

Crownhill reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. Neither Crownhill Associates Limited or the author shall be responsible for any claims attributable to errors omissions or other inaccuracies in the information or materials contained in this publication and in no event shall Crownhill Associates or the author be liable for direct indirect or special incidental or consequential damages arising out of the use of such information or material. Neither Crownhill or the author convey any license under any patent or other right, and make no representation that the circuits are free of patent infringement. Charts and schedules contained herein reflect representative operating parameters, and may vary depending upon a user's specific application.

All terms mentioned in this document that are known to be trademarks or service marks have been appropriately marked. Use of a term in this publication should not be regarded as affecting the validity of any trademark.

PICmicrotm is a trade name of Microchip Technologies Inc. www.microchip.com

PROTONtm is a trade name of Crownhill Associates Ltd. www.crownhill.co.uk

Web url's are correct at the time of publication

The PROTON+ compiler and documentation was written by Les Johnson.

All Manufacturer Trademarks Acknowledged

Table Of Contents

Introduction	3
OPEN_TIMER0	4
OPEN_TIMER1	5
OPEN_TIMER2	6
OPEN_TIMER3	7
OPEN_TIMER4	8
CLOSE_TIMER0	9
CLOSE_TIMER1	9
CLOSE_TIMER2	9
CLOSE_TIMER3	9
CLOSE_TIMER4	9
READ_TIMER0	10
READ_TIMER1	10
READ_TIMER2	10
READ_TIMER3	10
READ_TIMER4	10
WRITE_TIMER0	11
WRITE_TIMER1	11
WRITE_TIMER2	11
WRITE_TIMER3	11
WRITE TIMER4	11

Introduction

Setting up the various timers on PICmicros can be a tedious task, with constant referrals to the, sometimes obscure, datasheets. Therefore I have created a series of macros to help alleviate some of the problems.

The macros are only for use with 18F devices, but could easily be converted for 16F types. They should also be used only with the PROTON+ Compiler version 3.1 onwards.

To use a macro for a particular timer, simply include the appropriate timer file in the main BA-SIC program.

The files available are: -

TIMER0_18.INC	Timer0 Macros
TIMER1_18.INC	Timer1 Macros
TIMER2_18.INC	Timer2 Macros
TIMER3_18.INC	Timer3 Macros
TIMER4_18.INC	Timer4 Macros

Copy all of these files into the compiler's INC folder and they will be available to all programs without specifying a location.

Of course, this doesn't mean that the datasheet is redundant, and the datasheet for the particular PICmicro you're using should always be at hand, but I hope it will help overcome some of the hurdles when dealing with timers.

OPEN TIMERO

Syntax

OPEN_TIMER0 configs

Overview

Configure Timer0

Operator

Configs is a bitmask that is created by performing a bitwise AND operation ('&') with a value from each of the categories listed below. These values are defined in the TIMER0_18.INC file.

Enable Timer0 Interrupt:

T0_INT_ON	Interrupt enabled
T0_INT_OFF	Interrupt disabled

Timer Width:

T0_8BIT 8-bit mode T0 16BIT 16-bit mode

Clock Source:

T0_SOURCE_EXT External clock source (I/O pin)
T0_SOURCE_INT Internal clock source (TOSC)

External Clock Trigger (for T0_SOURCE_EXT):

T0_EDGE_FALL External clock on falling edge T0_EDGE_RISE External clock on rising edge

Prescale Value:

T0_PS_1_1	1:1 prescale
T0_PS_1_2	1:2 prescale
T0_PS_1_4	1:4 prescale
T0_PS_1_8	1:8 prescale
T0_PS_1_16	1:16 prescale
T0_PS_1_32	1:32 prescale
T0_PS_1_64	1:64 prescale
T0_PS_1_128	1:128 prescale
T0_PS_1_256	1:256 prescale

OPEN TIMER1

Syntax

OPEN_TIMER1 configs

Overview

Configure Timer1

Operator

Configs is a bitmask that is created by performing a bitwise AND operation ('&') with a value from each of the categories listed below. These values are defined in the TIMER1_18.INC file.

Timer Interrupt:

T1_INT_ON Interrupt enabled T1_INT_OFF Interrupt disabled

Timer Width:

T1_8BIT_RW 8-bit read-write mode 16-bit read-write mode

Clock Source:

T1_SOURCE_EXT External clock source (I/O pin)
T1_SOURCE_INT Internal clock source (TOSC)

Prescaler:

T1_PS_1_1 1:1 prescale T1_PS_1_2 1:2 prescale T1_PS_1_4 1:4 prescale T1_PS_1_8 1:8 prescale

Oscillator Use:

T1_OSC1EN_ON Enable Timer1 oscillator T1_OSC1EN_OFF Disable Timer1 oscillator

Synchronize Clock Input:

T1_SYNC_EXT_ON Sync external clock input Don't sync external clock input

OPEN_TIMER2

Syntax OPEN_TIMER2 configs

Overview

Configure Timer2

Operator

Configs is a bitmask that is created by performing a bitwise AND operation ('&') with a value from each of the categories listed below. These values are defined in the TIMER2_18.INC file.

