
Creating user interface on remote devices using Bluetooth 1 of 33

Creating User Interfaces On Remote Devices

Using Bluetooth

Richard Hoptroff

Published (in edited form) in
Dr Dobb’s Journal,Summer 2004

Creating user interface on remote devices using Bluetooth 2 of 33

Creating User Interfaces On Remote Devices

Using Bluetooth

The FlexiPanel Bluetooth Protocol is a remote user interface service for

computers, electrical appliances and other machinery. A FlexiPanel server resides

on the application and holds a user interface database that reflects the appliance’s

human-machine interface needs. A FlexiPanel client can connect at any time,

read the database and displays the user interface. A user may then control the

application from the client device. Using Bluetooth, the client can be up to 330

feet away, without need for line-of-sight communication. FlexiPanel clients have

been implemented on a range of PDAs and cellphones and are freely available.

Like many higher-level protocols such as OBEX file exchange, FlexiPanel sits on

top of the RFCOMM serial port emulation layer of the Bluetooth protocol stack

(Figure 1). It is not part of the “official” Bluetooth standard. However, the

standard is relatively open in that anyone is free to create FlexiPanel clients, and

FlexiPanel server licenses are royalty-free.

FlexiPanel was first developed in 2002 as an IrDA infrared protocol for engine

tuning in hobbyist racing cars. The engine was controlled by a microcontroller

which needed to be fine-tuned with a number of preset values. Incorporating an

onboard user interface (such as a LCD display and a keyboard) to enter the tuning

Creating user interface on remote devices using Bluetooth 3 of 33

parameters was impractical: it would be too expensive, heavy, bulky and fragile.

At the time, personal digital assistants (PDAs) with infrared capability were

becoming become popular, so it was logical to use one for the user interface

instead. The FlexiPanel Protocol was thus conceived as a way to let embedded

systems create user interfaces on any suitable device that a user might have to

hand.

The protocol’s limitations, and its wider potential, soon became apparent. IrDA

might be wireless, but in practice, the communicating devices must be held steady

within a one foot (30cm) range of each other and within line of sight. Emerging

radio technologies such as Wi-Fi, Bluetooth and ZigBee (a low power protocol)

offered 330 foot (100m) range. In addition, they needed no exterior real estate, a

tremendous product design advantage in terms of cost, æsthetics and reliability in

a hostile environment.

We decided to migrate the technology to Bluetooth, on the grounds that it was

widely implemented on remote devices and it suited the ad hoc nature of the

connection between appliances and remote handhelds. In addition, Intel had just

committed to incorporating Bluetooth into its Centrino 2 chipset. Wi-Fi and

ZigBee remain viable transport layers, though at present they are not implemented

widely enough on handheld devices.

Creating user interface on remote devices using Bluetooth 4 of 33

At the same time, it became clear that the FlexiPanel Protocol’s potential went far

beyond engine tuning. It provides a Human-Machine Interface for smart dust

(intelligent devices comprising a microcontroller and a few external components),

thus far extending their range of application. It offers a user-interface to

“headless” (i.e. no screen or keyboard) single board computers. This promises

cost reductions for point-of-sale systems, computer operated machine tools and so

on, while freeing the operator from the control panel location. In traditional

Windows applications, it offers the possibility of a supplementary, roaming user

interface. Though rarely vital to a Windows application, the roaming capability is

a liberating addition to any application that might have anything to say to the user

while away from his desk. (How’s my stock price? Do I have new mail? Is it

going to rain?)

As with all emerging technologies, early Bluetooth devices suffered from clunky

operation and compatibility problems. This was particularly true of service

discovery, i.e. finding out what Bluetooth devices are in range and the services

they provide. Many 2002-era devices were limited to pre-connection over a

virtual serial port, rather than providing service discovery APIs. In the last year,

Microsoft’s support for Bluetooth in Windows Sockets has made service

discovery a one-click process that even Amazon boss Jeff Bezos would be proud

of.

Creating user interface on remote devices using Bluetooth 5 of 33

A User Interface Service

From the application’s perspective, FlexiPanel is a graphical user interface service

just like any other. It can create controls and subsequently change the properties

of those controls. If a user modifies a control, the application is sent a notification

message. The application doesn’t need to know that the user interface is

displayed remotely. Conversely, just like a web browser, the FlexiPanel client is

generic and does not need to know anything about the server it is providing a user

interface for. (Client software is generally free, too.)

The types of control that may be created are listed in Table 1. Under the hood,

the FlexiPanel Protocol is based on just twelve basic types of message passed

between client and server (Table 2).

