PROTON+

Compliler

Version 3.07
Beta /

PROTON+ Compiler. Development Suite.

Crownhill reserves the right to make changes to the products contained in this publication in or-
der to improve design, performance or reliability. Except for the limited warranty covering the
physical CD-ROM and Hardware License key supplied with this publication as provided in the
End-User License agreement, the information and material content of this publication and ac-
companying CD-ROM are provided “as is” without warranty of any kind express or implied in-
cluding without limitation any warranty concerning the accuracy adequacy or completeness of
such information or material or the results to be obtained from using such information or mate-
rial. Neither Crownhill Associates Limited or the author shall be responsible for any claims at-
tributable to errors omissions or other inaccuracies in the information or materials contained in
this publication and in no event shall Crownhill Associates or the author be liable for direct indi-
rect or special incidental or consequential damages arising out of the use of such information or
material. Neither Crownhill or the author convey any license under any patent or other right,
and make no representation that the circuits are free of patent infringement. Charts and
schedules contained herein reflect representative operating parameters, and may vary depend-
ing upon a user’s specific application.

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately marked. Use of a term in this publication should not be regarded as affecting the
validity of any trademark.

PICmicro™ is a trade name of Microchip Technologies Inc. www.microchip.com

PROTON™ is a trade name of Crownhill Associates Ltd. www.crownhill.co.uk

EPIC™ is a trade name of microEngineering Labs Inc. www.microengineeringlabs.com
The Proton IDE was written by David Barker of Mecanique www.mecanique.co.uk

Proteus VSM © Copyright Labcenter Electronics Ltd 2004 www.labcenter.co.uk

Web url's correct at time of publication

The PROTON+ compiler and documentation was written by Les Johnson and published by
Crownhill Associates Limited, Cambridge ,England, 2004.

Cover design © 2004 Crownhill Associates Limited — All rights reserved

All Manufacturer Trademarks Acknowledged

This publication was printed and bound in the United Kingdom.

No part of this publication may be reproduced or utilized in any form or by any means, elec-
tronic or mechanical, including photocopying, recording, or by any information storage and re-
trieval system, without permission in writing from the publisher.

If you should find any anomalies or omission in this document, please contact us, as we appre-

ciate your assistance in improving our products and services.

First published by Crownhill Associates Limited, Cambridge, England, 2004.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Introduction

The PROTON+ compiler was written with simplicity and flexibility in mind. Using BASIC, which
is almost certainly the easiest programming language around, you can now produce extremely
powerful applications for your PICmicro™ without having to learn the relative complexity of as-
sembler, or wade through the gibberish that is C. Having said this, various 'enhancements' for
extra versatility and ease of use have been included in the event that assembler is required.

The PROTON-+ IDE provides a seamless development environment, which allows you to write,
debug and compile your code within the same Windows environment, and by using a compati-
ble programmer, just one key press allows you to program and verify the resulting code in the
PICmicro™ of your choicel!

The front end of the compilers are Windows based. Simply specify the device at the program
beginning and the code produced will be fully compatible with that device.

Contact Details

For your convenience we have set up a web site www.picbasic.org, where there is a section
for users of the PROTON+ compiler, to discuss the compiler, and provide self help with pro-
grams written for PROTON BASIC, or download sample programs. The web site is well worth a
visit now and then, either to learn a bit about how other peoples code works or to request help
should you encounter any problems with programs that you have written.

Should you need to get in touch with us for any reason our details are as follows: -

Postal

Crownhill Associates Limited.
Old Station Yard

Station Road

Ely

Cambridgeshire.

CB6 3PZ.

Telephone
(+44) 01353 749990

Fax
(+44) 01353 749991

Email
sales@crownhill.co.uk

Web Sites

http://www.crownhill.co.uk
http://www.picbasic.org

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Table of Contents.

PROTON IDE OVEIVIEW ...ttt e ettt ettt e s e e e e e e e et ettt e e e e e e e e e e eessbbn e e e aeeeaaeeensnnns 10
LT U = =T PR TUPPPTTT 11
o1 e o]| o> S UESRUPSRRR 13
(@70 L0 [N =T o] (o] (= C PP 15
RESUIES VIBW ..ttt e e e e e e ettt e e e e e e e e e eeaaet i a e e e e e eeeeesesassnnaaeeeeeaeeennnnnn 18
[0 [0] g @ 0] ({0 1< PP 19
HIGhlIGhter OPtioNS... ..o 21
(@ o [T o o F= 1 (] o 22
Compile and Program OPLIONSuuuiiiiiieeiiiiiiiieieieeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeseeeeseessssseeessseeeeees 23
INStAlliNG @ PrOgramMIMET e e e et e e et e e e e et e e e e aaaneeeeenes 24
Creating a custom Programmer ENTIYeeeiiiiiiiiiiiiiiieiieiieeeieees 25
1Y/ [oTgoToToTo [Mo =T [T Cu PP UUPPPPPPPPTRN 27
LOAAET OPLIONS. ... 29
Loader Main TOOIDAooeeiiee et e e e e e e e et bbb e e e e e e e eeeenennes 30
IDE PIUGINS ..o s 31
NS 1 I = o = OO PEEPPR 32
L | QY 1= PR 32
ASSEMDIET WINUOW ... e e et e e e e e e e e et e aaba e e e e e e aeeeennnnns 33
Assembler Main TOOIDATiiii e e e e e e e e e e e e e e e eeeannnn 34
Assemble and Program TOOIDA...........ooiiiiiiii e e e aeae 35
ASSEMDIEr EQITOr OPTIONS. ... 35
Serial COMMUINICALONeuueiiiie ettt e e e et e et e e e e e e e e ee e bbb e e e e e e e eeeessnnnn s 36
Serial Communicator Main TOOIDAI..........cooviiiiii e e e 37
Labcenter ElectronicsS PROTEUS VSM.......iiiii et e e 40
ISIS Simulator QUICK Start GUITEceeuueeiiee e eee e e e e et e e e e e e e e eeaaaan s e e e e eeeeeenennes 40

PICMICTO™ DBVICESvieiiveieeeete ettt ettt ettt ettt et e et s et eteete e e teete e eteeaessateetensseeeeans 45
Limited 12-bit Device Compatibility. ..o 45
Programming Considerations for 12-bit DeVICES.cccciviiiiii i 46
DEVICE SPECITIC ISSUES ... a7
o [T 01 (1 [T £SO PURPPPUPPPTRRN 48
T I0= T 1= R ESPRPURUR 48
VANADIES ... ettt e e e e e 49
Floating Point Math ... 51
= TS PP SUPPPPPPPRPRRIN 54
[O70] 1] 1= g | £ PP R PPPT 57

3

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

137 11 70 1 PP 57
NUMETIC REPIESENIATIONS s 58
Quoted String Of CRArACIEIS.......ccveiiie e e e e e e eaaaas 58
POrtS and Other REQISTEIS ... s 58
GENEIAI FOMMALttt e e e e et ettt e e e e e e e e eeasatna s 59
Line ContinUation CharaCler 'coiiiieeeie e e e e e e e e e e e e e e eaaaaan e e e eeeeeeeennnnns 59
Creating @nd USING AlTAY S ...uu it ettt e e et e e e et e e e e et e e e e et e e e e et e e e aess e e eaessaeeeeaanaeees 61
Creating and USING StIINGSccoo oo 67
Creating and using VIRTUAL STRINGS With CDATA ... 73
Creating and using VIRTUAL Strings with EDATA ..., 75
STRING COMPAIISONS cotuuiiiiiiie e ettt e e et e e e e e e e e e et e e e e et e e e e et e e e eeata e eeeessaaeeeestaaeeesnnnaeees 77
REIAtIONAl OPEIATOIS ... s 80
= YeYolI=T: Tl Moo [ol @] o 1=T =1 0] £ PP 81
MATH OPERATORS ...ttt e e e e e e e e e et e e e et e e e et e e eaa e e eaneeeaneeeannnns 82
AN S PPUR RSP 91
N O @ 1 P PRR PP 92
ASIN s 93
N 17 2 N S PPRTSPP 94
O S ittt ettt ———————————————————————————————ttt———————————————t—————————————————————————. 95
D4 5 RO PPPRRRR 96
PP 97
0 OO PPPERRR 98
L O G L0 e ———_ 99
Y S PPPEPRR 100
L P 100
N 5 SO PEPRP 100
O X 101
RV ettt e e e e e e e e e e ——————teeee e e e e e —————taaaee e e e e aarrttaaaaeeaeaannnnes 102
SN oottt — et —————————————————————————————————tt———tttttttttttttttttttranrrrarrarrnraes 103
ST] P PEEPRRRSPPTRPRPRRRR 104
LI 2 1 105
D] OO PPPEPRR 106
I | 112
ASM.ENDASM ...ttt e e e ettt e e e e e e e et — e e e e e e e e e ——aaaea e e e raaaaaaas 114
T 115
4

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

BRANCH ... 1o ev ettt et ee e et ee et et e e et s et et et es et et et et et et et et es et et es et eees e s eeeereeeenes 116
BRANCHL ...ttt ettt et e et et et e e et et et et et e e e e et e e e et e ettt 117
BREAK ...t eveeee et eeeeeeseeeeeesees et et e s et et et et et et et et et et ettt ettt et ettt ettt 118
B S TART oottt ettt ettt ettt ettt ettt 120
BSTOP ..ottt ettt ee ettt ettt ettt ettt ettt ettt ettt et et ettt ettt 121
BRESTART ..ottt ee ettt e e et et e et et et e e et et et e et e e e e et ettt 121
BUSAGCK ..veeveeeeeeeeeeeeeeeeee et et et et e et e e e et et et et et et et et ee et et et e s et et es et ettt eee et enes 121
BUSIN oottt ettt e ettt e e e et et et ettt ettt e ettt ettt 122
BUSOUT ..ottt ettt e e ettt ee et et et et et et et et et es et et et et esees et et e e e s e s eeeeseeenes 125
BUTTON oottt e ettt e et et et e e et et et e et ettt e e e et et e et et e e 129
CALL 1ot e e e e e et e e e et e et e et et r e 131
010 7N 132
o =1 N[PP 137
01 =103 0)~ ST 138
o1 =1 =7 o YT 143
0 =Y =TT 146
03 ot = 150
o1 =7 = TP 151
o1 =7 == Y T 152
0 = TP 153
107011 = 1 00 154
010 10 N 11 =1 =TT 155
0117 o T 156
0102370] =3P 157
0011V 1 =3 158
DATA oottt et ee e et et et ettt ettt ettt ettt ettt ettt ettt ettt ettt 159
5] =TT 161
5

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

DECLARE ... et e e e e et et b a e aeeaees 162
LT O I T o] = PP 162
TRIGONOMETRY DECIAIES.uuiiiiiieiiiiiie e 165
ADIN DECIAIES. ..uuuieeieeeee ettt ettt et et e e e ettt e e e e e e e e e eeatas e e e eeeaeeeessssnnaaaeeeeaeennnnnnn 166
BUSIN - BUSOUT DECIAIES.u ittt e e e e 166
HBUSIN - HBUSOUT DECIAIE.ccoiieeiiiiiiiee e eeeeeies s e e e e eetans e e e e e e e e eeaaaannneeeeeaaeeennnnnn 167
HSERIN, HSEROUT, HRSIN and HRSOUT Declares............uuueiiiiiiiiiiiiiiiiiieeeeeeeeeeeiiees 167
Second USART Declares for use with HRSIN2, HSERIN2, HRSOUT2 and HSEROUT2.168
HPWIM DECIAIES.niiiiiii et e e e e e e e e e e e e e aa e e e e ara e 169
ALPHANUMERIC (Hitachi) LCD PRINT DeCIares.cccceuevieeuiiiiiiieeeeeeeeeeiiiieeee e e e eeeeeenennnn 170
GRAPHIC LCD DECIAIES. ...vuiiiiieiie ettt e e e e e e et e e e e e aa e e e e aaaanas 171
SAMSUNG KS0108 Graphic LCD Specific DeCIares.ccoceeiiiiis 171
TOSHIBA T6963 Graphic LCD specific Declares.ccoooevviiiiiiiiiiiiiecceieeeeeeee e 172
KEYPAD DECIAIE. .. .cceieeeeeiitiee ettt s e e et s e e e e e e e e ee et n e e e e eeeeeeeasnnnnaeeeeeeeeesnnnnnn 174
RSIN - RSOUT DECIAIES. ..o e e e 175
SERIN - SEROUT DECIAIE.ceeeiiiiiieie ettt e s 176
SHIN - SHOUT DECIAIE.ccceieeeeiiiiee ettt e et e e e e e e e e e e eeaasaa e e e e e e eaeeeeaannneens 177
Compact Flash Interface DECIAreS...........vi i 177
CRYSTAL FrequENCY DECIATE.ouuiiiiiiiiiiieieeeeeeeeeee ettt eeeeeeeees 179

DE LAY M S e et e e e e et e e e e e e et e aa b e e aeeees 180

I3 0 1 181

DEVICE ... e e ettt e e e e e et e e e e et e ettt e e aeeaes 182

15] 183

3] PP 184

I3 1S = 188

D 1Y/ L 16 PRSPPI 189

3 N 190

EINABLE ...ttt e ettt e e e e et e e aa e e e aaaes 195
Software INterruptS iN BASIC ... 196

e N 5 PP RTSPPPP 197

] I 198

BV R T E oo e e ettt e e e e e e ettt e e e e et e b b eaeeees 199

O] N N I I 200

=l 1@ 16 PRSPPI 202

T 1] O 204

LT 1516 SRS PTPT R 205

0 I 1 S 209

HB S T A R T ettt e oo e e e ettt ettt e e e e e e e e e ettt tb e e e e e e et e et b e e e e eeees 210

= 1S T 1 211

HB R E S T A R T oo e e ettt e e e e e e e e et e ettt e e e e e e e e et e aaaba e e e e eeeees 211

=1 U S 211

HBUSIN oot e e e e e ettt bt e e e e e e e e et e ettt e e e e e e e e et e ebban e e e eeeeees 212

=1 U 1 215

6

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

HIGH ..ottt e e e e e e e e e et a e et e e e e e e e e e e b b rba et e e e aeeeaea i nrnrraraaaaaeaaaas 218
LA 219
[S | P EREPR R ROPPRPPPSRRR 220
HRSOUT .. 226
HSERIN . ..ottt e e e e e ettt e e e e e e e e e st ta e et eeeeee e e e s assbbaeaeeeeeeaeannnnnnrnanaaeaeeeaaas 231
L ST {0 1 237
IF..THEN..ELSEIF..ELSE..ENDIFoottiiiiiiiiiiiiiiet e e e a e e e e e e ennnes 242
N L 5 244
LN C ettt e e e e e e e e e e ——————taeeee e e e e aaa————taaaeeeeaanaaa—raraaaeeeeeaannnnes 246
L1 P 247
N L= SO PEPRR 248
IO 19 1 L 5 249
LD WV RITE <.ttt ettt e e e e e e e et et e et e e e e e e e e e s abbbb s e e e eeeeeaeennnnnnrraraaaaaeaaans 251
019 1 253
0 OO ER PP ROPTRPPPRRRR 258
0 PP ERPPR R ROPRPPRRRRR 259
LB T oottt e e e e e e e e ettt e aaeeeeeaeta— i aaeeaeeeeerraaa, 261
LN E ettt — e e e e e e e e et ——————aa e e e e e e et rr——rtaaeeeeeaannrnrraraaaaaeaaaas 263
01N 10 264
[0 7Y] = I P ERPPR S ROPRTRPPPRRRR 265
LOOKDOWN. ... 266
LOOKDOWNL ...ttt ettt e e e e e ettt e e e e e e e e s b et e e eaeeeeessasssbseaaeeeeeaeeannssnssneaaeaaeeaans 267
LOOKUP .. 268
LOOKUPL ...ttt ettt e ettt e e e e e e e e et et e e e e e e e e e e e s sbsbbaeaaeeeeeaeesnnssnrnanaaeaaeeaans 269
OV L 270
LIREAD ...ttt ettt e et e e e e e e e e e ———— et e e e e e e e e ettt —rttaeaeeaaaaararraraaaaaaaaaas 271
LREADS, LREADLG, LREADSZ ...ttt e e et e e e e e e e e e e eaneeeanns 274
IMIIDS .ottt e et e e e e e e e e et ——————aae e e e e e a—————rttaaaeeaeaaanrnraaraaaaaeaaas 276
(0])V T 1 1 LSRR 278
(@ I 1 1 1 | SR EPR RSP 280
ON GOSUB......cetiiiteeitteeteeeeee ettt eaeeeessaeetsssestssessssssssssssssssssssssssssssssssssessnsnnnnnsnnnnnnnnnnes 281
ON _INTERRUPT L.ttt ettt e e e e e e e ettt e e e e e e e e e s s b b eeaaaeeeeessnssnenaeeens 283

INILIALING AN INTEITUPL. oo 284

Format of the interrupt NaNAIEr...... ... 285
ON_LOW _INTERRUPT ...ttt ettt en e 286
(@ 11 1 = N PP EPR PP 288
(@] (PSSP 289

7

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

OREAD .ottt e e e e e e e —————— e e e e e e e e ————aaeeea e e e nraataaaaaaaaaas 290
O XL I 295
SR PEPRP 297
e G P 298
1 SO PPPRPRR 299
0 1 301
O S PPPEPRR 302
o N ISP PPPRRRRR 304
1NN SO PPPEPRR 305

Using a Samsung KS0108 GraphiC LCDcoooiiiiiiiiiiii e, 310

Using a Toshiba T6963 GraphiC LCDcoiiiiiiii e 315
Y1 318
ST L N SO PEPRR 319
PU S H e e e — e e e e e e e e e e ————aaeae e e e e e a————aaaaaaeeaaaaanaaes 320
P VM e et e e e e e e ——————aeee e e e e e ———————aaaee e e e e a———araaaaeaeaaaannnes 325
RANDOM ...ttt et e oottt e e e e e e e e sttt e et e aeeae e e e s s s b e e et eaaaeee e e e anarraraaaaeeeeaannnnes 326
15 1 327
O | SR PEPRP 328
I3 P 331
REM oo e e e et ————e e e e e e e e e ——————aeaee e e e e aa——araaaaeaaeaannnes 333
o e N I O I I P 334
RESTORE ... cttteitie ettt ettt e e e e e e e ettt e e e e e e e e e s baae et eeeeeeeeeanssbaabanaaeeeeeeennnnnes 335
1 1 336
RETURN L.ttt e e ettt e e e e e e e st e e e e e e e e e s e s s baaeeeeeeeeeeeeassbsseanaaeeeeeeeannnnnes 337
RIGH T ...t e e e e e e e et e e e e e e e e e e e e b a—— e e e e e e e e e e e e e aarraaaaeaeeaaaaanaees 339
R SIN ittt e e e e e e e e e e ———————a e e e e e e e e ——————taaaeeeeaannaararaaaaeeaeaannnes 341
1@ 16 I PSP PPPEPRRRRR 346
SEED ittt — e e e e e e e —————aaaeeeaaa—————raaaaeaaaaaanrraraaaaaaaaas 351
SELECT..CASE..ENDSELECT ..ot e e e e e e e e an s 352
SERIN ettt ettt e e e e e e e e e e e e —— ittt ——aeae e e e e ————araaeeeaaa e nnraaraaaaaaaaaas 355
SEROUT ittt e e e e e ettt e e e e e e e e e e e ——————aeee e e e e e e ————araaeaeaaaaaaaara—raaaaaaaaaas 362
SERVO ittt e e e e e ————aea e e e e et ————aaeaeaa e e ar—araaaaaaaaaas 370
] I N 372
S = O 1] O @ Y IR EPPRRPSPORPRPRRRR 373
] 374
S o | PP EPPURRSPPTRPPPRRPR 375
] [1O P 377

8

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

SINOOZE ...ttt e e oottt e e e e e e e e e bttt et e e e e e e e e e e b a ittt e e eeea e e e nnrrrraaaaaaaaaas 379
Y I PRSPPI 380
1@ N | P EPR PO 382
1@ 1\ PSPPSR 383
1@ 11 | PP PRSP 384
Y 1 PP 385
3 I 4 O EPEPR PO 386
Y I PRSPPI 387
Y PRSPPI 389
1Y/ 1 2T SR ERR PP 390
TOGGLE ... s 391
TOLOWER ..ottt e ettt e e e e e e e s bbb e e e e e e e e e e e e s st s b e aeaaaeeeeeannssnanaeeens 392
I 18 1 SN 394
TOSHIBA _COMMAND.cttiiie ettt e e e e e e s st e e e e e e e e s s st aaeaaaeaeeeeaansssnneeees 396
TOSHIBA UDG ... ittt e e e e e e e e et e e e e e e e e e e e s st et e e e e e e e e e ansnssenaeeens 400
O 1 0 N 402
(05 =1 1N P EREPRROPOTRPPPRRRR 403
L0 1Y = 1 406
USBIN fOr 16-Dit COIe GEVICES.ceviiiiiiie et e e e s 408

L0 1Y = 1 1 409
USBOUT for 16-Dit COre deVICES.uiiiiiiiieee s 410

O 1 = 1 = 412
LY S EPPR PO 413
R 4 I P 415
WHILE...MWVENDcoiiiiiiiiitii ettt e e et e e e e e e e e ettt e e e e e e e e e s ssataeeaeaeeeeaennnsnnes 416
DL 417
DO 16 I PR EPR PO 419
Protected COmMPIlEr WOTAS ... 421

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

PROTON IDE Overview

Proton IDE is a professional and powerful visual Integrated Development Environment (IDE)
designed specifically for the Proton Plus compiler. Proton IDE is designed to accelerate product
development in a comfortable user friendly environment without compromising performance,
flexibility or control.

Code Explorer
Possibly the most advanced code explorer for PIC based development on the market. Quickly
navigate your program code and device Special Function Registers (SFRs).

Compiler Results
Provides information about the device used, the amount of code and data used, the version
number of the project and also date and time. You can also use the results window to jump to
compilation errors.

Programmer Integration

The Proton IDE enables you to start your preferred programming software from within the de-
velopment environment . This enables you to compile and then program your microcontroller
with just a few mouse clicks (or keyboard strokes, if you prefer).

Integrated Bootloader
Quickly download a program into your microcontroller without the need of a hardware pro-
grammer. Bootloading can be performed in-circuit via a serial cable connected to your PC.

Real Time Simulation Support

Proteus Virtual System Modelling (VSM) combines mixed mode SPICE circuit simulation, ani-
mated components and microprocessor models to facilitate co-simulation of complete micro-
controller based designs. For the first time ever, it is possible to develop and test such designs
before a physical prototype is constructed.

Serial Communicator

A simple to use utility which enables you to transmit and receive data via a serial cable con-
nected to your PC and development board. The easy to use configuration window allows you to
select port number, baudrate, parity, byte size and number of stop bits. Alternatively, you can
use Serial Communicator favourites to quickly load pre-configured connection settings.

Online Updating
Online updates enable you to keep right up to date with the latest IDE features and fixes.

Plugin Architecture
The Proton IDE has been designed with flexibility in mind with support for IDE plugins.

Supported Operating Systems
Windows 98, 98SE, ME, NT 4.0 with SP 6, 2000, XP (recommended)

Hardware Requirements

233 MHz Processor (500 MHz or higher recommended)
64 MB RAM (128 MB or higher recommended)

40 MB hard drive space

16 bit graphics card.

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Menu Bar

File Menu
New - Creates a new document. A header is automatically generated, showing informa-
tion such as author, copyright and date. To toggle this feature on or off, or edit the
header properties, you should select editor options.

Open - Displays a open dialog box, enabling you to load a document into the Proton
IDE. If the document is already open, then the document is made the active editor page.

Save - Saves a document to disk. This button is normally disabled unless the document
has been changed. If the document is 'untitled’, a save as dialog is invoked. A save as
dialog is also invoked if the document you are trying to save is marked as read only.

Save As - Displays a save as dialog, enabling you to name and save a document to
disk.

Close - Closes the currently active document.

Close All - Closes all editor documents and then creates a new editor document.
Reopen - Displays a list of Most Recently Used (MRU) documents.

Print Setup - Displays a print setup dialog.

Print Preview - Displays a print preview window.

Print - Prints the currently active editor page.

Exit - Enables you to exit the Proton IDE.

Edit Menu
Undo - Cancels any changes made to the currently active document page.

Redo - Reverse an undo command.

Cut - Cuts any selected text from the active document page and places it into the clip-
board. This option is disabled if no text has been selected. Clipboard data is placed as
both plain text and RTF.

Copy - Copies any selected text from the active document page and places it into the
clipboard. This option is disabled if no text has been selected. Clipboard data is placed
as both plain text and RTF.

Paste - Paste the contents of the clipboard into the active document page. This option is
disabled if the clipboard does not contain any suitable text.

Delete - Deletes any selected text. This option is disabled if no text has been selected.
Select All - Selects the entire text in the active document page.

Change Case - Allows you to change the case of a selected block of text.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Find - Displays a find dialog.
Replace - Displays a find and replace dialog.

Find Next - Automatically searches for the next occurrence of a word. If no search word
has been selected, then the word at the current cursor position is used. You can also se-
lect a whole phrase to be used as a search term. If the editor is still unable to identify a
search word, a find dialog is displayed.

View Menu

Help

Results - Display or hide the results window.

Code Explorer - Display or hide the code explorer window.

Loader - Displays the MicroCode Loader application.

Loader Options - Displays the MicroCode Loader options dialog.

Compile and Program Options - Displays the compile and program options dialog.
Editor Options - Displays the application editor options dialog.

Toolbars - Display or hide the main, edit and compile and program toolbars. You can
also toggle the toolbar icon size.

Plugin - Display a drop down list of available IDE plugins.

Online Updates - Executes the IDE online update process, which checks online and in-
stalls the latest IDE updates.

Menu

Help Topics - Displays the helpfile section for the toolbar.

Online Forum - Opens your default web browser and connects to the online Proton Plus
developer forum.

About - Display about dialog, giving both the Proton IDE and Proton compiler version
numbers.

Main Toolbar

\j New

Creates a new document. A header is automatically generated, showing information such as
author, copyright and date. To toggle this feature on or off, or edit the header properties, you
should select the editor options dialog from the main menu.

3
Open

Displays a open dialog box, enabling you to load a document into the Proton IDE. If the docu-

ment is already open, then the document is made the active editor page.

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

HSave

Saves a document to disk. This button is normally disabled unless the document has been
changed. If the document is 'untitled’, a save as dialog is invoked. A save as dialog is also in-
voked if the document you are trying to save is marked as read only.

J& Cut

Cuts any selected text from the active document page and places it into the clipboard. This op-
tion is disabled if no text has been selected. Clipboard data is placed as both plain text and
RTF.

'—JCopy

Copies any selected text from the active document page and places it into the clipboard. This
option is disabled if no text has been selected. Clipboard data is placed as both plain text and
RTF.

|Paste
Paste the contents of the clipboard into the active document page. This option is disabled if the
clipboard does not contain any suitable text.

iQUndo

Cancels any changes made to the currently active document page.

(HRedo

Reverse an undo command.

“%=Print
Prints the currently active editor page.

Edit Toolbar

¥)
“BFind
Displays a find dialog.

assFind and Replace
Displays a find and replace dialog.

2= Indent

Shifts all selected lines to the next tab stop. If multiple lines are not selected, a single line is
moved from the current cursor position. All lines in the selection (or cursor position) are moved
the same number of spaces to retain the same relative indentation within the selected block.
You can change the tab width from the editor options dialog.

Z":'Outdent

Shifts all selected lines to the previous tab stop. If multiple lines are not selected, a single line is
moved from the current cursor position. All lines in the selection (or cursor position) are moved
the same number of spaces to retain the same relative indentation within the selected block.
You can change the tab width from the editor options dialog.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

»=Block Comment
Adds the comment character to each line of a selected block of text. If multiple lines are not se-
lected, a single comment is added to the start of the line containing the cursor.

=

@=Block Uncomment
Removes the comment character from each line of a selected block of text. If multiple lines are
not selected, a single comment is removed from the start of the line containing the cursor.

Compile and Program Toolbar

“ICompile

Pressing this button, or F9, will compile the currently active editor page. The compile button will
generate a *.hex file, which you then have to manually program into your microcontroller.
Pressing the compile button will automatically save all open files to disk. This is to ensure that
the compiler is passed an up to date copy of the file(s) your are editing.

~ Compile and Program
Pressing this button, or F10, will compile the currently active editor page. Pressing the compile
and program button will automatically save all open files to disk. This is to ensure that the com-
piler is passed an up to date copy of the file(s) your are editing.

Unlike the compile button, the Proton IDE will then automatically invoke a user selectable appli-
cation and pass the compiler output to it. The target application is normally a device program-
mer, for example, MicroCode Loader. This enables you to program the generated *.hex file into
your MCU. Alternatively, the compiler output can be sent to an IDE Plugin. For example, the
Labcenter Electronics Proteus VSM simulator. You can select a different programmer or Plugin
by pressing the small down arrow, located to the right of the compile and program button...

Install New Programmer...

v |MicroCode Loader

microEngineering Labs Serial Programmer

B2 Labcenter Electronics PROTEUS YSM., ..

In the above example, MicroCode Loader has been selected as the default device programmer.
The compile and program drop down menu also enables you to install new programming soft-
ware. Just select the 'Install New Programmer..." option to invoke the programmer configuration
wizard. Once a program has been compiled, you can use F11 to automatically start your pro-
gramming software or plugin. You do not have to re-compile, unless of course your program
has been changed.

@i oader Verify

This button will verify a *.hex file (if one is available) against the program resident on the micro-
controller. The loader verify button is only enabled if MicroCode Loader is the currently selected
programmer.

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

“Loader Read

This button will upload the code and data contents of a microcontroller to MicroCode Loader.
The loader read button is only enabled if MicroCode Loader is the currently selected program-
mer.

3%«}“Loader Erase
This button will erase program memory for the 18Fxxx(x) series of microcontroller. The loader
erase button is only enabled if MicroCode Loader is the currently selected programmer.

%Loader Information
This button will display the microcontroller loader firmware version. The loader information but-
ton is only enabled if MicroCode Loader is the currently selected programmer.

Code Explorer

The code explorer enables you to easily navigate your program code. The code explorer tree
displays your currently selected processor, include files, declares, constants, variables, alias
and modifiers, labels, macros and data labels.

Device Node
The device node is the first node in the explorer tree. It displays your currently selected proces-
sor type. For example, if you program has the declaration: -

DEVICE 16F877

then the name of the device node will be 16F877. You don't need to explicitly give the device
name in your program for it to be displayed in the explorer. For example, you may have an in-
clude file with the device type already declared. The code explorer looks at all include files to
determine the device type. The last device declaration encountered is the one used in the ex-
plorer window. If you expand the device node, then all Special Function Registers (SFRs) be-
longing to the selected device are displayed in the explorer tree. Clicking on a SFR node will
invoke the SFR View window, as shown below

MicroCode SFR View

Information for OPTION_REG (16F377)

The following infarmation is a guide only. You should always refer to the relevant Microchip datasheet
for the latest device configuration information.

7 6 5 4 3 2 1 0
NOT_REBPU INTEDG TOCS TOSE PSA P52 P51 P50

Code Generation

The IDE can automatically generate the code needed for you to start using the above bit names. Just
zelect the option you want from the following links...

O Generate and insert code at the current cursor position
@ Don't generate any code, just exit

The SFR view displays all bitnames that belong to a particular register. Clicking a bitname will
display a small hint window that gives additional information about a bithame. For example, if
you click on TOCS, then the following hint is displayed: -

TMRO Clock Source Selecti

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

The SFR view window can automatically generate the code needed for you to start using the
bitnames in your program. All you need to do is place your cursor at the point in your program
where you want the code placed, and then select the generate code option. Using the above
OPTION_REG example above will generate: -

Symbol PSO = OPTION_REG.0 ' Prescaler Rate Select
Symbol PS1 = OPTION_REG.1 ' Prescaler Rate Select
Symbol PS2 = OPTION_REG.2 ' Prescaler Rate Select
Symbol PSA = OPTION_REG.3 ' Prescaler Assignment
Symbol TOSE = OPTION_REG.4 ' TMRO Source Edge Select
Symbol TOCS = OPTION_REG.5 " TMRO Clock Source Select
Symbol INTEDG = OPTION_REG.6 "Interrupt Edge Select

Symbol NOT_RBPU = OPTION_REG.7 ' PORTB Pull-up Enable

Please note that the SFR View window is not currently implemented for all device types.

Include File Node

When you click on an include file, the IDE will automatically open that file for viewing and edit-
ing. Alternatively, you can just explorer the contents of the include file without having to open it.
To do this, just click on the micon and expand the node. For example: -

Code Explorer - B

H) 16F877
= [Indudes
= i) MyIndude.Bas
=- [~ Includes
= [i=} proton_4.inc
1 [Dedares
+-) Constants
=l- [Constants
|2 TransferMax
|2 TransferMin
=+ [~ Variables
|¥]| Index
|V Transfer
= [Dedares
[B] ¥TAL
= [Constants
|2 MaxValue
2] Minvalue

In the above example, clicking on the = icon for MyInclude.bas has expanded the node to re-
veal its contents. You can now see that MyInclude.bas has two constant declarations called
TransferMax and TransferMin and also two variables called Index and Transfer. The include file
also contains another include file called proton_4.inc. Again, by clicking the = icon, the contents
of proton_4.inc can be seen, without opening the file. Clicking on a declaration name will open
the include file and automatically jump to the line number. For example, if you were to click on
TransferMax, the include file Mylnclude.bas would be opened and the declaration TransferMax
would be marked in the IDE editor window.

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

When using the code explorer with include files, you can use the explorer history buttons to go
backwards or forwards. The explorer history buttons are normally located to the left of the main
editors file select tabs,

& History back button
& History forward button

Additional Nodes

Declares, constants, variables, alias and modifiers, labels, macros and data label explorer
nodes work in much the same way. Clicking on any of these nodes will take you to its declara-
tion. If you want to find the next occurrence of a declaration, you should enable automatically
select variable on code explorer click from VIEW...EDITOR OPTIONS.

Selecting this option will load the search name into the 'find dialog' search buffer. You then just
need to press F3 to search for the next occurrence of the declaration in your program.
To sort the explorer nodes, right click on the code explorer and check the Sort Nodes option.

Explorer Warnings and Errors
The code explorer can identify duplicate declarations. If a declaration duplicate is found, the
explorer node icon changes from its default state to a L. For example,

DIM MyVar AS BYTE
DIM MyVar AS BYTE

The above example is rather simplistic. It is more likely you see the duplicate declaration error
in you program without an obvious duplicate partner. That is, only one single duplicate error
symbol is being displayed in the code explorer. In this case, the declaration will have a dupli-
cate contained in an include file. For example,

Code Explorer L < |

= [y 16F877
= [Incudes
= [i=} MyIncude.Bas
= [Includes
= 1=} proton_4.inc
+-) Dedares
+-) Constants
= 3 Constants
|3 TransferMax
|2 TransferMin
= [~ Variables
|¥] Index
|V Transfer
= [~ Dedares
|0 XTAL
=l I3 Constants
|| Maxvalue
2] MinValue
| 3¢ TransferMax

The declaration TransferMax has been made in the main program and marked as a duplicate.
By exploring your include files, the problem can be identified. In this example, TransferMax has
already been declared in the include file MyInclude.bas

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Some features of the compiler of not available for some MCU types. For example, you cannot
have a string declaration when using a 14 core part (for example, the 16F877). If you try to do
this, the explorer node icon changes from its default state and displays a “J. You will also see
this icon displayed if the SFR View feature for a device is not available.

Notes

The code explorer uses an optimised parse and pattern match strategy in order to update the
tree in real time. The explorer process is threaded so as not to interfere or slow down other IDE
tasks, such as typing in new code. However, if you run computationally expensive background
tasks on your machine (for example, circuit simulation) you will notice a drop in update per-
formance, due to the threaded nature of the code explorer.

Results View
The results view performs two main tasks. These are (a) display a list of error messages,
should either compilation or assembly fail and (b) provide a summary on compilation success.

Compilation Success View

By default, a successful compile will display the results success view. This provides information
about the device used, the amount of code and data used, the version number of the project
and also date and time.

Results ~ B4
Compilation Success for Target Device 16F877 16 July 2004
version 0.0.0.1 13:24:38

L I | 7385 program words used from a possible 5192 (39.90%:)
[| 185 variable bytes used from a possible 368 (44.84%%)

If you don't want to see full summary information after a successful compile, select
VIEW...EDITOR OPTIONS from the IDE main menu and uncheck display full summary after
successful compile. The number of program words (or bytes used, if its a 16 core device) and
the number of data bytes used will still be displayed in the IDE status bar.

Version Numbers

The version number is automatically incremented after a successful build. Version numbers are
displayed as major, minor, release and build. Each number will rollover if it reaches 256. For
example, if your version number is 1.0.0.255 and you compile again, the number displayed will
be 1.0.1.0. You might want to start you version information at a particular number. For example
1.0.0.0. To do this, click on the version number in the results window to invoke the version in-
formation dialog. You can then set the version number to any start value. Automatic increment-
ing will then start from the number you have specified. To disable version numbering, click on
the version number in the results window to invoke the version information dialog and then un-
check enable version information.

Date and Time
Date and time information is extracted from the generated *.hex file and is always displayed in
the results view.

Success - With Warnings!

A compile is considered successful if it generates a *.hex file. However, you may have gener-
ated a number of warning messages during compilation. Because you should not normally ig-
nore warning messages, the IDE will always display the error view, rather than the success
view, if warnings have been generated.

Crowmhill Acenriatac | imitad 200K _ All Rinhte RDacania A Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

To toggle between these different views, you can do one of the following click anywhere on the
IDE status bar right click on the results window and select the Toggle View option.

Compilation Error View
If your program generates warning or error messages, the error view is always displayed.

Results ~ B9

@ ERROR [Line 19] : Variable " & ' not found! (induderoot.bas)
@ ERROR [Line 20] : Variable ' LABEL ' not found! (includeroot.bas)

Clicking on each error or warning message will automatically highlight the offending line in the
main editor window. If the error or warning has occurred in an include file, the file will be
opened and the line highlighted. By default, the IDE will automatically highlight the first error
line found. To disable this feature, select VIEW...EDITOR OPTIONS from the IDE main menu
and uncheck automatically jump to first compilation error. At the time of writing, some compiler
errors do not have line numbers bound to them. Under these circumstances, Proton IDE will be
unable to automatically jump to the selected line.

Occasionally, the compiler will generate a valid ASM file but warnings or errors are generated
during assembly. Proton IDE will display all assembler warnings or error messages in the error
view, but you will be unable to automatically jump to a selected line.

Editor Options

The editor options dialog enables you to configure and control many of the Proton IDE fea-
tures. The window is composed of four main areas, which are accessed by selecting the
General, Highlighter, Program Header and Online Updating tabs.

Show Line Numbers in Left Gutter
Display line numbers in the editors left hand side gutter. If enabled, the gutter width is in-
creased in size to accommodate a five digit line number.

Show Right Gutter
Displays a line to the right of the main editor. You can also set the distance from the left margin
(in characters). This feature can be useful for aligning your program comments.

Use Smart Tabs

Normally, pressing the tab key will advance the cursor by a set number of characters. With
smart tabs enabled, the cursor will move to a position along the current line which depends on
the text on the previous line. Can be useful for aligning code blocks.

Convert Tabs to Spaces

When the tab key is pressed, the editor will normally insert a tab control character, whose size
will depend on the value shown in the width edit box (the default is four spaces). If you then
press the backspace key, the whole tab is deleted (that is, the cursor will move back four
spaces). If convert tabs to spaces is enabled, the tab control character is replaced by the space
control character (multiplied by the number shown in the width edit box). Pressing the back-
space key will therefore only move the cursor back by one space. Please note that internally,
the editor does not use hard tabs, even if convert tabs to spaces is unchecked.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Automatically Indent

When the carriage return key is pressed in the editor window, automatically indent will advance
the cursor to a position just below the first word occurrence of the previous line. When this fea-
ture is unchecked, the cursor just moves to the beginning of the next line.

Show Parameter Hints
If this option is enabled, small prompts are displayed in the main editor window when a particu-
lar compiler keyword is recognised. For example,

DELAYMS

[DELAYMS Valus or Variable or Expreszion]

Parameter hints are automatically hidden when the first parameter character is typed. To view
the hint again, press F1. If you want to view more detailed context sensitive help, press F1
again.

Open Last File(s) When Application Starts
When checked, the documents that were open when Proton IDE was closed are automatically
loaded again when the application is restarted.

Display Full Filename Path in Application Title Bar

By default, Proton IDE only displays the document filename in the main application title bar
(that is, no path information is includes). Check display full pathname if you would like to display
additional path information in the main title bar.

Prompt if File Reload Needed

Proton IDE automatically checks to see if a file time stamp has changed. If it has (for example,
and external program has modified the source code) then a dialog box is displayed asking if the
file should be reloaded. If prompt on file reload is unchecked, the file is automatically reloaded
without any prompting.

Automatically Select Variable on Code Explorer Click

By default, clicking on a link in the code explorer window will take you to the part of your pro-
gram where a declaration has been made. Selecting this option will load the search name into
the 'find dialog' search buffer. You then just need to press F3 to search for the next occurrence
of the declaration in your program.

Automatically Jump to First Compilation Error
When this is enabled, Proton IDE will automatically jump to the first error line, assuming any
errors are generated during compilation.

Automatically Change ldentifiers to Match Declaration

When checked, this option will automatically change the identifier being typed to match that of
the actual declaration. For example, if you have the following declaration,

DIM Myindex AS BYTE

and you type 'myindex’ in the editor window, Proton IDE will automatically change 'myindex’ to

‘MyIndex'. Identifiers are automatically changed to match the declaration even if the declaration
is made in an include file.

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Please note that the actual text is not physically changed, it just changes the way it is displayed
in the editor window. For example, if you save the above example and load it into wordpad or
another text editor, it will still show as 'myindex'. If you print the document, the identifier will be
shown as 'Mylndex'. If you copy and paste into another document, the identifier will be shown
as 'Mylindex’, if the target application supports formatted text (for example Microsoft Word).
In short, this feature is very useful for printing, copying and making you programs look consis-
tent throughout.

Clear Undo History After Successful Compile

If checked, a successful compilation will clear the undo history buffer. A history buffer takes up
system resources, especially if many documents are open at the same time. It's a good idea to
have this feature enabled if you plan to work on many documents at the same time.

Display Full Summary After Successful Compile

If checked, a successful compilation will display a full summary in the results window. Disabling
this option will still give a short summary in the IDE status bar, but the results window will not be
displayed.

Default Source Folder

Proton IDE will automatically go to this folder when you invoke the file open or save as dialogs.
To disable this feature, uncheck the 'Enabled' option, shown directly below the default source
folder.

Highlighter Options

Item Properties
The syntax highlighter tab lets you change the colour and attributes (for example, bold and
italic) of the following items: -

Comment

Device Name
Identifier

Keyword (ASM)
Keyword (Declare)
Keyword (Important)
Keyword (Macro Parameter)
Keyword (Proton)
Keyword (User)
Number

Number (Binary)
Number (Hex)

SFR

SFR (Bitname)
String

Symbol

The point size is ranged between 6pt to 16pt and is global. That is, you cannot have different
point sizes for individual items.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Reserved Word Formatting
This option enables you to set how Proton IDE displays keywords. Options include: -

Database Default - the IDE will display the keyword as declared in the applications keyword
database.

Uppercase - the IDE will display the keyword in uppercase.
Lowercase - the IDE will display the keyword in lowercase.
As Typed - the IDE will display the keyword as you have typed it.

Please note that the actual keyword text is not physically changed, it just changes the way it is
displayed in the editor window. For example, if you save your document and load it into word-
pad or another text editor, the keyword text will be displayed as you typed it. If you print the
document, the keyword will be formatted. If you copy and paste into another document, the
keyword will be formatted, if the target application supports formatted text (for example Micro-
soft Word).

Header options allows you to change the author and copyright name that is placed in a header
when a new document is created. For example: -

R Rk b Sk R R R R R Sk O Sk O R SRR R Sk o S R ROk I S O kO S R R S R R

"* Nanme : UNTI TLED. BAS *
"* Author : David John Barker *
"* Notice : Copyright (c) 2004 Mecani que *
tx . All Rights Reserved *
* Date : 12/ 05/ 04 *
"* Version : 1.0 *
"* Notes *
* *
**********;c***

If you do not want to use this feature, simply deselect the enable check box.

On Line Updating

Dial Up Connection

Checking the 'Dial Up Connection' option will force the Proton IDE to automatically check for
updates every time you start the software. It will only do this if you are currently connected to
the internet. Proton IDE will not start dialling up your ISP every time you start the program!

LAN or Broadband Connection

Checking the 'LAN or Broadband Connection' option will force Proton IDE to automatically
check for updates every time you start the software. This option assumes you have a perma-
nent connection to the internet.

Manual Connection

Checking this option means Proton IDE will never check for online updates, unless requested
to do so from the main menu.

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Compile and Program Options

Compiler Tab

Compile and Program Options

Compiler l Prograrmmer]

c:\proton compiler

’Firu:l Autornatically. ..] ’ Find Manually...]

x| [rep

You can get the Proton IDE to locate a compiler directory automatically by clicking on the find
automatically button. The auto-search feature will stop when a compiler is found.

Alternatively, you can select the directory manually by selecting the find manually button. The
auto-search feature will search for a compiler and if one is found, the search is stopped and the
path pointing to the compiler is updated. If you have multiple versions of a compiler installed on
your system, use the find manually button. This ensures the correct compiler is used by the
IDE.

Programmer Tab

Compile and Program Options

Compiler Prugrammer]
Default Programmer | MicroCode Loader b
Install Mew Programmer...] ’ Delete Programmer Entry]
I QK l [Help]

Use the programmer tab to install a new programmer, delete a programmer entry or edit the
currently selected programmer. Pressing the Install New Programmer button will invoke the
install new programmer wizard. The Edit button will invoke the install new programmer wizard in
custom configuration mode.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Installing a Programmer

The Proton IDE enables you to start your preferred programming software from within the de-
velopment environment . This enables you to compile and then program your microcontroller
with just a few mouse clicks (or keyboard strokes, if you prefer). The first thing you need to do
is tell Proton IDE which programmer you are using. Select VIEW...OPTIONS from the main
menu bar, then select the PROGRAMMER tab. Next, select the Add New Programmer button.
This will open the install new programmer wizard.

Install New Programmer

Available Programmers

microEngineering Labs Serial Programmer -
microEngineering Labs EPIC

ELMEC Device Programmer

PICALL Programmer L
(%) Install selected programmer

{:} Create a custom programmer entry

[(vexts | [conea |

Select the programmer you want Proton IDE to use, then choose the Next button. Proton IDE
will now search your computer until it locates the required executable. If your programmer is not
in the list, you will need to create a custom programmer entry.

Your programmer is now ready for use. When you press the Compile and Program button on
the main toolbar, you program is compiled and the programmer software started. The *.hex file-
name and target device is automatically set in the programming software (if this feature is sup-
ported), ready for you to program your microcontroller.

You can select a different programmer, or install another programmer, by pressing the small
down arrow, located to the right of the compile and program button, as shown below
Install New Programmer...

v |MicroCode Loader

microEngineering Labs Serial Programmer

B2 Labcenter Electronics PROTEUS YSM., ..

Crowmhill Acenriatac | imitad 200K _ All Rinhte Dacania A Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Creating a custom Programmer Entry

In most cases, Proton IDE has a set of pre-configured programmers available for use. How-
ever, if you use a programmer not included in this list, you will need to add a custom program-
mer entry. Select VIEW...OPTIONS from the main menu bar, then select the PROGRAMMER
tab. Next, select the Add New Programmer button. This will open the install new programmer
wizard. You then need to select ‘create a custom programmer entry', as shown below

Install New Programmer

Available Proogrammers
51 -

) Install selected programmer

{3_} Create a custorn programimer entry

Mext =] ’ Cancel

Select Display Name

The next screen asks you to enter the display name. This is the name that will be displayed in
any programmer related drop down boxes. Proton IDE enables you to add and configure multi-
ple programmers. You can easily switch from different types of programmer from the compile
and program button, located on the main editor toolbar. The multiple programmer feature
means you do not have to keep reconfiguring your system when you switch programmers. Pro-
ton IDE will remember the settings for you. In the example below, the display name will be 'My
New Programmer'.

Install New Programmer r)_(|

Select Display Name

Type in the name of the programmer to be displayed in
the Praton IDE drop down selection boxes, For example,
MicroCode Loader. The name is for display purposes only,
and can be anything you like.

Display Mame : |My New Programmer

= Back ” Mext =] ’ Cancel

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Select Programmer Executable
The next screen asks for the programmer executable name. You do not have to give the full
path, just the name of the executable name will do.

Install New Programmer r)_(|

Select Programmer Executable

ﬁ Type in the name of the programmer executable name.
F | Faor example, epicwin.exe or meloader.exe, Don't indude

the pathname, just the executable name.

Programmer Filename : |prngram.exe| |

< Back ” Mext =] ’ Canicel]

Select Programmer Path
The next screen is the path to the programmer executable. You can let Proton IDE find it auto-
matically, or you can select it manually.

Install New Programmer

Select Programmer Path

@ Proton IDE can automatically search for the path that
F | contains the programmer executable, or you can choose it

manually,
[not-defined]
[Find Automatically. .. l ’ Find Manually. ..]
’ < Back ” Mext =] ’ Cancel]

Select Parameters

The final screen is used to set the parameters that will be passed to your programmer. Some
programmers, for example, EPICWIin™ allows you to pass the device name and hex filename.
Proton IDE enables you to 'bind' the currently selected device and *.hex file you are working on.

Install New Programmer

Select Parameters

ﬁ Proton IDE enables you to pass certain parameters when
the programmer is started. You can also 'bind' hex
filenames and target devices using Shex-filenames and

Starget-devices respectively,

Click here to view an example

Parameters : |5hex—ﬁ|ename5 pStarget-deviced| |

Croawmhill Acenriatac | imitad 200K _ All Rinhte Racanad DRavicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

For example, if you are compiling 'blink.bas’ in the Proton IDE using a 16F628, you would want
to pass the 'blink.hex' file to the programmer and also the name of the microcontroller you in-
tend to program. Here is the EPICWin™ example: -

-pPIC$target-device$ $hex-filename$

When EPICWin™ is started, the device name and hex filename are 'bound' to $target-device$
and $hex-filename$ respectively. In the 'blink.bas' example, the actual parameter passed to the
programmer would be: -

-pPIC16F628 blink.hex

Parameter Summary

Parameter Description

$target-device$ Microcontroller name

$hex-filename$ HEX filename and path, DOS 8.3 format
$long-hex-filename$ HEX filename and path

$asm-filename$ ASM filename and path, DOS 8.3 format

$long-asm-filename$ ASM filename and path

Microcode Loader

The PIC16F87x(A), 16F8x and PIC18Fxxx(x) series of microcontrollers have the ability to write
to their own program memory, without the need of a hardware programmer. A small piece of
software called a bootloader resides on the target microcontroller, which allows user code and
EEPROM data to be transmitted over a serial cable and written to the device. The MicroCode
Loader application is the software which resides on the computer. Together, these two compo-
nents enable a user to program, verify and read their program and EEPROM data all in circuit.

When power is first applied to the microcontroller (or it is reset), the bootloader first checks to
see if the MicroCode Loader application has something for it to do (for example, program your
code into the target device). If it does, the bootloader gives control to MicroCode Loader until it
is told to exit. However, if the bootloader does not receive any instructions with the first few
hundred milliseconds of starting, the bootloader will exit and the code previously written to the
target device will start to execute.

The bootloader software resides in the upper 256 words of program memory (336 words for
18Fxxx devices), with the rest of the microcontroller code space being available for your pro-
gram. All EEPROM data memory and microcontroller registers are available for use by your
program. Please note that only the program code space and EEPROM data space may be pro-
grammed, verified and read by MicroCode Loader. The microcontroller ID location and configu-
ration fuses are not available to the loader process. Configuration fuses must therefore be set
at the time the bootloader software is programmed into the target microcontroller.

Hardware Requirements

MicroCode Loader communicates with the target microcontroller using its hardware Universal
Synchronous Asynchronous Receiver Transmitter (USART). You will therefore need a devel-
opment board that supports RS232 serial communication in order to use the loader. There are
many boards available which support RS232.

Whatever board you have, if the board has a 9 pin serial connector on it, the chances are it will
have a MAX232 or equivalent located on the board. This is ideal for MicroCode Loader to
communicate with the target device using a serial cable connected to your computer. Alterna-
tively, you can use the following circuit and build your own.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler

. Development Suite.

O &
+5 Volts l c3 c5
16 3 1uF 1uF .
c1 [F—ci+ vcc v+ -
1uF L C1-
c2] [F—cer <«
1uF C2- MAX232 9-way
u 1 D-Socket
PICRC.6 O I T1in Tlout -
-] T2in T2out e
PICRC.7 © R1out R1in 5
+5 Volts R2out R2in 5
GND V- R | Tx GND
R 15 ca l ceee p
PIC MCLR uF 1(6)2(7)384(935
u +
|'| RESET
ov 19

Components R1, R2, and the RESET switch are optional, and serve to reset the PICmicro™
automatically. If these components are not used, the connections to R2in and R2out of the
MAX232 may be omitted.

MicroCode Loader supports the following devices at the time of writing: -

16F870, 16F871, 16F873(A), 16F874(A), 16F876(A), 16F877(A), 16F87, 16F88, 18F242,
18F248, 18F252, 18F258, 18F442, 18F448, 18F452, 18F458, 18F1220, 18F1320, 18F2220,
18F2320, 18F4220, 18F4320, 18F6620, 18F6720, 18F8620 and 18F8720.

The list will grow as new PICmicro™ devices become available.

Note that the LITE version of MicroCode Loader supports the following devices: 16F876,
16F877, 18F242 and 18F252.

MicroCode Loader comes with a number of pre-compiled *.hex files, ready for programming
into the target microcontroller. If you require a bootloader file with a different configuration,
please contact Mecanique.

Using the MicroCode Loader is very easy. Before using this guide make sure that your target
microcontroller is supported by the loader and that you also have suitable hardware.

Programming the Loader Firmware

Before using MicroCode Loader, you need to ensure that the bootloader firmware has been
programmed onto the target microcontroller using a hardware programmer. This is a one off
operation, after which you can start programming your target device over a serial connection.
Alternatively, you can purchase pre-programmed microcontrollers from Mecanique. You need
to make sure that the bootloader *.hex file matches the clock speed of your target microcontrol-
ler. For example, if you are using a 18F877 on a development board running at 20 MHz, then
you need to use the firmware file called 16F877_20.hex. If you don't do this, MicroCode Loader
will be unable to communicate with the target microcontroller. MicroCode Loader comes with a
number of pre-compiled *.hex files, ready for programming into the target microcontroller. If you
require additional bootloader files, please contact Mecanique. The loader firmware files can be
found in the MCLoader folder, located in your main IDE installation folder. Default fuse settings
are embedded in the firmware *.hex file. You should not normally change these default settings.
You should certainly never select the code protect fuse. If the code protect fuse is set, Mi-
croCode Loader will be unable to program your *.hex file.

