
bcore-an-012Pa © Copyright CSR 2003
This material is subject to CSR’s non-disclosure agreement.

§

CSR

Unit 400 Cambridge Science Park
Milton Road
 Cambridge

CB4 0WH
United Kingdom

 Registered in England 3665875

 Tel: +44 (0)1223 692000
 Fax: +44 (0)1223 692001

www.csr.com

BlueCore™

YABCSP Overview

January 2003

Contents

bcore-an-012Pa © Copyright CSR 2003
This material is subject to CSR’s non-disclosure agreement. Page 2 of 11

B
lu

eC
o

re
™

 Y
A

B
C

S
P

 O
verview

Contents
1 Introduction...3

2 Conditions of Use..4

3 Difference between ABCSP and YABCSP ..5

3.1 Changes in the Interface due to Multiple Instances Support...5
3.1.1 Functions ...5
3.1.2 Macros..5

3.2 Other Changes in the Interface ..6

4 Example ...7

4.1 Implementation Details for the Support Functions ..7
4.1.1 Message Structure...7
4.1.2 Events...7
4.1.3 Deliver ..7
4.1.4 Timers ..8

4.2 Example Overview..8

4.3 MicroSched Overview ..8

5 Document References...9

Acronyms and Definitions ... 10

Record of Changes.. 11

Introduction

bcore-an-012Pa © Copyright CSR 2003
This material is subject to CSR’s non-disclosure agreement. Page 3 of 11

B
lu

eC
o

re
™

 Y
A

B
C

S
P

 O
verview

1 Introduction

BCSP (BlueCore Serial Protocol) is a proprietary UART (Universal Asynchronous Receiver Transmitter) protocol
used on CSR’s BlueCore™ Bluetooth™ chips. It can be considered an alternative to the two UART host
transports defined in the Bluetooth 1.1 Specification [BT11].

CSR publishes the source code of an implementation of a BCSP host stack used in all of CSR’s host programs:
demos, configuration tools and test tools. This stack has served this role well, but some BlueCore users have
commented that it consumes too much RAM (Random Access Memory) for use in small, embedded applications.
Hence, CSR provides other BCSP implementations optimized for different applications: µBCSP (micro BCSP),
ABCSP (Another BCSP) and the version described in this document, YABCSP (Yet Another BCSP).

µBCSP is optimised to limit the ROM (Read Only Memory) and to some extend RAM footprints. The penalty for
the reduced size is that the throughput is limited, mainly by a sliding window size of 1. µBCSP is good for
embedded applications where ROM usage is more important than throughput. µBCSP has a very simple
interface and is easy to port.

ABCSP is optimized to limit the RAM usage and can work on small memory pool buffers. The penalty for this is
that it uses more processing power. ABCSP is good for embedded applications where RAM usage is important
and will, if sufficient processing power is available, provide good throughput. ABCSP requires complex integration
with its host environment.

YABCSP is optimised to limit the processing power requirements. The penalty for the optimisation is that it uses
more and larger chunks of RAM than ABCSP. YABCSP supports multiple instances. YABCSP was written with
almost the same interface as ABCSP. Hence, switching to/from ABCSP to YABCSP is extremely easy. This
document only contains the differences between ABCSP and YABCSP. Please, refer to the ABCSP Overview,
[AN111], for detailed explanation of the interface.

For more information about BCSP, please refer to the BCSP documentation on our website www.csrsupport.com.

Conditions of Use

bcore-an-012Pa © Copyright CSR 2003
This material is subject to CSR’s non-disclosure agreement. Page 4 of 11

B
lu

eC
o

re
™

 Y
A

B
C

S
P

 O
verview

2 Conditions of Use

The YABCSP stack is provided as C source code and may be freely used for BlueCore chip
applications. It is expected that users will change the code for their own applications. CSR provides
no formal support for the code. There is no intention to extend the code with a set of platform-specific
#define porting options. However, CSR appreciates bug reports and suggestions for code
improvements.

The code has been tested with CSR’s Casira™ hardware. It has also been used in embedded
applications by CSR’s customers. The following standard statement of quality and fitness for purpose
applies:

Note:

Use of the software is at your own risk. This software is provided "as is," and CSR cautions users to
determine its suitability for themselves. CSR makes no warranty or representation whatsoever of
merchantability or fitness of the product for any particular purpose or use. In no event shall CSR be liable for
any consequential, incidental or special damages whatsoever arising out of the use of or inability to use this
software, even if the user has advised CSR of the possibility of such damages.

