

AN002b

© Copyright CSR 2000

This material is subject to CSR’s non-disclosure agreement.

CSR

 Unit 300 Cambridge Science Park
Milton Road
 Cambridge

CB4 0XL
United Kingdom

 Registered in England 3665875

 Tel: +44 (0)1223 424167
 Fax: +44 (0)1223 424178

www.csr.com

BlueCore01
Porting the BCSP Stack

AN002

May 2000

Porting the BCSP Stack

AN002b

© Copyright CSR 2000

This material is subject to CSR’s non-disclosure agreement.

Page 2 of 10

Introduction

The CSR Bluetooth chip, BlueCore01TM, uses a UART link to connect to its host. BlueCore01
Serial Protocol (BCSP) runs over this link, carrying such things as HCI commands, events and
data.

BCSP provides a set of reliable and unreliable bi-directional datagram streams.

CSR has written a portable implementation of BCSP in C to help users interface to the chip. This
document describes the BCSP implementation, and provides porting guidance.

Note: Although BCSP was written specifically for the BlueCore01 Bluetooth chip, BCSP itself is
not specific to Bluetooth. Thus it deliberately avoids direct reference to the Bluetooth specification.
Similarly, this BCSP implementation deals with Bluetooth terms only in passing.

Porting the BCSP Stack

AN002b

© Copyright CSR 2000

This material is subject to CSR’s non-disclosure agreement.

Page 3 of 10

Context
A BCSP stack provides reliable and unreliable bi-directional datagram channels between the
BlueCore01TM Bluetooth chip and its host.

This document describes an implementation of the “Host BCSP Stack” shown in the diagram
below.

UART Link

Host

Host BCSP
Stack

UART

Rest of Host

System

BlueCore01

BlueCore01 BCSP

Stack

UART

Rest of BlueCore01

System

BCSP
Packets

Stack Organisaton
The stack consists of a core generic engine, which has four I/O points; two byte-oriented buffers
and two transfer-request queues. Internally, the stack contains a number of co-operative tasks
which share a single stack space and which are managed by a simple scheduler.

By itself, the code in the generic core cannot perform any ‘real’ I/O, so it must be wrapped in an
‘environment’ that provides it with an execution context and helper functions. The following
diagram shows the relationship between the environment and the core BCSP stack.

Porting the BCSP Stack

AN002b

© Copyright CSR 2000

This material is subject to CSR’s non-disclosure agreement.

Page 4 of 10

The environment is expected to run the stack within a thread and to fill and empty the stack’s I/O
buffers as required. The environment may also supply memory-management, critical-section, and
signalling routines.

Pseudo-code for the stack thread is shown below:

forever {

• Call the stack’s scheduler – the stack will run until all
internal tasks are blocked.

• Transfer bytes from stack’s output buffer to UART transmit
buffer.

• Transfer bytes from UART receive buffer to stack’s input
buffer.

• If all stack tasks are still blocked, wait for any of the
following:

1. stack’s wakeup-time to arrive

2. more bytes to arrive from UART

3. some free space in the UART transmit buffer.

4. A signal from the stack that a transfer-request has been
queued

}

Environment

BCSP

Bytes Out

Bytes In

Transfer
Requests In

BCSP
Engine

Transfer
Requests

Out

I/O

Upper level
Protocol

Memory Management
Critical Sections

Signalling

Porting the BCSP Stack

AN002b

© Copyright CSR 2000

This material is subject to CSR’s non-disclosure agreement.

Page 5 of 10

The stack must be correctly set up before the thread is run:

1. Memory must be allocated for the stack.

2. initialiseStack must be called.

3. A number of packets must be created and added to the stack.

4. An environment must be created and set.

5. A configuration may be created and set.

The Environment
A BCSPEnvironment needs to be created. This is basically a list of function pointers that the stack
calls for environment functionality. All functions take a void * pointer as their first parameter and at
runtime, the envState field is passed as this parameter. This enables the environment to maintain
extra state which it might need.

