
Iosoft Ltd.
ChipWeb Wireless Development Kit

Software Manual

1. Introduction

The Iosoft Ltd. ChipWeb Wireless kit supports the development of
embedded 802.11b hardware and software, with particular reference to
Microchip PIC18xxx microcontroller family, and the ‘C’ programming
language. It is supplied in two parts:

o The ER21 development board
o The ChipWeb Wireless source-code package.

This manual describes the source-code package; it is assumed that you already
have an ER21 development board operating in a wireless environment,
configured as described in the hardware manual.

The basis for the source-code package is the Iosoft ChipWeb TCP/IP software for
PICmicro® microcontrollers as described in ‘TCP/IP Lean: Web Servers for
Embedded Systems’ by Jeremy Bentham (2nd edition ISBN 1-57820-108-X). You
will also need a copy of the free Intersil ‘PRISM Driver Programmer’s Manual’
AN9900 (also known as RM025), only available under Non-Disclosure Agreement
directly from Intersil (www.intersil.com).

For sales and support information on ChipWeb products, refer to the Iosoft Ltd.
Web site, www.iosoft.co.uk

 Page 1 © Iosoft Ltd. 2002

http://www.iosoft.co.uk/

2. Software development

Development environment
To use the source-code package, you will need a compiler for the Microchip
PIC18xxx family of microcontrollers. The Iosoft software is compatible with both
the CCS (www.ccsinfo.com) and Hi-Tech (www.htsoft.com) compilers – see the
README.TXT file for details.

Installation
The package is provided in a single zip file, which also indicates the version
number, e.g. P18WEB_123.ZIP for version 1.23. The new files are only
compatible with PIC18xxx-series microcontrollers, so it is recommended that a
separate directory be created to house them, e.g. \ChipWeb\P18Web, and the
source files unzipped into this. The unzip utility should preserve the original
directory structure, so that a sub-directory ROMDOCS is automatically created
as well. A README.TXT file has been included with release notes – please read
this before using the files.

Software structure
The structure of the software follows closely the existing ChipWeb model, as
described in ‘TCP/IP Lean’ 2nd edition, so this document will concentrate on the
changes made to that code to support a wireless interface. These are

o File names and data types

o The wireless device driver

o Network device selector

o Non-volatile configuration

o Web interface

The following items are new additions for the latest software release:

o Power saving

o Compile-time options

 Page 2 © Iosoft Ltd. 2002

3. File names and data types

File names
It is impossible for the wireless code to run on a PIC16xxx processor, due to the
additional memory requirements. For this reason, the new PIC18xxx-only
versions of the ChipWeb files have dropped the ‘P16’ prefix, for example
P16WEB.C has now become P18WEB.C.

New files
The following new files have been created:

P18_DEFS.C Function prototypes & definitions
P18_NET.C Network interface
P18_WLAN.C Wireless driver
WLAN.H Wireless definitions

All the functions prototypes are now collected in P18_DEFS.C, rather than being
scattered throughout the files.

The new software supports multiple network interfaces, with run-time
switching between them, so P18_NET.C provides this functionality.

The wireless code is concentrated in P18_WLAN.C, which is structurally similar
to the existing Ethernet driver, P18_ETH.C.

Changed files
Most of the files have has minor changes, due to the data type change described
below; the most significant changes are to P18_HTTP.C, where major
improvements have been made to the dynamic variable substitution code; these
are discussed in detail later.

Data types
Early versions of the CCS compiler didn’t support 32-bit long integers, so a
LWORD structure was defined to allow them to be handled in 16-bit chunks.

typedef union
{
 BYTE b[4];
 WORD w[2];
 unsigned INT32 l;
} LWORD_;

This is no longer necessary now that the compiler provides full 32-bit support,
so a new data type has been defined,

#define DWORD unsigned int32

The type DWORD is a compiler-independent 32-bit unsigned integer, and allows
the use of more consistent handling of function arguments, for example the
original software used the following definitions:

 Page 3 © Iosoft Ltd. 2002

void put_word(WORD w);
void put_lword(LWORD *lwp);

The use of a longword pointer is inconsistent with other put_xxx functions, so
the function has been changed to

void put_dword(DWORD dw);

Unfortunately, the CCS type checking seemingly can’t differentiate between
the pointer and the longword, so no error messages are generated if the wrong
type is used. For this reason, the new definition DWORD has been created,
rather than just re-defining LWORD – at least an error message is generated
every time the old definition is used.