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Configuring the Loader

Assuming you now have the firmware installed on your microcontroller, you now just need to tell
MicroCode Loader which COM port you are going to use. To do this, select VIEW...LOADER
from the MicroCode IDE main menu. Select the COM port from the MicroCode Loader main
toolbar. Finally, make sure that MicroCode Loader is set as your default programmer.

Click on the down arrow, to the right of the Compile and Program button. Check the MicroCode
Loader option, like this: -

& Install New Programmer...

v |MicroCode Loader

microEngineering Labs Serial Programmer
E% Labcenter Electronics PROTELS YSM. .,

Using MicroCode Loader
Connect a serial cable between your computer and development board. Apply power to the
board.

Press 'Compile and Program' or F10 to compile your program. If there are no compilation er-
rors, the MicroCode Loader application will start. It may ask you to reset the development board
in order to establish communications with the resident microcontroller bootloader. This is per-
fectly normal for development boards that do not implement a software reset circuit. If required,
press reset to establish communications and program you microcontroller.

Loader Options
Loader options can be set by selecting the OPTIONS menu item, located on the main menu
bar.

Program Code
Optionally program user code when writing to the target microcontroller. Uncheck this option to
prevent user code from being programmed. The default is ON.

Program Data
Optionally program EEPROM data when writing to the target microcontroller. Uncheck this op-
tion to prevent EEPROM data from being programmed. The default is ON.

Verify Code When Programming
Optionally verify a code write operation when programming. Uncheck this option to prevent user
code from being verified when programming. The default is ON.

Verify Data When Programming
Optionally verify a data write operation when programming. Uncheck this option to prevent user
data from being verified when programming. The default is ON.

Verify Code
Optionally verify user code when verifying the loaded *.hex file. Uncheck this option to prevent
user code from being verified. The default is ON.

Verify Data

Optionally verify EEPROM data when verifying the loaded *.hex file. Uncheck this option to pre-
vent EEPROM data from being verified. The default is ON.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Verify After Programming
Performs an additional verification operation immediately after the target microcontroller has
been programmed. The default is OFF.

Run User Code After Programming
Exit the bootloader process immediately after programming and then start running the target
user code. The default is ON.

Load File Before Programming
Optionally load the latest version of the *.hex file immediately before programming the target
microcontroller. The default is OFF.

Baud Rate

Select the speed at which the computer communicates with the target microcontroller. By de-
fault, the Auto Detect option is enabled. This feature enables MicroCode Loader to determine
the speed of the target microcontroller and set the best communication speed for that device.

If you select one of the baud rates manually, it must match the baud rate of the loader software
programmed onto the target microcontroller. For devices running at less that 20MHz, this is
19200 baud. For devices running at 20MHz, you can select either 19200 or 115200 baud.

Loader Main Toolbar

?}Open Hex File
The open button loads a *.hex file ready for programming.

9%

“Program

The program button will program the loaded hex file code and EEPROM data into the target
microcontroller. When programming the target device, a verification is normally done to ensure
the integrity of the programmed user code and EEPROM data. You can override this feature by
un-checking either Verify Code When Programming or Verify Data When Programming. You
can also optionally verify the complete *.hex file after programming by selecting the Verify After
Programming option.

Pressing the program button will normally program the currently loaded *.hex file. However, you
can load the latest version of the *.hex file immediately before programming by checking Load
File Before Programming option. You can also set the loader to start running the user code im-
mediately after programming by checking the Run User Code After Programming option. When
programming the target device, both user code and EEPROM data are programmed by default
(recommended). However, you may want to just program code or EEPROM data. To change
the default configuration, use the Program Code and Program Data options.

Should any problems arise when programming the target device, a dialog window will be dis-
played giving additional details. If no problems are encountered when programming the device,
the status window will close at the end of the write sequence.

“Read
The read button will read the current code and EEPROM data from the target microcontroller.
Should any problems arise when reading the target device, a dialog window will be displayed
giving additional details. If no problems are encountered when reading the device, the status
window will close at the end of the read sequence.

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

“i'?Verify

The verify button will compare the currently loaded *.hex file code and EEPROM data with the
code and EEPROM data located on the target microcontroller. When verifying the target device,
both user code and EEPROM data are verified by default. However, you may want to just verify
code or EEPROM data. To change the default configuration, use the Verify Code and Verify
Data options.

Should any problems arise when verifying the target device, a dialog window will be displayed
giving additional details. If no problems are encountered when verifying the device, the status
window will close at the end of the verification sequence.

2%-5Erase
The erase button will erase all of the code memory on a PIC 16F8x and PIC18Fxxx(x) micro-
controller.

"IRun User Code
The run user code button will cause the bootloader process to exit and then start running the
program loaded on the target microcontroller.

L oader Information
The loader information button displays the loader firmware version and the name of the target
microcontroller, for example PIC16F877.

COML | oader Serial Port
The loader serial port drop down box allows you to select the com port used to communicate
with the target microcontroller.

IDE Plugins

The Proton IDE has been designed with flexibility in mind. Plugins enable the functionality of
the IDE to be extended by through additional third party software, which can be integrated into
the development environment. Proton IDE comes with a default set of plugins which you can
use straight away. These are: -

ASCII Table

Assembler

HEX View

Serial Communicator

Labcenter Electronics PROTEUS VSM

To access a plugin, select the plugin icon just above the main editor window. A drop down list
of available plugins will then be displayed. Plugins can also be selected from the main menu, or
by right clicking on the main editor window.

Plugin Developer Notes

The plugin architecture has been designed to make writing third party plugins very easy, using
the development environment of your choice (for example Visual BASIC, C++ or Borland Del-
phi). This architecture is currently evolving and is therefore publicly undocumented until all of
the protocols have been finalised. As soon as the protocol details have been finalised, this
documentation will be made public. For more information, please feel free to contact us.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

ASCII Table
The American Standard Code for Information Interchange (ASCII) is a set of numerical codes,
with each code representing a single character, for example, 'a' or '$'.

ASCII Table X
CHAR | DEC HEX BIM Description
aaa aaa 0000000 Mull character -

001 001 00002001 Start of Header

o002 o002 00000010 Start of Text

0o3 0o3 00ooa011 End of Text

a04 004 00000100 End of Transmission

0as 0as 00000101 Enguiry

(i3] (i3] Q0oo00110 Acknowledgment

ooy ooy 00ooo111 Bell

oos oos 00001000 Backspace

o9 o9 00001001 Horizontal Tab b

The ASCII table plugin enables you to view these codes in either decimal, hexadecimal or bi-
nary. The first 32 codes (0..31) are often referred to as non-printing characters, and are dis-
played as grey text.

HEX View
The HEX view plugin enables you to view program code and EEPROM data for 14 and 16 core
devices.

® HEX View - LEDSequence.hex

Eile Help
[l Program Code EEFROM Data
00000 — £0000 £0030 S8RA00 £3628 £2308 £2204 20319 SR2OR A
200008 - SE030 £221L SL306 $2219 SL306 SLZ18 SL30& $230D
200010 - SLZOD SA30D 52208 S£3128 SLTOL SLEDD SFF30 SLE0T
200018 - S031C SATOT S031C £3128 50330 SLSO0 SETI0 S2220
500020 - 51628 SLSN1 SFCSE SL400 SASOS S031C S2D28 SFF30
E000Z2E - 50000 SL40T S0318 S2EZE SL40T 50000 SLSOF £2728
200030 - SOE00 58313 58312 50313 50000 S0800 SFO30 S8316
200038 — SE8B00 £8312 SB8RA01 £0420 £B400 £2308 £B500 20330
200040 - £B405 20030 $B505 £3508 23404 28R11 20R12 2031D
200048 — S5828 20130 SAD00 20230 SAEQOD 20430 SAFOO0 20830 W
Ready

The HEX View window is automatically updated after a successful compile, or if you switch
program tabs in the IDE. By default, the HEX view window remains on top of the main IDE win-
dow. To disable this feature, right click on the HEX View window and uncheck the Stay on Top
option.

Croawmhill Acenriatac | imitad 200K _ All Rinhte Racanad DRavicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Assembler Window

The Assembler plugin allows you to view and modify the *.asm file generated by the compiler.
Using the Assembler window to modify the generated *.asm file is not really recommended,
unless you have some experience using assembler.

Assembler Menu Bar

File Menu

New - Creates a new document. A header is automatically generated, showing information
such as author, copyright and date.

Open - Displays a open dialog box, enabling you to load a document into the Assembler
plugin. If the document is already open, then the document is made the active editor
page.

Save - Saves a document to disk. This button is normally disabled unless the document
has been changed. If the document is 'untitled’, a save as dialog is invoked. A save as
dialog is also invoked if the document you are trying to save is marked as read only.

Save As - Displays a save as dialog, enabling you to name and save a document to
disk.

Close - Closes the currently active document.

Close All - Closes all editor documents and then creates a new editor document.
Reopen - Displays a list of Most Recently Used (MRU) documents.

Print Setup - Displays a print setup dialog.

Print - Prints the currently active editor page.

Exit - Enables you to exit the Assembler plugin.

Edit Menu
Undo - Cancels any changes made to the currently active document page.

Redo - Reverse an undo command.

Cut - Cuts any selected text from the active document page and places it into the clip-
board.

Copy - Copies any selected text from the active document page and places it into the
clipboard.

Paste - Paste the contents of the clipboard into the active document page. This option is
disabled if the clipboard does not contain any suitable text.

Delete - Deletes any selected text. This option is disabled if no text has been selected.

Select All - Selects the entire text in the active document page.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Find - Displays a find dialog.
Replace - Displays a find and replace dialog.

Find Next - Automatically searches for the next occurrence of a word. If no search word
has been selected, then the word at the current cursor position is used. You can also se-
lect a whole phrase to be used as a search term. If the editor is still unable to identify a
search word, a find dialog is displayed.

View Menu
Options - Displays the application editor options dialog.

Toolbars - Display or hide the main and assemble and program toolbars. You can also
toggle the toolbar icon size.

Help Menu
Help Topics - Displays the IDE help file.

About - Display about dialog, giving the Assembler plugin version number.

Assembler Main Toolbar

\j New

Creates a new document. A header is automatically generated, showing information such as
author, copyright and date.

3
Open

Displays a open dialog box, enabling you to load a document into the Assembler plugin. If the

document is already open, then the document is made the active editor page.

HSave

Saves a document to disk. This button is normally disabled unless the document has been
changed. If the document is 'untitled’, a save as dialog is invoked. A save as dialog is also in-
voked if the document you are trying to save is marked as read only.

J‘: Cut
Cuts any selected text from the active document page and places it into the clipboard. This op-
tion is disabled if no text has been selected.

'—.JCopy
Copies any selected text from the active document page and places it into the clipboard. This
option is disabled if no text has been selected.

L |Paste
Paste the contents of the clipboard into the active document page. This option is disabled if the
clipboard does not contain any suitable text.

i"Undo

Cancels any changes made to the currently active document page.

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

(HRedo

Reverse an undo command.

Assemble and Program Toolbar

“ Assemble

Pressing this button, or F9, will compile the currently active editor page. The compile button will
generate a *.hex file, which you then have to manually program into your microcontroller.
Pressing the assemble button will automatically save all open files to disk.

~Assemble and Program
Pressing this button, or F10, will compile the currently active editor page. Pressing the assem-
ble and program button will automatically save all open files to disk.
Unlike the assemble button, the Assembler plugin will then automatically invoke a user select-
able application and pass the assembler output to it. The target application is normally a device
programmer, for example, MicroCode Loader. This enables you to program the generated *.hex
file into your MCU.

Assembler Editor Options

Show Line Numbers in Left Gutter
Display line numbers in the editors left hand side gutter. If enabled, the gutter width is in-
creased in size to accommodate a five digit line number.

Show Right Gutter
Displays a line to the right of the main editor. You can also set the distance from the left margin
(in characters). This feature can be useful for aligning your program comments.

Use Smart Tabs

Normally, pressing the tab key will advance the cursor by a set number of characters. With
smart tabs enabled, the cursor will move to a position along the current line which depends on
the text on the previous line. Can be useful for aligning code blocks.

Convert Tabs to Spaces

When the tab key is pressed, the editor will normally insert a tab control character, whose size
will depend on the value shown in the width edit box (the default is four spaces). If you then
press the backspace key, the whole tab is deleted (that is, the cursor will move back four
spaces). If convert tabs to spaces is enabled, the tab control character is replaced by the space
control character (multiplied by the number shown in the width edit box). Pressing the back-
space key will therefore only move the cursor back by one space. Please note that internally,
the editor does not use hard tabs, even if convert tabs to spaces is unchecked.

Automatically Indent

When the carriage return key is pressed in the editor window, automatically indent will advance
the cursor to a position just below the first word occurrence of the previous line. When this fea-
ture is unchecked, the cursor just moves to the beginning of the next line.

Show Parameter Hints

If this option is enabled, small prompts are displayed in the main editor window when a particu-
lar compiler keyword is recognised.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Open Last File(s) When Application Starts
When checked, the documents that were open when the Assembler plugin was closed are
automatically loaded again when the application is restarted.

Display Full Filename Path in Application Title Bar

By default, the Assembler plugin only displays the document filename in the main application
title bar (that is, no path information is included). Check display full pathname if you would like
to display additional path information in the main title bar.

Prompt if File Reload Needed

The Assembler plugin automatically checks to see if a file time stamp has changed. If it has (for
example, and external program has modified the source code) then a dialog box is displayed
asking if the file should be reloaded. If prompt on file reload is unchecked, the file is automati-
cally reloaded without any prompting.

Automatically Jump to First Compilation Error
When this is enabled, the Assembler plugin will automatically jump to the first error line, assum-
ing any errors are generated during compilation.

Clear Undo History After Successful Compile

If checked, a successful compilation will clear the undo history buffer. A history buffer takes up
system resources, especially if many documents are open at the same time. It's a good idea to
have this feature enabled if you plan to work on many documents at the same time.

Default Source Folder

The Assembler plugin will automatically go to this folder when you invoke the file open or save
as dialogs. To disable this feature, uncheck the 'Enabled’ option, shown directly below the de-
fault source folder.

Serial Communicator

The Serial Communicator plugin is a simple to use utility which enables you to transmit and
receive data via a serial cable connected to your PC and development board. The easy to use
configuration window allows you to select port number, baudrate, parity, byte size and number
of stop bits. Alternatively, you can use Serial Communicator favourites to quickly load pre-
configured connection settings.

Menu options

File Menu
Clear - Clears the contents of either the transmit or receive window.

Open - Displays a open dialog box, enabling you to load data into the transmit window.

Save As - Displays a save as dialog, enabling you to name and save the contents of the
receive window.

Exit - Enables you to exit the Serial Communicator software.

Edit Menu
Undo - Cancels any changes made to either the transmit or receive window.

Cut - Cuts any selected text from either the transmit or receive window.

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Copy - Copies any selected text from either the transmit or receive window.

Paste - Paste the contents of the clipboard into either the transmit or receive window.
This option is disabled if the clipboard does not contain any suitable text.

Delete - Deletes any selected text. This option is disabled if no text has been selected.

View Menu
Configuration Window - Display or hide the configuration window.

Toolbars - Display small or large toolbar icons.

Help Menu
Help Topics - Displays the serial communicator help file.

About - Display about dialog, giving software version information.

Serial Communicator Main Toolbar

JCIear

Clears the contents of either the transmit or receive window.

=
Open
Displays a open dialog box, enabling you to load data into the transmit window.

HSave As
Displays a save as dialog, enabling you to name and save the contents of the receive window.

J& Cut
Cuts any selected text from either the transmit or receive window.

1= Copy
Copies any selected text from either the transmit or receive window.

|Paste
Paste the contents of the clipboard into either the transmit or receive window. This option is
disabled if the clipboard does not contain any suitable text.

\&Connect

Connects the Serial Communicator software to an available serial port. Before connecting, you
should ensure that your communication options have been configured correctly using the
configuration window.

?@,Disconnect
Disconnect the Serial Communicator from a serial port.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Configuration
The configuration window is used to select the COM port you want to connect to and also set
the correct communications protocols.

Configuration S I > |

Configuration Options

O Port Number
O Baudrate

O Parity

O Byte Size

D Stop Bits

19200 Configuration

O Comi, available
D 19200 baud

[No parity

I Byte =ize is &

D 1 stop bit

Status

Mot connected

Clicking on a configuration link will display a drop down menu, listing available options. A sum-
mary of selected options is shown below the configuration links. For example, in the image
above, summary information is displayed under the heading 19200 Configuration.

sfFavourites
Pressing the favourite icon will display a number of options allowing you to add, manage or
load configuration favourites.

Add to Favorites. ..

Manage Favarites...
[E Default Configuration

[El 2600 Configuration
[El 19200 Configuration
[El 115200 Configuration

Add to Favourites

Select this option if you wish to save your current configuration. You can give your configuration
a unique name, which will be displayed in the favourite drop down menu. For example, 9600
Configuration or 115200 Configuration

Manage Favourites
Select this option to remove a previously saved configuration favourite.

Notes
After pressing the connect icon on the main toolbar, the configuration window is automatically
closed and opened again when disconnect is pressed. If you don't want the configuration win-
dow to automatically close, right click on the configuration window and un-check the Auto-Hide
option.

Crowmhill Acenriatac | imitad 200K _ All Rinhte Dacania A Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Transmit Window

The transmit window enables you to send serial data to an external device connected to a PC
serial port. In addition to textual data, the send window also enables you to send control char-
acters. To display a list of transmit options, right click on the transmit window.

Clear

Ward Wrap
Auto Clear After Transmit

+ | Transmit on Carriage Return
Line Terminatar 3

Parse Control Characters

Clear
Clear the contents of the transmit window.

Word Wrap
This option allows you to wrap the text displayed in the transmit window.

Auto Clear After Transmit
Enabling this option will automatically clear the contents of the transmit window when data is
sent.

Transmit on Carriage Return
This option will automatically transmit data when the carriage return key is pressed. If this op-
tion is disabled, you will need to manually press the send button or press F4 to transmit.

Line Terminator
You can append your data with a number of line terminations characters. These include CR,
CR and LF, LF and CR, NULL and No Terminator.

Parse Control Characters

When enabled, the parse control characters option enables you to send control characters in
your message, using either a decimal or hexadecimal notation. For example, if you want to
send hello world followed by a carriage return and line feed character, you would use hello
world#13#10 for decimal, or hello worldDA for hex. Only numbers in the range 0 to 255 will
be converted. For example, sending the message letter #9712345 will be interpreted as letter
al2345.

If the sequence of characters does not form a legal number, the sequence is interpreted as
normal characters. For example, hello world#here | am. If you don't want characters to be in-
terpreted as a control sequence, but rather send it as normal characters, then all you need to
do is use the tilde symbol (~). For example, letter ~#9712345 would be sent as letter
#9712345.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Receive Window
The receive window is used to capture data sent from an external device (for example, a PIC
MCU) to your PC. To display a list of transmit options, right click on the receive window.

Clear

Ward Wrap

Clear
Clear the contents of the receive window.

Word Wrap
When enabled, incoming data is automatically word wrapped.

Notes
In order to advance the cursor to the next line in the receive window, you must transmit either a
CR ($D) or a CR LF pair ($D $A) from your external device.

Labcenter Electronics PROTEUS VSM

Proteus Virtual System Modelling (VSM) combines mixed mode SPICE circuit simulation, ani-
mated components and microprocessor models to facilitate co-simulation of complete micro-
controller based designs. For the first time ever, it is possible to develop and test such designs
before a physical prototype is constructed.

The Proton Plus Development Suite comes shipped with a free demonstration version of the
PROTEUS simulation environment and also a number of pre-configured Virtual Hardware
Boards (VHB). Unlike the professional version of PROTEUS, you are unable to make any
changes to the pre-configured boards or create your own boards.

If you already have a full version of PROTEUS VSM installed on your system (6.5.0.5 or
higher), then this is the version that will be used by the IDE. If you don't have the full version,
the IDE will default to using the demonstration installation.

System Requirements

Windows 98SE, ME, 2000 or XP

64MB RAM (128 MB or higher recommended)

300 MHz Processor (500 MHz or higher recommended)

Further Information
You can find out more about the simulator supplied with the Proton Development Suite from
Labcenter Electronics

ISIS Simulator Quick Start Guide

This brief tutorial aims to outline the steps you need to take in order to use Labcenter Electron-
ics PROTEUS Virtual System Modelling (VSM) with the Proton IDE. The first thing you need to
do is load or create a program to simulate. In this worked example, we will keep things simple
and use a classic flashing LED program. In the IDE, press the New toolbar button and type in
the following: -

Device = 16F877

XTAL = 20

Symbol LED = PORTD.0
MainProgram:

High LED

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Delayms 500

Low LED
Delayms 500
Goto MainProgram

You now need to make sure that the output of the compile and program process is re-directed
to the simulator. Normally, pressing compile and program will create a *.hex file which is then
sent to your chosen programmer. However, we want the output to be sent to the simulator, not
a device programmer. To do this, press the small down arrow to the right of the compile and
program toolbar icon and check the Labcenter Electronics PROTEUS VSM option, as shown
below: -

o Install New Programmer. ..

MicroCode Loader

[32 | Labcenter Electronics PROTEUS VSM...

After selecting the above option, save your program and then press the compile and program
toolbar button to build your project. This will then start the Virtual Hardware Board (VHB) Ex-
plorer, as shown below: -

&% VHB Explorer - ISIS (16F877 @ 20MHz) M=1E3
. File WView Help
: ¥ Falders Favorites - [T2f =

Virtual Hardware Boards

<8 PIC12_SPIN_VHB

a8 PIC16_18PIN_VHB
48 PIC16_ALCD_VHB
48 PIC16_GLCD_VHB
48 PIC1S_ALCD_VHB
d# PIC1S GLCD VHB

VHB Explorer is the IDE plugin that co-ordinates activity between the IDE and the simulator. Its
primary purpose is to bind a Virtual Hardware Board to your program. In this example, the pro-
gram has been built for the 16F877 MCU which flashes an LED connected to PORTD.0. To run
the simulation for this program, just double click on the PIC16_ALCD_VHB hardware board
item. This will invoke the PROTEUS simulator which will then automatically start executing your
program using the selected board.

Additional Integration Tips

If you followed the PROTEUS VSM quick start guide, you will know how easy it is to load you
program into the simulation environment with the Virtual Hardware Board (VHB) Explorer.
However, one thing you might have noticed is that each time you press compile and program
the VHB Explorer is always displayed. If you are using the same simulation board over and
over again, manually having to select the board using VHB Explorer can become a little tire-
some.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Virtual Hardware Boards Favourites

The good news is that every time you select a board using VHB Explorer, it is saved as a VHB
Explorer favourite. You can access VHB Explorer favourites from within Proton IDE by right
clicking on the main editor window and selecting the Virtual Hardware Boards option, as shown
below : -

B2 Plugin 3

* W Virtual Hardware Boards » WHE Explorer

v |PIC18_ALCD_VHEB

Select Al Cirl+A
3 Find... Ctrl+F
o
- Replace. .. Cirl+R
« |Results...

Te | Code Explorer...

% Cloge Page Ctrl +F4

In the quick start guide, the program was bound to a simulation board called
PIC16_ALCD_VHB. If we check this favourite and then press compile and program, VHB Ex-
plorer is not displayed. Instead, you project is loaded immediately into the PROTEUS simula-
tion environment. You can have more than one board bound to your project, allowing you to
quickly switch between target simulation boards during project development.

To add additional boards to your project, manually start VHB Explorer by selecting the plugin
icon 5% and clicking on the Labcenter Electronics PROTEUS VSM... option. When VHB Explorer
starts, just double click on the board you want to be bound to your current project. Your new
board selection will be displayed next time you right click on the main editor window and select
Virtual Hardware Boards. You can delete a favourite board by manually starting VHB Explorer
and pressing the Favourites toolbar icon. Choose the Manage Favourites option to remove the
virtual hardware board from the favourites list.

Croawmhill Acenriatac | imitad 200K _ All Rinhte Racanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Online Updates

Online updates enable you to keep right up to date with the latest IDE features and fixes. To
access online updates, select VIEW...ONLINE UPDATES from the main menu. This will invoke
the IDE update manager, as shown below: -

Update Manager

“3 Update Manager

Update Notification
One or more files installed on your system are now out of date and require updating.

the changes that will be made to your system by selecting the

. Before running an online update, it is important that you review
following links.

Proton IDE Help File

What do you want to do?

@ Yes please, I would like to update these files now.
@ Mo thanks, I'll update them at a later time.

Before installing an update, it is important you review the changes that will be made to your
system. If your system is up to date, you will see the following message: -

“» Update Manager

Update Notification
¥ Your installation is up to date. No updating
of yvour system files are required at the
preszent time.

@ Beturn to the IDE

Update Options

Online updating will work with a dial-up, LAN or broadband connection. The IDE will only check
for online updates if requested to do so. That is, you explicitly select VIEW...ONLINE UP-
DATES. If you want the update manager to automatically check from updates each time Proton
IDE starts, then select VIEW...EDITOR OPTIONS and choose the Online Updating tab.

Please note that selecting VIEW...ONLINE UPDATES will always force a dial up connection
(assuming that you use a dial up connection and you are not already connected to the internet).
If Proton IDE has made a connection for you, it terminates the connection when the update
process has completed.

Firewalls
If you have a firewall installed, online updating will only work if the IDE has been granted ac-
cess to the internet.

Confidentiality

The online update process is a proprietary system developed by Mecanique that is both safe
and secure. The update manager will only send information it needs to authenticate access to
online updates. The update manager will not send any personal information whatsoever to the
update server. The update manager will not send any information relating to third party soft-
ware installed on your system to the update server.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Compiller
Overview.

Croawmhill Acenriatac | imitad 200K _ All Rinhte Racanad Ravicinn 1 A

PROTON+ Compiler. Development Suite.

PICmicro™ Devices

The compiler support most of the PICmicro™ range of devices, and takes full advantage of their
various features e.g. The A/D converter in the 16F87x series, the data memory eeprom area in
thel6F84, the hardware multiply present on the 16-bit core devices etc.

This manual is not intended to give you details about PICmicro™ devices, therefore, for further
information visit the Microchip website at www.microchip.com, and download the multitude of
datasheets and application notes available.

Limited 12-bit Device Compatibility.

The 12-bit core PICmicro™ microcontrollers have been available for a long time, and are at the
heart of many excellent, and complex projects. However, with their limited architecture, they
were never intended to be used for high level languages such as BASIC. Some of these limits
include only a two-level hardware stack and small amounts of general purpose RAM memory.
The code page size is also small at 512 bytes. There is also a limitation that calls and com-
puted jumps can only be made to the first half (256 words) of any code page. Therefore, these
limitations have made it necessary to eliminate some compiler commands and modify the op-
eration of others.

While many useful programs can be written for the 12-bit core PICmicros using the compiler,
there will be some applications that are not suited to these devices. Choosing a 14-bit core de-
vice with more resources will, in most instances, be the best solution.

Some of the commands that are not supported for the 12-bit core PICmicros are illustrated in
the table below: -

Command Reason for omission
DWORDs Memory limitations
FLOATSs Memory limitations
ADIN No internal ADCs
CDATA No write modify feature
CLS Limited stack size
CREAD No write modify feature
CURSOR Limited stack size
CWRITE No write modify feature
DATA Page size limitations
DTMFOUT Limited stack size
EDATA No on-board EEPROM
EREAD No on-board EEPROM
EWRITE No on-board EEPROM
FREQOUT Limited stack size
LCDREAD No graphic LCD support
LCDWRITE No graphic LCD support
HPWM No 12-bit MSSP modules
HRSIN No hardware serial port
HRSOUT No hardware serial port
HSERIN No hardware serial port
HSEROUT No hardware serial port
INTERRUPTS No Interrupts

PIXEL No graphic LCD support
PLOT No graphic LCD support
READ Page size limitations

Crawmhill Acenriatac | imitad 20N _

All Rinhte Racanrad

20NE_N2_17

PROTON+ Compiler. Development Suite.

RESTORE Limited memory
SEROUT Limited memory

SERIN Limited memory
SOUND2 Limited resources
UNPLOT No graphic LCD support
USBIN No 12-bit USB devices
USBOUT No 12-bit USB devices
XIN Limited stack size
XOuT Limited stack size

Trying to use any of the above commands with 12-bit core devices will result in the compiler
producing numerous SYNTAX errors. If any of these commands are a necessity, then choose a
comparable 14-bit core device.

The available commands that have had their operation modified are: -
PRINT, RSOUT, BUSIN, BUSOUT

Most of the modifiers are not supported for these commands because of memory and stack
size limitations, this includes the AT , and the STR modifier. However, the @, DEC and DEC3
modifiers are still available.

Programming Considerations for 12-bit Devices.

Because of the limited architecture of the 12-bit core PICmicro™ microcontrollers, programs
compiled for them by the compiler will be larger and slower than programs compiled for the 14-
bit core devices. The two main programming limitations that will most likely occur are running
out of RAM memory for variables, and running past the first 256 word limit for the library rou-
tines.

Even though the compiler arranges its internal SYSTEM variables more intuitively than previous
versions, it still needs to create temporary variables for complex expressions etc. It also needs
to allocate extra RAM for use as a SOFTWARE-STACK so that the BASIC program is still able
to nest GOSUBSs up to 4 levels deep.

Some PICmicro™ devices only have 25 bytes of RAM so there is very little space for user vari-
ables on those devices. Therefore, use variables sparingly, and always use the appropriately
sized variable for a specific task. i.e. BYTE variable if 0-255 is required, WORD variable if O-
65535 required, BIT variables if a true or false situation is required. Try to alias any commonly
used variables, such as loops or temporary stores etc.

As was mentioned earlier, 12-bit core PICmicro™ microcontrollers can call only into the first half
(256 words) of a code page. Since the compiler's library routines are all accessed by calls, they
must reside entirely in the first 256 words of the PICmicro™ code space. Many library routines,
such as BUSIN, are quite large. It may only take a few routines to outgrow the first 256 words
of code space. There is no work around for this, and if it is necessary to use more library rou-
tines that will fit into the first half of the first code page, it will be necessary to move to a 14-bit
core PICmicro™ instead of the 12-bit core device.

No 32-bit or floating point variable support with 12-bit devices.

Because of the profound lack of RAM space available on most 12-bit core devices, the PRO-
TON+ compiler does not allow 32-bit DWORD type variables to be used. For 32-bit support,
use on of the many 14, or 16-bit core equivalent devices. Floating point variables are also not
supported with 12-bit core devices.

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Device Specific issues

Before venturing into your latest project, always read the datasheet for the specific device being
used. Because some devices have features that may interfere with expected pin operations.
The PIC16C62x and the 16F62x devices are examples of this. These PICmicros have ana-
logue comparators on PORTA. When these chips first power up, PORTA is set to analogue
mode. This makes the pin functions on PORTA work in a strange manner. To change the pins
to digital, simply add the following line near the front of your BASIC program, or before any of
the pins are accessed: -

CMCON =7

Any PICmicro™ with analogue inputs, such as the PIC16C7xx, PIC16F87x, PIC12C67x and all
the 18Fxxxx series devices, will power up in analogue mode. If you intend to use them as digi-
tal types you must set the pins to digital by using the following line of code: -

ALL_DIGITAL = TRUE
This will set analogue pins to digital on any compatible device.
Alternatively, you can manipulate the hardware registers directly: -
ADCON1 =7

Note that not all PICmicro™ devices require the same registers manipulated and the datasheet
should always be consulted before attempting this for the first time.

Another example of potential problems is that bit-4 of PORTA (PORTA.4) exhibits unusual be-
haviour when used as an output. This is because the pin has an open drain output rather than
the usual bipolar stage as in the rest of the output pins. This means it can pull to ground when
set to O (low), but it will simply float when set to a 1 (high), instead of going high.

To make this pin act as expected, add a pull-up resistor between the pin and 5 Volts. A typical
value resistor may be between 1KW and 33KW, depending on the device it is driving. If the pin
is used as an input, it behaves the same as any other pin.

Some PICmicros, such as the PIC16F87x range, allow low-voltage programming. This function
takes over one of the PORTB (PORTB.3) pins and can cause the device to act erratically if this
pin is not pulled low. In normal use, It's best to make sure that low-voltage programming is dis-
abled at the time the PICmicro™ is programmed. By default, the low voltage programming fuse
is disabled, however, if the CONFIG directive is used, then it may inadvertently be omitted.

All of the PICmicro™ pins are set to inputs on power-up. If you need a pin to be an output, set it
to an output before you use it, or use a BASIC command that does it for you. Once again, al-
ways read the PICmicro™ data sheets to become familiar with the particular part.

The name of the port pins on the 8 pin devices such as the PIC12C50X, PIC12C67x ,12CE67x
and 12F675 is GPIO. The name for the TRIS register is TRISIO: -

GPIO.0=1 ' Set GPIO.0 high
TRISIO = %101010 ' Manipulate ins and outs

However, these are also mapped as PORTB, therefore any reference to PORTB on these de-
vices will point to the relevant pin.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Some devices have internal pull-up resistors on PORTB, or GPIO. These may be enabled or
disabled by issuing the PORTB_PULLUPS command: -

PORTB_PULLUPS = ON " Enable PORTB pull-up resistors
or

PORTB_PULLUPS = OFF ' Disable PORTB pull-up resistors
Identifiers

An identifier is a technical term for a name. Identifiers are used for line labels, variable names,
and constant aliases. An identifier is any sequence of letters, digits, and underscores, although
it must not start with a digit. Identifiers are not case sensitive, therefore label, LABEL, and Label
are all treated as equivalent. And while labels might be any number of characters in length, only
the first 32 are recognised.

Line Labels

In order to mark statements that the program may wish to reference with the GOTO, CALL, or
GOSUB commands, the compiler uses line labels. Unlike many older BASICs, the compiler
does not allow or require line numbers and doesn’t require that each line be labelled. Instead,
any line may start with a line label, which is simply an identifier followed by a colon "".

Lab:
PRINT "Hello World"
GOTO Lab

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Variables

Variables are where temporary data is stored in a BASIC program. They are created using the
DIM keyword. Because RAM space on PICmicros is somewhat limited in size, choosing the
right size variable for a specific task is important. Variables may be BITS, BYTES, WORDS,
DWORDS or FLOATS.

Space for each variable is automatically allocated in the microcontroller's RAM area. The for-
mat for creating a variable is as follows: -

DIM Label AS Size

Label is any identifier, (excluding keywords). Size is BIT, BYTE, WORD, DWORD or FLOAT.
Some examples of creating variables are: -

DIM Dog AS BYTE ' Create an 8-bit unsigned variable (0 to 255)
DIM Cat AS BIT ' Create a single bit variable (0 or 1)

DIM Rat AS WORD ' Create a 16-bit unsigned variable (0 to 65535)
DIM Large_Rat as DWORD ' Create a 32-bit signed variable (-2147483648 to
‘+2147483647)

DIM Pointy_Rat as FLOAT ' Create a 32-bit floating point variable

The number of variables available depends on the amount of RAM on a particular device and
the size of the variables within the BASIC program. The compiler may reserve approximately 26
RAM locations for its own use. It may also create additional temporary (SYSTEM) variables for
use when calculating complex equations, or more complex command structures. Especially if
floating point calculations are carried out.

Intuitive Variable Handling.

The compiler handles its SYSTEM variables intuitively, in that it only creates those that it re-
quires. Each of the compiler's built in library subroutines i.e. PRINT, RSOUT etc, require a cer-
tain amount of SYSTEM RAM as internal variables. Previous versions of the compiler defaulted
to 26 RAM spaces being created before a program had been compiled. However, with the 12-
bit core device compatibility, 26 RAM slots is more than some devices possess.

Try the following program, and look at the RAM usage message on the bottom STATUS bar.

DIMWRD1 AS WORD ' Create a WORD variable i.e. 16-bits
Loop:

HIGH PORTB.0 ' Set bit 0 of PORTB high

FOR WRD1=1 TO 20000 : NEXT ' Create a delay without using a library call

LOW PORTB.0 ' Set bit 0 of PORTB high

FOR WRD1=1 TO 20000 : NEXT ' Create a delay without using a library call

GOTO Loop ' Do it forever

Only two bytes of RAM were used, and those were the ones declared in the program as vari-
able WRDL1.

The compiler will increase it's SYSTEM RAM requirements as programs get larger, or more
complex structures are used, such as complex expressions, inline commands used in condi-
tions, Boolean logic used etc. However, with the limited RAM space available on some
PICmicro™ devices, every byte counts.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

There are certain reserved words that cannot be used as variable names, these are the system
variables used by the compiler.

The following reserved words should not be used as variable names, as the compiler will create
these names when required: -

PPO, PPOH, PP1, PP1H, PP2, PP2H, PP3, PP3H, PP4, PP4H, PP5, PP5H, PP6, PP6H, PP7,
PP7H, PP8, PP9H,GEN, GENH, GEN2, GEN2H, GEN3, GEN3H, GEN4, GEN4H, GPR, BPF,
BPFH.

RAM space required.
Each type of variable requires differing amounts of RAM memory for its allocation. The list be-
low illustrates this.

FLOAT Requires 4 bytes of RAM.

DWORD Requires 4 bytes of RAM.

WORD Requires 2 bytes of RAM.

BYTE Requires 1 byte of RAM.

BIT Requires 1 byte of RAM for every 8 BIT variables used.

Each type of variable may hold a different minimum and maximum value.

FLOAT type variables may theoretically hold a value from -1e37 to +1e38, but because of the
32-bit architecture of the compiler, a maximum and minimum value should be thought of as -
2147483646.999 to +2147483646.999 making this the most accurate of the variable family
types. However, more so than DWORD types, this comes at a price as FLOAT calculations and
comparisons will use more code space within the PICmicro™. Use this type of variable spar-
ingly, and only when strictly necessary. Smaller floating point values offer more accuracy.

DWORD type variables may hold a value from -2147483648 to +2147483647 making this the
largest of the variable family types. This comes at a price however, as DWORD calculations
and comparisons will use more code space within the PICmicro™. Use this type of variable
sparingly, and only when necessary.

WORD type variables may hold a value from 0 to 65535, which is usually large enough for most
applications. It still uses more memory, but not nearly as much as a DWORD type.

BYTE type variables may hold a value for 0 to 255, and are the usual work horses of most pro-
grams. Code produced for BYTE sized variables is very low compared to WORD, FLOAT, or
DWORD types, and should be chosen if the program requires faster, or more efficient opera-
tion.

BIT type variables may hold a O or a 1. These are created 8 at a time, therefore declaring a
single BIT type variable in a program will not save RAM space, but it will save code space, as
BIT type variables produce the most efficient use of code for comparisons etc.

Seealso: ALIASES, ARRAYS, DIM, CONSTANTS SYMBOL, Floating Point Math.

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Floating Point Math
The PROTON+ compiler can perform 32 x 32 bit IEEE 754 'Compliant’ Floating Point calcula-
tions.

Declaring a variable as FLOAT will enable floating point calculations on that variable.
DIM FLT AS FLOAT

To create a floating point constant, add a decimal point. Especially if the value is a whole num-
ber.

SYMBOL Pl =3.14 ' Create an obvious floating point constant
SYMBOL FL_NUM =5.0 ' Create a floating point format value of a whole number

Please note. Floating point arithmetic is not the utmost in accuracy, it is merely a means of
compressing a complex or large value into a small space (4 bytes in the compiler's case). Per-
fectly adequate results can usually be obtained from correct scaling of integer variables, with an
increase in speed and a saving of RAM and code space. 32 bit floating point math is extremely
microcontroller intensive since the PICmicro™ is only an 8 bit processor. It also consumes large
amounts of RAM, and code space for its operation, therefore always use floating point spar-
ingly, and only when strictly necessary. Floating point is not available on 12-bit core PICmicros
because of memory restrictions, and is most efficient when used with 16-bit core devices be-
cause of the more linear code and RAM specifications.

Floating Point Format

The PROTON+ compiler uses the Microchip variation of IEEE 754 floating point format. The
differences to standard IEEE 745 are minor, and well documented in Microchip application note
AN575 (downloadable from www.microchip.com).

Floating point numbers are represented in a modified IEEE-754 format. This format allows the
floating-point routines to take advantage of the PICmicro's architecture and reduce the amount
of overhead required in the calculations. The representation is shown below compared to the
IEEE-754 format: where s is the sign bit, y is the Isb of the exponent and x is a placeholder for
the mantissa and exponent bits.

The two formats may be easily converted from one to the other by manipulation of the Expo-
nent and Mantissa 0 bytes. The following assembly code shows an example of this operation.

Format Exponent Mantissa0 Mantissal Mantissa?2
IEEE-754 SXXX XXXX YXXX XXXX XXXX XXXX XXXX XXXX
Microchip XXXX XXXy SXXX XXXX XXXX XXXX XXXX XXXX

IEEE-754 TO MICROCHIP
RLF MANTISSAO
RLF EXPONENT
RRF MANTISSAO

MICROCHIP TO IEEE-754
RLF MANTISSAO
RRF EXPONENT
RRF MANTISSAO

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Variables Used by the Floating Point Libraries.

Several 8-bit RAM registers are used by the math routines to hold the operands for and results
of floating point operations. Since there may be two operands required for a floating point op-
eration (such as multiplication or division), there are two sets of exponent and mantissa regis-
ters reserved (A and B). For argument A, PBP_AARGHHH holds the exponent and
PBP_AARGHH, PBP_AARGH and PBP_AARG hold the mantissa. For argument B,
PBP_BARGHHH holds the exponent and PBP_BARGHH, PBP_BARGH and PBP_BARG hold
the mantissa.

Floating Point Example Programs.

" Multiply two floating point values

DEVICE = 18F452

XTAL =4

DIM FLT AS FLOAT

SYMBOL FL_NUM =1.234 ' Create a floating point constant value
CLS

FLT = FL_NUM *10

PRINT DEC FLT

STOP

" Add two floating point variables
DEVICE = 18F452
XTAL =4

DIM FLT AS FLOAT
DIM FLT1 AS FLOAT
DIM FLT2 AS FLOAT
CLS

FLT1=1.23

FLT2 = 1000.1
FLT=FLT1 + FLT2
PRINT DEC FLT
STOP

" A digital voltmeter, using the on-board ADC
DEVICE = 16F877

XTAL =4

ADIN_RES =10 " 10-bit result required
ADIN_TAD =FRC "RC OSC chosen
ADIN_DELAY =50 " Allow 50us sample time

DIM RAW AS WORD
DIM VOLTS AS FLOAT
SYMBOL QUANTA =5.0/1024 ' Calculate the quantising value

CLS

TRISA = %00000001 " Configure ANO (PORTA.O) as an input
ADCONL1 = %10000000 ' Set analogue input on PORTA.O
WHILE1=1

RAW = ADIN O

VOLTS = RAW * QUANTA
PRINT AT 1,1,DEC2 VOLTS,"V "
WEND

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Notes.
Floating point expressions containing more than 3 operands are not allowed, due to the extra
RAM space required for a software stack.

Any expression that contains a floating point variable or value will be calculated as a floating
point. Even if the expression also contains a BYTE, WORD, or DWORD value or variable.

If the assignment variable is a BYTE, WORD, or DWORD variable, but the expression is of a
floating point nature. Then the floating point result will be converted into an integer.

DEVICE = 16F877

DIM DWD AS DWORD

DIM FLT AS FLOAT

SYMBOL Pl =3.14

FLT =10

DWD =FLT + Pl ' Float calculation will result in 13.14, but reduced to integer 13
PRINT DEC DWD ' Display the integer result 13

STOP

For a more in-depth explanation of floating point, download the Microchip application notes
ANS575, and AN660. These can be found at www.microchip.com.

Code space requirements.

As mentioned above, floating point accuracy comes at a price of speed, and code space. Both
these issues are not a problem if a 16-bit core device is used, however 14-bit core devices can
pose a problem. The compiler attempts to load the floating point libraries into low memory,
along with all the other library subroutines, but if it does not fit within the first 2048 bytes of code
space, and the PICmicro™ has more than 2048 bytes of code available, the floating point librar-
ies will be loaded into the top 1000 bytes of code memory. This is invisible to the user, how-
ever, the compiler will warn that this is occurring in case that part of memory is being used by
your BASIC program.

More Accurate Display or Conversion of Floating Point values.

By default, the compiler uses a relatively small routine for converting floating point values to
decimal, ready for RSOUT, PRINT STR$ etc. However, because of its size, it does not perform
any rounding of the value first, and is only capable of converting relatively small values. i.e.
approx 6 digits of accuracy. In order to produce a more accurate result, the compiler needs to
use a larger routine. This is implemented by using a DECLARE: -

FLOAT _DISPLAY_TYPE = LARGE or STANDARD
Using the LARGE model for the above declare will trigger the compiler into using the more ac-
curate floating point to decimal routine. Note that even though the routine is larger than the
standard converter, it actually operates much faster.

The compiler defaults to STANDARD if the DECLARE is not issued in the BASIC program.

Seealso: DIM, SYMBOL, ALIASES, ARRAYS, CONSTANTS .

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Aliases

The SYMBOL directive is the primary method of creating an alias, however DIM can also be
used to create an alias to a variable. This is extremely useful for accessing the separate parts
of a variable.

DIM Fido as Dog " Fido is another name for Dog

DIM Mouse as Rat.LOWBYTE ' Mouse is the first byte (low byte) of word Rat
DIM Tail as Rat.HIGHBYTE ' Tail is the second byte (high byte) of word Rat
DIM Flea as Dog.0 ' Flea is bit-O of Dog

There are modifiers that may also be used with variables. These are HIGHBYTE, LOWBYTE,
BYTEO, BYTEL, BYTE2, BYTE3, WORDO, and WORD1.

WORDO, WORD1, BYTEZ2, and BYTE3 may only be used in conjunction with a 32-bit DWORD
type variable.

HIGHBYTE and BYTE1 are one and the same thing, when used with a WORD type variable,
they refer to the High byte of a WORD type variable: -

DIM WRD as WORD ' Declare a WORD sized variable
DIM WRD_HI as WRD.HIGHBYTE
"WRD_HI now represents the HIGHBYTE of variable WRD

Variable WRD_HI is now accessed as a BYTE sized type, but any reference to it actually alters
the high byte of WRD.

However, if BYTEL is used in conjunction with a DWORD type variable, it will extract the sec-
ond byte. HIGHBYTE will still extract the high byte of the variable, as will BYTES3.

The same is true of LOWBYTE and BYTEQO, but they refer to the Low Byte of a WORD type
variable: -

DIM WRD as WORD ' Declare a WORD sized variable
DIMWRD_LO as WRD.LOWBYTE
"WRD_LO now represents the LOWBYTE of variable WRD

Variable WRD_LO is now accessed as a BYTE sized type, but any reference to it actually al-
ters the low byte of WRD.

The modifier BYTE2 will extract the 3rd byte from a 32-bit DWORD type variable, as an alias.
Likewise BYTE3 will extract the high byte of a 32-bit variable.

DIM DWD as DWORD ' Declare a 32-bit variable named DWD
DIM PART1 as DWD.BYTEO " Alias PARTL1 to the low byte of DWD

DIM PART2 as DWD.BYTE1 " Alias PART2 to the 2nd byte of DWD

DIM PART3 as DWD.BYTE2 " Alias PART3 to the 3rd byte of DWD

DIM PART4 as DWD.BYTE3 " Alias PART3 to the high (4th) byte of DWD

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

The WORDO and WORD1 modifiers extract the low word and high word of a DWORD type
variable, and is used the same as the BYTEn modifiers.

DIM DWD as DWORD ' Declare a 32-bit variable named DWD
DIM PART1 as DWD.WORDO " Alias PART1 to the low word of DWD
DIM PART2 as DWD.WORD1 ' Alias PART2 to the high word of DWD

RAM space for variables is allocated within the PICmicro™ in the order that they are placed in
the BASIC code. For example: -

DIM VAR1 as BYTE
DIM VAR2 as BYTE

Places VAR1 first, then VAR2: -

VAR1 EQU n
VAR2 EQU n

This means that on a PICmicro™ with more than one BANK, the first n variables will always be
in BANKO (the value of n depends on the specific PICmicro™ used).

Finer points for variable handling.

The position of the variable within BANKSs is usually of little importance if BASIC code is used,
however, if assembler routines are being implemented, always assign any variables used within
them first.

Problems may also arise if a WORD, or DWORD variable crosses a BANK boundary. If this
happens, a warning message will be displayed in the error window. Most of the time, this will
not cause any problems, however, to err on the side of caution, try and ensure that WORD, or
DWORD type variables are fully inside a BANK. This is easily accomplished by placing a
dummy BYTE variable before the offending WORD, or DWORD type variable, or relocating the
offending variable within the list of DIM statements.

WORD type variables have a low byte and a high byte. The high byte may be accessed by
simply adding the letter H to the end of the variable's name. For example: -

DIM WRD as WORD
Will produce the assembler code: -

WRD EQU n
WRDH EQU n

To access the high byte of variable WRD, use: -
WRDH =1
This is especially useful when assembler routines are being implemented, such as: -

MOVLW 1
MOVWF WRDH ; Load the high byte of WRD with 1

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

DWORD type variables have a low, mid1l, mid2, and hi byte. The high byte may be accessed by
adding three letter H's to the variable's name. For example: -

DIM DWD as DWORD
Will produce the assembler code: -
DWD EQU n
DWDH EQU n
DWDHH EQU n
DWDHHH EQU n
To access the high byte of variable WRD, use: -
DWDHHH =1
or

DWD.HIGHBYTE =1

The low, and mid bytes may be similarly accessed by adding or removing the "H" after the vari-
able's name.

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Constants

Named constants may be created in the same manner as variables. It can be more informative
to use a constant name instead of a constant number. Once a constant is declared, it cannot be
changed later, hence the name ‘constant'.

DIM Label as Constant expression
DIM MOUSE as 1

DIM MICE as MOUSE * 400
DIM MOUSE_PI as MOUSE + 2.14

Although DIM can be uses to create constants, SYMBOL is more often used.

Symbols

SYMBOL provides yet another method for aliasing variables and constants. SYMBOL cannot
be used to create a variable. Constants declared using SYMBOL do not use any RAM within
the PICmicro™.

SYMBOL CAT =123

SYMBOL TIGER = CAT ' TIGER now holds the value of CAT
SYMBOL MOUSE =1 ' Same as DIM Mouse AS 1

SYMBOL TIGOUSE = TIGER + MOUSE ' Add Tiger to Mouse to make Tigouse

Floating point constants may also be created using SYMBOL by simply adding a decimal point
to a value.

SYMBOL Pl =3.14 ' Create a floating point constant named PI
SYMBOL FL_NUM =5.0 ' Create a floating point constant holding the value 5

Floating point constant can also be created using expressions.

' Create a floating point constant holding the result of the expression
SYMBOL QUANTA =5.0/1024

If a variable or register's name is used in a constant expression then the variable's or register's
address will be substituted, not the value held in the variable or register: -

SYMBOL CON = (PORTA + 1) ' CON will hold the value 6 (5+1)
SYMBOL is also useful for aliasing Ports and Registers: -

SYMBOL LED = PORTA.1 ' LED now references bit-1 of PORTA
SYMBOL TOIF = INTCON.2 " TOIF now references bit-2 of INTCON register

The equal sign between the Constant's name and the alias value is optional: -

SYMBOL LED PORTA.1 ' Same as SYMBOL LED=PORTA.1

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Numeric Representations
The compiler recognises several different numeric representations: -

Binary is prefixed by %. i.e. %0101

Hexadecimal is prefixed by $. i.e. $0A

Character byte is surrounded by quotes. i.e. "a" represents a value of 97
Decimal values need no prefix.

Floating point is created by using a decimal point. i.e. 3.14

Quoted String of Characters
A Quoted String of Characters contains one or more characters (maximum 200) and is delim-
ited by double quotes. Such as "Hello World"

The compiler also supports a subset of C language type formatters within a quoted string of
characters. These are: -

\a Bell (alert) character $07
\b Backspace character $08
\f Form feed character $0C
\n New line character $0A
\r Carriage return character $0D
\t Horizontal tab character $09
\v Vertical tab character $0B
\\ Backslash $5C
\" Double quote character $22
Example: -

PRINT "HELLO WORLD\n\r"

Strings are usually treated as a list of individual character values, and are used by commands
such as PRINT, RSOUT, BUSOUT, EWRITE etc. And of course, STRING variables.

NULL Terminated

NULL is a term used in computer languages for zero. So a NULL terminated STRING is a col-
lection of characters followed by a zero in order to signify the end of characters. For example,
the string of characters "HELLO", would be stored as: -

IIHII , IIEII , llLll , llLll ’IIOII , O

Notice that the terminating NULL is the value 0 not the character "0".

Ports and other Registers

All of the PICmicro™ registers, including the ports, can be accessed just like any other byte-

sized variable. This means that they can be read from, written to or used in equations directly.
PORTA = %01010101 ' Write value to PORTA

VAR1 = WRD * PORTA ' Multiply variable WRD with the contents of PORTA

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

The compiler can also combinel6-bit registers such as TMR1 into a WORD type variable.
Which makes loading and reading these registers simple: -

' Combine TMR1L, and TMR1H into WORD variable TIMER1
DIM TIMER1 AS TMR1L.WORD

TIMER1 = 12345 ' Load TMR1 with value 12345
or
WRD1 = TIMER1 ' Load WRD1 with contents of TMR1

The .WORD extension links registers TMR1L, and TMR1H, (which are assigned in the .LBP file
associated with relevant PICmicro™ used).

Any hardware register that can hold a 16-bit result can be assigned as a WORD type variable: -
' Combine ADRESL, and ADRESH into WORD variable AD_RESULT
DIM AD_RESULT AS ADRES.WORD

' Combine PRODL, and PRODH into WORD variable MUL_PROD
DIM MUL_PROD AS PRODL.WORD

General Format
The compiler is not case sensitive, except when processing string constants such as "hello".