The functions which should be supplied are:

void * (*allocMem)(void * envState,uint32 size);

void (*freeMem)(void * envState,void*);

These two functions are used to allocate and free memory.

void (*enterCS)(void * envState) ;

void (*leaveCS)(void * envState) ;

These two functions are used to enter and leave a critical section. This is required to
safely manage the transfer-request queues.

void (*signal)(void * envState) ;

The signal function is called whenever a new transfer-request is added to a queue by
the user. Typically this function is used to wake-up the stack-thread.

void (*onLinkFailure)(void * envState);

This function is called if the maximum number of transmission retries has been reached.
Note that after this function is called, the retry-count is reset to zero so the function will
continue to be called if the stack-thread is allowed to continue running.

void (*releasePacket)(void * envState,Packet * pkt);

This function is called by the stack when it is shutdown to free the packet headers that
were added by the environment.

uint32 clockMask ;

This variable should contain a bit set for each significant bit in a time. Eg, if a 16-bit
timer is used, this variable should be set to 0xffff; if a 32 bit timer is used, clockMask
should be 0xffffffff.

void * envState ;

This pointer will typically be set to point to some state maintained by the environment.
All of the above functions are passed this pointer.

Porting the BCSP Stack

AN002b

© Copyright CSR 2000

This material is subject to CSR’s non-disclosure agreement.

Page 6 of 10

Types And Definitions
The code makes widespread use of types such as uint32, uint18, uint8. These should be
defined in an env/YOURENV/envdefs.h file. See the example in env/templates for further details.

Portability Issues
The code relies quite heavily on the following property of structure-packing:

Given:

struct _base

{

 …

} ;

and:

struct _derived

{

 struct _base baseObj ;

 …

} derivedObj;

then assume:

&derivedObj.baseObj == &derivedObj

It is possible (although unlikely) that your compiler may not exhibit this behaviour, in which case,
the queue-based structures will need to be rewritten to take explicit pointers to their derived
objects.

Improvements
The stack could be improved by adding some or all of the following features:

• At present, no out-of-memory checking is performed when attempting to allocate data for
packets; the stack is not expected to recover from an out-of-memory condition.

• Packet data sections could be segmented to remove the need for data copying.

• Data could be written directly into the transfer-requests buffer when receiving a packet if the
transfer request has already been queued.

API Reference
Note: This is a subset of the complete BCSP API; these functions are those which would normally
be used by those writing an environment wrapper.

void initialiseStack(BCSPStack * stack);

This function must be called before the stack is run. It sets up the stack state. This
function must be called before any other intialisation.

Porting the BCSP Stack

AN002b

© Copyright CSR 2000

This material is subject to CSR’s non-disclosure agreement.

Page 7 of 10

void BCSPaddPacket(BCSPStack * theStack,Packet * pkt) ;

This function is used to add a packet header to the stack. When the stack is shutdown,
the packets will be released through the evironment’s releasePacket function.

BCSPEnvironment * geDefaultEnvironment();

BCSPEnvironment * getEnvironment(BCSPStack * stack);

void setEnvironment(BCSPStack * stack,BCSPEnvironment * env) ;

These functions can be used to get and set the stack’s environment structure . The
structure is passed in via a pointer so it must be persistent.

StackConfiguration * getDefaultStackConfiguration() ;

StackConfiguration * getStackConfiguration(BCSPStack * stack) ;

void setStackConfiguration(BCSPStack*stack,StackConfiguration*cfg);

These functions can be used to get and set the stacks configuration structure . The
structure is passed in via a pointer so it must be persistent.

uint32 scheduler(BCSPStack * theStack,uint32 timeNow);

This function calls the BCSP engine. The engine will run until all internal tasks are
blocked. This typically happens because either the transmit buffer is full, the receive
buffer is empty, a packet has been received for which no transfer request has been
queued, or the stack has nothing left to do.