 Page 4 © Iosoft Ltd. 2002

4. Wireless device driver

Intersil PRISM
The driver currently works with only one wireless chipset, the Intersil PRISM.
The earliest version, PRISM 1, is now obsolete so the development has
concentrated on the PRISM 2 variant. Later versions (PRISM 2.5 and 3) are
starting to appear on the market, and the software should (according to the
Intersil documentation) be compatible with these; refer to the software release
notes for details.

Due to the restrictions of the Intersil non-disclosure agreement (NDA), no
information can be provided on the internal architecture and operation of the
PRISM chipset; you will have to sign the Intersil NDA and get hold of this
information from them, which comes in the form of an excellent free 250-page
document, the ‘PRISM Driver Programmer’s Manual’, part number AN9900.

PCMCIA card interface
The wireless interface is provided in the form of a PCMCIA (PC) card, for which
the ER21 board provides an appropriate interface to the PICmicro. Once
initialised, the PCMCIA interface is transparent, so the I/O cycles to the PRISM
closely resemble those to the Ethernet controller. There is also a memory
interface on the card (called attribute memory), which gives information about
the chipset in standardised (tuple) format. A 10-bit address and 8-bit data bus is
connected to the PICmicro, together with 4 strobe lines; two to read/write the
attribute memory, and two to read/write the I/O devices.

The current software does not use the tuple information, but does show how it
can be displayed; after setting the data direction and an even-value address,
the Output Enable strobe is asserted, and the data appears after a short delay.

#define DATA_TO_NIC set_tris_d(ALL_OUT)
#define DATA_FROM_NIC set_tris_d(ALL_IN)
DEFBIT_0(PORTA, WC_OE_)
. . .
for (n=0; n<16; n++) // Dump first 16 CIS bytes for debug
 {
 b = wcfg_rd(n+n);
 printf("%02X ", b);
 }
. . .
/* Read a byte from PC card configuration */
BYTE wcfg_rd(BYTE reg)
{
 BYTE b;

 DATA_FROM_NIC;
 NIC_ADDR = reg;
 WC_OE_ = 0;
 DELAY_ONE_CYCLE;
 DELAY_ONE_CYCLE;
 b = NIC_DATA;
 WC_OE_ = 1;
 return(b);
}

 Page 5 © Iosoft Ltd. 2002

Before making any I/O cycles to the chipset, it is necessary to enable it via a
write cycle to the PCMCIA configuration option register, which is usually at
address 3E0 hex.

 WC_A8 = 1; // Set hi address bits
 WC_A9 = 1;
 wcfg_wr(0xe0, 1); // Write Config Option Reg at 3E0h
 WC_A8 = 0; // (to enable I/O mode)
 WC_A9 = 0;

Once the PCMCIA interface is initialised, an input cycle from the PRISM requires
only that the data direction and address is set, and the ‘I/O read’ line asserted;
the data appears on an 8-bit data bus after a short delay.

DEFBIT_2(PORTA, WC_IOR_)
. . .
/* Input a byte from a WLAN Controller register */
BYTE wc_in(BYTE reg)
{
 BYTE b;

 DATA_FROM_NIC;
 NIC_ADDR = reg;
 WC_IOR_ = 0;
 DELAY_ONE_CYCLE;
 DELAY_ONE_CYCLE;
 b = NIC_DATA;
 WC_IOR_ = 1;
 DELAY_ONE_CYCLE;
 DATA_TO_NIC; // Drive data bus high
 DELAY_ONE_CYCLE;
 NIC_DATA = 0xff;
 DATA_FROM_NIC;
 return(b);
}

As a precautionary measure, the data bus is driven high after the cycle, rather
than being left to float – some CMOS devices can oscillate when their inputs
float around half their supply voltage.

