

bcore-an-021Pa © Cambridge Silicon Radio Limited 2004
This material is subject to CSR’s non-disclosure agreement.

CSR
Cambridge Science Park

Milton Road
Cambridge
CB4 0WH

United Kingdom
Registered in England 3665875

Tel: +44 (0)1223 692000
Fax: +44 (0)1223 692001

www.csr.com

_äìÉ`çêÉ»

Windows® CE Driver for
BlueCore ROM Devices

Application Note

May 2004

http://www.csr.com/home.htm

Contents

bcore-an-021Pa © Cambridge Silicon Radio Limited 2004
This material is subject to CSR’s non-disclosure agreement. Page 2 of 19

W
indow

s
®C

E D
river for _

äì
É
`
ç
êÉ

™ R
O

M
 D

evices

Contents
1 Introduction .. 3

1.1 ROM Devices .. 3
1.2 Application ... 3
1.3 Function... 3
1.4 Development Environment .. 4

2 Deliverables and Scope of Additional Work .. 5
3 Overview of Software... 6

3.1 Functional and Data Description.. 6
3.1.1 System Architecture ... 6
3.1.2 Subsystem Overview ... 7

3.2 Data Description .. 8
3.2.1 Interface Description .. 9

3.3 Updating the Persistent Store: PSConfig() .. 10
3.4 Instantiation ... 12
3.5 Managing the Power Suspend... 13

4 Installation .. 15
5 Integration, Production Test and Configuration Issues ... 16
6 Document References ... 17
Acronyms and Definitions.. 18
Record of Changes ... 19

List of Figures

Figure 1.1: SerialCSR Driver Performing a Configuration ... 4
Figure 3.1: SerialCSR Overview ... 6
Figure 3.2: Architecture of SerialCSR ... 7
Figure 3.3: PSConfig Flow Diagram.. 10

List of Tables

Table 1.1: Support Matrix for Embedded Visual Tools .. 4
Table 3.1: Exported Functions from a Typical Serial Driver Implementation... 9

Introduction

bcore-an-021Pa © Cambridge Silicon Radio Limited 2004
This material is subject to CSR’s non-disclosure agreement. Page 3 of 19

W
indow

s
®C

E D
river for _

äì
É
`
ç
êÉ

™ R
O

M
 D

evices

1 Introduction
1.1 ROM Devices

CSR produces ROM variants of its _äìÉ`çêÉ» devices. Each of these variants contains a complete version of
the firmware. This eliminates the need for the firmware to be stored in an external flash device, significantly
reducing bill of materials (BOM).

BlueCore devices require some device-specific information stored with them, namely the Bluetooth® address,
crystal frequency trim value and possibly some information about the radio power. Traditionally this would be
stored in the flash device. A list of keys is available in the CSR document Selection of I2C™ EEPROMs for Use
with BlueCore. Some of this information will be unique to the specific BlueCore device itself. Other elements of
this information will be used to change the ROM defaults (e.g., host transport or boot mode).

In ROM variants, there is no place within the ROM device for this information to be stored. The information must
be stored outside the device. There are two possible mechanisms for sending this extra information to the device.

! Store the device-specific information on an EEPROM accessible over BlueCore’s I2C interface.
BlueCore will read this information at its boot time.

! Send down the device-specific information at BlueCore’s boot time from some external application on a
host microcontroller.

This document deals with the latter of these two mechanisms.

1.2 Application

CSR’s BlueCore devices can be used in many applications, including smart phones, headsets, PCs and dongles.
Some of these applications use an external stack (e.g., PDAs and PCs), while others require the BlueCore device
to contain the entire Bluetooth stack, including the profiles (e.g., headsets and HID devices).

In some instances where an external stack is used, the Bluetooth chip may never move away from the stack,
(such as in a PDA or a smart phone). It is, therefore, possible for this external stack to hold the Bluetooth
device-specific information and have an application to send down the device specific information from a
configuration file.

Unit costs are lowered by keeping the device information with the host operating system; this eliminates the cost
of an additional EEPROM from the overall BOM.