The main differences between the FlexiPanel Protocol and regular user interface

services are:

• The nature of the client’s user interface may be unknown. The controls

displayed will always be logically correct, but appearances may vary

between different client devices. Compare the same slideshow

controller user interface on a PDA (Figure 2) and a cellphone (Figure

3). If the client device can be anticipated in advance, certain

additional preferences can be requested, such as a particular control

Creating user interface on remote devices using Bluetooth 6 of 33

layout (Figure 2) or keyboard accelerators (Figure 3).

• The connection might be broken at any time, for example if the client’s

batteries fail or the client goes out of range. The appliance must enter a

fail-safe state if connection is lost at a critical moment.

• FlexiPanel servers might be very small, low cost devices, such as

Parallax Inc’s FlexiPanel peripheral for BASIC Stamps, based on a

low-end 8-bit microcontroller (Figure 4). Consequently system

requirements on the server side must be extremely lean and

communication very succinct (unlike XML!). The remote client device

takes over as many responsibilities as possible. For example, a server

is not required to buffer any I/O, manipulate any floating point numbers

or make any conversions between single-byte characters and Unicode.

Bluetooth is a multi-point communication protocol. It is possible for a FlexiPanel

server to manage user interfaces on up to seven remote devices at once. This is

only implemented on high-end systems such as Windows servers but it is useful

for applications such as restaurant table service, where several wait-staff can

connect to the same server at once. A quick-disconnect mode is also available,

where the server closes the connection immediately after connection has been

established and control panel information sent. This allows a server to send user

Creating user interface on remote devices using Bluetooth 7 of 33

interfaces to a large number of clients connecting asynchronously, although the

clients have no chance to send any messages back to the server.

The FlexiPanel protocol plays no role in authentication, encryption, error

detection or power management. These are expected to be managed by other

layers of the Bluetooth protocol.

Embedded Systems Example

The following example uses the FlexiPanel server C library to create a remote

control panel for a data-logging embedded system. The library is intended to

work with the lowest-level embedded controllers possible. Therefore no

assumptions are made within the library about serial port buffering or multi-

threading support.

The data logger records the value of a proximity sensor. It has no user interface

of its own and relies on FlexiPanel to communicate with the outside world. The

distance measured is displayed as a digital readout on a number control and as a

historical log in a matrix control.

The data logger (Figure 5) is based on a 80186-based FlashCore embedded

controller from Tern Inc. A GP2D12 analog proximity sensor (SHARP

Electronics) is connected to an A/D input and serves as the data source. A

Creating user interface on remote devices using Bluetooth 8 of 33

BlueWAVE Bluetooth serial module from Wireless Futures Ltd is connected to a

serial port to enable connection to FlexiPanel remote clients.

The data logger’s job is simple and few lines of code are required to implement it

(Listing 1). All calls to the FlexiPanel server library begin with the prefix FBVS.

Like most FlexiPanel applications written for embedded controllers, it consists of

fixed sections: initialization, user interface definition, main program loop, client

message processing and an ungraceful disconnect handler.

Initialization. The Bluetooth stack and FlexiPanel server are initialized. This

includes giving the user interface a name. This name appears in a client’s user

interface in the list of servers available for connection.

User Interface Definition. Sandwiched between calls to FBVSStartControlList

and FBVSPostControls, each control is defined by a call to an FBVSAdd…

function. Each time FBVSPostControls is called, the previous user interface

definition is replaced; the user interface can thus be changed at any time.

FBVSSetOption permits an application to request how a control is depicted on a

specific remote device. In this listing, a point-plot chart is specified if the client is

a Pocket PC or a Windows computer.

Main Program Loop. In the main program loop, the FlexiPanel library is polled

for messages from client devices. Every second, the sensor is sampled and the

Creating user interface on remote devices using Bluetooth 9 of 33

sampled value written to both the digital readout and historical log controls. In

addition, every few seconds a ping test is made to check whether a client device is

still in range. If a client was connected but contact was unexpectedly lost, control

is passed to the ungraceful disconnect handler.

Client Message Processing. When client-related events occur, the FlexiPanel

server library posts notification messages to the application (Table 3). The data

logger uses the FBVSGetNotifyCode function to collect these messages. Most

notifications are informational and useful only for providing a local indication of

the connection status. The four messages which the developer should always

consider are:

• FBVSN_ClientConnected. A remote device connected to the server. In

this example, the server clears the matrix control of old data.

