAD

Syntax: $define OSTIMER_PRELOAD $NNNN

Description: This parameter is the value loaded into Timer 0 or Timer 1 when the OSTICK_SOURCE is T0 or

T1. If this define is omitted and T0 or T1 is selected a compile error will be reported.

OSTICK_CTR_SIZE

Syntax: $define OSTICK_CTR_SIZE 1/2/4

Description: The tick counter increments for each RTOS tick and rolls over back to 0 on overflow. The tick

counter can be a byte(1), word(2) or double word (4). If not defined OSTICK_CTR_SIZE will
default to byte size.

OSENABLE_CYCLIC_TIMERS

Syntax: $define OSENABLE_CYCLIC_TIMERS True/False

Description: Enables cyclic timers to be used. If not defined OSENABLE_CYCLIC_TIMERS will default to

False.

OSENABLE_EVENTS

 Syntax: $define OSENABLE_EVENTS True/False

Description: Enables the RTOS Events services. Event services are required to support semaphores, event

flags and messages. If not defined OSENABLE_EVENTS will default to False.

 This option must be set true to use any of the following services:
 OSENABLE_MESSAGES, OSENABLE_SEMAPHORES and OSENABLE_EVENT_FLAGS.

OSEVENTS_COUNT

Syntax: OSEVENTS_COUNT N

Description: Sets the maximum number of events supported. RTOS will allocate 3 bytes of RAM per event

up to a maximum of 32 events (64 bytes). If OSEVENTS_COUNT is not defined it will default
to 4 events

OSENABLE_MESSAGES

Syntax: $define OSENABLE_MESSAGES True/False

Description: Enables Message services to be supported. If not defined OSENABLE_MESSAGES will default

to False.

OSENABLE_SEMAPHORES

Syntax: $define OSENABLE_SEMAPHORES True/False

Description: Enables binary and counting Semaphore services to be supported. If not defined

OSENABLE_SEMAPHORES will default to False.

OSENABLE_EVENT_FLAGS

Syntax: $define OSENABLE_EVENT_FLAGS True/False

Description: Enables Event flag services to be supported. If not defined OSENABLE_EVENT_FLAGS will

default to False.

OSEVENT_FLAGS

 Syntax: $define OSEVENT_FLAGS N

Description: Defines the number of event flags supported. Each event flag requires one byte of RAM. If

not defined and OSENABLE_EVENTS is True OSEVENT_FLAGS will default to 2.

