

_äìÉ`çêÉ»

BlueCore Serial Protocol (BCSP)

July 2004
bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement.

CSR
Cambridge Science Park

Milton Road
 Cambridge

CB4 0WH
United Kingdom

 Registered in England 3665875
 Tel: +44 (0)1223 692000
 Fax: +44 (0)1223 692001

www.csr.com

Contents

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 2 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

Contents
Contents .. 2
1 Introduction .. 4
2 Context.. 5
3 Overview ... 6
4 Packet Structure .. 7

4.1 Flags Field ... 7
4.1.1 Seq Field.. 7
4.1.2 Ack Field .. 7
4.1.3 CRC Present Field ... 8
4.1.4 Protocol Type Field .. 8

4.2 The Protocol Identifier Field... 8
4.3 Payload Length Field... 8
4.4 Checksum Field... 8
4.5 Payload.. 8
4.6 CRC Field .. 9

5 UART Driver Layer ... 10
6 SLIP Layer .. 11

6.1 Transmitting Packets ... 11
6.2 Receiving Packets ... 11

7 Packet Integrity Layer.. 12
7.1 Transmitting Packets ... 12
7.2 Receiving Packets ... 12

8 MUX Layer .. 13
8.1 MUX Layer Context ... 13
8.2 Receiving Packets ... 13
8.3 Transmitting Packets ... 14
8.4 Acknowledging Packets... 14
8.5 Ack Packets... 15
8.6 Choke 15
8.7 Reset 16

9 Sequencing Layer .. 17
9.1 Acknowledgement and Retransmission... 17
9.2 Sequencing Layer Context .. 18
9.3 Top Level View .. 19

9.3.1 tx_reliable_pkt().. 19
9.3.2 rx_reliable_pkt() ... 19
9.3.3 link_failed()... 19

9.4 Transmit State Machine... 20
9.5 Receive State Machine.. 21
9.6 Reset 23
9.7 Protocol Identifier Field .. 23

10 Datagram Queue Layer.. 24
10.1 Datagram Queue Layer Context.. 24
10.2 Datagram Queue Layer Functions... 24

10.2.1 Receiving Messages .. 24
10.2.2 Sending Messages... 24
10.2.3 Seq Field.. 24
10.2.4 Protocol Identifier Field .. 25

Contents

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 3 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

10.2.5 Reset.. 25
10.3 Top Level View .. 25

10.3.1 tx_unreliable_pkt().. 25
10.3.2 rx_unreliable_pkt() ... 25

11 Configurable Items... 26
12 Comments .. 27
Document References .. 28
Acronyms and Definitions.. 29
Record of Changes ... 30

List of Figures

Figure 1.1: UART Host Connection... 4
Figure 2.1: BCSP Context ... 5
Figure 3.1: BCSP Stack Elements .. 6
Figure 4.1: BCSP Packet Structure... 7
Figure 4.2: Flags Field .. 7
Figure 4.3: BCSP Packet Structure with CRC Field .. 9
Figure 6.1:SLIP Packets ... 11
Figure 8.1: MUX Layer Context... 13
Figure 8.2: Acknowledging Packets .. 14
Figure 9.1: Acknowledgement and Retransmission .. 17
Figure 9.2: Sequencing Layer Context.. 18
Figure 9.3: Transmit State Machine .. 21
Figure 9.4: Receive State Machine ... 22
Figure 10.1: Datagram Queue Layer... 24

List of Tables

Table 8.1: Ack Packet Fields... 15
Table 9.1: Transmit State Machine Variables ... 20
Table 9.2: Transmit State Machine Constants .. 20
Table 9.3: Receive State Machine Variables .. 21
Table 11.1: Configurable Items ... 26

Introduction

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 4 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

1 Introduction
This document defines BlueCore Serial Protocol (BCSP), a protocol used to carry a set of data flows through a
highly reliable UART link.

The stack has been designed to transfer data between a Bluetooth Host and a Bluetooth Host Controller. The
stack is intended to be used to carry the Bluetooth HCI (Host Controller Interface) protocols plus several others.

Host Controller Host
UART Link

Figure 1.1: UART Host Connection

BCSP is intended to be used on the CSR BlueCore Host Controller, which provides hardware to support much of
the stack’s functionality.

Context

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 5 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

2 Context
BCSP is used to control and format information that flows between a Bluetooth Host and a Bluetooth Host
Controller, as described in [BT1.2]. The stack carries a set of parallel information flows between the two
computers, multiplexing them over a single UART link.

UART Link

Host

BCSP Stack

UART

Rest of Host
System

Host Controller

BCSP Stack

UART

Rest of Host
Controller System

Figure 2.1: BCSP Context

An instance of the BCSP stack runs on the Host and the Host Controller.

The BCSP stack is layered above the UART on each computer.

The top of the BCSP stack presents:

! One bidirectional reliable datagram service

! One bidirectional unreliable datagram service

Higher protocol layers can be built upon the two datagram services.