Multiple instructions and labels can be combined on the same line by separating them with co-
lons "',

The examples below show the same program as separate lines and as a single-line: -

Multiple-line version: -

TRISB = %00000000 ' Make all pins on PORTB outputs
FORVAR1=0TO 100 'Countfrom0to 100

PORTB = VARL1 ' Make PORTB = count (VAR1)

NEXT ' Continue counting until 100 is reached

Single-line version: -

TRISB = %00000000 : FOR VAR1 =0 TO 100 : PORTB = VARL1 : NEXT
Line Continuation Character ' '
Lines that are too long to display, may be split using the continuation character ' _". This will di-
rect the continuation of a command to the next line. It's use is only permitted after a comma de-
limiter: -

VAR1 = LOOKUP VAR2,[1,2,3,_
4,5,6,7,8]

or
PRINTAT 1,1,
"HELLO WORLD",_
DEC VAR1,
HEX VAR2

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Inline Commands within Comparisons

A very useful addition to the compiler is the ability to mix most INLINE commands into compari-
sons. For example: -

ADIN, BUSIN, COUNTER, DIG, EREAD, HBUSIN, INKEY, LCDREAD, LOOKDOWN, LOOK-
DOWNL, LOOKUP, LOOKUPL, PIXEL, POT, PULSIN, RANDOM, SHIN, RCIN, RSIN etc.

All these commands may be used in an IF-THEN, SELECT-CASE, WHILE-WEND, or RE-
PEAT-UNTIL structure. For example, with the previous versions of the compiler, to read a key
using the INKEY command required a two stage process: -

VARL = INKEY
IF VARL = 12 THEN { do something }

Now, the structure: -
IF INKEY = 12 THEN { do something }
is perfectly valid. And so is: -
IF ADIN 0 = 1020 THEN { do something } " Test the ADC from channel O

The new structure of the in-line commands does not always save code space, however, it does
make the program easier to write, and a lot easier to understand, or debug if things go wrong.

The LOOKUP, LOOKUPL, LOOKDOWN, and LOOKDOWNL commands may also use an-
other in-line command instead of a variable. For example, to read and re-arrange a key press
from a keypad: -

KEY = LOOKUP INKEY, [1,2,3,15,4,5,6,14,7,8,9,13,10,0,11,12,255]

In-line command differences do not stop there. They may now also be used for display pur-
poses in the RSOUT, SEROUT, HRSOUT, and PRINT commands: -

LABEL: RSOUT LOOKUP INKEY, [1,2,3,15,4,5,6,14,7,8,9,13,10,0,11,12,255] : GOTO LABEL
How's that for a simple serial keypad program. Or: -
WHILE 1 =1: PRINT RSIN : WEND

Believe it or not, the above single line of code is a simple serial LCD controller. Accepting serial
data through the RSIN command, and displaying the data with the PRINT command.

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Creating and using Arrays

The PROTON+ compiler supports multi part BYTE, and WORD variables named arrays. An ar-
ray is a group of variables of the same size (8-bits wide, or 16-bits wide), sharing a single
name, but split into numbered cells, called elements.

An array is defined using the following syntax: -
DIM Name[length] AS BYTE
DIM Name[length] AS WORD

where Name is the variable's given nhame, and the new argument, [length], informs the com-
piler how many elements you want the array to contain. For example: -

DIM MYARRAY[10] AS BYTE ' Create a 10 element byte array.
DIM MYARRAY[10] AS WORD ' Create a 10 element word array.

A unique feature of the compiler is the ability to allow up to 256 elements within a BYTE array,
and 128 elements in a WORD array. However, because of the rather complex way that some
PICmicro's RAM cells are organised (i.e. BANKS), there are a few rules that need to be ob-
served when creating arrays.

PICmicro™ Memory Map Complexities.

Larger PICmicros have more RAM available for variable storage, however, accessing the RAM
on the 14-bit core devices is not as straightforward as one might expect. The RAM is organised
in BANKS, where each BANK is 128 bytes in length. Crossing these BANKSs requires bits 5 and
6 of the STATUS register to be manipulated. The larger PICmicros such as the 16F877 device
have 512 RAM locations, but only 368 of these are available for variable storage, the rest are
known as SYSTEM REGISTERS and are used to control certain aspects of the PICmicro™ i.e.
TRIS, |0 ports, UART etc. The compiler attempts to make this complex system of BANK
switching as transparent to the user as possible, and succeeds where standard BIT, BYTE,
WORD, and DWORD variables are concerned. However, ARRAY variables will inevitably need
to cross the BANKS in order to create arrays larger than 96 bytes, which is the largest section
of RAM within BANKO. Coincidently, this is also the largest array size permissible by most other
compilers at the time of writing this manual.

Large arrays (normally over 96 elements) require that their STARTING address be located
within the first 255 bytes of RAM (i.e. within BANKO and BANK?2), the array itself may cross this
boundary. This is easily accomplished by declaring them at, or near the top of the list of vari-
ables. The Compiler does not manipulate the variable declarations. If a variable is placed first in
the list, it will be placed in the first available RAM slot within the PICmicro™. This way, you, the
programmer maintains finite control of the variable usage. For example, commonly used vari-
ables should be placed near the top of the list of declared variables. An example of declaring
an array is illustrated below: -

DEVICE 16F877 ' Choose a PICmicro with extra RAM
DIM SMALL_ARRAY[20] AS BYTE ' Create a small array of 20 elements
DIM VAR1 AS BYTE ' Create a standard BYTE variable
DIM LARGE_ARRAY[256] AS BYTE ' Create a BYTE array of 256 elements
or
DIM ARRAY1[120] AS BYTE ' Create an array of 120 elements
DIM ARRAY?2[100] AS BYTE ' Create another smaller array of 100 elements

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

If an array cannot be resolved, then a warning will be issued informing you of the offending line:
WARNING Array ‘array name' is declared at address ‘array address'. Which is over the
255 RAM address limit, and crosses BANK3 boundary!

Ignoring this warning will spell certain failure of your program.
The following array declaration will produce a warning when compiled for a 16F877 device: -

DEVICE 16F877 ' Choose a PICmicro with extra RAM
DIM ARRAY1[200] AS BYTE ' Create an array of 200 elements
DIM ARRAY2[100] AS BYTE ' Create another smaller array of 100 elements

Examining the assembler code produced, will reveal that ARRAY1 starts at address 32 and fin-
ishes at address 295. This is acceptable and the compiler will not complain. Now look at AR-
RAY?2, its start address is at 296 which is over the 255 address limit, thus producing a warning
message.

The above warning is easily remedied by re-arranging the variable declaration list: -

DIM ARRAY2[100] AS BYTE ' Create a small array of 100 elements
DIM ARRAY1[200] AS BYTE ' Create an array of 200 elements

Again, examining the asm code produced, now reveals that ARRAY?2 starts at address 32 and
finishes at address 163. everything OK there then. And ARRAY1 starts at address 164 and fin-
ishes at address 427, again, its starting address was within the 255 limit so everything's OK
there as well, even though the array itself crossed several BANKs. A simple re-arrangement of
code meant the difference between a working and not working program.

Of course, the smaller PICmicro™ devices do not have this limitation as they do not have 255
RAM cells anyway. Therefore, arrays may be located anywhere in the variable declaration list.
The same goes for the 16-bit core devices, as these can address any area of their RAM.

16-bit core simplicity.

The 16-bit core devices i.e. PIC18XXX, have no such complexities in their memory map as the
14-bit core devices do. The memory is still banked, but each bank is 256 bytes in length, and
runs linearly from one to the other. Add to that, the ability to access all RAM areas using indi-
rect addressing, makes arrays extremely easy to use. If many large arrays are required in a
program, then the 16-bit core devices (especially the Flash types) are highly recommended.

Once an array is created, its elements may be accessed numerically. Numbering starts at 0 and
ends at n-1. For example: -

MYARRAY [3] = 57
PRINT "MYARRAY[3] =", DEC MYARRAY([3]

The above example will access the fourth element in the BYTE array and display "MYAR-
RAY[3] = 57" on the LCD. The true flexibility of arrays is that the index value itself may be a
variable. For example: -

DEVICE 16F84 "We'll use a smaller device this time
DIM MYARRAY[10] AS BYTE ' Create a 10-byte array.

DIM INDEX AS BYTE ' Create a normal BYTE variable.
FORINDEX=0TO9 ' Repeat with INDEX=0,1,2...9

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

MYARRAY[INDEX] = INDEX * 10 "Write INDEX*10 to each element of the array.
NEXT

FORINDEX=0TO9 ' Repeat with INDEX=0,1,2...9

PRINT AT 1,1, DEC MYARRAY [INDEX] ' Show the contents of each element.
DELAYMS 500 ' Wait long enough to view the values

NEXT

STOP

If the above program is run, 10 values will be displayed, counting from 0 to 90 i.e. INDEX * 10.

A word of caution regarding arrays: If you're familiar with other BASICs and have used their ar-
rays, you may have run into the "subscript out of range" error. Subscript is simply another term
for the index value. It is considered 'out-of range' when it exceeds the maximum value for the
size of the array.

For example, in the example above, MYARRAY is a 10-element array. Allowable index values
are 0 through 9. If your program exceeds this range, the compiler will not respond with an error
message. Instead, it will access the next RAM location past the end of the array.

If you are not careful about this, it can cause all sorts of subtle anomalies, as previously loaded
variables are overwritten. It's up to the programmer (you!) to help prevent this from happening.

Even more flexibility is allowed with arrays because the index value may also be an expression.

DEVICE 16F84 "We'll use a smaller device

DIM MYARRAY[10] AS BYTE ' Create a 10-byte array.

DIM INDEX AS BYTE ' Create a normal BYTE variable.

FOR INDEX=0TO 8 ' Repeat with INDEX=0,1,2...8
MYARRAY[INDEX + 1] = INDEX * 10 ' Write INDEX*10 to each element of the array.
NEXT

FOR INDEX=0TO 8 ' Repeat with INDEX=0,1,2...8
PRINT AT 1, 1, DEC MYARRAY [INDEX + 1] ' Show the contents of each element.
DELAYMS 500 " Wait long enough to view the values
NEXT

STOP

The expression within the square braces should be kept simple, and arrays are not allowed as
part of the expression.

Using Arrays in Expressions.
Of course, arrays are allowed within expressions themselves. For example: -

DIM MYARRAY[10] AS BYTE ' Create a 10-byte array.

DIM INDEX AS BYTE ' Create a normal BYTE variable.

DIM VAR1 AS BYTE ' Create another BYTE variable

DIM Result AS BYTE ' Create a variable to hold the result of the expression
INDEX =5 " And INDEX now holds the value 5

VAR1 =10 ' Variable VAR1 now holds the value 10
MYARRAY[INDEX] = 20 ' Load the 6™ element of MYARRAY with value 20
Result = (VAR1 * MYARRAY[INDEX]) /20 ' Do a simple expression

PRINT AT 1,1, DECResult,"" ' Display the result of the expression
STOP

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

The previous example will display 10 on the LCD, because the expression reads as: -
(10 *20)/ 20
VAR1 holds a value of 10, MYARRAY[INDEX] holds a value of 20, these two variables are mul-

tiplied together which will yield 200, then they're divided by the constant 20 to produce a result
of 10.

Arrays as Strings
Arrays may also be used as simple strings in certain commands, because after all, a string is
simply a byte array used to store text.

For this, the STR modifier is used.
The commands that support the STR modifier are: -
BUSOUT - BUSIN
HBUSOUT - HBUSIN
HRSOUT - HRSIN
OWRITE - OREAD
RSOUT - RSIN
SEROUT - SERIN
SHOUT - SHIN
PRINT
The STR modifier works in two ways, it outputs data from a pre-declared array in commands
that send data i.e. RSOUT, PRINT etc, and loads data into an array, in commands that input
information i.e. RSIN, SERIN etc. The following examples illustrate the STR modifier in each
compatible command.
Using STR with the BUSIN and BUSOUT commands.
Refer to the sections explaining the BUSIN and BUSOUT commands.
Using STR with the HBUSIN and HBUSOUT commands.
Refer to the sections explaining the HBUSIN and HBUSOUT commands.
Using STR with the RSIN command.

DIM ARRAY1[10] AS BYTE ' Create a 10-byte array named ARRAY1
RSIN STR ARRAY1 ' Load 10 bytes of data directly into ARRAY1

Using STR with the RSOUT command.

DIM ARRAY1[10] AS BYTE ' Create a 10-byte array named ARRAY1
RSOUT STR ARRAY1 " Send 10 bytes of data directly from ARRAY1

Using STR with the HRSIN and HRSOUT commands.

Refer to the sections explaining the HRSOUT and HRSIN commands.

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Using STR with the SHOUT command.

SYMBOL DTA = PORTA.O ' Define the two lines for the SHOUT command
SYMBOL CLK = PORTA.1
DIM ARRAY1[10] AS BYTE ' Create a 10-byte array named ARRAY1

' Send 10 bytes of data from ARRAY1
SHOUT DTA, CLK, MSBFIRST, [STR ARRAY1]

Using STR with the SHIN command.

SYMBOL DTA = PORTA.O ' Define the two lines for the SHIN command
SYMBOL CLK = PORTA.1
DIM ARRAY1[10] AS BYTE ' Create a 10-byte array named ARRAY1

' Load 10 bytes of data directly into ARRAY1
SHIN DTA, CLK, MSBPRE , [STR ARRAY1]

Using STR with the PRINT command.

DIM ARRAY1[10] AS BYTE ' Create a 10-byte array named ARRAY1
PRINT STR ARRAY1 ' Send 10 bytes of data directly from ARRAY1

Using STR with the SEROUT and SERIN commands.

Refer to the sections explaining the SERIN and SEROUT commands.

Using STR with the OREAD and OWRITE commands.

Refer to the sections explaining the OREAD and OWRITE commands.

The STR modifier has two forms for variable-width and fixed-width data, shown below: -
STR bytearray ASCII string from bytearray until byte = 0 (NULL terminated).

Or array length is reached.

STR bytearray\n ASCII string consisting of n bytes from bytearray.

NULL terminated means that a zero (NULL) is placed at the end of the string of ASCII charac-
ters to signal that the string has finished.

The example below is the variable-width form of the STR modifier: -

DIM MYARRAYI[5] AS BYTE ' Create a 5 element array
MYARRAY[0] = "A" " Fill the array with ASCII
MYARRAY[1] = "B"

MYARRAY[2] ="C"

MYARRAY[3] = "D"

MYARRAY[4] =0 " Add the NULL Terminator
PRINT STR MYARRAY ' Display the string

The code above displays "ABCD" on the LCD. In this form, the STR formatter displays each
character contained in the byte array until it finds a character that is equal to 0 (value 0, not
ASCII "0"). NOTE: If the byte array does not end with O (NULL), the compiler will read and

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

output all RAM register contents until it cycles through all RAM locations for the declared length
of the byte array.

For example, the same code as before without a NULL terminator is: -

DIM MYARRAY[4] AS BYTE ' Create a 4 element array
MYARRAY[O] = "A" " Fill the array with ASCII
MYARRAY[1] = "B"

MYARRAY[2] ="C"

MYARRAY[3] = "D"

PRINT STR MYARRAY ' Display the string

The code above will display the whole of the array, because the array was declared with only
four elements, and each element was filled with an ASCII character i.e. "ABCD".

To specify a fixed-width format for the STR modifier, use the form STR MYARRAY\n; where
MYARRAY is the byte array and n is the number of characters to display, or transmit. Changing
the PRINT line in the examples above to: -

PRINT STR MYARRAY \ 2
would display "AB" on the LCD.

STR is not only used as a modifier, it is also a command, and is used for initially filling an array
with data. The above examples may be re-written as: -

DIM MYARRAY[5] AS BYTE ' Create a 5 element array
STR MYARRAY ="ABCD", 0 " Fill the array with ASCII, and NULL terminate it
PRINT STR MYARRAY ' Display the string

Strings may also be copied into other strings: -

DIM String1[5] AS BYTE ' Create a 5 element array

DIM String2[5] AS BYTE ' Create another 5 element array

STR Stringl = "ABCD", 0 " Fill the array with ASCII, and NULL terminate it

STR String2 ="EFGH", 0 " Fill the other array with ASCII, and NULL terminate it
STR Stringl = STR String2 " Copy String2 into Stringl

PRINT STR Stringl ' Display the string

The above example will display "EFGH", because Stringl has been overwritten by String2.

Using the STR command with BUSOUT, HBUSOUT, SHOUT, and OWRITE differs from using
it with commands SEROUT, PRINT, HRSOUT, and RSOUT in that, the latter commands are
used more for dealing with text, or ASCII data, therefore these are NULL terminated.

The HBUSOUT, BUSOUT, SHOUT, and OWRITE commands are not commonly used for
sending ASCII data, and are more inclined to send standard 8-bit bytes. Thus, a NULL termina-
tor would cut short a string of byte data, if one of the values happened to be a 0. So these com-
mands will output data until the length of the array is reached, or a fixed length terminator is
used i.e. MYARRAY\n.

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Creating and using Strings

The PROTON+ compiler supports STRING variables, only when targeting a 16-bit core
PICmicro™ device.

The syntax to create a string is : -
DIM String Name as STRING * String Length

String Name can be any valid variable name. See DIM .
String Length can be any value up to 255, allowing up to 255 characters to be stored.

The line of code below will create a STRING named ST that can hold 20 characters: -
DIM ST as STRING * 20
Two or more strings can be concatenated (linked together) by using the plus (+) operator: -

DEVICE = 18F452 ' Must be a 16-bit core device for Strings
' Create three strings capable of holding 20 characters

DIM DEST_STRING as STRING * 20

DIM SOURCE_STRING1 as STRING * 20

DIM SOURCE_STRING2 as STRING * 20

SOURCE_STRING1 ="HELLO " ' Load String SOURCE_STRING1 with the text HELLO
' Load String SOURCE_STRING2 with the text WORLD

SOURCE_STRING2 = "WORLD"

" Add both Source Strings together. Place result into String DEST_STRING
DEST_STRING= SOURCE_STRING1+ SOURCE_STRING2

The String DEST_STRING now contains the text "HELLO WORLD", and can be transmitted
serially or displayed on an LCD: -

PRINT DEST_STRING

The Destination String itself can be added to if it is placed as one of the variables in the addi-
tion expression. For example, the above code could be written as: -

DEVICE = 18F452 ' Must be a 16-bit core device for Strings

DIM DEST_STRING as STRING * 20 ' Create a String capable of holding 20 characters
' Create another String capable of holding 20 characters

DIM SOURCE_STRING as STRING * 20

DEST_STRING ="HELLO " ' Pre-load String DEST_STRING with the text HELLO
SOURCE_STRING ="WORLD" 'Load String SOURCE_STRING with the text WORLD
' Concatenate DEST_STRING with SOURCE_STRING

DEST_STRING = DEST_STRING + SOURCE_STRING

PRINT DEST_STRING ' Display the result which is "HELLO WORLD"
STOP

Note that Strings cannot be subtracted, multiplied or divided, and cannot be used as part of a
regular expression otherwise a syntax error will be produced.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

It's not only other strings that can be added to a string, the functions CSTR, ESTR, MIDS$,
LEFTS$, RIGHTS$, STR$, TOUPPER, and TOLOWER can also be used as one of variables to
concatenate.

A few examples of using these functions are shown below: -

CSTR Example
" Use the CSTR function in order to place a code memory string into a String variable

DEVICE = 18F452 " Must be a 16-bit core device for Strings
DIM DEST_STRING as STRING * 20 ' Create a String capable of holding 20 characters
DIM SOURCE_STRING as STRING * 20 ' Create another String

SOURCE_STRING ="HELLO " ' Load the string with characters
DEST_STRING = SOURCE_STRING + CSTR CODE_STR ' Concatenate the string
PRINT DEST_STRING ' Display the result which is "HELLO WORLD"
STOP

CODE_STR:

CDATA "WORLD",0

The above example is really only for demonstration because if a LABEL name is placed as one
of the parameters in a string concatenation, an automatic (more efficient) CSTR operation will
be carried out. Therefore the above example should be written as: -

More efficient Example of above code
' Place a code memory string into a String variable more efficiently than using CSTR

DEVICE = 18F452 " Must be a 16-bit core device for Strings
DIM DEST_STRING as STRING * 20 ' Create a String capable of holding 20 characters
DIM SOURCE_STRING as STRING * 20 ' Create another String
SOURCE_STRING ="HELLO " ' Load the string with characters
DEST_STRING = SOURCE_STRING + CODE_STR ' Concatenate the string
PRINT DEST_STRING ' Display the result which is "HELLO WORLD"
STOP

CODE_STR:

CDATA "WORLD",0

A NULL terminated string of characters held in DATA (on-board eeprom) memory can also be
loaded or concatenated to a string by using the ESTR function: -

ESTR Example
" Use the ESTR function in order to place a DATA memory string into a String variable
' Remember to place EDATA before the main code, so it's recognised as a constant value

DEVICE = 18F452 " Must be a 16-bit core device for Strings
DIM DEST_STRING as STRING * 20 ' Create a String capable of holding 20 characters
DIM SOURCE_STRING as STRING * 20 ' Create another String

DATA_STR EDATA "WORLD",0 ' Create a string in DATA memory named DATA_STR
SOURCE_STRING ="HELLO " ' Load the string with characters
DEST_STRING = SOURCE_STRING + ESTR DATA_STR ' Concatenate the string
PRINT DEST_STRING ' Display the result which is "HELLO WORLD"
STOP

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Converting an integer or floating point value into a string is accomplished by using the STR$
function: -

STR$ Example
' Use the STR$ function in order to concatenate an integer value into a String variable

DEVICE = 18F452 " Must be a 16-bit core device for Strings
DIM DEST_STRING as STRING * 30 ' Create a String capable of holding 30 characters
DIM SOURCE_STRING as STRING * 20 ' Create another String

DIM WRD1 as WORD ' Create a Word variable

WRD1 = 1234 ' Load the Word variable with a value
SOURCE_STRING ="VALUE =" " Load the string with characters
DEST_STRING = SOURCE_STRING + STR$ (DEC WRD1) ' Concatenate the string
PRINT DEST_STRING " Display the result which is "VALUE = 1234"
STOP

LEFT$ Example
' Copy 5 characters from the left of SOURCE_STRING and add to a quoted character string

DEVICE = 18F452 ' Must be a 16-bit core device for Strings
DIM SOURCE_STRING as STRING * 20 ' Create a String

DIM DEST_STRING as STRING * 20 ' Create another String
SOURCE_STRING ="HELLO WORLD" ' Load the source string with characters
DEST_STRING = LEFT$ (SOURCE_STRING, 5) + " WORLD"

PRINT DEST_STRING ' Display the result which is "HELLO WORLD"
STOP

RIGHT$ Example
' Copy 5 characters from the right of SOURCE_STRING and add to a quoted character string

DEVICE = 18F452 ' Must be a 16-bit core device for Strings
DIM SOURCE_STRING as STRING * 20 ' Create a String
DIM DEST_STRING as STRING * 20 ' Create another String
SOURCE_STRING ="HELLO WORLD" ' Load the source string with characters
DEST_STRING ="HELLO " + RIGHT$ (SOURCE_STRING , 5)
PRINT DEST_STRING ' Display the result which is "HELLO WORLD"
STOP

MID$ Example

' Copy 5 characters from position 4 of SOURCE_STRING and add to quoted character strings
DEVICE = 18F452 ' Must be a 16-bit core device for Strings
DIM SOURCE_STRING as STRING * 20 ' Create a String
DIM DEST_STRING as STRING * 20 ' Create another String
SOURCE_STRING ="HELLO WORLD" ' Load the source string with characters
DEST_STRING ="HEL" + MID$ (SOURCE_STRING , 4, 5) + "RLD"
PRINT DEST_STRING ' Display the result which is "HELLO WORLD"
STOP

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Converting a string into uppercase or lowercase is accomplished by the functions TOUPPER
and TOLOWER: -

TOUPPER Example
" Convert the characters in SOURCE_STRING to upper case

DEVICE = 18F452 ' Must be a 16-bit core device for Strings
DIM SOURCE_STRING as STRING * 20 ' Create a String
DIM DEST_STRING as STRING * 20 ' Create another String

SOURCE_STRING = "hello world" ' Load the source string with lowercase characters
DEST_STRING = TOUPPER(SOURCE_STRING)

PRINT DEST_STRING ' Display the result which is "HELLO WORLD"
STOP

TOLOWER Example
" Convert the characters in SOURCE_STRING to lower case

DEVICE = 18F452 " Must be a 16-bit core device for Strings
DIM SOURCE_STRING as STRING * 20 ' Create a String
DIM DEST_STRING as STRING * 20 ' Create another String

SOURCE_STRING ="HELLO WORLD" ' Load the string with uppercase characters
DEST_STRING = TOLOWER(SOURCE_STRING)

PRINT DEST_STRING ' Display the result which is "hello world"
STOP

Loading a String Indirectly
If the Source String is a BYTE, WORD, BYTE_ARRAY, WORD_ARRAY or FLOAT variable,

the value contained within the variable is used as a pointer to the start of the Source String's
address in RAM.

Example
" Copy SOURCE_STRING into DEST_STRING using a pointer to SOURCE_STRING

DEVICE = 18F452 ' Must be a 16-bit core device for Strings
DIM SOURCE_STRING as STRING * 20 ' Create a String
DIM DEST_STRING as STRING * 20 ' Create another String

' Create a WORD variable to hold the address of SOURCE_STRING
DIM STRING_ADDR as WORD

SOURCE_STRING ="HELLO WORLD" ' Load the source string with characters
" Locate the start address of SOURCE_STRING in RAM

STRING_ADDR = VARPTR (SOURCE_STRING)

DEST_STRING = STRING_ADDR ' Source string into the destination string
PRINT DEST_STRING ' Display the result, which will be "HELLO"
STOP

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Slicing a STRING into pieces.
Each position within the string can be accessed the same as a BYTE ARRAY by using square
braces: -

DEVICE = 18F452 " Must be a 16-bit core device for Strings
DIM SOURCE_STRING as STRING * 20 ' Create a String

SOURCE_STRINGIO0] = "H" ' Place the letter "H" as the first character in the string
SOURCE_STRING[1] ="E" ' Place the letter "E" as the second character
SOURCE_STRING[2] = "L" ' Place the letter "L" as the third character
SOURCE_STRING[3] ="L" ' Place the letter "L" as the fourth character
SOURCE_STRING[4] ="O" ' Place the letter "O" as the fifth character
SOURCE_STRING[5] =0 " Add a NULL to terminate the string

PRINT SOURCE_STRING ' Display the string, which will be "HELLO"

STOP

The example above demonstrates the ability to place individual characters anywhere in the
string. Of course, you wouldn't use the code above in an actual BASIC program.

A string can also be read character by character by using the same method as shown above: -

DEVICE = 18F452 ' Must be a 16-bit core device for Strings
DIM SOURCE_STRING as STRING * 20 ' Create a String
DIM VAR1 as BYTE

SOURCE_STRING ="HELLO" ' Load the source string with characters
' Copy character 1 from the source string and place it into VAR1

VAR1 = SOURCE_STRINGJ1]

PRINT VARL1 ' Display the character extracted from the string. Which will be "E"
STOP

When using the above method of reading and writing to a string variable, the first character in
the string is referenced at 0 onwards, just like a BYTE ARRAY.

The example below shows a more practical STRING slicing demonstration.

' Display a string's text by examining each character individually

DEVICE = 18F452 ' Must be a 16-bit core device for Strings
DIM SOURCE_STRING as STRING * 20 ' Create a String

DIM CHARPOS as BYTE ' Holds the position within the string
SOURCE_STRING ="HELLO WORLD" ' Load the source string with characters
CHARPOS =0 ' Start at position 0 within the string
REPEAT ' Create a loop

' Display the character extracted from the string
PRINT SOURCE_STRING[CHARPOS]
INC CHARPOS ' Move to the next position within the string
' Keep looping until the end of the string is found
UNTIL CHARPOS = LEN (SOURCE_STRING)
STOP

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Notes

A word of caution regarding Strings: If you're familiar with interpreted BASICs and have used
their String variables, you may have run into the "subscript out of range" error. This error occurs
when the amount of characters placed in the string exceeds its maximum size.

For example, in the examples above, most of the strings are capable of holding 20 characters.
If your program exceeds this range by trying to place 21 characters into a string only created for
20 characters, the compiler will not respond with an error message. Instead, it will access the
next RAM location past the end of the String.

If you are not careful about this, it can cause all sorts of subtle anomalies, as previously loaded
variables are overwritten. It's up to the programmer (you!) to help prevent this from happening
by ensuring that the STRING in question is large enough to accommodate all the characters
required, but not too large that it uses up too much precious RAM.

The compiler will help by giving a reminder message when appropriate, but this can be ignored
if you are confident that the STRING is large enough.

See also: Creating and using VIRTUAL STRINGS with CDATA
Creating and using VIRTUAL STRINGS with EDATA
CDATA, LEN, LEFT$, MID$, RIGHT$
STRING Comparisons, STR$, TOLOWER, TOUPPER, VARPTR .

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Creating and using VIRTUAL STRINGS with CDATA

Some PICmicros such as the 16F87x range and all the 18FXXX range, have the ability to read
and write to their own flash memory. And although writing to this memory too many times is un-
healthy for the PICmicro™, reading this memory is both fast, and harmless. Which offers a
unique form of data storage and retrieval, the CDATA command proves this, as it uses the
mechanism of reading and storing in the PICmicro's flash memory.

Combining the unique features of the 'self modifying PICmicros ' with a string format, the com-
piler is capable of reducing the overhead of printing, or transmitting large amounts of text data.
The CSTR modifier may be used in commands that deal with text processing i.e. PRINT, SE-
ROUT, HRSOUT, and RSOUT .

The CSTR maodifier is used in conjunction with the CDATA command. The CDATA command is
used for initially creating the string of characters: -

STRING1: CDATA "HELLO WORLD", 0

The above line of code will create, in flash memory, the values that make up the ASCII text
"HELLO WORLD", at address STRING1. Note the NULL terminator after the ASCII text.

NULL terminated means that a zero (NULL) is placed at the end of the string of ASCII charac-
ters to signal that the string has finished.

To display, or transmit this string of characters, the following command structure could be used:
PRINT CSTR STRING1

The label that declared the address where the list of CDATA values resided, now becomes the
string's name. In a large program with lots of text formatting, this type of structure can save
quite literally hundreds of bytes of valuable code space.

Try both these small programs, and you'll see that using CSTR saves a few bytes of code: -
First the standard way of displaying text: -

DEVICE 16F877

CLS

PRINT "HELLO WORLD"
PRINT "HOW ARE YOU?"
PRINT "I AM FINE!"
STOP

Now using the CSTR modifier: -

CLS

PRINT CSTR TEXT1
PRINT CSTR TEXT2
PRINT CSTR TEXT3
STOP

TEXT1: CDATA "HELLO WORLD", 0

TEXT2: CDATA "HOW ARE YOU?", 0
TEXT3: CDATA "I AM FINE!" , 0

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Again, note the NULL terminators after the ASCII text in the CDATA commands. Without these,
the PICmicro™ will continue to transmit data in an endless loop.

The term 'virtual string' relates to the fact that a string formed from the CDATA command can-
not (rather should not) be written too, but only read from.

Not only label names can be used with the CSTR modifier, constants, variables and expres-
sions can also be used that will hold the address of the CDATA 's label (a pointer). For exam-
ple, the program below uses a WORD size variable to hold 2 pointers (address of a label, vari-
able or array) to 2 individual NULL terminated text strings formed by CDATA .

" Use the PROTON development board for the example
INCLUDE "PROTON_4.INC"

DIM ADDRESS AS WORD " Pointer variable
DELAYMS 200 " Wait for PICmicro to stabilise
CLS ' Clear the LCD
ADDRESS = STRING1 " Point address to string 1
PRINT CSTR ADDRESS ' Display string 1
ADDRESS = STRING2 ' Point ADDRESS to string 2
PRINT CSTR ADDRESS ' Display string 2
STOP

' Create the text to display

STRING1:
CDATA "HELLO ", 0

STRINGZ2:

CDATA "WORLD", 0

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Creating and using VIRTUAL Strings with EDATA

Some 14-bit core and all 16-bit core PICmicros have on-board eeprom memory, and although
writing to this memory too many times is unhealthy for the PICmicro™, reading this memory is
both fast and harmless. Which offers a great place for text storage and retrieval.

Combining the eeprom memory of PICmicros with a string format, the compiler is capable of
reducing the overhead of printing, or transmitting large amounts of text data using a memory
resource that is very often left unused and ignored. The ESTR modifier may be used in com-
mands that deal with text processing i.e. PRINT, SEROUT, HRSOUT, and RSOUT and
STRING handling etc.

The ESTR modifier is used in conjunction with the EDATA command, which is used to initially
create the string of characters: -

STRING1 EDATA "HELLO WORLD", 0

The above line of code will create, in eeprom memory, the values that make up the ASCII text
"HELLO WORLD", at address STRING1 in DATA memory. Note the NULL terminator after the
ASCII text.

To display, or transmit this string of characters, the following command structure could be used:
PRINT ESTR STRING1

The identifier that declared the address where the list of EDATA values resided, now becomes
the string's name. In a large program with lots of text formatting, this type of structure can save
many bytes of valuable code space.

Try both these small programs, and you'll see that using ESTR saves code space: -
First the standard way of displaying text: -

DEVICE 16F877

CLS

PRINT "HELLO WORLD"
PRINT "HOW ARE YOU?"
PRINT "I AM FINE!
STOP

Now using the ESTR modifier: -

TEXT1 EDATA "HELLO WORLD", O
TEXT2 EDATA "HOW ARE YOU?", 0
TEXT3 EDATA "I AM FINE!", 0

CLS

PRINT ESTR TEXT1
PRINT ESTR TEXT2
PRINT ESTR TEXT3
STOP

Again, note the NULL terminators after the ASCII text in the EDATA commands. Without these,
the PICmicro™ will continue to transmit data in an endless loop.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

The term 'virtual string' relates to the fact that a string formed from the EDATA command can-
not (rather should not) be written to often, but can be read as many times as wished without
causing harm to the device.

Not only identifiers can be used with the ESTR modifier, constants, variables and expressions
can also be used that will hold the address of the EDATA's identifier (a pointer). For example,
the program below uses a BYTE size variable to hold 2 pointers (address of a variable or array)
to 2 individual NULL terminated text strings formed by EDATA .

" Use the PROTON development board for the example
INCLUDE "PROTON_4.INC"

DIM ADDRESS AS WORD " Pointer variable
' Create the text to display in eeprom memory
STRING1 EDATA "HELLO ", 0
STRING2 EDATA "WORLD", 0

DELAYMS 200 " Wait for PICmicro to stabilise
CLS ' Clear the LCD
ADDRESS = STRING1 " Point address to string 1
PRINT ESTR ADDRESS ' Display string 1
ADDRESS = STRING2 ' Point ADDRESS to string 2
PRINT ESTR ADDRESS ' Display string 2
STOP

Notes

Note that the identifying text MUST be located on the same line as the EDATA directive or a
syntax error will be produced. It must also NOT contain a postfix colon as does a line label or it
will be treat as a line label. Think of it as an alias name to a constant.

Any EDATA directives MUST be placed at the head of the BASIC program as is done with
SYMBOLS, so that the name is recognised by the rest of the program as it is parsed. There is
no need to jump over EDATA directives as you have to with LDATA or CDATA, because they
do not occupy code memory, but reside in high DATA memory.

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

STRING Comparisons

Just like any other variable type, STRING variables can be used within comparisons such as
IF-THEN, REPEAT-UNTIL, and WHILE-WEND . In fact, it's an essential element of any pro-
gramming language. However, there are a few rules to obey because of the PICmicro's archi-
tecture.

Equal (=)or Not Equal (<>) comparisons are the only type that apply to STRINGS, because one
STRING can only ever be equal or not equal to another STRING. It would be unusual (unless
your using the C language) to compare if one STRING was greater or less than another.

So a valid comparison could look something like the lines of code below: -

IF STRING1 = STRING2 THEN PRINT "EQUAL" : ELSE PRINT "NOT EQUAL"
or
IF STRING1 <> STRING2 THEN PRINT "NOT EQUAL" : ELSE PRINT "EQUAL"

But as you've found out if you read the Creating STRINGs section, there is more than one type
of STRING in a PICmicro™. There is a STRING variable, a code memory string, and a quoted
character string .

Note that pointers to STRING variables are not allowed in comparisons, and a syntax error will
be produced if attempted.

Starting with the simplest of string comparisons, where one string variable is compared to an-
other string variable. The line of code would look similar to either of the two lines above.

Example 1
' Simple string variable comparison

DEVICE = 18F452 ' Must be a 16-bit core device for Strings
DIM STRING1 as STRING * 20 ' Create a String capable of holding 20 characters
DIM STRING2 as STRING * 20 ' Create another String
CLS
STRING1 = "EGGS" ' Pre-load String STRINGL1 with the text EGGS
STRING2 = "BACON" ' Load String STRING2 with the text BACON
IF STRING1 = STRING2 THEN 'Is STRINGL1 equal to STRING2 ?

PRINT AT 1,1, "EQUAL" "Yes. So display EQUAL on line 1 of the LCD
ELSE ' Otherwise

PRINT AT 1,1, "NOT EQUAL" ' Display NOT EQUAL on line 1 of the LCD
ENDIF
STRING2 = "EGGS" ' Now make the strings the same as each other
IF STRING1 = STRING2 THEN 'Is STRINGL1 equal to STRING2 ?

PRINT AT 2,1, "EQUAL" "Yes. So display EQUAL on line 2 of the LCD
ELSE ' Otherwise

PRINT AT 2,1, "NOT EQUAL" ' Display NOT EQUAL on line 2 of the LCD
ENDIF
STOP

The example above will display NOT EQUAL on line one of the LCD because STRING1 con-
tains the text "EGGS" while STRING2 contains the text "BACON", so they are clearly not equal.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Line two of the LCD will show EQUAL because STRING2 is then loaded with the text "EGGS"
which is the same as STRING1, therefore the comparison is equal.

A similar example to the one above uses a quoted character string instead of one of the
STRING variables.

Example 2
' String variable to Quoted character string comparison

DEVICE = 18F452
DIM STRING1 as STRING * 20

CLS
STRING1 = "EGGS"

IF STRING1 = "BACON" THEN
PRINT AT 1,1, "EQUAL"
ELSE
PRINT AT 1,1, "NOT EQUAL"
ENDIF

IF STRING1 = "EGGS" THEN
PRINT AT 2,1, "EQUAL"
ELSE
PRINT AT 2,1, "NOT EQUAL"
ENDIF
STOP

" Must be a 16-bit core device for Strings
' Create a String capable of holding 20 characters

' Pre-load String STRINGL1 with the text EGGS

"Is STRINGL1 equal to "BACON" ?

"Yes. So display EQUAL on line 1 of the LCD
' Otherwise

' Display NOT EQUAL on line 1 of the LCD

"Is STRINGL1 equal to "EGGS" ?

"Yes. So display EQUAL on line 2 of the LCD
' Otherwise

' Display NOT EQUAL on line 2 of the LCD

The example above produces exactly the same results as examplel because the first compari-
son is clearly not equal, while the second comparison is equal.

Example 3
" Use a string comparison in a REPEAT-UNTIL loop

DEVICE = 18F452 " Must be a 16-bit core device for Strings
DIM SOURCE_STRING as STRING * 20 ' Create a String
DIM DEST_STRING as STRING * 20 ' Create another String

DIM CHARPOS as Byte

CLS
CLEAR DEST_STRING
SOURCE_STRING ="HELLO"

HELLO

REPEAT

' Character position within the strings

"Fill DEST_STRING with NULLs
"Load String SOURCE_STRING with the text

' Create a loop

' Copy SOURCE_STRING into DEST_STRING one character at a time

DEST_STRING[CHARPOS] = SOURCE_STRING[CHARPOS]

INC CHARPOS ' Move to the next character in the strings
' Stop when DEST_STRING is equal to the text "HELLO"

UNTIL DEST_STRING ="HELLO"

PRINT DEST_STRING
STOP

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad

' Display DEST_STRING

2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Example 4
' Compare a string variable to a string held in code memory
DEVICE = 18F452 " Must be a 16-bit core device for Strings
DIM STRING1 as STRING * 20 ' Create a String capable of holding 20 characters
CLS
STRING1 = "BACON" ' Pre-load String STRINGL1 with the text BACON
IF CODE_STRING="BACON" THEN 'Is CODE_STRING equal to "BACON" ?
PRINT AT 1,1, "EQUAL" "Yes. So display EQUAL on line 1 of the LCD
ELSE ' Otherwise
PRINT AT 1,1, "NOT EQUAL" ' Display NOT EQUAL on line 1 of the LCD
ENDIF
STRING1 = "EGGS" ' Pre-load String STRINGL1 with the text EGGS
IF STRING1 = CODE_STRING THEN 'Is STRING1 equal to CODE_STRING ?
PRINT AT 2,1, "EQUAL" "Yes. So display EQUAL on line 2 of the LCD
ELSE ' Otherwise
PRINT AT 2,1, "NOT EQUAL" ' Display NOT EQUAL on line 2 of the LCD
ENDIF
STOP

CODE_STRING: CDATA "EGGS", 0

Example 5
' String comparisons using SELECT-CASE
DEVICE = 18F452 ' Must be a 16-bit core device for Strings
DIM STRING1 as STRING * 20 ' Create a String capable of holding 20 characters
CLS
STRING1 = "EGGS" ' Pre-load String STRING1 with the text EGGS
SELECT STRING1 ' Start comparing the string
CASE "EGGS" 'Is STRINGL1 equal to EGGS?
PRINT AT 1,1,"FOUND EGGS"
CASE "BACON" "Is STRINGL1 equal to BACON?
PRINT AT 1,1,"FOUND BACON"
CASE "COFFEE" "Is STRINGL1 equal to COFFEE?
PRINT AT 1,1,"FOUND COFFEE"
CASE ELSE ' Default to...
PRINT AT 1,1,"NO MATCH" ' Displaying no match
ENDSELECT
STOP

See also: Creating and using STRINGS
Creating and using VIRTUAL STRINGS with CDATA
CDATA, IF-THEN-ELSE-ENDIF, REPEAT-UNTIL
SELECT-CASE, WHILE-WEND .

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Relational Operators

Relational operators are used to compare two values. The result can be used to make a deci-
sion regarding program flow.

The list below shows the valid relational operators accepted by the compiler:

Operator Relation Expression Type
= Equality X=Y
== Equality X ==Y (Same as above Equality)
<> Inequality X<>Y
I= Inequality X 1=Y (Same as above Inequality)
< Less than X<y
> Greater than X>Y
<= Less than or Equal to X<=Y
>= Greater than or Equalto X >=Y

Seealso: |IF-THEN-ELSE-ENDIF, REPEAT-UNTIL, SELECT-CASE, WHILE-WEND.

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Boolean Logic Operators

The IF-THEN-ELSE-ENDIF, WHILE-WEND, and REPEAT-UNTIL conditions now support the
logical operators NOT, AND, OR, and XOR. The NOT operator inverts the outcome of a condi-
tion, changing false to true, and true to false. The following two IF-THEN conditions are equiva-
lent: -

IF VAR1 <> 100 THEN NotEqual ' Goto notEqual if VAR is not 100.
IF NOT VAR1 = 100 THEN NotEqual ' Goto notEqual if VAR1 is not 100.

The operators AND, OR, and XOR join the results of two conditions to produce a single
true/false result. AND and OR work the same as they do in everyday speech. Run the example
below once with AND (as shown) and again, substituting OR for AND: -

DIM VAR1 AS BYTE
DIM VAR2 AS BYTE
CLS
VAR1 =5
VAR2 =9
IF VAR1 =5 AND VAR2 = 10 THEN Res_True
STOP
Res_True:
PRINT "RESULT IS TRUE."
STOP

The condition "VAR1 = 5 AND VAR2 = 10" is not true. Although VAR1 is 5, VAR2 is not 10.
AND works just as it does in plain English, both conditions must be true for the statement to be
true. OR also works in a familiar way; if one or the other or both conditions are true, then the
statement is true. XOR (short for exclusive-OR) may not be familiar, but it does have an English
counterpart: If one condition or the other (but not both) is true, then the statement is true.

Parenthesis (or rather the lack of it!).

Every compiler has it's quirky rules, and the PROTON+ compiler is no exception. One of its
quirks means that parenthesis is not supported in a Boolean condition, or indeed with any of
the IF-THEN-ELSE-ENDIF, WHILE-WEND, and REPEAT-UNTIL conditions. Parenthesis in an
expression within a condition is allowed however. So, for example, the expression: -

IF (VAR1 + 3) = 10 THEN do something. Is allowed.
But: -
IF((VAR1 + 3) = 10) THEN do something. Is NOT allowed.

The Boolean operands do have a precedence in a condition. The AND operand has the highest
priority, then the OR, then the XOR. This means that a condition such as: -

IF VAR1 = 2 AND VARZ2 = 3 OR VAR3 = 4 THEN do something

Will compare VAR1 and VAR2 to see if the AND condition is true. It will then see if the OR con-
dition is true, based on the result of the AND condition.

THEN operand always required.

The PROTON+ compiler relies heavily on the THEN part. Therefore, if the THEN part of a con-
dition is left out of the code listing, a SYNTAX ERROR will be produced.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

MATH OPERATORS

The PROTON+ compiler performs all math operations in full hierarchal order. Which means
that there is precedence to the operators. For example, multiplies and divides are performed
before adds and subtracts. To ensure the operations are carried out in the correct order use pa-
renthesis to group the operations: -

A=(B-C)*(D+E))/F
All math operations are signed or unsigned depending on the variable type used, and per-
formed with 16, or 32-bit precision, again, depending on the variable types and constant values

used in the expression.

The operators supported are: -

Addition '+'. Adds variables and/or constants.
Subtraction '-'. Subtracts variables and/or constants.
Multiply "*. Multiplies variables and/or constants.

Multiply HIGH "**.
Multiply MIDDLE '*/".
Divide /"

Returns the high 16 bits of the 16-bit multiply result.
Returns the middle 16 bits of the 16-bit multiply result.
Divides variables and/or constants.

Modulus '/I'. Returns the remainder after dividing one value by another.
Bitwise AND '&'". Returns the bitwise AND of two values.
Bitwise OR'|". Returns the bitwise OR of two values.

Bitwise XOR 'M',
Bitwise SHIFT LEFT '<<'.

Bitwise SHIFT RIGHT '>>'.

Bitwise Complement '~'.
ABS.

Returns the bitwise XOR of two values.

Shifts the bits of a value left a specified number of places.
Shifts the bits of a value right a specified number of places.
Reverses the bits in a variable.

Returns the absolute value of a number.

ACOS Returns the ARC COSINE of a value in RADIANS.
ASIN Returns the ARC SINE of a value in RADIANS.
ATAN Returns the ARC TANGENT of a value in RADIANS.
Cos. Returns the COSINE of a value in RADIANS.

DCD. 2 n -power decoder of a four-bit value.

DIG. Returns the specified decimal digit of a positive value.
EXP Deduce the exponential function of a value.

LOG Returns the NATURAL LOG of a value.

LOG10 Returns the LOG of a value.

MAX. Returns the maximum of two numbers.

MIN. Returns the minimum of two numbers.

NCD. Priority encoder of a 16-bit value.

POW Computes a Variable to the power of another.

REV. Reverses the order of the lowest bits in a value.

SIN. Returns the SINE of a value in RADIANS.

SOR. Returns the SQUARE ROOT of a value.

TAN Returns the TANGENT of a value in RADIANS.
DIV32. 15-bit x 31 bit divide. (For PBP compatibility only)

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

ADD '+'.

Syntax
Assignment Variable = Variable + Variable

Overview
Adds variables and/or constants, returning an 8, 16, 32-bit or floating point result.

Operators
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Addition works exactly as you would expect with signed and unsigned integers as well as float-
ing point.

DIM Valuel as WORD
DIM Value2 as WORD

Valuel = 1575

Value2 = 976

Valuel = Valuel + Value2 " Add the numbers.
PRINT DEC Valuel ' Display the result

' 32-bit addition
DIM Valuel as WORD
DIM Value2 as DWORD

Valuel = 1575
Value2 = 9763647
Value2 = Value2 + Valuel " Add the numbers.
PRINT DEC Valuel ' Display the result
SUBTRACT '-'.
Syntax

Assignment Variable = Variable - Variable

Overview
Subtracts variables and/or constants, returning an 8, 16, 32-bit or floating point result.

Operators
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Subtract works exactly as you would expect with signed and unsigned integers as well as float-
ing point.

DIM Valuel as WORD
DIM Value2 as WORD

Valuel = 1000

Value2 = 999

Valuel = Valuel - Value2 ' Subtract the numbers.
PRINT DEC Valuel ' Display the result

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

' 32-bit subtraction
DIM Valuel as WORD
DIM Value2 as DWORD

Valuel = 1575

Value2 = 9763647

Value2 = Value2 - Valuel ' Subtract the numbers.
PRINT DEC Valuel ' Display the result

' 32-bit signed subtraction
DIM Valuel as DWORD
DIM Value2 as DWORD
Valuel = 1575
Value2 = 9763647
Valuel = Valuel - Value2 ' Subtract the numbers.
PRINT SDEC Valuel ' Display the result

MULTIPLY ™.

Syntax
Assignment Variable = Variable * Variable

Overview
Multiplies variables and/or constants, returning an 8, 16, 32-bit or floating point result.

Operators
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Multiply works exactly as you would expect with signed or unsigned integers from -2147483648
to +2147483647 as well as floating point. If the result of multiplication is larger than
2147483647 when using 32-bit variables, the excess bit will be lost.

DIM Valuel as WORD
DIM Value2 as WORD

Valuel = 1000

Value2 =19

Valuel = Valuel * Value2 " Multiply Valuel by Value2.
PRINT DEC Valuel ' Display the result

' 32-bit multiplication
DIM Valuel as WORD
DIM Value2 as DWORD

Valuel = 100

Value2 = 10000

Value2 = Value2 * Valuel " Multiply the numbers.
PRINT DEC Valuel ' Display the result

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

MULTIPLY HIGH "™**',

Syntax
Assignment Variable = Variable ** Variable

Overview
Multiplies 8 or 16-bit variables and/or constants, returning the high 16 bits of the result.

Operators
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

When multiplying two 16-bit values, the result can be as large as 32 bits. Since the largest vari-
able supported by the compiler is 16-bits, the highest 16 bits of a 32-bit multiplication result are
normally lost. The ** (double-star) operand produces these upper 16 bits.

For example, suppose 65000 ($FDEBS) is multiplied by itself. The result is 4,225,000,000 or
$FBD46240. The * (star, or normal multiplication) instruction would return the lower 16 bits,
$6240. The ** instruction returns $FBD4.

DIM Valuel as WORD

DIM Value2 as WORD

Valuel = $FDES

Value2 = Valuel ** Valuel ' Multiply $FDES8 by itself
PRINT HEX Value2 ' Return high 16 bits.

Notes.
This operand enables compatibility with BASIC STAMP code, and melab's compiler code, but is
rather obsolete considering the 32-bit capabilities of the PROTON+ compiler.

MULTIPLY MIDDLE "*/',

Syntax
Assignment Variable = Variable */ Variable

Overview
Multiplies variables and/or constants, returning the middle 16 bits of the 32-bit result.

Operators
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

The Multiply Middle operator (*/) has the effect of multiplying a value by a whole number and a
fraction. The whole number is the upper byte of the multiplier (0O to 255 whole units) and the
fraction is the lower byte of the multiplier (0 to 255 units of 1/256 each). The */ operand allows a
workaround for the compiler's integer-only math.

Suppose we are required to multiply a value by 1.5. The whole number, and therefore the up-
per byte of the multiplier, would be 1, and the lower byte (fractional part) would be 128, since
128/256 = 0.5. It may be clearer to express the */ multiplier in HEX as $0180, since hex keeps
the contents of the upper and lower bytes separate. Here's an example: -

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

DIM Valuel as WORD

Valuel = 100
Valuel = Valuel */ $0180 " Multiply by 1.5 [1 + (128/256)]
PRINT DEC Valuel ' Display result (150).

To calculate constants for use with the */ instruction, put the whole number portion in the upper
byte, then use the following formula for the value of the lower byte: -

INT(fraction * 256)

For example, take Pi (3.14159). The upper byte would be $03 (the whole number), and the
lower would be INT(0.14159 * 256) = 36 ($24). So the constant Pi for use with */ would be
$0324. This isn't a perfect match for Pi, but the error is only about 0.1%.

Notes.
This operand enables compatibility with BASIC STAMP code, and melab's compiler code, but is
rather obsolete considering the 32-bit capabilities of the PROTON+ compiler.

DIVIDE '/.

Syntax
Assignment Variable = Variable / Variable

Overview
Divides variables and/or constants, returning an 8, 16, 32-bit or floating point result.

Operators
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

The Divide operator (/) works exactly as you would expect with signed or unsigned integers
from -2147483648 to +2147483647 as well as floating point.

DIM Valuel as WORD
DIM Value2 as WORD

Valuel = 1000

Value2 =5

Valuel = Valuel / Value2 ' Divide the numbers.

PRINT DEC Valuel ' Display the result (200).
' 32-bit division

DIM Valuel as WORD
DIM Value2 as DWORD

Valuel = 100

Value2 = 10000

Value2 = Value2 / Valuel ' Divide the numbers.
PRINT DEC Valuel ' Display the result

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

MODULUS '/I'.

Syntax
Assignment Variable = Variable // Variable

Overview
Return the remainder left after dividing one value by another.

Operators
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Some division problems don't have a whole-number result; they return a whole number and a
fraction. For example, 1000/6 = 166.667. Integer math doesn't allow the fractional portion of the
result, so 1000/6 = 166. However, 166 is an approximate answer, because 166*6 = 996. The
division operation left a remainder of 4. The // returns the remainder of a given division opera-

tion. Numbers that divide evenly, such as 1000/5, produce a remainder of O: -

DIM Valuel as WORD
DIM Value2 as WORD

Valuel = 1000

Value2 = 6

Valuel = Valuel // Value2 ' Get remainder of Valuel / Value?2.
PRINT DEC Valuel ' Display the result (4).

' 32-bit modulus
DIM Valuel as WORD
DIM Value2 as DWORD

Valuel =100

Value2 = 99999

Value2 = Value?2 // Valuel ' mod the numbers.
PRINT DEC Valuel ' Display the result

The modulus operator does not operate with floating point values or variables.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A

20NE_N2_17

PROTON+ Compiler. Development Suite.

BITWISE AND '&'.
The And operator (&) returns the bitwise AND of two values. Each bit of the values is subject to
the following logic: -

OANDO=0
OAND1=0
1ANDO=0
1AND1=1

The result returned by & will contain 1s in only those bit positions in which both input values
contain 1s: -

DIM Valuel as BYTE

DIM Value2 as BYTE

DIM Result as BYTE

Valuel = %00001111

Value2 = %10101101

Result = Valuel & Value2

PRINT BIN Result ' Display AND result (2600001101)

or
PRINT BIN (%00001111 & %10101101) ' Display AND result (%00001101)

Bitwise operations are not permissible with floating point values or variables.

