

_äìÉ`çêÉ»

Accessing Service Discovery Using RFCLI
and TCL

Application Note

December 2002

CSR
 Unit 400 Cambridge Science Park

Milton Road
 Cambridge

CB4 0WH
United Kingdom

 Registered in England 3665875
 Tel: +44 (0)1223 692000
 Fax: +44 (0)1223 692001

www.csr.com

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Contents

Contents

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

Contents .. 2
1 Introduction .. 4
2 Service Discovery .. 5

2.1 Protocol Data Unit ... 6
2.1.1 Continuation State Parameter .. 7
2.1.2 Error PDU .. 7

2.2 SDP Services .. 8
2.2.1 Service Class ... 8
2.2.2 Service Record... 9
2.2.3 Service Attribute... 10
2.2.4 UUID .. 11
2.2.5 Data Representation .. 12

2.3 Searching and Browsing for Services.. 13
3 SDP API Primitives .. 14

3.1 SDP Server API Primitives .. 14
3.1.1 SDS_CONFIG_REQ .. 14
3.1.2 SDS_REGISTER_REQ.. 14
3.1.3 SDS_REGISTER_CFM.. 17
3.1.4 SDS_UNREGISTER_REQ .. 17
3.1.5 SDS_UNREGISTER_CFM .. 19
3.1.6 sds_register_req .. 20
3.1.7 sds_unregister_req .. 21

3.2 SDP Client API Primitives.. 22
3.2.1 SDC_CONFIG_REQ.. 22
3.2.2 SDC_OPEN_SEARCH_REQ... 22
3.2.3 SDC_OPEN_SEARCH_CFM... 22
3.2.4 SDC_CLOSE_SEARCH_REQ... 22
3.2.5 SDC_CLOSE_SEARCH_IND .. 22
3.2.6 SDC_SERVICE_ATTRIBUTE_REQ .. 23
3.2.7 SDC_SERVICE_ATTRIBUTE_CFM .. 23
3.2.8 SDC_SERVICE_SEARCH_ATTRIBUTE_REQ ... 23
3.2.9 SDC_SERVICE_SEARCH_ATTRIBUTE_CFM ... 24
3.2.10 SDC_SERVICE_SEARCH_REQ ... 24
3.2.11 SDC_SERVICE_SEARCH_CFM ... 24
3.2.12 SDC_TERMINATE_PRIMITIVE_REQ ... 24
3.2.13 sdc_config_req... 25
3.2.14 sdc_open_search... 25
3.2.15 sdc_open_search_req.. 25
3.2.16 sdc_close_search_req ... 25
3.2.17 sdc_range_search.. 25
3.2.18 sdc_service_attribute_req .. 25
3.2.19 sdc_service_search_attribute_req ... 25
3.2.20 sdc_service_search_req .. 26

3.3 Registering a Service Record .. 27
3.4 Headset Service Discovery.. 27
3.5 Example TCL Script Structure ... 29

3.5.1 Initialisation .. 30
3.5.2 Main Routine.. 31
3.5.3 Register AG Service Record .. 32
3.5.4 Register with Security Manager ... 33
3.5.5 Pair with Headset ... 33
3.5.6 Request to Open SDC Search ... 34
3.5.7 Wait for Link Key Request and Reject It... 35
3.5.8 Wait for PIN Code and Respond with Stored Value = 1234 ... 36
3.5.9 Wait for Link Key .. 37
3.5.10 Wait for Open SDC Search Confirmed... 38

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 2 of 52

3.5.11 Search for HID Service Record on the Headset... 39

Contents

3.5.12 Search for Generic Audio Service Record on the Headset .. 40

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

3.5.13 Search for Attributes on the Headset ... 41
3.5.14 Search for Service Attributes on the Headset .. 45
3.5.15 Show Range of Attributes Available on the Headset.. 47
3.5.16 Terminate a Search.. 48
3.5.17 Unregister AG Service Record... 48
3.5.18 Close SDC Search ... 49

4 Document References ... 50
Acronyms and Definitions.. 51
Record of Changes ... 52

List of Figures
Figure 2.1: Service Discovery Client/Server Architecture.. 5
Figure 2.2: The PDU Format ... 6
Figure 2.3: PDU with Continuation State Parameter. .. 7
Figure 2.4: SDP Service Classes .. 9
Figure 2.5: Service Attributes Within a Service Record... 11
Figure 2.6: Data Element Descriptor ... 12
Figure 2.7: 16-bit Unsigned Integer Data Element .. 13
Figure 2.8: Text Data Element .. 13
Figure 3.1: Headset Service Discovery Example Set-up... 27
Figure 3.2: Structure of TCL Example Script... 29

List of Tables
Table 2.1: PDU ID Values ... 6
Table 2.2: Table of Error Codes Associated with SDP_ErrorResponse.. 8
Table 2.3: Bluetooth Headset Service Record .. 8
Table 2.4: Data Element Type Field.. 12
Table 2.5: Data Element Size Field... 12
Table 3.1: Audio Gateway Profile with Associated TCL Script .. 17
Table 3.2: Location of Usage of SDP Primitives Within TCL Example Script .. 28

List of Equations

Equation 2.1: 128-bit UUID Calculation Using 16-bit Bluetooth Alias UUID Value.. 11
Equation 2.2: 128-bit UUID Calculation Using 32-bit Bluetooth Alias UUID Value.. 11

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 3 of 52

Introduction

1 Introduction

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

The purpose of this application note is to explore the service discovery mechanism available in the Bluetooth™
Specification v1.1. The application note provides an understanding of the service discovery database (SDD) and
the service discovery protocol (SDP) used to access it, through the use of RFCLI and test tool command
language (TCL).

Using _äìÉ`çêÉ» devices running an RFCOMM firmware stack based on BlueStack™, the application note
explores aspects of SDP that allow applications to discover services that are available on other Bluetooth devices
alongside the properties of those services.

This application note builds on the information contained within the Accessing RFCOMM Using RFCLI and TCL
Application Note (bcore-an-006Pa), uses the knowledge gained here, and therefore is a follow on to that
application note.

This application note works through the following to give a thorough understanding of what SDD and SDP are
and how to use them:

� The theory behind SDD, SDP and services

� Example of how to:

� Access services on a Bluetooth profile e.g. Headset

� Put a service into the SDD

� Use the local device to read services on the remote device database

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 4 of 52

Service Discovery

2 Service Discovery

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

The service discovery operation is based on a client/server architecture shown in Figure 2.1. The architecture is a
request/response model between a SDP client running on one Bluetooth™ device and a SDP server running on
another Bluetooth device. The actual service discovery procedure permits the client application to discover the
presence of services on a server application including the attributes of these services.

SDP requests

SDP responses

Client
Application

Server
Application

SDP
Client

SDP
Server

Figure 2.1: Service Discovery Client/Server Architecture

This section covers the theory of the SDD and the SDP and the various attributes and properties of the assorted
elements that make up the SDP. The topics covered include:

� The SDP is the protocol that is responsible for the communication between a service discovery server
and a client.

� The server maintains a list of service records that describe the properties of services associated with the
server

� Services have services classes associated with them

� Data is passed via the SDP requests and responses using protocol data units (PDU)

� The method for discovering services and their attributes

A Bluetooth device can be a client, or a server or both at the same time. If a device contains multiple applications
running on it then the SDP server is responsible for advertising all these services to any client that that like to use
them. The similar situation is true of the device that contains multiple client applications; which are responsible for
enquiring for services on the SDP server on another device on behalf of the client applications it is running.

The requirements placed on the underlying transport layer by SDP are minimal leading to a simple protocol that
can function over a reliable or unreliable packet transport layer. Although to function over an unreliable packet
transport layer the client would require an implementation that includes timeouts and retransmissions.

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 5 of 52

Service Discovery

2.1 Protocol Data Unit

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

Figure 2.1 outlines a client/server architecture that uses a request/response model to communicate between the
client and the server. The PDU is the communication packet that is passed in either direction between the client
and server. A transaction between the client and the server consists of a pair of PDUs, one for the request and,
one for the response. In general the client requests are allowed to be pipelined and the server responses can be
returned out of order. In the specific case where the SDP uses the L2CAP layer, multiple PDUs may be merged
into a single L2CAP packet. Although in the case of when the L2CAP layer is utilised only one SDP request may
be outstanding per connection. This means that a client must receive a response to each request before issuing
its next request on the same L2CAP connection. By limiting the number of SDP requests permitted to just one
unacknowledged packet affords a simpler form of flow control to be implemented.

The format of the PDU is shown in Figure 2.2, a PDU consists of a header field and a parameters field. The
header has three elements, which are the PDU ID, the Transaction ID, and the Parameter Length.

PDU ID Transaction ID Parameter Length

Parameters

1 byte 2 bytes 2 bytes

{Header

Figure 2.2: The PDU Format

The PDU ID is a 1byte value in the header block that identifies the type of PDU. It defines the meaning and the
parameters as defined in Table 2.1.

PDU ID Value Parameter Description

0x00 Reserved
0x01 SDP_ErrorResponse
0x02 SDP_ServiceSearchRequest
0x03 SDP_ServiceSearchResponse
0x04 SDP_ServiceAttributeRequest
0x05 SDP_ServiceAttributeResponse
0x06 SDP_ServiceSearchAttributeRequest
0x07 SDP_ServiceSearchAttributeResponse
0x07-0xff Reserved

Table 2.1: PDU ID Values

The transaction ID is used to give a unique identity to a request PDU. This transaction ID has to be replicated in
the response PDU in order to link the response with its corresponding request. The transaction ID is a 2byte
value that is set by the client, this can be set to any value as long as the value differs from that of any outstanding
requests.

The parameter length field in the header is a 2byte value that represents the length in bytes of all parameters
contained within the PDU.

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 6 of 52

Service Discovery

2.1.1 Continuation State Parameter

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

A server is permitted to send a partial response to a client, this occurs when the response being sent is larger
than the size of a single response PDU. In this case the server is allowed to split the response over more than
one response PDU. In order to achieve this the PDU has a continuation state parameter; this is shown in
Figure 2.3 as the PDU with the continuation state parameter appended to it.

PDU ID Transaction ID Parameter Length

Parameters

1 byte 2 bytes 2 bytes

{Header

Info Length Continuation Information{Continuous State
Parameter

1 byte Info Length bytes
Maximum = 16 bytes

Figure 2.3: PDU with Continuation State Parameter.

The continuous state parameter is available in all PDU responses, but in the majority of cases the responses fit
within a single PDU and therefore the continuous state is a single byte that is set to zero. When the server
requires splitting the response across PDUs it makes use of the Info Length field and the Continuation
Information field inside the continuation state parameter. The Info Length field is a 1byte value that states the
number of bytes that make up the Continuation information and therefore the over all continuation state
parameter is of variable length but restricted by the Info Length field that is only allowed to take a maximum value
of 0x10 hex.

The information that is contained within the Continuation Field does not have a standard format and differs
amongst servers. This means that the continuation state parameter generated by a server is relevant only to that
server. Also the server is permitted to make the split of the response anywhere it chooses. For the client to
receive the complete response it needs to first receive the initial response with the continuation state parameter
set. The client will then re-issue its original request but with a different transaction ID and include the continuation
state in this new request indicating the client’s desire to receive the rest of the original response.

2.1.2 Error PDU

In Section 2.1 transactions between a client and a server were described in terms of a request/response model.
The PDUs are grouped in pairs consisting of a request PDU and a response PDU. Normally for each request
PDU there is a response PDU corresponding to it, these are outlined in Table 2.1. For example, the
SDP_ServiceSearchRequest is a request PDU that searches for a service on the server and it has a
corresponding response PDU called SDP_ServiceSearchResponse that returns the appropriate data to the client
with respect to its request.

If for any reason the server cannot respond correctly to the client with an appropriate PDU type or that the
request from the client has been incorrectly formatted then the server will respond with the error PDU. The error
PDU is the PDU ID value of 0x01 hex shown in Table 2.1 and is called SDP_ErrorResponse.

The error PDU has the same structure as the PDU format in Figure 2.2, the PDU ID is as discussed previously as
SDP_ErrorResponse in Section 2.1, the transaction ID is the transaction ID of the client request PDU that is in
error and the parameters associated with the error PDU are ErrorCode and ErrorInfo.

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 7 of 52

The ErrorCode is a 2byte value that takes the values listed in Table 2.2 and represents the reason for error PDU
being generated. The ErrorInfo parameter is specifically related to a given ErrorCode. At present the current
ErrorCodes defined in the Bluetooth Specification v1.1 do not specify the format of any ErrorInfo field.

Service Discovery

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

Value Parameter Description

0x0000 Reserved
0x0001 Invalid or unsupported SDP version
0x0002 Invalid service record handle
0x0003 Invalid request syntax
0x0004 Invalid PDU size
0x0005 Invalid continuation state
0x0006 Insufficient resources to satisfy request
0x0007-0xffff Reserved

Table 2.2: Table of Error Codes Associated with SDP_ErrorResponse

2.2 SDP Services

The SDD is a database that exists on a server and contains a set of records responsible for characterising all the
services available on a Bluetooth device. The SDP is the protocol that is used to look at these services. The
services are used by a SDP client from the information on the services supplied by the server. The information on
services that are exchanged between a client and a server are packaged within service records. This section
describes the properties and the format of these services.