Difference Between ABCSP and YABCSP

bcore-an-012Pa © Copyright CSR 2003
This material is subject to CSR’s non-disclosure agreement. Page 5 of 11

B
lu

eC
o

re
™

 Y
A

B
C

S
P

 O
verview

3 Difference between ABCSP and YABCSP

This document only contains the differences between ABCSP and YABCSP. Please, refer to the ABCSP
Overview [AN111], for detailed explanation of the interface.

The number of files is reduced in YABCSP compared to ABCSP. Hence, the directory structure used by ABCSP
(config, include, src and make) is now a flat directory structure of only one directory, src contains all
YABCSP files. The files that the user shall provide are called config_x.h. In addition, the file, chw.h, must
be updated if the machine type is not known. The example is located in the example directory.

3.1 Changes in the Interface due to Multiple Instances Support

YABCSP supports multiple instances. A pointer to a specific instance is given in the API to/from the YABCSP
library.

The following prototypes are only changed due to the multiple instances support feature:

3.1.1 Functions

The following function prototypes are different from ABCSP:

§ void abcsp_init(void); has become void abcsp_init(abcsp *_this);

§ unsigned abcsp_sendmsg(ABCSP_TXMSG *msg, unsigned chan, unsigned
rel);
has become
unsigned abcsp_sendmsg(abcsp *_this, ABCSP_TXMSG *msg, unsigned chan,
unsigned rel);

§ unsigned abcsp_pumptxmsgs(void); has become
unsigned abcsp_pumptxmsgs(abcsp *_this);

§ unsigned abcsp_uart_deliverbytes(char *buf, unsigned n); has become
unsigned abcsp_uart_deliverbytes(abcsp *_this, char *buf, unsigned
n);

§ void abcsp_bcsp_timed_event(void); has become
void abcsp_bcsp_timed_event(abcsp *_this);

§ void abcsp_tshy_timed_event(void); has become
void abcsp_tshy_timed_event(abcsp *_this);

§ void abcsp_tconf_timed_event(void); has become
void abcsp_tconf_timed_event(abcsp *_this);

3.1.2 Macros

The following macro prototypes are different from ABCSP:

§ void ABCSP_EVENT(unsigned e); has become
void ABCSP_EVENT(abcsp *_this, unsigned e);

§ void ABCSP_REQ_PUMPTXMSGS(void); has become
void ABCSP_REQ_PUMPTXMSGS(abcsp *_this);

§ void ABCSP_PANIC(unsigned e); has become
void ABCSP_PANIC(abcsp *_this, unsigned e);

§ void ABCSP_DELIVERMSG(ABCSP_RXMSG *msg, unsigned chan, unsigned rel);
has become

Difference Between ABCSP and YABCSP

bcore-an-012Pa © Copyright CSR 2003
This material is subject to CSR’s non-disclosure agreement. Page 6 of 11

B
lu

eC
o

re
™

 Y
A

B
C

S
P

 O
verview

void ABCSP_DELIVERMSG(abcsp *_this, ABCSP_RXMSG *msg, unsigned chan,
unsigned rel);

§ ABCSP_RXMSG *ABCSP_RXMSG_CREATE(unsigned len); has become
ABCSP_RXMSG *ABCSP_RXMSG_CREATE(abcsp *_this, unsigned len);

§ void ABCSP_RXMSG_COMPLETE(ABCSP_RXMSG *msg); has become
void ABCSP_RXMSG_COMPLETE(abcsp *_this, ABCSP_RXMSG *msg);

§ void ABCSP_RXMSG_DESTROY(ABCSP_RXMSG *m); has become
void ABCSP_RXMSG_DESTROY(abcsp *_this, ABCSP_RXMSG *m);

§ void ABCSP_START_BCSP_TIMER(void); has become
void ABCSP_START_BCSP_TIMER(abcsp *_this);

§ void ABCSP_START_TSHY_TIMER(void); has become
void ABCSP_START_TSHY_TIMER(abcsp *_this);

§ void ABCSP_START_TCONF_TIMER(void); has become
void ABCSP_START_TCONF_TIMER(abcsp *_this);