• FBVSN_ClientData. The remote device modified a control, e.g. the user

pressed a button. In this particular application, neither of the controls is

modifiable by the client and so nothing need be done. Usually, however,

the application would be expected to respond to any user interaction at this

point.

• FBVSN_ClientDisconnected. A remote device disconnected from the

server. In this example, the message is ignored.

Creating user interface on remote devices using Bluetooth 10 of 33

.

• FBVSN_Abandon. An error occurred. This message has only ever been

witnessed during application device development due to a readily apparent

programming error. In this example, as a precaution, control is passed to

the ungraceful disconnect handler if this message is received.

Ungraceful Disconnect Handler. The application must provide for the possibility

that the connection is lost unexpectedly. This might occur because the remote

device has gone out of range or its batteries are worn out. In this example, no

action is necessary. In applications controlling machinery, an emergency stop

procedure should be implemented.

Windows .NET Example

The OrderMaster console application uses the FlexiPanel .NET library to create a

remote control panel for a restaurant order-taking system. A Windows server

computer with a printer is located near the kitchen and prints out the orders for the

kitchen and the checks for the customers. It needs to be Bluetooth equipped, and

so will require a USB Bluetooth adapter (ideally a class 1 adapter with a 330 foot

range).

The wait-staff carry remote devices for taking orders. The application is targeted

specifically for Pocket PC clients. The user interface has been designed using a

fat thumbs approach, where the controls are large enough that no stylus is required.

Creating user interface on remote devices using Bluetooth 11 of 33

In keeping with the FlexiPanel philosophy, however, any FlexiPanel client would

be able to connect. A waiter who lost his Pocket PC could always use his

cellphone to take the order. Indeed, it would be possible for customers to place

orders and print out their checks themselves if they had an appropriate device.

The OrderMaster main screen is shown in Figure 6. At the top is a text control

for displaying a summary of the current order. Below it are section controls

which drill down to specific sections of the menu. At the bottom is a list control

to select the table being served and buttons to order the check, clear the order and

confirm the order.

The Appetizers sub-screen is shown in Figure 7. At the top is the section control

which returns to the main screen. Below it are number controls for setting order

quantities for individual items on the menu.

The code required to implement OrderMaster is shown in Listing 2. Since much

of the code is repetitive and would in practice be replaced with loops working

from a menu database, code for sub-screens other than the appetizers has not been

implemented.

The FlexiPanel .NET namespace is called RCapiM. It consists of static function

calls for management of the user interface service and classes for each of the

twelve control types. Like the data logger, this application consists of the same

Creating user interface on remote devices using Bluetooth 12 of 33

five sections: initialization, user interface definition, main program loop, client

message processing and ungraceful disconnect handler.

Initialization. The _tmain() entry point in midway through Listing 2 begins by

initializing the FlexiPanel library, setting up the Bluetooth port, giving the user

interface a name and setting up a timer to ping the remote device regularly. Since

a Pocket PC client is anticipated, several options are requested specifically for it.

It should hide its usual navigation buttons and it should regularly ping the server

(the computer, that is, not the waiter!)

User Interface Definition. The user interface is defined by creating controls and

attaching them to an ArrayList called RemoteForm. The RemoteForm is then sent

to the FlexiPanel::PostControls static function in order to display the control

panel. If the application needs to respond when the user modifies a control, a

delegate is added to the OnClientModify event for that control. Since the

delegate will be called from a different thread to the main thread, the delegate

contains static pointers to controls it needs to access. A delegate is also added to

the static OnClientNotify event so that the order can be cleared if a Client

Disconnected notification is received (refer to Table 3).

Main Program Loop. In the main program loop, nothing happens except for

waiting for the instruction to quit. All further activities are in response to events.

Creating user interface on remote devices using Bluetooth 13 of 33

Client Message Processing. The following delegates respond to events and are

managed within the EvtHandler struct.

• OnClientNotify. If the client notifies it is disconnecting, the order is

cleared.

• OnButCheck. If the Check button is pressed, the check is printed.

• OnButClear. If the Clear button is pressed, all order quantities are set to

zero.

• OnButConfirm. If the Confirm button is pressed, the order is printed for

the kitchen and then all order quantities are set to zero.

• OnCtlModify. If the Table list box is modified or one of the menu section

controls is opened or closed, the status text box is updated.

• OnPingTimer. The client is pinged. If contact is lost, an Ungraceful

Disconnect Handler procedure is followed.

Ungraceful Disconnect Handler. The application clears the order and waits for

the client to reconnect.