2.2.1 Service Class

A service record is described in Section 2.2 and Section 2.2.2 as a package of information that describes a
service. A service record contains a list of service classes that a specific service may adhere to; an example of a
list of these service classes can be seen in Table 2.3 that represents a service record for a Bluetooth headset as
shown in Section 5.3 of the Headset Profile in the Bluetooth Specification v1.1. The service class list is shown
under the ServiceClassIDList parameter.

Item Type Value Attribute ID

ServiceRecordHandle uint32 Assigned by server 0x0000
ServiceClassIDList

ServiceClass0
ServiceClass1

UUID
UUID

Headset
Generic audio

0x0001
0x1108
0x1203

ProtocolDescriptorList
Protocol0
Protocol1

ProtocolSpecificParameter0

UUID
UUID
uint8

L2CAP
RFCOMM
Server channel number

0x0004
0x0100
0x0003

BluetoothProfileDescriptorList
Profile0

Parameter0

UUID
uint16

Headset
Version 1.0

0x0009
0x1108
0x0100

ServiceName string “Headset” 0x0000 + language offset
Remote Audio Volume Control boolean false 0x0302

Table 2.3: Bluetooth Headset Service Record

Each service belongs to a service class, the service class defines all the attributes of the service by ID, intended
use and format of the attribute value. Figure 2.4 outlines the relationship between the service class and the
service record. In Figure 2.4 the ServiceClassIDList is shown split into a Class ID know as the super class and
the Sub Class ID. The sub class contains additional attribute definitions that are specific to the subclass, which
means that it inherits the attributes from a super class and defines more specific ones. Each service class is a
subclass of another class whose identifier is contained within the ServiceClassIDList. Each service class within
this list is assigned a universally unique identifier (UUID) to identify the service class, for further details see
Section 2.2.4.

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 8 of 52

Service Discovery

Class Definition

Class ID

SDP Server

Service Record

Service Attributes

ID Value

ServiceClassIDList Class ID

Attribute Value

Attribute Value

Attribute Definition

TypeIDName

Attribute Definition

Sub Class ID

Attribute Definition

TypeIDName

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

Figure 2.4: SDP Service Classes

2.2.2 Service Record

A service record provides information about a service, whether this is hardware, software, or a combination of
hardware and software. In other words a service record advertises a device’s capabilities but does not control the
resource or perform actions for it. All information about a service is contained and maintained within a single
service record. The basic structure of a service record is a catalogue that lists all the service attributes, for further
information on service attributes see Section 2.2.3.

A service record position within the SDP server can be located by the use of a unique identifier, this is a 32-bit
number called the service record handle. The service record handle is unique to a specific server, so even if two
servers contain the same service records, the service records that exist on the different SDP servers are
independent identifiers. There is though one service record handle that is the same throughout all SDP servers
and this is the service record for the SDP server itself, it has a 32-bit value of 0x00000000 (hex). The zero value
service record handle is responsible for holding information on the attributes of the server and the protocol it
supports. An example of one of these attributes is the list of the versions of the protocol, which the SDP server
supports.

Whilst an L2CAP connection is established the SDP server must ensure that if it removes a service record then it
must not reuse the service record handle. Otherwise if a client attempts to use this service record handle an
SDP_ErrorResponse will be returned from the server with an ErrorCode of 0x0002 (hex) representing the fact
that the client supplied an invalid service record. The service record handle value can be reused once the L2CAP
link has be disconnected and restarted. If a service record is removed or added the SDP has no mechanism to
automatically notify the clients of any change.

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 9 of 52

Service Discovery

2.2.3 Service Attribute

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

As mentioned in Section 2.2.2 a service record contains a list of service attributes as shown Figure 2.5. A service
attribute is a service description that describes through a range of data types the following:

� The supported service type

� Service ID

� Protocols supported

� Service

As shown in Figure 2.5 the service attribute consists of two elements, the attribute ID, and the attribute value.
The attribute ID is a 16-bit unsigned integer value that distinguishes each service attribute from other service
attributes in the service record. The attribute value is a variable sized field whose meaning is determined by the
attribute ID and the service class of the service record associated with it. The attribute value is represented by a
data element and in general any type of data element is permitted, see Section 2.2.5 for further details on data
elements. The constraints on the data elements used in a service attribute are specified by the service class
definition. Only the service classes that are directly supported by the SDP server have their service attribute
definitions listed in the Bluetooth Specification v1.1. There are three service attribute definitions groups defined
and these can be found on p.366 of Section 5 of the Service Discovery Protocol. The three service attribute
definition groups are:

1. The universal attribute definitions which are:

� ServiceRecordHandle

� ServiceClassIDList

� ServiceRecordState

� ServiceID

� ProtocolDescriptorList

� BrowseGroupList

� LanguageBaseAttributeIDList

� ServiceInfoTimeToLive

� ServiceAvailability

� BluetoothProfileDescriptorList

� DocumentationURL

� ClientExecutableURL

� IconURL

� ServiceName

� ServiceDescription

� ProviderName

� Reserved universal attribute IDs are in the range 0x000d – 0x01ff (hex)

2. Service discovery server attribute definitions which are:

� ServiceRecordHandle

� ServiceClassIDList

� VersionNumberList

� ServiceDatabaseState

� Reserved service discovery server attribute IDs are in the range 0x0202-0x02ff (hex)

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 10 of 52

Service Discovery

3. Browse group descriptor attribute definitions which are:

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

� ServiceClassIDList

� GroupID

� Reserved browse group descriptor attribute IDs are in the range 0x0201-0x02ff (hex)

With respect to service attributes there are only two attributes that are compulsory in every service record, these
are the ServiceRecordHandle and the ServiceClassIDList.

Service Record

Service Attribute 1 Attribute ID Attribute Value

Service Attribute 2 Attribute ID Attribute Value

Service Attribute 3 Attribute ID Attribute Value

Service Attribute n Attribute ID Attribute Value

16bit Variable Length

Figure 2.5: Service Attributes Within a Service Record

2.2.4 UUID

In Section 2.2.1 the UUID was first introduced, the identifier is guaranteed to be unique at any time or in any
place. The UUID is a 128-bit value with a format that has been set out by the International Organization for
Standardization in ISO 11578:1996.

In order to get around the difficulties of handling a 128-bit UUID value Bluetooth has been allocated a base UUID
value. Each individual Bluetooth UUID can then be represented as a 16-bit or a 32-bit value that represents an
offset value from the Bluetooth base value.

The Bluetooth base UUID value is 00000000-0000-1000-8000-00805f9b34fb as set out in the Bluetooth Assigned
numbers document, as mentioned earlier a service can be allocated either a 16-bit or a 32-bit value this is known
as an alias. To calculate the full 128-bit UUID from the alias value the two arithmetic operations shown in
Equation 2.1 and Equation 2.2 below are used.

 ValueUUID Base Bluetooth Value Aliasbit-16 UUID 128bit +×= 962

Equation 2.1: 128-bit UUID Calculation Using 16-bit Bluetooth Alias UUID Value

 ValueUUID Base Bluetooth Value Aliasbit-32 UUID 128bit +×= 962

Equation 2.2: 128-bit UUID Calculation Using 32-bit Bluetooth Alias UUID Value

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 11 of 52

Service Discovery

2.2.5 Data Representation

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

Section 2.2.3 discussed the use of attributes, which are used to form the service records. The service record
consisted of an attribute ID and an attribute value. The attribute value in Figure 2.5 was shown to have a variable
length field, in order that a device receiving an attribute understands what size and type of attribute is being sent
to it, the first byte of data in the attribute value represents a data element descriptor for the subsequent data
contained in the attribute value. Apart from the first byte of data all other data contained within the attribute value
are known as data elements.

The data element descriptor is shown in Figure 2.6 where it consists of a 5-bit type field in the most significant
bits and a 3-bit size field in the least significant bits.

Type Field Size Field

5bit 3bit

MSB LSB

Figure 2.6: Data Element Descriptor

The data element descriptor are shown in Table 2.4, there are nine types that are used to describe the type of
attribute contained within the remaining data elements of the attribute value.

5-bit Value Data Element Type

0 The null type
1 Unsigned integer
2 Signed 2’s complement integer
3 UUID
4 Text String
5 Boolean
6 A list of data elements
7 A list of alternative data elements from which one data element is to be selected from.
8 Uniform resource locator (URL)

Table 2.4: Data Element Type Field

The data element descriptor size field shown in Figure 2.6 represents the size of the attribute in the data element.
Table 2.5 lists the available sizes of a data element.

3-bit Value Data Element Size

0 1 byte, or 0 bytes if null type specified in the data element type
1 2 bytes
2 4 bytes
3 8 bytes
4 16 bytes
5 Number of bytes specified in the next 1 byte
6 Number of bytes specified in the next 2 bytes
7 Number of bytes specified in the next 4 byte

Table 2.5: Data Element Size Field

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 12 of 52

Examples of how to use the type and size fields are shown in Figure 2.7 and Figure 2.8. Figure 2.7 demonstrates
how to specify that the data contained within a data element is a 16-bit unsigned integer; and Figure 2.8 is an
example of how the text string “CSR” would be formatted in the service attribute.

Service Discovery

Type Field = 1 Size Field = 1

5bit 3bit

Data Byte (MSB)

Data Byte (LSB)

8bit

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

Figure 2.7: 16-bit Unsigned Integer Data Element

Figure 2.7 has the type field set to 1 denoting the data element is an unsigned integer and with the size field set
to 1 it means that the unsigned integer is 2 bytes long i.e. a 16-bit unsigned integer.

Type Field = 4 Size Field = 5

5bit 3bit

“C”

Size = 3bytes

8bit

“S”

“R”

Figure 2.8: Text Data Element

Figure 2.8 has the type field set to 4 denoting the data element is a text string and with the size field set to 5 it
means that the size of the data element is contained in the next byte. The next byte is the text data element, it is
three bytes long i.e. three text bytes to allow for the “CSR” string.

2.3 Searching and Browsing for Services

The SDP client can find the services that are contained within a SDP server by the use of searching and
browsing. The difference between searching and browsing is that browsing uses a search mechanism to look
through the services that the SDP server has to offer. Normally a SDP client searches for services based on
properties using UUIDs. The UUID is passed as a search pattern to the server from the client and a match of this
UUID is requested.

If the client needs to gain information about a service from the server without any prior knowledge of the services
contained within the server’s database, then it uses the browse mechanism to scan the hierarchy of the server
database. In order for the server’s database to allow browsing it uses a structure that is based on an attribute that
is shared by all service classes called the BrowseGroupList attribute. The BrowseGroupList attribute is a list of
UUIDs, where each UUID represents a browse group that a service is linked just in terms of browsing.

Note:
At present the use of browsing has not been truly adopted in any of the existing Bluetooth profiles. Profiles at
present seem to be based on a single or multiple collection of simple service records and does not require
the ability to browse for these records. This does not preclude in the future that this feature will not be
implemented in new profiles this explains the rather brief discussion above.

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 13 of 52

Service Discovery

3 SDP API Primitives

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

This section describes the APIs available within BlueStack that can be used to register service records and
perform service discovery. Initially the functionality of the individual APIs that are associated with the primitives
for the client and server are described, and then these APIs are used to demonstrate:

� Registering the service with the database, see Section 3.1.2

� Examining how to access the services on a device supporting the Headset profile, see Section 3.4

3.1 SDP Server API Primitives

This section describes the API primitives that are available to the server. It gives a summary of the individual
primitives and the TCL written library procedures with worked examples where appropriate. For a thorough
description of the individual APIs for the server primitives for the SDP refer to the BlueStack User Manual. In
comparison to the client functions there are distinctly less API primitives associated with the server, essentially
the server primitives are associated with the registration of services and the configuration of the server.