The protocol is defined to run on a 3-wire UART connection (two data lines plus ground). However, BCSP can
also be run on a 5-wire UART connection (with two flow control lines), and this is common, particularly at higher
baud rates.

Overview

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 6 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

3 Overview
This section gives an overview of the elements of a BCSP stack.

SLIP

Packet Integrity

Reliable Datagram
Stream

UART

MUX

UART Driver

Unreliable Datagram
Stream

Reset

Last Pkt Rx Time

UART
Config

Acks

Sequencing Datagram Queue

Pkts Pkts

Bytes

Flow
Control

CRC
Config

ResetConfig

Choke

Figure 3.1: BCSP Stack Elements

Considering the diagram (Figure 3.1) from the bottom:

! The UART Driver Layer initialises and controls the local UART, translating the flows of bytes on the
physical UART connection to the peer computer into flows of bytes at the base of the SLIP Layer.

! The SLIP Layer uses the Serial Link Internet Protocol (SLIP) to transform the flow of bytes into a flow of
packets.

! The Packet Integrity Layer ensures that packets received from the SLIP layer are intact.

! The MUX Layer routes received packets either to the Sequencing Layer or to the Datagram Queue
Layer. The MUX Layer also keeps a note of the time at which the last packet was last successfully
received.

! The Sequencing Layer uses a windowing mechanism to provide a single reliable flow of packets to and
from the peer. Code above the Layer can route packets using a Protocol Identifier value, which is carried
with each packet.

! The Datagram Queue Layer provides a single unreliable flow of packets to and from the peer. As with
the Sequencing Layer, code above this Layer can route packets using a Protocol Identifier value, which
is carried with each packet.

Later sections of this document describe the layers in more detail.

Packet Structure

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 7 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

4 Packet Structure
The BCSP uses only one packet type; this section describes the packet’s structure.

Figure 4.1 shows the packet structure used by all BCSP layers above the SLIP Layer.

Bytes

Header

1 2 3 4

Packet

Payload

Payload Length
(bits 4-11)Flags Pay................loadChecksumProtocol

Identifier

Bits 0707 07 07 07

Payload
Length

(bits 0-3)

Figure 4.1: BCSP Packet Structure

The packet’s fields are described in the following sections.

4.1 Flags Field

The single byte Flags Field has the following structure:

 Bits

Protocol
Type

3 1 07 6 45 2

CRC
Present Ack Seq

Figure 4.2: Flags Field

The fields within the Flags Field are described below.

4.1.1 Seq Field

The Seq Field holds a 3-bit, little-endian sequence number. This is of interest only to packets that pass into the
Sequencing Layer.

The Sequencing Layer sets the Seq Field to carry an incrementing sequence number, range 0 to 7, on each
(fresh) packet that it sends to the peer computer.

Packets that have the Protocol Type Field set to “Unreliable Datagram Stream” (see section 4.1.4 below) have
their Seq Field set to zero.

4.1.2 Ack Field

The Ack Field holds a 3-bit, little-endian sequence acknowledgement number. This field normally holds the value
of the Seq Field in the last packet successfully received by the peer’s Sequencing Layer, plus one. Put more
simply, this is the value of the Seq Field that the peer expects to see in the next packet it receives.

For example, if one computer’s Sequencing Layer last successfully received a packet with its Seq Field set to 3,
then that computer will set the Ack Field in all packets that it sends to the peer to 4 (until it successfully receives
another packet, etc.).

The Sequencing Layer processes the value of the Ack Field in all packets received from the peer.

Packet Structure

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 8 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

4.1.3 CRC Present Field

The CRC Present Field indicates whether the packet payload carries a CRC Field; this is described below. This
Field’s values are:

0 CRC Field not present

1 CRC Field present

4.1.4 Protocol Type Field

The Protocol Type Field is used only by the MUX Layer, and indicates whether the packet is part of the reliable or
unreliable data stream. The Field’s values are:

0 Unreliable Datagram Stream

1 Reliable Datagram Stream

4.2 The Protocol Identifier Field

Each packet that is sent into the stack, either on the reliable or unreliable datagram stream, carries with it a value
for the Protocol Identifier Field. This value travels with the packet to the peer computer and is delivered with the
packet.

The MUX Layer generates and consumes packets with the Protocol Identifier Field of value zero. Otherwise,
BCSP takes no interest in the value of the Protocol Identifier Field in packets it transfers, other than to carry and
deliver the Field’s value with the packet’s payload.

The higher layers of the stack may use the value of the Field to distinguish parallel flows of data that pass
through a BCSP connection.

4.3 Payload Length Field

The 12-bit Payload Length Field holds the length of the packet’s Payload Field in bytes.

The 12-bit Field is split over two bytes: the least significant 4 bits of the Field lie in the most significant 4 bits of
the Header’s second byte, the remaining 8 bits of the Field form the Header’s third byte.

Values in the 4 and 8-bit parts of the Field are little-endian.

A value of 0 indicates that a Payload Field of length zero is present, so a payload of length zero should be
passed up/down the stack.