§ void ABCSP_CANCEL_BCSP_TIMER(void); has become
void ABCSP_CANCEL_BCSP_TIMER(abcsp *_this);

§ void ABCSP_CANCEL_TSHY_TIMER(void); has become
void ABCSP_CANCEL_TSHY_TIMER(abcsp *_this);

§ void ABCSP_CANCEL_TCONF_TIMER(void); has become
void ABCSP_CANCEL_TCONF_TIMER(abcsp *_this);

§ void ABCSP_UART_SENDBYTES(char *buf, unsigned n); has become
void ABCSP_UART_SENDBYTES(abcsp *_this, unsigned n);

§ void ABCSP_TXMSG_DONE(ABCSP_TXMSG *msg); has become
void ABCSP_TXMSG_DONE(abcsp *_this, ABCSP_TXMSG *msg);

3.2 Other Changes in the Interface

char *ABCSP_UART_GETTXBUF(unsigned *bufsiz); has become
size_t ABCSP_UART_GETTXBUF(abcsp *_this);

The YABCSP implementation works on an internal transmit buffer, which is a part of the instance data. The
ABCSP_UART_GETTXBUF() macro is now used to obtain the maximum length of the output buffer. The size of
internal buffer in the instance data is set according to the ABCSP_MAX_MSG_LEN definition. The macro can be
used to limit the size of the output. This can be useful if, for example, the YABCSP library is talking to an UART
device which has a limited input buffer. If no such limitations come from the UART device, the macro should be
set to return the size of the internal buffer as shown in the example (in the config_txmsg.h file).

Example

bcore-an-012Pa © Copyright CSR 2003
This material is subject to CSR’s non-disclosure agreement. Page 7 of 11

B
lu

eC
o

re
™

 Y
A

B
C

S
P

 O
verview

4 Example

An example is provided with the YABCSP source code. This example is for the Windows™ platform using Visual
C++. A project file is provided for the example.

The example demonstrates how the YABCSP is integrated in a system. In this example the support functions are
implemented using dynamic memory allocations.

The example is based on a tiny scheduler, called µSched (micro scheduler). A single "task" is running in the
scheduler. The example works on a serial port connected to a Casira with a HCI (Host Controller Interface) build
running on it. It will issue Read_BD_ADDR commands whenever Num_HCI_Command_Packets are
available. For every 100 commands it will write a dot "." on the screen. And for every 100 command complete
events it will write an asterisk "*". The program can be terminated by hitting the escape key (ESC).

4.1 Implementation Details for the Support Functions

The example support functions can be found in the abcsp_support_functions.h and
abcsp_support_functions.c files. Most macro definitions in the config_x.h files are defined to call
functions. All these functions can be found in the abcsp_support_functions.c file.

4.1.1 Message Structure

Messages in the example are wrapped in a structure, MessageBuffer, which looks like this:

typedef struct
{

unsigned length;
unsigned index;
unsigned char * buffer;

} MessageBuffer;

When a request for a message to be created (abcsp_rxmsg_create) is received, memory is allocated to
hold the structure. The buffer in the MessageBuffer is also allocated according to the requested length. The
length member holds the length of the buffer. The index member holds the current position the library is working
on.

When the message is destroyed (abcsp_rxmsg_destroy) both the message structure and the buffer
member is freed.

4.1.2 Events

The only event (ABCSP_EVENT) that should not be ignored is ABCSP_EVT_LE_SYNC_LOST. This event
indicates that the peer ABCSP side has reset. The example handles this by exiting.

The pump request (ABCSP_REQ_PUMPTXMSGS) generates a "background interrupt" that the scheduler will
pick up and process in due time by calling the abcsp_pumptxmsgs function. In addition, the background
interrupt function calls the pumpInternalMessage function, which handles the ABCSP choke.

4.1.3 Deliver

The deliver (ABCSP_DELIVERMSG) function in the example decodes the HCI event and maintains a variable,
NumberOfHciCommands, which holds the Num_HCI_Command_Packets parameter. In case the
NumberOfHciCommands is not zero the scheduler task is scheduled to run. When the scheduler task is called
it will issue a new read Bluetooth address command.

When the deliver function is called, ownership of the message buffer is passed on to the function. Hence, the
deliver function frees the message buffer before returning from the function.