3.1.1 SDS_CONFIG_REQ

The SDS_CONFIG_REQ primitive allows the L2CAP MTU size to be specified for all SDS sessions. The
parameters supplied are:

� mtu, this is the L2CAP MTU size advertised by the device(1)

3.1.2 SDS_REGISTER_REQ

The SDS_REGISTER_REQ primitive requests the server to register a service, which is then available to other
Bluetooth devices, the parameters supplied are:

� phandle, protocol handle to the higher entity using SDP(2)

� num_rec_bytes, the number of bytes in a service record

� *service_rec, the list of attribute IDs and values that make up the service record

An example of how to register a service record with the server is shown in the TCL script below that can be run in
RFCLI. The script represents registering the service record for the Audio Gateway profile:

Note:
(1) Default val used if val supplied is invalid
(2) If the application is running off chip, then phandle has to have the top bit set. If the application is running

on chip, then phandle has to have the top bit clear:

� Off Chip : phandle >= 8000

� On Chip : phandle <= 7fff

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 14 of 52

Service Discovery

Register Audio Gateway Service Record

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

proc register_ag_profile_service_record {ag_server_chan} {
 set ag_record {0x09 0x00 0x01 \
 0x35 0x06 \
 0x19 0x11 0x12 \
 0x19 0x12 0x03 \
 0x09 0x00 0x04 \
 0x35 0x0c \
 0x35 0x03 \
 0x19 0x01 0x00 \
 0x35 0x05 \
 0x19 0x00 0x03 \
 0x08}
 set ag_record [concat $ag_record $ag_server_chan]
 set ag_record [concat $ag_record {0x09 0x00 0x09 \
 0x35 0x08 \
 0x35 0x06 \
 0x19 0x11 0x12 \
 0x09 0x01 0x00 \
 0x09 0x01 0x00 \
 0x25 0x0d \
 0x56 0x6f 0x69 \
 0x63 0x65 0x20 \
 0x47 0x61 0x74 \
 0x65 0x77 0x61 0x79}]

 SDS_REGISTER_REQ 0x8000 $ag_record [llength $ag_record]
 SDS_REGISTER_CFM
}

BC_connect com2 bcsp 115200
store the server_chan away just in case gets overwritten by the flow ctrl
RFC_DATA_INDs
set agemu_server_chan $server_chan

Register the sdp record
register_ag_profile_service_record $agemu_server_chan

A typical output from RFCLI would be as follows:

---- 11:42:27.116 ------------------
SDS_REGISTER_REQ_T
 type = 0e
 phandle = 8000
 num_rec_bytes = 3b
09 00 01 35 06 19 11 12 19 12 03 09 00 04 35 0c 35 03 19 01 00 35 05 19 00
03 08 01 09 00 09 35 08 35 06 19 11 12 09 01 00 09 01 00 25 0d 56 6f 69 63
65 20 47 61 74 65 77 61 79

---- 11:42:27.132 ------------------
SDS_REGISTER_CFM_T
 type = 0f
 phandle = 8000
 svc_rec_hndl = 10000
 result = 00

In this example the audio gateway service record as it appears in the Profile document in Table 5.2 on Page 221
of the Bluetooth Specification v1.1 is modified and shown in Table 3.1. The structure of the table is governed by
the sequential listing of the above TCL script, this demonstrates how service records can be constructed from
their profile specifications.

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 15 of 52

Service Discovery

Item Definition Type Value Attribute
ID

TCL Script

ServiceClassIDList uint16 0x0001 0x09 0x00 0x01

 Defines the
list data
type and
size

data element
of 6 bytes
made up of 2
UUIDs

 0x35 0x06

0x19 0x11 0x12 ServiceClass0 UUID Headset
Audio
Gateway

 
UUID

0x19 0x12 0x03 ServiceClass1 UUID Generic
Audio

 
UUID

ProtocolDescriptorList uint16 0x0004 0x09 0x00 0x04

 Defines the
list data
type and
size

data element
of 12 bytes
made up of 2
data element
lists, with 3
bytes and 5
bytes
respectively

 0x35 0x0c

 Defines the
list data
type and
size

data element
of 3 bytes
made up of
UUID

 0x35 0x03

Protocol0 UUID L2CAP 0x0100 0x19 0x01 0x00

 Defines the
list data
type and
size

Data element
of 5 bytes
made up of
UUID and 1
byte

 0x35 0x05

Protocol1 UUID RFCOMM 0x0003 0x19 0x00 0x03

Protocol Specific
Parameter0

Server
Channel

uint8 Server
channel
number

 0x08
set ag_record
[concat
$ag_record
$ag_server_chan]

BluetoothProfileDescriptorList uint16 0x0009 set ag_record
[concat
$ag_record {0x09
0x00 0x09}

 Defines the
list data
type and
size

Data element
of 8 bytes
made up of
another list of
6 bytes

 0x35 0x08

 Defines the
list data
type and
size

Data element
of 6 bytes

 0x35 0x06

Profile0 Supported
profile

UUID Headset 0x19 0x11 0x12

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 16 of 52

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

Service Discovery

Item Definition Type Value Attribute
ID

TCL Script

Param0 Profile
version

uint16 0x0100
(v1.0)

 0x09 0x01 0x00

ServiceName 0x0000 +
offset of
0x100

0x09 0x01 0x00

 Displayable
Text Name

string of 13
bytes

Service-
provider
defined

 0x25 0x0d

86 111 105 99 101
32 71 97 116 101
119 97 121

= "Voice Gateway"

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

Table 3.1: Audio Gateway Profile with Associated TCL Script

3.1.3 SDS_REGISTER_CFM

The SDS_REGISTER_CFM primitive is returned in response to the SDS_REGISTER_REQ in Section 3.1.2.
The parameters returned are:

� phandle, protocol handle to the higher entity using SDP

� result, response of 0x0000 indicates success any other value indicates fail(1)

� svc_rec_hndl, is a 32-bit value with a range of 0x0001000-0xffffffff uniquely identifying each service
record on a particular server

An example of the use of this primitive is shown complementing the SDS_REGISTER_REQ primitive used in
Section 3.1.2. The output from this primitive shown in RFCLI is:

---- 11:42:27.132 ------------------
SDS_REGISTER_CFM_T
 type = 0f
 phandle = 8000
 svc_rec_hndl = 10000
 result = 00

The return parameters show that the service record was registered successfully; this is denoted by the value of
result being 0x00. The service record handler is 0x00010000.

Note:
(1) Reference file sds_prim.h for other result codes

3.1.4 SDS_UNREGISTER_REQ

The SDS_UNREGISTER_REQ primitive has the opposite effect to the primitive SDS_REGISTER_REQ in
Section 3.1.2. It requests that a previously registered service be unregistered from the server. It requires the
service record handle value to be able to remove it. The parameters that need to be supplied are:

� phandle, protocol handle to the higher entity using SDP

� svc_rec_hndl, is a 32-bit value with a range of 0x0001000-0xffffffff uniquely identifying each service
record on a particular server

An example of how to use the primitive is shown below as a TCL script:

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 17 of 52

Service Discovery

Register Audio Gateway Service Record

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

proc register_ag_profile_service_record {ag_server_chan} {

 set ag_record {0x09 0x00 0x01 \
 0x35 0x06 \
 0x19 0x11 0x12 \
 0x19 0x12 0x03 \
 0x09 0x00 0x04 \
 0x35 0x0c \
 0x35 0x03 \
 0x19 0x01 0x00 \
 0x35 0x05 \
 0x19 0x00 0x03 \
 0x08}
 set ag_record [concat $ag_record $ag_server_chan]
 set ag_record [concat $ag_record {0x09 0x00 0x09 \
 0x35 0x08 \
 0x35 0x06 \
 0x19 0x11 0x12 \
 0x09 0x01 0x00 \
 0x09 0x01 0x00 \
 0x25 0x0d \
 0x56 0x6f 0x69 \
 0x63 0x65 0x20 \
 0x47 0x61 0x74 \
 0x65 0x77 0x61 0x79}]

 SDS_REGISTER_REQ 0x8000 $ag_record [llength $ag_record]
 set result [SDS_REGISTER_CFM]
 set service_record_handle [lindex $result 1]
 set retval [lindex $result 2]
 puts "Service Record Handle: $service_record_handle"
 set retval [concat $retval $service_record_handle]
 puts "retval: $retval"
 return $retval
}

BC_connect com2 bcsp 115200
store the server_chan away just in case gets overwritten by the flow ctrl
RFC_DATA_INDs
set agemu_server_chan $server_chan

Register the sdp record
set result [register_ag_profile_service_record $agemu_server_chan]
if {[lindex $result 0]} {
 puts "SDS_REGISTER_REQ unsuccessful"
 puts "Result Code: [lindex $result 0]"
} else {
 puts "SDS_REGISTER_REQ successful"
 puts "Unregister Service with service record handle: [lindex $result 1]"
 SDS_UNREGISTER_REQ 0x8000 [lindex $result 1]
 SDS_UNREGISTER_CFM
}

This script is an extension of the example used in Section 3.1.2. The basic concept of this script is to, register a
service and store its service record handle; then use this service record handle to be able to remove this service
record from the server. The RFCLI output expected for this script is shown below and this confirms that the
service was first registered with the service record handle set to 0x00010000 and this handle value was passed
to the SDS_UNREGISTER_REQ primitive and the resulting SDS_UNREGISTER_CFM denotes that the service
was unregistered successfully.

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 18 of 52

Service Discovery

---- 13:28:19.873 ------------------
SDS_REGISTER_REQ_T
 type = 0e
 phandle = 8000
 num_rec_bytes = 3b
09 00 01 35 06 19 11 12 19 12 03 09 00 04 35 0c 35 03 19 01 00 35 05 19 00
03 08 01 09 00 09 35 08 35 06 19 11 12 09 01 00 09 01 00 25 0d 56 6f 69 63
65 20 47 61 74 65 77 61 79

---- 13:28:19.889 ------------------
SDS_REGISTER_CFM_T
 type = 0f
 phandle = 8000
 svc_rec_hndl = 10000
 result = 00
Service Record Handle: 0x10000
retval: 0x0 0x10000
SDS_REGISTER_REQ successful
Unregister Service with service record handle: 0x10000

---- 13:28:19.936 ------------------
SDS_UNREGISTER_REQ_T
 type = 10
 phandle = 8000
 svc_rec_hndl = 10000

---- 13:28:19.936 ------------------
SDS_UNREGISTER_CFM_T
 type = 11
 phandle = 8000
 svc_rec_hndl = 10000
 result = 00

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

3.1.5 SDS_UNREGISTER_CFM

The SDS_UNREGISTER_CFM primitive is returned in response to the SDS_UNREGISTER_REQ in Section
3.1.4. The parameters returned are:

� phandle, protocol handle to the higher entity using SDP

� result, response of 0x0000 indicates success any other value indicates fail

� svc_rec_hndl, is a 32-bit value with a range of 0x0001000-0xffffffff uniquely identifying each service
record on a particular server

An example of the use of this primitive is shown complementing the SDS_REGISTER_REQ primitive used in
Section 3.1.4. The output from this primitive shown in RFCLI is:

---- 13:28:19.936 ------------------
SDS_UNREGISTER_CFM_T
 type = 11
 phandle = 8000
 svc_rec_hndl = 10000
 result = 00

The return parameters show that the service record was unregistered successfully, denoted by the value of result
being 0x00 and the service record handler unregistered was 0x00010000.

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 19 of 52

Service Discovery

3.1.6 sds_register_req

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

sds_register_req is a library function that calls SDS_REGISTER_REQ and then waits for
SDS_REGISTER_CFM. The parameters that are passed to the routine are the same as SDS_REGISTER_REQ
in Section 3.1.2 and the returned values are the same as the SDS_REGISTER_CFM in Section 3.1.3.

An example of how to use the sds_register_req procedure is to modify the example in Section 3.1.2 to the script
below. Here the two individual primitives SDS_REGISTER_REQ and SDS_REGISTER_CFM have been
replaced with the sds_register_req:

Register Audio Gateway Service Record

proc register_ag_profile_service_record {ag_server_chan} {

 set ag_record {0x09 0x00 0x01 \
 0x35 0x06 \
 0x19 0x11 0x12 \
 0x19 0x12 0x03 \
 0x09 0x00 0x04 \
 0x35 0x0c \
 0x35 0x03 \
 0x19 0x01 0x00 \
 0x35 0x05 \
 0x19 0x00 0x03 \
 0x08}
 set ag_record [concat $ag_record $ag_server_chan]
 set ag_record [concat $ag_record {0x09 0x00 0x09 \
 0x35 0x08 \
 0x35 0x06 \
 0x19 0x11 0x12 \
 0x09 0x01 0x00 \
 0x09 0x01 0x00 \
 0x25 0x0d \
 0x56 0x6f 0x69 \
 0x63 0x65 0x20 \
 0x47 0x61 0x74 \
 0x65 0x77 0x61 0x79}]

 sds_register_req 0x8000 $ag_record [llength $ag_record]
}

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 20 of 52

Service Discovery

3.1.7 sds_unregister_req

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

sds_unregister_req is a library function that calls SDS_UNREGISTER_REQ and then waits for
SDS_UNREGISTER_CFM. The parameters that are passed to the routine are the same as
SDS_UNREGISTER_REQ in Section 3.1.4 and the returned values are the same as the SDS_REGISTER_CFM
in Section 3.1.3.