Creating user interface on remote devices using Bluetooth 14 of 33

Future Developments

Born almost by accident while trying to optimize engine performance, the

FlexiPanel Protocol has evolved into a patented user interface service for a range

of devices from tiny microcontrollers to .NET applications. Future development

plans include:

• Embedding the protocol directly inside Bluetooth chipsets. This will

lower the cost sufficiently that even basic electrical appliances such as

light switches can create remote user interfaces.

• Provision of a local Bluetooth to HTTP bridge so that a web browser

anywhere in the world might connect to a FlexiPanel server.

• Provision of a local Bluetooth to telecoms bridge so that a FlexiPanel

server can accessed by anyone dialing in using a touch-tone phone.

Creating user interface on remote devices using Bluetooth 15 of 33

Figures and Tables

Figure 1 – FlexiPanel in the Bluetooth Protocol Stack

(Available as a Microsoft Word Drawing)

Baseband
Link Manager, Link Controller & Radio

L2CAP
Logical Link Control

A
udio

RFCOMM
Serial Port Emulation

SD
P S

ervice D
iscovery

FlexiP
anel

R
em

ote U
I

O
B

E
X

File E

xchange

Application

Creating user interface on remote devices using Bluetooth 16 of 33

Figure 2 – Powerpoint presentation controller user interface on a Pocket PC

(Available as DDJPPCPmg.jpg 1620 x 2058 pixels)

Creating user interface on remote devices using Bluetooth 17 of 33

Figure 3 – Powerpoint presentation controller user interface on a Smartphone

(Available as DDJPPCPmg.jpg 1704 x 2272 pixels)

Creating user interface on remote devices using Bluetooth 18 of 33

Figure 4 – FlexiPanel server implemented on an 8-bit microcontroller.

The Bluetooth radio is mounted on the reverse side of the board.

(Available as DDJFxPPIC.jpg 1363 x 1509 pixels)

Creating user interface on remote devices using Bluetooth 19 of 33

Figure 5 – Data logging embedded system using the FlexiPanel protocol to create

user interfaces on Pocket PCs.

(Available unlabeled as DDJDataLog.jpg 2579 x 1651 pixels.
Composite photo; one PDA in reality

pre-composite originals also available)

Sensor

Embedded
Controller

Bluetooth
module

Creating user interface on remote devices using Bluetooth 20 of 33

Figure 6 – Main order screen in OrderMaster application.

(Available as DDJOrdMst1.jpg, 1704 x 2272 pixels)

Creating user interface on remote devices using Bluetooth 21 of 33

Figure 7 – Appetizers sub-screen in OrderMaster application.

(Available as DDJOrdMst2.jpg, 1704 x 2272 pixels)

Creating user interface on remote devices using Bluetooth 22 of 33

Logical control Example depiction on a

remote client
Function / value

Button Button Single-press event
Latch Check box

Radio button
Binary value

Text Static text
Edit text

Character string

Number Progress bar
Slider

Integer or fixed-point value

Matrix Table
Column chart
Line chart

2-D array of numeric values

Date Time Date time picker Seconds to years plus day of week
List List box 1-of-n selection
Section Popup menu Arranges controls in a hierarchy
Password Client-specific dialogs Controls access to user interface
Message Message box Alerts user
Blob* Client-specific dialogs Exchanges binary data
Files* Client-specific dialogs Exchanges files

* Optional. A client device is not required it implement this control.

Table 1 – Controls provided by the FlexiPanel protocol.

(Footnote to be included with table.)

Creating user interface on remote devices using Bluetooth 23 of 33

Message Originator

(Client / Server)
Purpose

Greetings Either Establishes a connection
Goodbye Either Closes a connection
New Control Panel Server Sends control descriptions to client
Control Modified Either Modifies a control’s value
Ping Either Presence check request
Ping Reply Either Presence check confirmation
Ack Either Acknowledge receipt of message
New Server Server Server initializing
Props Update Server Modifies a control’s properties
Files Server Downloads requested files
Profile Request Client Requests device-specific layout advice
Profile Reply Server Downloads device-specific layout advice

Table 2 – FlexiPanel Client-Server message types.

Creating user interface on remote devices using Bluetooth 24 of 33

Notification Meaning
No Notify No notable events have happened
Client Connected A client connected to the server
Client Data The client modified a control
Client Disconnected The client disconnected from the server
Got Pinged Client pinged server and server pinged back
Got Ping Reply Server pinged client and client pinged server back
Got Ack Client acknowledged receipt of message
Got Profile Request Client asked how to lay out controls and server replied

Table 3 – Notification messages that a FlexiPanel server

can send to an application.