1.3 Function

The Bluetooth stacks used are often monolithic or provide no easy hook on which to hang some form of
configuration function. However, the Bluetooth stacks all use a serial driver for communication with the BlueCore
device. This serial driver has a standard interface, so the configuration module can be inserted between the
Bluetooth stack and the serial driver.

This document describes SerialCSR, a wrapper library for a Windows® CE (WinCE) serial driver for use with
devices containing CSR ROM chips.

The primary function of SerialCSR is to send down configuration information to BlueCore. It does this by
intercepting calls to the real serial driver and, when triggered, it reads a .psr file. For each key in the psr file, it
sends a command to BlueCore using the BlueCore Command (BCCMD) protocol. SerialCSR utilises “Micro”
BlueCore Serial Protocol (µBCSP) to send down the BlueCore commands. ROM chips used in CE devices will
tend to have BCSP as their default protocol.

Introduction

bcore-an-021Pa © Cambridge Silicon Radio Limited 2004
This material is subject to CSR’s non-disclosure agreement. Page 4 of 19

W
indow

s
®C

E D
river for _

äì
É
`
ç
êÉ

™ R
O

M
 D

evices

The driver must send this information whenever BlueCore initialises, which may be after a suspend, power-up or
stack initialisation. The driver will send the contents of the .psr when triggered by the following commands:

! On every CreateFile

! On any FileRead or FileWrite, when immediately following a Suspend or Init

After sending down the configuration information, SerialCSR will send commands to warm-reset BlueCore, so the
new PS Keys will take effect. After that, SerialCSR will act transparently, passing through any calls to the
underlying serial driver.

By performing these operations, SerialCSR can cope with several types of power cycle where the Bluetooth stack
needs to have seamless communication with the BlueCore device.

Figure 1.1: SerialCSR Driver Performing a Configuration

Apart from sending down the commands, the SerialCSR driver will pass through all other calls to the underlying
serial driver. It does not alter the behaviour of the underlying serial driver in any other way.

The same approach of storing the PS Keys with the operating system and using a ROM chip without EEPROM
would also work on alternative platforms such as Palm® and Symbian®, as well as desktop operating systems.
There are no implementations other than Windows CE available from CSR. Please check with your CSR
representative or distributor for more information.

1.4 Development Environment

The development environment used was the Microsoft® Embedded Visual C++ v3.0. The following support matrix
summarises the operating system support of current Microsoft Embedded Visual Development Tools.

Note:
This product includes Microsoft Embedded Visual C++ 5.0

Visual Development Tool Operating System Supported

Embedded Visual C++ v5.0 WinCE.NET devices only
Embedded Visual C++ v4.0 WinCE v4.0 devices only
Embedded Visual C++ v3.0 WinCE v3.0 and earlier only

Table 1.1: Support Matrix for Embedded Visual Tools

.psr

PS Keys
SerialCSR

OriginalSerial Driver

BCCMDs

BlueCore

RS232

Deliverables and Scope of Additional Work

bcore-an-021Pa © Cambridge Silicon Radio Limited 2004
This material is subject to CSR’s non-disclosure agreement. Page 5 of 19

W
indow

s
®C

E D
river for _

äì
É
`
ç
êÉ

™ R
O

M
 D

evices

2 Deliverables and Scope of Additional Work
CSR ships the source code for SerialCSR. The source code (as shipped) is tailored for use with the Widcomm
device driver and Bluetooth stack. If the driver is to be used with another stack, some source code modifications
will be required.

The source code reads the configuration information from a .psr file. If it is not deemed appropriate to store
configuration information in a .psr file, then it is entirely feasible to use the registry or another format. In this case,
some source code modifications will be required.

SerialCSR (as shipped) makes certain assumptions about the ROM’s default baud rate and UART configuration
on the BlueCore device. If these do not match the variant of firmware on the ROM device, then the default values
will need to be edited in the source. Using an HCI transport other than BCSP entails extensive modifications to
the source code, replacing uBCSP with another transport.