An example of how to use the sds_unregister_req procedure is to modify the example in Section 3.1.4 to
give the script below. Here the two individual primitives SDS_UNREGISTER_REQ and
SDS_UNREGISTER_CFM have been replaced with the sds_unregister_req:

Register Audio Gateway Service Record

proc register_ag_profile_service_record {ag_server_chan} {

 set ag_record {0x09 0x00 0x01 \
 0x35 0x06 \
 0x19 0x11 0x12 \
 0x19 0x12 0x03 \
 0x09 0x00 0x04 \
 0x35 0x0c \
 0x35 0x03 \
 0x19 0x01 0x00 \
 0x35 0x05 \
 0x19 0x00 0x03 \
 0x08}
 set ag_record [concat $ag_record $ag_server_chan]
 set ag_record [concat $ag_record {0x09 0x00 0x09 \
 0x35 0x08 \
 0x35 0x06 \
 0x19 0x11 0x12 \
 0x09 0x01 0x00 \
 0x09 0x01 0x00 \
 0x25 0x0d \
 0x56 0x6f 0x69 \
 0x63 0x65 0x20 \
 0x47 0x61 0x74 \
 0x65 0x77 0x61 0x79}]

 SDS_REGISTER_REQ 0x8000 $ag_record [llength $ag_record]
 set result [SDS_REGISTER_CFM]
 set service_record_handle [lindex $result 1]
 set retval [lindex $result 2]
 puts "Service Record Handle: $service_record_handle"
 set retval [concat $retval $service_record_handle]
 puts "retval: $retval"
 return $retval
}

BC_connect com2 bcsp 115200
store the server_chan away just in case gets overwritten by the flow ctrl
RFC_DATA_INDs
set agemu_server_chan $server_chan

Register the sdp record
set result [register_ag_profile_service_record $agemu_server_chan]
if {[lindex $result 0]} {
 puts "SDS_REGISTER_REQ unsuccessful"
 puts "Result Code: [lindex $result 0]"
} else {
 puts "SDS_REGISTER_REQ successful"
 puts "Unregister Service with service record handle: [lindex $result 1]"
 sds_unregister_req 0x8000 [lindex $result 1]
}

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 21 of 52

Service Discovery

3.2 SDP Client API Primitives

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

This section describes the API primitives that are available to the client; it gives a summary of the individual
primitives and the TCL written library functions. The example TCL script outlined in Section 3.5 covers the
majority of these primitives and functions. Table 3.2 summarises where example usage can be located in the
example TCL script as well as pointing to the appropriate sections in this application note that document this
script. For a thorough description of the individual APIs for the Client primitives for the SDP refer to the BlueStack
User Manual.

3.2.1 SDC_CONFIG_REQ

Sets L2CAP MTU size for all SDC sessions; the parameters supplied are:

� mtu, L2CAP MTU size, the default value is used if supplied value is invalid

3.2.2 SDC_OPEN_SEARCH_REQ

Requests the opening of a L2CAP connection for multiple searches; the parameters supplied are:

� bd_addr, Bluetooth address of the remote device

� phandle, protocol handle to the higher entity using SDP

3.2.3 SDC_OPEN_SEARCH_CFM

Returns result of the primitive SDC_OPEN_SEARCH_REQ; the parameters supplied are:

� result, returns the result of the open search request; valid values are SDC_OPEN_SEARCH_OK,
SDC_OPEN_SEARCH_BUSY, SDC_OPEN_SEARCH_FAILED, SDC_OPEN_SEARCH_OPEN or
SDC_OPEN_SEARCH_DISCONNECTED

� phandle, protocol handle to the higher entity using SDP

3.2.4 SDC_CLOSE_SEARCH_REQ

Requests closure of a permanent L2CAP connection that had been previously opened with
SDC_OPEN_SEARCH_REQ primitive, the parameters supplied are:

� phandle, protocol handle to the higher entity using SDP

3.2.5 SDC_CLOSE_SEARCH_IND

Indicates that a L2CAP connection opened with a search request has been closed by either the client or the
server; the parameters supplied are:

� result, returns information on whether disconnection was carried out by the client or server

� phandle, protocol handle to the higher entity using SDP

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 22 of 52

Service Discovery

3.2.6 SDC_SERVICE_ATTRIBUTE_REQ

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

Requests attribute values from a service record on the remote device; the parameters supplied are:

� *attr_list, data element list of attribute IDs

� bd_addr, Bluetooth address of the remote device

� max_num_attr, maximum number of attribute bytes to be returned in one response packet

� phandle, protocol handle to the higher entity using SDP

� svc_rec_hndl, service record handle being queried

� size_attr_list, the size in bytes of the attribute list specified by the *attr_list

3.2.7 SDC_SERVICE_ATTRIBUTE_CFM

Returns the resulting attribute values from the search initiated by SDC_SERVICE_ATTRIBUTE_REQ; the
parameters supplied are:

� *attr_list, data element list of attribute IDs

� err_code, error code as defined by the SDP_ErrorResponse PDU in the Bluetooth Specification v1.1

� *err_info, reserved

� phandle, protocol handle to the higher entity using SDP

� response, indicates a success (0x0000) or a reason code for failure (any value > 0x0000)

� size_attr_list, the size in bytes of the attribute list specified by the *attr_list

� size_err_info, number of bytes in the error information

3.2.8 SDC_SERVICE_SEARCH_ATTRIBUTE_REQ

Equivalent of the SDP_Service_Search_Attribute_Request in the Bluetooth specification; the parameters
supplied are:

� phandle, protocol handle to the higher entity using SDP

� size_attr_list, the size in bytes of the attribute list specified by the *attr_list

� *attr_list, data element list of attribute IDs

� bd_addr, Bluetooth address of the remote device

� max_num_attr, maximum number of attribute bytes to be returned in one response packet

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 23 of 52

Service Discovery

3.2.9 SDC_SERVICE_SEARCH_ATTRIBUTE_CFM

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

Returns the result of the search request specified by the primitive
SDC_SERVICE_SEARCH_ATTRIBUTE_REQ the parameters supplied are:

� phandle, protocol handle to the higher entity using SDP

� total_response_size, total size in bytes of the entire response

� size_attr_list, the size in bytes of the attribute list specified by the *attr_list

� *attr_list, data element list of attribute IDs

� more_to_come, indicates that further responses to come if set to TRUE

� response, indicates a success (0x0000) or a reason code for failure (any value > 0x0000)

� err_code, error code as defined by the SDP_ErrorResponse PDU in the Bluetooth Specification v1.1

� size_err_info, number of bytes in the error information

� *err_info, reserved

3.2.10 SDC_SERVICE_SEARCH_REQ

Equivalent of the SDP_Service_Search_Request PDU in the Bluetooth specification; the parameters supplied
are:

� bd_addr, Bluetooth address of the remote device

� max_num_recs, maximum number of record handles to be returned from the search

� phandle, protocol handle to the higher entity using SDP

� *srch_pttrn, search pattern defined as a data element sequence of up to 12 UUIDs

� size_srch_pttrn, number of bytes in the search pattern

3.2.11 SDC_SERVICE_SEARCH_CFM

Returns the result of the search request specified by the primitive SDC_SERVICE_SEARCH_REQ; the
parameters supplied are:

� err_code, error code as defined by the SDP_ErrorResponse PDU in the Bluetooth Specification v1.1

� *err_info, reserved

� *rec_list, list of 32-bit handles identifying record that corresponds to the search criteria

� num_recs_ret, number of service records returned

� phandle, protocol handle to the higher entity using SDP

� response, indicates a success (0x0000) or a reason code for failure (any value > 0x0000)

� size_err_info, number of bytes in the error information

� size_rec_list, number of bytes in the list

� size_srch_pttrn, number of bytes in the search pattern

� *srch_pttrn, search pattern defined as a data element sequence of up to 12 UUIDs

3.2.12 SDC_TERMINATE_PRIMITIVE_REQ

Terminates an active service search the parameters supplied are:

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 24 of 52

� phandle, protocol handle to the higher entity using SDP

Service Discovery

3.2.13 sdc_config_req

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

Configures SDP to use a specific L2CAP MTU when connecting to a server; the parameters supplied are:

� As per SDC_CONFIG_REQ, see Section 3.2.1

3.2.14 sdc_open_search

Is a wrapper around sdc_open_search_req in Section 3.2.15. The global variable
connectionAttempts controls how many attempts will be made to open the search before giving up; the
parameters supplied are:

� As per sdc_open_search_req, see Section 3.2.15

Important Note:
The use of the library function sdc_open_search will cause a TCL script to lock when used with
applications that require pairing and authentication. This is due to the fact that the sdc_open_search
function waits for the primitive SDC_OPEN_SEARCH_CFM to be issued before continuing. The headset
application with the security level set at two or three, needs to be paired and authenticated before the
SDC_OPEN_SEARCH_REQ primitive can be confirmed.

3.2.15 sdc_open_search_req

Calls SDC_OPEN_SEARCH_REQ and then waits for SDC_OPEN_SEARCH_CFM; the parameters supplied are:

� As for SDC_OPEN_SEARCH_REQ, see Section 3.2.2

Important Note:
The use of the library function sdc_open_search_req will cause a TCL script to lock when used with
applications that require pairing and authentication. This is due to the fact that the sdc_open_search
function waits for the primitive SDC_OPEN_SEARCH_CFM to be issued before continuing. The headset
application with the security level set at two or three, needs to be paired and authenticated before the
SDC_OPEN_SEARCH_REQ primitive can be confirmed.

3.2.16 sdc_close_search_req

Terminates an SDP search session and closes down the ACL link.

3.2.17 sdc_range_search

sdc_range_search requests all attributes for a particular service; the parameters supplied are:

� service, 16-bit UUID specifying the service

3.2.18 sdc_service_attribute_req

Calls SDC_SERVICE_ATTRIBUTE_REQ and then waits for SDC_SERVICE_ATTRIBUTE_CFM the
parameters supplied are:

� As for SDC_SERVICE_ATTRIBUTE_REQ, see Section 3.2.6

3.2.19 sdc_service_search_attribute_req

Calls SDC_SERVICE_SEARCH_ATTRIBUTE_REQ and then waits for
SDC_SERVICE_SEARCH_ATTRIBUTE_CFM; the parameters supplied are:

� As for SDC_SERVICE_SEARCH_ATTRIBUTE_REQ, see Section 3.2.8

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 25 of 52

Service Discovery

3.2.20 sdc_service_search_req

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

Calls SDC_SERVICE_SEARCH_REQ and then waits for SDC_SERVICE_SEARCH_CFM the parameters
supplied are:

� As for SDC_SERVICE_SEARCH_REQ, see Section 1.1.1

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 26 of 52

Service Discovery

3.3 Registering a Service Record

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

Registering and unregistering a service record on the SDP server is adequately covered by the primitives in
Section 3.1.2, Section 3.1.3, Section 3.1.4 and Section 3.1.5, as well as the library functions in Section 3.1.6 and
Section 3.1.7.

3.4 Headset Service Discovery

In order to understand the way in which the SDP Client searches for attributes and services on the SDP Server a
TCL script can be run in an RFCLI session to show how the service records on a true Bluetooth profile can be
accessed. In order to run the example script the following set-up is required:

1. The example TCL script is listed in SDPExample35.tcl

2. The headset profile available in BlueLab v2.5 is downloaded to the Casira attached to com1 as shown in
Figure 3.1. Holding down the Talk, Volume Down and Volume Up buttons together for a few seconds
should trigger a hard reset on the headset. This will reset the PIN code and clear the link keys and
pairing settings, allowing pairing and authentication to occur.

3. The TCL script in SDPExample35.tcl is run in an RFCLI session attached to the Casira on com2 as
shown in Figure 3.1. If the parameter UsingPrimitives is set to TRUE (1) the script will run using
just primitives, but if set to FALSE (0) it will run using as many library functions as possible.

4. The output from running the TCL script successfully is shown in RFCLI_OutputPrimitives.txt when
UsingPrimitives is set to TRUE, and is shown in RFCLI_OutputLibrary.tcl when
UsingPrimitives is set to FALSE.

COM1 COM2

Casira - Headset
Application

Casira - RFCOMM
Firmware

PC

Figure 3.1: Headset Service Discovery Example Set-up

The intention of the example TCL script is to show how to use the SDP API primitives available on BlueStack.
Table 3.2 lists where example usage of various primitives and functions can be found within the TCL example in
SDPExample35.tcl. The example covers all the primitives and functions listed in the Table 3.2, except for the two
library functions sdc_open_search and sdc_open_search_req, whose restrictions are outlined in
Section 3.2.14 and Section 3.2.15 respectively. The script has been written to run in two forms:

1. To use the primitives only, this is when UsingPrimitives is set to TRUE

2. To use as much of the library functions as possible, this is when UsingPrimitives is set to FALSE

The overall structure of the example TCL script is outlined in Figure 3.2 and a description of the code and
procedures is covered in Section 3.5.

.