BITWISE OR'|'.
The OR operator (]) returns the bitwise OR of two values. Each bit of the values is subject to
the following logic: -

OORO0=0
OOR1=1
10R0=1
10R1=1

The result returned by | will contain 1s in any bit positions in which one or the other (or both)
input values contain 1s: -

DIM Valuel as BYTE

DIM Value2 as BYTE

DIM Result as BYTE

Valuel = %00001111

Value2 = %10101001

Result = Valuel | Value2

PRINT bin Result ' Display OR result (%10101111)

or
PRINT bin (%00001111 | %10101001) ' Display OR result (%10101111)

Bitwise operations are not permissible with floating point values or variables.

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

BITWISE XOR '"M'.
The Xor operator (*) returns the bitwise XOR of two values. Each bit of the values is subject to

the following logic: -

O0XORO0=0
O0XOR1=1
1XOR0=1
1XOR1=0

The result returned by ~ will contain 1s in any bit positions in which one or the other (but not
both) input values contain 1s: -

DIM Valuel as BYTE

DIM Value2 as BYTE

DIM Result as BYTE

Valuel = %00001111

Value2 = %10101001

Result = Valuel " Value2

PRINT bin Result ' Display XOR result (%10100110)

or
PRINT bin (%00001111 %10101001) ' Display XOR result (%10100110)

Bitwise operations are not permissible with floating point values or variables.

BITWISE SHIFT LEFT '<<'.

Shifts the bits of a value to the left a specified number of places. Bits shifted off the left end of a
number are lost; bits shifted into the right end of the number are 0s. Shifting the bits of a value
left n number of times also has the effect of multiplying that number by two to the nth power.

For example 100 << 3 (shift the bits of the decimal number 100 left three places) is equivalent
to 100 * 23.

DIM Valuel as WORD

DIM Loop as BYTE

Valuel = 9%1111111111111111

FOR Loop=1TO 16 ' Repeat with b0 = 1 to 16.
PRINT bin Valuel << Loop ' Shift Valuel left Loop places.

NEXT

Bitwise operations are not permissible with floating point values or variables.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

BITWISE SHIFT RIGHT '>>".

Shifts the bits of a variable to the right a specified number of places. Bits shifted off the right
end of a number are lost; bits shifted into the left end of the number are 0s. Shifting the bits of a
value right n number of times also has the effect of dividing that number by two to the nth
power.

For example 100 >> 3 (shift the bits of the decimal number 100 right three places) is equivalent
to 100/ 23.

DIM Valuel as WORD

DIM Loop as BYTE

Valuel = 9%1111111111111111

FOR Loop=1TO 16 " Repeat with bO = 1 to 16.
PRINT bin Valuel >> Loop ' Shift Valuel right Loop places.

NEXT

BITWISE COMPLEMENT *‘~’

The Complement operator (~) Complements (inverts) the bits of a number. Each bit that con-
tains a 1 is changed to 0 and each bit containing 0 is changed to 1. This process is also known
as a "bitwise NOT".

DIM Valuel as WORD

DIM Value2 as WORD

Value2 = %1111000011110000

Valuel = ~Value2 " Complement Value2.
PRINT BIN16 Valuel ' Display the result

Complementing can be carried out with all variable types except FLOATSs. Attempting to com-
plement a floating point variable will produce a syntax error.

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

ABS

Syntax
Assignment Variable = ABS Variable

Overview
Return the absolute value of a constant, variable or expression.

Operators
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

32-bit Example
DEVICE = 16F877
DIM DWD1 AS DWORD ' Declare a DWORD variable
DIM DWD2 AS DWORD ' Declare a DWORD variable

CLS

DWD1 = -1234567 ' Load DWD1 with value -1234567
DWD2 = ABS DWD1 ' Extract the absolute value from DWD1
PRINT DEC DWD2 ' Display the result, which is 1234567
STOP

Floating Point example
DEVICE = 16F877

DIM FLP1 AS FLOAT ' Declare a FLOAT variable

DIM FLP2 AS FLOAT ' Declare a FLOAT variable

CLS

FLP1 = -1234567 ' Load FLP1 with value -1234567.123
FLP2 = ABS FLP1 ' Extract the absolute value from FLP1
PRINT DEC FLP2 ' Display the result, which is 1234567.123
STOP

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

ACOS

Syntax
Assignment Variable = ACOS Variable

Overview
Deduce the Arc Cosine of a value

Operators

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression that requires the ARC COSINE (Inverse
Cosine) extracted. The value expected and returned by the floating point ACOS is in RADIANS.
The value must be in the range of -1 to +1

Example
INCLUDE "PROTON18_ 4.INC" 'Use the PROTON board for the demo
DEVICE = 18F452 ' Choose a 16-bit core device
DIM FLOATIN AS FLOAT " Holds the value to ACOS
DIM FLOATOUT AS FLOAT " Holds the result of the ACOS
DELAYMS 500 " Wait for the PICmicro to stabilise
CLS ' Clear the LCD
FLOATIN =0.8 ' Load the variable
FLOATOUT = ACOS FLOATIN ' Extract the ACOS of the value
PRINT DEC FLOATOUT ' Display the result
STOP

Notes

ACOS is not implemented with 12, or 14-bit core devices, however, with the extra functionality,
and more linear memory offered by the 16-bit core devices, full 32-bit floating point ARC CO-
SINE is implemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk

of the PICmicro™ is used with a single operator. This also means that floating point trigonome-
try is comparatively slow to operate.

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

ASIN

Syntax
Assignment Variable = ASIN Variable

Overview
Deduce the Arc Sine of a value

Operators

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression that requires the ARC SINE (Inverse Sine)
extracted. The value expected and returned by ASIN is in RADIANS. The value must be in the
range of -1 to +1

Example
INCLUDE "PROTON18 4.INC" 'Use the PROTON board for the demo
DEVICE = 18F452 ' Choose a 16-bit core device
DIM FLOATIN AS FLOAT ' Holds the value to ASIN
DIM FLOATOUT AS FLOAT " Holds the result of the ASIN
DELAYMS 500 " Wait for the PICmicro to stabilise
CLS ' Clear the LCD
FLOATIN=0.8 ' Load the variable
FLOATOUT = ASIN FLOATIN ' Extract the ASIN of the value
PRINT DEC FLOATOUT ' Display the result
STOP

Notes

ASIN is not implemented with 12, or 14-bit core devices, however, with the extra functionality,
and more linear memory offered by the 16-bit core devices, full 32-bit floating point ARC SINE
is implemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk

of the PICmicro™ is used with a single operator. This also means that floating point trigonome-
try is comparatively slow to operate.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

ATAN

Syntax
Assignment Variable = ATAN Variable

Overview
Deduce the Arc Tangent of a value

Operators

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression that requires the ARC TANGENT (Inverse
Tangent) extracted. The value expected and returned by the floating point ATAN is in RADI-
ANS.

Example
INCLUDE "PROTON18_ 4.INC" 'Use the PROTON board for the demo
DEVICE = 18F452 ' Choose a 16-bit core device
DIM FLOATIN AS FLOAT ' Holds the value to ATAN
DIM FLOATOUT AS FLOAT " Holds the result of the ATAN
DELAYMS 500 " Wait for the PICmicro to stabilise
CLS ' Clear the LCD
FLOATIN =1 ' Load the variable
FLOATOUT = ATAN FLOATIN ' Extract the ATAN of the value
PRINT DEC FLOATOUT ' Display the result
STOP

Notes

ATAN is not implemented with 12, or 14-bit core devices, however, with the extra functionality,
and more linear memory offered by the 16-bit core devices, full 32-bit floating point ARC TAN-

GENT is implemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk

of the PICmicro™ is used with a single operator. This also means that floating point trigonome-
try is comparatively slow to operate.

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

COS

Syntax
Assignment Variable = COS Variable

Overview
Deduce the Cosine of a value

Operators

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression that requires the COSINE extracted. The
value expected and returned by COS is in RADIANS.

Example
INCLUDE "PROTON18 4.INC" 'Use the PROTON board for the demo
DEVICE = 18F452 ' Choose a 16-bit core device
DIM FLOATIN AS FLOAT ' Holds the value to COS with
DIM FLOATOUT AS FLOAT ' Holds the result of the COS
DELAYMS 500 " Wait for the PICmicro to stabilise
CLS ' Clear the LCD
FLOATIN =123 ' Load the variable
FLOATOUT = COS FLOATIN ' Extract the COS of the value
PRINT DEC FLOATOUT ' Display the result
STOP

Notes

With 12, and 14-bit core devices, COS returns the 8-bit cosine of a value, compatible with the
BASIC Stamp syntax. The result is in two's complement form (i.e. -127 to 127). COS starts with
a value in binary radians, 0 to 255, instead of the customary 0 to 359 degrees.

However, with the extra functionality, and more linear memory offered by the 16-bit core de-
vices, full 32-bit floating point COSINE is implemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk

of the PICmicro™ is used with a single operator. This also means that floating point trigonome-
try is comparatively slow to operate.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

DCD

2 n -power decoder of a four-bit value. DCD accepts a value from 0 to 15, and returns a 16-bit
number with that bit number set to 1. For example: -

WRD1= DCD 12 ' Set bit 12.
PRINT BIN16 WRD1 ' Display result (%0001000000000000)

DCD does not (as yet) support DWORD, or FLOAT type variables. Therefore the highest value
obtainable is 65535.

DIG (BASIC Stamp version)

In this form, the DIG operator is compatible with the BASIC STAMP, and the melab's PicBASIC
Pro compiler. DIG returns the specified decimal digit of a 16-bit positive value. Digits are num-
bered from O (the rightmost digit) to 4 (the leftmost digit of a 16- bit number; 0 to 65535). Exam-
ple: -

WRD1= 9742
PRINT WRD1 DIG 2 ' Display digit 2 (7)
FOR Loop=0TO 4
PRINT WRD1 DIG Loop ' Display digits 0 through 4 of 9742.
NEXT
Note

DIG does not support FLOAT type variables.

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

EXP

Syntax
Assignment Variable = EXP Variable

Overview
Deduce the exponential function of a value. This is e to the power of value where e is the base

of natural logarithms. EXP 1 is 2.7182818.

Operators
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Example
INCLUDE "PROTON18 4.INC" 'Use the PROTON board for the demo
DEVICE = 18F452 ' Choose a 16-bit core device
DIM FLOATIN AS FLOAT ' Holds the value to EXP with
DIM FLOATOUT AS FLOAT ' Holds the result of the EXP
DELAYMS 500 " Wait for the PICmicro to stabilise
CLS ' Clear the LCD
FLOATIN =1 ' Load the variable
FLOATOUT = EXP FLOATIN ' Extract the EXP of the value
PRINT DEC FLOATOUT ' Display the result
STOP

Notes

EXP is not implemented with 12, or 14-bit core devices, however, with the extra functionality,
and more linear memory offered by the 16-bit core devices, full 32-bit floating point exponen-
tials are implemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk

of the PICmicro™ is used with a single operator. This also means that floating point trigonome-
try is comparatively slow to operate.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

LOG

Syntax
Assignment Variable = LOG Variable

Overview
Deduce the Natural Logarithm a value

Operators

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression that requires the NATURAL LOGARITHM
extracted.

Example
INCLUDE "PROTON18_4.INC" 'Use the PROTON board for the demo
DEVICE = 18F452 ' Choose a 16-bit core device
DIM FLOATIN AS FLOAT " Holds the value to LOG with
DIM FLOATOUT AS FLOAT ' Holds the result of the LOG
DELAYMS 500 " Wait for the PICmicro to stabilise
CLS ' Clear the LCD
FLOATIN =1 ' Load the variable
FLOATOUT = LOG FLOATIN ' Extract the LOG of the value
PRINT DEC FLOATOUT " Display the result
STOP

Notes

LOG is not implemented with 12, or 14-bit core devices, however, with the extra functionality,
and more linear memory offered by the 16-bit core devices, full 32-bit floating point NATURAL
LOGARITHMS are implemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk

of the PICmicro™ is used with a single operator. This also means that floating point trigonome-
try is comparatively slow to operate.

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

LOG10

Syntax
Assignment Variable = LOG10 Variable

Overview
Deduce the Logarithm a value

Operators
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the LOGARITHM extracted.

Example
INCLUDE "PROTON18 4.INC" 'Use the PROTON board for the demo
DEVICE = 18F452 ' Choose a 16-bit core device
DIM FLOATIN AS FLOAT ' Holds the value to LOG10 with
DIM FLOATOUT AS FLOAT " Holds the result of the LOG10
DELAYMS 500 " Wait for the PICmicro to stabilise
CLS ' Clear the LCD
FLOATIN =1 ' Load the variable
FLOATOUT = LOG10 FLOATIN ' Extract the LOG10 of the value
PRINT DEC FLOATOUT ' Display the result
STOP

Notes

LOG10 is not implemented with 12, or 14-bit core devices, however, with the extra functionality,
and more linear memory offered by the 16-bit core devices, full 32-bit floating point LOGA-
RITHMS are implemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk

of the PICmicro™ is used with a single operator. This also means that floating point trigonome-
try is comparatively slow to operate.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

MAX
Returns the maximum of two numbers. Its use is to limit numbers to a specific value. Its syntax
is: -

' Set VAR2 to the larger of VAR1 and 100 (VAR2 will lie between values ' 100 and 255)
VAR2 = VAR1 MAX 100

MAX does not (as yet) support DWORD, or FLOAT type variables. Therefore the highest value
obtainable is 65535.

MIN
Returns the minimum of two numbers. Its use is to limit numbers to a specific value. Its syntax
is: -

' Set VAR2 to the smaller of VAR1 and 100 (VAR2 cannot be greater ' than 100)

VAR2 = VAR1 MIN 100

MIN does not (as yet) support DWORD, or FLOAT type variables. Therefore the highest value
obtainable is 65535.

NCD

Priority encoder of a 16-bit value. NCD takes a 16-bit value, finds the highest bit containing a 1
and returns the bit position plus one (1 through 16). If no bit is set, the input value is 0. NCD re-
turns 0. NCD is a fast way to get an answer to the question "what is the largest power of two
that this value is greater than or equal to?" The answer that NCD returns will be that power,
plus one. Example: -

WRD1= %1101 " Highest bit set is bit 3.
PRINT DEC NCD WRD1 ' Display the NCD of WRD1(4).

NCD does not (as yet) support DWORD, or FLOAT type variables.

100

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

POW

Syntax
Assignment Variable = POW Variable , Pow Variable

Overview
Computes Variable to the power of Pow Variable.

Operators

Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression.

Pow Variable can be a constant, variable or expression.

Example
INCLUDE "PROTON18 4.INC" 'Use the PROTON board for the demo
DEVICE = 18F452 ' Choose a 16-bit core device
DIM POW_OF as FLOAT
DIM FLOATIN as FLOAT ' Holds the value to POW with
DIM FLOATOUT as FLOAT ' Holds the result of the POW
DELAYMS 500 " Wait for the PICmicro to stabilise
CLS ' Clear the LCD
POW_OF =10
FLOATIN =2 ' Load the variable
FLOATOUT = POW FLOATIN,POW_OF ' Extract the POW of the value
PRINT DEC FLOATOUT ' Display the result
STOP

Notes.

POW is not implemented with 12, or 14-bit core devices, however, with the extra functionality,
and more linear memory offered by the 16-bit core devices, full 32-bit floating point power of is
implemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk

of the PICmicro™ is used with a single operator. This also means that floating point trigonome-
try is comparatively slow to operate.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

REV

Reverses the order of the lowest bits in a value. The number of bits to be reversed is from 1 to
32. Its syntax is: -

VAR1 = %10101100 REV 4 ' Sets VAR1 to %10100011

or
DIM DWD AS DWORD
' Sets DWD to %10101010000000001111111110100011
DWD = %10101010000000001111111110101100 REV 4

102

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

SIN

Syntax
Assignment Variable = SIN Variable

Overview
Deduce the Sine of a value

Operators

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression that requires the SINE extracted. The value
expected and returned by SIN is in RADIANS.

Example
INCLUDE "PROTON18 4.INC" 'Use the PROTON board for the demo
DEVICE = 18F452 ' Choose a 16-bit core device
DIM FLOATIN AS FLOAT ' Holds the value to SIN
DIM FLOATOUT AS FLOAT ' Holds the result of the SIN
DELAYMS 500 ' Wait for the PICmicro to stabilise
CLS ' Clear the LCD
FLOATIN =123 ' Load the variable
FLOATOUT = SIN FLOATIN " Extract the SIN of the value
PRINT DEC FLOATOUT ' Display the result
STOP

Notes

With 12, and 14-bit core devices, SIN returns the 8-bit sine of a value, compatible with the BA-
SIC Stamp syntax. The result is in two's complement form (i.e. -127 to 127). SIN starts with a
value in binary radians, 0 to 255, instead of the customary 0 to 359 degrees.

However, with the extra functionality, and more linear memory offered by the 16-bit core de-
vices, full 32-bit floating point SINE is implemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk

of the PICmicro™ is used with a single operator. This also means that floating point trigonome-
try is comparatively slow to operate.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

SOR

Syntax
Assignment Variable = SQR Variable

Overview
Deduce the Square Root of a value

Operators
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the SQUARE ROOT extracted.

Notes

With 12, and 14-bit core devices, SQR returns an integer square root of a value, compatible
with the BASIC Stamp syntax. Remember that most square roots have a fractional part that the
compiler discards in doing its integer-only math. Therefore it computes the square root of 100
as 10 (correct), but the square root of 99 as 9 (the actual is close to 9.95). Example: -

VAR1 = SQR VAR2
or

PRINT SQR 100 ' Display square root of 100 (10).
PRINT SQR 99 ' Display of square root of 99 (9 due to truncation)

However, with the extra functionality, and more linear memory offered by the 16-bit core de-
vices, full 32-bit floating point SQR is implemented.

Example
INCLUDE "PROTON18_ 4.INC" 'Use the PROTON board for the demo
DIM FLOATIN AS FLOAT " Holds the value to SQR
DIM FLOATOUT AS FLOAT " Holds the result of the SQR
DELAYMS 500 " Wait for the PICmicro to stabilise
CLS ' Clear the LCD
FLOATIN = 600 ' Load the variable
FLOATOUT = SQR FLOATIN " Extract the SQR of the value
PRINT DEC FLOATOUT ' Display the result
STOP

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk
of the PICmicro™ is used with a single operator. This also means that floating point trigonome-
try is comparatively slow to operate.

104

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

TAN

Syntax
Assignment Variable = TAN Variable

Overview
Deduce the Tangent of a value

Operators

Assignment Variable can be any valid variable type.

Variable can be a constant, variable or expression that requires the TANGENT extracted. The
value expected and returned by the floating point TAN is in RADIANS.

Example
INCLUDE "PROTON18 4.INC" 'Use the PROTON board for the demo
DEVICE = 18F452 ' Choose a 16-bit core device
DIM FLOATIN AS FLOAT ' Holds the value to TAN
DIM FLOATOUT AS FLOAT ' Holds the result of the TAN
DELAYMS 500 ' Wait for the PICmicro to stabilise
CLS ' Clear the LCD
FLOATIN =1 ' Load the variable
FLOATOUT = TAN FLOATIN ' Extract the TAN of the value
PRINT DEC FLOATOUT ' Display the result
STOP

Notes

TAN is not implemented with 12, or 14-bit core devices, however, with the extra functionality,
and more linear memory offered by the 16-bit core devices, full 32-bit floating point TANGENT
is implemented.

Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk

of the PICmicro™ is used with a single operator. This also means that floating point trigonome-
try is comparatively slow to operate.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

DIV32

In order to make the PROTON+ compiler more compatible with code produced for the melab's
PicBASIC Pro compiler, the DIV32 operator has been added. The melab's compiler's multiply
operand operates as a 16-bit x 16-bit multiply, thus producing a 32-bit result. However, since
the compiler only supports a maximum variable size of 16 bits (WORD), access to the result
had to happen in 2 stages: -

Var = VAR1 * VAR2 returns the lower 16 bits of the multiply
while...

Var = VAR1 ** VAR2 returns the upper 16 bits of the multiply
There was no way to access the 32-bit result as a valid single value.

In many cases it is desirable to be able to divide the entire 32-bit result of the multiply by a 16-
bit number for averaging, or scaling. DIV32 is actually limited to dividing a 31-bit unsigned inte-
ger (0 - 2147483647) by a 15-bit unsigned integer (0 - 32767). This ought to be sufficient in
most situations.

Because the melab's compiler only allows a maximum variable size of 16 bits (0 - 65535),
DIV32 relies on the fact that a multiply was performed just prior to the DIV32 command, and
that the internal compiler variables still contain the 32-bit result of the multiply. No other opera-
tion may occur between the multiply and the DIV32 or the internal variables may be altered,
thus destroying the 32-bit multiplication result.

The following example demonstrates the operation of DIV32: -
DIM WRD1 AS WORD

DIM WRD2 AS WORD
DIM WRD3 AS WORD

DIM Fake AS WORD ' Must be a WORD type variable for result
WRD2 = 300

WRD3 = 1000

Fake = WRD2 * WRD3 " Operators ** or */ could also be used instead

WRD1= DIV32 100
PRINT DEC WRD1

The above program assigns WRD2 the value 300 and WRD3 the value 1000. When multiplied
together, the result is 300000. However, this number exceeds the 16-bit word size of a variable
(65535). Therefore, the dummy variable, FAKE, contains only the lower 16 bits of the result.
DIV32 uses the compiler's internal (SYSTEM) variables as the operands.

Notes.
This operand enables a certain compatibility with melab's compiler code, but is rather obsolete
considering the 32-bit, and floating point capabilities of the PROTON+ compiler.

106

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Notes

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Commands
and
Directives

Croawmhill Acenriatac | imitad 200K _ All Rinhte Racanad Ravicinn 1 A

PROTON+ Compiler. Development Suite.

ADIN
ASM-ENDASM
BOX
BRANCH
BRANCHL
BREAK
BSTART
BSTOP
BRESTART
BUSACK
BUSIN
BUSOUT
BUTTON
CALL
CDATA
CF_INIT
CF_SECTOR
CF_READ
CF_WRITE
CIRCLE
CLEAR
CLEARBIT
CLS
CONFIG
COUNTER
CREAD
CURSOR
CWRITE
DATA
DEC
DECLARE
DELAYMS
DELAYUS
DEVICE
DIG

DIM
DISABLE
DTMFOUT
EDATA
ENABLE
END
EREAD
EWRITE

FOR...TO...NEXT..

FREQOUT
GETBIT
GOSuUB
GOTO
HBSTART
HBSTOP
HBRESTART
HBUSACK
HBUSIN

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A

STEP

Read the on-board analogue to digital converter.

Insert assembly language code section.

Draw a square on a graphic LCD.

Computed GOTO (equiv. to ON..GOTO).

BRANCH out of page (long BRANCH).

Exit a loop prematurely.

Send a START condition to the I°C bus.

Send a STOP condition to the I°C bus.

Send a RESTART condition to the 1°C bus.

Send an ACKNOWLEDGE condition to the 1°C bus.

Read bytes from an I°C device.

Write bytes to an 1°C device.

Detect and debounce a key press.

Call an assembly language subroutine.

Define initial contents in memory.

Initialise the interface to a Compact Flash card.

Point to the sector of interest in a Compact Flash card.
Read data from a Compact Flash card.

Write data to a Compact Flash card.

Draw a circle on a graphic LCD.

Place a variable or bit in a low state, or clear all RAM area.
Clear a bit of a port or variable, using a variable index.
Clear the LCD.

Set or Reset programming fuse configurations.

Count the number of pulses occurring on a pin.

Read data from code memory.

Position the cursor on the LCD.

Write data to code memory.

Define initial contents in memory.

Decrement a variable.

Adjust library routine parameters.

Delay (ImSec resolution).

Delay (1uSec resolution).

Choose the type of PICmicro™ to compile with.

Return the value of a decimal digit.

Create a variable.

DISABLE software interrupts previously ENABLED.
Produce a DTMF Touch Tone note.

Define initial contents of on-board EEPROM.

ENABLE software interrupts previously DISABLED.

Stop execution of the BASIC program.

Read a value from on-board EEPROM.

Write a value to on-board EEPROM.

Repeatedly execute statements.

Generate one or two tones, of differing or the same frequencies.
Examine a bit of a port or variable, using a variable index.
Call a BASIC subroutine at a specified label.

Continue execution at a specified label.

Send a START condition to the 1°C bus using the MSSP module.
Send a STOP condition to the I°C bus using the MSSP module.
Send a RESTART condition to the 1°C bus using the MSSP module.
Send an ACK condition to the I°C bus using the MSSP module.
Read from an 1°C device using the MSSP module.

20NE_N2_17

PROTON+ Compiler. Development Suite.

HBUSOUT
HIGH
HPWM
HRSIN
HRSOUT
HSERIN
HSEROUT
HRSIN2
HRSOUT?2
HSERIN2
HSEROUT?2

Write to an I1°C device using the MSSP module.

Make a pin or port high.

Generate a PWM signal using the CCP module.

Receive data from the serial port on devices that contain a USART.
Transmit data from the serial port on devices that contain a USART.
Receive data from the serial port on devices that contain a USART.
Transmit data from the serial port on devices that contain a USART.
Same as HRSIN but using a 2nd USART if available.

Same as HRSOUT but using a 2nd USART if available.

Same as HSERIN but using a 2nd USART if available.

Same as HSEROUT but using a 2nd USART if available.

IF.. THEN..ELSEIF..ELSE..ENDIF Conditionally execute statements.

INC
INCLUDE
INKEY
INPUT
[LET]
LCDREAD
LCDWRITE
LEFTS

LDATA
LINE
LINETO

LOADBIT

LOOKDOWN
LOOKDOWNL

LOOKUP
LOOKUPL
LOW
LREAD

Increment a variable.

Load a BASIC file into the source code.

Scan a keypad.

Make pin an input.

Assign the result of an expression to a variable. (Optional command).
Read a single byte from a Graphic LCD.

Write bytes to a Graphic LCD.

Extract n amount of characters

from the left of a String. For 18F devices only.

Place information into code memory. For access by LREAD.

Draw a line in any direction on a graphic LCD.

Draw a straight line in any direction on a graphic LCD, starting from the
previous LINE command's end position.

Set or Clear a bit of a port or variable, using a variable index.

Search a constant lookdown table for a value.

Search constant or variable lookdown table for a value.

Fetch a constant value from a lookup table.

Fetch a constant or variable value from lookup table.

Make a pin or port low.

Read a value from an LDATA table and place into Variable.

LREADS8, LREAD16, LREAD32 Read a single or multi-byte value from an LDATA table with

MID$

ON INTERRUPT

more efficiency than LREAD.

Extract n amount of characters from a String beginning at n characters
from the left. For 18F devices only.

Execute a subroutine using a SOFTWARE interrupt.

ON_INTERRUPT Execute an ASSEMBLER subroutine on a HARWARE interrupt.
ON_LOW_INTERRUPT Execute an ASSEMBLER subroutine when a LOW PRIORITY

ON GOSUB
ON GOTO

ON GOTOL

OUTPUT
OREAD
OWRITE
ORG
PEEK
PIXEL
PLOT
POKE

HARDWARE interrupt occurs on a 16-bit core device.

Call a Subroutine based on an Index value. For 18F devices only.
Jump to an address in code memory based on an Index value.
(Primarily for smaller PICmicros)

Jump to an address in code memory based on an Index value.
(Primarily for larger PICmicros)

Make a pin an output.

Receive data from a device using the Dallas 1-wire protocol.

Send data to a device using the Dallas 1-wire protocol.

Set Program Origin.

Read a byte from a register or variable. Rarely used, now obsolete.
Read a single pixel from a Graphic LCD.

Set a single pixel on a Graphic LCD.

Write a byte to register or variable. Rarely used, now obsolete, command.

110

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

POT
PRINT
PULSIN
PULSOUT
PWM
RANDOM
RCIN
READ
REM
REPEAT...UNTIL
RESTORE
RESUME
RETURN
RIGHTS$

RSIN
RSOUT
SEED

Read a potentiometer on specified pin.

Display characters on an LCD.

Measure the pulse width on a pin.

Generate a pulse to a pin.

Output a pulse width modulated pulse train to pin.
Generate a pseudo-random number.

Measure a pulse width on a pin.

Read a value from memory.

Add a remark to the source code.

Execute a block of instructions until a condition is true.
Adjust the position of data to READ.

Re-enable software interrupts and return.

Continue at the statement following the last GOSUB.
Extract n amount of characters

from the right of a String. For 18F devices only.
Asynchronous serial input from a fixed pin and baud rate.
Asynchronous serial output to a fixed pin and baud rate.
Seed the random number generator, to obtain a more random result.

SELECT..CASE..ENDSELECT Conditionally run blocks of code.

SERIN
SEROUT
SERVO
SET
SET_OSCCAL
SETBIT
SHIN
SHOUT
SLEEP
SNOOZE
SOUND
SOUND2
STOP
STR

STRN
STR$
SWAP
SYMBOL
TOGGLE
TOLOWER
TOUPPER

Receive asynchronous serial data (i.e. RS232 data).

Transmit asynchronous serial data (i.e. RS232 data).

Control a servo motor.

Place a variable or bit in a high state.

Calibrate the internal oscillator found on some PICmicro™ devices.
Set a bit of a port or variable, using a variable index.

Synchronous serial input.

Synchronous serial output.

Power down the processor for a period of time.

Power down the processor for short period of time.

Generate a tone or white-noise on a specified pin.

Generate 2 tones from 2 separate pins.

Stop program execution.

Load a Byte array with values.

Create a NULL terminated Byte array.

Convert the contents of a variable to a NULL terminated String.
Exchange the values of two variables.

Create an alias to a constant, port, pin, or register.

Reverse the state of a port's bit.

Convert the characters in a String to lower case. For 18F devices only.
Convert the characters in a String to UPPER case. For 18F devices only.

TOSHIBA_COMAMND Send a command to a Toshiba T6963 graphic LCD.

TOSHIBA_UDG
UNPLOT
USBINIT
USBIN
USBOUT

VAL

VARPTR
WHILE...WEND
XIN

XOUT

Create User Defined Graphics for Toshiba T6963 graphic LCD.

Clear a single pixel on a Graphic LCD.

Initialise the USB interrupt on devices that contain a USB module.
Receive data via a USB endpoint on devices that contain a USB module.
Transmit data via a USB endpoint on devices that contain a USB module.
Convert a NULL terminated String to an integer value.

Locate the address of a variable.

Execute statements while condition is true.

Receive data using the X10 protocol.

Transmit data using the X10 protocol.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

ADIN

Syntax
Variable = ADIN channel number

Overview
Read the value from the on-board Analogue to Digital Converter.

Operators
Variable is a user defined variable.
Channel number can be a constant or a variable expression.

Example
'Read the value from channel 0 of the ADC and place in variable VARL.

ADIN_RES =10 " 10-bit result required

ADIN_TAD = FRC "RC OSC chosen

ADIN_STIME =50 " Allow 50us sample time

DIM VAR1 AS WORD

TRISA = %00000001 " Configure ANO (PORTA.O) as an input
ADCONL1 = %10000000 ' Set analogue input on PORTA.O

VAR1 = ADIN O " Place the conversion into variable VAR1

ADIN Declares
There are three DECLARE directives for use with ADIN. These are: -

DECLARE ADIN_RES 8, 10, or 12.
Sets the number of bits in the result.

If this DECLARE is not used, then the default is the resolution of the PICmicro™ type used. For
example, the 16F87X range will result in a resolution of 10-bits, along with the 16-bit core de-
vices, while the standard PICmicro™ types will produce an 8-bit result. Using the above DE-
CLARE allows an 8-bit result to be obtained from the 10-bit PICmicro™ types, but NOT 10-bits
from the 8-bit types.

DECLARE ADIN_TAD 2 FOSC, 8 FOSC, 32 FOSC, 64 FOSC, or FRC.
Sets the ADC's clock source.

All compatible PICs have four options for the clock source used by the ADC. 2 _FOSC,
8 FOSC, 32 FOSC, and 64 FOSC are ratios of the external oscillator, while FRC is the
PICmicro's internal RC oscillator. Instead of using the predefined names for the clock source,
values from 0 to 3 may be used. These reflect the settings of bits 0-1 in register ADCONO.

Care must be used when issuing this DECLARE, as the wrong type of clock source may result
in poor resolution, or no conversion at all. If in doubt use FRC which will produce a slight reduc-
tion in resolution and conversion speed, but is guaranteed to work first time, every time. FRC is
the default setting if the DECLARE is not issued in the BASIC listing.

DECLARE ADIN_STIME 0 to 65535 microseconds (us).
Allows the internal capacitors to fully charge before a sample is taken. This may be a value
from O to 65535 microseconds (us).

112

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

A value too small may result in a reduction of resolution. While too large a value will result in
poor conversion speeds without any extra resolution being attained.

A typical value for ADIN_STIME is 50 to 100. This allows adequate charge time without loosing
too much conversion speed. But experimentation will produce the right value for your particular
requirement. The default value if the DECLARE is not used in the BASIC listing is 50.

Notes

Before the ADIN command may be used, the appropriate TRIS register must be manipulated to
set the desired pin to an input. Also, the ADCONL1 register must be set according to which pin is
required as an analogue input, and in some cases, to configure the format of the conversion's
result. See the numerous Microchip datasheets for more information on these registers and
how to set them up correctly for the specific device used.

If multiple conversions are being implemented, then a small delay should be used after the
ADIN command. This allows the ADC's internal capacitors to discharge fully: -

Again:
VAR1 = ADIN 3 ' Place the conversion into variable VAR1
DELAYUS 1 "Wait for 1us
GOTO Again ' Read the ADC forever

The circuit below shows a typical setup for a simple ADC test.

Regulated 5 Volts

20‘f

o—* rc7 VDD

To 4 Rce

Serial 2 RC5

LCD ﬁ RC4)
—~] RC3 MCLR

= RC2

—] RC1

RCO

R1
4.7k

RB7 = 18& F
RB6 ™ .-

RB5
RB4 0.1uF

RB2 Crystal
RB1 OSC1 ¢
RBO l
PIC16F876

RA5 —
RA4

RA3 0OSC2
RA2

RA1 - -
RAD yssyss | C4™mC3mm
15pF | 15pF

VR1
100k
linear

NN NN NN NN
\/I’\/l“’l“l‘”l"’l" |»—‘|N|w|>|m|m|\l|oo |

19 8

Ov

See also: RCIN, POT.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

ASM..ENDASM

Syntax
ASM
assembler mnemonics
ENDASM

or
@ assembler mnemonic

Overview

Incorporate in-line assembler in the BASIC code. The mnemonics are passed directly to the as-
sembler without the compiler interfering in any way. This allows a great deal of flexibility that
cannot always be achieved using BASIC commands alone.

When the ASM directive is found within the BASIC program, the RAM banks are reset before
the assembler code is operated upon. The same happens when the ENDASM directive is
found, in that the RAM banks are reset upon leaving the assembly code. However, this may not
always be required and can waste precious code memory. Placing a dash after ASM or EN-
DASM will remove the RAM reset mnemonics.

ASM-
ENDASM-

Only remove the RAM resets if you are confident enough to do so, as PICmicro™ devices have
fragmented RAM.

114

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

BOX

Syntax
BOX Set_Clear, Xpos Start , Ypos Start , Size

Overview
Draw a square on a graphic LCD.

Operators

Set_Clear may be a constant or variable that determines if the square will set or clear the pix-
els. A value of 1 will set the pixels and draw a square, while a value of O will clear any pixels
and erase a square .

Xpos Start may be a constant or variable that holds the X position for the centre of the square.
Can be a value from 0 to 127.

Ypos Start may be a constant or variable that holds the Y position for the centre of the square.
Can be a value from 0 to 63.

Size may be a constant or variable that holds the Size of the square (in pixels). Can be a value
from O to 255.

Example
' Draw a square at position 63,32 with a size of 20 pixels on a Samsung KS0108 LCD

INCLUDE "PROTON_GA4.INT"

DIM XPOS as BYTE
DIM YPOS as BYTE
DIM SIZE as BYTE

DIM SET_CLR as BYTE

DELAYMS 200 " Wait for PICmicro to stabilise
CLS ' Clear the LCD

XPOS =63

YPOS =32

SIZE =20

SET CLR =1

BOX SET_CLR, XPOS, YPOS , RADIUS

STOP

Notes
Because of the aspect ratio of the pixels on the graphic LCD (approx 1.5 times higher than
wide) the square will appear elongated.

See Also : CIRCLE, LINE, LINETO, PLOT, UNPLOT.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

BRANCH

Syntax
BRANCH Index, [Labell {,...Labeln }]

Overview
Cause the program to jump to different locations based on a variable index. On a PICmicro™
device with only one page of memory.

Operators

Index is a constant, variable, or expression, that specifies the address to branch to.
Labell,...Labeln are valid labels that specify where to branch to. A maximum of 255 labels may
be placed between the square brackets, 256 if using a 16-bit core device.

Example
DEVICE 16F84
DIM INDEX AS BYTE
Start: INDEX =2 " Assign INDEX a value of 2
"Jump to label 2 (Lab_2) because INDEX = 2
BRANCH INDEX,[Lab_0, Lab_1, Lab_2]

Lab_O: INDEX = 2 "INDEX now equals 2
GOTO Start

Lab_1: INDEX =0 "INDEX now equals 0
GOTO Start

Lab_2: INDEX =1 "INDEX now equals 1
GOTO Start

The above example we first assign the index variable a value of 2, then we define our labels.
Since the first position is considered 0 and the variable index equals 2 the BRANCH command
will cause the program to jump to the third label in the brackets [Lab_2].

Notes
BRANCH operates the same as ON x GOTO. It's useful when you want to organise a structure
such as: -

IF VAR1 =0 THEN GOTO Lab_0 "VARL1 =0: go to label "Lab_0"
IF VAR1 =1 THEN GOTO Lab_1 'VAR1 =1: go to label "Lab_1"
IF VAR1 =2 THEN GOTO Lab_2 "VAR1 =2: go to label "Lab_2"

You can use BRANCH to organise this into a single statement: -
BRANCH VAR1, [Lab 0, Lab_1, Lab_2]

This works exactly the same as the above IF...THEN example. If the value is not in range (in
this case if VARL1 is greater than 2), BRANCH does nothing. The program continues with the
next instruction..

The BRANCH command is primarily for use with PICmicro™ devices that have one page of
memory (0-2047). If larger PICmicro's are used and you suspect that the branch label will be
over a page boundary, use the BRANCHL command instead.

See also: BRANCHL

116

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

BRANCHL

Syntax
BRANCHL Index, [Labell {,...Labeln }]

Overview
Cause the program to jump to different locations based on a variable index. On a PICmicro™
device with more than one page of memory.

Operators

Index is a constant, variable, or expression, that specifies the address to branch to.
Labell,...Labeln are valid labels that specify where to branch to. A maximum of 127 labels may
be placed between the square brackets, 256 if using a 16-bit core device.

Example
DEVICE 16F877
DIM INDEX AS BYTE
Start: INDEX =2 " Assign INDEX a value of 2
"Jump to label 2 (Lab_2) because INDEX = 2
BRANCHL INDEX,[Lab_0, Lab_1, Lab_2]

Lab_O: INDEX = 2 " INDEX now equals 2
GOTO Start

Lab_1: INDEX =0 "INDEX now equals 0
GOTO Start

Lab_2: INDEX =1 "INDEX now equals 1
GOTO Start

The above example we first assign the index variable a value of 2, then we define our labels.
Since the first position is considered 0 and the variable index equals 2 the BRANCHL com-
mand will cause the program to jump to the third label in the brackets [Lab_2].

Notes

The BRANCHL command is mainly for use with PICmicro™ devices that have more than one
page of memory (greater than 2048). It may also be used on any PICmicro™ device, but does
produce code that is larger than BRANCH.

See also: BRANCH

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

BREAK

Syntax
BREAK

Overview
Exit a FOR...NEXT, WHILE...WEND or REPEAT...UNTIL loop prematurely.

Example 1
' Break out of a FOR NEXT loop when the count reaches 10

INCLUDE "PROTON_4.INC" ' Demo using PROTON Dev board
DIM VAR1 as BYTE
DELAYMS 200 " Wait for PICmicro to stabilise
CLS ' Clear the LCD
FOR VAR1=0TO 39 ' Create a loop of 40 revolutions
PRINT AT 1,1,DEC VAR1 ' Print the revolutions on the first line of the LCD
IF VAR1 =10 THEN BREAK ' Break out of the loop when VAR1 = 10
DELAYMS 200 ' Delay so we can see what's happening
NEXT ' Close the FOR-NEXT loop
PRINT AT 2,1,"EXITED AT ", DEC VARL1 ' Display the value when the loop was broken
STOP
Example 2

' Break out of a REPEAT-UNTIL loop when the count reaches 10

INCLUDE "PROTON_4.INC" ' Demo using PROTON Dev board

DIM VAR1 as BYTE

DELAYMS 200 " Wait for PICmicro to stabilise

CLS ' Clear the LCD

VAR1 =0

REPEAT ' Create a loop

PRINT AT 1,1,DEC VAR1 ' Print the revolutions on the first line of the LCD
IF VAR1 = 10 THEN BREAK ' Break out of the loop when VAR1 = 10
DELAYMS 200 ' Delay so we can see what's happening
INC VARL1

UNTIL VAR1 > 39 ' Close the loop after 40 revolutions

PRINT AT 2,1,"EXITED AT ", DEC VAR1 ' Display the value when the loop was broken
STOP

118

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Example 3
' Break out of a WHILE-WEND loop when the count reaches 10

INCLUDE "PROTON_4.INC" ' Demo using PROTON Dev board
DIM VAR1 as BYTE
DELAYMS 200 " Wait for PICmicro to stabilise
CLS ' Clear the LCD
VAR1 =0
WHILE VAR1 < 40 ' Create a loop of 40 revolutions
PRINT AT 1,1,DEC VAR1 ' Print the revolutions on the first line of the LCD
IF VAR1 = 10 THEN BREAK ' Break out of the loop when VAR1 =10
DELAYMS 200 ' Delay so we can see what's happening
INC VAR1
WEND ' Close the loop
PRINT AT 2,1,"EXITED AT ", DEC VARL1 ' Display the value when the loop was broken
STOP
Notes

The BREAK command is similar to a GOTO but operates internally. When the BREAK com-
mand is encountered, the compiler will force a jump to the loop's internal exit label.

If the BREAK command is used outside of a FOR-NEXT REPEAT-UNTIL or WHILE-WEND
loop, an error will be produced.

Seealso: FOR...NEXT, WHILE...WEND, REPEAT...UNTIL.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

BSTART

Syntax
BSTART

Overview
Send a START condition to the 1°C bus.

Notes

Because of the subtleties involved in interfacing to some I°C devices, the compiler's standard
BUSIN, and BUSOUT commands were found lacking somewhat. Therefore, individual pieces
of the 1°C protocol may be used in association with the new structure of BUSIN, and BUSOUT.
See relevant sections for more information.

Example
" Interface to a 24LC32 serial eeprom
DEVICE = 16F877
DIM Loop AS BYTE
DIM Array[10] AS BYTE
' Transmit bytes to the 12C bus

BSTART " Send a START condition

BUSOUT %10100000 ' Target an eeprom, and send a WRITE command
BUSOUT 0 ' Send the HIGHBYTE of the address

BUSOUT 0 ' Send the LOWBYTE of the address

FOR LOOP =48 TO 57 ' Create a loop containing ASCII 0 to 9

BUSOUT LOOP " Send the value of LOOP to the eeprom

NEXT ' Close the loop

BSTOP " Send a STOP condition

DELAYMS 10 " Wait for the data to be entered into eeprom matrix
' Receive bytes from the 12C bus

BSTART " Send a START condition

BUSOUT %10100000 ' Target an eeprom, and send a WRITE command
BUSOUT 0 ' Send the HIGHBYTE of the address

BUSOUT 0 " Send the LOWBYTE of the address

BRESTART ' Send a RESTART condition

BUSOUT %10100001 ' Target an eeprom, and send a READ command
FOR Loop=0TO 9 ' Create a loop

Array[Loop] = BUSIN ' Load an array with bytes received

IF Loop =9 THEN BSTOP : ELSE BUSACK 'ACK or STOP ?

NEXT ' Close the loop

PRINT AT 1,1, STR Array ' Display the Array as a STRING

STOP

See also: BSTOP, BRESTART, BUSACK, BUSIN, BUSOUT, HBSTART, HBRESTART,
HBUSACK, HBUSIN, HBUSOUT.

120

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

BSTOP

Syntax
BSTOP

Overview
Send a STOP condition to the 1°C bus.

BRESTART

Syntax
BRESTART

Overview
Send a RESTART condition to the 1°C bus.

BUSACK

Syntax
BUSACK

Overview
Send an ACKNOWLEDGE condition to the 1°C bus.

Seealso: BSTOP, BSTART, BRESTART, BUSIN, BUSOUT, HBSTART, HBRESTART,
HBUSACK, HBUSIN, HBUSOUT.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

BUSIN

Syntax
Variable = BUSIN Control , { Address }

or
Variable = BUSIN

or

BUSIN Control , { Address }, [Variable {, Variable...}]
or

BUSIN Variable

Overview

Receives a value from the I°C bus, and places it into variable/s. If structures TWO or FOUR
(see above) are used, then NO ACKNOWLEDGE, or STOP is sent after the data. Structures
ONE and THREE first send the control and optional address out of the clock pin (SCL), and
data pin (SDA).

Operators

Variable is a user defined variable or constant.

Control may be a constant value or a BYTE sized variable expression.
Address may be a constant value or a variable expression.

The four variations of the BUSIN command may be used in the same BASIC program. The
SECOND and FOURTH types are useful for simply receiving a single byte from the bus, and
must be used in conjunction with one of the low level commands. i.e. BSTART, BRESTART,
BUSACK, or BSTOP. The FIRST, and THIRD types may be used to receive several values and
designate each to a separate variable, or variable type.

The BUSIN command operates as an 1°C master, using the PICmicro's MSSP module, and
may be used to interface with any device that complies with the 2-wire 1°C protocol.

The most significant 7-bits of control byte contain the control code and the slave address of the
device being interfaced with. Bit-0 is the flag that indicates whether a read or write command is
being implemented.

For example, if we were interfacing to an external eeprom such as the 24C32, the control code
would be %10100001 or $A1. The most significant 4-bits (1010) are the eeprom's unique slave
address. Bits 1 to 3 reflect the three address pins of the eeprom. And bit-0 is set to signify that
we wish to read from the eeprom. Note that this bit is automatically set by the BUSIN com-
mand, regardless of its initial setting.

Example
' Receive a byte from the I°C bus and place it into variable VARL.

DIM VAR1 AS BYTE "We'll only read 8-bits
DIM ADDRESS AS WORD ' 16-bit address required
SYMBOL Control %10100001 ' Target an eeprom

122

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

ADDRESS = 20 ' Read the value at address 20
VAR1 = BUSIN Control , ADDRESS ' Read the byte from the eeprom

or
BUSIN Control , ADDRESS, [VAR1] 'Read the byte from the eeprom

Address, is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in
this position, the size of address is dictated by the size of the variable used (BYTE or WORD).
In the case of the previous eeprom interfacing, the 24C32 eeprom requires a 16-bit address.
While the smaller types require an 8-bit address. Make sure you assign the right size address
for the device interfaced with, or you may not achieve the results you intended.

The value received from the bus depends on the size of the variables used, except for variation
three, which only receives a BYTE (8-bits). For example: -

DIM WRD AS WORD ' Declare a WORD size variable
WRD = BUSIN Control , Address

Will receive a 16-bit value from the bus. While: -

DIM VAR1 AS BYTE ' Declare a BYTE size variable
VAR1 = BUSIN Control , Address

Will receive an 8-bit value from the bus.

Using the THIRD variation of the BUSIN command allows differing variable assignments. For
example: -

DIM VAR1 AS BYTE
DIM WRD AS WORD
BUSIN Control , Address , [VAR1 , WRD]

Will receive two values from the bus, the first being an 8-bit value dictated by the size of vari-
able VAR1 which has been declared as a byte. And a 16-bit value, this time dictated by the size
of the variable WRD which has been declared as a word. Of course, BIT type variables may
also be used, but in most cases these are not of any practical use as they still take up a byte
within the eeprom.

The SECOND and FOURTH variations allow all the subtleties of the I°C protocol to be ex-
ploited, as each operation may be broken down into its constituent parts. It is advisable to refer
to the datasheet of the device being interfaced to fully understand its requirements. See section
on BSTART, BRESTART, BUSACK, or BSTOP, for example code.

Declares
See BUSOUT for declare explanations.

Notes
When the BUSOUT command is used, the appropriate SDA and SCL Port and Pin are auto-
matically setup as inputs, and outputs.

Because the I°C protocol calls for an open-collector interface, pull-up resistors are required on
both the SDA and SCL lines. Values of 1IKWto 4.7KWwill suffice.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

You may imagine that it's limiting having a fixed set of pins for the 1°C interface, but you must
remember that several different devices may be attached to a single bus, each having a unique
slave address. Which means there is usually no need to use up more than two pins on the
PICmicro™, in order to interface to many devices.

STR modifier with BUSIN

Using the STR modifier allows variations THREE and FOUR of the BUSIN command to transfer
the bytes received from the I°C bus directly into a byte array. If the amount of received charac-
ters is not enough to fill the entire array, then a formatter may be placed after the array's name,
which will only receive characters until the specified length is reached. An example of each is
shown below: -

DIM Array[10] AS BYTE ' Define an array of 10 bytes
DIM Address AS BYTE ' Create a word sized variable
BUSIN %10100000 , Address, [STR Array] ' Load data into all the array

' Load data into only the first 5 elements of the array

BUSIN %10100000 , Address , [STR Array\5]

BSTART 'Send a START condition

BUSOUT %10100000 ' Target an eeprom, and send a WRITE command
BUSOUT 0 ' Send the HIGHBYTE of the address

BUSOUT 0 " Send the LOWBYTE of the address

BRESTART 'Send a RESTART condition

BUSOUT %10100001 ' Target an eeprom, and send a READ command
BUSIN STR Array ' Load all the array with bytes received

BSTOP " Send a STOP condition

An alternative ending to the above example is: -

BUSIN STR Array\5 ' Load data into only the first 5 elements of the array
BSTOP ' Send a STOP condition

Seealso: BUSACK, BSTART, BRESTART, BSTOP, BUSOUT, HBSTART, HBRESTART,
HBUSACK, HBUSIN, HBUSOUT.

124

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

BUSOUT

Syntax
BUSOUT Control , { Address }, [Variable {, Variable...}]

or
BUSOUT Variable

Overview

Transmit a value to the 1°C bus, by first sending the control and optional address out of the
clock pin (SCL), and data pin (SDA). Or alternatively, if only one operator is included after the
BUSOUT command, a single value will be transmitted, along with an ACK reception.

Operators

Variable is a user defined variable or constant.

Control may be a constant value or a BYTE sized variable expression.
Address may be a constant, variable, or expression.

The BUSOUT command operates as an 1°C master and may be used to interface with any de-
vice that complies with the 2-wire I°C protocol.

The most significant 7-bits of control byte contain the control code and the slave address of the
device being interfaced with. Bit-0 is the flag that indicates whether a read or write command is
being implemented.

For example, if we were interfacing to an external eeprom such as the 24C32, the control code
would be %10100000 or $A0. The most significant 4-bits (1010) are the eeprom's unique slave
address. Bits 1 to 3 reflect the three address pins of the eeprom. And Bit-0 is clear to signify
that we wish to write to the eeprom. Note that this bit is automatically cleared by the BUSOUT
command, regardless of its initial value.

Example
' Send a byte to the I°C bus.

DIM VAR1 AS BYTE "We'll only read 8-bits

DIM Address AS WORD ' 16-bit address required
SYMBOL Control = %10100000 ' Target an eeprom

Address = 20 ' Write to address 20

VAR1 =200 ' The value place into address 20
BUSOUT Control , Address, [VAR1] 'Send the byte to the eeprom
DELAYMS 10 " Allow time for allocation of byte

Address, is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in
this position, the size of address is dictated by the size of the variable used (BYTE or WORD).
In the case of the above eeprom interfacing, the 24C32 eeprom requires a 16-bit address.
While the smaller types require an 8-bit address. Make sure you assign the right size address
for the device interfaced with, or you may not achieve the results you intended.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

The value sent to the bus depends on the size of the variables used. For example: -

DIM WRD AS WORD ' Declare a WORD size variable
BUSOUT Control , Address , [WRD |

Will send a 16-bit value to the bus. While: -

DIM VAR1 ASBYTE 'Declare a BYTE size variable
BUSOUT Control , Address , [VAR1 |

Will send an 8-bit value to the bus.

Using more than one variable within the brackets allows differing variable sizes to be sent. For
example: -

DIM VAR1 AS BYTE
DIM WRD AS WORD
BUSOUT Control , Address , [VAR1 , WRD]

Will send two values to the bus, the first being an 8-bit value dictated by the size of variable
VAR1 which has been declared as a byte. And a 16-bit value, this time dictated by the size of
the variable WRD which has been declared as a word. Of course, BIT type variables may also
be used, but in most cases these are not of any practical use as they still take up a byte within
the eeprom.

A string of characters can also be transmitted, by enclosing them in quotes: -
BUSOUT Control , Address, ["Hello World" , VAR1 , WRD]

Using the second variation of the BUSOUT command, necessitates using the low level com-
mands i.e. BSTART, BRESTART, BUSACK, or BSTOP.

Using the BUSOUT command with only one value after it, sends a byte of data to the 1°C bus,
and returns holding the ACKNOWLEDGE reception. This acknowledge indicates whether the
data has been received by the slave device.

The ACK reception is returned in the PICmicro's CARRY flag, which is STATUS.O, and also
SYSTEM variable PP4.0. A value of zero indicates that the data was received correctly, while a
one indicates that the data was not received, or that the slave device has sent a NACK return.
You must read and understand the datasheet for the device being interfacing to, before the
ACK return can be used successfully. An code snippet is shown below: -

" Transmit a byte to a 24LC32 serial eeprom
DIM PP4 AS BYTE SYSTEM ‘ Bring the system variable into the BASIC program

BSTART " Send a START condition

BUSOUT %10100000 ' Target an eeprom, and send a WRITE command
BUSOUT 0 ' Send the HIGHBYTE of the address

BUSOUT 0 ' Send the LOWBYTE of the address

BUSOUT "A" ' Send the value 65 to the bus

IF PP4.0 =1 THEN GOTO Not_Received 'Has ACK been received OK ?
BSTOP " Send a STOP condition

DELAYMS 10 " Wait for the data to be entered into eeprom matrix

126

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

STR modifier with BUSOUT.

The STR modifier is used for transmitting a string of bytes from a byte array variable. A string is
a set of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3
would be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A
byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string 1,2,3 would be stored in a byte
array containing three bytes (elements).