Creating user interface on remote devices using Bluetooth 25 of 33

Listing 1 – Embedded data logger application

// Bluetooth module is connected to serial port SER1
extern COM ser1_com;
#define BTH_BAUD 12 // 115,200 baud for SER1
#define BTH_INBUFF 1024 // SER1 Input buffer size
#define BTH_OUTBUFF 1024 // SER1 Output buffer size
unsigned char ser1_in_buf[BTH_INBUFF]; // SER1 Input buffer
unsigned char ser1_out_buf[BTH_OUTBUFF]; // SER1 Output buffer

// UI constants
#define CID_ATOD 1
#define CID_CHART_TY 2
#define NUM_CTRL 2
#define NUM_OPTION 2

// function prototypes
void ProcessFlexiPanelMessages(void);
void HaltProcesses(void);

void main(void)
{
 int16 loopcount;

 // initialize serial port (calls serial I/O library)
 s1_init(BTH_BAUD, ser1_in_buf, BTH_INBUFF,
 ser1_out_buf, BTH_OUTBUFF, &ser1_com);

 // initialize FlexiPanel library and give the UI a name
 FBVSInit(NULL, NULL, 1, &ser1_com, NUM_OPTION);
 FBVSSetDevNameAndCharSet("Tern Demo");

 // initiate control panel description
 FBVSStartControlList(NUM_CTRL);

 // numeric display of distance
 FBVSAddNumber(CID_ATOD, CTL_NUM_FIXEDPOINT, "Range", 0, 0, 0,
 2, -2, "%% m", NULL);

 // graphical display of distance log
 FBVSAddMatrix(CID_CHART_TY, CTL_MTX_DATA_TY | CTL_MTX_Y_FIXEDPOINT |
 CTL_MTX_Y_2BYTE, "Data Log", 30, 0, NULL, 1, NULL, "Range",
 "Time", "%% m", "%HH%:%mm%:%ss%", 2, -2, 0, 0, NULL);

 // suggest how chart might be displayed
 FBVSSetOption(PPC_DEV_ID, CID_CHART_TY, PPC_ATT_STYLE,
 PPC_CST_MATRIX_POINTS);
 FBVSSetOption(WIN_DEV_ID, CID_CHART_TY, WIN_ATT_STYLE,
 WIN_CST_MATRIX_POINTS);

 // complete control panel description
 FBVSPostControls();

 // start control panel service
 FBVSConnect();

 // main program loop
 loopcount = 0;
 while (1)
 {
 // ensure each loop takes around 10ms
 delay_ms(10);

 // discover whether client has sent any messages
 ProcessFlexiPanelMessages();

Creating user interface on remote devices using Bluetooth 26 of 33

 // every 3 seconds, ping
 loopcount ++;
 if (loopcount == 300)
 {
 loopcount = 0;

 // ping
 if (FBVSIsClientConnected() && FBVSIsPingSupported() && FBVSPing())
 {
 // lost contact with remote device; continue cautiously
 HaltProcesses();
 }
 }

 // every second, log proximity sensor
 if (loopcount%100==0)
 {
 int16 range;
 DateTimeU dt;

 // read A/D (calls A/D library)
 range = fb_ad16(0xc6);

 // update numeric display
 FBVSSetNumberControlData(CID_ATOD, range);

 // update chart
 SetToCurrentTime(&dt);
 FBVSAddMatrixControlData(CID_CHART_TY, &range, &dt);

 // send updated time to client
 FBVSUpdateControlsOnClient();
 }
 }
}

void ProcessFlexiPanelMessages(void)
{
 // check for message
 switch (FBVSGetNotifyCode())
 {
 // nothing has happened
 case FBVSN_NoNotify:
 break;

 // Client has connected; clear the contents of the matrix control
 case FBVSN_ClientConnected:
 FBVSSetMatrixControlData(CID_CHART_TY, 0, NULL, NULL);
 break;

 // Client has modified a control. in this app, no controls are
 // modifiable by the client, so nothing to do
 case FBVSN_ClientData:
 break;

 // Client has disconnected
 case FBVSN_ClientDisconnected:
 break;

 // following messages are informational only and will be ignored
 case FBVSN_GotProfileRequest:
 case FBVSN_GotPinged:
 case FBVSN_GotPingReply:
 case FBVSN_GotAck:
 case FBVSN_IncompatibleVersion:
 break;

 case FBVSN_Abandon:
 // Error; generally only gets here during development

Creating user interface on remote devices using Bluetooth 27 of 33

 HaltProcesses();
 Reset();
 break;

 }
}

void HaltProcesses(void)
{
 // In this function, anything controlled by the embedded
 // controller is put in a fail-safe state.