Timer Interrupt:

T2_INT_ON	Interrupt enabled
T2_INT_OFF	Interrupt disabled

Prescaler:

T2_PS_1_1	1:1 prescale
T2_PS_1_4	1:4 prescale
T2 PS 1 16	1:16 prescale

Postscale Value:

12_POS1_1_1	1:1 postscale
T2_POST_1_2	1:2 postscale

::

OPEN TIMER3

Syntax

OPEN_TIMER3 configs

Overview

Configure Timer3

Operator

Configs is a bitmask that is created by performing a bitwise AND operation ('&') with a value from each of the categories listed below. These values are defined in the TIMER3_18.INC file.

Timer Interrupt:

T3_INT_ON Interrupt enabled T3_INT_OFF Interrupt disabled

Timer Width:

T3_8BIT_RW 8-bit mode
T3_16BIT_RW 16-bit mode

Clock Source:

T3_SOURCE_EXT External clock source (I/O pin)
T3_SOURCE_INT Internal clock source (TOSC)

Prescale Value:

T3_PS_1_1 1:1 prescale T3_PS_1_2 1:2 prescale T3_PS_1_4 1:4 prescale T3_PS_1_8 1:8 prescale

Synchronize Clock Input:

T3_SYNC_EXT_ON Sync external clock input
T3_SYNC_EXT_OFF Don't sync external clock input

Use With CCP:

T1_SOURCE_CCP Timer1 source for both CCP's T3_SOURCE_CCP Timer3 source for both CCP's

T1 CCP1 T3 CCP2 Timer1 source for CCP1 and Timer3 source for CCP2

```
OPTIMISER_LEVEL = 6 'Enable the optimiser

Device = 18F8720 'Choose a 16-bit core device with a timer3

Include "TIMER3_18.INC" 'Include the macros into the program

OPEN_TIMER3 [T3_INT_OFF & T3_8BIT_RW & T3_SOURCE_EXT & T3_PS_1_1 & T3_OSC1EN_OFF & T3_SYNC_EXT_OFF & T3_SOURCE_CCP]
```

OPEN_TIMER4

Syntax OPEN_TIMER4 configs

Overview

Configure Timer4

Operator

Configs is a bitmask that is created by performing a bitwise AND operation ('&') with a value from each of the categories listed below. These values are defined in the TIMER4_18.INC file.

Timer Interrupt:

T4_INT_ON	Interrupt enabled
T4_INT_OFF	Interrupt disabled

Prescale Value:

T4_PS_1_1	1:1 prescale
T4_PS_1_4	1:4 prescale
T4 PS 1 16	1:16 prescale

Postscale Value:

14_POS1_1_1	1:1 postscale
T4_POST_1_2	1:2 postscale

.. ⊤⊿

CLOSE_TIMER0

CLOSE_TIMER1

CLOSE_TIMER2

CLOSE_TIMER3

CLOSE_TIMER4

Overview

Disable the specified timer.

Example

Notes

These macros disable the appropriate interrupt and specified timer.

READ TIMER0

READ TIMER1

READ_TIMER2

READ_TIMER3

READ_TIMER4

Syntax

```
Variable = READ_TIMER0 Timer_Size
```

Variable = READ_TIMER1

Variable = READ_TIMER2

Variable = **READ_TIMER3** Timer_Size

Variable = READ_TIMER4

Overview

Read the value of the specified timer.

Operators

Variable Can be a BYTE, WORD or DWORD variable that will contain the value of the specified timer.

Timer_Size Can be the constant value **8** or **16** depending on which timer is being used. Value 8 will read the low byte of a 16-bit timer, and 16 will read the full timer. Not all timers are 16-bit types, therefore the *Timer_Size* parameter is not required for Timers 1, 2 and 4

WRITE_TIMER0

WRITE TIMER1

WRITE_TIMER2

WRITE_TIMER3

WRITE_TIMER4

Syntax

WRITE TIMERO Timer Size, Variable

WRITE TIMER1 Variable

WRITE TIMER2 Variable

WRITE_TIMER3 Timer_Size, Variable

WRITE_TIMER4 Variable

Overview

Write a value into the specified timer.

Operators

Timer_Size Can be the constant value **8** or **16** depending on which timer is being used. Value 8 will write only to the low byte of a 16-bit timer, and 16 will write to the full timer. Not all timers are 16-bit types, therefore the *Timer_Size* parameter is not required for Timers 1, 2 and 4. **Variable** Can be a **BYTE**, **WORD** or **DWORD** variable, or a user constant value that will be written to the specified timer.