Overview of Software

bcore-an-021Pa © Cambridge Silicon Radio Limited 2004
This material is subject to CSR’s non-disclosure agreement. Page 6 of 19

W
indow

s
®C

E D
river for _

äì
É
`
ç
êÉ

™ R
O

M
 D

evices

3 Overview of Software
3.1 Functional and Data Description

This section describes the overall function of SerialCSR from initialisation through to Persistent Store update. As
a shim layer above the serial driver, the information domain within which SerialCSR operates is well defined by
the functions it wraps. In a typical stream interface driver, the functions outlined in Table 3.1 are exported for use
by the WINAPI. COM_IOControl() is typically used as the handler for all direct hardware access and for all
access not handled by the other exported functions.

3.1.1 System Architecture

SerialCSR is developed as a wrapper library to any WinCE compliant serial driver. Figure 3.1 outlines the context
level architecture within which SerialCSR operates.

Figure 3.1: SerialCSR Overview

Bluetooth

Stack

WinCE Bluetooth App

Kernel

WinCE Bluetooth App

Windows
 Executive

WinCE Subsystem

Stream Interface
 Drivers

SerialCSR Wrapper

Serial Driver

API

PC Card Driver Audio Drivers

Hardware
Devices

Custom GPS Driver

Custom Serial Driver

Kernel Mode

User Mode

Application
Processes

Overview of Software

bcore-an-021Pa © Cambridge Silicon Radio Limited 2004
This material is subject to CSR’s non-disclosure agreement. Page 7 of 19

W
indow

s
®C

E D
river for _

äì
É
`
ç
êÉ

™ R
O

M
 D

evices

Serial drivers used to communicate to the UART on a BlueCore are implemented as stream interface drivers and
can be loaded under a number of circumstances.

! Boot Time

Typically, Bluetooth serial drivers are loaded at boot time by the Device Manager. Registry entries
indicate which driver to load.for those drivers.

! Device Detection

When WinCE detects the connection of some additional hardware, such as a Bluetooth PC card, the
appropriate driver is loaded.

! Application Initialisation

Applications can also ship with their own custom stream interface drivers and load the drivers on the
system when the application is run. Such drivers generally sit on top of an existing driver and present
the underlying driver's services to the application.

Figure 3.2 outlines the context level architecture within SerialCSR

Figure 3.2: Architecture of SerialCSR

3.1.2 Subsystem Overview

All WinCE applications accessing Bluetooth Devices driven through Serial ports make use of standard serial
driver windows API calls such as CreateFile(), ReadFile() and WriteFile(). The WinCE Executive
marshalls these calls and filters them based on the type of device access requested, the security context of the
caller and the resources available to the system. Calls to the API functions such as CreateFile(),
ReadFile() and WriteFile() are mapped to functions like COM_Open(), COM_Read() and
COM_Write().

The serial driver provides a standard interface for communicating with a UART. The UART in turn is used to
communicate with other devices, both internal to the platform, (e.g. a BlueCore device) or on a separate device,
such as a PC. SerialCSR lies between the underlying lower level Bluetooth device’s serial driver and either the
NT Executive or an upper level custom driver, depending on the implementation desired by the OEM.

OEMs may change the position of SerialCSR, but that may involve source code modifications based on the APIs
to be adapted. The default implementation, however, should be adequate for most implementations.

PSConfig - Persistent Store update

COM_Init

Locate Underlying Function Pointers

COM_Init

SerialCSRSerialCSR Serial Driver

COM_Open* COM_Open

Call Sequence

COM_Read* COM_Read

COM_Write* COM_Write

Flag Suspend State resumptionCOM_PowerUp COM_PowerUp

COM_PowerDown COM_PowerDown

COM_Seek COM_Seek

COM_Close COM_Close

COM_DeInit COM_DeInit

COM_IOControl COM_IOControl

Dll Load

* Update performed only if suspected that power has been lost to the BT Chip

Overview of Software

bcore-an-021Pa © Cambridge Silicon Radio Limited 2004
This material is subject to CSR’s non-disclosure agreement. Page 8 of 19

W
indow

s
®C

E D
river for _

äì
É
`
ç
êÉ

™ R
O

M
 D

evices

3.2 Data Description

As supplied, SerialCSR reads a .psr file containing Persistent Store values.

