
SCardServer Documentation - Release 2001-05-31 SCardServer V2.14

 - 1/1 - ©1998-2001, Towitoko AG

�

�

6&DUG6HUYHU�9�����

7HFKQLFDO�'RFXPHQWDWLRQ�

6PDUW&DUG�0DQDJHU��6&$5'�,QWHUIDFH��'HOSKL�&RPSRQHQW�

5HOHDVH������������

������������7RZLWRNR�$*�

SCardServer V2.14 SCardServer Documentation - Release 2001-05-31

© 1998-2001, Towitoko AG - 2/2 -

&RQWHQWV�

The SCardServer.. 3

Overview ... 3

Interfaces .. 4

SCARD Interface - SCARD.DLL, SCARD32.DLL ... 4

PC/SC Interface... 4

CT-API Interface - CTAPIW16.DLL, CTAPIW32.DLL ... 4

OCF Interface - GEN_TWK.DLL ... 4

TDEV Interface - TDEV.DLL, TDEV32.DLL .. 4

The SCARD Interface... 5

Basics.. 5

DLL Function... 6

Card Status ... 8

DELPHI Component TSmartCard... 10

Usage with multiple applications... 12

Global Return Codes .. 13

Command Set SYSTEM ... 14

Command Set LINKER ... 20

Command Set DEVICE... 21

Command Set CARD.. 26

Command Set APPS... 38

Apps,TLV... 38

Apps,TWK ... 39

Apps,KVK .. 40

Command Tree ... 42

Further Information Sources... 43

SCardServer Documentation - Release 2001-05-31 SCardServer V2.14

 - 3/3 - ©1998-2001, Towitoko AG

7KH�6&DUG6HUYHU�

2YHUYLHZ�
There are several different manufacturers of smartcards, terminals, and drivers. There are also
many industry standards for card protocols. Our goal is to make the integration of smartcards
and terminals into your application as easy as possible.
The SCardServer provides the following functionality:

0DQDJHPHQW�RI�FRQQHFWHG�WHUPLQDOV�
• Plug&Play support
• Management of a selection list for all connected smartcard terminals, similar to the selection

lists for printers (e.g. "CHIPDRIVE extern at COM1 ")
• Status information on each terminal: Status of the smartcard, serial number and terminal

information.
• The most recent configuration data is stored in an INI-file (e.g. COM port assignments)

0DQDJHPHQW�RI�FRQQHFWHG�DSSOLFDWLRQV�
• Management of a of applications currently bound to the SCardServer.
• The SCardServer allows access to the terminal by only one application at a time. When the

application is finished with card access, the SCardServer passes control to the next
application.

• By registering your application with a card type, the SCardServer can be configured to
automatically start your application when that card type is inserted. This can be done by
application type (e.g. GSM or EC-card) or by using the AID of the card as an identifier.

0DQDJHPHQW�RI�PHPRU\�VPDUWFDUGV�
• Automatic detection of the semiconductor type and various parameters including necessity of

PINs, write protection and even the page sizes for I²C cards
• Automatic detection of card application data on the card
• Data access with a uniform command set, independent of the card type (e.g. Card,MemWrite

or Card,ISOAPDU)
• Immediate read access to TLV data fields (Tag Length Value encoding)
• Caches for write- and read access for maximum performance
• PIN management
• More than 50 semiconductor types are currently supported, the most recent list is available at

our homepage http://www.towitoko.com

0DQDJHPHQW�RI�SURFHVVRU�VPDUWFDUGV�
• Automatic detection of the card type and evaluation of the ATR
• Support of sending commands in transparent mode (1:1 to card without any protocol

overhead)
• T0 and T1 are completely implemented according ISO7816-3 including error handling,

chaining and all S-blocks
• T0 and T1 protocol parameters are preset according to the ATR
• support of APDU alternately according ISO7816-4, GMS11.11 or CT-API

$FFHVV�WR�GDWD�RI�VWDQGDUG�FDUG�DSSOLFDWLRQV�
• German health insurance card (“Krankenversichertenkarte“, see command Apps,KVK)
• German telephone prepaid debit card (“Telefonwertkarte“, see command Apps,TWK)

SCardServer V2.14 SCardServer Documentation - Release 2001-05-31

© 1998-2001, Towitoko AG - 4/4 -

,QWHUIDFHV�
The SCardServer runs as a separate background task under Windows 3.11, 95, 98, ME, NT and
2000. Applications can communicate with the SCardServer using one of the following interfaces.