 // nothing being controlled in this app, so nothing to do
}

Creating user interface on remote devices using Bluetooth 28 of 33

Listing 2 – OrderMaster application

// OrderMaster.cpp

#include "stdafx.h"

#using <mscorlib.dll>
#using <RCapiM.dll>
#include <tchar.h>
#include <math.h>
#include <stdlib.h>
#using <System.Drawing.dll>

// FlexiPanel constants
#include "HopCodes.h"
#include "PocketPCProfiles.h"

using namespace System;
using namespace System::Drawing;
using namespace System::Collections;
using namespace System::Threading;
using namespace RCapiM;

public __gc struct EvtHandler
{
public:
 // pointers to controls that event handler needs access to
 // order quantities other than appetizers omitted to save listing space
 static RemoteNumber* NumMixedSalad;
 static RemoteNumber* NumCaesarSalad;
 static RemoteNumber* NumChowder;
 static RemoteNumber* NumSeafood;
 static RemoteNumber* NumOysters;
 static RemoteNumber* NumSatay;

 static RemoteList* ListTable;
 static RemoteText* TextStatus;

 // set all order quantities to zero
 static void ClearOrder(void)
 {
 NumMixedSalad->SetVal(0, false);
 NumCaesarSalad->SetVal(0, false);
 NumChowder->SetVal(0, false);
 NumSeafood->SetVal(0, false);
 NumOysters->SetVal(0, false);
 NumSatay->SetVal(0, true);
 OnCtlModify(NULL);
 }

 // print out order for cook
 static void PrintOrder()
 {
 // should print to printer rather than console...
 Console::WriteLine(S"Order table {0}", __box(ListTable->GetSel()+1));
 if (NumMixedSalad->GetVal())
 Console::WriteLine(S"{0} Mixed Salad", __box(NumMixedSalad->GetVal()));
 if (NumCaesarSalad->GetVal())
 Console::WriteLine(S"{0} Caesar Salad", __box(NumCaesarSalad->GetVal()));
 if (NumChowder->GetVal())
 Console::WriteLine(S"{0} Clam Chowder", __box(NumChowder->GetVal()));
 if (NumSeafood->GetVal())
 Console::WriteLine(S"{0} Seafood Salad", __box(NumSeafood->GetVal()));
 if (NumOysters->GetVal())
 Console::WriteLine(S"{0} Oysters", __box(NumOysters->GetVal()));
 if (NumSatay->GetVal())
 Console::WriteLine(S"{0} Chicken Salad", __box(NumSatay->GetVal()));
 }

Creating user interface on remote devices using Bluetooth 29 of 33

 // print check for customer - similar to PrintOrder()
 static void PrintCheck()
 {
 // ...check would be printed here...
 }

 // something happend at the client
 static void OnClientNotify(NotifyCode iNotifyCode, int iChannel)
 {
 // if client disconnected, set all order quantities to zero
 if (iNotifyCode==ClientDisconnected)
 {
 ClearOrder();
 }
 };

 // Check button pressed
 static void OnButCheck(RemoteControl* rc)
 {
 PrintCheck();
 };

 // Clear button pressed
 static void OnButClear(RemoteControl* rc)
 {
 ClearOrder();
 };

 // Confirm button pressed
 static void OnButConfirm(RemoteControl* rc)
 {
 PrintOrder();
 ClearOrder();
 };

 // a control was modified so update status text
 static void OnCtlModify(RemoteControl* rc)
 {
 // calculate number of appetizers ordered
 int numAppetizer = NumMixedSalad->GetVal() + NumCaesarSalad->GetVal() +
 NumChowder->GetVal() + NumSeafood->GetVal() + NumOysters->GetVal() +
 NumSatay->GetVal();

 // update status text
 String* NewText = new String(S"");
 NewText = String::Format(
 S"Table {0}: {1} Appetizers, 4 Entrees, 0 Desserts, 6 Drinks",
 __box(ListTable->GetSel()+1), __box(numAppetizer));
 TextStatus->SetText(NewText, true);
 };