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 27 of 52

Service Discovery

Primitives and Library Functions Location Section

SDS_REGISTER_REQ proc RegisterAGServiceRecord {} 3.5.3
SDS_REGISTER_CFM proc RegisterAGServiceRecord {} 3.5.3
SDS_UNREGISTER_REQ proc UnRegisterAGServiceRecord {} 3.5.17
SDS_UNREGISTER_CFM proc UnRegisterAGServiceRecord {} 3.5.17
sds_register_req proc RegisterAGServiceRecord {} 3.5.3
sds_unregister_req proc UnRegisterAGServiceRecord {} 3.5.17
SDC_OPEN_SEARCH_REQ proc StartSDPSearch {} 3.5.6
SDC_OPEN_SEARCH_CFM proc StartSDPSearch {} 3.5.10
SDC_CLOSE_SEARCH_REQ proc mainroutine {} 3.5.18
SDC_CLOSE_SEARCH_IND proc mainroutine {} 3.5.18
SDC_SERVICE_ATTRIBUTE_CFM proc ServiceAttributes {} 3.2.7
SDC_SERVICE_ATTRIBUTE_REQ proc ServiceAttributes {} 3.2.6
SDC_SERVICE_SEARCH_ATTRIBUTE_CFM proc ServiceSearchAttributes {} 3.5.14
SDC_SERVICE_SEARCH_ATTRIBUTE_REQ proc ServiceSearchAttributes {} 3.5.14
SDC_SERVICE_SEARCH_CFM proc SearchHIDServiceRecord {} 3.2.11
SDC_SERVICE_SEARCH_REQ proc SearchHIDServiceRecord {} 1.1.1
SDC_TERMINATE_PRIMITIVE_REQ proc TerminateSearch {} 3.2.12
sdc_close_search_req proc mainroutine {} 3.5.18
sdc_open_search See Section 3.2.14 for restrictions
sdc_open_search_req See Section 3.2.15 for restrictions
sdc_range_search proc mainroutine {} 3.5.15
sdc_service_attribute_req proc ServiceAttributes {} 3.2.18
sdc_service_search_attribute_req proc ServiceSearchAttributes {} 3.5.14
sdc_service_search_req proc SearchHIDServiceRecord {} 3.2.20

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

Table 3.2: Location of Usage of SDP Primitives Within TCL Example Script

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 28 of 52

Service Discovery

3.5 Example TCL Script Structure

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

Table 3.2 lists all the SDP primitives and function available in RFCLI that interface to the BlueStack SDP API
primitives outlined in Section 3.1 and Section 3.2. Table 3.2 also lists the locations in the TCL script shown in
SDPExample35.tcl of how each of the primitives and functions are implemented. This section documents the
functionality of the TCL script shown in SDPExample35.tcl. Figure 3.2 shows the overall structure of the script and
the subsections 3.5.1 to 3.5.18 highlight the individual procedures that make up the functionality of each
functional block shown in Figure 3.2. Within each subsection examples of the SDP primitives and functions being
used are highlighted.

Main Routine

Register AG Service Record

Unregister AG Service Record

Register with Security
Manager

Pair with Headset

Request to Open SDC Search

Wait for PIN Code and
Respond with Stored Value =

1234

Search for Attributes on the
Headset

Search for Generic Audio
Service on the Headset

Search for HID Service
Record on the Headset

Wait for Open SDC Search
Confirmed

Wait for First Link Key and
Reject It

Wait for Link Key

Terminate a Search

Show Range of Attributes
Available on the Headset

Search for Service Attributes
on the Headset

Close SDC SearchInitialisation

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 29 of 52

Figure 3.2: Structure of TCL Example Script

Service Discovery

3.5.1 Initialisation

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

The script shown below covers initialisation, connecting to the Casira on com2 in Figure 3.1, setting up the
Bluetooth address of the target headset and registering with the device manager and RFCOMM layers.

Initialisation
BC_connect com2 bcsp 115200
#Set UsingPrimitives TRUE to use PRIMITIVES, FALSE to use library functions
set UsingPrimitives 1
set bd_addr.lap 0x10e47
set bd_addr.uap 0x5b
set bd_addr.nap 0x02
BC_option -agpmode
Register with the dm
dm_am_register_req
Register with the rfcomm
rfc_register_req
store the server_chan otherwise its overwritten by flow ctrl data inds
set ag_server_chan $server_chan
rfc_init_req
mainroutine

The output expected in RFCLI for this script is as follows:

---- 11:49:50.884 ------------------
DM_AM_REGISTER_REQ_T
 type = 00
 phandle = 8000

---- 11:49:50.900 ------------------
DM_AM_REGISTER_CFM_T
 type = 01
 phandle = 8000

---- 11:49:50.900 ------------------
RFC_REGISTER_REQ_T
 type = 03
 phandle = 8000

---- 11:49:50.915 ------------------
RFC_REGISTER_CFM_T
 type = 04
 phandle = 8000
 server_chan = 01
 accept = 01

---- 11:49:50.915 ------------------
RFC_INIT_REQ_T
 type = 01
 phandle = 8000
 psm_local = 03
 use_flow_control = 01
 fc_type = 01
 fc_threshold = 03
 fc_timer = 01
 rsvd_4 = 00
 rsvd_5 = 00

---- 11:49:50.931 ------------------
RFC_INIT_CFM_T
 type = 02
 phandle = 8000
 psm_local = 03
 fc_type = 8000
 fc_threshold = 03
 fc_timer = 01

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 30 of 52

 rsvd_4 = 00
 rsvd_5 = 00

Service Discovery

3.5.2 Main Routine

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

The Main Routine in Figure 3.2 is covered by the procedure mainroutine. It is the second procedure shown
in Figure 3.2 and is responsible for calling all the other TCL procedures shown below it in order. The script for the
mainroutine is shown below and the comment fields correspond to all the procedures shown in Figure 3.2:

Main Routine
proc mainroutine {} {
 global phandle ag_server_chan UsingPrimitives

 # Register AG Service Record
 set agrecordhandle [lindex [RegisterAGServiceRecord $ag_server_chan] 1]

 # Register with Security Manager
 DM_SM_REGISTER_REQ 1 $ag_server_chan 0 0x13 0

 # Pair with Headset
 PairWithHeadset

 # Request to Open SDC Search
 StartSDPSearch 0

 # Wait for First Link Key and Reject It
 WaitLinkKeyRequestReject

 # Wait for PIN Code and Respond with Stored Value = 1234
 WaitPinCodeRequest

 # Wait for Link Key
 WaitLinkKeyRequest

 # Wait for Open SDC Search Confirmed
 StartSDPSearch 1

 # Search for HID Service Record on the Headset
 SearchHIDServiceRecord

 # Search for Generic Audio Service on the Headset
 SearchGenericAudioServiceRecord

 # Search for Attributes on the Headset
 ServiceAttributes

 # Search for Service Attributes on the Headset
 ServiceSearchAttributes

 # Show Range of Attributes Available on the Headset
 sdc_range_search 0x1108

 # Terminate a Search
 TerminateSearch

 # Unregister AG Service Record
 UnRegisterAGServiceRecord $phandle $agrecordhandle

 # Close SDC Search
 if {$UsingPrimitives} {
 SDC_CLOSE_SEARCH_REQ
 set result [lindex [SDC_CLOSE_SEARCH_IND] 1]
 } else {
 set result [lindex [sdc_close_search_req] 1]
 }
 switch $result {
 0x0 {puts "Connection disconnected by SDS Server"}
 0x1 {puts "Connection disconnected by SDS Client"}
 }

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 31 of 52

}

Service Discovery

As mentioned earlier in this subsection the mainroutine procedure calls all the other procedures shown in
Figure 3.2, therefore the output expected in RFCLI is not shown for this procedure but the output is indicated in
the documentation of the subsections that cover the individual procedures called by mainroutine.

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

3.5.3 Register AG Service Record

The Register AG Service Record routine in Figure 3.2 is covered by the procedure
RegisterAGServiceRecord. This routine demonstrates how to register a service with the SDP server
database. As the remote device is a headset, then the local device service record that is registered by this routine
is for the audio gateway. The routine returns the service record handle of the registered record via the variable
retval to the calling routine. The calling routine must supply the server channel value so that this can be
inserted in to the record. The script is as follows:

Register AG Service Record
proc RegisterAGServiceRecord {AGServerChannel} {
 global UsingPrimitives
 set hs_record {0x09 0x00 0x01 0x35 0x06 \
 0x19 0x11 0x12 0x19 0x12 0x03 \
 0x09 0x00 0x04 0x35 0x0c \
 0x35 0x03 0x19 0x01 0x00 \
 0x35 0x05 0x19 0x00 0x03 \
 0x08}
 set hs_record [concat $hs_record $AGServerChannel]
 set hs_record [concat $hs_record {0x09 0x00 0x09 \
 0x35 0x08 \
 0x35 0x06 \
 0x19 0x11 0x12 \
 0x09 0x01 0x00 \
 0x09 0x01 0x00 \
 0x25 0x0d \
 0x56 0x6f 0x69 \
 0x63 0x65 0x20 \
 0x47 0x61 0x74 \
 0x65 0x77 0x61 0x79}]
 if {$UsingPrimitives} {
 SDS_REGISTER_REQ 0x8000 $hs_record [llength $hs_record]
 set result [SDS_REGISTER_CFM]
 } else {
 set result [sds_register_req - $hs_record [llength $hs_record]]
 }
 set service_record_handle [lindex $result 1]
 set retval [lindex $result 2]
 puts "Service Record Handle: $service_record_handle"
 set retval [concat $retval $service_record_handle]
 puts "retval: $retval"
 return $retval
}

The output expected in RFCLI for this script is as follows:

---- 11:49:50.947 ------------------
SDS_REGISTER_REQ_T
 type = 0e
 phandle = 8000
 num_rec_bytes = 3b
09 00 01 35 06 19 11 12 19 12 03 09 00 04 35 0c 35 03 19 01 00 35 05 19 00
03 08 01 09 00 09 35 08 35 06 19 11 12 09 01 00 09 01 00 25 0d 56 6f 69 63
65 20 47 61 74 65 77 61 79

---- 11:49:50.962 ------------------
SDS_REGISTER_CFM_T
 type = 0f
 phandle = 8000
 svc_rec_hndl = 10000
 result = 00
Service Record Handle: 0x10000

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 32 of 52

retval: 0x0 0x10000

Service Discovery

3.5.4 Register with Security Manager

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

The Register with Security Manager routine in Figure 3.2 is strictly not an individual procedure. The following line
of TCL script that appears in the mainroutine procedure initiates the registration. Registration with the
security manager is performed so that pairing and authentication can be carried out:

Register with Security Manager
DM_SM_REGISTER_REQ 1 $ag_server_chan 0 0x13 0

The output expected in RFCLI for this script is as follows:

---- 11:49:50.978 ------------------
DM_SM_REGISTER_REQ_T
 type = 2c02
 protocol_id = 01
 channel = 01
 outgoing_ok = 00
 security_level = 13
 psm = 00

3.5.5 Pair with Headset

The Pair with Headset routine in Figure 3.2 is covered by the procedure PairWithHeadset; this routine
carries out the following:

� Stores the headset default PIN code of 1234 to be used in pairing

� Removes the headset device from the security manager

� Sets the security level

The TCL script is as follows:

Pair with Headset
proc PairWithHeadset {} {
 global bd_addr.lap bd_addr.uap bd_addr.nap
 global pin_code pin_length
 after 3000

 # Store a default PIN to use when pairing
 set pin_code {0x31 0x32 0x33 0x34}
 set pin_length 4

 # Remove the device we're going to pair with from the security manager's
 # settings
 dm_sm_remove_device_req ${bd_addr.lap} ${bd_addr.uap} ${bd_addr.nap}

 # Set the security level
 set authentication_enabled 1
 set encryption_enabled 0
 dm_sm_set_sec_mode_req 3 0
}

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 33 of 52

Service Discovery

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

The output expected in RFCLI for this script is as follows:

---- 11:49:53.993 ------------------
DM_SM_REMOVE_DEVICE_REQ_T
 type = 2c09
 BD_ADDR_T
 lap = 10e47
 uap = 5b
 nap = 02

---- 11:49:53.993 ------------------
DM_SM_REMOVE_DEVICE_CFM_T
 type = 2c15
 phandle = 8000
 BD_ADDR_T
 lap = 10e47
 uap = 5b
 nap = 02
 success = 00

---- 11:49:53.993 ------------------
DM_SM_SET_SEC_MODE_REQ_T
 type = 2c07
 mode = 03
 mode3_enc = 00

---- 11:49:53.993 ------------------
DM_SM_SET_SEC_MODE_CFM_T
 type = 2c13
 phandle = 8000
 mode = 03
 mode3_enc = 00
 success = 01

3.5.6 Request to Open SDC Search

The Request to Open SDC Search routine in Figure 3.2 is covered by the procedure StartSDPSearch. This
routine either requests to open a search on the headset or looks to see if a previous request to open has been
confirmed. The selection variable sel passed by the calling routine determines whether an open search should
be requested, or whether it should be confirmed. At the end of the routine the pairing status flag is set to one if
pairing was successful. The TCL script for the routine is as follows:

Request to Open SDC Search
proc StartSDPSearch {sel} {
 switch $sel {
 0 {SDC_OPEN_SEARCH_REQ - - - -}
 1 {set result [lindex [SDC_OPEN_SEARCH_CFM] 1]}
 2 {set result [lindex [sdc_open_search_req - - - -] 1]}
 }
 if {$sel > 0} {
 puts "Result SDC_OPEN_SEARCH_CFM: $result"
 # set the pair status depending on whether the pairing was a success
 if {$result == 0} {
 set pair_status 1
 } else {
 set pair_status 4
 }
 }
}