All cycles to the PRISM must be in 16-bit words, so two byte-wide cycles are
aggregated:

/* Input a word from a WLAN Controller register */
WORD wc_inw(BYTE reg)
{
 BYTE hi, lo;

 lo = wc_in(reg);
 hi = wc_in(reg+1);
 return(((WORD)hi<<8) | (WORD)lo);
}

For more information on PCMCIA, see ‘PCMCIA System Architecture’ by Don
Anderson, ISBN 0-201-40991-7.

 Page 6 © Iosoft Ltd. 2002

5. Network device selector

Previous versions of the ChipWeb software could only drive one network device
at a time; switching between network interfaces involved re-compilation. The
new version has abstracted all the device-independent network code into a new
file P18_NET.C, and has the facility to dynamically switch between devices. This
allows the same Web pages to appear simultaneously on both Ethernet and
wireless networks.

The switch-over is achieved by a function select_device()

// Net device definitions
#define DEVICE_ETH 0 // Ethernet device
#define DEVICE_WLAN 1 // Wireless LAN device
#define NUM_DEVICES 2 // Total number of network devices
BYTE my_mac[MACLEN]; // My MAC addr (Ether or WLAN)
. . .
/* Select the Tx and Rx network device */
void select_device(BYTE device)
{
 if (device < NUM_DEVICES)
 {
 rx_device = device;
 tx_device = device;
 if (device == DEVICE_WLAN)
 memcpy(my_mac, wlan_mac, MACLEN);
 else
 memcpy(my_mac, myeth, MACLEN);
 }
}

It is assumed that switch-over occurs before the device is polled for incoming
traffic, so there isn’t any partially-analysed data to be saved. It is important
that any high-level function requiring a local MAC address refers to the new
‘my_mac’ variable, rather than the old Ethernet-specific ‘myeth’.

On each pass of the main polling loop, the ‘next’ device is selected, using the
following function:

/* Select the next Rx device */
void next_device(void)
{
 BYTE device;

 device = DEVICE_ETH;
#if INCLUDE_ETH && INCLUDE_WLAN
 device = rx_device + 1;
 if (device >= NUM_DEVICES)
 device = 0;
#else
#if INCLUDE_WLAN
 device = DEVICE_WLAN;
#endif
#endif
 select_device(device);
}

 Page 7 © Iosoft Ltd. 2002

6. Non-volatile configuration

In contrast to the Ethernet controller, the wireless controller requires a
significant amount of configuration information that has to be stored in non-
volatile memory. A structure is used to hold this

#define SSID_LEN 32 // Max length of SSID
#define WEP128_KEYLEN 13 // Length of 128-bit WEP key
. . .
typedef struct {
 BYTE type;
 BYTE chan; // Channel number (1-13)
 char ssid[SSID_LEN+2]; // Desired network name;
null=any
 BYTE weptype; // WEP enable
 BYTE authtype; // Authentication enable
 BYTE defkey; // Default key number (0-3)
 BYTE keylen1; // Length of key
 BYTE key1[WEP128_KEYLEN]; // Only 1 key in this
release
} WLAN_CFG;
WLAN_CFG wlancfg;

The structure is saved to the non-volatile EEPROM memory on a PIC18F452 using
the existing write_eeprom() function:

#define WLANCFG_ADDR 0x10 // Address of WLAN config
. . .
/* Save the WLAN configuration data in EEPROM */
BOOL save_wlancfg(void)
{
 BYTE *bp, n;

 bp = (BYTE *)&wlancfg;
 for (n=0; n<sizeof(WLAN_CFG); n++)
 write_eeprom(WLANCFG_ADDR+n, *bp++);
 return(1);
}

The corresponding load_wlancfg() function performs a simple sanity check on
the data, and loads default values if an error is detected.

 Page 8 © Iosoft Ltd. 2002

7. Web interface

Dynamic variables
The Web interface is called upon to display a wide variety of status and
configuration information, and the existing EGI variable-substitution technique
proved too cumbersome, so a new system based on long variable names has
been developed.

Fig. 1: Main Web frameset

Figure 1 shows the main frameset, which is similar to that used on previous
ChipWeb projects; the left-hand frame is used for navigation, and the right-
hand frame to display status information that is updated every few seconds.