6&$5'�,QWHUIDFH���6&$5'�'//��6&$5'���'//�

The SCARD interface encapsulates the full SCardServer functionality. The implementation on
the client’s part is extremely easy. Only one DLL-function call is used for all accesses. Window
messages do the event handling for your application. The interface is available in 16 bit and
32 bit version under Windows 3.11, 95, 98, ME, NT and 2000. For DELPHI 1/2/3/4/5 we have a
component available, which simplifies the implementation even more. All events are
implemented and various lists (terminals, applications, terminal status information, card status
information) are available in the form of string lists.

3&�6&�,QWHUIDFH�

This interface was created by the PC/SC Workgroup (http://www.pcscworkgroup.com)
implementations are also available as well for Windows and Linux/Unix.
The use of PC/SC in Windows 95/98/ME and NT requires the installation of the PC/SC Base
Components . In Windows 2000 the latest version is already included. Windows 3.11 is not
supported. A detailed description about Microsoft’s implementation of the PC/SC interface can
be found in the Microsoft Windows SDK . Additional information and a mailing list for
developers are available on the internet at http://www.microsoft.com/smartcard. The base
components are also available on this page and on the Windows 98 second edition CDROM.
Towitoko provides a Unit for Delphi 2/3/4/5 which encapsulates most of the PC/SC functions,
making this interface available for Delphi applications.
The MUSCLE project (Movement for Using Smart Cards in a Linux Environment) created a
PC/SC implementation for Linux/Unix . Additional information and Linux driver for the
CHIPDRIVE smartcard reader are available at their web site http://www.linuxnet.com.

Please be aware that Towitoko does not offer any technical support for this interface.

&7�$3,�,QWHUIDFH���&7$3,:���'//��&7$3,:���'//�

The CT-API interface is compatible with CT-API V1.1 (Issued by: Deutsche Telekom AG / PZ
Telesec, GMD Forschungszentrum Informationstechnik GmbH, TÜV Informationstechnik GmbH
and TeleTrust Deutschland e.V.) and available in 16 bit and 32 bit version under Windows 3.11,
95, 98, ME, NT and 2000. More details on this specification can be found on the internet at
http://www.tuevit.de.
The command set is implemented according to the MKT (Multifunktionale Kartenterminals für
das Gesundheitswesen, Issuer: GMD Arbeitsgemeinschaft “Karten im Gesundheitswesen“).

This interface only gives access to a small fraction of the SCardServer’s functionality.

2&)�,QWHUIDFH���*(1B7:.�'//�

With this interface developed by IBM, the CHIPDRIVE can be used in Java -based applications.
More details about the Open Card Framework (OCF) can be found on the internet at
http://www.opencard.org.

Please be aware that Towitoko does not offer any technical support for this interface.

7'(9�,QWHUIDFH���7'(9�'//��7'(9���'//�

The TDEV interface exists for compatibility with our earlier driver support interface. We
recommend the use of the new SCARD interface in order to have full access to all new features
of the SCardServer.
Available in 16 bit and 32 bit versions under Windows 3.11, 95, 98, ME, NT and 2000.

SCardServer Documentation - Release 2001-05-31 SCardServer V2.14

 - 5/5 - ©1998-2001, Towitoko AG

7KH�6&$5'�,QWHUIDFH�

%DVLFV�
Ease of implementation was one of the main goals in developing the SCardServer. The
SCardServer offers full support of the PC/SC standard (plus more) while keeping it simple for
the programmer and allowing you to start programming right away with minimal effort.