Below is an example that sends four bytes from an array: -

DIM MYARRAY[10] AS BYTE ' Create a 10-byte array.
MYARRAY [0] ="A" ' Load the first 4 bytes of the array
MYARRAY [1] ="B" " With the data to send

MYARRAY [2] ="C"

MYARRAY [3] ="D"

BUSOUT %10100000 , Address , [STR MYARRAY \4]' Send 4-byte string.

Note that we use the optional \n argument of STR. If we didn't specify this, the program would
try to keep sending characters until all 10 bytes of the array were transmitted. Since we do not
wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 4 bytes.

The above example may also be written as: -

DIM MYARRAY [10] ASBYTE ' Create a 10-byte array.

STR MYARRAY ="ABCD" ' Load the first 4 bytes of the array

BSTART ' Send a START condition

BUSOUT %10100000 ' Target an eeprom, and send a WRITE command
BUSOUT 0 ' Send the HIGHBYTE of the address

BUSOUT 0 ' Send the LOWBYTE of the address

BUSOUT STR MYARRAY \4 ' Send 4-byte string.

BSTOP ' Send a STOP condition

The above example, has exactly the same function as the previous one. The only differences
are that the string is now constructed using the STR as a command instead of a modifier, and
the low-level HBUS commands have been used.

Declares
There are three DECLARE directives for use with BUSOUT.
These are: -

DECLARE SDA_PIN PORT . PIN

Declares the port and pin used for the data line (SDA). This may be any valid port on the
PICmicro™. If this declare is not issued in the BASIC program, then the default Port and Pin is
PORTA.O

DECLARE SCL_PIN PORT . PIN

Declares the port and pin used for the clock line (SCL). This may be any valid port on the
PICmicro™. If this declare is not issued in the BASIC program, then the default Port and Pin is
PORTA.1

These declares, as is the case with all the DECLARES, may only be issued once in any single
program, as they setup the 1°C library code at design time.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

DECLARE SLOW_BUSON-OFFor1-0
Slows the bus speed when using an oscillator higher than 4MHz.

The standard speed for the 1°C bus is 100KHz. Some devices use a higher bus speed of
400KHz. If you use an 8MHz or higher oscillator, the bus speed may exceed the devices specs,
which will result in intermittent transactions, or in some cases, no transactions at all. Therefore,
use this DECLARE if you are not sure of the device's spec. The datasheet for the device used
will inform you of its bus speed.

Notes
When the BUSOUT command is used, the appropriate SDA and SCL Port and Pin are auto-
matically setup as inputs, and outputs.

Because the I1°C protocol calls for an open-collector interface, pull-up resistors are required on
both the SDA and SCL lines. Values of 1IKWto 4.7KW will suffice.

You may imagine that it's limiting having a fixed set of pins for the I°C interface, but you must
remember that several different devices may be attached to a single bus, each having a unique
slave address. Which means there is usually no need to use up more than two pins on the
PICmicro™, in order to interface to many devices.

A typical use for the I°C commands is for interfacing with serial eeproms. Shown below is the
connections to the 1°C bus of a 24C32 serial eeprom.

+5 Volts
8
R1 % R2 VCC
4.7k < 4.7k we k2
To RB1lor RC4 O . z SDA
To RBOorRC3 © SCL)
A0
24L.C32 a1 B
A2 B
VSS
4
Ov

Seealso: BUSACK, BSTART, BRESTART, BSTOP, BUSIN, HBSTART, HBRESTART,
HBUSACK, HBUSIN, HBUSOUT.
L

128

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

BUTTON

Syntax
BUTTON Pin, DownState , Delay , Rate , Workspace , TargetState , Label

Overview
Debounce button input, perform auto-repeat, and branch to address if button is in target state.
Button circuits may be active-low or active-high.

Operators

Pin is a PORT.BIT, constant, or variable (0 - 15), that specifies the I/O pin to use. This pin will
automatically be set to input.

DownState is a variable, constant, or expression (0 or 1) that specifies which logical state oc-
curs when the button is pressed.

Delay is a variable, constant, or expression (0 - 255) that specifies how long the button must be
pressed before auto-repeat starts. The delay is measured in cycles of the BUTTON routine. De-
lay has two special settings: 0 and 255. If Delay is 0, BUTTON performs no debounce or auto-
repeat. If Delay is 255, BUTTON performs debounce, but no auto-repeat.

Rate is a variable, constant, or expression (0 — 255) that specifies the number of cycles be-
tween auto-repeats. The rate is expressed in cycles of the BUTTON routine.

Workspace is a byte variable used by BUTTON for workspace. It must be cleared to 0O before
being used by BUTTON for the first time and should not be adjusted outside of the BUTTON
command.

TargetState is a variable, constant, or expression (0 or 1) that specifies which state the button
should be in for a branch to occur. (0O = not pressed, 1 = pressed).

Label is a label that specifies where to branch if the button is in the target state.

Example

DIM BTNVAR AS BYTE " Workspace for BUTTON instruction.
Loop: ' Go to NoPress unless BTNVAR = 0.

BUTTON O, 0, 255, 250, BTNVAR, 0, NoPress

PRINT "* "
NoPress:

GOTO Loop

Notes

When a button is pressed, the contacts make or break a connection. A short (1 to 20ms) burst
of noise occurs as the contacts scrape and bounce against each other. BUTTON'’s debounce
feature prevents this noise from being interpreted as more than one switch action.

BUTTON also reacts to a button press the way a computer keyboard does to a key press.
When a key is pressed, a character immediately appears on the screen. If the key is held down,
there’s a delay, then a rapid stream of characters appears on the screen. BUTTON's auto-
repeat function can be set up to work much the same way.

BUTTON is designed for use inside a program loop. Each time through the loop, BUTTON
checks the state of the specified pin. When it first matches DownState, the switch is de-
bounced. Then, as dictated by TargetState, it either branches to address (TargetState = 1) or
doesn’t (TargetState = 0).

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

If the switch stays in DownState, BUTTON counts the number of program loops that
execute. When this count equals Delay, BUTTON once again triggers the action speci-
fied by TargetState and address. Thereafter, if the switch remains in DownState, BUT-
TON waits Rate number of cycles between actions. The Workspace variable is used by
BUTTON to keep track of how many cycles have occurred since the pin switched to Tar-
getState or since the last auto-repeat.

BUTTON does not stop program execution. In order for its delay and auto repeat func-
tions to work properly, BUTTON must be executed from within a program loop.

Two suitable circuits for use with BUTTON are shown below.
+5V +5V

47k i}_{ Push

Pullup Switch
To Pin of the To Pin of the
PIC PIC
Push 47k
Switch Pulldown
ov ov
Active LOW Active HIGH

130

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

CALL

Syntax
CALL Label

Overview
Execute the assembly language subroutine named label.

Operators
Label must be a valid label name.

Example
' Call an assembler routine
CALL Asm_Sub

ASM
Asm_Sub
{mnemonics}
Return
ENDASM

Notes

The GOSUB command is usually used to execute a BASIC subroutine. However, if your sub-
routine happens to be written in assembler, the CALL command should be used. The main dif-
ference between GOSUB and CALL is that when CALL is used, the label's existence is not
checked until assembly time. Using CALL, a label in an assembly language section can be ac-
cessed that would otherwise be inaccessible to GOSUB. This also means that any errors pro-
duced will be assembler types.

The CALL command adds PAGE and BANK switching instructions prior to actually calling the
subroutine, however, if CALL is used in an all assembler environment, the extra mnemonics
preceding the command can interfere with carefully sculptured code such as bit tests etc. By
wrapping the subroutine's name in parenthesis, the BANK and PAGE instructions are sup-
pressed, and the CALL command becomes the CALL mnemonic.

CALL (SUBROUTINE_NAME)
Only use the mnemonic variation of CALL, if you know that your destination is within the same
PAGE as the section of code calling it. This is not an issue if using 16-bit core devices, as they

have a more linear memory organisation.

See also: GOSUB, GOTO

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

CDATA

Syntax
CDATA { alphanumeric data }

Overview
Place information directly into memory for access by CREAD and CWRITE.

Operators
alphanumeric data can be any value, alphabetic character, or string enclosed in quotes (") or
numeric data without quotes.

Example
DEVICE 16F877 "Use a 16F877 PICmicro
DIM VAR1 AS BYTE
VAR1 = CREAD 2000 ' Read the data from address 2000
ORG 2000 ' Set the address of the CDATA command
CDATA 120 ' Place 120 at address 2000

In the above example, the data is located at address 2000 within the PICmicro™, then it's read
using the CREAD command.

Notes
CDATA is only available on the newer PICmicro™ types that have self-modifying features, such
as the 16F87x range and the 16-bit core devices, and offer an efficient use of precious code
space.

The CREAD and CWRITE commands can also use a label address as a location variable. For
example: -

DEVICE 16F877 " A device with code modifying features
DIM DByte AS BYTE
DIM Loop AS BYTE

FOR Loop=0TO9 ' Create a loop of 10
DByte = CREAD Address + Loop ' Read memory location ADDRESS + LOOP
PRINT Dbyte ' Display the value read
NEXT
STOP
ADDRESS: CDATA "HELLO WORLD" ' Create a string of text in FLASH memory

The program above reads and displays 10 values from the address located by the LABEL ac-
companying the CDATA command. Resulting in "HELLO WORL" being displayed.

Using the new in-line commands structure, the CREAD and PRINT parts of the above program
may be written as: -

' Read and display memory location ADDRESS + LOOP
PRINT CREAD Address + Loop

132

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

The CWRITE command uses the same technique for writing to memory: -

DEVICE 16F877 " A device with code modifying features
DIM DByte AS BYTE
DIM Loop AS BYTE
" Write a string to FLASH memory at location ADDRESS
CWRITE Address , ["HELLO WORLD"]
FOR Loop=0TO9 ' Create a loop of 10
' Read and display memory location ADDRESS + LOOP
PRINT CREAD Address + Loop
NEXT
STOP
' Reserve 10 spaces in FLASH memory
ADDRESS: CDATA32,32,32,32,32,32,32,32,32, 32

Notice the string text now allowed in the CWRITE command. This allows the whole PICmicro™
to be used for data storage and retrieval if desired.

Important Note

Take care not to overwrite existing code when using the CWRITE command, and also remem-
ber that the all PICmicro™ devices have a finite amount of write cycles (approx 1000). A single
program can easily exceed this limit, making that particular memory cell or cells inaccessible.

The configuration fuse setting WRTE must be enabled before CDATA, CREAD and CWRITE
may be used. This enables the self-modifying feature. If the CONFIG directive is used, then the
WRTE_ON fuse setting must be included in the list: -

CONFIG WDT_ON , XT_OSC , WRTE_ON

Because the 14-bit core devices are only capable of holding 14 bits to a WORD, values greater
than 16383 ($3FFF) cannot be stored.

16-bit device requirements.

Because the 16-bit core devices are BYTE oriented, as opposed to the 14-bit types which are
WORD oriented. The CDATA tables should contain an even number of values, or corruption
may occur on the last value read. For example: -

EVEN: CDATA 1,2,3,"123"
ODD: CDATA 1,2,3,"12"
Formatting a CDATA table with a 16-bit core device.
Sometimes it is necessary to create a data table with a known format for its values. For exam-
ple all values will occupy 4 bytes of data space even though the value itself would only occupy
1 or 2 bytes. Formatters are not supported with 14-bit core devices, because they can only hold
a maximum value of $3FFF (16383). i.e. 14-bits.

CDATA 100000, 10000, 1000, 100, 10,1
The above line of code would produce an uneven code space usage, as each value requires a

different amount of code space to hold the values. 100000 would require 4 bytes of code
space, 10000 and 1000 would require 2 bytes, but 100, 10, and 1 would only require 1 byte.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Reading these values using CREAD would cause problems because there is no way of know-
ing the amount of bytes to read in order to increment to the next valid value.

The answer is to use formatters to ensure that a value occupies a predetermined amount of
bytes. These are: -

BYTE
WORD
DWORD
FLOAT

Placing one of these formatters before the value in question will force a given length.

CDATA DWORD 100000 , DWORD 10000 , DWORD 1000 ,_
DWORD 100, DWORD 10, DWORD 1

BYTE will force the value to occupy one byte of code space, regardless of it's value. Any values
above 255 will be truncated to the least significant byte.

WORD will force the value to occupy 2 bytes of code space, regardless of its value. Any values
above 65535 will be truncated to the two least significant bytes. Any value below 255 will be
padded to bring the memory count to 2 bytes.

DWORD will force the value to occupy 4 bytes of code space, regardless of its value. Any value
below 65535 will be padded to bring the memory count to 4 bytes. The line of code shown
above uses the DWORD formatter to ensure all the values in the CDATA table occupy 4 bytes
of code space.

FLOAT will force a value to its floating point equivalent, which always takes up 4 bytes of code
space.

If all the values in an CDATA table are required to occupy the same amount of bytes, then a
single formatter will ensure that this happens.

CDATA AS DWORD 100000, 10000, 1000, 100, 10,1
The above line has the same effect as the formatter previous example using separate DWORD
formatters, in that all values will occupy 4 bytes, regardless of their value. All four formatters
can be used with the AS keyword.
The example below illustrates the formatters in use.
' Convert a DWORD value into a string array

" Using only BASIC commands
" Similar principle to the STR$ command

INCLUDE "PROTON18_4.INC" " Use a 16-bit core device
DIM P10 AS DWORD " Power of 10 variable

DIM CNT AS BYTE

DIMJ AS BYTE

DIM VALUE AS DWORD "Value to convert

DIM STRING1[11] ASBYTE " Holds the converted value

134

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

DIM PTR ASBYTE " Pointer within the Byte array
DELAYMS 500 " Wait for PICmicro to stabilise
CLS ' Clear the LCD

CLEAR ' Clear all RAM before we start
VALUE = 1234576 "Value to convert

GOSUB DWORD_TO_STR ' Convert VALUE to string
PRINT STR STRING1 ' Display the result

STOP

' Convert a DWORD value into a string array
' Value to convert is placed in 'VALUE'
' Byte array 'STRINGL1' is built up with the ASCII equivalent

DWORD_TO_STR:
PTR=0
J=0
REPEAT
P10 = CREAD DWORD_TBL + (J * 4)
CNT =0

WHILE VALUE >= P10
VALUE = VALUE - P10
INC CNT

WEND

IF CNT <> 0 THEN
STRING1[PTR] = CNT + "0"
INC PTR

ENDIF

INC J

UNTILJ>8

STRING1[PTR] = VALUE + "0"

INC PTR

STRING1[PTR] =0 " Add the NULL to terminate the string
RETURN

' CDATA table is formatted for all 32 bit values.

"Which means each value will require 4 bytes of code space

DWORD_TBL:

CDATA AS DWORD 1000000000, 100000000, 10000000, 1000000, 100000, 10000, 1000,_
100, 10

Label names as pointers.

If a label's name is used in the list of values in a CDATA table, the labels address will be used.
This is useful for accessing other tables of data using their address from a lookup table. See
example below.

Note that this is not always permitted with 14-bit core devices, because they may not be able to
hold the value in a 14-bit word.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

' Display text from two CDATA tables
' Based on their address located in a separate table

INCLUDE "PROTON18_4.INC" " Use a 16-bit core device
DIM ADDRESS AS WORD

DIM LOOP AS WORD
DIM DATA_BYTE AS BYTE

DELAYMS 200 " Wait for PICmicro to stabilise
CLS ' Clear the LCD
ADDRESS = CREAD ADDR_TABLE ' Locate the address of the first string
WHILE1=1 ' Create an infinite loop
DATA_BYTE = CREAD ADDRESS ' Read each character from the CDATA string
IF DATA_BYTE =0 THEN EXIT_LOOP ' Exit if NULL found
PRINT DATA_BYTE ' Display the character
INC ADDRESS " Next character
WEND ' Close the loop
EXIT_LOOP:
CURSOR 2,1 " Point to line 2 of the LCD
ADDRESS = CREAD ADDR_TABLE + 2 ' Locate the address of the second string
WHILE1=1 ' Create an infinite loop
DATA BYTE = CREAD ADDRESS ' Read each character from the CDATA string
IF DATA_BYTE =0 THEN EXIT_LOOP?2 ' Exit if NULL found
PRINT DATA_BYTE ' Display the character
INC ADDRESS " Next character
WEND ' Close the loop
EXIT_LOOP2:
STOP
ADDR_TABLE: ' Table of address's
CDATA WORD STRING1,WORD STRING2
STRING1:
CDATA "HELLO",0
STRINGZ2:

CDATA "WORLD",0

See also: CONFIG, CREAD, CWRITE, DATA, LDATA, LREAD, READ.

136

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

CF_INIT

Syntax
CF_INIT

Overview
Initialise the lines used for Compact Flash access by CF_SECTOR, CF_READ and
CF_WRITE.

Notes
CF_INIT sets the pins used for the Compact Flash card to inputs and outputs accordingly. And
must be issued before any Compact Flash commands are used in the program.

Essentially what the CF_INIT command does can be shown by the BASIC code listed below: -

Low CF_DTPORT ‘ Set Data lines to output low

Low CF_ADPORT ‘ Set Address lines to output low
Output CF_WEPIN ‘ Set the CF WE pin to output

Low CF_CE1PIN ‘ Set the CF CEL1 pin to output low
Output CF_OEPIN ‘ Set the CF OE pin to output

Input CF_CD1PIN ‘ Set the CF CD1 pin to input

Input CF_RDYPIN ‘ Set the CF RDY_BSY pin to input
High CF_RSTPIN ‘ Set the CF RESET pin to output high
Delayus 1 ‘ Delay between toggles

Low CF_RSTPIN ‘ Set the CF RESET pin to output low

If the CF_RSTPIN DECLARE is not issued in the BASIC program, then the CF_RSTPIN’s
port.bit is not set up and no reset will occur through software. However, you must remember to
tie the Compact Flash RESET pin to ground.

The same applies to the CE1PIN. If the CF_CE1PIN DECLARE is not issued in the BASIC
program, then this pin is not manipulated in any way, and you must remember to tie the Com-
pact Flash CEL1 pin to ground

See Also CF_SECTOR (for a suitable circuit), CF_READ, CF_WRITE (for declares).

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

CF_SECTOR

Syntax
CF_SECTOR Sector Number , Operation , {Amount of Sectors}

Overview
Setup the sector in the Compact Flash card that is to be written or read by the commands
CF_READ and CF_WRITE.

Operators

Sector Number is the sector of interest in the Compact Flash card. This may be a constant
value, variable, or expression. However, remember that there are potentially hundreds of thou-
sands of sectors in a Compact Flash card so this variable will usually be a WORD or DWORD
type.

Operation is the operation required by the Compact Flash card, this may either be the texts
WRITE or READ. Or the values $30 or $20 which correspond to the texts accordingly.

Amount of Sectors is an optional parameter that informs the Compact Flash card as to how
many sectors will be read or written in a single operation. This may be a constant value, vari-
able, or expression. However, according to the Compact Flash data sheet, this may only be a
value of 1 to 127, and is normally set to 1. The parameter is optional because it is usually only
required once per READ or WRITE operation.

Example
“ Write 20 sectors on a compact flash card then read them back and display serially
Device = 18F452 “We'll use a 16-bit core device
XTAL =4
HSERIAL_BAUD = 9600 ' Set baud rate for USART serial coms
HSERIAL_RCSTA = %10010000 ' Enable serial port and continuous receive
HSERIAL_TXSTA = %00100100 ' Enable transmit and asynchronous mode
' CF Card Declarations
CF_DTPORT = PORTD ‘ Assign the CF data port to PORTD
CF_ADPORT = PORTE * Assign the CF address port to PORTE
CF_WEPIN = PORTC.5 “ Assign the CF WE pin to PORTC.5
CF_CE1PIN = PORTC.O “ Assign the CF CE1 pin to PORTC.0
CF_RDYPIN = PORTC.4 “ Assign the CF RDY_BSY pin to PORTC.4
CF_OEPIN = PORTC.1 * Assign the CF OE pin to PORTC.1
CF_RSTPIN = PORTC.3 “ Assign the CF RESET pin to PORTC.3
CF_CD1PIN = PORTA5S “ Assign the CF CD1 pin to PORTA.5
CF_ADPORT_MASK = False “ No masking of address data required

CF_READ_WRITE_INLINE = False Use subroutines for CF_ READ/CFWRITE

Symbol CF_CD1 = PORTA.5 “ Alias the CD1 pin to PORTA.5

' Variable Declarations

Dim DATA_IO as Byte ‘ Bytes read/written to CF card
Dim BUFFER_SIZE as Word ‘ Internal counter of bytes in sector (i.e.512)
Dim SECTOR_NUMBER as Dword * Sector of interest

138

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

* Main Program Starts Here

Delayms 100
ALL_DIGITAL = True
CF_INIT " Initialise the CF card's 10 lines

While CF_CD1=1:Wend " Is the Card inserted?

"WRITE 8-hit values from sector 0 to sector 20

WRITE_CF:
DATA 10=0 ‘ Clear the data to write to the card
SECTOR_NUMBER =0 ‘ Start at sector O

' Set up the CF card for Writing 1 sector at a time in LBA mode
CF_SECTOR SECTOR_NUMBER,WRITE,1

Repeat ‘ Form a loop for the sectors
BUFFER_SIZE =0

Hserout ["WRITING SECTOR ",Dec SECTOR_NUMBER,13]

Repeat ‘ Form a loop for bytes in sector
CF_WRITE [DATA _I0] ‘ Write a byte to the CF card
Inc BUFFER_SIZE ‘Move up a byte

Inc DATA IO ‘ Increment the data to write
Until BUFFER_SIZE =512 “ Until all bytes are written

Inc SECTOR_NUMBER ' Move up to the next sector

" And Set up the CF card for Writing in LBA mode
CF_SECTOR SECTOR_NUMBER,WRITE
Until SECTOR_NUMBER > 20 Until all sectors are written
' READ 8-bit values from sector O to sector 20
" And display serially In columns and rows format
READ_CF:
SECTOR_NUMBER =0 ‘ Start at sector O
' Set up the CF card for reading 1 sector at a time in LBA mode
CF_SECTOR SECTOR_NUMBER,READ,1
Repeat ‘ Form a loop for the sectors
BUFFER_SIZE =1
Hserout ['SECTOR ",Dec SECTOR_NUMBER,13]

Repeat ‘Form a loop for bytes in sector
DATA_10 = CF_READ ‘ Read a byte from the CF card
Hserout [HEX2 DATA 10,""] ‘ Display it in Hexadecimal

If BUFFER_SIZE // 32 = 0 Then Hserout [13] * Check if row finished

Inc BUFFER_SIZE ‘Move up a byte

Until BUFFER_SIZE > 512 “ Until all bytes are read
Hserout [Rep "-"\95,13] ' Draw a line under each sector
Inc SECTOR_NUMBER ' Move up to the next sector

" And set up the CF card for reading in LBA mode

CF_SECTOR SECTOR_NUMBER,READ

Until SECTOR_NUMBER > 20 ‘ Until all sectors are read
Stop

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Example 2
‘ Display a summary of the Compact Flash
Device = 18F452 “We’'ll use a 16-bit core device
XTAL =4
HSERIAL_BAUD = 9600 ' Set baud rate for USART serial coms
HSERIAL_RCSTA = %10010000 ' Enable serial port and continuous receive
HSERIAL_TXSTA = %00100100 ' Enable transmit and asynchronous mode
' CF Card Declarations
CF_DTPORT = PORTD “ Assign the CF data port to PORTD
CF_ADPORT = PORTE * Assign the CF address port to PORTE
CF_WEPIN = PORTC.5 * Assign the CF WE pin to PORTC.5
CF_CE1PIN = PORTC.O “ Assign the CF CE1 pin to PORTC.0
CF_RDYPIN = PORTC.4 “ Assign the CF RDY_BSY pin to PORTC.4
CF_OEPIN = PORTC.1 “ Assign the CF OE pin to PORTC.1
CF_RSTPIN = PORTC.3 “ Assign the CF RESET pin to PORTC.3
CF_CD1PIN = PORTAL “ Assign the CF CD1 pin to PORTA.5
CF_ADPORT_MASK = False * No masking of address data required
CF_READ_WRITE_INLINE = False “ Use subroutines for CF_READ/CFWRITE
Symbol CF_CD1 = PORTA.5 “ Alias the CD1 pin to PORTA.5
" Variable Declarations
Dim DATA_ IO as Word “ Words read from CF card
Dim SER_LOOP as Word ‘ Internal counter of bytes
Dim SECTORS_PER_CARD as Dword * The amount of sectors in the CF card
Delayms 100
ALL_DIGITAL = True
CF_INIT "Initialise the CF card's IO lines
While CF_CD1=1: Wend "Is the Card inserted?
CF_Write 7,[$EC] " Write CF execute identify drive command
CF_Write $20,[] ' Set address for READ SECTOR
DATA |10 = CF_Read ‘ Read from the CF card
Hserout ["General configuration = ",Hex4 DATA 10,13]
DATA |10 = CF_Read ‘ Read from the CF card
Hserout ["Default number of cylinders = ",Dec DATA _10,13]
DATA |10 = CF_Read ‘ Read from the CF card
Hserout ['Reserved = ",Dec DATA_10,13]
DATA |10 = CF_Read ‘ Read from the CF card
Hserout ["Default number of heads = ",Dec DATA_10,13]
DATA |10 = CF_Read ‘ Read from the CF card
Hserout ["Number of unformatted bytes per track = ",Dec DATA_10,13]
DATA |10 = CF_Read ‘ Read from the CF card
Hserout ["'Number of unformatted bytes per sector = ",Dec DATA 10,13]
DATA |10 = CF_Read ‘ Read from the CF card
Hserout ["Default number of sectors per track = ",Dec DATA _10,13]
DATA |10 = CF_Read ‘ Read from the CF card
SECTORS_PER_CARD.HighWord = DATA_10
DATA |10 = CF_Read ‘ Read from the CF card

SECTORS_PER_CARD.LowWord = DATA IO

Hserout ["Number of sectors per card = ",Dec SECTORS_PER_CARD,13]
DATA_ IO = CF_Read ‘ Read from the CF card
Hserout ["Vendor Unique = ",Dec DATA_10,13]

Hserout ["Serial number in ASCII (Right Justified) = "]

140

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

For SER_LOOP =0to0 19
DATA_10.LowByte = CF_Read ‘ Read from the CF card
Hserout [DATA 10.LowByte]

Next

Hserout [13]

DATA_10 = CF_Read ‘ Read from the CF card
Hserout ["Buffer type = ",Dec DATA 10,13]

DATA_10 = CF_Read ‘ Read from the CF card
Hserout ["Buffer size in 512 byte increments = ",Dec DATA 10,13]
DATA_10 = CF_Read ‘ Read from the CF card

Hserout ["# of ECC bytes passed on Read/Write Long Commands =", _
Dec DATA_IO,13]
Stop
The above example will display on the serial terminal, some details concerning the Compact
Flash card being interfaced. This is ideal for testing if the circuit is working, but is also useful for
ascertaining how many sectors the Compact Flash card contains.

Notes

Accessing a compact flash card is not the same as accessing standard memory. In so much as
a complete sector must be written. i.e. all 512 bytes in a single operation. Reading from a com-
pact flash card is more conventional in that once the sector is chosen using the CF_SECTOR
command, any of the 512 bytes may be read from that sector.

The compiler's Compact Flash access commands operate in what is called LBA (Logical Block
Address) mode. Which means that it is accessed sector by sector instead of the more involved
Cylinder/Head/Sector mode. LBA mode makes accessing Compact Flash easier and more in-
tuitive. However, it is important to read and understand the CF+ and Compact Flash specifica-
tions document which can be obtained via the internet at www.compactflash.org.

A typical circuit for interfacing a Compact Flash card is shown below: -

5 Volts

13 38

R1

47k VCC VCC
PORTA.5 1 cDp1 REG “
ce2 P&

PORTD.0 0——21 DO
PORTD.L O——— 2 D1
PORTD2 0—— 51 D2
PORTD3 O—— 21 D3
PORTD4 O0—— 21 D4 -

-—
Cc2
0.1uF

PORTDS O———*1 D5
PorTD.6 0———°1 D6
PORTD.7 O——— 1 D7
CF CARD

PORTEO 0—— 2 AQ "
19

PORTEL O——— 1 A1 CSEL

PORTE2 0— 81 Ap

TO PICMICRO

17
, A3 I
PORTCO 0——+— CE1 Ad
PORTC.L O—————] OE A5 BB
PORTC.2 O——«———1 WE A6 B
PorTC3 O—— 31 RDY/BSY A7 i
41 AB 10
PORTC.4 O—— 1 RESET A9
Al0

GND GND

1 50

ov

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

The circuit shown overleaf can be used with the code examples listed earlier.

The RESET and CEL1 lines are not essential to the operation of interfacing. The RESET line
and the CEL1 line must be connected to ground. However, the CE1 line is useful if multiplexing
is used as the Compact Flash card will ignore all commands if the CE1 line is set high. And the
RESET line is useful for a clean start up of the Compact Flash card.

The CF commands were written and tested only on the more modern “higher speed” compact
flash cards. These operate at up to 40 times faster than conventional Compact Flash and also,
more importantly, operate from a 3.3 Volt and 5 Volt power source. However, the low level rou-
tines used by the commands, when not in inline mode, are contained in a separate INC file lo-
cated inside the compiler's INC folder. The file is named CF_CMS.INC, and can be altered if
slower access is required. It is simply a matter of adding more NOP mnemonics inside the
CF@WR and CF@RD subroutines.

See Also CF_INIT, CF_READ, CF_WRITE (for declares).

142

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

CF_READ

Syntax
Variable = CF_READ

Overview
Read data from a Compact Flash card.

Operators
Variable can be a BIT, BYTE, WORD, DWORD or FLOAT type variable that will be loaded
with data read from the Compact Flash card.

Example
‘ Read 16-bit values from 20 sectors in a compact flash card and display serially
Device = 16F877 “We'll use a 14-bit core device
XTAL =4
HSERIAL_BAUD = 9600 ' Set baud rate for USART serial coms
HSERIAL_RCSTA = %10010000 ' Enable serial port and continuous receive
HSERIAL_TXSTA = %00100100 ' Enable transmit and asynchronous mode
' CF Card Declarations
CF_DTPORT = PORTD ‘ Assign the CF data port to PORTD
CF_ADPORT = PORTE “ Assign the CF address port to PORTE
CF_WEPIN = PORTC.5 “ Assign the CF WE pin to PORTC.5
CF_CE1PIN = PORTC.O “ Assign the CF CE1 pin to PORTC.0
CF_RDYPIN = PORTC.4 ‘ Assign the CF RDY_BSY pin to PORTC.4
CF_OEPIN = PORTC.1 ‘ Assign the CF OE pin to PORTC.1
CF_RSTPIN = PORTC.3 Assign the CF RESET pin to PORTC.3
CF_CD1PIN = PORTAS Assign the CF CD1 pin to PORTA.5
CF_ADPORT_MASK = False ‘ No masking of address data required

CF_READ_WRITE_INLINE = False Use subroutines for CF_READ/CFWRITE

Symbol CF_CD1 = PORTA.5 ‘ Alias the CD1 pin to PORTA.5

' Variable Declarations

Dim DATA_IO as Word “Words read from CF card
Dim BUFFER_SIZE as Word ‘ Internal counter of bytes in sector (i.e.512)
Dim SECTOR_NUMBER as Dword ‘ Sector of interest

* Main Program Starts Here

Delayms 100
ALL_DIGITAL = True
CF_INIT " Initialise the CF card's 10 lines

While CF_CD1=1:Wend " Is the Card inserted?
" READ 8-bit values from sector 0 to sector 20
" And display serially In columns and rows format

READ_CF:
SECTOR_NUMBER =0 ‘ Start at sector O
' Set up the CF card for reading 1 sector at a time in LBA mode
CF_SECTOR SECTOR_NUMBER,READ,1

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Repeat ‘ Form a loop for the sectors
BUFFER_SIZE =1
Hserout ['SECTOR ",Dec SECTOR_NUMBER,13]

Repeat ‘ Form a loop for words in sector
DATA |10 =CF_READ ‘Read a Word from the CF card
Hserout [HEX4 DATA_IO," "] ‘ Display it in Hexadecimal

If BUFFER_SIZE // 32 = 0 Then Hserout [13] ‘ Check if row finished

Inc BUFFER_SIZE * Move up a word

Until BUFFER_SIZE > 256 “ Until all words are read
Hserout [Rep "-"\95,13] ' Draw a line under each sector
Inc SECTOR_NUMBER ' Move up to the next sector

" And set up the CF card for reading in LBA mode

CF_SECTOR SECTOR_NUMBER,READ

Until SECTOR_NUMBER > 20 “ Until all sectors are read
Stop

Notes
The amount of bytes read from the Compact Card depends on the variable type used as the
assignment. i.e. the variable before the equals operator: -

A BIT type variable will read 1 byte from the Compact Flash card.

A BYTE type variable will also read 1 byte from the Compact Flash card.

A WORD type variable will read 2 bytes from the Compact Flash card Least Significant Byte
First (LSB).

A DWORD type variable will read 4 bytes from the Compact Flash card Least Significant Byte
First (LSB).

A FLOAT type variable will also read 4 bytes from the Compact Flash card in the correct format
for a floating point variable.

Accessing Compact Flash memory is not the same as conventional memory. There is no
mechanism for choosing the address of the data in question. You can only choose the sector
then sequentially read the data from the card. In essence, the sector is the equivalent of the
address in a conventional piece of memory, but instead of containing 1 byte of data, it contains
512 bytes.

Once the sector is chosen using the CF_SECTOR command, any amount of the 512 bytes
available can be read from the card. Once a read has been accomplished, the Compact Flash
card automatically increments to the next byte in the sector ready for another read. So that a
simple loop as shown below will read all the bytes in a sector: -

BUFFER_SIZE =0

Repeat ‘ Form a loop for bytes in sector
DATA_I0 = CF_READ ‘ Read a Byte from the CF card
Inc BUFFER_SIZE ‘ Increment the byte counter
Until BUFFER_SIZE =512 “ Until all Bytes are read

144

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

In order to extract a specific piece of data from a sector, a similar loop can be used, but with a
condition attached that will drop out at the correct position: -

BUFFER_SIZE =0

Whilel1 =1 ‘ Form an infinite loop

DATA_10 = CF_READ ‘ Read a Byte from the CF card

If BUFFER_SIZE = 20 Then Break * Exit when correct position reached
Inc BUFFER_SIZE ‘ Increment the byte counter

Wend ‘* Close the loop

The snippet above will exit the loop when the 20" byte has been read from the card.

Of course Arrays can also be loaded from a Compact Flash card in a similar way, but remem-
ber, the maximum size of an array in PROTON BASIC is 256 elements. The snippets below
show two possible methods of loading an array with the data read from a Compact Flash card.

Dim AR1[256] as Byte ‘ Create a 256 element array

Dim BUFFER_SIZE as Word ‘ Internal counter of bytes in sector
BUFFER_SIZE =0

Repeat ‘ Form a loop for bytes in sector
AR1[BUFFER_SIZE] = CF_READ ‘ Read a Byte from the CF card
Inc BUFFER_SIZE ‘ Increment the byte counter

Until BUFFER_SIZE = 256 “ Until all Bytes are read

Large arrays such as the one above are best suited to the 16-bit core devices. Not only be-
cause they generally have more RAM, but because their RAM is accessed more linearly and
there are no BANK boundaries when using arrays. Also, by accessing some low level registers
in a 16-bit core device it is possible to efficiently place all 512 bytes from a sector into 2 arrays:

Device = 18F452 ‘ Choose a 16-bit core device

Dim AR1[256] as Byte ‘ Create a 256 element array

Dim AR2[256] as Byte ‘ Create another 256 element array

Dim BUFFER_SIZE as Word ‘ Internal counter of bytes in sector

Dim FSRO as FSROL.Word ‘ Combine FSROL/H as a 16-bit register
BUFFER_SIZE =0

FSRO = Varptr(AR1) ‘ Get the address of AR1 into FSROL/H
Repeat ‘ Form a loop for bytes in sector
POSTINCO = CF_READ ‘ Read a Byte from the CF card and place

‘ directly into memory, then increment to
‘ the next address in PIC RAM

Inc BUFFER_SIZE ‘ Increment the byte counter

Until BUFFER_SIZE =512 “ Until all Bytes are read

When the above loop is finished, arrays AR1 and AR2 will hold the data read from the Compact
Flash card’s sector. Of course you will need to pad out the snippets with the appropriate de-
clares and the CF_SECTOR command.

See Also CF_INIT, CF_SECTOR (for a suitable circuit), CF_WRITE (for declares).

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

CF_WRITE

Syntax
CF_WRITE {Address Data}, [Variable {Variable {, Variable etc}]

Overview
Write data to a Compact Flash card.

Operators

Address Data is an optional value that is placed on the Compact Flash card’s Address lines.
This is not always required when writing to a card.

Variable can be a BIT, BYTE, WORD, DWORD, FLOAT, or STRING type variable that will be
written to the Compact Flash card. More than one variable can be placed between the square
braces if more than one write is required in a single operation.

The variable part of the CF_WRITE command is also optional, as some configurations only re-
quire the card’s address lines to be loaded. In this case, use the syntax: -

CF_WRITE Address Data , []
See example 2 in the CF_SECTOR section for an example of its use.

Example
“ Write 20 sectors on a compact flash card
Device = 18F452 “We’'ll use a 16-bit core device
XTAL =4
HSERIAL_BAUD = 9600 ' Set baud rate for USART serial coms
HSERIAL_RCSTA = %10010000 " Enable serial port and continuous receive
HSERIAL_TXSTA = %00100100 " Enable transmit and asynchronous mode
' CF Card Declarations
CF_DTPORT = PORTD “ Assign the CF data port to PORTD
CF_ADPORT = PORTE “ Assign the CF address port to PORTE
CF_WEPIN = PORTC.5 “ Assign the CF WE pin to PORTC.5
CF_CE1PIN = PORTC.O “ Assign the CF CE1 pin to PORTC.0
CF_RDYPIN = PORTC.4 “ Assign the CF RDY_BSY pin to PORTC.4
CF_OEPIN = PORTC.1 * Assign the CF OE pin to PORTC.1
CF_RSTPIN = PORTC.3 “ Assign the CF RESET pin to PORTC.3
CF_CD1PIN = PORTAL “ Assign the CF CD1 pin to PORTA.5
CF_ADPORT_MASK = False * No masking of address data required

CF_READ_WRITE_INLINE = False “ Use subroutines for CF_READ/CFWRITE

Symbol CF_CD1 = PORTA.5 “ Alias the CD1 pin to PORTA.5

' Variable Declarations

Dim DATA_IO as Byte ‘ Bytes written to CF card

Dim BUFFER_SIZE as Word “ Internal counter of bytes in sector (i.e.512)
Dim SECTOR_NUMBER as Dword “ Sector of interest

‘ Main Program Starts Here

Delayms 100

ALL_DIGITAL = True

146

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

CF_INIT " Initialise the CF card's 10 lines
While CF_CD1=1:Wend " Is the Card inserted?
' WRITE 8-bit values from sector 0 to sector 20
WRITE_CF:
DATA 10=0 ‘ Clear the data to write to the card
SECTOR_NUMBER =0 ‘ Start at sector O

' Set up the CF card for Writing 1 sector at a time in LBA mode
CF_SECTOR SECTOR_NUMBER,WRITE,1

Repeat ‘ Form a loop for the sectors
BUFFER_SIZE =0

Hserout ['WRITING SECTOR ",Dec SECTOR_NUMBER,13]

Repeat ‘Form a loop for bytes in sector
CF_WRITE [DATA_IO] ‘ Write a byte to the CF card
Inc BUFFER_SIZE ‘Move up a byte

Inc DATA IO ‘ Increment the data to write
Until BUFFER_SIZE =512 “ Until all bytes are written

Inc SECTOR_NUMBER ' Move up to the next sector

" And Set up the CF card for Writing in LBA mode

CF_SECTOR SECTOR_NUMBER,WRITE

Until SECTOR_NUMBER > 20 “ Until all sectors are written
Stop

Notes
The amount of bytes written to the Compact Card depends on the variable type used between
the square braces: -

A BIT type variable will write 1 byte to the Compact Flash card.

A BYTE type variable will also write 1 byte to the Compact Flash card.

A WORD type variable will write 2 bytes to the Compact Flash card Least Significant Byte First
(LSB).

A DWORD type variable will write 4 bytes to the Compact Flash card Least Significant Byte
First (LSB).

A FLOAT type variable will also write 4 bytes to the Compact Flash card in the correct format of
a floating point variable.

Accessing Compact Flash memory is not the same as conventional memory. There is no
mechanism for choosing the address of the data in question. You can only choose the sector
then sequentially write the data to the card. In essence, the sector is the equivalent of the ad-
dress in a conventional piece of memory, but instead of containing 1 byte of data, it contains
512 bytes.

Once the sector is chosen using the CF_SECTOR command and a write operation is started,

all 512 bytes contained in the sector must be written before they are transferred to the card’s
flash memory.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Once a single write has been accomplished, the Compact Flash card automatically increments
to the next byte in the sector ready for another write. So that a simple loop as shown below will
write all the bytes in a sector: -

BUFFER_SIZE =0

Repeat “ Form a loop for bytes in sector
CF_WRITE [DATA_IO] ‘ Write a Byte to the CF card
Inc BUFFER_SIZE ‘ Increment the byte counter
Until BUFFER_SIZE =512 “ Until all Bytes are written

Compact Flash Interface Declares

There are several declares that need to be manipulated when interfacing to a Compact Flash
card. There are the obvious port pins, but there are also some declares that optimise or speed
up access to the card.

DECLARE CF_DTPORT PORT
This declare assigns the Compact Flash card’s data lines. The data line consists of 8-bits so it
is only suitable for ports that contain 8-bits such as PORTB, PORTC, PORTD etc.

DECLARE LCD_ADPORT PORT

This declare assigns the Compact Flash card’s address lines. The address line consists of 3-
bits, but AO of the compact flash card must be attached to bit-O of whatever port is used. For
example, if the Compact Flash card’s address lines were attached to PORTA of the PICmicro™,
then AO of the CF card must attach to PORTA.O, Al or the CF card must attach to PORTA.1,
and A2 of the CF card must attach to PORTA.2.

The CF access commands will mask the data before transferring it to the particular port that is
being used so that the rest of it's pins are not effected. PORTE is perfect for the address lines
as it contains only 3 pins on a 40-pin device, and the compiler can make full use of this by us-
ing the CF_ADPORT_MASK declare.

DECLARE CF_ADPORT_MASK = ON or OFF, or TRUE or FALSE, or 1,0

Both the CF_WRITE and CF_SECTOR commands write to the Compact Flash card’s address
lines. However, these only contain 3-bits, so the commands need to ensure that the other bits
of the PICmicro’s PORT are not effected. This is accomplished by masking the unwanted data
before transferring it to the address lines. This takes a little extra code space, and thus a little
extra time to accomplish. However, there are occasions when the condition of the other bits on
the PORT are not important, or when a PORT is used that only has 3-bits to it. i.e. PORTE with
a 40-pin device. Issuing the CF_ADPORT_MASK declare and setting it FALSE, will remove
the masking mnemonics, thus reducing code used and time taken.

DECLARE CF_RDYPIN PORT . PIN
Assigns the Compact Flash card’s RDY/BSY line.

DECLARE CF_OEPIN PORT . PIN
Assigns the Compact Flash card’s OE line.

DECLARE CF_WEPIN PORT . PIN
Assigns the Compact Flash card’s WE line.

148

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

DECLARE CF_CD1PIN PORT . PIN

Assigns the Compact Flash card’s CD1 line. The CD1 line is not actually used by any of the
commands, but is set to input if the declare is issued in the BASIC program. The CD1 line is
used to indicate whether the card is inserted into its socket.

DECLARE CF_RSTPIN PORT . PIN

Assigns the Compact Flash card’s RESET line. The RESET line is not essential for interfacing
to a Compact Flash card, but is useful if a clean power up is required. If the declare is not is-
sued in the BASIC program, all reference to it is removed from the CF_INIT command. If the
RESET line is not used for the card, ensure that it is tied to ground.

DECLARE CF_CE1PIN PORT . PIN

Assigns the Compact Flash card’s CE1 line. As with the RESET line, the CEL1 line is not essen-
tial for interfacing to a Compact Flash card, but is useful when multiplexing pins, as the card will
ignore all commands when the CEL1 line is set high. If the declare is not issued in the BASIC
program, all reference to it is removed from the CF_INIT command. If the CEL1 line is not used
for the card, ensure that it is tied to ground.

DECLARE CF_READ_WRITE_INLINE = ON or OFF, or TRUE or FALSE, or 1,0

Sometimes, speed is of the essence when accessing a Compact Flash card, especially when
interfacing to the new breed of card which is 40 times faster than the normal type. Because of
this, the compiler has the ability to create the code used for the CF_WRITE and CF_READ
commands inline, which means it does not call its library subroutines, and can tailor itself when
reading or writing WORD, DWORD, or FLOAT variables. However, this comes at a price of
code memory, as each command is stretched out for speed, not optimisation. It also means that
the inline type of commands are really only suitable for the higher speed Compact Flash cards.

If the declare is not used in the BASIC program, the default is not to use inline commands.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

CIRCLE

Syntax
CIRCLE Set_Clear, Xpos, Ypos, Radius

Overview
Draw a circle on a graphic LCD.

Operators

Set_Clear may be a constant or variable that determines if the circle will set or clear the pixels.
A value of 1 will set the pixels and draw a circle, while a value of O will clear any pixels and
erase a circle.

Xpos may be a constant or variable that holds the X position for the centre of the circle. Can be
a value from 0 to the X resolution of the display.

Ypos may be a constant or variable that holds the Y position for the centre of the circle. Can be
a value from O to the Y resolution of the display.

Radius may be a constant or variable that holds the Radius of the circle. Can be a value from 0
to 255.

Example
" Draw a circle at position 63,32 with a radius of 20 pixels on a Samsung KS0108 LCD

INCLUDE "PROTON_GA4.INT" ‘Use a SAMSUNG KS0108 LCD

DIM XPOS as BYTE
DIM YPOS as BYTE
DIM RADIUS as BYTE
DIM SET_CLR as BYTE

DELAYMS 200 " Wait for PICmicro to stabilise
CLS ' Clear the LCD

XPOS =63

YPOS =32

RADIUS = 20

SET CLR=1

CIRCLE SET_CLR, XPOS, YPOS , RADIUS

STOP

Notes
Because of the aspect ratio of the pixels on the graphic LCD (approx 1.5 times higher than
wide) the circle will appear elongated.

See Also : BOX, LINE, PIXEL, PLOT, UNPLOT.

150

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

CLEAR

Syntax
CLEAR Variable or Variable.Bit

CLEAR

Overview
Place a variable or bit in a low state. For a variable, this means filling it with 0's. For a bit this
means setting it to O.

CLEAR has another purpose. If no variable is present after the command, all RAM area on the
PICmicro™ used is cleared.

Operators
Variable can be any variable or register.
Variable.Bit can be any variable and bit combination.

Example

CLEAR 'Clear ALL RAM area

CLEAR VARL1.3 ' Clear bit 3 of VAR1

CLEAR VAR1 ' Load VAR1 with the value of O

CLEAR STATUS.O ' Clear the carry flag high

CLEAR ARRAY ‘ Clear all of an ARRAY variable. i.e. reset to zero’s

CLEAR STRING1 ‘ Clear all of a STRING variable. i.e. reset to zero’s
Notes

There IS a major difference between the CLEAR and LOW commands. CLEAR does not alter
the TRIS register if a PORT is targeted.

See Also: SET, LOW, HIGH

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

CLEARBIT

Syntax
CLEARBIT Variable , Index

Overview
Clear a bit of a variable or register using a variable index to the bit of interest.

Operators

Variable is a user defined variable, of type BYTE, WORD, or DWORD.

Index is a constant, variable, or expression that points to the bit within Variable that requires
clearing.

Example
' Clear then Set each bit of variable EX_VAR
DEVICE = 16F877
XTAL =4
DIM EX VAR AS BYTE
DIM INDEX AS BYTE

CLS
EX VAR =9%11111111
AGAIN:
FORINDEX=0TO 7 ' Create a loop for 8 bits
CLEARBIT EX_VAR,INDEX ' Clear each bit of EX_VAR
PRINT AT 1,1,BIN8 EX_VAR ' Display the binary result
DELAYMS 100 " Slow things down to see what's happening
NEXT ' Close the loop
FOR INDEX =7 TO 0 STEP -1 ' Create a loop for 8 bits
SETBIT EX_VAR,INDEX ' Set each bit of EX_VAR
PRINT AT 1,1,BIN8 EX_VAR ' Display the binary result
DELAYMS 100 " Slow things down to see what's happening
NEXT ' Close the loop
GOTO AGAIN ' Do it forever
Notes

There are many ways to clear a bit within a variable, however, each method requires a certain
amount of manipulation, either with rotates, or alternatively, the use of indirect addressing using
the FSR, and INDF registers. Each method has its merits, but requires a certain amount of
knowledge to accomplish the task correctly. The CLEARBIT command makes this task ex-
tremely simple using a register rotate method, however, this is not necessarily the quickest
method, or the smallest, but it is the easiest. For speed and size optimisation, there is no short-
cut to experience.

To CLEAR a known constant bit of a variable or register, then access the bit directly using
PORT.n.

PORTA.1=0
or

VAR1.4=0
If a PORT is targeted by CLEARBIT, the TRIS register is NOT affected.
See also: GETBIT, LOADBIT, SETBIT.

152

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

CLS

Syntax
CLS

Or if using a Toshiba T6963 graphic LCD

CLS TEXT
CLS GRAPHIC

Overview
Clears the alphanumeric or graphic LCD and places the cursor at the home position i.e. line 1,
position 1 (line 0, position O for graphic LCDs).

Toshiba graphic LCDs based upon the T6963 chipset have separate RAM for text and graph-
ics. Issuing the word TEXT after the CLS command will only clear the TEXT RAM, while issuing
the word GRAPHIC after the CLS command will only clear the GRAPHIC RAM. Issuing the
CLS command on its own will clear both areas of RAM.

Example 1

‘ Clear an alphanumeric or SAMSUNG KS0108 graphic LCD
CLS ' Clear the LCD
PRINT "HELLO" ' Display the word "HELLO" on the LCD
CURSOR 2,1 ' Move the cursor to line 2, position 1
PRINT "WORLD" ' Display the word "WORLD" on the LCD
STOP

In the above example, the LCD is cleared using the CLS command, which also places the cur-
sor at the home position i.e. line 1, position 1. Next, the word HELLO is displayed in the top left
corner. The cursor is then moved to line 2 position 1, and the word WORLD is displayed.

Example 2
‘ Clear a Toshiba T6963 graphic LCD.
CLS ‘ Clear all RAM within the LCD

PRINT “HELLO” ‘ Display the word “HELLO” on the LCD
LINE 1,0,0,63,63 ‘Draw a line on the LCD
DELAYMS 1000 * Wait for 1 second

CLS TEXT ‘ Clear only the text RAM, leaving the line displayed
DELAYMS 1000 ‘ Wait for 1 second
CLS GRAPHIC “ Now clear the line from the display
STOP
Notes

The CLS command will also initialise any of the above LCDs. (set the ports to inputs/outputs
etc), however, this is most important to Toshiba graphic LCDs, and the CLS command should
always be placed at the head of the BASIC program, prior to issuing any command that inter-
faces with the LCD. i.e. PRINT, PLOT etc.

See also: CURSOR, PRINT, TOSHIBA_COMMAND.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

CONFIG

Syntax
CONFIG { configuration fuse settings }

Overview
Enable or Disable particular fuse settings for the PICmicro™ type used.

Operators
configuration fuse settings vary from PICmicro™ to PICmicro™, however, certain settings are
standard to most PICmicro™ types. Refer to the PICmicro’s datasheet for details.

Example
' Disable the Watchdog timer and specify an HS_OSC etc, on a PIC16F877 device
CONFIG HS_OSC , WDT_OFF , PWRTE_ON , BODEN_OFF , LVP_OFF, _
WRTE_ON , CP_OFF , DEBUG_OFF

Important.

Because of the complexity that thel6-bit core devices require for adjusting their fuse settings,
the CONFIG directive is not compatible with these devices directly. If the fuse settings requires
altering, then dropping into assembler will be required, either by using the ASM - END_ASM
directives, or the @ character. Alternatively, the fuse settings may be altered at programming
time.

The example below will set the fuses for a 18F452 device: -

@ CONFIG_REQ
@ _ CONFIG CONFIG1H, OSCS_OFF 1 & HS_OSC_1

@ __CONFIG CONFIG2L, BOR_ON_2 & BORV_20 2 & PWRT_ON_2

@ __ CONFIG CONFIG2H, WDT_OFF_2 & WDTPS_128 2

@ __CONFIG CONFIG3H, CCP2MX_ON_3

@ __CONFIG CONFIGA4L, STVR_ON_4 & LVP_OFF 4 & DEBUG_OFF 4

The fuse names may be found at the end of the PICmicro's .LPB file, situated within the INC
folder of the compiler's directory.

Notes
If the CONFIG directive is not used within the BASIC program then default values are used.
These may be found in the .LPB files in the INC folder.

When using the CONFIG directive, always use all the fuse settings for the particular PICmicro™
used. The compiler will always issue a reminder after the CONFIG directive has been issued,
however, this may be ignored if you are confident that you have assigned all the relevant fuse
names.

Any fuse names that are omitted from the CONFIG list will normally assume an OFF or DIS-
ABLED state. However, this is not always the case, and unpredictable results may occur, or the
PICmicro™ may refuse to start up altogether.

Before programming the PICmicro™, always check the fuse settings at programming time to
ensure that the settings are correct.

Always read the datasheet for the particular PICmicro™ of interest, before using this directive.

154

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

COUNTER

Syntax
Variable = COUNTER Pin , Period

Overview
Count the number of pulses that appear on pin during period, and store the result in variable.

Operators

Variable is a user-defined variable.

Pin is a Port.Pin constant declaration i.e. PORTA.O.
Period may be a constant, variable, or expression.

Example
' Count the pulses that occur on PORTA.O within a 100ms period
‘and displays the results.

DIM WRD AS WORD ' Declare a word size variable
SYMBOL Pin = PORTA.O " Assign the input pin to PORTA.O
CLS
Loop:
WRD = COUNTER Pin, 100 "Variable WRD now contains the Count
CURSOR 1,1
PRINT DECWRD ,"" ' Display the decimal result on the LCD
GOTO Loop ' Do it indefinitely
Notes

The resolution of period is in milliseconds (ms). It obtains its scaling from the oscillator declara-
tion, DECLARE XTAL.

COUNTER checks the state of the pin in a concise loop, and counts the rising edge of a transi-
tion (low to high).

With a 4MHz oscillator, the pin is checked every 20us, and every 4us with a 20MHz oscillator.
From this we can determine that the highest frequency of pulses that may be counted is: -

25KHz using a 4MHz oscillator.
125KHz using a 20MHz oscillator.