// PSKEY_BDADDR

&0001 = 0001 2821 005b 6789

// PSKEY_ANA_FTRIM

&01f6 = 0025

// PSKEY_HOST_INTERFACE

&01f9 = 0001

// PSKEY_UART_BAUD_RATE

&0204 = 01d8

// PSKEY_ANA_FREQ

&01fe = 0004

// PSKEY_UART_CONFIG

&0205 = 0006

Persistent Store Keys (PS Keys) are identified by a single 16-bit word. They are delimited from values by the =
symbol; the value can be up to 64 words in length. SerialCSR reads the data from the specified file and loads the
values into a BCCMD PDU, which is sent to the chip over BCCMD. Serial CSR will skip comments in the .psr file.

Overview of Software

bcore-an-021Pa © Cambridge Silicon Radio Limited 2004
This material is subject to CSR’s non-disclosure agreement. Page 9 of 19

W
indow

s
®C

E D
river for _

äì
É
`
ç
êÉ

™ R
O

M
 D

evices

3.2.1 Interface Description

The WinCE API defines the following interfaces for higher-level access.

Function Description

COM_Close Closes the serial device. It is called in response to an application's call to the
CloseHandle function.

COM_Deinit De-initialises the serial port.

COM_Init Initialises the serial device.

COM_IOControl Implements the serial port's I/O control routine. It is called by serial port functions such
as GetComState, which is a wrapper around this function.

COM_Open Initialises the serial port driver. This function is exported to applications through
CreateFile.

COM_PowerDown Indicates to the serial port driver that the platform is about to go into suspend mode.

COM_PowerUp Indicates to the serial port driver that the platform is resuming from suspend mode.

COM_Read
Enables an application to receive characters from the serial port. This function is
exported to users through the ReadFile function. This function must obey time-out
values set for the serial port.

COM_Write
Enables an application to transmit bytes to the serial port. This function is exported to
users through the WriteFile function. This function must obey flow-control and time-
out values.

Table 3.1: Exported Functions from a Typical Serial Driver Implementation

Aside from the configuration function, SerialCSR passes all calls from the Windows Executive above to the serial
driver below.

Table 3.1 describes the complete list of WinCE exposed driver functional interfaces that SerialCSR implements.

Overview of Software

bcore-an-021Pa © Cambridge Silicon Radio Limited 2004
This material is subject to CSR’s non-disclosure agreement. Page 10 of 19

W
indow

s
®C

E D
river for _

äì
É
`
ç
êÉ

™ R
O

M
 D

evices

3.3 Updating the Persistent Store: PSConfig()

The core of SerialCSR is the code to update the Persistent Store using the minimal CSR BCSP implementation
known as µBCSP. A description of µBCSP is outside the scope of this document. Refer to the µBCSP User
Guide.

Figure 3.3 denotes the high-level flow of information through the update function.

uBCSP

Have all PDU’s
been written

.psr file

Open and
configure COM

Port to Bluetooth
ROM Chip

Load Persistent
Store Values to

array of Data Units

Write PDU to
Persistent Store

Send Reset PDU

Wait Reset
Confirmation

Return

Init

Figure 3.3: PSConfig Flow Diagram

Overview of Software

bcore-an-021Pa © Cambridge Silicon Radio Limited 2004
This material is subject to CSR’s non-disclosure agreement. Page 11 of 19

W
indow

s
®C

E D
river for _

äì
É
`
ç
êÉ

™ R
O

M
 D

evices

Figure 3.3 indicates the flow of information through the PSConfig() function and the transformation that it
undergoes. PS Keys are loaded to an array of modified standard CSR Protocol Data Units (PDUs) defined as
follows:

// Define PDU with static memory

// - Enables array handling

typedef struct {

 uint16 id;

 uint16 len;

 uint16 stores;

 uint16 psmem[BCCMDPDU_MAXBUFSIZ_PC];

 } BCCMDPDU_PS;

typedef struct {

 uint16 type;

 uint16 pdulen;

 uint16 seqno;

 uint16 varid;

 uint16 status;

 union

 {

 BCCMDPDU_PS ps;

 }d;

} BCCMDPDU;

The standard CSR PDU was modified to support static memory allocation rather than the common dynamic
memory allocation of data. This allows an array of PDUs to be constructed before managing the update of the
writing of PS Keys.