To make the implementation of smartcard access as simple as possible, the SCardServer uses
the same syntax for every command. The selection of function calls and transmission of
parameters is accomplished using a command string. Input and output data are optional. A
command string always contains key words and parameters separated by a comma.

Example 1: This command returns the current terminal type, possible return code: 0 = "OK"

Command: Str("Device,Info,Type ")
DataIn: nil
DataOut: Str("CHIPDRIVE extern ")

Example 2: This command writes 21 characters starting at address 16 to a memory card.
Possible return codes: 0 = "OK", 0x4000 ="No card present in terminal ",
0x1009 ="Terminal is locked "

Command: Str("Card,MemWrite,16,21 ")
DataIn: Str("Hello SmartCard World ")
DataOut: nil

For testing the previous examples you do not need to initialize any parameter or execute any
other (administrative) commands - just start!

In addition, you gain access to a great number of powerful features which will be especially
interesting for all professional users.

SCardServer V2.14 SCardServer Documentation - Release 2001-05-31

© 1998-2001, Towitoko AG - 6/6 -

'//�)XQFWLRQ�
All calls of this interface are directly passed to the SCardServer. The function call returns only
after processing of the command by the SCardServer. Other Windows messages are also
regularly processed while the command is being executed. The SCARD interface can be called
recursively in up to four levels.

Both DLLs (16 bit: SCARD.DLL, 32 bit: SCARD32.DLL) export the following command:

Response = SCardComand (Handle,

Cmd, CmdLen,
DataIn, DataInLen,
DataOut, DataOutLen

);

LPINT Handle /* pointer to a 32 bit signed integer */
LPSTR Cmd /* pointer to a zero terminated string */
LPINT CmdLen /* pointer to a 32 bit signed integer */
LPSTR DataIn /* pointer to an array of byte or a string */
LPINT DataInLen /* pointer to a 32 bit signed integer */
LPSTR DataOut /* pointer to an array of byte or a string */
LPINT DataOutLen /* pointer to a 32 bit signed integer */
INT Response /* 32 bit signed integer */

Handle In case more instances of DLL are required by the application this handle can
be used to distinguish between object instances. The value can be set to zero if
only a single instance is used. The SCardServer in this case will do the
assignment via the thread- / task handle of your application.

Cmd SCardServer command (zero terminated string).

CmdLen Length of the command string, if the data transfer to the SCardServer is
encrypted; if unencrypted transfer is used, this value must be set to zero.

DataIn Pointer to the input data.

DataInLen Length of the input data.

DataOut pointer to buffer for output data.

DataOutLen Maximum length for returned data. Is set to the actual length of the returned
data.

Response Global return code. Is set to zero after a successful command execution.

SCardServer Documentation - Release 2001-05-31 SCardServer V2.14

 - 7/7 - ©1998-2001, Towitoko AG

6DPSOH�FRGH�IRU�3$6&$/���'(/3+,��ZLWKRXW�XVLQJ�WKH�76PDUW&DUG�FRPSRQHQW��

function SCardComand (var Handle: LongInt;

Cmd: Pointer; var CmdLen: LongInt;
DataIn: Pointer; var DataInLen: LongInt;
DataOut: Pointer; var DataOutLen: LongInt

): LongInt; stdcall; external "SCARD32.DLL";

Important: Under DELPHI 1 (16 bit version) you must use the 16 bit version of the DLL
SCARD.DLL, furthermore the stdcall does not exist here:

 ...): LongInt; external "SCARD";

6DPSOH�FRGH�IRU�G\QDPLF�LPSOHPHQWDWLRQ�ZLWK�&�

typedef DWORD (__stdcall *SCardCmd)(LPDWORD Handle,

LPCSTR Cmd, LPINT CmdLen,
LPCSTR DataIn, LPINT DataInLen,
LPCSTR DataOut, LPINT DataOutLen);