4.4 Checksum Field

The Checksum Field is the bit inverse of the sum of the first three bytes in the packet, modulo 256.

This Field is used to provide assurance of the integrity of the packet’s header.

4.5 Payload

The Payload Field carries the data of the packet. This is passed unaltered through a BCSP connection.

The Payload Field is an integer number of bytes in length, as indicated by the Payload Length Field.

Packet Structure

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 9 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

4.6 CRC Field

If the CRC Present Field indicates that the packet carries a CRC Field, then the packet structure is slightly
different:

Field
Length
(bytes)

4 Payload Length

Pay................loadHeader

Packet

CRC

2

Figure 4.3: BCSP Packet Structure with CRC Field

The two byte CRC Field is only included if the CRC Present Field indicates its presence.

The definition of the Payload Length Field is unchanged if a CRC Field is present: it indicates only the length of
the Payload Field.

The value of the CRC field is calculated over the Header and Payload fields.

The CRC is defined using the CRC-CCITT generator polynomial:

g(D) = D^16 + D^12 + D^5 + 1

with the following comments:

! The CRC shift register is filled with 1’s before calculating the CRC for each packet.

! Bytes are fed through the CRC generator least significant bit first.

! The most significant parity byte is transmitted first (where the CRC shift register is viewed as shifting
from the least significant bit towards the most significant bit). Therefore, the transmission order of the
parity bytes within the CRC shift register is as follows:

 x[8] (first), x[9],..., x[15], x[0], x[1],..., x[7] (last)

where x[15] corresponds to the highest power CRC coefficient and x[0] corresponds to the lowest
power coefficient.

UART Driver Layer

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 10 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

5 UART Driver Layer
The UART Driver Layer of the stack initialises and controls the local UART. The Layer transfers bytes between
the local UART and the bottom of the SLIP Layer.

The local UART connects to the peer computer via a physical link with the following default characteristics:

! A three-wire link: data in both directions plus a common ground

! No hardware flow control signals

! 8 data bits, transmitted least significant bit first

! Even parity

! One stop bit

! 38.4kbaud

If a received byte fails its parity test then the byte is silently discarded.

The baud rate, number of stop bits, parity on/off, parity even/odd and use of hardware flow control may be
changed by local configuration.

If the Layer is reset, then it restores the configuration listed above.

SLIP Layer

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 11 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

6 SLIP Layer
The SLIP (Serial Link Internet Protocol) Layer implements a version of the SLIP protocol described in Internet
standard RFC 1055.

Fundamentally, SLIP translates between a byte stream and a packet stream. The UART Driver Layer transfers a
pair of byte streams, so the SLIP Layer converts this into a pair of packet streams. More exactly, the UART link
deals with unreliable byte streams, so the SLIP Layer turns these into unreliable packet streams.

6.1 Transmitting Packets

The SLIP Layer performs the following procedure for each packet as it passes from the Packet Integrity Layer to
the UART Driver Layer:

A byte of value 0xc0 is transmitted. (This denotes the start of the packet.)

for each byte in the packet, reading from its start:

if the byte’s value is 0xc0:

Two bytes are transmitted: values {0xdb, 0xdc}

else if the byte’s value is 0xdb:

Two bytes are transmitted: values {0xdb, 0xdd}

else:

The original byte is transmitted.

A byte of value 0xc0 is transmitted. (This denotes the end of the packet.)

The result of the first and last lines of this procedure is to frame each packet with a pair of marker bytes of value
0xc0, as shown in the following diagram:

Packet 1 Packet 20xc0

SLIP Packet

0xc0 0xc00xc00xc00xc0

Figure 6.1: SLIP Packets

The remainder of the procedure ensures that occurrences of the marker byte are escaped within the packet body.

6.2 Receiving Packets

The SLIP Layer applies a corresponding procedure on received bytes, translating the byte stream into a packet
stream. The SLIP Layer passes the received packets up to the Packet Integrity Layer.

If the SLIP Layer receives unexpected bytes from the UART Driver Layer, it silently discards bytes until it
resynchronises on the expected flow of bytes.

When the Layer is reset it behaves initially as if it has lost packet synchronisation.

Packet Integrity Layer

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 12 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

7 Packet Integrity Layer
The Packet Integrity Layer examines packets received from the SLIP layer and only passes them up to the MUX
Layer if it determines that they are intact.

7.1 Transmitting Packets

The Packet Integrity Layer sets the following fields in each packet that it transmits to the peer:

! Payload Length Field

! Checksum Field

! CRC Present Field

! CRC Field (only set if the CRC Present Field indicates its presence)

The value of the CRC Present Field is a configurable item. By default, no CRC Field is transmitted.

7.2 Receiving Packets

The Packet Integrity Layer performs the following tests on all packets it receives from the SLIP Layer:

! Checks that the Checksum Field has the expected value.

! Checks that the packet length is as expected, after examining the Payload Length and CRC Present
Fields.

! If the CRC Present Field indicates that the packet carries a CRC Field the Packet Integrity Layer checks
that the CRC Field holds the expected value.