The following HTML code fragment from the status frame shows the new long-
variable-name scheme in action

<table bgcolor=#e0e0ff vspace=0>
<tr><th align=center
colspan=2><small>Quality</small></th></tr>
<tr><td align=center>$quality</td></tr>
<tr><th align=center
colspan=1><small>Signal</small></th></tr>
<tr><td align=center>$signal dBm</td></tr>
<tr><th align=center
colspan=1><small>Noise</small></th></tr>
<tr><td align=center>$noise dBm</td></tr></table>

 Page 9 © Iosoft Ltd. 2002

The numeric quality, signal & noise values are represented by the dynamic
variables $quality, $signal and $noise (bold in the text above). When the
pages are fetched from EEPROM, the correct numeric values are substituted
before the page is sent out of the network interface, so $signal becomes, say,
–73.

The substitution is not limited to numeric values; the variable $version
becomes P18Web v2.15, so that the current software version number is
indicated on the page.

The software to perform the substitution is in P18_HTTP.C, and is based on a
lookup table, which contains the variable names (minus the dollar character),
and the corresponding index values:

BYTE const egivars[] =
 "version configup xchan xssid ess ibss wstatus ssid chan "
 "quality signal noise defkey authen keylen";
#define EGIVAR_VERSION 1 // Index number of each variable
. . .
#define EGIVAR_QUALITY 10
#define EGIVAR_SIGNAL 11
#define EGIVAR_NOISE 12
. . .

In the main software loop that outputs the HTML pages, there is code that
detects a variable, translates that variable to an index number, and then takes
appropriate action:

 if ((idx = match_egivar()) > 0)
 {
 switch (idx)
 {
 case EGIVAR_VERSION: // Software version?
 putstr(SIGNON);
 break;
 . . .
 case EGIVAR_QUALITY: // Quality value
 PRINTF2("%u", (BYTE)wlan_qsn[0]);
 break;
 case EGIVAR_SIGNAL: // Signal value
 PRINTF2("-%u", (BYTE)(-wlan_qsn[1]));
 break;
 case EGIVAR_NOISE: // Noise value
 PRINTF2("-%u", (BYTE)(-wlan_qsn[2]));
 break;
 . . .
The resulting run-time substitution is very versatile; for example, it is necessary
to display a message when the user attempts to update the non-volatile
configuration, in case there was an error:

 case EGIVAR_CONFIGUP: // Config update OK?
 if (form_err == FORMERR_CANCEL)
 putstr("cancelled: not updated");
 else if (form_err == FORMERR_CHAN)
 putstr("error: invalid channel");
 else if (form_err == FORMERR_SSID)

 Page 10 © Iosoft Ltd. 2002

 putstr("error: invalid SSID");
 . . .
 else
 putstr("updated OK");
 form_err = 0;
 break;

The variable $configup can be embedded in a simple HTML page to report the
status after an update.

<HTML><HEAD><TITLE>Wireless configuration update</TITLE></HEAD>
<BODY bgcolor=#d0d0ff>
<H4>Wireless configuration $configup</H4>
<FORM action=wlan1.egi>
 <INPUT TYPE="submit" NAME="ok" VALUE="OK">
</FORM></BODY></HTML>

This produces the appropriate acknowledgement depending on whether the
update was successful or not.

Form variables
The increasing complexity of the Web pages also results in more complex HTML
forms responses that have to be parsed, such as shown in figure 2.

Figure 2: Wireless configuration form

If the user selects ESS network channel 1 with an SSID of ‘Wireless’, the browser
sees the following response:

 Page 11 © Iosoft Ltd. 2002

GET wlan1a.egi?submit=Update&chan=1&ssid=Wireless&type=ess

It is necessary to walk through the URL-encoded list of form variables and their
values, in order to establish what the user has entered. A new helper function
has been provided to simplify this process, and it too relies on a table of
variable names and index values:

BYTE const formvars[] =
 "cancel chan ssid type defkey authen keynum keystr keyhex";
#define FORMVAR_CANCEL 1 // Index number of each variable
#define FORMVAR_CHAN 2
#define FORMVAR_SSID 3
#define FORMVAR_TYPE 4
. . .