See also: PULSIN, RCIN.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

CREAD

Syntax
Variable = CREAD Address

Overview
Read data from anywhere in memory.

Operators

Variable is a user defined variable, of type BYTE, WORD, or DWORD.

Address is a constant, variable, label, or expression that represents any valid address within
the PICmicro™.

Example
' Read memory locations within the PICmicro

DEVICE 16F877 ' Needs to be a 16F87x type PICmicro
DIM VAR1 AS BYTE

DIM WRD AS WORD

DIM Address AS WORD

Address = 1000 ' Address now holds the base address

VAR1 = CREAD 1000 ' Read 8-bit data at address 1000 into VAR1

WRD = CREAD Address+10 ' Read 14-bit data at address 1000+10
Notes

The CREAD command takes advantage of the new self-modifying feature that is available in
the newer 16F87x, and 18 series devices.

If a WORD size variable is used as the assignment, then a 14-bit WORD will be read. If a BYTE
sized variable is used as the assignment, then 8-bits will be read.

Because the 14-bit core devices are only capable of holding 14 bits to a WORD, values greater
than 16383 ($3FFF) cannot be read. However, the 16-bit core devices may hold values up to
65535 ($FFFF).

The configuration fuse setting WRTE must be enabled before CDATA, CREAD, and CWRITE
may be used, this is the default setting. This enables the self-modifying feature. If the CONFIG
directive is used, then the WRTE_ON fuse setting must be included in the list: -

CONFIG WDT_ON, XT_OSC , WRTE_ON

Seealso: DATA, CDATA, CONFIG, CWRITE, LDATA, LREAD, READ, RESTORE .

156

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

CURSOR

Syntax
CURSOR Line , Position

Overview
Move the cursor position on an Alphanumeric or Graphic LCD to a specified line (ypos) and po-
sition (xpos).

Operators

Line is a constant, variable, or expression that corresponds to the line (Ypos) number from 1 to
maximum lines (0 to maximum lines if using a graphic LCD).

Position is a constant, variable, or expression that moves the position within the position
(Xpos) chosen, from 1 to maximum position (0 to maximum position if using a graphic LCD).

Example 1
DIM Line ASBYTE
DIM Xpos AS BYTE

Line=2

Xpos =1

CLS ' Clear the LCD

PRINT "HELLO" ' Display the word "HELLQO" on the LCD
CURSOR Line , Xpos ' Move the cursor to line 2, position 1
PRINT "WORLD" ' Display the word "WORLD" on the LCD

In the above example, the LCD is cleared using the CLS command, which also places the cur-
sor at the home position i.e. line 1, position 1. Next, the word HELLO is displayed in the top left
corner. The cursor is then moved to line 2 position 1, and the word WORLD is displayed.

Example 2
DIM Xpos AS BYTE
DIM Ypos AS BYTE

Again:
Ypos =1 ' Start on line 1
FOR Xpos=1TO 16 ' Create a loop of 16
CLS ' Clear the LCD
CURSOR Ypos , Xpos ' Move the cursor to position Ypos,Xpos
PRINT "*" ' Display the character
DELAYMS 100
NEXT
Ypos =2 ' Move to line 2
FOR Xpos =16 TO 1 STEP -1 ' Create another loop, this time reverse
CLS ' Clear the LCD
CURSOR Ypos , Xpos ' Move the cursor to position Ypos,Xpos
PRINT ™" ' Display the character
DELAYMS 100
NEXT
GOTO Again ' Repeat forever

Example 2 displays an asterisk character moving around the perimeter of a 2-line by 16 charac-
ter LCD.

See also: CLS, PRINT

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

CWRITE

Syntax
CWRITE Address , [Variable {, Variable...}]

Overview
Write data to anywhere in memory.

Operators

Variable can be a constant, variable, or expression.

Address is a constant, variable, label, or expression that represents any valid address within
the PICmicro™.

Example
" Write to memory location 2000+ within the PICmicro

DEVICE 16F877 ' Needs to be a 16F87x type PICmicro
DIM VAR1 AS BYTE

DIM WRD AS WORD

DIM Address AS WORD

Address = 2000 " Address now holds the base address
VAR1 = 234
WRD = 1043
CWRITE Address, [10, VAR1, WRD] 'Write to address 2000 +
ORG 2000
Notes

The CWRITE command takes advantage of the new self-modifying feature that is available in
the newer 16F87x, and 18F series devices.

If a WORD size variable is used as the assignment, then a 14-bit WORD will be written. If a
BYTE sized variable is used as the assignment, then 8-bits will be written.

Because the 14-bit core devices are only capable of holding 14 bits to a WORD, values greater
than 16383 ($3FFF) cannot be written. However, the 16-bit core devices may hold values up to
65535 ($FFFF).

The configuration fuse setting WRTE must be enabled before CDATA, CREAD, and CWRITE
may be used, this is the default setting. This enables the self-modifying feature. If the CONFIG
directive is used, then the WRTE_ON fuse setting must be included in the list: -

CONFIG WDT_ON/, XT_OSC , WRTE_ON

See also: CDATA, CONFIG, CREAD, ORG.

158

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

DATA

Syntax
DATA { alphanumeric data }

Overview
Place information into code memory using the RETLW instruction when used with 14-bit core
devices, and FLASH memory when using a 16-bit core device. For access by READ.

Operators
alphanumeric data can be a 8,16, 32 bit value, or floating point values, or any alphabetic
character or string enclosed in quotes.

Example
DIM VAR1 AS BYTE
DATAS5, 8, "fred", 12

RESTORE

READ VAR1 "Variable VAR1 will now contain the value 5
READ VAR1 ' Variable VAR1 will now contain the value 8
" Pointer now placed at location 4 in our data table i.e. "r"

RESTORE 3

"VAR1 will now contain the value 114 i.e. the 'r' character in decimal
READ VAR1

The data table is defined with the values 5,8,102,114,101,100,12 as "fred" equates to :102,
r:114, e:101, d:100 in decimal. The table pointer is immediately restored to the beginning of the
table. This is not always required but as a general rule, it is a good idea to prevent table read-
ing from overflowing.

The first READ VAR1, takes the first item of data from the table and increments the table
pointer. The next READ VAR therefore takes the second item of data. RESTORE 3 moves the
table pointer to the fourth location (first location is pointer position 0) in the table - in this case
where the letter 'r' is. READ VARL1 now retrieves the decimal equivalent of 'r' which is 114.

Notes

DATA tables should be placed near the beginning of your program. Attempts to read past the
end of the table will result in errors and unpredictable results.

Only one instance of DATA is allowed per program, however, they be of any length. If the al-
phanumeric contents of the DATA statement will not fit on one line then the extra information
must be placed directly below using another DATA statement: -

DATA "HELLO "
DATA "WORLD"

is the same as: -

DATA "HELLO WORLD"

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

16-bit device requirements.

The compiler uses a different method of holding information in a DATA statement when using
16-bit core devices. It uses the unique capability of these devices to read 16-bit values from
their own code space, which offers optimisations when values larger than 8-bits are stored.
However, because the 16-bit core devices are BYTE oriented, as opposed to the 14-bit types
which are WORD oriented. The DATA table should contain an even number of values, or cor-
ruption may occur on the last value read. For example: -

DATA 1,2,3,"123"
DATA 1,2,3,"12"

A DATA table containing an ODD amount of values will produce a compiler WARNING mes-
sage.

Important

DATA, READ, and RESTORE are a remnant of previous compiler versions and have been su-
perseded by LDATA, LREAD, LREADS8, LREAD16, LREAD32, CDATA, and CREAD. Using
DATA, READ, or RESTORE is not recommended for new programs.

See also: CDATA, CREAD, CWRITE, LDATA, LREAD, READ , RESTORE.

160

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

DEC

Syntax
DEC Variable

Overview
Decrement a variable i.e. VAR1 = VAR1 -1

Operators
Variable is a user defined variable

Example
VAR1 =11
REPEAT
DEC VAR1
PRINT DEC VAR1 ," "
DELAYMS 200
UNTIL VAR1 =0

The above example shows the equivalent to the FOR-NEXT loop: -
FOR VAR1 =10 TO O STEP -1 : NEXT

See also: INC.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

DECLARE

Syntax
[DECLARE] code modifying directive = modifying value

Overview
Adjust certain aspects of the produced code, i.e. Crystal frequency, LCD port and pins, serial
baud rate etc.

Operators
code modifying directive is a set of pre-defined words. See list below.
modifying value is the value that corresponds to the command. See list below.

The DECLARE directive is an indispensable part of the compiler. It moulds the library subrou-
tines, and passes essential user information to them. However, the DECLARE part of a declare
directive is optional.

For example, instead of using: -
DECLARE XTAL 4

The text: -
XTAL =4

May be used.

Notice that there is an optional equals character separating the declare command and the
value to pass. The structure will still be referred to as a DECLARE in the manual, help file, and
any future projects.

MISC Declares.

DECLARE WATCHDOG = ON or OFF, or TRUE or FALSE, or 1,0

The WATCHDOG DECLARE directive enables or disables the watchdog timer. It also sets the
PICmicro's CONFIG fuses for no watchdog. In addition, it removes any CLRWDT mnemonics
from the assembled code, thus producing slightly smaller programs. The default for the com-
piler is WATCHDOG OFF, therefore, if the watchdog timer is required, then this DECLARE will
need to be invoked.

The WATCHDOG DECLARE can be issued multiple times within the BASIC code, enabling
and disabling the watchdog timer as and when required.

DECLARE BOOTLOADER = ON or OFF, or TRUE or FALSE, or 1, 0

The BOOTLOADER DECLARE directive enables or disables the special settings that a serial
bootloader requires at the start of code space. This directive is ignored if a PICmicro™ without
bootloading capabilities is targeted.

Disabling the bootloader will free a few bytes from the code produced. This doesn't seem a
great deal, however, these few bytes may be the difference between a working or non-working
program. The default for the compiler is BOOTLOADER ON

DECLARE SHOW_SYSTEM_VARIABLES = ON or OFF, or TRUE or FALSE, or 1,0

162

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

When using the PROTEUS VSM to simulate BASIC code, it is sometimes beneficial to observe
the behaviour of the compiler's SYSTEM variables that are used for its library routines. The
SHOW_SYSTEM_VARIABLES DECLARE enables or disables this option.

DECLARE FSR_CONTEXT_SAVE = ON or OFF, or TRUE or FALSE, or 1,0

When using HARDWARE interrupts, it is not always necessary to save the FSR register. So in
order to save code space and time spent within the interrupt handler, the
FSR_CONTEXT_SAVE DECLARE can enable or disable the auto CONTEXT saving and re-
storing of the FSR register.

For 16-bit core devices, this will enable/disable FSRO context handling. If STRING variables are
used in the BASIC program, the FSR1L/H register pair will also be saved/restored. And
FSR2L/H registers will be saved/restored if a stack is implemented.

DECLARE PLL_REQ = ON or OFF, or TRUE or FALSE, or 1,0

Most 16-bit core devices have a built in PLL (Phase Locked Loop) that can multiply the oscilla-
tor by a factor of 4. This is set by the fuses at programming time, and the PLL_REQ DECLARE
enables or disables the PLL fuse. Using the PLL fuse allows a 1:1 ratio of instructions to clock
cycles instead of the normal 4:1 ratio. It can be used with XTAL settings from 4 to 10MHz. Note
that the compiler will automatically set it's frequency to a multiple of 4 if the PLL_REQ DE-
CLARE is used to enable the PLL fuse. For example, if a 4MHz XTAL setting is declared, and
the PLL_REQ DECLARE is used in the BASIC program, the compiler will automatically set it-
self up as using a 16MHz XTAL. i.e. 4 * 4. Thus keeping the timings for library functions correct.

DECLARE WARNINGS = ON or OFF, or TRUE or FALSE, or 1,0

The WARNINGS DECLARE directive enables or disables the compiler's warning messages.
This can have disastrous results if a warning is missed or ignored, so use this directive spar-
ingly, and at your own peril.

The WARNINGS DECLARE can be issued multiple times within the BASIC code, enabling and
disabling the warning messages at key points in the code as and when required.

DECLARE REMINDERS = ON or OFF, or TRUE or FALSE, or 1,0

The REMINDERS DECLARE directive enables or disables the compiler's reminder messages.
The compiler issues a reminder for a reason, so use this directive sparingly, and at your own
peril.

The REMINDERS DECLARE can be issued multiple times within the BASIC code, enabling
and disabling the warning messages at key points in the code as and when required.

DECLARE LABEL_BANK_RESETS = ON or OFF, or TRUE or FALSE, or 1,0

The compiler has very intuitive RAM bank handling, however, if you think that an anomaly is
occurring due to misplaced or mishandled RAM bank settings, you can issue this DECLARE
and it will reset the RAM bank on every BASIC label, which will force the compiler to re-
calculate its bank settings. If nothing else, it will reassure you that bank handling is not the
cause of the problem, and you can get on with finding the cause of the programming problem.
However, if it does cure a problem then please let me know and | will make sure the anomaly is
fixed as quickly as possible.

Using this DECLARE will increase the size of the code produced, as it will place BCF mnemon-

ics in the case of a 12 or 14-bit core device, and a MOVLB mnemonic in the case of a 16-bit
core device.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

The LABEL_BANK_RESETS DECLARE can be issued multiple times within the BASIC code,
enabling and disabling the bank resets at key points in the code as and when required. See
LINE LABELS for more information.

DECLARE FLOAT_DISPLAY_TYPE = LARGE or STANDARD

By default, the compiler uses a relatively small routine for converting floating point values to
decimal, ready for RSOUT, PRINT, STR$ etc. However, because of its size, it does not perform
any rounding of the value first, and is only capable of converting relatively small values. i.e.
approx 6 digits of accuracy. In order to produce a more accurate result, the compiler needs to
use a larger routine. This is implemented by using the above DECLARE.

Using the LARGE model for the above DECLARE will trigger the compiler into using the more
accurate floating point to decimal routine. Note that even though the routine is larger than the
standard converter, it actually operates much faster.

The compiler defaults to STANDARD if the DECLARE is not issued in the BASIC program.

DECLARE ICD_REQ = ON or OFF, or TRUE or FALSE, or 1,0

When the ICD_REQ DECLARE is set to ON, the compiler configures itself so that the Micro-
chip ICD2 In-Circuit-Debugger can be used. The ICD2 is very invasive to the program, in so
much that it requires certain RAM areas for itself. This can be up to 26 bytes on some
PICmicros. It also requires 2 call-stack levels, so be careful when using a 14-bit core device or
you may overflow the call-stack with disastrous results.

With a 14-bit core device, the top of BANKO RAM is reserved for the ICD, for 16-bit core de-
vices, the RAM usage is not so noticeable because of its linear nature, but it still requires 12
bytes reserved at the end of RAM.

The list below highlights the requirements for the ICD2 with the most recent PICmicros that
support it.

Device RAM Usage
P12F675 $54 - $5F

P12F629 $54 - $5F

P16F627A $70 - $7F

P16F628A $70 - $7F

P16F648A $70 - $7F

P16F630 $54 - $5F

P16F676 $54 - $5F

P16F87 $70 - $7F

P16F88 $70 - $7F

P16F818 $65 - $7F

P16F819 $65 - $7F

P16F870 $70 - $7F, $B5 - $BF
P16F871 $70 - $7F, $B5 - $BF
P16F872 $70 - $7F, $B5 - $BF

164

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

P16F873/873A $74 - $7F
P16F874/874A $74 - $7F
P16F876/876A $70 - $7F
P16F877/877A $70 - $7F
P18F242/442 $02F4 - $02FF
P18F252/452 $05F4 - $05FF
P18F248/448 $02F4 - $02FF
P18F258/458 $05F4 - $05FF
P18F1220 $F4 - $FF
P18F1320 $F4 - $FF
P18F2220/4220 $01F4 - $01FF
P18F2320/4320 $01F4 - $01FF
P18F2331/4331 $02F4 - $02FF
P18F2431/4431 $02F4 - $02FF
P18F2680/4680 $0CF4 - $0CFF
P18F6520/8520 $O0EF4 - $0EFF
P18F6620/8620 $0EF4 - $OEFF
P18F6720/8720 $0EF4 - $0EFF

Whenever ICD2 compatibility is enabled, the compiler will automatically deduct the reserved
RAM from the available RAM within the PICmicro™, therefore you must take this into account
when declaring variables. Remember, there aren't as many variables available with the ICD
enabled.

If the ICD is enabled along with hardware interrupts, the compiler will also reserve the RAM re-
quired for context saving and restoring. This also will be reflected in the amount of RAM avail-
able within the PICmicro™.

Note that the above list will increase as new PICmicro™ devices are released. Therefore, the
help file will contain the most up to date listing of compatible devices.

TRIGONOMETRY Declares.

When using a 16-bit core device, the compiler defaults to using floating point trigonometry func-
tions SIN and COS, as well as SQR . However, if only the BASIC Stamp compatible integer
functions are required, they can be enabled by the following three declares. Note that by ena-
bling the integer type function, the floating point function will be disabled permanently within the
BASIC code. As with most of the declares, only one of any type is recognised per program.

DECLARE STAMP_COMPATIBLE_COS = ON or OFF, or TRUE or FALSE, or 1,0
Enable/Disable floating point COS function in favour of the BASIC Stamp compatible integer
COS function.

DECLARE STAMP_COMPATIBLE_SIN = ON or OFF, or TRUE or FALSE, or 1, 0
Enable/Disable floating point SIN function in favour of the BASIC Stamp compatible integer SIN
function.

DECLARE STAMP_COMPATIBLE_SQR = ON or OFF, or TRUE or FALSE, or 1,0
Enable/Disable floating point SQR (square root) function in favour of the BASIC Stamp com-
patible integer SQR function.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

ADIN Declares.

DECLARE ADIN_RES 8, 10, or 12.
Sets the number of bits in the result.

If this DECLARE is not used, then the default is the resolution of the PICmicro™ type used. For
example, the new 16F87X range will result in a resolution of 10-bits, while the standard
PICmicro™ types will produce an 8-bit result. Using the above DECLARE allows an 8-bit result
to be obtained from the 10-bit PICmicro™ types, but NOT 10-bits from the 8-bit types.

DECLARE ADIN_TAD 2 FOSC, 8 FOSC, 32 FOSC, or FRC.
Sets the ADC's clock source.

All compatible PICmicros have four options for the clock source used by the ADC; 2_FOSC,
8 FOSC, and 32_FOSC, are ratios of the external oscillator, while FRC is the PICmicro's inter-
nal RC oscillator. Instead of using the predefined names for the clock source, values from 0 to 3
may be used. These reflect the settings of bits 0-1 in register ADCONO.

Care must be used when issuing this DECLARE, as the wrong type of clock source may result
in poor resolution, or no conversion at all. If in doubt use FRC which will produce a slight reduc-
tion in resolution and conversion speed, but is guaranteed to work first time, every time. FRC is
the default setting if the DECLARE is not issued in the BASIC listing.

DECLARE ADIN_STIME 0 to 65535 microseconds (us).
Allows the internal capacitors to fully charge before a sample is taken. This may be a value
from 0 to 65535 microseconds (us).

A value too small may result in a reduction of resolution. While too large a value will result in
poor conversion speeds without any extra resolution being attained.

A typical value for ADIN_STIME is 50 to 100. This allows adequate charge time without loosing
too much conversion speed.

But experimentation will produce the right value for your particular requirement. The default
value if the DECLARE is not used in the BASIC listing is 50.

BUSIN - BUSOUT Declares.

DECLARE SDA_PIN PORT . PIN

Declares the port and pin used for the data line (SDA). This may be any valid port on the
PICmicro™. If this declare is not issued in the BASIC program, then the default Port and Pin is
PORTA.O

DECLARE SCL_PIN PORT . PIN

166

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Declares the port and pin used for the clock line (SCL). This may be any valid port on the
PICmicro™. If this declare is not issued in the BASIC program, then the default Port and Pin is
PORTA.1

DECLARE SLOW_BUSON-OFFor1-0
Slows the bus speed when using an oscillator higher than 4MHz.

The standard speed for the 1°C bus is 100KHz. Some devices use a higher bus speed of
400KHz. If you use an 8MHz or higher oscillator, the bus speed may exceed the devices specs,
which will result in intermittent writes or reads, or in some cases, none at all. Therefore, use this
DECLARE if you are not sure of the device's spec. The datasheet for the device used will in-
form you of its bus speed.

DECLARE BUS_SCL ON - OFF, 1 - 0 or TRUE - FALSE
Eliminates the necessity for a pull-up resistor on the SCL line.

The I1°C protocol dictates that a pull-up resistor is required on both the SCL and SDA lines,
however, this is not always possible due to circuit restrictions etc, so once the BUS_SCL ON
DECLARE is issued at the top of the program, the resistor on the SCL line can be omitted from
the circuit. The default for the compiler if the BUS_SCL DECLARE is not issued, is that a pull-
up resistor is required.

HBUSIN - HBUSOUT Declare.

DECLARE HBUS_BITRATE Constant 100, 400, 1000 etc.

The standard speed for the 1°C bus is 100KHz. Some devices use a higher bus speed of
400KHz. The above DECLARE allows the 1°C bus speed to be increased or decreased. Use
this DECLARE with caution, as too high a bit rate may exceed the device's specs, which will
result in intermittent transactions, or in some cases, no transactions at all. The datasheet for the
device used will inform you of its bus speed. The default bit rate is the standard 100KHz.

HSERIN, HSEROUT, HRSIN and HRSOUT Declares.

DECLARE HSERIAL_BAUD Constant value
Sets the BAUD rate that will be used to receive a value serially. The baud rate is calculated us-
ing the XTAL frequency declared in the program. The default baud rate if the DECLARE is not
included in the program listing is 2400 baud.

DECLARE HSERIAL_RCSTA Constant value (0 to 255)

HSERIAL_RCSTA, sets the respective PICmicro™ hardware register RCSTA, to the value in
the DECLARE. See the Microchip data sheet for the device used for more information regard-
ing this register.

DECLARE HSERIAL_TXSTA Constant value (0 to 255)

HSERIAL_TXSTA, sets the respective PICmicro™ hardware register, TXSTA, to the value in
the DECLARE. See the Microchip data sheet for the device used for more information regard-
ing this register. The TXSTA register BRGH bit (bit 2) controls the high speed mode for the
baud rate generator. Certain baud rates at certain oscillator speeds require this bit to be set to
operate properly. To do this, set HSERIAL _TXSTA to a value of $24 instead of the default $20.
Refer to the Microchip data sheet for the hardware serial port baud rate tables and additional
information.

DECLARE HSERIAL_PARITY ODD or EVEN

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Enables/Disables parity on the serial port. For HRSIN, HRSOUT, HSERIN and HSEROUT. The
default serial data format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even
parity, 1 stop bit) or 701 (7data bits, odd parity, 1 stop bit) may be enabled using the HSE-
RIAL_PARITY declare.

DECLARE HSERIAL_PARITY = EVEN " Use if even parity desired
DECLARE HSERIAL_PARITY = ODD " Use if odd parity desired

DECLARE HSERIAL_CLEAR ON or OFF
Clear the overflow error bit before commencing a read.

Because the hardware serial port only has a 2-byte input buffer, it can easily overflow is charac-
ters are not read from it often enough. When this occurs, the USART stops accepting any new
characters, and requires resetting. This overflow error can be reset by strobing the CREN bit
within the RCSTA register. Example: -

RCSTA4=0
RCSTA4 =1

or
CLEAR RCSTA4
SET RCSTA.4

Alternatively, the HSERIAL_CLEAR declare can be used to automatically clear this error, even
if no error occurred. However, the program will not know if an error occurred while reading,
therefore some characters may be lost.

DECLARE HSERIAL_CLEAR = ON

Second USART Declares for use with HRSIN2, HSERIN2, HRSOUT?2 and
HSEROUT?2.

DECLARE HSERIAL2_BAUD Constant value

Sets the BAUD rate that will be used to transmit a value serially. The baud rate is calculated
using the XTAL frequency declared in the program. The default baud rate if the DECLARE is
not included in the program listing is 2400 baud.

DECLARE HSERIAL2_RCSTA Constant value (0 to 255)

HSERIAL2_RCSTA, sets the respective PICmicro™ hardware register RCSTA2, to the value in
the DECLARE. See the Microchip data sheet for the device used for more information regard-
ing this register. Refer to the upgrade manual pages for a description of the RCSTAZ2 register.

DECLARE HSERIAL2_TXSTA Constant value (0 to 255)

HSERIAL2_TXSTA, sets the respective PICmicro™ hardware register, TXSTA2, to the value in
the DECLARE. See the Microchip data sheet for the device used for more information regard-
ing this register. The TXSTA register BRGH2 bit (bit 2) controls the high speed mode for the
baud rate generator. Certain baud rates at certain oscillator speeds require this bit to be set to
operate properly. To do this, set HSERIAL2 TXSTA to a value of $24 instead of the default
$20. Refer to the Microchip data sheet for the hardware serial port baud rate tables and addi-
tional information. Refer to the upgrade manual pages for a description of the TXSTAZ2 register.

168

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

DECLARE HSERIAL2_PARITY ODD or EVEN

Enables/Disables parity on the serial port. For HRSOUT2, HRSIN2, HSEROUT2 and
HSERIN2. The default serial data format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7
data bits, even parity, 1 stop bit) or 701 (7data bits, odd parity, 1 stop bit) may be enabled us-
ing the HSERIAL2_PARITY declare.

DECLARE HSERIAL2 PARITY = EVEN " Use if even parity desired
DECLARE HSERIAL2_PARITY = ODD ' Use if odd parity desired

DECLARE HSERIAL2_CLEAR ON or OFF
Clear the overflow error bit before commencing a read.

Because the hardware serial port only has a 2-byte input buffer, it can easily overflow is charac-
ters are not read from it often enough. When this occurs, the USART stops accepting any new
characters, and requires resetting. This overflow error can be reset by strobing the CREN bit
within the RCSTAZ2 register. Example: -

RCSTA2.4=0
RCSTA2.4=1

or
CLEAR RCSTA2.4
SET RCSTA2.4

Alternatively, the HSERIAL2_ CLEAR declare can be used to automatically clear this error,
even if no error occurred. However, the program will not know if an error occurred while read-
ing, therefore some characters may be lost.

DECLARE HSERIAL2_CLEAR = ON

HPWM Declares.

Some devices, such as the PIC16F62x, and PIC18F4xx, have alternate pins that may be used
for HPWM. The following DECLARES allow the use of different pins: -

DECLARE CCP1_PIN PORT . PIN ' Select HPWM port and bit for CCP1 module. i.e.ch 1
DECLARE CCP2_PIN PORT . PIN ' Select HPWM port and bit for CCP2 module. i.e. ch 2

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

ALPHANUMERIC (Hitachi) LCD PRINT Declares.

DECLARE LCD_DTPIN PORT . PIN
Assigns the Port and Pins that the LCD's DT lines will attach to.

The LCD may be connected to the PICmicro™ using either a 4-bit bus or an 8-bit bus. If an 8-bit
bus is used, all 8 bits must be on one port. If a 4-bit bus is used, it must be connected to either
the bottom 4 or top 4 bits of one port. For example: -

DECLARE LCD_DTPIN PORTB.4 " Used for 4-line interface.
DECLARE LCD_DTPIN PORTB.O " Used for 8-line interface.

In the above examples, PORTB is only a personal preference. The LCD's DT lines can be at-
tached to any valid port on the PICmicro™. If the DECLARE is not used in the program, then
the default Port and Pin is PORTB.4, which assumes a 4-line interface.

DECLARE LCD_ENPIN PORT . PIN

Assigns the Port and Pin that the LCD's EN line will attach to. This also assigns the graphic
LCD's EN pin, however, the default value remains the same as for the alphanumeric type, so
this will require changing.

If the DECLARE is not used in the program, then the default Port and Pin is PORTB.2.
DECLARE LCD_RSPIN PORT . PIN

Assigns the Port and Pins that the LCD's RS line will attach to. This also assigns the graphic
LCD's RS pin, however, the default value remains the same as for the alphanumeric type, so
this will require changing.

If the DECLARE is not used in the program, then the default Port and Pin is PORTB.3.

DECLARE LCD_INTERFACE 4 or 8
Inform the compiler as to whether a 4-line or 8-line interface is required by the LCD.

If the DECLARE is not used in the program, then the default interface is a 4-line type.

DECLARE LCD_LINES1,2,0r4
Inform the compiler as to how many lines the LCD has.

LCD's come in a range of sizes, the most popular being the 2 line by 16 character types. How-
ever, there are 4-line types as well. Simply place the number of lines that the particular LCD
has into the declare.

If the DECLARE is not used in the program, then the default number of lines is 2.

170

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

GRAPHIC LCD Declares.

DECLARE LCD_TYPEOor1or 2, ALPHA or GRAPHIC or SAMSUNG or TOSHIBA

Inform the compiler as to the type of LCD that the PRINT command will output to. If GRAPHIC,
SAMSUNG or 1 is chosen then any output by the PRINT command will be directed to a graphic
LCD based on the Samsung KS0108 chipset. A value of 2, or the text TOSHIBA, will direct the
output to a graphic LCD based on the Toshiba T6963 chipset. A value of 0 or ALPHA, or if the
DECLARE is not issued, will target the standard Hitachi alphanumeric LCD type

Targeting the graphic LCD will also enable commands such as PLOT, UNPLOT, LCDREAD,
LCDWRITE, PIXEL, BOX, CIRCLE and LINE.

SAMSUNG KS0108 Graphic LCD specific Declares.

DECLARE LCD_DTPORT PORT
Assign the port that will output the 8-bit data to the graphic LCD.

If the DECLARE is not used, then the default port is PORTB.

DECLARE LCD_RWPIN PORT . PIN
Assigns the Port and Pin that the graphic LCD's RW line will attach to.

If the DECLARE is not used in the program, then the default Port and Pin is PORTC.O.

DECLARE LCD_CS1PIN PORT . PIN
Assigns the Port and Pin that the graphic LCD's CS1 line will attach to.

If the DECLARE is not used in the program, then the default Port and Pin is PORTC.0.

DECLARE LCD_CS2PIN PORT . PIN
Assigns the Port and Pin that the graphic LCD's CS2 line will attach to.

If the DECLARE is not used in the program, then the default Port and Pin is PORTC.0.
DECLARE INTERNAL_FONT ON - OFF, 1 or 0

The graphic LCD's that are compatible with PROTON+ are non-intelligent types, therefore, a
separate character set is required. This may be in one of two places, either externally, in an I°C
eeprom, or internally in a CDATA table.

If an external font is chosen, the I°C eeprom must be connected to the specified SDA and SCL
pins (as dictated by DECLARE SDA and DECLARE SCL).

If an internal font is chosen, it must be on a PICmicro™ device that has self modifying code fea-
tures, such as the 16F87X, or 18XXXX range.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

The CDATA table that contains the font must have a label, named FONT: preceding it. For ex-
ample: -

FONT: CDATA $7E, $11, $11, $11, $7E, $0 "Chr "A"

CDATA $7F , $49, $49 , $49, $36 , $0 ' Chr "B"
{ rest of font table }

The font table may be anywhere in memory, however, it is best placed after the main program
code.

If the DECLARE is omitted from the program, then an external font is the default setting.

DECLARE FONT_ADDR O to 7
Set the slave address for the 1°C eeprom that contains the font.

When an external source for the font is chosen, it may be on any one of 8 eeproms attached to
the I1°C bus. So as not to interfere with any other eeproms attached, the slave address of the
eeprom carrying the font code may be chosen.

If the DECLARE is omitted from the program, then address 0 is the default slave address of the
font eeprom.

DECLARE GLCD_CS_INVERT ON - OFF, 1 o0r0

Some graphic LCD types have inverters on their CS lines. Which means that the LCD displays
left hand data on the right side, and vice-versa. The GLCD_CS_INVERT DECLARE, adjusts
the library LCD handling library subroutines to take this into account.

DECLARE GLCD_STROBE_DELAY 0 to 65535 us (microseconds).
Create a delay of n microseconds between strobing the EN line of the graphic LCD. This can

help noisy, or badly decoupled circuits overcome random bits appearing on the LCD. The de-
fault if the DECLARE is not used in the BASIC program is a delay of 0.

TOSHIBA T6963 Graphic LCD specific Declares.

DECLARE LCD_DTPORT PORT
Assign the port that will output the 8-bit data to the graphic LCD.

There is no default setting for this DECLARE and it must be used within the BASIC program.

DECLARE LCD_WRPIN PORT . PIN
Assigns the Port and Pin that the graphic LCD's WR line will attach to.

There is no default setting for this DECLARE and it must be used within the BASIC program.

DECLARE LCD_RDPIN PORT . PIN
Assigns the Port and Pin that the graphic LCD's RD line will attach to.

There is no default setting for this DECLARE and it must be used within the BASIC program.

DECLARE LCD_CEPIN PORT . PIN
Assigns the Port and Pin that the graphic LCD's CE line will attach to.

There is no default setting for this DECLARE and it must be used within the BASIC program.

172

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

DECLARE LCD_CDPIN PORT . PIN
Assigns the Port and Pin that the graphic LCD's CD line will attach to.

There is no default setting for this DECLARE and it must be used within the BASIC program.

DECLARE LCD_RSTPIN PORT . PIN
Assigns the Port and Pin that the graphic LCD's RST line will attach to.

The LCD’s RST (Reset) DECLARE is optional and if omitted from the BASIC code the compiler
will not manipulate it. However, if not used as part of the interface, you must set the LCD’s RST
pin high for normal operation.

DECLARE LCD_X_ RES 0to 255

LCD displays using the T6963 chipset come in varied screen sizes (resolutions). The compiler
must know how many horizontal pixels the display consists of before it can build its library sub-
routines.

There is no default setting for this DECLARE and it must be used within the BASIC program.

DECLARE LCD_Y_RES 0to 255

LCD displays using the T6963 chipset come in varied screen sizes (resolutions). The compiler
must know how many vertical pixels the display consists of before it can build its library subrou-
tines.

There is no default setting for this DECLARE and it must be used within the BASIC program.

DECLARE LCD_FONT_WIDTH 6 or 8

The Toshiba T6963 graphic LCDs have two internal font sizes, 6 pixels wide by eight high, or 8
pixels wide by 8 high. The particular font size is chosen by the LCD’s FS pin. Leaving the FS
pin floating or bringing it high will choose the 6 pixel font, while pulling the FS pin low will
choose the 8 pixel font. The compiler must know what size font is required so that it can calcu-
late screen and RAM boundaries.

Note that the compiler does not control the FS pin and it is down to the circuit layout whether or
not it is pulled high or low. There is no default setting for this DECLARE and it must be used
within the BASIC program.

DECLARE LCD_RAM_SIZE 1024 to 65535

Toshiba graphic LCDs contain internal RAM used for Text, Graphic or Character Generation.
The amount of RAM is usually dictated by the display’s resolution. The larger the display, the
more RAM is normally present. Standard displays with a resolution of 128x64 typically contain
4096 bytes of RAM, while larger types such as 240x64 or 190x128 typically contain 8192 bytes
or RAM. The display’s datasheet will inform you of the amount of RAM present.

If this DECLARE is not issued within the BASIC program, the default setting is 8192 bytes.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

DECLARE LCD_TEXT_PAGES 1ton

As mentioned above, Toshiba graphic LCDs contain RAM that is set aside for text, graphics or
characters generation. In normal use, only one page of text is all that is required, however, the
compiler can re-arrange its library subroutines to allow several pages of text that is continuous.
The amount of pages obtainable is directly proportional to the RAM available within the LCD
itself. Larger displays require more RAM per page, therefore always limit the amount of pages
to only the amount actually required or unexpected results may be observed as text, graphic
and character generator RAM areas merge.

This DECLARE is purely optional and is usually not required. The default is 3 text pages if this
DECLARE is not issued within the BASIC program.

DECLARE LCD_GRAPHIC_PAGES 1ton

Just as with text, the Toshiba graphic LCDs contain RAM that is set aside for graphics. In nor-
mal use, only one page of graphics is all that is required, however, the compiler can re-arrange
its library subroutines to allow several pages of graphics that is continuous. The amount of
pages obtainable is directly proportional to the RAM available within the LCD itself. Larger dis-
plays require more RAM per page, therefore always limit the amount of pages to only the
amount actually required or unexpected results may be observed as text, graphic and character
generator RAM areas merge.

This DECLARE is purely optional and is usually not required. The default is 1 graphics page if
this DECLARE is not issued within the BASIC program.

DECLARE LCD_TEXT_HOME_ADDRESS 0ton

The RAM within a Toshiba graphic LCD is split into three distinct uses, text, graphics and char-
acter generation. Each area of RAM must not overlap or corruption will appear on the display
as one uses the other’s assigned space. The compiler’s library subroutines calculate each area
of RAM based upon where the text RAM starts. Normally the text RAM starts at address 0,
however, there may be occasions when it needs to be set a little higher in RAM. The order of
RAM is; Text, Graphic, then Character Generation.

This DECLARE is purely optional and is usually not required. The default is the text RAM star-
ing at address 0 if this DECLARE is not issued within the BASIC program.

KEYPAD Declare.

DECLARE KEYPAD_PORT PORT
Assigns the Port that the keypad is attached to.

The keypad routine requires pull-up resistors, therefore, the best Port for this device is PORTB
which comes equipped with internal pull-ups. If the DECLARE is not used in the program, then
PORTB is the default Port.

174

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

RSIN - RSOUT Declares.

DECLARE RSOUT_PIN PORT . PIN
Assigns the Port and Pin that will be used to output serial data from the RSOUT command. This
may be any valid port on the PICmicro™.

If the DECLARE is not used in the program, then the default Port and Pin is PORTB.O.
DECLARE RSIN_PIN PORT . PIN

Assigns the Port and Pin that will be used to input serial data by the RSIN command. This may
be any valid port on the PICmicro™.

If the DECLARE is not used in the program, then the default Port and Pin is PORTB.1.
DECLARE RSOUT_MODE INVERTED , TRUE 0or1,0

Sets the serial mode for the data transmitted by RSOUT. This may be inverted or true. Alterna-
tively, a value of 1 may be substituted to represent inverted, and O for true.

If the DECLARE is not used in the program, then the default mode is INVERTED.

DECLARE RSIN_MODE INVERTED , TRUE or 1,0

Sets the serial mode for the data received by RSIN. This may be inverted or true. Alternatively,
a value of 1 may be substituted to represent inverted, and O for true.

If the DECLARE is not used in the program, then the default mode is INVERTED.

DECLARE SERIAL_BAUD 0 to 65535 bps (baud)
Informs the RSIN and RSOUT routines as to what baud rate to receive and transmit data.

Virtually any baud rate may be transmitted and received (within reason), but there are standard
bauds, namely: -

300, 600, 1200, 2400, 4800, 9600, and 19200.

When using a 4MHz crystal, the highest baud rate that is reliably achievable is 9600. However,
an increase in the oscillator speed allows higher baud rates to be achieved, including 38400
baud.

If the DECLARE is not used in the program, then the default baud is 9600.

DECLARE RSOUT_PACE 0 to 65535 microseconds (us)
Implements a delay between characters transmitted by the RSOUT command.

On occasion, the characters transmitted serially are in a stream that is too fast for the receiver
to catch, this results in missed characters. To alleviate this, a delay may be implemented be-
tween each individual character transmitted by RSOUT.

If the DECLARE is not used in the program, then the default is no delay between characters.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

DECLARE RSIN_TIMEOUT 0 to 65535 milliseconds (ms)
Sets the time, in ms, that RSIN will wait for a start bit to occur.

RSIN waits in a tight loop for the presence of a start bit. If no timeout parameter is issued, then
it will wait forever.

The RSIN command has the option of jumping out of the loop if no start bit is detected within
the time allocated by timeout.

If the DECLARE is not used in the program, then the default timeout value is 10000ms which is
10 seconds.

SERIN - SEROUT Declare.

If communications are with existing software or hardware, its speed and mode will determine
the choice of baud rate and mode. In general, 7-bit/even-parity (7E) mode is used for text, and
8-bit/no-parity (8N) for byte-oriented data. Note: the most common mode is 8-bit/no-parity, even
when the data transmitted is just text. Most devices that use a 7-bit data mode do so in order to
take advantage of the parity feature. Parity can detect some communication errors, but to use it
you lose one data bit. This means that incoming data bytes transferred in 7E (even-parity)
mode can only represent values from 0 to 127, rather than the 0 to 255 of 8N (no-parity) mode.

The compiler's serial commands SERIN and SEROUT have the option of still using a parity bit
with 4 to 8 data bits. This is through the use of a DECLARE: -

With parity disabled (the default setting): -

DECLARE SERIAL_DATA 4 ' Set SERIN and SEROUT data bits to 4
DECLARE SERIAL_DATA 5' Set SERIN and SEROUT data bits to 5
DECLARE SERIAL_DATA 6 ' Set SERIN and SEROUT data bits to 6
DECLARE SERIAL_DATA 7 ' Set SERIN and SEROUT data bits to 7
DECLARE SERIAL_DATA 8 ' Set SERIN and SEROUT data bits to 8 (default)

With parity enabled: -

DECLARE SERIAL_DATA 5' Set SERIN and SEROUT data bits to 4
DECLARE SERIAL_DATA 6 ' Set SERIN and SEROUT data bits to 5

DECLARE SERIAL_DATA 7 ' Set SERIN and SEROUT data bits to 6
DECLARE SERIAL_DATA 8' Set SERIN and SEROUT data bits to 7 (default)
DECLARE SERIAL_DATA 9 ' Set SERIN and SEROUT data bits to 8

SERIAL_DATA data bits may range from 4 bits to 8 (the default if no DECLARE is issued).
Enabling parity uses one of the number of bits specified.

Declaring SERIAL_DATA as 9 allows 8 bits to be read and written along with a 9th parity bit.

Parity is a simple error-checking feature. When a serial sender is set for even parity (the mode
the compiler supports) it counts the number of 1s in an outgoing byte and uses the parity bit to
make that number even. For example, if it is sending the 7-bit value: %0011010, it sets the par-
ity bit to 1 in order to make an even number of 1s (four).

176

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

The receiver also counts the data bits to calculate what the parity bit should be. If it matches
the parity bit received, the serial receiver assumes that the data was received correctly. Of
course, this is not necessarily true, since two incorrectly received bits could make parity seem
correct when the data was wrong, or the parity bit itself could be bad when the rest of the data
was correct.

Many systems that work exclusively with text use 7-bit/ even-parity mode. For example, to re-
ceive one data byte through bit-0 of PORTA at 9600 baud, 7E, inverted:

SHIN - SHOUT Declare.

DECLARE SHIFT_DELAYUS 0 - 65535 microseconds (us)
Extend the active state of the shift clock.

The clock used by SHIN and SHOUT runs at approximately 45KHz dependent on the oscillator.
The active state is held for a minimum of 2 microseconds. By placing this declare in the pro-
gram, the active state of the clock is extended by an additional number of microseconds up to
65535 (65.535 milliseconds) to slow down the clock rate.

If the DECLARE is not used in the program, then the default is no clock delay.

Compact Flash Interface Declares

There are several declares that need to be manipulated when interfacing to a Compact Flash
card. There are the obvious port pins, but there are also some declares that optimise or speed
up access to the card.

DECLARE CF_DTPORT PORT
This DECLARE assigns the Compact Flash card’s data lines. The data line consists of 8-bits so
it is only suitable for ports that contain 8-bits such as PORTB, PORTC, PORTD etc.

There is no default setting for this DECLARE and it must be used within the BASIC program.

DECLARE LCD_ADPORT PORT

This DECLARE assigns the Compact Flash card’s address lines. The address line consists of
3-bits, but AO of the compact flash card must be attached to bit-O of whatever port is used. For
example, if the Compact Flash card’s address lines were attached to PORTA of the PICmicro™,
then AO of the CF card must attach to PORTA.O, Al of the CF card must attach to PORTA.1,
and A2 of the CF card must attach to PORTA.2.

The CF access commands will mask the data before transferring it to the particular port that is
being used so that the rest of it's pins are not effected. PORTE is perfect for the address lines
as it contains only 3 pins on a 40-pin device, and the compiler can make full use of this by us-
ing the CF_ADPORT_MASK declare.

There is no default setting for this DECLARE and it must be used within the BASIC program.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

DECLARE CF_ADPORT_MASK = ON or OFF, or TRUE or FALSE, or 1,0

Both the CF_WRITE and CF_SECTOR commands write to the Compact Flash card’s address
lines. However, these only contain 3-bits, so the commands need to ensure that the other bits
of the PICmicro’s PORT are not effected. This is accomplished by masking the unwanted data
before transferring it to the address lines. This takes a little extra code space, and thus a little
extra time to accomplish. However, there are occasions when the condition of the other bits on
the PORT are not important, or when a PORT is used that only has 3-bits to it. i.e. PORTE with
a 40-pin device. Issuing the CF_ADPORT_MASK DECLARE and setting it FALSE, will remove
the masking mnemonics, thus reducing code used and time taken.

There is no default setting for this DECLARE and it must be used within the BASIC program.

DECLARE CF_RDYPIN PORT . PIN
Assigns the Compact Flash card’s RDY/BSY line.

There is no default setting for this DECLARE and it must be used within the BASIC program.

DECLARE CF_OEPIN PORT . PIN
Assigns the Compact Flash card’s OE line.

There is no default setting for this DECLARE and it must be used within the BASIC program.

DECLARE CF_WEPIN PORT . PIN
Assigns the Compact Flash card’s WE line.

There is no default setting for this DECLARE and it must be used within the BASIC program.

DECLARE CF_CD1PIN PORT . PIN

Assigns the Compact Flash card’s CD1 line. The CD1 line is not actually used by any of the
commands, but is set to input if the declare is issued in the BASIC program. The CD1 line is
used to indicate whether the card is inserted into its socket.

There is no default setting for this DECLARE.

DECLARE CF_RSTPIN PORT . PIN

Assigns the Compact Flash card’s RESET line. The RESET line is not essential for interfacing
to a Compact Flash card, but is useful if a clean power up is required. If the declare is not is-
sued in the BASIC program, all reference to it is removed from the CF_INIT command. If the
RESET line is not used for the card, ensure that it is tied to ground.

There is no default setting for this DECLARE.

DECLARE CF_CE1PIN PORT . PIN

Assigns the Compact Flash card’s CEL1 line. As with the RESET line, the CEL1 line is not essen-
tial for interfacing to a Compact Flash card, but is useful when multiplexing pins, as the card will
ignore all commands when the CEL1 line is set high. If the declare is not issued in the BASIC
program, all reference to it is removed from the CF_INIT command. If the CE1 line is not used
for the card, ensure that it is tied to ground.

There is no default setting for this DECLARE.

178

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

DECLARE CF_READ_WRITE_INLINE = ON or OFF, or TRUE or FALSE, or 1, 0

Sometimes, speed is of the essence when accessing a Compact Flash card, especially when
interfacing to the new breed of card which is 40 times faster than the normal type. Because of
this, the compiler has the ability to create the code used for the CF_WRITE and CF_READ
commands inline, which means it does not call its library subroutines, and can tailor itself when
reading or writing WORD, DWORD, or FLOAT variables. However, this comes at a price of
code memory, as each command is stretched out for speed, not optimisation. It also means that
the inline type of commands are really only suitable for the higher speed Compact Flash cards.

If the DECLARE is not used in the BASIC program, the default is not to use INLINE commands.
CRYSTAL Frequency Declare.

DECLARE XTAL 4, 8, 10, 12, 16, or 20. For 12-bit core devices.
DECLARE XTAL 3, 4, 8, 10, 12, 14, 16, 20, or 24. For 14-bit core devices.
DECLARE XTAL 3, 4, 8, 10, 12, 14, 16, 20, 24, 25, 32, 33, or 40. For 16-bit core devices.

Inform the compiler as to what frequency crystal is being used.

Some commands are very dependant on the oscillator frequency, RSIN, RSOUT, DELAYMS,
and DELAYUS being just a few. In order for the compiler to adjust the correct timing for these
commands, it must know what frequency crystal is being used.

The XTAL frequencies 3 and 14 are for 3.58MHz and 14.32MHz respectively. 14.32MHz is a 4x
multiply of 3.58MHz.

If the DECLARE is not used in the program, then the default frequency is 4MHz.

Notes

The DECLARE directive usually alters the corresponding library subroutine at runtime. This
means that once the DECLARE is added to the BASIC program, it usually cannot be UNDE-
CLARED later, or changed in any way. However, there are some declares that alter the flow of
code, and can be enabled and disabled throughout the BASIC listing.

The DECLARE directive is also capable of passing information to an assembly routine. For ex-
ample: -

DECLARE USE_THIS_PIN PORTA , 1

Notice the use of a comma, instead of a point for separating the register and bit number. This is
because it is being passed directly to the assembler as a #DEFINE directive.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

DELAYMS

Syntax
DELAYMS Length

Overview
Delay execution for length x milliseconds (ms). Delays may be up to 65535ms (65.535 sec-
onds) long.

Operators
Length can be a constant, variable, or expression.

Example
XTAL =4
DIM VAR1 AS BYTE
DIMWRD1 AS WORD

VAR1 =50

WRD1= 1000

DELAYMS 100 ' Delay for 100ms
DELAYMS VARL1 ' Delay for 50ms
DELAYMS WRD1 ' Delay for 1000ms

DELAYMS WRD1+ 10 ' Delay for 1010ms
Notes
DELAYMS is oscillator independent, as long as you inform the compiler of the crystal frequency
to use, using the DECLARE directive.

Seealso: DELAYUS, SLEEP, SNOOZE.

180

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

DELAYUS

Syntax
DELAYUS Length

Overview
Delay execution for length x microseconds (us). Delays may be up to 65535us (65.535 milli-
seconds) long.

Operators
Length can be a constant, variable, or expression.

Example
DECLARE XTAL 20
DIM VAR1 AS BYTE
DIM WRD1 AS WORD

VAR1 =50

WRD1= 1000

DELAYUS 1 ' Delay for 1us
DELAYUS 100 ' Delay for 100us
DELAYUS VAR1 ' Delay for 50us
DELAYUS WRD1 ' Delay for 1000us

DELAYUS WRD1+ 10 ' Delay for 1010us

Notes
DELAYUS is oscillator independent, as long as you inform the compiler of the crystal frequency
to use, using the XTAL directive.

If a constant is used as length, then delays down to 1us can be achieved, however, if a variable
is used as length, then there's a minimum delay time depending on the frequency of the crystal
used: -

CRYSTAL FREQ MINIMUM DELAY

4AMHz 24us
8MHz 12us
10MHz 8us
16MHz Sus
20MHz 2us
24MHz 2us
25MHz 2us
32MHz 2us
33MHz 2us
40MHz 2us

See also: DECLARE, DELAYMS, SLEEP, SNOOZE

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

DEVICE

Syntax
DEVICE Device number

Overview
Inform the compiler which PICmicro™ device is being used.

Operators
Device number can be a 12-bit, 14-bit, or 16-bit core device.

Example
DEVICE = 16F877 " Produce code for a 16F877 PICmicro device
or
DEVICE = 16F84 ' Produce code for a 16F84 PICmicro device
or
DEVICE = 12C508 " Produce code for a 12-bit core 12C508 PICmicro device
or
DEVICE = 18F452 ' Produce code for a 18F452 PICmicro device

DEVICE should be the first command placed in the program.

If the DEVICE directive is not used in the BASIC program, the code produced will default to the
ever-popular (but now outdated) 16F84 device.

For an up-to-date list of compatible devices refer to the help file.

182

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

DIG

Syntax
Variable = DIG Value , Digit number

Overview
Returns the value of a decimal digit.

Operators
Value is a constant, 8-bit, 16-bit, 32-bit variable or expression, from which the digit number is to

be extracted.
Digit number is a constant, variable, or expression, that represents the digit to extract from

value. (0 - 4 with 0 being the rightmost digit).

Example
DIM VAR1 AS BYTE
DIM VAR2 AS BYTE

VAR1 =124
VAR2 =DIG VAR1, 1 ' Extract the second digit's value
PRINT DEC VAR2 ' Display the value, which is 2

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

DIM

Syntax
DIM Variable { as } { Size }

Overview
All user-defined variables must be declared using the DIM statement.

Operators

Variable can be any alphanumeric character or string.

as is required when the size of the variable is stated.

Size is the physical size of the variable, it may be BIT, BYTE, WORD, DWORD, FLOAT, or
STRING.

Example 1
' Declare the variables all as BYTE sized
DIMA, B, My VAR1, fred, cat, zz

Example 1 only applies to BYTE sized variables, and is merely a left over from a previous ver-
sion of the compiler. But is too commonly used to remove it.

Example 2
' Declare different sized variables
DIM VAR1 AS BYTE ' Declare an 8-bit BYTE sized variable
DIM WRD1 AS WORD ' Declare a 16-bit WORD sized variable
DIM DWRD1 AS DWORD ' Declare a 32-bit DWORD sized variable
DIM BITVAR AS BIT ' Declare a 1-bit BIT sized variable
DIM FLT AS FLOAT ' Create a 32-bit floating point variable

DIM STRNG AS STRING*20 ‘ Create a 20 character string variable
Notes
Any variable that is declared without the 'AS' text after it, will assume an 8-bit BYTE type.

DIM should be placed near the beginning of the program. Any references to variables not de-
clared or before they are declared may, in some cases, produce errors.

Variable names, as in the case or labels, may freely mix numeric content and underscores.
DIM MyVar AS BYTE

or
DIM MY_VAR AS WORD

or
DIM My_Var2 AS BIT

Variable names may start with an underscore, but must NOT start with a number. They can be
no more than 32 characters long. Any characters after this limit will be ignored.

DIM 2MyVar is NOT allowed.
Variable names are case insensitive, which means that the variable: -

184

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

DIM MYVAR
Is the same as...
DIM MYVAR
DIM can also be used to create constants i.e. numbers: -
DIM Num AS 100 " NUM now represents the value 100
DIM BigNum AS 1000 ' BIGNUM now represents 1000
DIM VeryBigNum AS 1000000 'VERYBIGNUM now represents 1000,000

Constant values differ to their variable counterparts because they do not take up any RAM
space. They are simply ALIAS's to numbers.

Numeric constants may contain complex equations: -
DIM Complex AS ((2000 /54) << 2) & 255)

Floating point constants may also be created using DIM by simply adding a decimal point to a
value.

DIM Pl AS 3.14 ' Create a floating point constant named PI
DIM FL_NUM AS 5.0 ' Create a floating point constant holding the value 5

Floating point constant can also be created using expressions.

DIM QUANTA AS 5.0/ 1024 ' Create a floating point constant holding the result of
the expression

DIM can also be used to create ALIAS's to other variables or constants: -

DIM VAR1 AS BYTE ' Declare a BYTE sized variable
DIM VAR_BIT AS VARL1.1 "VAR_BIT now represents Bit-1 of VAR1

ALIAS's, as in the case of constants, do not require any RAM space, because they point to a
variable, or part of a variable that has already been declared.