If any of these tests fail on a packet, the packet is silently discarded.

Packets passed up to the MUX Layer are regarded as being intact.

MUX Layer

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 13 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

8 MUX Layer
The MUX Layer routes packets to/from the reliable and unreliable branches at the top of the BCSP.

The MUX Layer also deals with some elements of packet flow control on behalf of the Sequencing Layer.

8.1 MUX Layer Context

The diagram gives a context for the MUX Layer:

Reset

Packet Integrity Layer

Last Rx
Pkt

Time
MUX Layer

txack

Packets

Packets

Sequencing Layer

Packets
rxack

Datagram Queue
Layer

Choke

send_ack_command

Figure 8.1: MUX Layer Context

Packets from the Packet Integrity Layer are passed up to the Sequencing and Datagram Queue layers.

Packets from the Sequencing and Datagram Queue layers are passed down to the Packet Integrity Layer.

The MUX Layer reads the value of the Ack Field from every packet received from the Packet Integrity Layer and
presents this to the Sequencing Layer (rxack).

The MUX Layer reads a txack value from the Sequencing Layer. It writes this value into the Ack Field of every
packet it sends to the Packet Integrity Layer.

By sending a send_ack_command, the Sequencing Layer is able to force the MUX Layer to send the current
txack value to the peer.

The Layer publishes the time at which it last received a packet from the Packet Integrity Layer.

While the Boolean Choke signal is asserted only particular (UART link management) packets are passed through
the Layer.

The Reset signal initialises its knowledge of the last Ack Field value read from packets from the peer (rxack). The
signal also clears internal mechanisms used to send packets generated within the Layer to the peer.

8.2 Receiving Packets

For each packet received from the peer, the MUX Layer passes the value of its Ack Field up to the Sequencing
Layer as signal rxack.

The MUX Layer publishes the local system time at which it last received a packet from the peer. This value
allows local processes to determine that traffic is flowing freely from the peer. The recorded value must have a

MUX Layer

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 14 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

resolution of at least one second and a range of at least ten minutes. This information is not maintained if the
host system does not have a clock which provides the required range and resolution.

If the MUX Layer receives an Ack Packet (see section 8.5), it silently discards the packet. (The job of this packet
was to transfer an Ack value from the peer.)

If the MUX Layer receives a packet that is not an Ack Packet it examines the Protocol Type Field:

! If the Field indicates that the packet is part of the reliable datagram stream then it is passed to the
Sequencing Layer.

! If the Field indicates that the packet is part of the unreliable datagram stream then it is passed to the
Datagram Queue Layer.

8.3 Transmitting Packets

Packets come into the top of the MUX Layer from the Sequencing and Datagram Queue layers. All of these
packets are sent to the Packet Integrity Layer.

The MUX Layer sets the value of the Protocol Type Field for each packet sent; the value written depends on
whether the packet came from the Datagram Queue Layer or from the Sequencing Layer.

The Sequencing Layer continuously passes a value txack into the MUX Layer, which it writes into the Ack Field of
all packets transmitted.

The MUX Layer always gives priority to packets from the Datagram Queue Layer over the Sequencing Layer.

8.4 Acknowledging Packets

The MUX Layer is responsible for passing acknowledgements of the receipt of reliable datagrams to the peer.
The Layer performs this on behalf of the Sequencing Layer.

The Sequencing Layer can command the MUX Layer to send an acknowledgement to the peer. If the Layer is
currently sending a packet, this must complete before it can consider sending the new Ack value. The following
state machine describes the mechanism for acknowledging the receipt of packets:

Idle

Start

Sending

tx data pkt avail (reliable or unreliable)
set pkt's Ack field to txack
send data packet
send_ack = FALSE

no tx data pkt avail AND send_ack == TRUE
create Ack Packet
set pkt's Ack field to txack
send Ack Packet
send_ack = FALSE

send_ack_command
send_ack = TRUE

send_ack_command
send_ack = TRUE

packet sent

Figure 8.2: Acknowledging Packets

MUX Layer

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 15 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

The MUX Layer alternates between the states of waiting for instructions and sending packets to the peer.

Whenever the Layer is asked to send a data packet (from either the Sequencing Layer or the Datagram Queue
Layer) it writes the current txack value from the Sequencing Layer into the Ack field of the packet before it sends
it on to the Packet Integrity Layer.

The Sequencing Layer asks the MUX Layer to send an acknowledgement packet by issuing the
“send_ack_command” signal. The state machine records this in the local variable “send_ack”.

If the state machine finds it is required to send the txack value to the peer but it has no normal data packet in
which to send it, the state machine creates and sends an Ack Packet (described below).

Note:
The description of this Layer exists only to describe elements of behaviour required of the overall BCSP. It is
expected that an implementation will not provide a message queue in this Layer, and that the Layer will need
knowledge of the availability of transmit packets from higher layers.

Consequently, whenever the Sequencing Layer issues the “send_ack_command” signal the MUX Layer sends
the txack value in at least one outbound packet.