Overview of Software

bcore-an-021Pa © Cambridge Silicon Radio Limited 2004
This material is subject to CSR’s non-disclosure agreement. Page 12 of 19

W
indow

s
®C

E D
river for _

äì
É
`
ç
êÉ

™ R
O

M
 D

evices

3.4 Instantiation

In order to use SerialCSR instead of the regular device driver, changes must be made to the registry entries for
the serial driver. Using the Widcomm stack as an example, under COM4 there is a reference to BT.dll. This
reference should be altered to SerialCSR.dll. SerialCSR.dll will then load and instantiate the underlying serial
driver, BT.dll or Serial.dll. For more information, see section 4, Installation.

The PSConfig() function is wrapped with the function UpdatePersistentStore(). This function is
called based on the value of the flag (gbUpdatePS) set within the power handlers described in the next section.

The following example code describes a typical implementation of the wrapped COM port WINAPI function and
the usage of the Persistent Store update code.

typedef ULONG (WINAPI *PFNCOM_Read)(HANDLE, PUCHAR, ULONG, PULONG);

///

// COM_Read Wrapper

//

// The CSR implementation of this function ensures the persistent

// store of the CSR chip is updated on first access to the device

//

SERIALCSR_API ULONG COM_Read(HANDLE pContext, PUCHAR pTargetBuffer,

 ULONG BufferLength, PULONG pBytesRead)

{

 ULONG lResult = NULL;

 if(ghLibInst)

 {

 if(gpfnCOM_Read)

 {

 // Update Persistent Store

 if(gbUpdatePS)

 {

 // Reset update flag

 gbUpdatePS = FALSE;

 UpdatePersistentStore(pContext);

 }

 lResult = gpfnCOM_Read(pContext, pTargetBuffer,

 BufferLength, pBytesRead);

 }

 }

 return lResult;

}

Similar handlers are used in COM_Open() and COM_Write().

Overview of Software

bcore-an-021Pa © Cambridge Silicon Radio Limited 2004
This material is subject to CSR’s non-disclosure agreement. Page 13 of 19

W
indow

s
®C

E D
river for _

äì
É
`
ç
êÉ

™ R
O

M
 D

evices

3.5 Managing the Power Suspend

Upon loss of power to a ROM chip, all Persistent Store settings are lost and the device reverts to default values.
Consequently SerialCSR must manage the Persistent Store of the ROM chip throughout the suspend power
cycle.

WinCE uses two messages to notify device drivers of a system power change through a suspend state and these
are handled by the exported functions COM_PowerDown() and COM_PowerUp(). Calls to both of these
functions are passed on to the underlying driver and (as with all power handlers) these functions cannot call
functions in other .dll files, memory allocators or debugging output functions; nor can they do anything that could
cause a page fault. It is, however, safe to set a flag and this is done in COM_PowerUp(). The set flag is used
throughout SerialCSR to determine whether an update to the Persistent Store should be performed.

Unfortunately, it is not possible to know definitely whether power has been lost to the chip during a suspend
because power to the chip can be controlled either by WinCE or by the hardware level of the underlying device
driver, or by both. Consequently even though the COM_PowerUp() handler may return TRUE, without a
failsafe test it cannot be known for certain that power has indeed been lost to the chip unless a TRUE was
received from COM_PowerDown() and that power was not lost to the chip during suspend when
COM_PowerDown() recorded FALSE.

If an OEM is certain of the power state through suspend, then it is possible to consider one of the following three
power handling scenarios:

Case A: COM_PowerDown handling only

! If the COM_PowerDown() return from PDD layer = TRUE set gbUpdatePS = TRUE

! If the COM_PowerDown() return from PDD layer = FALSE set gbUpdatePS = FALSE

! On COM_PowerUp(): ignore

Case B: COM_PowerUp handling only

If it is the case that the chip controls power and handles COM_PowerDown() correctly but later kills power
then a rewrite of PS values is required.