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 34 of 52

Service Discovery

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

The output expected in RFCLI for this script when the routine is called to open the SDC search i.e. when variable
sel is set to 0, is as follows:

---- 11:49:53.993 ------------------
SDC_OPEN_SEARCH_REQ_T
 type = 08
 phandle = 8000
 BD_ADDR_T
 lap = 10e47
 uap = 5b
 nap = 02

3.5.7 Wait for Link Key Request and Reject It

The Wait for Link Key Request and Reject It routine in Figure 3.2 is covered by the procedure
WaitLinkKeyRequestReject. The script rejects the link key request because it initially has no link key to
send. The TCL script for the routine is as follows:

Wait for Link Key Request and Reject It
proc WaitLinkKeyRequestReject {} {
 # Wait for a link key request and reject it
 # It doesn't matter what we send down as a link key
 DM_SM_LINK_KEY_REQUEST_IND
 DM_SM_LINK_KEY_REQUEST_RES - - - {0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0} 0
}

The output expected in RFCLI for this script is as follows:

---- 11:49:55.275 ------------------
DM_SM_LINK_KEY_REQUEST_IND_T
 type = 2c16
 phandle = 8000
 BD_ADDR_T
 lap = 10e47
 uap = 5b
 nap = 02

---- 11:49:55.275 ------------------
DM_SM_LINK_KEY_REQUEST_RES_T
 type = 2c0a
 BD_ADDR_T
 lap = 10e47
 uap = 5b
 nap = 02
 key [c] = 00
 key [c] = 00
 key [c] = 00
 key [c] = 00
 key [c] = 00
 key [c] = 00
 key [c] = 00
 key [c] = 00
 key [c] = 00
 key [c] = 00
 key [c] = 00
 key [c] = 00
 key [c] = 00
 key [c] = 00
 key [c] = 00
 key [c] = 00
 valid = 00

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 35 of 52

Service Discovery

3.5.8 Wait for PIN Code and Respond with Stored Value = 1234

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

The Wait for PIN Code and Respond with Stored Value = “1234”(1) routine in Figure 3.2 is covered by the
procedure WaitPinCodeRequest. This routine waits for the PIN code request from the headset and then
returns the default value of “1234”. If the headset has had a hard reset then the pin codes will match causing the
devices to pair and authenticate. The TCL script for the routine is as follows:

Wait for PIN Code and Respond with Stored Value = 1234
proc WaitPinCodeRequest {} {
 global pin_code pin_length
 DM_SM_PIN_REQUEST_IND
 DM_SM_PIN_REQUEST_RES - - - $pin_length $pin_code
}

The output expected in RFCLI for this script is as follows:

---- 11:49:55.290 ------------------
DM_SM_PIN_REQUEST_IND_T
 type = 2c17
 phandle = 8000
 BD_ADDR_T
 lap = 10e47
 uap = 5b
 nap = 02

---- 11:49:55.290 ------------------
DM_SM_PIN_REQUEST_RES_T
 type = 2c0b
 BD_ADDR_T
 lap = 10e47
 uap = 5b
 nap = 02
 pin_length = 04
 pin [c] = 31
 pin [c] = 32
 pin [c] = 33
 pin [c] = 34
 pin [c] = 00
 pin [c] = 00
 pin [c] = 00
 pin [c] = 00
 pin [c] = 00
 pin [c] = 00
 pin [c] = 00
 pin [c] = 00
 pin [c] = 00
 pin [c] = 00
 pin [c] = 00
 pin [c] = 00

Note:
(1) The pin number “1234” is ASCII coded

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 36 of 52

Service Discovery

3.5.9 Wait for Link Key

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

The Wait for Link Key routine in Figure 3.2 is covered by the procedure WaitLinkKeyRequest. This routine
stores the headset device and the new link key received from the security manager. The TCL script is as follows:

Wait for Link Key
proc WaitLinkKeyRequest {} {
 global key
 DM_SM_LINK_KEY_IND

 # Store the link key in the security manager
 dm_sm_add_device_req - - - 1 1 1 $key
}

The output expected in RFCLI for this script is as follows:

---- 11:49:55.587 ------------------
DM_SM_LINK_KEY_IND_T
 type = 2c18
 phandle = 8000
 BD_ADDR_T
 lap = 10e47
 uap = 5b
 nap = 02
 key_type = 00
 key [c] = 91
 key [c] = 02
 key [c] = 09
 key [c] = 5b
 key [c] = b5
 key [c] = ff
 key [c] = e0
 key [c] = 73
 key [c] = 04
 key [c] = da
 key [c] = 5b
 key [c] = 0b
 key [c] = 09
 key [c] = f2
 key [c] = 97
 key [c] = d1

---- 11:49:55.587 ------------------
DM_SM_ADD_DEVICE_REQ_T
 type = 2c08
 BD_ADDR_T
 lap = 10e47
 uap = 5b
 nap = 02
 update_trust_level = 01
 trusted = 01
 update_link_key = 01
 link_key [c] = 91
 link_key [c] = 02
 link_key [c] = 09
 link_key [c] = 5b
 link_key [c] = b5
 link_key [c] = ff
 link_key [c] = e0
 link_key [c] = 73
 link_key [c] = 04
 link_key [c] = da
 link_key [c] = 5b
 link_key [c] = 0b
 link_key [c] = 09
 link_key [c] = f2

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 37 of 52

 link_key [c] = 97
 link_key [c] = d1

Service Discovery

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

---- 11:49:55.603 ------------------
DM_SM_ADD_DEVICE_CFM_T
 type = 2c14
 phandle = 8000
 BD_ADDR_T
 lap = 10e47
 uap = 5b
 nap = 02
 success = 01

3.5.10 Wait for Open SDC Search Confirmed

The following line of TCL script that appears in the procedure mainfunction covers the Wait for Open
SDC Search Confirmed routine in Figure 3.2:

Wait for Open SDC Search Confirmed
StartSDPSearch 1

The Wait for Open SDC Search Confirmed routine is essentially a call routine to the
StartSDPSearch procedure documented in Section 3.5.6 but a different value for the sel variable is used
this time it is set to one. The TCL script is listed earlier in Section 3.5.6 and as part of the opening of the SDC
search being confirmed an ACL connection will be automatically established with the headset and its remote
feature set supplied. The output expected in RFCLI for this script is as follows:

---- 11:49:55.618 ------------------
DM_ACL_OPENED_IND_T
 type = 280d
 phandle = 8000
 BD_ADDR_T
 lap = 10e47
 uap = 5b
 nap = 02
 incoming = 00
 dev_class = 00

---- 11:49:55.900 ------------------
DM_HCI_READ_REMOTE_FEATURES_COMPLETE_T
 type = 42a
 phandle = 8000
 status = 00
 BD_ADDR_T
 lap = 10e47
 uap = 5b
 nap = 02
 features [c] = ffff
 features [c] = 0f
 features [c] = 00
 features [c] = 00

---- 11:49:56.165 ------------------
SDC_OPEN_SEARCH_CFM_T
 type = 09
 phandle = 8000
 result = 00
Result SDC_OPEN_SEARCH_CFM: 0x0

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 38 of 52

Service Discovery

3.5.11 Search for HID Service Record on the Headset

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

The Search for HID Service Record on the Headset routine in Figure 3.2 is covered by the procedure
SearchHIDServiceRecord. This routine is an example of the use of the SDP_ServiceSearch transaction
outlined in the Bluetooth Specification v1.1 and is intended to show a failure, it causes a search for the HID
service record on the headset. The headset does not contain the HID service record and therefore should return
zero service records. The TCL script is as follows:

Search for HID Service Record on the Headset
proc SearchHIDServiceRecord {} {
 global UsingPrimitives

 #search for HID service records because this should
 #give a failure as we are communicating with Headset
 if {$UsingPrimitives} {
 SDC_SERVICE_SEARCH_REQ - - - - 5 {0x35 0x3 0x19 0x11 0x24} 1
 set result [SDC_SERVICE_SEARCH_CFM]
 } else {
 set result [sdc_service_search_req - - - - 5 {0x35 0x3 0x19 0x11 0x24} 1]
 }
 puts "Service Record Search Result HID: $result"
}

The output expected in RFCLI for this script is as follows:

---- 11:49:56.165 ------------------
SDC_SERVICE_SEARCH_REQ_T
 type = 01
 phandle = 8000
 BD_ADDR_T
 lap = 10e47
 uap = 5b
 nap = 02
 size_srch_pttrn = 05
 max_num_recs = 01
 35 03 19 11 24

---- 11:49:56.212 ------------------
SDC_SERVICE_SEARCH_CFM_T
 type = 02
 phandle = 8000
 num_recs_ret = 00
 size_rec_list = 00
 response = 11
 err_code = 00
 size_err_info = 00
Service Record Search Result HID: 0x8000 0x0 0x0 0x0 0x11 0x0 0x0 0x0

Note:
 The response = 11 means that there is no response data i.e. the service being search for does not exist

on the server. For the meaning of this response and other error code refer to file sdc_prim.h.

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 39 of 52

Service Discovery

3.5.12 Search for Generic Audio Service Record on the Headset

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

The Search for Generic Audio Service Record on the Headset routine in Figure 3.2 is covered by the procedure
SearchGenericAudioServiceRecord. This routine is an example of the use of the SDP_ServiceSearch
transaction outlined in the Bluetooth Specification v1.1 and searches for the generic audio service record on the
headset SDP server and is therefore successful. The TCL script is as follows:

Search for Generic Audio Service on the Headset
proc SearchGenericAudioServiceRecord {} {
 global UsingPrimitives

 #search for Generic Audio service records
 if {$UsingPrimitives} {
 SDC_SERVICE_SEARCH_REQ - - - - 5 {0x35 0x3 0x19 0x12 0x03} 1
 set result [SDC_SERVICE_SEARCH_CFM]
 } else {
 set result [sdc_service_search_req - - - - 5 {0x35 0x3 0x19 0x12 0x03}
1]
 }
 puts "Service Record Search Result GA: $result"
}

The output expected in RFCLI for this script is as follows:

---- 11:49:56.212 ------------------
SDC_SERVICE_SEARCH_REQ_T
 type = 01
 phandle = 8000
 BD_ADDR_T
 lap = 10e47
 uap = 5b
 nap = 02
 size_srch_pttrn = 05
 max_num_recs = 01
 35 03 19 12 03

---- 11:49:56.275 ------------------
SDC_SERVICE_SEARCH_CFM_T
 type = 02
 phandle = 8000
 num_recs_ret = 01
 size_rec_list = 04
 response = 00
 err_code = 00
 size_err_info = 00
 00 01 00 00
Service Record Search Result GA: 0x8000 0x1 0x4 {0x00 0x01 0x00 0x00} 0x0
0x0 0x0 0x0

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 40 of 52

Service Discovery

3.5.13 Search for Attributes on the Headset

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

The Search for Attributes on the Headset routine in Figure 3.2 is covered by the procedure
ServiceAttributes. This routine is an example of the use of the SDP_ServiceAttribute transaction outlined
in the Bluetooth Specification v1.1 and at first gets the service record handle for the headset by searching for it
on the headset using the SearchHeadsetServiceRecord procedure listed below:

proc SearchHeadsetServiceRecord {} {
 global UsingPrimitives

 #search for Headset service records
 if {$UsingPrimitives} {
 SDC_SERVICE_SEARCH_REQ - - - - 5 {0x35 0x3 0x19 0x11 0x08} 1
 set result [SDC_SERVICE_SEARCH_CFM]
 } else {
 set result [sdc_service_search_req - - - - 5 {0x35 0x3 0x19 0x11 0x08}
1]
 }
 puts "Service Record Search Result HS: $result"
 #Strip off the service record handle
 set srh [lindex $result 3]
 set retval0 [expr {0x01000000 * [lindex $srh 0]}]
 set retval1 [expr {0x010000 * [lindex $srh 1]}]
 set retval2 [expr {0x0100 * [lindex $srh 2]}]
 set retval3 [lindex $srh 3]
 set retval [expr {$retval0 + $retval1 + $retval2 + $retval3}]
 return $retval
}

Once the service record handle for the headset is obtained it uses this handle to search and confirm that the
attribute IDs ServiceClassIDList, ProtocolDescriptorList,
BluetoothProfileDescriptorList, ServiceName and Remote Audio Volume Control are
present. These attribute searches should all be successful as they present in the headset service record supplied
with BlueLab v2.5, the headset service record is coded in BlueLab v2.5 as follows:

/*
 This structure defines the service record for the Headset; it contains
 a blank space for the RFCOMM server channel since this will be filled
 in at run time
 Note that attrIds are specified as being 16-bit ints
*/
static const uint8 serviceRecord[] =
{

 /* Service class ID list */
 0x09,0x00,0x01, /* AttrID , ServiceClassIDList */
 0x35,0x06, /* 6 bytes in total DataElSeq */
 0x19,0x11,0x08,/* 2 byte UUID, Service class = headset */
 0x19,0x12,0x03,/* 2 byte UUID Service class = GenericAudio */