The role of acknowledging the receipt of reliable packets may seem out of place in the MUX Layer, however:

! Acknowledgements are carried in both reliable and unreliable data packets, and the MUX Layer is the
highest point in the stack that sees both packet types.

! Only the MUX Layer is able to detect that there are no reliable or unreliable datagrams waiting to be
sent to the peer, and so it is best sited to send Ack Packets.

8.5 Ack Packets

The BCSP has only one packet type, which it uses to carry both payload data and delivery acknowledgement
over the link. When an exchange of data packets comes towards its end there is no payload data packet via
which to acknowledge receipt of the last data packet received from the peer. To overcome this the MUX Layer
generates a packet simply to carry an acknowledgement value to the peer. This is an Ack Packet.

An Ack Packet has the following fields:

Field Value

Ack Field txack - from the Sequencing Layer

Seq Field 0

Protocol Identifier Field 0

Protocol Type Field Any value

Payload Length Field 0

Table 8.1: Ack Packet Fields

8.6 Choke

While the Boolean Choke signal is not asserted the Layer behaves as described in the remainder of this Layer’s
description.

While the Choke signal is asserted the Layer only passes packets with:

! Protocol Type Field set to Unreliable Datagram Stream

! Protocol Identifier Field set to 1

This control allows external software to ensure that the link is behaving correctly (by exchanging packets that
pass the choke filter) before enabling the flow of normal traffic.

MUX Layer

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 16 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

8.7 Reset

When the MUX Layer is reset it sets the rxack value, which it passes up to the Sequencing Layer, to the value
zero. (The value will be overwritten with the value of the Ack Field from first packet received from the peer, as
normal.)

When the MUX Layer is reset, it initialises the mechanism that generates Ack Packets to prevent generation of
those packets until txack changes.

Sequencing Layer

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 17 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

9 Sequencing Layer
The Sequencing Layer uses a conventional packet windowing mechanism to provide a single reliable
bidirectional flow of packets, with flow control, to and from the peer.

Flow control within the Sequencing Layer is achieved by not acknowledging packets from the peer.

9.1 Acknowledgement and Retransmission

The Sequencing Layer applies a windowed acknowledgement mechanism to the message stream in order to
obtain transfer reliability. The Layer also provides a simple flow control mechanism to allow a receiver of packets
to signal to the sender whether it is ready to receive packets.

As is normal for such systems, independent mechanisms apply to data passed to and from the peer:

Computer
B

Data Packets from A to B

Computer
A

Data Packets from B to A

 Acknowledgement and Flow Control
for Data Packets from A to B

 Acknowledgement and Flow Control
for Data Packets from B to A

Figure 9.1: Acknowledgement and Retransmission

A data packet sent from A to B provokes an acknowledgement from B to A, which A uses to determine that B has
successfully received the data packet. Also, B sends flow control information to A to signal whether A should
currently send packets to B.

The same mechanism operates for data packets sent from B to A.

BCSP uses only one packet type. This carries acknowledgement and flow control information from A to B in
packets that carry data from B to A and vice versa.

The Sequencing Layer also notes sequence acknowledgement numbers in packets received from the peer stack,
and uses this to provoke retransmission of unacknowledged packets.

Sequencing Layer

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 18 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

9.2 Sequencing Layer Context

The diagram shows the context of the Sequencing Layer:

Sequencing Layer
Reset

Packets

Packets

MUX Layer

send_ack_command rxack

Config

txack

Reliable Datagram Stream

link failed

Figure 9.2: Sequencing Layer Context

Data packets are sent into the Sequencing Layer from higher layered code. These are passed to the MUX Layer,
which sends them towards the peer.

Data packets received from the peer are passed up from the MUX Layer; the Sequencing Layer passes these up
to the higher layers of code.

The Sequencing Layer continuously passes an acknowledgement value (txack) down into the MUX Layer. This
reveals the sequence number of the last packet received from the peer by the Sequencing Layer. (The value of
txack is one more than the value of the Seq Field in the last received packet, i.e. it is the Seq Field value that it
expects to see in the next packet it receives.) The MUX Layer writes this into the Ack Field of all outbound
packets.

The Sequencing Layer may also insist that the MUX Layer forwards the current txack value to the peer via the
send_ack_command.

The MUX Layer continuously passes an acknowledgement value rxack up into the Sequencing Layer. This
carries the value of the Ack Field from the last packet of any type received by the MUX Layer. The Sequencing
Layer uses this to note which packets have been successfully received by the peer.

If the Sequencing Layer determines that the connection to the peer has failed, this is indicated to higher level
code.

The Reset control resets the Sequencing Layer’s windowing mechanism, causes the next packet to be
transmitted to the peer to carry a Seq Field with value zero and sets the Layer to expect the next data packet
from the peer to carry a Seq Field with value zero.

Sequencing Layer

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 19 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

9.3 Top Level View

This section gives a notional view of how code above the Sequencing Layer might view its services. These
function descriptions are for illustration only.