(...)
SCardCmd pSCardCommand = NULL;
HANDLE hScardDLL = LoadLibrary("SCARD32.DLL");
if (hSCardDLL)
 pSCardCommand = (SCardCmd)GetProcAddress(hScardDLL, "SCardComand");

Important: - If you are using a 16 bit version, you have to load the 16 bit DLL SCARD.DLL:
 ... = LoadLibrary("SCARD.DLL");

- There are no LIB files available which are needed for static import, so only a
dynamic import is possible.

- String variables are just pointers to a buffer, don’t forget to allocate memory for
this buffer.

6DPSOH�FRGH�IRU�9LVXDO�%DVLF�����DQG�$FFHVV�9%$�

Declare Function SCardComand Lib "SCARD32.DLL" (Handle As Long,

ByVal Cmd As String, CmdLen As Long,
ByVal DataIn As String, DataInLen As Long,
ByVal DataOut As String, DataOutLen As Long

) As Long

Important: string variables are just pointers to a buffer, don’t forget to initialize them,

e.g. DataOut = String(255, 0) .

SCardServer V2.14 SCardServer Documentation - Release 2001-05-31

© 1998-2001, Towitoko AG - 8/8 -

&DUG�6WDWXV�
The SCardServer handles the management of the card. For each application the following
information on the status of the card and the terminal is available:
• The terminal status is checked to see it is connected and responding properly. In case of a

failure, the status is set to ERROR.
• If no card present in the terminal, the status is set to WAIT.
• If a card is inserted, the automatic detection is started, i.e. the exact card type (semiconductor

type) is determined and consecutively the card is checked for data of known card applications.
While the automatic detection is running the status is set to DETECT. Card access is not
possible in this state (error code 0x4000 , message "No card present in terminal ").

• If the card cannot be read or another detection failure occurs, the status is set to INVALID .
• Otherwise control of the card is given to exactly one application. This application receives the

status ACTIVE while all other application receive the status LOCKED.
• This remains until:

a) The card is removed. The status is set to WAIT again.
b) A Card,Unlock command is issued by the active application.

• In case b) the SCardServer passes control on the card to the next application, which again can
pass on control to the next application.

• If all applications have released the card with the Card,Unlock command the status is set to
VALID , i.e. the card is valid but currently not assigned to any application.

• If an application needs to access the card again (e.g. because of a user request) the control
needs to be requested by issuing a Card,Lock command. The status ACTIVE is assigned for
the application which issued the request - all other applications get the status LOCKED.

• The active application may release the card by issuing a Card,Unlock and the status for all
applications will return to VALID .

The card status can always be polled with the command Card,Info,Status .

:LQGRZV�0HVVDJLQJ�

Under Windows it is much better to transmit status changes using windows messages. This
reduces the system load because no continuous polling is necessary.

Your application can register (and unregister) any number of application windows for the receipt
of SCardServer messages using the commands System,AddHWndMsg and
System,DelHWnd .

A message is sent to your application in each of the following cases:
• In case of a status change, e.g. WAIT → DETECT,
• if control is passed to another application while the status is LOCKED.

In the following status change no message is sent:
• If your application has requested card access by issuing a Card,Lock , i.e. the status for your

application changes from VALID to ACTIVE, no message is sent to you. For all other
applications the status changes from VALID to LOCKED and a message is sent to them. The
reason for this exception is to have the message ACTIVE sent only on the first activation after
card insertion.

The Windows message is sent to the given window handle(s) using the API function
PostMessage . The message ID can be specified by you with the registration of the window
(see System,AddHWndMsg).