RAM space required.
Each type of variable requires differing amounts of RAM memory for its allocation. The list be-
low illustrates this.

STRING Requires the specified length of characters + 1.
FLOAT Requires 4 bytes of RAM.

DWORD Requires 4 bytes of RAM.

WORD Requires 2 bytes of RAM.

BYTE Requires 1 byte of RAM.

BIT Requires 1 byte of RAM for every 8 BIT variables used.

Each type of variable may hold a different minimum and maximum value.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

STRING type variables are only useable with 16-bit core devices, and can hold a maximum of
255 characters.

FLOAT type variables may theoretically hold a value from -1e37 to +1e38, but because of the
32-bit architecture of the compiler, a maximum and minimum value should be thought of as -
2147483646.999 to +2147483646.999 making this the most accurate of the variable family
types. However, more so than DWORD types, this comes at a price as FLOAT calculations and
comparisons will use more code space within the PICmicro™. Use this type of variable spar-
ingly, and only when strictly necessary. Smaller floating point values offer more accuracy.

DWORD type variables may hold a value from -2147483648 to +2147483647 making this one
of the largest of the variable family types. This comes at a price however, as DWORD calcula-
tions and comparisons will use more code space within the PICmicro™. Use this type of vari-
able sparingly, and only when necessary.

WORD type variables may hold a value from 0 to 65535, which is usually large enough for most
applications. It still uses more memory, but not nearly as much as a DWORD type.

BYTE type variables may hold a value for 0 to 255, and are the usual work horses of most pro-
grams. Code produced for BYTE sized variables is very low compared to WORD, or DWORD
types, and should be chosen if the program requires faster, or more efficient operation.

BIT type variables may hold a O or a 1. These are created 8 at a time, therefore declaring a
single BIT type variable in a program will not save RAM space, but it will save code space, as
BIT type variables produce the most efficient use of code for comparisons etc.

There are modifiers that may also be used with variables. These are HIGHBYTE, LOWBYTE,
BYTEO, BYTEL, BYTEZ2, and BYTE3.

BYTEZ2, and BYTE3 may only be used in conjunction with a 32-bit DWORD type variable.

HIGHBYTE and BYTEL are one and the same thing, when used with a WORD type variable,
they refer to the High byte of a WORD type variable: -

DIM WRD AS WORD ' Declare a WORD sized variable
DIM WRD_HI AS WRD.HIGHBYTE
"WRD_HI now represents the HIGHBYTE of variable WRD

Variable WRD_HI is now accessed as a BYTE sized type, but any reference to it actually alters
the high byte of WRD.

However, if BYTEL is used in conjunction with a DWORD type variable, it will extract the sec-
ond byte. HIGHBYTE will still extract the high byte of the variable, as will BYTE3.

The same is true of LOWBYTE and BYTEQO, but they refer to the Low Byte of a WORD type
variable: -

DIM WRD AS WORD ' Declare a WORD sized variable
DIM WRD_LO AS WRD.LOWBYTE
"WRD_LO now represents the LOWBYTE of variable WRD

Variable WRD_LO is now accessed as a BYTE sized type, but any reference to it actually al-
ters the low byte of WRD.

186

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

The modifier BYTEZ2 will extract the 3rd byte from a 32-bit DWORD type variable, as an alias.
Likewise BYTES3 will extract the high byte of a 32-bit variable.

RAM space for variables is allocated within the PICmicro™ in the order that they are placed in
the BASIC code. For example: -

DIM VAR1 AS BYTE
DIM VAR2 AS BYTE

Places VAR1 first, then VAR2: -

VAR1 EQU n
VAR2 EQU n

This means that on a PICmicro™ with more than one BANK, the first n variables will always be
in BANKO (the value of n depends on the specific PICmicro™ used).

The position of the variable within BANKs is usually of little importance if BASIC code is used,
however, if assembler routines are being implemented, always assign any variables used within
them first.

Problems may also arise if a WORD, or DWORD variable crosses a BANK boundary. If this
happens, a warning message will be displayed in the error window. Most of the time, this will
not cause any problems, however, to err on the side of caution, try and ensure that WORD, or
DWORD type variables are fully inside a BANK. This is easily accomplished by placing a
dummy BYTE variable before the offending WORD, or DWORD type variable, or relocating the
offending variable within the list of DIM statements.

See Also : ALIASES, DECLARING ARRAYS, ARRAYS, CONSTANTS Floating Point
Math SYMBOL, SYMBOLS, Creating and using Strings .

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

DISABLE
DISABLE interrupt processing that was previously ENABLED following this instruction.

DISABLE and ENABLE, and RESUME are not actually commands in the truest sense of the
word, but flags that the compiler uses internally. They do not produce any code.

DEVICE 16F877
OPTION_REG = %00000111
INTCON = %00100000
SYMBOL LED = PORTD.0
' Enable software interrupts, and point to interrupt handler
ON INTERRUPT GOTO My_Int

Fin:

DELAYMS 1

GOTO Fin

DISABLE ' Disable interrupts in the handler
My _Int:

TOGGLE LED ' Toggle an LED when interrupted

RESUME ' Return to main program

ENABLE " Enable interrupts after the handler

Seealso: SOFTWARE INTERRUPTS in BASIC, ENABLE, RESUME.

188

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

DTMFOUT

Syntax
DTMFOUT Pin, { OnTime }, { OffTime, } [Tone {, Tone...}]

Overview
Produce a DTMF Touch Tone sequence on Pin.

Operators

Pin is a PORT.BIT constant that specifies the I/O pin to use. This pin will be set to output during
generation of tones and set to input after the command is finished.

OnTime is an optional variable, constant, or expression (0 - 65535) specifying the duration, in
ms, of the tone. If the OnTime parameter is not used, then the default time is 200ms

OffTime is an optional variable, constant, or expression (0 - 65535) specifying the length of si-
lent delay, in ms, after a tone (or between tones, if multiple tones are specified). If the OffTime
parameter is not used, then the default time is 50ms

Tone may be a variable, constant, or expression (0 - 15) specifying the DTMF tone to generate.
Tones 0 through 11 correspond to the standard layout of the telephone keypad, while 12
through 15 are the fourth-column tones used by phone test equipment and in some radio appli-
cations.

Example
DTMFOUT PORTA.0,[7,4,9,9,9,0] * Call Crownhill.

If the PICmicro™ was connected to the phone line correctly, the above command would dial
666-709. If you wanted to slow down the dialling in order to break through a noisy phone line or
radio link, you could use the optional OnTime and OffTime values: -

‘Set the OnTime to 500ms and OffTime to 100ms
DTMFOUT PORTA.0, 500, 100,[7,4,9,9,9, 0] Call Crownhill Slowly.
Notes DTMF tones are used to dial a telephone, or re- Ti Fﬁf
motely control pieces of radio equipment. The PICmicro™ =AM\ M o
can generate these tones digitally using the DTMFOUT

command. However, to achieve the best quality tones, a Fr,,"g“ pliDrI]C mC1 mC2 Z?nﬁll:ﬁcle?
higher crystal frequency is required. A 4MHz type will 0.1uF [0.1uF
work but the quality of the sound produced will suffer. The o 1 o
circuits illustrate how to connect a speaker or audio am- =
plifier to hear the tones produced. C1

10uF Speaker

The PICmicro™ is a digital device, however, DTMF tones Erom PIC

are analogue waveforms, consisting of a mixture of two /O pin 1C2
sine waves at different audio frequencies. So how can a o QuF

digital device generate an analogue output? The =

PICmicro™ creates and mixes two sine waves mathematically, then uses the resulting stream
of numbers to control the duty cycle of an extremely fast pulse-width modulation (PWM) routine.
Therefore, what's actually being produced from the 1/O pin is a rapid stream of pulses. The pur-
pose of the filtering arrangements illustrated above is to smooth out the high-frequency PWM,
leaving behind only the lower frequency audio. You should keep this in mind if you wish to inter-
face the PICmicro’s DTMF output to radios and other equipment that could be adversely af-
fected by the presence of high-frequency noise on the input. Make sure to filter the DTMF out-
put scrupulously. The circuits above are only a foundation; you may want to use an active low-
pass filter with a cut-off frequency of approximately 2KHz.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

EDATA

Syntax
EDATA Constantl {,...Constantn etc }

Overview
Places constants or strings directly into the on-board eeprom memory of compatible PICmicro's

Operators

Constantl,Constantn are values that will be stored in the on-board eeprom. When using an
EDATA statement, all the values specified will be placed in the eeprom starting at location O.
The EDATA statement does not allow you to specify an eeprom address other than the begin-
ning location at 0. To specify a location to write or read data from the eeprom other than O refer
to the EREAD, EWRITE commands.

Example
' Stores the values 1000,20,255,15, and the ASCII values for
"H',)'e",'I''I','0" in the eeprom starting at memory position 0.

EDATA 1000, 20, $FF , %00001111 , "Hello"

Notes

16-bit, 32-bit and floating point values may also be placed into eeprom memory. These are
placed LSB first (LOWEST SIGNIFICANT BYTE). For example, if 1000 is placed into an
EDATA statement, then the order is: -

EDATA 1000

In eeprom it looks like 232, 03

Alias's to constants may also be used in an EDATA statement: -
SYMBOL Alias = 200

EDATA Alias , 120, 254 , "Hello World"

Addressing an EDATA table.

Eeprom data starts at address 0 and works up towards the maximum amount that the
PICmicro™ will allow. However, it is rarely the case that the information stored in eeprom mem-
ory is one continuous piece of data. Eeprom memory is normally used for storage of several
values or strings of text, so a method of accessing each piece of data is essential. Consider the
following piece of code: -

EDATA "HELLO"
EDATA "WORLD"

Now we know that eeprom memory starts at 0, so the text "HELLO" must be located at address
0, and we also know that the text "HELLO" is built from 5 characters with each character occu-
pying a byte of eeprom memory, so the text "WORLD" must start at address 5 and also con-
tains 5 characters, so the next available piece of eeprom memory is located at address 10. To
access the two separate text strings we would need to keep a record of the start and end ad-
dress's of each character placed in the tables.

190

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Counting the amount of eeprom memory used by each piece of data is acceptable if only a few
EDATA tables are used in the program, but it can become tedious if multiple values and strings
are needing to be stored, and can lead to program glitches if the count is wrong.

Placing an identifying name before the EDATA table will allow the compiler to do the byte
counting for you. The compiler will store the eeprom address associated with the table in the
identifying name as a constant value. For example: -

HELLO_TEXT EDATA "HELLO"
WORLD_TEXT EDATA "WORLD"

The name HELLO_TEXT is now recognised as a constant with the value of 0, referring to ad-
dress O that the text string "HELLO" starts at. The WORLD_TEXT is a constant holding the
value 5, which refers to the address that the text string "WORLD" starts at.

Note that the identifying text MUST be located on the same line as the EDATA directive or a
syntax error will be produced. It must also NOT contain a postfix colon as does a line label or it
will be treat as a line label. Think of it as an alias name to a constant.

Any EDATA directives MUST be placed at the head of the BASIC program as is done with
SYMBOLS, so that the name is recognised by the rest of the program as it is parsed. There is
no need to jJump over EDATA directives as you have to with LDATA or CDATA, because they
do not occupy code memory, but reside in high DATA memory.

The example program below illustrates the use of eeprom addressing.

' Display two text strings held in eeprom memory

INCLUDE "PROTON_4.INC" ' Demo on a PROTON development board
DIM CHAR AS BYTE ' Holds the character read from eeprom
DIM CHARPOS AS BYTE ' Holds the address within eeprom memory

' Create a string of text in eeprom memory. NULL terminated
HELLO EDATA"HELLO",0

' Create another string of text in eeprom memory. NULL terminated
WORLD EDATA "WORLD",0

DELAYMS 200 ' Wait for the PICmicro to stabilise

CLS ' Clear the LCD

CHARPOS = HELLO ' Point CHARPOS to the start of text "HELLO"
GOSUB DISPLAY_TEXT ' Display the text "HELLO"

CHARPOS = WORLD ' Point CHARPOS to the start of text "WORLD"
GOSUB DISPLAY_TEXT ' Display the text "WORLD"

STOP "We're all done

" Subroutine to read and display the text held at the address in CHARPOS
DISPLAY_TEXT:

WHILE1=1 ' Create an infinite loop
CHAR = EREAD CHARPOS ' Read the eeprom data

IF CHAR = 0 THEN BREAK ' Exit when NULL found
PRINT CHAR ' Display the character

INC CHARPOS ' Move up to the next address
WEND ' Close the loop

RETURN ' Exit the subroutine

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Formatting an EDATA table.

Sometimes it is necessary to create a data table with a known format for its values. For exam-
ple all values will occupy 4 bytes of data space even though the value itself would only occupy
1 or 2 bytes.

EDATA 100000, 10000, 1000, 100, 10,1

The above line of code would produce an uneven data space usage, as each value requires a
different amount of data space to hold the values. 100000 would require 4 bytes of eeprom
space, 10000 and 1000 would require 2 bytes, but 100, 10, and 1 would only require 1 byte.

Reading these values using EREAD would cause problems because there is no way of know-
ing the amount of bytes to read in order to increment to the next valid value.

The answer is to use formatters to ensure that a value occupies a predetermined amount of
bytes.

These are: -

BYTE
WORD
DWORD
FLOAT

Placing one of these formatters before the value in question will force a given length.

EDATA DWORD 100000 , DWORD 10000 ,_
DWORD 1000, DWORD 100 , DWORD 10, DWORD 1

BYTE will force the value to occupy one byte of eeprom space, regardless of it's value. Any
values above 255 will be truncated to the least significant byte.

WORD will force the value to occupy 2 bytes of eeprom space, regardless of its value. Any val-
ues above 65535 will be truncated to the two least significant bytes. Any value below 255 will
be padded to bring the memory count to 2 bytes.

DWORD will force the value to occupy 4 bytes of eeprom space, regardless of its value. Any
value below 65535 will be padded to bring the memory count to 4 bytes. The line of code
shown above uses the DWORD formatter to ensure all the values in the EDATA table occupy 4
bytes of eeprom space.

FLOAT will force a value to its floating point equivalent, which always takes up 4 bytes of
eeprom space.

If all the values in an EDATA table are required to occupy the same amount of bytes, then a
single formatter will ensure that this happens.

EDATA AS DWORD 100000, 10000, 1000, 100, 10, 1
The above line has the same effect as the formatter previous example using separate DWORD

formatters, in that all values will occupy 4 bytes, regardless of their value. All four formatters
can be used with the AS keyword.

192

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

The example below illustrates the formatters in use.

" Convert a DWORD value into a string array
" Using only BASIC commands
" Similar principle to the STR$ command

INCLUDE "PROTON_4.INC"
DIM P10 AS DWORD

DIM CNT AS BYTE

DIMJ AS BYTE

DIM VALUE AS DWORD
DIM STRING1[11] AS BYTE
DIM PTR ASBYTE

DELAYMS 500

CLS

CLEAR

VALUE = 1234576

GOSUB DWORD_TO_STR

PRINT STR STRING1

STOP
" Convert a DWORD value into a string array
' Value to convert is placed in 'VALUE'

' Power of 10 variable

'Value to convert
' Holds the converted value
' Pointer within the Byte array

" Wait for PICmicro to stabilise
' Clear the LCD

' Clear all RAM before we start
"Value to convert

' Convert VALUE to string

' Display the result

' Byte array 'STRINGL1' is built up with the ASCII equivalent

DWORD_TO_STR:
PTR=0
J=0
REPEAT
P10 = EREAD J * 4
CNT =0

WHILE VALUE >= P10
VALUE = VALUE - P10

INC CNT

WEND

IF CNT <> 0 THEN
STRING1[PTR] = CNT + "0"
INC PTR

ENDIF

INC J

UNTILJ>8
STRING1[PTR] = VALUE + "0"
INC PTR

STRING1[PTR] =0
RETURN

' EDATA table is formatted for all 32 bit values.

" Add the NULL to terminate the string

" Which means each value will require 4 bytes of eeprom space

EDATA AS DWORD 1000000000, 100000000, 10000000, 1000000,100000, 10000, 1000,_

100, 10

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad

20NE_N2_17

PROTON+ Compiler. Development Suite.

Label names as pointers in an EDATA table.

If a label's name is used in the list of values in an EDATA table, the labels address will be used.
This is useful for accessing other tables of data using their address from a lookup table. See
example below.

' Display text from two CDATA tables
' Based on their address located in a separate table

INCLUDE "PROTON_4.INC" " Use a 14-bit core device

DIM ADDRESS AS WORD
DIM DATA_BYTE AS BYTE

DELAYMS 200 " Wait for PICmicro to stabilise
CLS ' Clear the LCD
ADDRESS =EREAD O ' Locate the address of the first string
Whilel1=1 ' Create an infinite loop
DATA_BYTE = CREAD ADDRESS ' Read each character from the CDATA string
IF DATA_BYTE =0 THEN EXIT_LOOP ' Exit if NULL found
PRINT DATA_BYTE ' Display the character
INC ADDRESS " Next character
WEND ' Close the loop
EXIT_LOOP:
CURSOR 2,1 " Point to line 2 of the LCD
ADDRESS = EREAD 2 " Locate the address of the second string
Whilel1 =1 ' Create an infinite loop
DATA_BYTE = CREAD ADDRESS ' Read each character from the CDATA string
IF DATA_BYTE =0 THEN EXIT_LOOP2 ' Exit if NULL found
PRINT DATA_BYTE ' Display the character
INC ADDRESS " Next character
WEND ' Close the loop
EXIT_LOOP2:
STOP

' Table of address's located in eeprom memory
EDATA AS WORD STRING1, STRING2
STRING1:
CDATA "HELLO",0
STRING2Z:
CDATA "WORLD",0

See also: EREAD, EWRITE.

194

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

ENABLE
ENABLE interrupt processing that was previously DISABLED following this instruction.

DISABLE and ENABLE, and RESUME are not actually commands in the truest sense of the
word, but flags that the compiler uses internally. They do not produce any code.

DEVICE 16F877

OPTION_REG = %00000111

INTCON = %00100000

SYMBOL LED = PORTD.0

' Enable software interrupts, and point to interrupt handler
ON INTERRUPT GOTO My _Int

Fin:

DELAYMS 1

GOTO Fin

DISABLE ' Disable interrupts in the handler
My _Int:

TOGGLE LED ' Toggle an LED when interrupted

RESUME ' Return to main program

ENABLE ' Enable interrupts after the handler

Seealso: SOFTWARE INTERRUPTS in BASIC, DISABLE, RESUME.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Software Interrupts in BASIC

Although the most efficient method of using an interrupt is in assembler, hardware interrupts
and BASIC are poor bedfellows. By far the easiest way to write an interrupt handler is to write it
in BASIC, in combination with the ON INTERRUPT statement. This is not the same as the
compiler's ON_INTERRUPT statement, which initiates a HARDWARE interrupt. ON INTER-
RUPT (two separate words.. ON INTERRUPT) informs the compiler to activate its internal inter-
rupt handling and to jump to the BASIC interrupt handler as soon as it's capable, after receiving
an interrupt. However, there's no such thing as a free lunch, and there are some penalties to
pay for the ease of use that this method brings.

The statement ON_HARDWARE_INTERRUPT are also recognised by the compiler in order to
clarify which type of interrupt is being implemented.

When ON INTERRUPT is used, the compiler simply flags that the interrupt has happened and
immediately goes back to what it was doing, before it was rudely interrupted. Unlike a hardware
interrupt, it does not immediately jump to the interrupt handler. And since the compiler's com-
mands are non re-entrant, there could be a considerable delay before the interrupt is actually
handled.

For example, if the program has just started to execute a DELAYMS 2000 command when an
interrupt occurs, the compiler will flag the interrupt and continue with the delay. It could be as
much as 2 seconds later before the interrupt handler is executed. Any time critical routines de-
pendant on the interrupt occurring regularly will be ruined. For example, multiplexing seven
segment display.

To minimise the above problem, use only statements that don't take long to execute. For ex-
ample, instead of DELAYMS 2000, use DELAYMS 1 in a FOR..NEXT, or REPEAT..UNTIL
loop. This will allow the compiler to complete each command more quickly and handle any
awaiting interrupts: -

FOR VAR1 =0TO 199 : DELAYMS 1 : NEXT ' Delay for 200ms

If interrupt processing needs to occur more regularly, then there is no choice but to use a hard-
ware interrupt, with all it's quirks.

Exactly what happens when ON INTERRUPT is used is this: A short interrupt handler is placed
at location 4 in the PICmicro™. This interrupt handler is simply a RETURN. What this does is
send the program back to what it was doing before the interrupt occurred. It does not require
any processor context saving. What it doesn't do is re-enable Global Interrupts as happens
when using a RETFIE instruction.

A Call to a short subroutine is placed before each command in the BASIC program once an ON
INTERRUPT statement is encountered. This short subroutine checks the state of the Global
Interrupt Enable bit (GIE). If it's off, an interrupt is awaiting so it vectors to the users interrupt
handler. Which is essentially a BASIC subroutine.

If it is still set, the program continues with the next BASIC statement, after which, the GIE bitis
checked again, and so forth.

See also : ENABLE, DISABLE, RESUME.

196

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

END

Syntax
END

Overview
The END statement stops compilation of source, and creates an infinite loop.

Notes
END stops the PICmicro™ processing by placing it into a continuous loop. The port pins remain
the same and the device is placed in low power mode.

Seealso: STOP, SLEEP, SNOOZE.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

EREAD

Syntax
Variable = EREAD Address

Overview
Read information from the on-board eeprom available on some PICmicro™ types.

Operators

Variable is a user defined variable.

Address is a constant, variable, or expression, that contains the address of interest within
eeprom memory.

Example
DEVICE 16F84 " A PICmicro with on-board eeprom
DIM VAR1 AS BYTE
DIM WRD1 AS WORD
DIM DWRD1 AS DWORD

EDATA 10, 354 , 123456789 ' Place some data into the eeprom
VAR1 = EREAD 0O ' Read the 8-bit value from address 0
WRD1= EREAD 1 ' Read the 16-bit value from address 1
DWRD1 = EREAD 3 ' Read the 32-bit value from address 3

Notes

If a FLOAT, or DWORD type variable is used as the assignment variable, then 4-bytes will be
read from the eeprom. Similarly, if a WORD type variable is used as the assignment variable,
then a 16-bit value (2-bytes)will be read from eeprom, and if a BYTE type variable is used, then
8-bits will be read. To read an 8-bit value while using a WORD sized variable, use the LOW-
BYTE modifier: -

WRD1.LOWBYTE = EREAD 0 'Read an 8-bit value
WRD1.HIGHBYTE =0 ' Clear the high byte of WRD

If a 16-bit (WORD) size value is read from the eeprom, the address must be incremented by
two for the next read. Also, if a FLOAT or DWORD type variable is read, then the address must
be incremented by 4.

Most of the Flash PICmicro™ types have a portion of memory set aside for storage of informa-
tion. The amount of memory is specific to the individual PICmicro™ type, some, such as the
16F84, has 64 bytes, the 16F877 device has 256 bytes, and some of the 16-bit core devices
have upwards of 512 bytes.

Eeprom memory is non-volatile, and is an excellent place for storage of long-term information,
or tables of values.

Reading data with the EREAD command is almost instantaneous, but writing data to the
eeprom can take up to 10ms per byte.

See also : EDATA, EWRITE

198

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

EWRITE

Syntax
EWRITE Address, [Variable {, Variable...etc }]

Overview
Write information to the on-board eeprom available on some PICmicro™ types.

Operators

Address is a constant, variable, or expression, that contains the address of interest within
eeprom memory.

Variable is a user defined variable.

Example
DEVICE 16F628 " A PICmicro with on-board eeprom
DIM VAR1 AS BYTE
DIM WRD1 AS WORD
DIM ADDRESS AS BYTE
VAR1 = 200
WRD1= 2456
ADDRESS =0 ' Point to address 0 within the eeprom
EWRITE ADDRESS ,[WRD , VAR1] 'Write a 16-bit then an 8-bit value

Notes

If a DWORD type variable is used, then a 32-bit value (4-bytes) will be written to the eeprom.
Similarly, if a WORD type variable is used, then a 16-bit value (2-bytes) will be written to
eeprom, and if a BYTE type variable is used, then 8-bits will be written. To write an 8-bit value
while using a WORD sized variable, use the LOWBYTE modifier: -

EWRITE ADDRESS , [WRD.LOWBYTE , VAR1]

If a 16-bit (WORD) size value is written to the eeprom, the address must be incremented by two
before the next write: -

FOR ADDRESS =0 TO 64 STEP 2
EWRITE ADDRESS , [WRD]
NEXT

Most of the Flash PICmicro™ types have a portion of memory set aside for storage of informa-
tion. The amount of memory is specific to the individual PICmicro™ type, some, such as the
16F84, has 64 bytes, while the newer 16F877, and 18FXXX devices have 256 bytes.

Eeprom memory is non-volatile, and is an excellent place for storage of long-term information,
or tables of values.

Writing data with the EWRITE command can take up to 10ms per byte, but reading data from
the eeprom is almost instantaneous,.

See also : EDATA, EREAD

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

FOR...NEXT...STEP

Syntax

FOR Variable = Startcount TO Endcount [STEP { Stepval }]
{code body}

NEXT

Overview
The FOR...NEXT loop is used to execute a statement, or series of statements a predetermined
amount of times.

Operators

Variable refers to an index variable used for the sake of the loop. This index variable can itself
be used in the code body but beware of altering its value within the loop as this can cause
many problems.

Startcount is the start number of the loop, which will initially be assigned to the variable. This
does not have to be an actual number - it could be the contents of another variable.

Endcount is the number on which the loop will finish. This does not have to be an actual num-
ber, it could be the contents of another variable, or an expression.

Stepval is an optional constant or variable by which the variable increases or decreases with
each trip through the FOR-NEXT loop. If startcount is larger than endcount, then a minus sign
must precede stepval.

Example 1
' Display in decimal, all the values of WRD within an upward loop
DIM WRD AS WORD

FOR WRD =0 TO 2000 STEP 2 " Perform an upward loop
PRINT DEC WRD ,"" ' Display the value of WRD
NEXT ' Close the loop

Example 2

' Display in decimal, all the values of WRD within a downward loop
DIM WRD AS WORD

FOR WRD = 2000 TO O STEP -2 " Perform a downward loop
PRINT DEC WRD ," " ' Display the value of WRD
NEXT ' Close the loop

Example 3

' Display in decimal, all the values of DWRD within a downward loop
DIM DWRD AS DWORD

FOR DWRD = 200000 TO 0 STEP -200 ' Perform a downward loop
PRINT DEC DWRD ," " ' Display the value of DWRD
NEXT ' Close the loop

200

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Example 4
' Display all the values of WRD1 using a expressions as parts of the FOR-NEXT construct

DIMWRD1 AS WORD
DIM WRD2 AS WORD

WRD2 = 1000

FOR WRD1=WRD2 + 10 TO WRD2 +1000 ' Perform a loop

PRINT DEC WRD1," " ' Display the value of WRD1
NEXT ' Close the loop

Notes
You may have noticed from the above examples, that no variable is present after the NEXT
command. A variable after NEXT is purely optional.

FOR-NEXT loops may be nested as deeply as the memory on the PICmicro™ will allow. To
break out of a loop you may use the GOTO command without any ill effects: -

FORVAR1=0TO 20 ‘ Create a loop of 21
IF VAR1 =10 THEN GOTO BREAK_OUT ‘ Break out of loop when VAR1 is 10
NEXT ‘ Close the loop
BREAK_OUT:
STOP

Seealso: WHILE..WEND, REPEAT...UNTIL.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

FREQOUT

Syntax
FREQOUT Pin, Period , Freql {, Freg2}

Overview
Generate one or two sine-wave tones, of differing or the same frequencies, for a specified pe-

riod.

Operators

Pin is a PORT-BIT combination that specifies which 1/0O pin to use.

Period may be a variable, constant, or expression (0 - 65535) specifying the amount of time to
generate the tone(s).

Freql may be a variable, constant, or expression (0 - 32767) specifying frequency of the first
tone.

Freg2 may be a variable, constant, or expression (0 - 32767) specifying frequency of the sec-
ond tone. When specified, two frequencies will be mixed together on the same I/O pin.

Example
" Generate a 2500Hz (2.5KHz) tone for 1 second (1000 ms) on bit 0 of PORTA.
FREQOUT PORTA.O, 1000, 2500

' Play two tones at once for 1000ms. One at 2.5KHz, the other at 3KHz.
FREQOUT PORTA.O, 1000, 2500, 30000

Notes

FREQOUT generates one or two sine waves using a pulse-width modulation algorithm.
FREQOUT will work with a 4MHz crystal, however, it is best used with higher frequency crys-
tals, and operates best with a 20MHz type. The raw output from FREQOUT requires filtering, to
eliminate most of the switching noise. The circuits shown below will filter the signal in order to
play the tones through a speaker or audio amplifier.

R1 R2
1k 1k
e VAVAY A% ¢ &
From PIC e l To Audio
I/O pin - C1 C2 Amplifier
0.1uF 0.1uF
O O
L
C1
10uF Speaker
From PIC &
. Cc2
1/0 pin
o 10uF

The two circuits shown above, work by filtering out the high-frequency PWM used to generate
the sine waves. FREQOUT works over a very wide range of frequencies (0 to 32767KHz) so at
the upper end of its range, the PWM filters will also filter out most of the desired frequency. You
may need to reduce the values of the parallel capacitors shown in the circuit, or to create an
active filter for your application.

202

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Example 2
‘ Play a tune using FREQOUT to generate the notes

DEVICE 16F877
DECLARE XTAL 20

DIM Loop AS BYTE ' Counter for notes.

DIM Freql AS WORD " Frequencyl.

DIM Freg2 AS WORD ' Frequency?2

SYMBOL C = 2092 ' C note

SYMBOL D = 2348 'D note

SYMBOL E = 2636 ' E note

SYMBOL G = 3136 ' G note

SYMBOL R=0 " Silent pause.

SYMBOL Pin = PORTA.O * Sound output pin

ALL_DIGITAL = True ' Set PORTA and PORTE to all digital
Loop=0

REPEAT ' Create a loop for 29 notes within the LOOKUPL table.

Freql = LOOKUPL Loop ,[E,D,C,D,E,E,E,R,D,D,D,_
R.E,G,G,R,E,D,C,D,E,E,E,E,D,D,E,D,C]

IF Freq1 =0 THEN Freq2 =0: ELSE : Freq2 = Freql - 8

FREQOUT Pin, 225, Freql , Freg2

INC Loop

UNTIL Loop > 28

STOP

Seealso: DTMFOUT, SOUND, SOUND2.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

GETBIT

Syntax
Variable = GETBIT Variable , Index

Overview
Examine a bit of a variable, or register.

Operators

Variable is a user defined variable, of type BYTE, WORD, or DWORD.

Index is a constant, variable, or expression that points to the bit within Variable that requires
examining.

Example
' Examine and display each bit of variable EX_VAR
DEVICE = 16F877
XTAL =4
DIM EX_VAR AS BYTE
DIM INDEX AS BYTE
DIM VAR1 AS BYTE

EX_VAR =%10110111

AGAIN:
CLS
PRINT AT 1,1,BIN8 EX_VAR ' Display the original variable
CURSOR 2,1 " Position the cursor at line 2
FOR INDEX =7 TO O STEP -1 ' Create a loop for 8 bits
VAR1 = GETBIT EX_VAR,INDEX " Examine each bit of EX_VAR
PRINT DEC1 VAR1 ' Display the binary result
DELAYMS 100 " Slow things down to see what's happening
NEXT ' Close the loop
GOTO AGAIN " Do it forever

See also: CLEARBIT, LOADBIT, SETBIT.

204

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

GOSUB

Syntax
GOSUB Label

or
GOSUB Label [Variable, {Variable, Variable... etc}] , Receipt Variable

Overview

GOSUB jumps the program to a defined label and continues execution from there. Once the
program hits a RETURN command the program returns to the instruction following the GOSUB
that called it and continues execution from that point.

If using a 16-bit core device, parameters can be pushed onto a software stack before the call is
made, and a variable can be popped from the stack before continuing execution of the next
commands.

Operators

Label is a user-defined label placed at the beginning of a line which must have a colon "' di-
rectly after it.

Variable is a wuser defined variable of type BIT, BYTE, BYTE_ARRAY, WORD,
WORD_ARRAY, DWORD, FLOAT, or STRING, or constant value, that will be pushed onto
the stack before the call to a subroutine is performed.

Receipt Variable is a user defined variable of type BIT, BYTE, BYTE_ARRAY, WORD,
WORD_ARRAY, DWORD, FLOAT, or STRING, that will hold a value popped from the stack
after the subroutine has returned.

Example 1
" Implement a standard subroutine call
GOTO Start " Jump over the subroutines

SubA: { subroutine A code

RETURN

SubB: { subroutine B code

RETURN

" Actual start of the main program
Start: GOSUB SubA

GOSUB SubB

STOP

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Example 2
' Call a subroutine with parameters
DEVICE = 18F452 ' Stack only suitable for 16-bit core devices
STACK_SIZE = 20 ' Create a small stack capable of holding 20 bytes
DIM WRD1 as WORD ' Create a WORD variable
DIM WRD2 as WORD ' Create another WORD variable
DIM RECEIPT as WORD ' Create a variable to hold result
WRD1 = 1234 ' Load the WORD variable with a value
WRD2 =567 ' Load the other WORD variable with a value

' Call the subroutine and return a value

GOSuUB ADD _THEM [WRD1 , WRD2] , RECEIPT

PRINT DEC RECEIPT " Display the result as decimal
STOP

" Subroutine starts here. Add the two parameters passed and return the result

ADD_THEM:
DIM ADD_WRD1 as WORD ' Create two uniquely named variables
DIM ADD_WRD2 as WORD

POP ADD_WRD?2 " Pop the last variable pushed
POP ADD_WRD1 ' Pop the first variable pushed
ADD_WRD1 = ADD_WRD1 + ADD_WRD2 " Add the values together
RETURN ADD_WRD1 " Return the result of the addition

In reality, what's happening with the GOSUB in the above program is simple, if we break it into
its constituent events: -

PUSH WRD1

PUSH WRD2
GOSUB ADD_THEM
POP RECEIPT

Notes
Only one parameter can be returned from the subroutine, any others will be ignored.

If a parameter is to be returned from a subroutine but no parameters passed to the subroutine,
simply issue a pair of empty square braces: -

GOSUB LABEL [], RECEIPT

The same rules apply for the parameters as they do for PUSH, which is after all, what is hap-
pening.

PROTON+ allows any amount of GOSUBSs in a program, but the 14-bit PICmicro™ architecture
only has an 8-level return address stack, which only allows 8 GOSUBSs to be nested. The com-
piler only ever uses a maximum of 4-levels for it's library subroutines, therefore do not use
more than 4 GOSUBSs within subroutines. The 16-bit core devices however, have a 28-level re-
turn address stack which allows any combination of up to 28 GOSUBS to occur.

A subroutine must always end with a RETURN command.

206

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

What is a STACK?

All microprocessors and most microcontrollers have access to a STACK, which is an area of
RAM allocated for temporary data storage. But this is sadly lacking on a PICmicro™ device.
However, the 16-bit core devices have an architecture and low-level mnemonics that allow a
STACK to be created and used very efficiently.

A stack is first created in high memory by issuing the STACK_SIZE Declare.
STACK_SIZE =40

The above line of code will reserve 40 bytes at the top of RAM that cannot be touched by any
BASIC command, other than PUSH and POP. This means that it is a safe place for temporary
variable storage.

Taking the above line of code as an example, we can examine what happens when a variable
is pushed on to the 40 byte stack, and then popped off again.

First the RAM is allocated. For this explanation we will assume that a 18F452 PICmicro™ de-
vice is being used. The 18F452 has 1536 bytes of RAM that stretches linearly from address 0
to 1535. Reserving a stack of 40 bytes will reduce the top of memory so that the compiler will
only see 1495 bytes (1535 - 40). This will ensure that it will not inadvertently try and use it for
normal variable storage.

Pushing.
When a WORD variable is pushed onto the stack, the memory map would look like the diagram
below: -

Top of Memory [coreeiiiiiinnnn, Empty RAM.......coooviiiiii, | Address 1535
A Empty RAM........oooeiiiiiiiiiis | Address 1502
[corieiiiiiinnnn, Empty RAM.......ccoooeiiiiiii, | Address 1501
| Low Byte address of WORD variable | Address 1496
Start of Stack | High Byte address of WORD variable | Address 1495

The high byte of the variable is first pushed on to the stack, then the low byte. And as you can
see, the stack grows in an upward direction whenever a PUSH is implemented, which means it
shrinks back down whenever a POP is implemented.

If we were to PUSH a DWORD variable on to the stack as well as the WORD variable, the
stack memory would look like: -

Top of Memory [eeeennniinnnnn Empty RAM........ooooiiiiiiiiiis | Address 1535
[coreeiiiiiinnnn, Empty RAM.......ccoooeiiiiiii, | Address 1502
T Empty RAM.......oooviiii. | Address 1501

| Low Byte address of DWORD variable | Address 1500
| Midl1 Byte address of DWORD variable| Address 1499
| Mid2 Byte address of DWORD variable| Address 1498
| High Byte address of DWORD variable| Address 1497
| Low Byte address of WORD variable | Address 1496
|

Start of Stack High Byte address of WORD variable | Address 1495

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Popping.

When using the POP command, the same variable type that was pushed last must be popped
first, or the stack will become out of phase and any variables that are subsequently popped will
contain invalid data. For example, using the above analogy, we need to POP a DWORD vari-
able first. The DWORD variable will be popped Low Byte first, then MID1 Byte, then MID2 Byte,
then lastly the High Byte. This will ensure that the same value pushed will be reconstructed cor-
rectly when placed into its recipient variable. After the POP, the stack memory map will look
like: -

Top of Memory e, Empty RAM........ccooiiiiiiiiiinn, | Address 1535
[cereeeiiiinnnnn. Empty RAM......ccoooiiiiii, | Address 1502
T Empty RAM.........oooiiiiiiiiiinn, | Address 1501
| Low Byte address of WORD variable | Address 1496
Start of Stack | High Byte address of WORD variable | Address 1495

If a WORD variable was then popped, the stack will be empty, however, what if we popped a
BYTE variable instead? the stack would contain the remnants of the WORD variable previously
pushed. Now what if we popped a DWORD variable instead of the required WORD variable?
the stack would underflow by two bytes and corrupt any variables using those address's . The
compiler cannot warn you of this occurring, so it is up to you, the programmer, to ensure that
proper stack management is carried out. The same is true if the stack overflows. i.e. goes be-
yond the top of RAM. The compiler cannot give a warning.

Technical Details of Stack implementation.

The stack implemented by the compiler is known as an Incrementing Last-In First-Out Stack.
Incrementing because it grows upwards in memory. Last-In First-Out because the last variable
pushed, will be the first variable popped.

The stack is not circular in operation, so that a stack overflow will rollover into the PICmicro's
hardware register, and an underflow will simply overwrite RAM immediately below the Start of
Stack memory. If a circular operating stack is required, it will need to be coded in the main BA-
SIC program, by examination and manipulation of the stack pointer (see below).

Indirect register pair FSR2L and FSR2H are used as a 16-bit stack pointer, and are incre-
mented for every BYTE pushed, and decremented for every BYTE popped. Therefore checking
the FSR2 registers in the BASIC program will give an indication of the stack's condition if re-
quired. This also means that the BASIC program cannot use the FSR2 register pair as part of
its code, unless for manipulating the stack. Note that none of the compiler's commands, other
than PUSH and POP, use FSR2.

Whenever a variable is popped from the stack, the stack's memory is not actually cleared, only
the stack pointer is moved. Therefore, the above diagrams are not quite true when they show
empty RAM, but unless you have use of the remnants of the variable, it should be considered
as empty, and will be overwritten by the next PUSH command.

Seealso: CALL, GOTO, PUSH, POP.

208

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

GOTO

Syntax
GOTO Label

Overview
Jump to a defined label and continue execution from there.

Operators
Label is a user-defined label placed at the beginning of a line which must have a colon "' di-
rectly after it.

Example
IF VAR1 = 3 THEN GOTO Jumpover

{

code here executed only if VAR1<>3

Jumpover:
{continue code execution}

In this example, if VAR1=3 then the program jumps over all the code below it until it reaches
the label JUMPOVER where program execution continues as normal.

See also: CALL, GOSUB.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

HBSTART

Syntax
HBSTART

Overview
Send a START condition to the 1°C bus using the PICmicro's MSSP module.

Notes

Because of the subtleties involved in interfacing to some I°C devices, the compiler's standard
HBUSIN, and HBUSOUT commands were found lacking. Therefore, individual pieces of the I1°C
protocol may be used in association with the new structure of HBUSIN, and HBUSOUT. See
relevant sections for more information.

Example
" Interface to a 24LC32 serial eeprom
DEVICE = 16F877 " Use a device with an MSSP module

DIM Loop AS BYTE
DIM Array[10] AS BYTE
" Transmit bytes to the 12C bus

HBSTART " Send a START condition

HBUSOUT %10100000 ' Target an eeprom, and send a WRITE command
HBUSOUT 0 ' Send the HIGHBYTE of the address

HBUSOUT 0 ' Send the LOWBYTE of the address

FOR LOOP =48 TO 57 ' Create a loop containing ASCII 0 to 9
HBUSOUT LOOP ' Send the value of LOOP to the eeprom

NEXT ' Close the loop

HBSTOP ' Send a STOP condition

DELAYMS 10 " Wait for the data to be entered into eeprom matrix
' Receive bytes from the 12C bus

HBSTART " Send a START condition

HBUSOUT %10100000 ' Target an eeprom, and send a WRITE command
HBUSOUT 0 ' Send the HIGHBYTE of the address

HBUSOUT 0 " Send the LOWBYTE of the address
HBRESTART 'Send a RESTART condition

HBUSOUT %10100001 ' Target an eeprom, and send a READ command
FOR Loop=0TO 9 ' Create a loop

Array[Loop] = HBUSIN ' Load an array with bytes received

IF Loop = 9 THEN HBSTOP : ELSE HBUSACK "ACK or STOP ?

NEXT ' Close the loop

PRINT AT 1,1, STR Array ' Display the Array as a STRING

Seealso: HBUSACK, HBRESTART, HBSTOP, HBUSIN, HBUSOUT.

210

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

HBSTOP

Syntax
HBSTOP

Overview
Send a STOP condition to the I°C bus using the PICmicro's MSSP module.

HBRESTART

Syntax
HBRESTART

Overview
Send a RESTART condition to the 1°C bus using the PICmicro's MSSP module.

HBUSACK

Syntax
HBUSACK

Overview
Send an ACKNOWLEDGE condition to the 1°C bus using the PICmicro's MSSP module.

Seealso: HBSTART, HBRESTART, HBSTOP, HBUSIN, HBUSOUT.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

HBUSIN

Syntax
Variable = HBUSIN Control , { Address }

or
Variable = HBUSIN

or

HBUSIN Control , { Address }, [Variable {, Variable...}]
or

HBUSIN Variable

Overview

Receives a value from the 1°C bus using the MSSP module, and places it into variable/s. If
structures TWO or FOUR (see above) are used, then NO ACKNOWLEDGE, or STOP is sent
after the data. Structures ONE and THREE first send the control and optional address out of
the clock pin (SCL), and data pin (SDA).

Operators

Variable is a user defined variable or constant.

Control may be a constant value or a BYTE sized variable expression.
Address may be a constant value or a variable expression.

The four variations of the HBUSIN command may be used in the same BASIC program. The
SECOND and FOURTH types are useful for simply receiving a single byte from the bus, and
must be used in conjunction with one of the low level commands. i.e. HBSTART, HBRESTART,
HBUSACK, or HBSTOP. The FIRST, and THIRD types may be used to receive several values
and designate each to a separate variable, or variable type.

The HBUSIN command operates as an 1°C master, using the PICmicro's MSSP module, and
may be used to interface with any device that complies with the 2-wire 1°C protocol.

The most significant 7-bits of control byte contain the control code and the slave address of the
device being interfaced with. Bit-0 is the flag that indicates whether a read or write command is
being implemented.

For example, if we were interfacing to an external eeprom such as the 24C32, the control code
would be %10100001 or $A1. The most significant 4-bits (1010) are the eeprom's unique slave
address. Bits 2 to 3 reflect the three address pins of the eeprom. And bit-0 is set to signify that
we wish to read from the eeprom. Note that this bit is automatically set by the HBUSIN com-
mand, regardless of its initial setting.

212

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Example
' Receive a byte from the 1°C bus and place it into variable VARL1.

DIM VAR1 AS BYTE "We'll only read 8-bits

DIM ADDRESS AS WORD ' 16-bit address required
SYMBOL Control %10100001 ' Target an eeprom

ADDRESS = 20 ' Read the value at address 20
VAR1 = HBUSIN Control , Address ' Read the byte from the eeprom

or
HBUSIN Control , ADDRESS, [VAR1] 'Read the byte from the eeprom

Address, is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in
this position, the size of address is dictated by the size of the variable used (BYTE or WORD).
In the case of the previous eeprom interfacing, the 24C32 eeprom requires a 16-bit address.
While the smaller types require an 8-bit address. Make sure you assign the right size address
for the device interfaced with, or you may not achieve the results you intended.

The value received from the bus depends on the size of the variables used, except for variation
three, which only receives a BYTE (8-bits). For example: -

DIM WRD AS WORD ' Declare a WORD size variable
WRD = HBUSIN Control , Address

Will receive a 16-bit value from the bus. While: -

DIM VAR1 AS BYTE ' Declare a BYTE size variable
VAR1 = HBUSIN Control , Address

Will receive an 8-bit value from the bus.

Using the THIRD variation of the HBUSIN command allows differing variable assignments. For
example: -

DIM VAR1 AS BYTE
DIM WRD AS WORD
HBUSIN Control , Address , [VAR1 , WRD]

Will receive two values from the bus, the first being an 8-bit value dictated by the size of vari-
able VAR1 which has been declared as a byte. And a 16-bit value, this time dictated by the size
of the variable WRD which has been declared as a word. Of course, BIT type variables may
also be used, but in most cases these are not of any practical use as they still take up a byte
within the eeprom.

The SECOND and FOURTH variations allow all the subtleties of the I°C protocol to be ex-
ploited, as each operation may be broken down into its constituent parts. It is advisable to refer
to the datasheet of the device being interfaced to fully understand its requirements. See section
on HBSTART, HBRESTART, HBUSACK, or HBSTOP, for example code.

HBUSIN Declare

DECLARE HBUS_BITRATE Constant 100, 400, 1000

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

The standard speed for the 1°C bus is 100KHz. Some devices use a higher bus speed of
400KHz. The above DECLARE allows the I1°C bus speed to be increased or decreased. Use
this DECLARE with caution, as too high a bit rate may exceed the device's specs, which will
result in intermittent transactions, or in some cases, no transactions at all. The datasheet for the
device used will inform you of its bus speed. The default bit rate is the standard 100KHz.

Notes

Not all PICmicro™ devices contain an MSSP module, some only contain an SSP type, which
only allows 1°C SLAVE operations. These types of devices may not be used with any of the
HBUS commands. Therefore, always read and understand the datasheet for the PICmicro™
device used.

When the HBUSIN command is used, the appropriate SDA and SCL Port and Pin are auto-
matically setup as inputs. The SDA, and SCL lines are predetermined as hardware pins on the
PICmicro™ i.e. For a 16F877 device, the SCL pin is PORTC.3, and SDA is PORTC.4. There-
fore, there is no need to pre-declare these.

Because the I1°C protocol calls for an open-collector interface, pull-up resistors are required on
both the SDA and SCL lines. Values of 1IKWto 4.7KW will suffice.

STR modifier with HBUSIN

Using the STR modifier allows variations THREE and FOUR of the HBUSIN command to trans-
fer the bytes received from the I°C bus directly into a byte array. If the amount of received char-
acters is not enough to fill the entire array, then a formatter may be placed after the array's
name, which will only receive characters until the specified length is reached. An example of
each is shown below: -

DIM Array[10] ASBYTE ' Define an array of 10 bytes
DIM ADDRESS AS BYTE ' Create a word sized variable
HBUSIN %10100000 , ADDRESS, [STR Array] ' Load data into all the array

' Load data into only the first 5 elements of the array
HBUSIN %10100000 , ADDRESS, [STR Array\5]

HBSTART " Send a START condition

HBUSOUT %10100000 ' Target an eeprom, and send a WRITE command
HBUSOUT 0 ' Send the HIGHBYTE of the address

HBUSOUT 0 ' Send the LOWBYTE of the address
HBRESTART ' Send a RESTART condition

HBUSOUT %10100001 ' Target an eeprom, and send a READ command
HBUSIN STR Array " Load all the array with bytes received

HBSTOP ' Send a STOP condition

An alternative ending to the above example is: -

HBUSIN STR Array\5 ' Load data into only the first 5 elements of the array
HBSTOP "Send a STOP condition

Seealso: HBUSACK, HBRESTART, HBSTOP, HBSTART, HBUSOUT.

214

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

HBUSOUT

Syntax
HBUSOUT Control , { Address }, [Variable {, Variable...}]

or
HBUSOUT Variable

Overview

Transmit a value to the 1°C bus using the PICmicro's on-board MSSP module, by first sending
the control and optional address out of the clock pin (SCL), and data pin (SDA). Or alterna-
tively, if only one operator is included after the HBUSOUT command, a single value will be
transmitted, along with an ACK reception.

Operators

Variable is a user defined variable or constant.

Control may be a constant value or a BYTE sized variable expression.
Address may be a constant, variable, or expression.

The HBUSOUT command operates as an I°C master and may be used to interface with any
device that complies with the 2-wire 1°C protocol.

The most significant 7-bits of control byte contain the control code and the slave address of the
device being interfaced with. Bit-0 is the flag that indicates whether a read or write command is
being implemented.

For example, if we were interfacing to an external eeprom such as the 24C32, the control code
would be %10100000 or $A0. The most significant 4-bits (1010) are the eeprom's unigue slave
address. Bits 2 to 3 reflect the three address pins of the eeprom. And Bit-O is clear to signify
that we wish to write to the eeprom. Note that this bit is automatically cleared by the HBUSOUT
command, regardless of its initial value.

Example
' Send a byte to the I°C bus.

DIM VAR1 AS BYTE "We'll only read 8-bits

DIM ADDRESS AS WORD ' 16-bit address required
SYMBOL Control = %10100000 ' Target an eeprom

ADDRESS =20 ' Write to address 20

VAR1 = 200 ' The value place into address 20
HBUSOUT Control , ADDRESS, [VARL1] ' Send the byte to the eeprom
DELAYMS 10 " Allow time for allocation of byte

Address, is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in
this position, the size of address is dictated by the size of the variable used (BYTE or WORD).
In the case of the above eeprom interfacing, the 24C32 eeprom requires a 16-bit address.
While the smaller types require an 8-bit address. Make sure you assign the right size address
for the device interfaced with, or you may not achieve the results you intended.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

The value sent to the bus depends on the size of the variables used. For example: -

DIM WRD AS WORD ' Declare a WORD size variable
HBUSOUT Control , Address , [WRD]

Will send a 16-bit value to the bus. While: -

DIM VAR1 ASBYTE 'Declare a BYTE size variable
HBUSOUT Control , Address , [VAR]

Will send an 8-bit value to the bus.

Using more than one variable within the brackets allows differing variable sizes to be sent. For
example: -

DIM VAR1 AS BYTE
DIM WRD AS WORD
HBUSOUT Control , Address , [VAR1 , WRD]

Will send two values to the bus, the first being an 8-bit value dictated by the size of variable
VAR1 which has been declared as a byte. And a 16-bit value, this time dictated by the size of
the variable WRD which has been declared as a word. Of course, BIT type variables may also
be used, but in most cases these are not of any practical use as they still take up a byte within
the eeprom.

A string of characters can also be transmitted, by enclosing them in quotes: -
HBUSOUT Control , Address, ["Hello World" , VAR1 , WRD]

Using the second variation of the HBUSOUT command, necessitates using the low level com-
mands i.e. HBSTART, HBRESTART, HBUSACK, or HBSTOP.

Using the HBUSOUT command with only one value after it, sends a byte of data to the I1°C bus,
and returns holding the ACKNOWLEDGE reception. This acknowledge indicates whether the
data has been received by the slave device.

The ACK reception is returned in the PICmicro's CARRY flag, which is STATUS.O, and also
SYSTEM variable PP4.0. A value of zero indicates that the data was received correctly, while a
one indicates that the data was not received, or that the slave device has sent a NACK return.
You must read and understand the datasheet for the device being interfacing to, before the
ACK return can be used successfully. An code snippet is shown below: -

" Transmit a byte to a 24LC32 serial eeprom
DIM PP4 AS BYTE SYSTEM

HBSTART " Send a START condition

HBUSOUT %10100000 ' Target an eeprom, and send a WRITE command
HBUSOUT 0 ' Send the HIGHBYTE of the address

HBUSOUT 0 ' Send the LOWBYTE of the address

HBUSOUT "A" ' Send the value 65 to the bus

IF PP4.0 =1 THEN GOTO Not_Received 'Has ACK been received OK ?
HBSTOP " Send a STOP condition

DELAYMS 10 " Wait for the data to be entered into eeprom matrix

216

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

STR modifier with HBUSOUT.

The STR modifier is used for transmitting a string of bytes from a byte array variable. A string is
a set of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3
would be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A
byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string 1,2,3 would be stored in a byte
array containing three bytes (elements).

Below is an example that sends four bytes from an array: -

DIM MYARRAY[10] AS BYTE ' Create a 10-byte array.

MYARRAY [0] = "A" ' Load the first 4 bytes of the array

MYARRAY [1] ="B" ' With the data to send

MYARRAY [2] ="C"

MYARRAY [3] ="D"

HBUSOUT %10100000 , Address , [STR MYARRAY \4] ' Send 4-byte string.

Note that we use the optional \n argument of STR. If we didn't specify this, the program would
try to keep sending characters until all 10 bytes of the array were transmitted. Since we do not
wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 4 bytes.

The above example may also be written as: -

DIM MYARRAY [10] ASBYTE ' Create a 10-byte array.

STR MYARRAY ="ABCD" ' Load the first 4 bytes of the array

HBSTART 'Send a START condition

HBUSOUT %10100000 ' Target an eeprom, and send a WRITE command
HBUSOUT 0 ' Send the HIGHBYTE of the address

HBUSOUT 0 ' Send the LOWBYTE of the address

HBUSOUT STR MYARRAY \4 ' Send 4-byte string.