 /* protocol descriptor list */
 0x09,0x00,0x04,/* AttrId ProtocolDescriptorList */
 0x35,0x0c, /* 11 bytes in total DataElSeq */
 0x35,0x03, /*3 bytes in DataElSeq */
 0x19, 0x01,0x00,/* 2 byte UUID, Protocol = L2CAP */

 0x35,0x05, /* 4 bytes in DataElSeq */
 0x19, 0x00,0x03, /* 1 byte UUID Protocol = RFCOMM */
 0x08, 0x00, /* 1 byte UINT - server channel template value 0 - to be
 filled in by app */

 /* profile descriptor list */
 0x09,0x00,0x09, /* AttrId, ProfileDescriptorList */
 0x35,0x08, /* 10 bytes in total DataElSeq */
 0x35,0x06, /* 6 bytes in total DataElSeq */
 0x19, 0x11,0x08, /* 2 byte UUID, Service class = Headset */

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 41 of 52

 0x09, 0x01,0x00, /* 2 byte uint, version = 100 */

Service Discovery

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

 /* service name */
 0x09, 0x01, 0x00, /* AttrId - Service Name */
 0x25, 0x07, /* 7 byte string */
 'H','e','a','d','s','e','t',

 /* remote audio volume control */
 0x09, 0x03, 0x02, /* AttrId - remote audio volume control */
 0x28, 0x01 /* boolean - TRUE we do support remote audio volume control */
};

The actual TCL for the Search for Attributes on the Headset routine is as follows:

Search for Attributes on the Headset
proc ServiceAttributes {} {
 global UsingPrimitives
 global bd_addr.lap bd_addr.uap bd_addr.nap

 #Get Service Record handle for the Headset
 set srh [SearchHeadsetServiceRecord]
 puts [format "Service Record Handle: 0x%x" $srh]

 #Search for the ServiceClassIDList Attribute (Attribute ID = 0x0001) on
 #Headset
 if {$UsingPrimitives} {
 SDC_SERVICE_ATTRIBUTE_REQ - ${bd_addr.lap} ${bd_addr.uap}
${bd_addr.nap} $srh 5 {0x35 0x3 0x09 0x00 0x01} 10
 set result [SDC_SERVICE_ATTRIBUTE_CFM]
 } else {
 set result [sdc_service_attribute_req - ${bd_addr.lap} ${bd_addr.uap}
${bd_addr.nap} $srh 5 {0x35 0x3 0x09 0x00 0x01} 10]
 }
 puts "Service Attribute Result for ServiceClassIDList: $result"

 #Search for the ProtocolDescriptorList Attribute (Attribute ID = 0x0004)
 #on Headset
 if {$UsingPrimitives} {
 SDC_SERVICE_ATTRIBUTE_REQ - ${bd_addr.lap} ${bd_addr.uap}
${bd_addr.nap} $srh 5 {0x35 0x3 0x09 0x00 0x04} 10
 set result [SDC_SERVICE_ATTRIBUTE_CFM]
 } else {
 set result [sdc_service_attribute_req - ${bd_addr.lap} ${bd_addr.uap}
${bd_addr.nap} $srh 5 {0x35 0x3 0x09 0x00 0x04} 10]
 }

 puts "Service Attribute Result for ProtocolDescriptorList: $result"

 #Search for the BluetoothProfileDescriptorList Attribute (Attribute ID =
 #0x0009) on Headset
 if {$UsingPrimitives} {
 SDC_SERVICE_ATTRIBUTE_REQ - ${bd_addr.lap} ${bd_addr.uap}
${bd_addr.nap} $srh 5 {0x35 0x3 0x09 0x00 0x09} 10
 set result [SDC_SERVICE_ATTRIBUTE_CFM]
 } else {
 set result [sdc_service_attribute_req - ${bd_addr.lap} ${bd_addr.uap}
${bd_addr.nap} $srh 5 {0x35 0x3 0x09 0x00 0x09} 10]
 }

 puts "Service Attribute Result for BluetoothProfileDescriptorList:
$result"

 #Search for the ServiceName Attribute (Attribute ID = 0x0100) on Headset
 if {$UsingPrimitives} {
 SDC_SERVICE_ATTRIBUTE_REQ - ${bd_addr.lap} ${bd_addr.uap}
${bd_addr.nap} $srh 5 {0x35 0x3 0x09 0x01 0x00} 10
 set result [SDC_SERVICE_ATTRIBUTE_CFM]

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 42 of 52

 } else {

Service Discovery

 set result [sdc_service_attribute_req - ${bd_addr.lap} ${bd_addr.uap}
${bd_addr.nap} $srh 5 {0x35 0x3 0x09 0x01 0x00} 10]

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

 }

 puts "Service Attribute Result for ServiceName: $result"

 #Search for the Remote Audio Volume Control Attribute (Attribute ID =
 #0x0302) on Headset
 if {$UsingPrimitives} {
 SDC_SERVICE_ATTRIBUTE_REQ - ${bd_addr.lap} ${bd_addr.uap}
${bd_addr.nap} $srh 5 {0x35 0x3 0x09 0x03 0x02} 10
 set result [SDC_SERVICE_ATTRIBUTE_CFM]
 } else {
 set result [sdc_service_attribute_req - ${bd_addr.lap} ${bd_addr.uap}
${bd_addr.nap} $srh 5 {0x35 0x3 0x09 0x03 0x02} 10]
 }

 puts "Service Attribute Result for Remote Audio Volume Control: $result"
}

The overall output expected in RFCLI for this script which includes the SearchHeadsetServiceRecord
procedure is as follows:

---- 11:49:56.275 ------------------
SDC_SERVICE_SEARCH_REQ_T
 type = 01
 phandle = 8000
 BD_ADDR_T
 lap = 10e47
 uap = 5b
 nap = 02
 size_srch_pttrn = 05
 max_num_recs = 01
 35 03 19 11 08

---- 11:49:56.321 ------------------
SDC_SERVICE_SEARCH_CFM_T
 type = 02
 phandle = 8000
 num_recs_ret = 01
 size_rec_list = 04
 response = 00
 err_code = 00
 size_err_info = 00
 00 01 00 00

Service Record Search Result HS: 0x8000 0x1 0x4 {0x00 0x01 0x00 0x00} 0x0
0x0 0x0 0x0
Service Record Handle: 0x10000

---- 11:49:56.321 ------------------
SDC_SERVICE_ATTRIBUTE_REQ_T
 type = 03
 phandle = 8000
 BD_ADDR_T
 lap = 10e47
 uap = 5b
 nap = 02
 svc_rec_hndl = 10000
 size_attr_list = 05
 max_num_attr = 0a
 35 03 09 00 01

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 43 of 52

Service Discovery

---- 11:49:56.400 ------------------

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

SDC_SERVICE_ATTRIBUTE_CFM_T
 type = 04
 phandle = 8000
 size_attr_list = 0b
 response = 00
 err_code = 00
 size_err_info = 00
 09 00 01 35 06 19 11 08 19 12 03

Service Attribute Result for ServiceClassIDList: 0x8000 0xb {0x09 0x00 0x01
0x35 0x06 0x19 0x11 0x08 0x19 0x12 0x03} 0x0 0x0 0x0 0x0

---- 11:49:56.400 ------------------
SDC_SERVICE_ATTRIBUTE_REQ_T
 type = 03
 phandle = 8000
 BD_ADDR_T
 lap = 10e47
 uap = 5b
 nap = 02
 svc_rec_hndl = 10000
 size_attr_list = 05
 max_num_attr = 0a
 35 03 09 00 04

---- 11:49:56.493 ------------------
SDC_SERVICE_ATTRIBUTE_CFM_T
 type = 04
 phandle = 8000
 size_attr_list = 11
 response = 00
 err_code = 00
 size_err_info = 00
 09 00 04 35 0c 35 03 19 01 00 35 05 19 00 03 08 01

Service Attribute Result for ProtocolDescriptorList: 0x8000 0x11 {0x09 0x00
0x04 0x35 0x0c 0x35 0x03 0x19 0x01 0x00 0x35 0x05 0x19 0x00 0x03 0x08 0x01}
0x0 0x0 0x0 0x0

---- 11:49:56.493 ------------------
SDC_SERVICE_ATTRIBUTE_REQ_T
 type = 03
 phandle = 8000
 BD_ADDR_T
 lap = 10e47
 uap = 5b
 nap = 02
 svc_rec_hndl = 10000
 size_attr_list = 05
 max_num_attr = 0a
 35 03 09 00 09

---- 11:49:56.571 ------------------
SDC_SERVICE_ATTRIBUTE_CFM_T
 type = 04
 phandle = 8000
 size_attr_list = 0d
 response = 00
 err_code = 00
 size_err_info = 00
 09 00 09 35 08 35 06 19 11 08 09 01 00

Service Attribute Result for BluetoothProfileDescriptorList: 0x8000 0xd
{0x09 0x00 0x09 0x35 0x08 0x35 0x06 0x19 0x11 0x08 0x09 0x01 0x00} 0x0 0x0
0x0 0x0

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 44 of 52

Service Discovery

---- 11:49:56.571 ------------------

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

SDC_SERVICE_ATTRIBUTE_REQ_T
 type = 03
 phandle = 8000
 BD_ADDR_T
 lap = 10e47
 uap = 5b
 nap = 02
 svc_rec_hndl = 10000
 size_attr_list = 05
 max_num_attr = 0a
 35 03 09 01 00

---- 11:49:56.665 ------------------
SDC_SERVICE_ATTRIBUTE_CFM_T
 type = 04
 phandle = 8000
 size_attr_list = 0c
 response = 00
 err_code = 00
 size_err_info = 00
 09 01 00 25 07 48 65 61 64 73 65 74

Service Attribute Result for ServiceName: 0x8000 0xc {0x09 0x01 0x00 0x25
0x07 0x48 0x65 0x61 0x64 0x73 0x65 0x74} 0x0 0x0 0x0 0x0

---- 11:49:56.665 ------------------
SDC_SERVICE_ATTRIBUTE_REQ_T
 type = 03
 phandle = 8000
 BD_ADDR_T
 lap = 10e47
 uap = 5b
 nap = 02
 svc_rec_hndl = 10000
 size_attr_list = 05
 max_num_attr = 0a
 35 03 09 03 02

---- 11:49:56.712 ------------------
SDC_SERVICE_ATTRIBUTE_CFM_T
 type = 04
 phandle = 8000
 size_attr_list = 05
 response = 00
 err_code = 00
 size_err_info = 00
 09 03 02 28 01
Service Attribute Result for Remote Audio Volume Control: 0x8000 0x5 {0x09
0x03 0x02 0x28 0x01} 0x0 0x0 0x0 0x0

3.5.14 Search for Service Attributes on the Headset

The Search for Service Attributes on the Headset routine in Figure 3.2 is covered by the procedure
ServiceSearchAttributes. This routine is an example of the use of the SDP_ServiceSearchAttribute
transaction outlined in the Bluetooth Specification v1.1 and is seen as a combination of carrying out an
SDP_ServiceSearch transaction followed by an SDP_ServiceAttribute transaction. The routine first needs to get
the service record handle for the headset by searching for it on the headset using the
SearchHeadsetServiceRecord, which is documented in Section 3.5.13. The TCL script is as follows:

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 45 of 52

Service Discovery

Search for Service Attributes on the Headset

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

proc ServiceSearchAttributes {} {
 global UsingPrimitives
 global bd_addr.lap bd_addr.uap bd_addr.nap

 #Get Service Record handle for the Headset
 set srh [SearchHeadsetServiceRecord]
 puts [format "Service Record Handle: 0x%x" $srh]

 #search for Headset service (UUID = 0x1108 record and ServiceName
 #Attribute (Attribute ID = 0x0100) on Headset
 if {$UsingPrimitives} {
 SDC_SERVICE_SEARCH_ATTRIBUTE_REQ - ${bd_addr.lap} ${bd_addr.uap}
${bd_addr.nap} 5 {0x35 0x3 0x19 0x11 0x08} 5 {0x35 0x3 0x09 0x01 0x00} 10
 set result [SDC_SERVICE_SEARCH_ATTRIBUTE_CFM]
 } else {
 set result [sdc_service_search_attribute_req - ${bd_addr.lap}
${bd_addr.uap} ${bd_addr.nap} 5 {0x35 0x3 0x19 0x11 0x08} 5 {0x35 0x3 0x09
0x01 0x00} 10]
 }

 puts "Service Search Attribute Result for Headset and ServiceName:
$result"
}

The overall output expected in RFCLI for this script, which includes the SearchHeadsetServiceRecord
procedure is as follows:

Service Record Search Result HS: 0x8000 0x1 0x4 {0x00 0x01 0x00 0x00} 0x0
0x0 0x0 0x0
Service Record Handle: 0x10000

---- 11:49:56.759 ------------------
SDC_SERVICE_SEARCH_ATTRIBUTE_REQ_T
 type = 05
 phandle = 8000
 BD_ADDR_T
 lap = 10e47
 uap = 5b
 nap = 02
 size_srch_pttrn = 05
 size_attr_list = 05
 max_num_attr = 0a
 35 03 19 11 08
 35 03 09 01 00