 // implement ping event
 static Timer* pingTimer;
 static void OnPingTimer(Object* stateInfo)
 {
 // ping client
 try
 {
 FlexiPanel::Ping(0);
 }
 catch (FxPPingFailException* e)
 {
 // ping failure, clear order
 // this is the "Ungraceful Disconnect Handler"
 ClearOrder();
 }
 };
};

Creating user interface on remote devices using Bluetooth 30 of 33

// This is the entry point for this application
int _tmain(void)
{
 try
 {
 // Initialize FlexiPanel
 FlexiPanel::Init(NULL, NULL);

 // Set up device
 int chan[1];
 chan[0] = 4; // Bluetooth port is COM4: on this computer
 FlexiPanel::SetChannels(chan, 1);
 FlexiPanel::SetDevName(S"OrderMaster");

 // set timer to ping client every five seconds
 TimerCallback* timerDelegate = new TimerCallback(0, &EvtHandler::OnPingTimer);
 EvtHandler::pingTimer = new Timer(timerDelegate, NULL, 5000, 5000);

 // client is pocket pc expected to be a Pocket PC.
 // suggest pinging every 5 seconds
 FlexiPanel::SetOption(PPC_DEV_ID, PPC_SETTING, PPC_PING_SECS, 5);

 // remove nav controls at bottom of screen
 FlexiPanel::SetOption(PPC_DEV_ID, PPC_NAV_CLOSE, PPC_ATT_XPOS, -100);
 FlexiPanel::SetOption(PPC_DEV_ID, PPC_NAV_FIRST, PPC_ATT_XPOS, -100);
 FlexiPanel::SetOption(PPC_DEV_ID, PPC_NAV_NEXT, PPC_ATT_XPOS, -100);
 FlexiPanel::SetOption(PPC_DEV_ID, PPC_NAV_PREV, PPC_ATT_XPOS, -100);
 FlexiPanel::SetOption(PPC_DEV_ID, PPC_NAV_LAST, PPC_ATT_XPOS, -100);

 // Create remote form
 ArrayList* RemoteForm = new ArrayList();

 // create status text control and add to remote form
 EvtHandler::TextStatus = new RemoteText(0, 0, S"Status", S"Initializing...",
 128, NULL);
 RemoteForm->Add(EvtHandler::TextStatus);

 // since remote device is probably a Pocket PC, specify preferred layout.
 // This should be implemented for all controls; only shown for this control
 // in order to save listing space
 FlexiPanel::SetOption(PPC_DEV_ID, EvtHandler::TextStatus->GetID(),
 PPC_ATT_XPOS, 2);
 FlexiPanel::SetOption(PPC_DEV_ID, EvtHandler::TextStatus->GetID(),
 PPC_ATT_YPOS, 2);
 FlexiPanel::SetOption(PPC_DEV_ID, EvtHandler::TextStatus->GetID(),
 PPC_ATT_XSIZE, 237);
 FlexiPanel::SetOption(PPC_DEV_ID, EvtHandler::TextStatus->GetID(),
 PPC_ATT_YSIZE, 40);
 FlexiPanel::SetOption(PPC_DEV_ID, EvtHandler::TextStatus->GetID(),
 PPC_ATT_PAGE, 0);
 FlexiPanel::SetOption(PPC_DEV_ID, EvtHandler::TextStatus->GetID(),
 PPC_ATT_FONTSIZE, 19);

 // create appetizer group
 RemoteSection* SecAppetizers = new RemoteSection(0, CTL_SCT_AUTOCLOSE,
 S"Appetizers", false, NULL);
 RemoteForm->Add(SecAppetizers);
 SecAppetizers->OnClientModify +=
 new ClientModify(0,&EvtHandler::OnCtlModify);

 // Mixed Salad number control
 EvtHandler::NumMixedSalad = new RemoteNumber(0, CTL_NUM_MODIFIABLE,
 S"Mixed Salad", 0, 0, 0, 0, 0, S"%% Mixed Sld", NULL);
 RemoteForm->Add(EvtHandler::NumMixedSalad);

 // Caesar Salad number control
 EvtHandler::NumCaesarSalad = new RemoteNumber(0, CTL_NUM_MODIFIABLE,
 S"Caesar Salad", 0, 0, 0, 0, 0, S"%% Caesar Sld", NULL);
 RemoteForm->Add(EvtHandler::NumCaesarSalad);

Creating user interface on remote devices using Bluetooth 31 of 33

 // Clam Chowder number control
 EvtHandler::NumChowder = new RemoteNumber(0, CTL_NUM_MODIFIABLE, S"Chowder",
 0, 0, 0, 0, 0, S"%% Chowder", NULL);
 RemoteForm->Add(EvtHandler::NumChowder);