9.3.1 tx_reliable_pkt()

To send a data packet, higher layer code might call a function of the form:

bool tx_reliable_pkt(char *buf, unsigned n, unsigned protocol_id);

which attempts to send the n byte message in the buffer buf to the peer, tagged with the protocol identifier
protocol_id.

The range of n is zero to 0xfff, though the system’s configuration is likely to limit the value more severely.

The value of protocol_id can range from 1 to 15. The value zero must not be used.

The function returns TRUE if the packet has been sent on its way, or FALSE if transmission was not possible
(presumably from lack of resources). This provides transmit flow control. If the function returns FALSE, the caller
may attempt to send a different message and protocol_id with the next call.

This functional view of the interface presumes the Sequencing Layer stores a copy of the message for initial
transmission and for any required retransmission. It is recognised that implementations are unlikely to be
structured in this way.

9.3.2 rx_reliable_pkt()

For the Sequencing Layer to deliver a packet to higher level code, the Sequencing Layer might call a function of
the form:

bool rx_reliable_pkt(char *buf, unsigned n, unsigned protocol_id);

This attempts to deliver to the higher level code the n byte message at buf, tagged with protocol identifier
protocol_id. The message and identifier will match parameters passed into tx_reliable_pkt() on the
peer.

The higher level may accept or refuse the message by returning TRUE or FALSE. The Sequencing Layer uses
the returned Boolean value to choose whether to acknowledge delivery of the message to the peer, i.e., the
Sequencing Layer uses this indication internally to support its flow control.

9.3.3 link_failed()

The Sequencing Layer might indicate to higher level code that it has determined that the link to the peer has
failed with a call of the form:

void link_failed(void);

Sequencing Layer

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 20 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

9.4 Transmit State Machine

The Sequencing Layer runs a state machine for transmitting packets. This uses the following variables:

Variable Initial Value Description

txseq 0 Sequence number of next transmitted packet.

txack 0 Acknowledgement number of the next transmitted packet.

rxack (from MUX Layer) Acknowledgement number from the current received packet.

winspace winsize
The number of extra packets that can be sent to the peer before
receiving any acknowledgements, i.e. the capacity remaining in
the transmit window.

retries 0 Count of number times a message has been resent.

Table 9.1: Transmit State Machine Variables

The range of the variables txseq, txack and rxack is determined by the widths of fields Seq and Ack in the BCSP
packet format: both fields are 3 bits wide, so the variables can take values between 0 and 7. Variables in these
fields wrap on overflow and underflow.

The state machine uses the following constants, all of which are configurable items:

Constant Value Description

timeout 250 milliseconds Packet acknowledgement timeout.

winsize 4
Transmit window size (in packets). (Minimum value 1.
Maximum value is the range of the Ack Field, minus
one.)

retry_limit 20 Number of times a message is resent before declaring
the link has failed.

Table 9.2: Transmit State Machine Constants

Sequencing Layer

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 21 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

Figure 9.3 depicts the state machine to show the mechanism used to transmit packets.

rxack incremented by N
winspace += N
retries = 0
Restart timer Ttimeout

Idle

Start

Pkt avail
retries = 0

Sending

winspace == winsize
Cancel timer Ttimeout

Pkt avail AND winspace > 0
Send pkt(txseq)
++txseq
--winspace
(Re)start timer Ttimeout

Ttimeout fires
(Resend all packets, starting
 at number rxack by doing ...)
N = txseq - rxack
txseq -= N
winspace += N
++retries
Restart timer Ttimeout

retry_limit != 0 AND retries > retry_limit
indicate link failure

End

Figure 9.3: Transmit State Machine

Assuming a glut of packets to be sent to the peer, these will be sent until the transmit window fills
(winspace == 0). Then one extra packet will be sent for each packet acknowledged. Under normal
circumstances, the state machine thus keeps up to winsize unacknowledged packets in transit to the peer.

If the peer acknowledges no packets for a while the timeout will provoke a retransmission of all unacknowledged
packets, starting with the oldest, i.e., it uses a conventional “go back n” mechanism to recover from the peer not
acknowledging receipt of a packet.

The link is considered to have failed if more than retry_limit attempts are made to obtain acknowledgement of
delivery of any packet. This mechanism is only applied if the value of retry_limit is non-zero. This gives a means
of preventing the software from marking the link as failed.

Only one timer is used for detecting that the peer has not acknowledged receipt of a packet.

9.5 Receive State Machine

The Sequencing Layer runs a state machine for receiving packets. This uses the following variables:

Variable Initial Value Description

expected_rxseq 0 The Seq Field value of the next packet that will be accepted.

txack 0 Acknowledgement number of the next transmitted packet.

Table 9.3: Receive State Machine Variables

The range of the variables expected_rxseq and txack is determined by the widths of fields Seq and Ack in the
BCSP packet format: both fields are 3 bits wide, so the variables can take values between 0 and 7. Variables in

Sequencing Layer

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 22 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

these fields wrap on overflow and underflow. (The values of these two variables are always the same, so an
implementation need use only one variable.)