This requires COM_PowerUp handling as follows

! If the COM_PowerUp() return from PDD layer = TRUE set gbUpdatePS = TRUE

! If the COM_PowerUp() return from PDD layer = FALSE set gbUpdatePS = FALSE

! On COM_PowerDown(): ignore

In case B, it is vital that COM_PowerUp() return from the hardware layer of the underlying driver (the PDD
layer), write TRUE if (and only if) power was down before it returned TRUE from COM_PowerUp(). This is not
normal handling, therefore CASE A is preferred.

Overview of Software

bcore-an-021Pa © Cambridge Silicon Radio Limited 2004
This material is subject to CSR’s non-disclosure agreement. Page 14 of 19

W
indow

s
®C

E D
river for _

äì
É
`
ç
êÉ

™ R
O

M
 D

evices

Case C: Combine both handling

To combine handling with both COM_PowerUp() and COM_PowerDown() produces four possible states.

 Down

 TRUE FALSE

TRUE 1 2 Up
FALSE 3 4

Actions/States:

1. Update Persistent Store again as power was switched off and then switched on.

2. Do nothing as power was always on.

3. No power restored to device, but store gbWriteAgain=TRUE and update Persistent Store on next access
as COM_Open() will be called once power is restored.

4. No power off and no power on indicates indeterminate state.

Problems arise in:

State 2. Power may have been switched off during suspend.

State 4. Here power was cut when COM_PowerDown() message was received, but it was not bought up
on COM_PowerUp(). This is a case of the PDD controlling the chip.

SerialCSR Implementation

The supplied code module takes a safe approach by flagging the COM_PowerUp() whenever it is handled.
SerialCSR then ensures that (if the flag is set) on the next call through COM_Init(),
COM_Open(),COM_Read() or COM_Write(), the Persistent Store values are updated before continuing.
These values are written even if power has not been lost. If the baud rate is different to the default value, the
update will fail cleanly.

This approach avoids any of the Cases A, B or C and guarantees that the Persistent Store is updated whenever it
is needed. More efficient handling is possible and can be implemented with regard to Cases A, B or C, depending
on the management of the power cycle by the OEM.

Note:
If the suspend goes on for so long that the device runs out of power, then it is rebooted and the Persistent
Store is updated during the boot.

Installation

bcore-an-021Pa © Cambridge Silicon Radio Limited 2004
This material is subject to CSR’s non-disclosure agreement. Page 15 of 19

W
indow

s
®C

E D
river for _

äì
É
`
ç
êÉ

™ R
O

M
 D

evices

4 Installation
In order for SerialCSR to be coupled with the Bluetooth protocol stack, the Bluetooth stack must use SerialCSR
instead of the usual serial driver. This is performed by editing the registry. When SerialCSR is loaded, it will (in
turn) load up the original serial driver as directed by the hard-coded value in the SerialCSR source code.

All Windows CE driver locations are stored within the system registry and can be found in the section
HKEY_LOCAL_MACHINE\Drivers\Builtin\<subsection>\Driver.

Individual OEM implementations differ in the title of <subsection>. A typical Widcomm implementation uses the
<subsection> name of “Bluetooth” and the serial driver name is “BT.dll”. When using the Microsoft CE stack, the
driver name is the standard “Serial.dll”

As shipped, the source code for SerialCSR links with BT.dll dynamically as the underlying serial device driver,
making the implementation suitable for the Widcomm stack. If SerialCSR is used with a Microsoft stack, the
reference to BT.dll in the SerialCSR source code should be changed to Serial.dll.

To implement the shim layer, the only requirement is to copy the compiled module SerialCSR.dll to the Windows
directory on the device and change the above entry for “Driver” to “SerialCSR.dll”. After rebooting the device, all
access to the Bluetooth chip will be passed via SerialCSR.dll through to the underlying .dll with Persistent Store
settings updated as required.

Integration, Production Test and Configuration Issues

bcore-an-021Pa © Cambridge Silicon Radio Limited 2004
This material is subject to CSR’s non-disclosure agreement. Page 16 of 19

W
indow

s
®C

E D
river for _

äì
É
`
ç
êÉ

™ R
O

M
 D

evices

5 Integration, Production Test and Configuration Issues
From the standard image (as released from the Platform Builder), several changes must be made. These include
the following modifications.

! Modifying the image’s registry so that SerialCSR driver is installed as a filter driver (see section 4,
Installation).