The function check_formargs() processes the browser response, and takes
appropriate action:

 if (b=='=' && (idx=match_formvar())>0)
 {
 switch (idx)
 {
 case FORMVAR_CANCEL: // Cancel button
 form_err = FORMERR_CANCEL;
 break;
 case FORMVAR_CHAN: // Channel number 1-13
 if (!get_num(&w) || w<MIN_WLAN_CHAN || w>MAX_WLAN_CHAN)
 form_err = FORMERR_CHAN;
 else
 {
 wlancfg.chan = (BYTE)w;
 updat++;
 }
 break;
 case FORMVAR_SSID: // SSID string
 get_formval_str(wlancfg.ssid, SSID_LEN);
 updat++;
 break;
 . . .

The order in which the variables are processed matches the order they appear
on the form. This is useful as it is necessary to perform an up-front check that
the user hasn’t pressed the ‘cancel’ button; if so, an error flag is set and the
remaining form variables aren’t processed.

Web pages
The pages and graphics are stored in the sub-directory ROMDOCS; HTML pages
should have a .HTM extension, or .EGI if they include dynamic variables, as
described in chapter 11 of ‘TCP/IP Lean’. In this implementation, any one page
or graphic is limited to approximately 1440 bytes in size.

To create a ROM image of the files, the WEBROM utility from the ‘TCP/IP Lean’
CD-ROM is required. It takes an arbitrary number of files from a single directory,
adds the HTTP headers, and stores them as a single binary image, e.g.

 Page 12 © Iosoft Ltd. 2002

CD \CHIPWEB\P18WEB
\TCPLEAN\WEBROM webpage.rom romdocs

This creates the file WEBPAGE.ROM using all the files in the sub-directory
ROMDOCS. The size of each file is displayed, and the total image size, and it is
worth checking that these do not exceed the limits for any one file, or the total
EEPROM size (32 Kbytes).

To load the files into the serial EEPROM device on the ER21 a suitable device
programmer may be used, or the image may be uploaded to the board using
XMODEM over a serial link, as described in the ER21 hardware manual.

 Page 13 © Iosoft Ltd. 2002

8. Power saving

The current consumption of the ER21 depends on network activity, but is
normally around 250 mA, the bulk of which (200 mA) is taken by the PCMCIA
card. This can be problematic in some applications, so the Prism chipset is
equipped with a power management option, which can halve its power
consumption when in infrastructure mode.

The Intersil documentation offers relatively little information on this power-
saving mode, though there is some additional explanation on the PRISM
knowledge base FAQ at www.intersil.com/support/designResources.asp

As a first step to power reduction, an option has been added to the PRISM
configuration data:

typedef struct {
 BYTE type; // Network type: IBSS/ESS
 BYTE chan; // Channel number (1-13)
 char ssid[SSID_LEN+2]; // Desired network name;
null=any
 BYTE weptype; // WEP enable
 BYTE authtype; // Authentication enable
 BYTE defkey; // Default key number (0-3)
 BYTE keylen1; // Length of key
 BYTE key1[WEP128_KEYLEN]; // 1 key in this release
 BYTE pm; // Power management
} WLAN_CFG;
WLAN_CFG wlancfg;

Any non-zero value of the ‘pm’ option will enable power management:

if (wlancfg.pm) // Enable power mgmt?
{
 wc_writew(0xfc09, 0, 1); // (only works on ESS)
 put_ser("WLAN power management enabled\r\n");
}

To allow this option to be enabled, and extra prompt has been added to the
serial link configuration:

Power management (Y/N)?

If the user responds ‘Y’ or ‘y’, then it is enabled. There is a noticeable slowing
of network activity, which is most noticeable in the lengthening of the ‘ping’
response time, but otherwise all network operation should continue as before.