Idle

Start

Local delivery succeeded
txack += 1
expected_rxseq += 1

Local delivery failed

Receive pkt(rxseq)

expected_rxseq != rxseq

expected_rxseq == rxseq
Attempt to deliver packet locally

Send ack(txack)

expected_rxseq = 0

Figure 9.4: Receive State Machine

At any instant the receive state machine will only accept a packet with one particular sequence number (i.e., the
state machine runs a sliding receive window of size one).

The receive state machine spends most of its time in the state “idle”, where it waits for a packet to be received.
When a packet arrives, its sequence number (the value from the packet’s Seq Field) is compared with the
expected_rxseq value.

If this matches, the state machine attempts to deliver the packet to higher layer code. This may accept or refuse
the packet; refusal is the basis of the Sequence Layer’s internal flow control of the inbound packet stream.

If the packet is accepted then the state machine is set to seek the next sequence number on the next packet
received.

After any packet is received, the state machine sends back an acknowledgement to the peer. This will be the
value of the Seq Field plus one to indicate acceptance, or the value of the packet’s Seq Field to indicate that the
packet was not accepted.

The sending of the acknowledgement forces the value of txack to be sent to the peer, even if the local machine
has already sent an acknowledgement of that value.

Sequencing Layer

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 23 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

9.6 Reset

When the Sequencing Layer is reset it clears all state associated with sending and receiving packets, and sets
variables to their initial values.

9.7 Protocol Identifier Field

Each data packet sent into the Sequencing Layer from higher layered code is associated with a protocol
identifier.

The Sequencing Layer writes this value into the Protocol Identifier Field of all data packets its sends down to the
MUX Layer.

Similarly, the Sequencing Layer extracts the value from the Protocol Identifier Field of all packets it transfers from
the MUX Layer to the higher level code and delivers the value with the packets.

The Field’s value must not be zero; this value is used by the MUX Layer.

Datagram Queue Layer

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 24 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

10 Datagram Queue Layer
The Datagram Queue Layer provides a single unreliable bidirectional packet stream to higher level code. The
stream provides no flow control.

The Layer provides (queue) storage for a number of messages waiting to be sent to the peer.

10.1 Datagram Queue Layer Context

Figure 10.1 shows the context of the Datagram Queue Layer:

Datagram Queue LayerReset

Packets

Packets

Unreliable Datagram Stream

MUX Layer

Figure 10.1: Datagram Queue Layer

Data packets are passed into the Datagram Queue Layer from higher layered code. These are sent on to the
MUX Layer, which sends them towards the peer.

Data packets received from the peer are passed up from the MUX Layer; the Datagram Queue Layer passes
these on up to the higher layers of code.

The Reset signal initialises the Layer.

10.2 Datagram Queue Layer Functions

10.2.1 Receiving Messages

The Layer delivers packets received from the MUX Layer to higher layered code.

10.2.2 Sending Messages

The Layer accepts packets to be sent to the peer from higher layered code.

The Layer maintains a queue of such messages, which it attempts to deliver in sequence order to the MUX
Layer, for transfer to the peer. If the queue is full when a message is passed into the Layer, the oldest
message(s) in the queue may be silently discarded to make room for it.

10.2.3 Seq Field

The Datagram Queue Layer sets the Seq Field to value zero in each packet passed to the MUX Layer.

Datagram Queue Layer

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 25 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

10.2.4 Protocol Identifier Field

Each data packet sent into the Datagram Queue from higher layered code is associated with a protocol identifier.
The Datagram Queue Layer writes this value into the Protocol Identifier Field of all data packets its sends down
to the MUX Layer.

Similarly, the Datagram Queue Layer extracts the value from the Protocol Identifier Field from all packets it
receives from the MUX Layer, and delivers this with data packets it sends to the higher code layers.

Higher layer code may use protocol identifier values in the range 1 to 15; the value zero must not be used.

10.2.5 Reset

When the Datagram Queue Layer is reset it discards any messages waiting to be sent to the MUX Layer.

10.3 Top Level View

This section gives a notional view of how code above the Datagram Queue Layer might view its services. These
function descriptions are for illustration only.

10.3.1 tx_unreliable_pkt()

To send a data packet, higher layer code might call a function of the form:

void tx_unreliable_pkt(char *buf, unsigned n, unsigned protocol_id);

This attempts to send the n byte message in the buffer buf to the peer, tagged with protocol identifier
protocol_id.

The range of n is zero to 0xfff, though the system’s configuration is likely to limit the value more severely.

The value of protocol_id can range from 1 to 15. The value zero must not be used.

This view presumes the Datagram Queue Layer locally stores a copy of the message for transmission. It is
recognised that implementations are unlikely to be structured in this way.

10.3.2 rx_unreliable_pkt()

For the Datagram Queue Layer to deliver a packet to higher level code, the Layer might call a function of the
form:

void rx_unreliable_pkt(char *buf, unsigned n, unsigned protocol_id);

This delivers to the higher level code the n byte message at buf, tagged with protocol identifier
protocol_id. The message and identifier will match parameters passed into tx_unreliable_pkt() on
the peer.