Example

bcore-an-012Pa © Copyright CSR 2003
This material is subject to CSR’s non-disclosure agreement. Page 8 of 11

B
lu

eC
o

re
™

 Y
A

B
C

S
P

 O
verview

4.1.4 Timers

If a start timer request is issued and the specific timer is running the support functions will stop the running timer
before starting a new timer.

4.2 Example Overview

The example executes as 3 threads: The main thread (main program, which runs the scheduler), a RX UART
thread and a TX UART thread.

The main thread which runs the scheduler also contains a keyboard handler, which runs on a scheduler timer
event. The keyboard handler timer event is started in the main program immediately before the scheduler
function is called. The main function, the keyboard handle and the task function are located in the main.c
module.

The RX UART thread signals data are available to the main thread by using background interrupt #1. This is only
done when a BCSP delimiter character (0xC0) is received. The scheduler then calls the UartDrv_Rx function
when a background interrupt #1 is received. The UartDrv_Rx function calls the
abcsp_uart_deliverbytes function to pass the received data on to the YABCSP library.

The TX UART thread writes data to the UART when data is available. If there is no data to transmit the thread
sleeps until the main thread passes data on to it and signals it to wake up.

The UART driver is located in the SerialCom.c module.

4.3 MicroSched Overview

The scheduler is able of scheduling one task only. The task can be scheduled to run by calling the function
ScheduleTaskToRun(). At start-up the task can have an initialisation function, which, if present, will be
called before the main loop of the scheduler starts running. A task is registered in the scheduler by the
InitMicroSched() function, which must be called before the MicroSched() function.

Background interrupt handlers are registered in the scheduler by the register_bg_int() function.
Currently, only 2 background handlers can be defined.

The micro scheduler (found in the uSched.c file) is simple. It has the following basic structure:

void MicroSched(void)

{

while (not terminated)

{
service "background interrupts" if any;
run task if scheduled;
service timer events;
sleep until next timer event or until woken by external event;

}
}
The scheduler can be woken by the UART threads, when they generate background interrupts.

Timers are functions to be called after a specific time. The StartTimer function returns a "handle" to the
started timer. This "handle" can be used to stop a running timer before expiry.

Document References

bcore-an-012Pa © Copyright CSR 2003
This material is subject to CSR’s non-disclosure agreement. Page 9 of 11

B
lu

eC
o

re
™

 Y
A

B
C

S
P

 O
verview

5 Document References
Reference: Document:

[AN111] ABCSP Overview; CSR document, November 2001

[BT11] Specification of the Bluetooth System, Volume 1, Core v1.1, 22 February 2001

Acronyms and Definitions

bcore-an-012Pa © Copyright CSR 2003
This material is subject to CSR’s non-disclosure agreement. Page 10 of 11

B
lu

eC
o

re
™

 Y
A

B
C

S
P

 O
verview

Acronyms and Definitions
ABCSP Another BlueCore Serial Protocol

BCSP BlueCore Serial Protocol

BlueCore™ CSR’s family of Bluetooth chips

Bluetooth™
A set of technologies providing audio and data transfer over short range
radio connections

CSR Cambridge Silicon Radio

HCI Host Controller Interface

RAM Random Access Memory

ROM Read Only Memory

µBCSP Micro BCSP

YABCSP Yet Another BlueCore Serial Protocol

Record of Changes

bcore-an-012Pa © Copyright CSR 2003
This material is subject to CSR’s non-disclosure agreement. Page 11 of 11

B
lu

eC
o

re
™

 Y
A

B
C

S
P

 O
verview

Record of Changes

Date: Revision Reason for Change:

20 JAN03 a Original publication of this document (CSR reference: bcore-an-012Pa).

BlueCore™

YABCSP Overview

bcore-an-012Pa

January 2003

Bluetooth™ and the Bluetooth logos are trademarks owned by Bluetooth SIG Inc, USA and licensed to CSR.

BlueCore is a trademark of CSR.

All other product, service and company names are trademarks, registered trademarks or service marks of their
respective owners.

CSR’s products are not authorised for use in life-support or safety-critical applications.

	Introduction
	Conditions of Use
	Difference between ABCSP and YABCSP
	Changes in the Interface due to Multiple Instances Support
	Functions
	Macros

	Other Changes in the Interface

	Example
	Implementation Details for the Support Functions
	Message Structure
	Events
	Deliver
	Timers

	Example Overview
	MicroSched Overview

	Document References
	Acronyms and Definitions