! Incorporating a customised version of the device driver SerialCSR.dll

For every device produced, a unique .psr file must be incorporated into the ROM image. This file must contain
the following information:

! Settings unique to that device, e.g., the Bluetooth address and crystal frequency trim

! Settings used by all similar devices, namely the host transport, baud rate, device name, etc.

In order to get the crystal frequency trim, various tests must be made on BlueCore. Some of these tests will
involve radio and Bluetooth function. This will have a significant impact on the production plan used in creating
the devices.

The .psr file needs to be blown into ROM, since it contains information that will have to persist beyond a hard
reset. The information is not replaceable by a user.

Document References

bcore-an-021Pa © Cambridge Silicon Radio Limited 2004
This material is subject to CSR’s non-disclosure agreement. Page 17 of 19

W
indow

s
®C

E D
river for _

äì
É
`
ç
êÉ

™ R
O

M
 D

evices

6 Document References
Document Reference

Selection of I2C EEPROMs for Use with BlueCore CSR document bcore-an-008P

µBCSP User Guide CSR document bcor-ug-001P

BCCMD Protocol CSR document bcore-sp-002P

Acronyms and Definitions

bcore-an-021Pa © Cambridge Silicon Radio Limited 2004
This material is subject to CSR’s non-disclosure agreement. Page 18 of 19

W
indow

s
®C

E D
river for _

äì
É
`
ç
êÉ

™ R
O

M
 D

evices

Acronyms and Definitions
API Application-Program Interface; set of functions and accessible data that define the

interface between two software components
BCCMD BlueCore Command
BCSP BlueCore Serial Protocol
BlueCore™ Group term for CSR’s range of Bluetooth wireless technology chips
Bluetooth® Set of technologies providing audio and data transfer over short-range radio connections
BOM Bill of Materials

BT.dll
On the Widcomm CE stacks, this is the serial driver.
On the Microsoft CE stacks, this is the main part of the Bluetooth stack that exists above
the serial driver

CE Windows® CE; a small version of Microsoft Windows targeted at Consumer Electronics
CSR Cambridge Silicon Radio
dll Dynamically Linked Library

EEPROM Electronically Erasable Programmable Read-Only Memory; small, low cost non-volatile
memory

HID Human Interface Device
I2C™ Inter-Integrated Circuit
I/O Input/Output
OEM Original End Manufacturer
PC Personal Computer

PDA Personal Digital Assistant; portable device storing appointments, contacts and similar,
These are increasingly able to communicate with other devices by Bluetooth

PDU Protocol Data Unit
Persistent Store Storage of BlueCore’s configuration values in non-volatile memory
PS Key Persistent Store Key
ROM Read Only Memory
UART Universal Asynchronous Receiver Transmitter

µBCSP “Micro” BlueCore Serial Protocol

USB Universal Serial Bus

Record of Changes

bcore-an-021Pa © Cambridge Silicon Radio Limited 2004
This material is subject to CSR’s non-disclosure agreement. Page 19 of 19

W
indow

s
®C

E D
river for _

äì
É
`
ç
êÉ

™ R
O

M
 D

evices

Record of Changes
Date Revision Reason for Change

10 May 04 a Original publication of this document. (CSR reference: bcore-an-021Pa)

Windows®CE Driver for
_äìÉ`çêÉ» ROM Devices

Application Note

bcore-an-021Pa

May 2004

Bluetooth® and the Bluetooth logos are trademarks owned by Bluetooth SIG, Inc. and licensed to CSR.

_äìÉ`çêÉ™ is a trademark of CSR.

All other product, service and company names are trademarks, registered trademarks or service marks of their
respective owners.

CSR’s products are not authorised for use in life-support or safety-critical applications.

	Introduction
	ROM Devices
	Application
	Function
	Development Environment

	Deliverables and Scope of Additional Work
	Overview of Software
	Functional and Data Description
	System Architecture
	Subsystem Overview

	Data Description
	Interface Description

	Updating the Persistent Store: PSConfig()
	Instantiation
	Managing the Power Suspend

	Installation
	Integration, Production Test and Configuration Issues
	Document References
	Acronyms and Definitions
	Record of Changes