The higher level code may accept or discard the message; the Datagram Queue Layer is not concerned with this
action.

Configurable Items

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 26 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

11 Configurable Items
Some elements of the BCSP are programmable. This section gathers these items together.

It is expected that the BCSP on both ends of a connection will be statically configured to have the same settings.

Variable Default value Layer Description

baud_rate 38.4kbaud UART Driver Baud rate of the UART link.

parity enabled UART Driver Parity enabled on UART.

parity_type even UART Driver Even or odd parity used on UART.

n_stop 1 UART Driver Number of stop bits used on UART.

crc_present FALSE Packet Integrity Is a CRC Field added to packets?

timeout 250ms Sequencing Delay before resending an unacknowledged
packet.

winsize 4 Sequencing Size of the transmit window (counted in
number of packets).

retry_limit 20 Sequencing Number of times a message is resent before
declaring the link has failed.

hardware_flow
_control disabled UART Driver Hardware flow control on UART link.

Table 11.1: Configurable Items

Comments

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 27 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

12 Comments
The following comments are on the BCSP design presented in this document.

BCSP has been written to work with a highly reliable UART link. The CRC Field will not normally be present.

The stack does not constrain the size of packets transmitted, other than by the range of the Payload Length
Field. It is probable that higher layers of code will constrain packets’ sizes further, possibly with different
limits for each Protocol Identifier Field value, and possibly with different limits in the two directions of the link.

The Sequencing Layer’s flow control mechanism is intended to be used as a last line of defence of the
receiving machines’ resources. It is expected that higher level protocols will apply their own flow control
mechanisms, possibly with different window sizes, and possibly with adaptive window sizing.

The use of fixed values for “timeout” in the Sequencing Layer may give uneven timing recovery behaviour
under differing traffic loads. It may be appropriate to make the timing values adapt to link speed and
maximum packet sizes, but there is unlikely to be a simple solution.

By convention each BCSP packet carries only a single higher-layer packet.

BCSP is defined to use a 3-wire UART. However, the design was originally intended for a system with a low
baud rate: 38.4 kbaud. It is normal to use a 5-wire UART connection (with two hardware flow control signals),
particularly at higher baud rates.

Document References

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 28 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

Document References
Document ID Document Title CSR Reference

[BT1.2] Specification of the Bluetooth System, Version 1.2, Core Package,
5 November 2003

n/a

Further References

Document Title CSR Reference

BCSP Channel Allocation bcore-sp-007P
BCSP Link Establishment Protocol bcore-sp-008P

Acronyms and Definitions

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 29 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

Acronyms and Definitions
BCSP BlueCore Serial Link Protocol, described in this document

BlueCore™ Group term for CSR’s range of Bluetooth chips

Bluetooth® Set of technologies providing audio and data transfer over short-range radio connections

CRC Cyclic Redundancy Check

CSR Cambridge Silicon Radio

HCI Host Controller Interface; part of Bluetooth

MUX Multiplexor

SLIP Serial Link Internet Protocol

UART Universal Asynchronous Receiver Transmitter

Record of Changes

bcore-sp-012Pb © Cambridge Silicon Radio Limited 2001-2004
This material is subject to CSR’s non-disclosure agreement. Page 30 of 30

_
äì
É
`
ç
êÉ

™ Serial Protocol

Record of Changes
Date Revision Comment

8 Jan 03 a
Document originally published as CSR reference bc01-an-004 (revisions a
through b; versions through HCIStack1.1v15.x builds).
New revision control number allocated to align with HCIStack1.1v16.x builds.

15 Jul 04 b Updated formatting, corrected typos.

_äìÉ`çêÉ» Serial Protocol (BCSP)

bcore-sp-012Pb

July 2004

Bluetooth® and the Bluetooth logos are trademarks owned by Bluetooth SIG Inc, USA and are licensed to CSR.

_äìÉ`çêÉ™ is a trademark of CSR.

All other product, service and company names are trademarks, registered trademarks or service marks of their
respective owners.

CSR’s products are not authorised for use in life-support or safety-critical applications.

	Contents
	Introduction
	Context
	Overview
	Packet Structure
	Flags Field
	The Protocol Identifier Field
	Payload Length Field
	Checksum Field
	Payload
	CRC Field

	UART Driver Layer
	SLIP Layer
	Transmitting Packets
	Receiving Packets

	Packet Integrity Layer
	Transmitting Packets
	Receiving Packets

	MUX Layer
	MUX Layer Context
	Receiving Packets
	Transmitting Packets
	Acknowledging Packets
	Ack Packets
	Choke
	Reset

	Sequencing Layer
	Acknowledgement and Retransmission
	Sequencing Layer Context
	Top Level View
	Transmit State Machine
	Receive State Machine
	Reset
	Protocol Identifier Field

	Datagram Queue Layer
	Datagram Queue Layer Context
	Datagram Queue Layer Functions
	Top Level View

	Configurable Items
	Comments
	Document References
	Acronyms and Definitions
	Record of Changes