HBSTOP "Send a STOP condition

The above example, has exactly the same function as the previous one. The only differences
are that the string is now constructed using the STR as a command instead of a modifier, and
the low-level HBUS commands have been used.

Notes

Not all PICmicro™ devices contain an MSSP module, some only contain an SSP type, which
only allows 1°C SLAVE operations. These types of devices may not be used with any of the
HBUS commands. Therefore, always read and understand the datasheet for the PICmicro™
device used.

When the HBUSOUT command is used, the appropriate SDA and SCL Port and Pin are auto-
matically setup as inputs. The SDA, and SCL lines are predetermined as hardware pins on the
PICmicro™ i.e. For a 16F877 device, the SCL pin is PORTC.3, and SDA is PORTC.4. There-
fore, there is no need to pre-declare these. Because the I°C protocol calls for an open-collector
interface, pull-up resistors are required on both the SDA and SCL lines. Values of 1KW to
4. 7KW will suffice.

Seealso: HBUSACK, HBRESTART, HBSTOP, HBUSIN, HBSTART.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

HIGH

Syntax
HIGH Port or Port.Bit

Overview

Place a Port or bit in a high state. For a Port, this means filling it with 1's. For a bit this means
setting it to 1.

Operators

Port can be any valid port.

Port.Bit can be any valid port and bit combination, i.e. PORTA.1

Example

SYMBOL LED = PORTB.4
HIGH LED

Seealso: CLEAR, DIM, LOW, SET, SYMBOL.

218

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

HPWM

Syntax
HPWM Channel , Dutycycle , Frequency

Overview

Output a pulse width modulated pulse train using the CCP modules PWM hardware, available
on some PICmicros. The PWM pulses produced can run continuously in the background while
the program is executing other instructions.

Operators

Channel is a constant value that specifies which hardware PWM channel to use. Some devices
have 1, 2 or 3 PWM channels. On devices with 2 channels, the Frequency must be the same
on both channels. It must be noted, that this is a limitation of the PICmicro™ not the compiler.
The data sheet for the particular device used shows the fixed hardware pin for each Channel.
For example, for a PIC16F877, Channel 1 is CCP1 which is pin PORTC.2. Channel 2 is CCP2
which is pin PORTC.1.

Dutycycle is a variable, constant (0-255), or expression that specifies the on/off (high/low) ratio
of the signal. It ranges from 0O to 255, where 0 is off (low all the time) and 255 is on (high) all the
time. A value of 127 gives a 50% duty cycle (square wave).

Frequency is a variable, constant (0-32767), or expression that specifies the desired frequency
of the PWM signal. Not all frequencies are available at all oscillator settings. The highest fre-
guency at any oscillator speed is 32767Hz. The lowest usable HPWM Frequency at each oscil-
lator setting is shown in the table below: -

XTAL frequency Lowest useable PWM frequency

4MHz 145Hz
8MHz 489Hz
10MHz 611Hz
12MHz 733Hz
16MHz 977Hz
20MHz 1221Hz
24MHz 1465Hz
33MHz 2015Hz
40MHz 2442Hz

Example

DEVICE = 16F877

XTAL =20

HPWM 1,127,1000 " Send a 50% duty cycle PWM signal at 1KHz
DELAYMS 500

HPWM 1,64,2000 " Send a 25% duty cycle PWM signal at 2KHz
STOP

Notes
Some devices, such as the PIC16F62x, and PIC18F4xx, have alternate pins that may be used
for HPWM. The following DECLARES allow the use of different pins: -

DECLARE CCP1_PIN PORT . PIN ' Select HPWM port and bit for CCP1 module.
DECLARE CCP2_PIN PORT . PIN ' Select HPWM port and bit for CCP2 module.

Seealso: PWM, PULSOUT, SERVO.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

HRSIN

Syntax
Variable = HRSIN , { Timeout , Timeout Label }

or
HRSIN { Timeout , Timeout Label } , { Parity Error Label } , Modifiers , Variable {, Variable... }

Overview
Receive one or more values from the serial port on devices that contain a hardware USART.

Operators

Timeout is an OPTIONAL value for the length of time the HRSIN command will wait before
jumping to label TIMEOUT LABEL. Timeout is specified in 1 millisecond units.

Timeout Label is an OPTIONAL valid BASIC label where HRSIN will jump to in the event that
a character has not been received within the time specified by TIMEOUT.

Parity Error Label is an OPTIONAL valid BASIC label where HRSIN will jump to in the event
that a PARITY error is received. Parity is set using DECLARES. Parity Error detecting is not
supported in the inline version of HRSIN (first syntax example above).

Modifier is one of the many formatting modifiers, explained below.

Variable is a BIT, BYTE, WORD, or DWORD variable, that will be loaded by HRSIN.

Example
" Receive values serially and timeout if no reception after 1 second (1000ms).
DEVICE 16F877

XTAL =4

HSERIAL_BAUD = 9600 ' Set baud rate to 9600

HSERIAL_RCSTA = %10010000 " Enable serial port and continuous receive
HSERIAL_TXSTA = %00100000 " Enable transmit and asynchronous mode
HSERIAL_CLEAR = ON " Optionally clear the buffer before receiving

DIM VAR1 AS BYTE

Loop: VAR1 = HRSIN , {1000, Timeout} ' Receive a byte serially into VAR1
PRINT DEC VAR1 ,"" ' Display the byte received
GOTO Loop " Loop forever

Timeout:
CLS
PRINT "TIMED OUT" ' Display an error if HRSIN timed out
STOP

HRSIN MODIFIERS.

As we already know, RSIN will wait for and receive a single byte of data, and store it in a vari-
able . If the PICmicro™ were connected to a PC running a terminal program and the user
pressed the "A" key on the keyboard, after the HRSIN command executed, the variable would
contain 65, which is the ASCII code for the letter "A"

What would happen if the user pressed the "1" key? The result would be that the variable would
contain the value 49 (the ASCII code for the character "1"). This is an important point to re-
member: every time you press a character on the keyboard, the computer receives the ASCII
value of that character. It is up to the receiving side to interpret the values as necessary.

220

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

In this case, perhaps we actually wanted the variable to end up with the value 1, rather than the
ASCII code 49.

The HRSIN command provides a modifier, called the decimal modifier, which will interpret this
for us. Look at the following code: -

DIM SERDATA AS BYTE
HRSIN DEC SERDATA

Notice the decimal modifier in the HRSIN command that appears just to the left of the SER-
DATA variable. This tells HRSIN to convert incoming text representing decimal numbers into
true decimal form and store the result in SERDATA. If the user running the terminal software
pressed the "1", "2" and then "3" keys followed by a space or other non-numeric text, the value
123 will be stored in the variable SERDATA, allowing the rest of the program to perform any
numeric operation on the variable.

Without the decimal modifier, however, you would have been forced to receive each character
("1", "2" and "3") separately, and then would still have to do some manual conversion to arrive
at the number 123 (one hundred twenty three) before you can do the desired calculations on it.

The decimal modifier is designed to seek out text that represents decimal numbers. The char-
acters that represent decimal numbers are the characters "0" through "9". Once the HRSIN
command is asked to use the decimal modifier for a particular variable, it monitors the incoming
serial data, looking for the first decimal character. Once it finds the first decimal character, it will
continue looking for more (accumulating the entire multi-digit number) until is finds a non-
decimal numeric character. Remember that it will not finish until it finds at least one decimal
character followed by at least one non-decimal character.

To illustrate this further, examine the following examples (assuming we're using the same code
example as above): -

Serial input: "ABC"
Result: The program halts at the HRSIN command, continuously waiting for decimal text.

Serial input: "123" (with no characters following it)

Result: The program halts at the HRSIN command. It recognises the characters "1", "2" and
"3" as the number one hundred twenty three, but since no characters follow the "3", it waits
continuously, since there's no way to tell whether 123 is the entire number or not.

Serial input: "123" (followed by a space character)

Result: Similar to the above example, except once the space character is received, the pro-
gram knows the entire number is 123, and stores this value in SERDATA. The HRSIN com-
mand then ends, allowing the next line of code to run.

Serial input: "123A"

Result: Same as the example above. The "A" character, just like the space character, is the
first non-decimal text after the number 123, indicating to the program that it has received the
entire number.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Serial input: "ABCD123EFGH"

Result: Similar to examples 3 and 4 above. The characters "ABCD" are ignored (since they're
not decimal text), the characters "123" are evaluated to be the number 123 and the following
character, "E", indicates to the program that it has received the entire number.

The final result of the DEC modifier is limited to 16 bits (up to the value 65535). If a value larger
than this is received by the decimal modifier, the end result will be incorrect because the result
rolled-over the maximum 16-bit value. Therefore, HRSIN modifiers may not (at this time) be
used to load DWORD (32-bit) variables.

The decimal modifier is only one of a family of conversion modifiers available with HRSIN See
below for a list of available conversion modifiers. All of the conversion modifiers work similar to
the decimal modifier (as described above). The modifiers receive bytes of data, waiting for the
first byte that falls within the range of characters they accept (e.g., "0" or "1" for binary, "0" to
"9" for decimal, "0" to "9" and "A" to "F" for hex. Once they receive a numeric character, they
keep accepting input until a non-numeric character arrives, or in the case of the fixed length
modifiers, the maximum specified number of digits arrives.

While very effective at filtering and converting input text, the modifiers aren't completely fool-
proof. As mentioned before, many conversion modifiers will keep accepting text until the first
non-numeric text arrives, even if the resulting value exceeds the size of the variable. After
HRSIN, a BYTE variable will contain the lowest 8 bits of the value entered and a WORD (16-
bits) would contain the lowest 16 bits. You can control this to some degree by using a modifier
that specifies the number of digits, such as DEC2, which would accept values only in the range
of 0 to 99.

Conversion Modifier Type of Number Numeric Characters Accepted
DEC{1..10} Decimal, optionally limited 0 through 9
to 1 - 10 digits
HEX{1..8} Hexadecimal, optionally limited 0 through 9,
to 1 - 8 digits A through F
BIN{1..32} Binary, optionally limited 0,1
to 1 - 32 digits

A variable preceded by BIN will receive the ASCII representation of its binary value.
For example, if BIN VARL1 is specified and "1000" is received, VAR1 will be set to 8.

A variable preceded by DEC will receive the ASCII representation of its decimal value.
For example, if DEC VARL1 is specified and "123" is received, VAR will be set to 123.

A variable preceded by HEX will receive the ASCII representation of its hexadecimal value.
For example, if HEX VARL1 is specified and "FE" is received, VAR1 will be set to 254.

SKIP followed by a count will skip that many characters in the input stream.
For example, SKIP 4 will skip 4 characters.

The HRSIN command can be configured to wait for a specified sequence of characters before it
retrieves any additional input. For example, suppose a device attached to the PICmicro™ is
known to send many different sequences of data, but the only data you wish to observe hap-
pens to appear right after the unique characters, "XYZ". A modifier named WAIT can be used
for this purpose: -

HRSIN WAIT("XYZ") , SERDATA

222

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

The above code waits for the characters "X", "Y" and "Z" to be received, in that order, then it
receives the next data byte and places it into variable SERDATA.

STR modifier.
The HRSIN command also has a modifier for handling a string of characters, named STR.

The STR modifier is used for receiving a string of characters into a byte array variable.

A string is a set of characters that are arranged or accessed in a certain order. The characters
"ABC" would be stored in a string with the "A" first, followed by the "B" then followed by the "C".
A byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string "ABC" would be stored in a byte
array containing three bytes (elements).

Below is an example that receives ten bytes and stores them in the 10-byte array, SER-
STRING: -

DIM SerString[10] AS BYTE ' Create a 10-byte array.
HRSIN STR SerString " Fill the array with received data.
PRINT STR SerString ' Display the string.

If the amount of received characters is not enough to fill the entire array, then a formatter may
be placed after the array's name, which will only receive characters until the specified length is
reached. For example: -

DIM SerString[10] AS BYTE ' Create a 10-byte array.
HRSIN STR SerString\5 " Fill the first 5-bytes of the array
PRINT STR SerString\5 ' Display the 5-character string.

The example above illustrates how to fill only the first n bytes of an array, and then how to dis-
play only the first n bytes of the array. n refers to the value placed after the backslash.

Because of its complexity, serial communication can be rather difficult to work with at times. Us-
ing the guidelines below when developing a project using the HRSIN and HRSOUT commands
may help to eliminate some obvious errors: -

Always build your project in steps.

Start with small, manageable pieces of code, (that deal with serial communication) and test
them, one individually.

Add more and more small pieces, testing them each time, as you go.

Never write a large portion of code that works with serial communication without testing its
smallest workable pieces first.

Pay attention to timing.

Be careful to calculate and overestimate the amount of time, operations should take within the
PICmicro™ for a given oscillator frequency. Misunderstanding the timing constraints is the
source of most problems with code that communicate serially. If the serial communication in
your project is bi-directional, the above statement is even more critical.

Pay attention to wiring.

Take extra time to study and verify serial communication wiring diagrams. A mistake in wiring
can cause strange problems in communication, or no communication at all. Make sure to con-
nect the ground pins (Vss) between the devices that are communicating serially.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Verify port setting on the PC and in the HRSIN / HRSOUT commands.

Unmatched settings on the sender and receiver side will cause garbled data transfers or no
data transfers. This is never more critical than when a line transceiver is used(i.e. MAX232).
Always remember that a line transceiver inverts the serial polarity.

If the serial data received is unreadable, it is most likely caused by a baud rate setting error, or
a polarity error.

If receiving data from another device that is not a PICmicro™, try to use baud rates of 9600 and
below, or alternatively, use a higher frequency crystal.

Because of additional overheads in the PICmicro™, and the fact that the HRSIN command only
offers a 2 level receive buffer for serial communication, received data may sometimes be
missed or garbled. If this occurs, try lowering the baud rate, or increasing the crystal frequency.
Using simple variables (not arrays) will also increase the chance that the PICmicro™ will re-
ceive the data properly.

Declares
There are five DECLARE directives for use with HRSIN. These are: -

DECLARE HSERIAL_BAUD Constant value
Sets the BAUD rate that will be used to receive a value serially. The baud rate is calculated us-
ing the XTAL frequency declared in the program. The default baud rate if the DECLARE is not
included in the program listing is 2400 baud.

DECLARE HSERIAL_RCSTA Constant value (0 to 255)

HSERIAL_RCSTA, sets the respective PICmicro™ hardware register RCSTA, to the value in
the DECLARE. See the Microchip data sheet for the device used for more information regard-
ing this register.

DECLARE HSERIAL_TXSTA Constant value (0 to 255)

HSERIAL_TXSTA, sets the respective PICmicro™ hardware register, TXSTA, to the value in
the DECLARE. See the Microchip data sheet for the device used for more information regard-
ing this register. The TXSTA register BRGH bit (bit 2) controls the high speed mode for the
baud rate generator. Certain baud rates at certain oscillator speeds require this bit to be set to
operate properly. To do this, set HSERIAL_TXSTA to a value of 24h instead of the normal 20h.
Refer to the Microchip data sheet for the hardware serial port baud rate tables and additional
information.

DECLARE HSERIAL_PARITY ODD or EVEN

Enables/Disables parity on the serial port. For both HRSIN and HRSOUT The default serial
data format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop
bit) or 701 (7data bits, odd parity, 1 stop bit) may be enabled using the HSERIAL_PARITY de-
clare.

DECLARE HSERIAL_PARITY = EVEN " Use if even parity desired
DECLARE HSERIAL_PARITY = ODD " Use if odd parity desired

DECLARE HSERIAL_CLEAR ON or OFF
Clear the overflow error bit before commencing a read.

Because the hardware serial port only has a 2-byte input buffer, it can easily overflow is charac-
ters are not read from it often enough. When this occurs, the USART stops accepting any new

224

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

characters, and requires resetting. This overflow error can be reset by strobing the CREN bit
within the RCSTA register. Example: -

RCSTA4=0
RCSTA4=1

or
CLEAR RCSTA4
SET RCSTA.4

Alternatively, the HSERIAL_CLEAR declare can be used to automatically clear this error, even
if no error occurred. However, the program will not know if an error occurred while reading,
therefore some characters may be lost.

DECLARE HSERIAL_CLEAR = ON

Notes

HRSIN can only be used with devices that contain a hardware USART. See the specific de-
vice's data sheet for further information concerning the serial input pin as well as other relevant
parameters.

Since the serial transmission is done in hardware, it is not possible to set the levels to an in-
verted state to eliminate an RS232 driver. Therefore a suitable driver should be used with
HRSIN. Just such a circuit using a MAX232 is shown below.

5 Volts

o
J. c3
. 16 ¥ 1uF
1C?: - Cl [—1ci+ vcc v+ JI
u WF | ! 3

C1-
c2 F—co+
1uF LCZ- MAX232

From PIC

Serial Output o—nTlin Tlout 174
=Ir2in T2outj—
To PIC O— R1out R1in 3 <
Serial Input —jR2out R2in = RX| [TX GND

V-
GND L 1 g ? 9 5 9_Way
15 C4 \§ ¢ D-Socket
ov 'T' 1uF
O

A simpler, and somewhat more elegant transceiver circuit using only 5 discrete components is

shown in the diagram below.
+5V —> ﬂ:[:]
> ¢ O
Rl O 0|00
o 4.7k 0(C
RB7 T1 SERIAL
BC147 . N
R2
10k
T2 = v § R3
BCR183 A 4.7k

o %ﬁ@
RB6 SERIAL
out

Seealso: DECLARE, RSIN, RSOUT, SERIN, SEROUT, HRSOUT, HSERIN, HSEROUT.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

HRSOUT

Syntax
HRSOUT Item {, Item... }

Overview
Transmit one or more Items from the hardware serial port on devices that support asynchro-
nous serial communications in hardware.

Operators

Item may be a constant, variable, expression, string list, or inline command.

There are no operators as such, instead there are modifiers. For example, if an at sign'@" pre-
cedes an Item, the ASCII representation for each digit is transmitted.

The modifiers are listed below: -

Modifier Operation

AT ypos,xpos Position the cursor on a serial LCD

CLS Clear a serial LCD (also creates a 30ms delay)
BIN{1..32} Send binary digits

DEC{1..10} Send decimal digits

HEX{1..8} Send hexadecimal digits

SBIN{1..32} Send signed binary digits

SDEC{1..10} Send signed decimal digits

SHEX{1..8} Send signed hexadecimal digits

IBIN{1..32} Send binary digits with a preceding '%' identifier
IDEC{1..10} Send decimal digits with a preceding '#' identifier
IHEX{1..8} Send hexadecimal digits with a preceding '$' identifier
ISBIN{1..32} Send signed binary digits with a preceding '%' identifier
ISDEC{1..10} Send signed decimal digits with a preceding '#' identifier
ISHEX{1..8} Send signed hexadecimal digits with a preceding '$' identifier
REP c\n Send character c repeated n times

STR array\n Send all or part of an array

CSTR cdata Send string data defined in a CDATA statement.

The numbers after the BIN, DEC, and HEX modifiers are optional. If they are omitted, then the
default is all the digits that make up the value will be displayed.

If a floating point variable is to be displayed, then the digits after the DEC modifier determine
how many remainder digits are send. i.e. numbers after the decimal point.

DIM FLT AS FLOAT
FLT = 3.145
HRSOUT DEC2 FLT ' Send 2 values after the decimal point

The above program will send 3.14

If the digit after the DEC modifier is omitted, then 3 values will be displayed after the decimal
point.

226

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

DIM FLT AS FLOAT
FLT = 3.1456
HRSOUT DEC FLT ' Send 3 values after the decimal point

The above program will send 3.145

There is no need to use the SDEC modifier for signed floating point values, as the compiler's
DEC modifier will automatically display a minus result: -

DIM FLT AS FLOAT

FLT =-3.1456

HRSOUT DEC FLT ' Send 3 values after the decimal point
The above program will send -3.145

HEX or BIN modifiers cannot be used with floating point values or variables.

The Xpos and Ypos values in the AT modifier both start at 1. For example, to place the text
"HELLO WORLD" on line 1, position 1, the code would be: -

HRSOUT AT1,1, "HELLO WORLD"

Example 1
DIM VAR1 AS BYTE
DIM WRD AS WORD
DIM DWD AS DWORD

HRSOUT "Hello World" ' Display the text "Hello World"

HRSOUT "VAR1=", DEC VAR1 ' Display the decimal value of VAR1
HRSOUT "VAR1=", HEX VAR1 ' Display the hexadecimal value of VAR1
HRSOUT "VAR1=", BIN VAR1 ' Display the binary value of VAR1
HRSOUT "VAR1=",6 @VAR1 ' Display the decimal value of VAR1

HRSOUT "DWD=", HEX6 DWD ' Display 6 hex characters of a DWORD type variable

Example 2
' Display a negative value on a serial LCD.
SYMBOL NEGATIVE = -200
HRSOUT AT 1, 1, SDEC NEGATIVE

Example 3
' Display a negative value on a serial LCD with a preceding identifier.
HRSOUT AT 1,1, ISHEX -$1234

Example 3 will produce the text "$-1234" on the LCD.

Some PICmicros such as the 16F87x, and 18FXXX range have the ability to read and write to
their own flash memory. And although writing to this memory too many times is unhealthy for
the PICmicro™, reading this memory is both fast, and harmless. Which offers a unique form of
data storage and retrieval, the CDATA command proves this, as it uses the mechanism of read-
ing and storing in the PICmicro's flash memory.

Combining the unique features of the ‘self modifying PICmicro's' with a string format, the com-
piler is capable of reducing the overhead of printing, or transmitting large amounts of text data.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

The CSTR modifier may be used in commands that deal with text processing i.e. SEROUT,
HSEROUT, and PRINT etc.

The CSTR modifier is used in conjunction with the CDATA command. The CDATA command is
used for initially creating the string of characters: -

STRING1: CDATA "HELLO WORLD", 0

The above line of case will create, in flash memory, the values that make up the ASCII text
"HELLO WORLD", at address STRING1. Note the NULL terminator after the ASCII text.

NULL terminated means that a zero (NULL) is placed at the end of the string of ASCII charac-
ters to signal that the string has finished.

To display, or transmit this string of characters, the following command structure could be used:
HRSOUT CSTR STRING1

The label that declared the address where the list of CDATA values resided, now becomes the
string's name. In a large program with lots of text formatting, this type of structure can save
quite literally hundreds of bytes of valuable code space.

Try both these small programs, and you'll see that using CSTR saves a few bytes of code: -
First the standard way of displaying text: -

DEVICE 16F877

CLS

HRSOUT "HELLO WORLD",13
HRSOUT "HOW ARE YOU?",13
HRSOUT "I AM FINE!",13
STOP

Now using the CSTR modifier: -

CLS

HRSOUT CSTR TEXT1
HRSOUT CSTR TEXT2
HRSOUT CSTR TEXT3
STOP

TEXT1: CDATA "HELLO WORLD", 13, 0
TEXT2: CDATA "HOW ARE YOU?", 13,0
TEXT3: CDATA "I AM FINE!", 13,0

Again, note the NULL terminators after the ASCII text in the CDATA commands. Without these,
the PICmicro™ will continue to transmit data in an endless loop.

The term 'virtual string' relates to the fact that a string formed from the CDATA command can-
not be written too, but only read from.

228

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

The STR modifier is used for sending a string of bytes from a byte array variable. A string is a
set of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3
would be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A
byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string 1,2,3 would be stored in a byte
array containing three bytes (elements).

Below is an example that displays four bytes (from a byte array): -

DIM MYARRAY[10] AS BYTE ' Create a 10-byte array.
MYARRAY [0] = "H" ' Load the first 5 bytes of the array
MYARRAY [1] = "E" " With the data to send

MYARRAY [2] ="L"

MYARRAY [3] ="L"

MYARRAY [4] ="O"
HRSOUT STR MYARRAY \5 ' Display a 5-byte string.

Note that we use the optional \n argument of STR. If we didn't specify this, the PICmicro™
would try to keep sending characters until all 10 bytes of the array were transmitted. Since we
do not wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 5
bytes.

The above example may also be written as: -

DIM MYARRAY [10] AS BYTE ' Create a 10-byte array.
STR MYARRAY = "HELLO" ' Load the first 5 bytes of the array
HRSOUT STR MYARRAY \5 ' Send 5-byte string.

The above example, has exactly the same function as the previous one. The only difference is
that the string is now constructed using STR as a command instead of a modifier.

Declares
There are four DECLARE directives for use with HRSOUT. These are: -

DECLARE HSERIAL_BAUD Constant value

Sets the BAUD rate that will be used to transmit a value serially. The baud rate is calculated
using the XTAL frequency declared in the program. The default baud rate if the DECLARE is
not included in the program listing is 2400 baud.

DECLARE HSERIAL_RCSTA Constant value (0 to 255)

HSERIAL_RCSTA, sets the respective PICmicro™ hardware register RCSTA, to the value in
the DECLARE. See the Microchip data sheet for the device used for more information regard-
ing this register. Refer to the upgrade manual pages for a description of the RCSTA register.

DECLARE HSERIAL_TXSTA Constant value (0 to 255)

HSERIAL_TXSTA, sets the respective PICmicro™ hardware register, TXSTA, to the value in
the DECLARE. See the Microchip data sheet for the device used for more information regard-
ing this register. The TXSTA register BRGH bit (bit 2) controls the high speed mode for the
baud rate generator. Certain baud rates at certain oscillator speeds require this bit to be set to
operate properly. To do this, set HSERIAL_TXSTA to a value of 24h instead of the normal 20h.
Refer to the Microchip data sheet for the hardware serial port baud rate tables and additional
information. Refer to the upgrade manual pages for a description of the TXSTA register.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

DECLARE HSERIAL_PARITY ODD or EVEN

Enables/Disables parity on the serial port. For both HRSOUT and HRSIN The default serial
data format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop
bit) or 701 (7data bits, odd parity, 1 stop bit) may be enabled using the HSERIAL_PARITY de-
clare.

DECLARE HSERIAL_PARITY = EVEN " Use if even parity desired
DECLARE HSERIAL_PARITY = 0ODD " Use if odd parity desired

Notes

HRSOUT can only be used with devices that contain a hardware USART. See the specific de-
vice's data sheet for further information concerning the serial input pin as well as other relevant
parameters.

Since the serial transmission is done in hardware, it is not possible to set the levels to an in-
verted state in order to eliminate an RS232 driver. Therefore a suitable driver should be used
with HRSOUT. See HRSIN for circuits.

See also: DECLARE, RSIN, RSOUT, SERIN, SEROUT, HRSIN, HSERIN, HSEROUT.

230

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

HSERIN

Syntax
HSERIN Timeout , Timeout Label , Parity Error Label , [Modifiers , Variable {, Variable... }]

Overview
Receive one or more values from the serial port on devices that contain a hardware USART.
(Compatible with the melabs compiler)

Operators

Timeout is an OPTIONAL value for the length of time the HSERIN command will wait before
jumping to label Timeout Label. Timeout is specified in 1 millisecond units.

Timeout Label is an OPTIONAL valid BASIC label where HSERIN will jump to in the event that
a character has not been received within the time specified by Timeout.

Parity Error Label is an OPTIONAL valid BASIC label where HSERIN will jump to in the event
that a PARITY error is received. Parity is set using DECLARES. Parity Error detecting is not
supported in the inline version of HSERIN (first syntax example above).

Modifier is one of the many formatting modifiers, explained below.

Variable is a BIT, BYTE, WORD, or DWORD variable, that will be loaded by HSERIN.

Example
' Receive values serially and timeout if no reception after 1 second (1000ms).
DEVICE 16F877

XTAL =4

HSERIAL_BAUD = 9600 ' Set baud rate to 9600

HSERIAL_RCSTA = %10010000 ' Enable serial port and continuous receive
HSERIAL_TXSTA = %00100000 ' Enable transmit and asynchronous mode
HSERIAL_CLEAR = ON ' Optionally clear the buffer before receiving

DIM VAR1 AS BYTE

Loop: HSERIN 1000, Timeout , [VAR1] ' Receive a byte serially into VAR1
PRINT DEC VAR1 ," " ' Display the byte received
GOTO Loop " Loop forever

Timeout:
CLS
PRINT "TIMED OUT" ' Display an error if HSERIN timed out
STOP

HSERIN MODIFIERS.

As we already know, HSERIN will wait for and receive a single byte of data, and store it in a
variable . If the PICmicro™ were connected to a PC running a terminal program and the user
pressed the "A" key on the keyboard, after the HSERIN command executed, the variable would
contain 65, which is the ASCII code for the letter "A"

What would happen if the user pressed the "1" key? The result would be that the variable would
contain the value 49 (the ASCII code for the character "1"). This is an important point to re-
member: every time you press a character on the keyboard, the computer receives the ASCII
value of that character. It is up to the receiving side to interpret the values as necessary. In this
case, perhaps we actually wanted the variable to end up with the value 1, rather than the ASCII
code 49.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

The HSERIN command provides a modifier, called the decimal modifier, which will interpret this
for us. Look at the following code: -

DIM SERDATA AS BYTE
HSERIN [DEC SERDATA|]

Notice the decimal modifier in the HSERIN command that appears just to the left of the SER-
DATA variable. This tells HSERIN to convert incoming text representing decimal numbers into
true decimal form and store the result in SERDATA. If the user running the terminal software
pressed the "1", "2" and then "3" keys followed by a space or other non-numeric text, the value
123 will be stored in the variable SERDATA, allowing the rest of the program to perform any
numeric operation on the variable.

Without the decimal modifier, however, you would have been forced to receive each character
("1", "2" and "3") separately, and then would still have to do some manual conversion to arrive
at the number 123 (one hundred twenty three) before you can do the desired calculations on it.

The decimal modifier is designed to seek out text that represents decimal numbers. The char-
acters that represent decimal numbers are the characters "0" through "9". Once the HSERIN
command is asked to use the decimal modifier for a particular variable, it monitors the incoming
serial data, looking for the first decimal character. Once it finds the first decimal character, it will
continue looking for more (accumulating the entire multi-digit number) until is finds a non-
decimal numeric character. Remember that it will not finish until it finds at least one decimal
character followed by at least one non-decimal character.

To illustrate this further, examine the following examples (assuming we're using the same code
example as above): -

Serial input: "ABC"
Result: The program halts at the HSERIN command, continuously waiting for decimal text.

Serial input: "123" (with no characters following it)

Result: The program halts at the HSERIN command. It recognises the characters "1", "2" and
"3" as the number one hundred twenty three, but since no characters follow the "3", it waits
continuously, since there's no way to tell whether 123 is the entire number or not.

Serial input: "123" (followed by a space character)

Result: Similar to the above example, except once the space character is received, the pro-
gram knows the entire number is 123, and stores this value in SERDATA. The HSERIN com-
mand then ends, allowing the next line of code to run.

Serial input: "123A"

Result: Same as the example above. The "A" character, just like the space character, is the
first non-decimal text after the number 123, indicating to the program that it has received the
entire number.

Serial input: "ABCD123EFGH"

Result: Similar to examples 3 and 4 above. The characters "ABCD" are ignored (since they're
not decimal text), the characters "123" are evaluated to be the number 123 and the following
character, "E", indicates to the program that it has received the entire number.

The final result of the DEC modifier is limited to 16 bits (up to the value 65535). If a value larger
than this is received by the decimal modifier, the end result will be incorrect because the

232

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

result rolled-over the maximum 16-bit value. Therefore, HSERIN modifiers may not (at this
time) be used to load DWORD (32-bit) variables.

The decimal modifier is only one of a family of conversion modifiers available with HSERIN See
below for a list of available conversion modifiers. All of the conversion modifiers work similar to
the decimal modifier (as described above). The modifiers receive bytes of data, waiting for the
first byte that falls within the range of characters they accept (e.g., "0" or "1" for binary, "0" to
"9" for decimal, "0" to "9" and "A" to "F" for hex. Once they receive a numeric character, they
keep accepting input until a non-numeric character arrives, or in the case of the fixed length
modifiers, the maximum specified number of digits arrives.

While very effective at filtering and converting input text, the modifiers aren't completely fool-
proof. As mentioned before, many conversion modifiers will keep accepting text until the first
non-numeric text arrives, even if the resulting value exceeds the size of the variable. After
HSERIN, a BYTE variable will contain the lowest 8 bits of the value entered and a WORD (16-
bits) would contain the lowest 16 bits. You can control this to some degree by using a modifier
that specifies the number of digits, such as DEC2, which would accept values only in the range
of 0 to 99.

Conversion Modifier Type of Number Numeric Characters Accepted
DEC{1..10} Decimal, optionally limited 0 through 9
to 1 - 10 digits
HEX{1..8} Hexadecimal, optionally limited 0 through 9,
to 1 - 8 digits A through F
BIN{1..32} Binary, optionally limited 0,1
to 1 - 32 digits

A variable preceded by BIN will receive the ASCII representation of its binary value.
For example, if BIN VAR1 is specified and "1000" is received, VAR1 will be set to 8.

A variable preceded by DEC will receive the ASCII representation of its decimal value.
For example, if DEC VARL is specified and "123" is received, VAR1 will be set to 123.

A variable preceded by HEX will receive the ASCII representation of its hexadecimal value.
For example, if HEX VARL is specified and "FE" is received, VAR1 will be set to 254.

SKIP followed by a count will skip that many characters in the input stream.
For example, SKIP 4 will skip 4 characters.

The HSERIN command can be configured to wait for a specified sequence of characters before
it retrieves any additional input. For example, suppose a device attached to the PICmicro™ is
known to send many different sequences of data, but the only data you wish to observe hap-
pens to appear right after the unique characters, "XYZ". A modifier named WAIT can be used
for this purpose: -

HSERIN [WAIT("XYZ") , SERDATA]

The above code waits for the characters "X", "Y" and "Z" to be received, in that order, then it
receives the next data byte and places it into variable SERDATA.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

STR modifier.
The HSERIN command also has a modifier for handling a string of characters, named STR.

The STR modifier is used for receiving a string of characters into a byte array variable.

A string is a set of characters that are arranged or accessed in a certain order. The characters
"ABC" would be stored in a string with the "A" first, followed by the "B" then followed by the "C".
A byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string "ABC" would be stored in a byte
array containing three bytes (elements).

Below is an example that receives ten bytes and stores them in the 10-byte array, SER-
STRING: -

DIM SerString[10] AS BYTE ' Create a 10-byte array.
HSERIN [STR SerString] " Fill the array with received data.
PRINT STR SerString ' Display the string.

If the amount of received characters is not enough to fill the entire array, then a formatter may
be placed after the array's name, which will only receive characters until the specified length is
reached. For example: -

DIM SerString[10] AS BYTE ' Create a 10-byte array.
HSERIN [STR SerString\5] " Fill the first 5-bytes of the array
PRINT STR SerString\5 ' Display the 5-character string.

The example above illustrates how to fill only the first n bytes of an array, and then how to dis-
play only the first n bytes of the array. n refers to the value placed after the backslash.

Because of its complexity, serial communication can be rather difficult to work with at times. Us-
ing the guidelines below when developing a project using the HSERIN and HSEROUT com-
mands may help to eliminate some obvious errors: -

Always build your project in steps.

Start with small, manageable pieces of code, (that deal with serial communication) and test
them, one individually.

Add more and more small pieces, testing them each time, as you go.

Never write a large portion of code that works with serial communication without testing its
smallest workable pieces first.

Pay attention to timing.

Be careful to calculate and overestimate the amount of time, operations should take within the
PICmicro™ for a given oscillator frequency. Misunderstanding the timing constraints is the
source of most problems with code that communicate serially. If the serial communication in
your project is bi-directional, the above statement is even more critical.

Pay attention to wiring.

Take extra time to study and verify serial communication wiring diagrams. A mistake in wiring
can cause strange problems in communication, or no communication at all. Make sure to con-
nect the ground pins (Vss) between the devices that are communicating serially.

234

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Verify port setting on the PC and in the HSERIN / HSEROUT commands.

Unmatched settings on the sender and receiver side will cause garbled data transfers or no
data transfers. This is never more critical than when a line transceiver is used(i.e. MAX232).
Always remember that a line transceiver inverts the serial polarity.

If the serial data received is unreadable, it is most likely caused by a baud rate setting error, or
a polarity error.

If receiving data from another device that is not a PICmicro™, try to use baud rates of 9600 and
below, or alternatively, use a higher frequency crystal.

Because of additional overheads in the PICmicro™, and the fact that the HSERIN command of-
fers a 2 level hardware receive buffer for serial communication, received data may sometimes
be missed or garbled. If this occurs, try lowering the baud rate, or increasing the crystal fre-
quency. Using simple variables (not arrays) will also increase the chance that the PICmicro™
will receive the data properly.

Declares
There are five DECLARE directives for use with HSERIN . These are: -

DECLARE HSERIAL_BAUD Constant value
Sets the BAUD rate that will be used to receive a value serially. The baud rate is calculated us-
ing the XTAL frequency declared in the program. The default baud rate if the DECLARE is not
included in the program listing is 2400 baud.

DECLARE HSERIAL_RCSTA Constant value (0 to 255)

HSERIAL_RCSTA, sets the respective PICmicro™ hardware register RCSTA, to the value in
the DECLARE. See the Microchip data sheet for the device used for more information regard-
ing this register.

DECLARE HSERIAL_TXSTA Constant value (0 to 255)

HSERIAL_TXSTA, sets the respective PICmicro™ hardware register, TXSTA, to the value in
the DECLARE. See the Microchip data sheet for the device used for more information regard-
ing this register. The TXSTA register BRGH bit (bit 2) controls the high speed mode for the
baud rate generator. Certain baud rates at certain oscillator speeds require this bit to be set to
operate properly. To do this, set HSERIAL_TXSTA to a value of 24h instead of the normal 20h.
Refer to the Microchip data sheet for the hardware serial port baud rate tables and additional
information.

DECLARE HSERIAL_PARITY ODD or EVEN

Enables/Disables parity on the serial port. For both HSERIN and HRSOUT The default serial
data format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop
bit) or 701 (7data bits, odd parity, 1 stop bit) may be enabled using the HSERIAL_PARITY de-
clare.

DECLARE HSERIAL_PARITY = EVEN " Use if even parity desired
DECLARE HSERIAL_PARITY = ODD ' Use if odd parity desired

DECLARE HSERIAL_CLEAR ON or OFF
Clear the overflow error bit before commencing a read.

Because the hardware serial port only has a 2-byte input buffer, it can easily overflow is charac-
ters are not read from it often enough. When this occurs, the USART stops accepting any new
characters, and requires resetting. This overflow error can be reset by strobing the CREN bit
within the RCSTA register.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

Example: -
RCSTA4=0
RCSTA4=1

or

CLEAR RCSTA4
SET RCSTA.4

Alternatively, the HSERIAL_CLEAR declare can be used to automatically clear this error, even
if no error occurred. However, the program will not know if an error occurred while reading,
therefore some characters may be lost.

DECLARE HSERIAL_CLEAR = ON

Notes

HSERIN can only be used with devices that contain a hardware USART. See the specific de-
vice's data sheet for further information concerning the serial input pin as well as other relevant
parameters.

Since the serial transmission is done in hardware, it is not possible to set the levels to an in-

verted state to eliminate an RS232 driver. Therefore a suitable driver should be used with
HSERIN . See HRSIN for suitable circuits.

Seealso: DECLARE, HSEROUT, HRSIN, HRSOUT, RSIN, RSOUT, SERIN, SEROUT.

236

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

HSEROUT

Syntax
HSEROUT [ltem {, ltem... }]

Overview
Transmit one or more Items from the hardware serial port on devices that support asynchro-
nous serial communications in hardware.

Operators

Item may be a constant, variable, expression, string list, or inline command.

There are no operators as such, instead there are modifiers. For example, if an at sign'@" pre-
cedes an Item, the ASCII representation for each digit is transmitted.

The modifiers are listed below: -

Modifier Operation

AT ypos,xpos Position the cursor on a serial LCD

CLS Clear a serial LCD (also creates a 30ms delay)
BIN{1..32} Send binary digits

DEC{1..10} Send decimal digits

HEX{1..8} Send hexadecimal digits

SBIN{1..32} Send signed binary digits

SDEC{1..10} Send signed decimal digits

SHEX{1..8} Send signed hexadecimal digits

IBIN{1..32} Send binary digits with a preceding '%' identifier
IDEC{1..10} Send decimal digits with a preceding '#' identifier
IHEX{1..8} Send hexadecimal digits with a preceding '$' identifier
ISBIN{1..32} Send signed binary digits with a preceding '%' identifier
ISDEC{1..10} Send signed decimal digits with a preceding '#' identifier
ISHEX{1..8} Send signed hexadecimal digits with a preceding '$' identifier
REP c\n Send character c repeated n times

STR array\n Send all or part of an array

CSTR cdata Send string data defined in a CDATA statement.

The numbers after the BIN, DEC, and HEX modifiers are optional. If they are omitted, then the
default is all the digits that make up the value will be displayed.

If a floating point variable is to be displayed, then the digits after the DEC modifier determine
how many remainder digits are send. i.e. numbers after the decimal point.

DIM FLT AS FLOAT
FLT =3.145
HSEROUT [DEC2 FLT] ' Send 2 values after the decimal point

The above program will send 3.14

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

If the digit after the DEC modifier is omitted, then 3 values will be displayed after the decimal
point.

DIM FLT AS FLOAT
FLT = 3.1456
HSEROUT [DEC FLT] " Send 3 values after the decimal point

The above program will send 3.145

There is no need to use the SDEC modifier for signed floating point values, as the compiler's
DEC modifier will automatically display a minus result: -

DIM FLT AS FLOAT

FLT =-3.1456

HSEROUT [DEC FLT] ' Send 3 values after the decimal point
The above program will send -3.145

HEX or BIN modifiers cannot be used with floating point values or variables.

The Xpos and Ypos values in the AT modifier both start at 1. For example, to place the text
"HELLO WORLD" on line 1, position 1, the code would be: -

HSEROUT [AT 1,1, "HELLO WORLD"]

Example 1
DIM VAR1 AS BYTE
DIM WRD AS WORD
DIM DWD AS DWORD

HSEROUT ["Hello World"] ' Display the text "Hello World"
HSEROUT ["VAR1=", DEC VAR1] ' Display the decimal value of VAR1
HSEROUT ["VAR1=", HEX VAR1] ' Display the hexadecimal value of VAR1
HSEROUT ["VAR1=", BIN VAR1] ' Display the binary value of VAR1
HSEROUT ['VAR1=",6 @VAR1] ' Display the decimal value of VAR1

' Display 6 hex characters of a DWORD type variable
HSEROUT ['DWD=", HEX6 DWD]

Example 2
' Display a negative value on a serial LCD.
SYMBOL NEGATIVE = -200
HSEROUT [AT 1, 1, SDEC NEGATIVE]

Example 3
' Display a negative value on a serial LCD with a preceding identifier.
HSEROUT [AT 1,1, ISHEX -$1234]

Example 3 will produce the text "$-1234" on the LCD.
Some PICmicros such as the 16F87x, and 18FXXX range have the ability to read and write to

their own flash memory. And although writing to this memory too many times is unhealthy for
the PICmicro™, reading this memory is both fast, and harmless.

238

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Which offers a unique form of data storage and retrieval, the CDATA command proves this, as
it uses the mechanism of reading and storing in the PICmicro's flash memory.

Combining the unique features of the ‘self modifying PICmicro's' with a string format, the com-
piler is capable of reducing the overhead of printing, or transmitting large amounts of text data.
The CSTR modifier may be used in commands that deal with text processing i.e. SEROUT,
HRSOUT, and PRINT etc.

The CSTR modifier is used in conjunction with the CDATA command. The CDATA command is
used for initially creating the string of characters: -

STRING1: CDATA "HELLO WORLD", 0

The above line of case will create, in flash memory, the values that make up the ASCII text
"HELLO WORLD", at address STRING1. Note the NULL terminator after the ASCII text.

NULL terminated means that a zero (NULL) is placed at the end of the string of ASCII charac-
ters to signal that the string has finished.

To display, or transmit this string of characters, the following command structure could be used:
HSEROUT [CSTR STRING1]

The label that declared the address where the list of CDATA values resided, now becomes the
string's name. In a large program with lots of text formatting, this type of structure can save
quite literally hundreds of bytes of valuable code space.

Try both these small programs, and you'll see that using CSTR saves a few bytes of code: -
First the standard way of displaying text: -

DEVICE 16F877

CLS

HSEROUT ["HELLO WORLD",13]
HSEROUT ["HOW ARE YOU?",13]
HSEROUT [l AM FINE!",13]
STOP

Now using the CSTR modifier: -

CLS

HSEROUT [CSTR TEXT1]
HSEROUT [CSTR TEXTZ2]
HSEROUT [CSTR TEXT3]
STOP

TEXT1: CDATA "HELLO WORLD", 13, 0
TEXT2: CDATA "HOW ARE YOU?", 13,0
TEXT3: CDATA "I AM FINE!", 13,0

Again, note the NULL terminators after the ASCII text in the CDATA commands. Without these,
the PICmicro™ will continue to transmit data in an endless loop.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

The term 'virtual string' relates to the fact that a string formed from the CDATA command can-
not be written too, but only read from.

The STR modifier is used for sending a string of bytes from a byte array variable. A string is a
set of bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3
would be stored in a string with the value 1 first, followed by 2 then followed by the value 3. A
byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string 1,2,3 would be stored in a byte
array containing three bytes (elements).

Below is an example that displays four bytes (from a byte array): -

DIM MYARRAY[10] AS BYTE ' Create a 10-byte array.
MYARRAY [0] = "H" ' Load the first 5 bytes of the array
MYARRAY [1] ="E" " With the data to send

MYARRAY [2] ="L"

MYARRAY [3] ="L"

MYARRAY [4] = "O"
HSEROUT [STR MYARRAY\5] ' Display a 5-byte string.

Note that we use the optional \n argument of STR. If we didn't specify this, the PICmicro™
would try to keep sending characters until all 10 bytes of the array were transmitted. Since we
do not wish all 10 bytes to be transmitted, we chose to tell it explicitly to only send the first 5
bytes.

The above example may also be written as: -

DIM MYARRAY [10] ASBYTE ' Create a 10-byte array.
STR MYARRAY ="HELLO" " Load the first 5 bytes of the array
HSEROUT [STR MYARRAY\5] ' Send 5-byte string.

The above example, has exactly the same function as the previous one. The only difference is
that the string is now constructed using STR as a command instead of a modifier.

Declares
There are four DECLARE directives for use with HSEROUT. These are: -

DECLARE HSERIAL_BAUD Constant value

Sets the BAUD rate that will be used to transmit a value serially. The baud rate is calculated
using the XTAL frequency declared in the program. The default baud rate if the DECLARE is
not included in the program listing is 2400 baud.

DECLARE HSERIAL_RCSTA Constant value (0 to 255)

HSERIAL_RCSTA, sets the respective PICmicro™ hardware register RCSTA, to the value in
the DECLARE. See the Microchip data sheet for the device used for more information regard-
ing this register. Refer to the upgrade manual pages for a description of the RCSTA register.

DECLARE HSERIAL_TXSTA Constant value (0 to 255)

HSERIAL_TXSTA, sets the respective PICmicro™ hardware register, TXSTA, to the value in
the DECLARE. See the Microchip data sheet for the device used for more information regard-
ing this register. The TXSTA register BRGH bit (bit 2) controls the high speed mode for the
baud rate generator. Certain baud rates at certain oscillator speeds require this bit to be set to
operate properly. To do this, set HSERIAL_TXSTA to a value of 24h instead of the normal 20h.

240

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

Refer to the Microchip data sheet for the hardware serial port baud rate tables and additional
information. Refer to the upgrade manual pages for a description of the TXSTA register.

DECLARE HSERIAL_PARITY ODD or EVEN

Enables/Disables parity on the serial port. For both HSEROUT and HSERIN The default serial
data format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop
bit) or 701 (7data bits, odd parity, 1 stop bit) may be enabled using the HSERIAL_PARITY de-
clare.

DECLARE HSERIAL_PARITY = EVEN ' Use if even parity desired
DECLARE HSERIAL_PARITY = ODD " Use if odd parity desired

Notes

HSEROUT can only be used with devices that contain a hardware USART. See the specific
device's data sheet for further information concerning the serial input pin as well as other rele-
vant parameters.

Since the serial transmission is done in hardware, it is not possible to set the levels to an in-
verted state in order to eliminate an RS232 driver. Therefore a suitable driver should be used
with HSEROUT . See HRSIN for circuit examples

Seealso: DECLARE, RSIN, RSOUT, SERIN, SEROUT, HSERIN, HSERIN.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

IF..THEN..ELSEIF..ELSE..ENDIF

Syntax
IF Comparison THEN Instruction : { Instruction }

Or, you can use the single line form syntax:

IF Comparison THEN Instruction : { Instruction } : ELSEIF Comparison THEN Instruction :
ELSE Instruction

Or, you can use the block form syntax:

IF Comparison THEN
Instruction(s)

ELSEIF Comparison THEN
Instruction(s)

{

ELSEIF Comparison THEN
Instruction(s)

}
ELSE
Instruction(s)
ENDIF

The curly braces signify optional conditions.
Note that ELSEIF is only available with the PROTON+ compiler.

Overview

Evaluates the comparison and, if it fulfils the criteria, executes expression. If comparison is not
fulfilled the instruction is ignored, unless an ELSE directive is used, in which case the code af-
ter it is implemented until the ENDIF is found.

When all the instruction are on the same line as the IF-THEN statement, all the instructions on
the line are carried out if the condition is fulfilled.

Operators
Comparison is composed of variables, numbers and comparators.
Instruction is the statement to be executed should the comparison fulfil the IF criteria

Example 1
SYMBOL LED = PORTB.4
VAR1 =3
LOW LED
IF VAR1 >4 THEN HIGH LED : DELAYMS 500 : LOW LED

In the above example, VARL1 is not greater than 4 so the IF criteria isn't fulfilled. Consequently,
the HIGH LED statement is never executed leaving the state of port pin PORTB.4 low. How-
ever, if we change the value of variable VARL1 to 5, then the LED will turn on for 500ms then off,
because VARL is now greater than 4, so fulfils the comparison criteria.

A second form of IF, evaluates the expression and if it is true then the first block of instructions
is executed. If it is false then the second block (after the ELSE) is executed.

242

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

The program continues after the ENDIF instruction.

The ELSE is optional. If it is missed out then if the expression is false the program continues
after the ENDIF line.

Example 2

IF X&1=0THEN
A=0
B=1

ELSE
A=1

ENDIF

IF Z=1THEN
A=0
B=0

ENDIF

Example 3
IF X =10 THEN
HIGH LED1
ELSEIF X =20 THEN
HIGH LED2
ELSE
HIGH LED3
ENDIF

A forth form of IF, allows the ELSE or ELSEIF to be placed on the same line as the IF: -

IF X =10 THEN HIGH LED1 : ELSEIF X =20 THEN HIGH LED2 : ELSE HIGH LED3
Notice that there is no ENDIF instruction. The comparison is automatically terminated by the
end of line condition. So in the above example, if X is equal to 10 then LED1 will illuminate, if X

equals 20 then LED will illuminate, otherwise, LED3 will illuminate.

The IF statement allows any type of variable, register or constant to be compared. A common
use for this is checking a Port bit: -

IF PORTA.0 =1 THEN HIGH LED : ELSE : LOW LED
Any commands on the same line after THEN will only be executed if the comparison if fulfilled: -
IF VAR1 =1 THEN HIGH LED : DELAYMS 500 : LOW LED

Notes
A GOTO command is optional after the THEN: -

IF PORTB.0 =1 THEN LABEL
THEN operand always required.
The PROTON+ compiler relies heavily on the THEN part. Therefore, if the THEN part of a con-
struct is left out of the code listing, a SYNTAX ERROR will be produced.

Seealso: BOOLEAN LOGIC OPERATORS, SELECT..CASE..ENDSELECT.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

INCLUDE

Syntax
INCLUDE "Filename"

Overview
Include another file at the current point in the compilation. All the lines in the new file are com-
piled as if they were in the current file at the point of the INCLUDE directive.

A Common use for the include command is shown in the example below. Here a small master
document is used to include a number of smaller library files which are all compiled together to
make the overall program.

Operators
Filename is any valid PROTONH+ file.

Example
" Main Program INCLUDES sub files
INCLUDE "STARTCODE.BAS"
INCLUDE "MAINCODE.BAS"
INCLUDE "ENDCODE.BAS"

Notes
The file to be included into the BASIC listing may be in one of three places on the hard drive.

1... Within the BASIC program's directory.
2... Within the Compiler's current directory.
3... Within the INC folder of the compiler's current directory.

The list above also shows the order in which they are searched for.

Using INCLUDE files to tidy up your code.

If the include file contains assembler subroutines then it must always be placed at the begin-
ning of the program. This allows the subroutine/s to be placed within the first bank of memory
(0..2048), thus avoiding any bank boundary errors. Placing the include file at the beginning of
the program also allows all of the variables used by the routines held within it to be pre-
declared. This again makes for a tidier program, as a long list of variables is not present in the
main program.

There are some considerations that must be taken into account when writing code for an in-
clude file, these are: -

1). Always jump over the subroutines.

When the include file is placed at the top of the program this is the first place that the compiler
starts, therefore, it will run the subroutine/s first and the RETURN command will be pointing to a
random place within the code. To overcome this, place a GOTO statement just before the sub-
routine starts.

244

Cronam hill Acenriatac | imitad 200K _ All Rinhte RDacanad Ravicinn 1 A 2NNE_.N2A17

PROTON+ Compiler. Development Suite.

For example: -

GOTO OVER_THIS_SUBROUTINE " Jump over the subroutine
' The subroutine is placed here

OVER_THIS_SUBROUTINE: * Jump to here first
2). Variable and Label names should be as meaningful as possible.

For example. Instead of naming a variable LOOP, change it to ISUB_LOOP. This will help
eliminate any possible duplication errors, caused by the main program trying to use the same
variable or label name. However, try not to make them too obscure as your code will be harder
to read and understand, it might make sense at the time of writing, but come back to it after a
few weeks and it will be meaningless.

3). Comment, Comment, and Comment some more.

This cannot be emphasised enough. ALWAYS place a plethora of remarks and comments. The
purpose of the subroutine/s within the include file should be clearly explained at the top of the
program, also, add comments after virtually every command line, and clearly explain the pur-
pose of all variables and constants used. This will allow the subroutine to be used many weeks
or months after its conception. A rule of thumb that | use is that | can understand what is going
on within the code by reading only the comments to the right of the command lines.

Croawmhill Acenriatac | imitad 20NKE _ All Rinhte RDacansad Ravicinn 1 A 20NE_N2_17

PROTON+ Compiler. Development Suite.

INC

Syntax
INC Variable

Overview
Increment a variable i.e. VAR1 =VAR1 + 1

Operators
Variable is a user defined variable

Example

VAR1 =1

REPEAT

PRINT DEC VAR1 ,""
DELAYMS 200

INC VAR1

UNTIL VAR1 > 10

The above exa