 // Seafood Salad number control
 EvtHandler::NumSeafood = new RemoteNumber(0, CTL_NUM_MODIFIABLE,
 S"Seafood Salad", 0, 0, 0, 0, 0, S"%% Seafood Sld", NULL);
 RemoteForm->Add(EvtHandler::NumSeafood);

 // Mixed Salad number control
 EvtHandler::NumOysters = new RemoteNumber(0, CTL_NUM_MODIFIABLE, S"Oysters",
 0, 0, 0, 0, 0, S"%% Oysters", NULL);
 RemoteForm->Add(EvtHandler::NumOysters);

 // Chicken Satay number control
 EvtHandler::NumSatay = new RemoteNumber(0, CTL_NUM_MODIFIABLE, S"Mixed Sal",
 0, 0, 0, 0, 0, S"%% Chkn Satay", NULL);
 RemoteForm->Add(EvtHandler::NumSatay);

 RemoteSectionEnd* SecEndAppetizers = new RemoteSectionEnd();
 RemoteForm->Add(SecEndAppetizers);

 // create Meat dishes group - as appetizers, code omitted to save space;

 // create Fish dishes group - as appetizers, code omitted to save space;

 // create Veggie group - as appetizers, code omitted to save space;

 // create side order group - as appetizers, code omitted to save space;

 // create drinks group - as appetizers, code omitted to save space;

 // create specials group - as appetizers, code omitted to save space;

 // create desserts group - as appetizers, code omitted to save space;

 // create table list control
 String* sTables[] = { S"Table 1", S"Table 2", S"Table 3", S"Table 4",
 S"Table 5", S"Table 6", S"Table 7", S"Table 8", S"Table 9",
 S"Table 10" };
 EvtHandler::ListTable = new RemoteList(0, 0, S"Table", sTables, 0, NULL);
 RemoteForm->Add(EvtHandler::ListTable);
 EvtHandler::ListTable->OnClientModify +=
 new ClientModify(0,&EvtHandler::OnCtlModify);

 // create check button
 RemoteButton* ButCheck = new RemoteButton(0, 0, S"Check", NULL) ;
 RemoteForm->Add(ButCheck);
 ButCheck->OnClientModify += new ClientModify(0,&EvtHandler::OnButCheck);

 // create clear button
 RemoteButton* ButClear = new RemoteButton(0, 0, S"Clear", NULL) ;
 RemoteForm->Add(ButClear);
 ButClear->OnClientModify += new ClientModify(0,&EvtHandler::OnButClear);

 // create clear button
 RemoteButton* ButConfirm = new RemoteButton(0, 0, S"Confirm", NULL) ;
 RemoteForm->Add(ButConfirm);
 ButConfirm->OnClientModify += new ClientModify(0,&EvtHandler::OnButConfirm);

 // display control panel
 FlexiPanel::PostControls(RemoteForm, 0);

 // subscribe to client message service to pick up disconnect message
 FlexiPanel::OnClientNotify += new ClientNotify(0,&EvtHandler::OnClientNotify);

 // activate server
 FlexiPanel::Connect(false);
 Console::WriteLine(S"OrderMaster initialized");

Creating user interface on remote devices using Bluetooth 32 of 33

 // update status text
 EvtHandler::OnCtlModify(NULL);

 // await command from console
 String* sLine(S"");
 do
 {
 // process any commands other than quit here
 sLine = Console::ReadLine();
 }
 while (!sLine->StartsWith(S"q"));

 Console::WriteLine(S"Disconnecting...");

 // Disconnect
 FlexiPanel::Disconnect();
 }

 catch (FxPEvalOverException* e)
 {
 Console::WriteLine(e->Message);
 }

 catch (RCapiM::FxPSystemErrorException* e)
 {
 Console::WriteLine(e->Message);

 // this error is most likely during connection if the COM port is incorrect
 Console::WriteLine(S"Are you sure the correct COM port was specified?");
 }

 __finally
 {
 // return timer resource
 if (EvtHandler::pingTimer) EvtHandler::pingTimer->Dispose();

 // Free library
 FlexiPanel::Quit();
 }

 return 0;
}

Creating user interface on remote devices using Bluetooth 33 of 33

About the author

Richard is a development engineer at FlexiPanel Ltd and co-author of Data

Mining and Business Intelligence: A Guide to Productivity. He may be contacted

at rhoptroff@flexipanel.com.