Upon completion of this function , the environment should attempt to empty the transmit
buffer and fill the receive buffer. If either of these operations is even partially successful,
the stack may have become unblocked and can be run again. The function returns the
time (in ms) that it should be woken up in the absence of any interim I/O events.

uint16 numBytesInTransmitBuffer(BCSPStack * stack);

uint16 numFreeSlotsInReceiveBuffer(BCSPStack * stack);

uint8 readByteFromTransmitBuffer(BCSPStack * stack);

void writeByteToReceiveBuffer(BCSPStack * stack,uint8 data);

void readFromTransmitBuffer(BCSPStack * stack,
 uint8* dest,uint8 len);

void writeToReceiveBuffer(BCSPStack * stack,uint8 *src,
 uint8 len);

These functions are used to read bytes from the stack’s transmit buffer and write bytes
into the stack’s receive buffer. numBytes/FreeSlots must be called before attempting to
read/write bytes. If an attempt is made to write more bytes than there are free slots in
the receive buffer or to read more bytes than are currently in the transmit buffer, the
behaviour of the stack is undefined. The read/writeByte functions transfer a single byte
whilst the readFrom/writeTo functions write a block.

Porting the BCSP Stack

AN002b

© Copyright CSR 2000

This material is subject to CSR’s non-disclosure agreement.

Page 8 of 10

bool isStackIdle(BCSPStack * stack);

Returns true if the stack is blocked and false if not. It is important to call this function
after running the scheduler and conducting I/O since the I/O may have unblocked the
stack.

bool BCSPLinkEstablished(BCSPStack * stack) ;

Returns true if the link-establishment protocol has received a sync-resp packet.

void BCSPshutdownStack(BCSPStack * stack) ;

Causes the stack to shutdown and lose all state. All pending transfer-requests are
completed with status transferCancelled, all packet-data is freed, and all packet-headers
are returned to the environment via the environent releasePacket function. The
environment must ensure that no further transfer requests are queued after this function
is called and that the scheduler is not run again otherwise memory leaks may occur.

#define BTRACELOG(filename)

#define BTRACEENABLE(bits)

#define BTRACEDISABLE(bits)

#define BTRACEID(str)

#define BTRACEn(bit,str)

#define PLAINBTRACEn(bit,str)

These macros are used for debugging; by default, debug output is dumped to stdio but
BTRACELOG can be used to open a file which will also log the debug output.
BTRACEID can be used to set a string which will be prepended to all output – this can
be useful when debugging multiple stacks, BTRACEENABLE/DISABLE are used to turn
tracing on and off for areas of interest; by default all tracing is enabled. See BTRACE.h
for bit-definitions. BTRACEn is used to actually print a trace – this takes a bit-definition
and a printf style argument list. n should be replaced by the number of printf arguments,
not including the formatting string. Eg

BTRACE3((1<<15, “A debug trace with arguments %d
 %d %d\n”,1,2,3) ;

This will only produce output if bit 15 is set in the debug bitmask.

The PLAINTRACE macro provides similar functionality except that the TRACEID string
will not be prepended to the string.

Porting the BCSP Stack

AN002b

© Copyright CSR 2000

This material is subject to CSR’s non-disclosure agreement.

Page 9 of 10

Definitions and Acronyms
Bluetooth A set of technologies providing short range audio and data transfer over radio

connections.

bc01 BlueCore01TM, CSR’s Bluetooth chip

BCSP BlueCore Serial Protocol

CSR Cambridge Silicon Radio Ltd

HCI Host Controller Interface; part of the Bluetooth Specification

Bluetooth™ and the Bluetooth logos are trademarks owned by Bluetooth SIG Inc, USA and
licensed to CSR.

BlueCore is a trademark of Cambridge Silicon Radio Ltd.

Porting the BCSP Stack

AN002b

© Copyright CSR 2000

This material is subject to CSR’s non-disclosure agreement.

Page 10 of 10

Record of Changes

Date: Revision: Reason for Change:

04 MAY 00 a First draft for comment (CSR reference: bc01-m-022)

10 MAY 00 b Release for BlueCore01TM evaluation system

Porting the BCSP Stack

AN002

May 2000

	Introduction
	Context
	Stack Organisaton
	The Environment
	Types And Definitions
	Portability Issues
	Improvements
	API Reference
	Definitions and Acronyms