 Page 14 © Iosoft Ltd. 2002

http://www.intersil.com/support/designResources.asp

9. Compile-time options

The pre-compiled image has Web server and DHCP client capabilities, but there
are other options that can be enabled by altering the configuration block at the
top of P18WEB.C and re-compiling:

/* TCP protocols: enabled if non-zero */
#define INCLUDE_HTTP 1 // Enable HTTP Web server
#define INCLUDE_SMTP 0 // Enable SMTP email client
#define INCLUDE_POP3 0 // Enable POP3 email client

/* UDP protocols: enabled if non-zero */
#define INCLUDE_DHCP 1 // Enable DHCP auto-config
#define INCLUDE_TIME 0 // Time client: polls server routinely

/* Low-level drivers: enabled if non-zero */
#define INCLUDE_ETH 1 // Ethernet driver
#define INCLUDE_WLAN 1 // Wireless LAN card driver
#define INCLUDE_LCD 0 // Set non-zero to include LCD driver
#define INCLUDE_CFG 1 // Set non-zero to include IP config
#define ER21 1 // Set non-zero if ER21 (0 if PICDEM)

The client options are discussed in detail in ‘TCP/IP Lean’ 2nd edition.

SMTP client
If this option is enabled, the user pushbutton is polled and de-bounced; when
pressed a dummy email message is sent to the mail server defined as
MAILSERVER_ADDR at the top of p18_tcpc.c - by default, this is 10.1.1.1.

POP3 client
If any key is pressed on the serial console, the mail server is polled using the
POP3 protocol, with the username and password defined in p18_mail.c, and the
sender’s address and subject line are printed out.

DHCP client
This is normally included by default, by is only enabled if a zero-value IP
address (0.0.0.0) is set in the user serial configuration.

Time client
The time server defined as TSERVER_ADDR in p18web.c is polled every five
seconds, and the current time is printed or displayed on an LCD in hh:mm:ss
format. The RFC868 UDP time protocol is employed, whereby the server returns
a 32-bit value containing the number of seconds since 1/1/1900.

Ethernet and WLAN drivers
The Ethernet or WLAN driver can be conditionally compiled out if not required.

LCD driver
The PICDEM.net board has an LCD display, so there is an option to include the
drivers for this.

 Page 15 © Iosoft Ltd. 2002

Serial configuration
Usually the serial configuration option is included, to allow the software to be
configured by the user over a serial link.

ER21 support
The primary hardware platforms are the Microchip PICDEM.net board, and the
Iosoft ER21; they differ in their I/O allocation, so there is a conditional
compilation setting to enable ER21 (and disable PICDEM.net) support.

Interface used by client software
If both the Ethernet and WLAN interfaces are enabled, the Web server will
respond to incoming requests on either interface. However, the client software
(DHCP, SMTP, POP3, time) must choose an interface that will be used to request
the service; this is defined in p18_defs.c.

// Net device definitions
#define DEVICE_ETH 0 // Ethernet device
#define DEVICE_WLAN 1 // Wireless LAN device
#define NUM_DEVICES 2 // Total number of network devices
#if (INCLUDE_ETH && INCLUDE_WLAN)
#define CLIENT_DEVICE DEVICE_WLAN // Used for TCP & UDP clients
#else
#if INCLUDE_ETH
#define CLIENT_DEVICE DEVICE_ETH
#else
#define CLIENT_DEVICE DEVICE_WLAN
#endif
#endif // [INCLUDE_ETH && INCLUDE_WLAN]

If only one interface is in use, CLIENT_DEVICE is set to that interface. If both
are in use, the WLAN device is chosen by default, as shown above.

JPB 4/3/02

--ends--

 Page 16 © Iosoft Ltd. 2002

	Iosoft Ltd.�ChipWeb Wireless Development Kit�Software Manual
	Introduction
	Software development
	Development environment
	Installation
	Software structure

	File names and data types
	File names
	New files
	Changed files
	Data types

	Wireless device driver
	Intersil PRISM
	PCMCIA card interface

	Network device selector
	Non-volatile configuration
	Web interface
	Dynamic variables
	Form variables
	Web pages

	Power saving
	Compile-time options
	SMTP client
	POP3 client
	DHCP client
	Time client
	Ethernet and WLAN drivers
	LCD driver
	Serial configuration
	ER21 support
	Interface used by client software