---- 11:49:56.853 ------------------
SDC_SERVICE_SEARCH_ATTRIBUTE_CFM_T
 type = 06
 phandle = 8000
 total_response_size = 0f
 size_attr_list = 0c
 more_to_come = 00
 response = 00
 err_code = 00
 size_err_info = 00
 09 01 00 25 07 48 65 61 64 73 65 74

Service Search Attribute Result for Headset and ServiceName: 0x8000 0xf 0xc
{0x09 0x01 0x00 0x25 0x07 0x48 0x65 0x61 0x64 0x73 0x65 0x74} 0x0 0x0 0x0
0x0 0x0

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 46 of 52

Service Discovery

3.5.15 Show Range of Attributes Available on the Headset

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

The Show Range of Attributes Available on the Headset routine in Figure 3.2 is covered by a procedure call to
the library function sdc_range_search. It carries out an SDP_ServiceSearch transaction and in this example
it looks for the headset service (0x1108) and then follows up with an SDP_ServiceAttribute transaction but for a
range of attribute IDs set at 0x0000 to 0xffff. Essentially it lists the entire attribute IDs on the headset and the
results shown in RFCLI_OutputPrimitives.txt and RFCLI_OutputLibrary.tcl can be compared to the headset service
record coded in C shown in Section 3.5.13. The line of TCL script in the mainroutine procedure that is
responsible for the Show Range of Attributes Available on the Headset routine is as follows:

Show Range of Attributes Available on the Headset
sdc_range_search 0x1108

The output expected in RFCLI for this script:

---- 11:49:56.853 ------------------
SDC_SERVICE_SEARCH_ATTRIBUTE_REQ_T
 type = 05
 phandle = 8000
 BD_ADDR_T
 lap = 10e47
 uap = 5b
 nap = 02
 size_srch_pttrn = 05
 size_attr_list = 07
 max_num_attr = 3e8
 35 03 19 11 08
 35 05 0a 00 00 ff ff
---- 11:49:56.931 ------------------
SDC_SERVICE_SEARCH_ATTRIBUTE_CFM_T
 type = 06
 phandle = 8000
 total_response_size = 45
 size_attr_list = 42
 more_to_come = 00
 response = 00
 err_code = 00
 size_err_info = 00
09 00 00 0a 00 01 00 00 09 00 01 35 06 19 11 08 19 12 03 09 00 04 35 0c 35
03 19 01 00 35 05 19 00 03 08 01 09 00 09 35 08 35 06 19 11 08 09 01 00 09
01 00 25 07 48 65 61 64 73 65 74 09 03 02 28 01

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 47 of 52

Service Discovery

3.5.16 Terminate a Search

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

The Terminate a Search routine in Figure 3.2 is covered by the procedure TerminateSearch. The purpose of
this routine is set up a service search and to cancel it. This is done to demonstrate the functionality of the
SDC_TERMINATE_PRIMITIVE_REQ primitive. The TCL script is as follows:

Terminate a Search
proc TerminateSearch {} {
 global bd_addr.lap bd_addr.uap bd_addr.nap

 #Get Service Record handle for the Headset
 set srh [SearchHeadsetServiceRecord]
 puts [format "Service Record Handle: 0x%x" $srh]

 #search for Headset service (UUID = 0x1108 record and ServiceName
 #Attribute (Attribute ID = 0x0100) on Headset then terminate the search
 SDC_SERVICE_SEARCH_ATTRIBUTE_REQ - ${bd_addr.lap} ${bd_addr.uap}
${bd_addr.nap} 5 {0x35 0x3 0x19 0x11 0x08} 5 {0x35 0x3 0x09 0x01 0x00} 10
 SDC_TERMINATE_PRIMITIVE_REQ
}

The output expected in RFCLI for this script:

Service Record Search Result HS: 0x8000 0x1 0x4 {0x00 0x01 0x00 0x00} 0x0
0x0 0x0 0x0
Service Record Handle: 0x10000

---- 11:49:56.978 ------------------
SDC_SERVICE_SEARCH_ATTRIBUTE_REQ_T
 type = 05
 phandle = 8000
 BD_ADDR_T
 lap = 10e47
 uap = 5b
 nap = 02
 size_srch_pttrn = 05
 size_attr_list = 05
 max_num_attr = 0a
 35 03 19 11 08
 35 03 09 01 00

---- 11:49:56.978 ------------------
SDC_TERMINATE_PRIMITIVE_REQ_T
 type = 07
 phandle = 8000

3.5.17 Unregister AG Service Record

The Unregister AG Service Record routine in Figure 3.2 is covered by the procedure
UnRegisterAGServiceRecord. This routine demonstrates how to unregister the service that has been
previously registered within the SDP server database by the Register AG Service Record routine outlined in
Section 3.5.3. The calling routine must supply the service record handle of the service it would like removing from
the database, in this case it is the service record handle variable returned by the Register AG Service Record
routine and is stored in the variable agrecordhandle that is local to the mainroutine procedure. The TCL
script is as follows:

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 48 of 52

Service Discovery

Unregister AG Service Record

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

proc UnRegisterAGServiceRecord {ph recordhandle} {
 global UsingPrimitives
 if {$UsingPrimitives} {
 SDS_UNREGISTER_REQ $ph $recordhandle
 SDS_UNREGISTER_CFM
 } else {
 sds_unregister_req $ph $recordhandle
 }
}

The output expected in RFCLI for this script:

---- 11:49:56.978 ------------------
SDS_UNREGISTER_REQ_T
 type = 10
 phandle = 8000
 svc_rec_hndl = 10000

---- 11:49:56.993 ------------------
SDS_UNREGISTER_CFM_T
 type = 11
 phandle = 8000
 svc_rec_hndl = 10000
 result = 00

3.5.18 Close SDC Search

The Close SDC Search routine in Figure 3.2 is covered by the following lines of TCL script that is present in
the mainfunction procedure:

Close SDC Search
 if {$UsingPrimitives} {
 SDC_CLOSE_SEARCH_REQ
 set result [lindex [SDC_CLOSE_SEARCH_IND] 1]
 } else {
 set result [lindex [sdc_close_search_req] 1]
 }
 switch $result {
 0x0 {puts "Connection disconnected by SDS Server"}
 0x1 {puts "Connection disconnected by SDS Client"}
 }

The routine closes down the client search on the SDP database and removes the ACL connection, with the
switch statement indicating whether the client or the server closed the link. The output expected in RFCLI for this
script:

---- 11:49:56.993 ------------------
SDC_CLOSE_SEARCH_REQ_T
 type = 0a
 phandle = 8000

---- 11:49:57.040 ------------------
SDC_CLOSE_SEARCH_IND_T
 type = 0c
 phandle = 8000
 result = 01
Connection disconnected by SDS Client
RFCLI>
---- 11:49:57.056 ------------------
DM_ACL_CLOSED_IND_T
 type = 280e
 phandle = 8000
 BD_ADDR_T
 lap = 10e47
 uap = 5b
 nap = 02

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 49 of 52

Document References

4 Document References

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

Document: Reference, Date:

Bluetooth Specification - Core V1.1, v1.1, 22 February 2001
Bluetooth Specification – Profiles V1.1, v1.1, 22 February 2001
BlueStack User Manual C6066-UM-001, v1.6
RFCLI User Manual bcore-ug-003Pa, a, September 2002
Bluetooth Connect Without Cables – Jennifer
Bray and Charles F Sturman ISBN 0-13-089840-6, Prentice Hall PTR, 2001

Tcl and the Tk Toolkit – John K Ousterhout ISBN 0-201-63337-X, Addison-Wesley, 1994
Accessing RFCOMM Using RFCLI and TCL bcore-an-006Pa, a, September 2002

Bluetooth Assigned Number – Service
Discovery Protocol

See Website:
http://www.bluetooth.org/assigned-numbers/sdp.htm

Bluetooth Security White Paper – Bluetooth SIG
Security Expert Group v1.00, 19 April 2002

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 50 of 52

http://www.bluetooth.org/assigned-numbers/sdp.htm

Acronyms and Definitions

Acronyms and Definitions

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

ACL Asynchronous ConnectionLess
API Application Programming Interface
BlueCore Group term for CSR’s range of Bluetooth chips
Bluetooth Set of technologies providing audio and data transfer over short-range radio connections
L2CAP Logical Link Control and Adaptation Protocol
MTU Maximum Transmission Unit
PDU Protocol Data Unit
RFCLI RFCOMM Command Line Interface
RFCOMM Protocol for RS-232 serial cable emulation
SDC Service Discovery Client
SDD Service Discovery Database
SDP Service Discovery Protocol
SDS Service Discovery Server
TCL Tool Command Language
UUID Universally Unique Identifier

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 51 of 52

Record of Changes

Record of Changes

_
äì
É
`
ç
êÉ


 A

ccessing Service D
iscovery U

sing R
FC

LI and TC
L

Date: Revision Reason for Change:

11 DEC 02 a Original publication of this document. (CSR reference: bcore-an-007Pa)

Accessing Service Discovery Using RFCLI and
TCL

Application Note

bcore-an-007Pa

December 2002

Bluetooth™ and the Bluetooth logos are trademarks owned by Bluetooth SIG Inc, USA and licensed to CSR.

_äìÉ`çêÉ is a trademark of CSR.

All other product, service and company names are trademarks, registered trademarks or service marks of their
respective owners.

CSR’s products are not authorised for use in life-support or safety-critical applications.

bcore-an-007Pa

© Copyright CSR 2002
This material is subject to CSR’s non-disclosure agreement.

Page 52 of 52

	Contents
	Introduction
	Service Discovery
	Figure 2.1: Service Discovery Client/Server Architecture
	Protocol Data Unit
	Figure 2.2: The PDU Format
	Table 2.1: PDU ID Values
	Continuation State Parameter
	Figure 2.3: PDU with Continuation State Parameter.

	Error PDU
	Table 2.2: Table of Error Codes Associated with SDP_ErrorResponse

	SDP Services
	Service Class
	Table 2.3: Bluetooth Headset Service Record
	Figure 2.4: SDP Service Classes

	Service Record
	Service Attribute
	Figure 2.5: Service Attributes Within a Service Record

	UUID
	Equation 2.1: 128-bit UUID Calculation Using 16-bit Bluetooth Alias UUID Value
	Equation 2.2: 128-bit UUID Calculation Using 32-bit Bluetooth Alias UUID Value

	Data Representation
	Figure 2.6: Data Element Descriptor
	Table 2.4: Data Element Type Field
	Table 2.5: Data Element Size Field
	Figure 2.7: 16-bit Unsigned Integer Data Element
	Figure 2.8: Text Data Element

	Searching and Browsing for Services

	SDP API Primitives
	SDP Server API Primitives
	SDS_CONFIG_REQ
	SDS_REGISTER_REQ
	Table 3.1: Audio Gateway Profile with Associated TCL Script

	SDS_REGISTER_CFM
	SDS_UNREGISTER_REQ
	SDS_UNREGISTER_CFM
	sds_register_req
	sds_unregister_req

	SDP Client API Primitives
	SDC_CONFIG_REQ
	SDC_OPEN_SEARCH_REQ
	SDC_OPEN_SEARCH_CFM
	SDC_CLOSE_SEARCH_REQ
	SDC_CLOSE_SEARCH_IND
	SDC_SERVICE_ATTRIBUTE_REQ
	SDC_SERVICE_ATTRIBUTE_CFM
	SDC_SERVICE_SEARCH_ATTRIBUTE_REQ
	SDC_SERVICE_SEARCH_ATTRIBUTE_CFM
	SDC_SERVICE_SEARCH_REQ
	SDC_SERVICE_SEARCH_CFM
	SDC_TERMINATE_PRIMITIVE_REQ
	sdc_config_req
	sdc_open_search
	sdc_open_search_req
	sdc_close_search_req
	sdc_range_search
	sdc_service_attribute_req
	sdc_service_search_attribute_req
	sdc_service_search_req

	Registering a Service Record
	Headset Service Discovery
	Figure 3.1: Headset Service Discovery Example Set-up
	Table 3.2: Location of Usage of SDP Primitives Within TCL Example Script

	Example TCL Script Structure
	Figure 3.2: Structure of TCL Example Script
	Initialisation
	Main Routine
	Register AG Service Record
	Register with Security Manager
	Pair with Headset
	Request to Open SDC Search
	Wait for Link Key Request and Reject It
	Wait for PIN Code and Respond with Stored Value = 1234
	Wait for Link Key
	Wait for Open SDC Search Confirmed
	Search for HID Service Record on the Headset
	Search for Generic Audio Service Record on the Headset
	Search for Attributes on the Headset
	Search for Service Attributes on the Headset
	Show Range of Attributes Available on the Headset
	Terminate a Search
	Unregister AG Service Record
	Close SDC Search

	Document References
	Acronyms and Definitions
	Record of Changes