SCardServer Documentation - Release 2001-05-31 SCardServer V2.14

 - 9/9 - ©1998-2001, Towitoko AG

The W-parameter indicates the message type:
• MsgError = decimal 100 for status changes after ERROR
• MsgWait = decimal 110 for status changes after WAIT
• MsgDetect = decimal 120 for status changes after DETECT
• MsgInvalid = decimal 130 for status changes after INVALID
• MsgValid = decimal 140 for status changes after VALID
• MsgActive = decimal 150 for status changes after ACTIVE
• MsgLocked = decimal 160 for status changes after LOCKED and

 for every change of the active application
• MsgProgress = decimal 200 for progress display during memory card access
• MsgDeviceList = decimal 300 indicates changes of the device list
• MsgDeviceSearch = decimal 301 progress display during device search
• MsgTaskList = decimal 310 indicates changes of the task list
• MsgCardInfo = decimal 320 indicates changes of the CardInfo list

The low order word of the L-parameter indicates the index of the active terminal within the
terminal list (starting with zero). Exception:
• MsgDeviceSearch : COM-Port which is checked

The high order word of the L-parameter is dependent on the message:
• MsgLocked index of the active application within the task list (starting with zero)
• MsgProgress completion status from 0 to 100 percent
• MsgDeviceSearch completion status from 0 to 100 percent,

 special values: 254 : device OK; 255 : No device detected

'HDFWLYDWH�0HVVDJHV�
To stop the processing of window messages in the SCardServer you can call the function
SCardComand with the parameters Cmd = nil , CmdLen = 0 , DataIn = nil ,
DataInLen = 0 , DataOut = nil and DataOutlen = -1 . Using DataOutlen = -2 will
re-activate the processing.

Sample code for DELPHI:

procedure SCardCmdNoYield (Handle: LongInt);
var L,M,N: LongInt;
begin
 L:=0;
 M:=0;
 N:=-1;
 SCardComand(Handle,nil,L,nil,M,nil,N);
end;

procedure SCardCmdDoYield (Handle: LongInt);
var L,M,N: LongInt;
begin
 L:=0;
 M:=0;
 N:=-2;
 SCardComand(Handle,nil,L,nil,M,nil,N);
end;

SCardServer V2.14 SCardServer Documentation - Release 2001-05-31

© 1998-2001, Towitoko AG - 10/10 -

'(/3+,�&RPSRQHQW�76PDUW&DUG�
With DELPHI the implementation of card access is even easier. The TSmartCard component
does the following jobs:
• Loads the SCARD Library (16 bit: SCARD.DLL, 32 bit: SCARD32.DLL) dynamically and

imports the SCardComand function
• Creates a object instance to the SCardServer
• Creates a window handle and registers it for the receipt of SCardServer events
• Introduces a new exception ESmartCard and forwards error messages
In the following sections, methods, properties and events of the component TSmartCard are
briefly introduced. More detailed information is found in the reference section of the
SCardServer commands.

0HWKRGV�
function Comand (const Cmd: String;
 DataIn: Pointer; DataInLen: LongInt;
 DataOut: Pointer; DataOutMax LongInt): LongInt
This method encapsulates the SCardComand function for communication with the SCardServer.
Cmd contains the command string. DataOutMax contains the value for the maximum size of the
data structure DataOut . Both pointers can be assigned with nil if no data is exchanged. The
return value contains the number of bytes written to DataOut . If an error occurs, an
ESmartCard exception is generated.

function ComandStr (const Cmd, DataIn: String): String;
Same as Command but instead of pointers strings are used for data exchange. The return value
resembles DataOut.
procedure ComandList (const Cmd: String; Lines: TStrings);
Same as Command but without input parameter (DataIn = nil). The result in the form of a string
list is placed in lines (e.g. used by DeviceList).

3URSHUWLHV�
Active: Boolean
Causes the component to load the SCARD library and start the SCardServer, otherwise unload
the library.
AutoUnlock: Boolean
Allows the automatic release of the card (see command Card,Unlock) after ending the
OnActiveCard event.

CardInfo: TStringList
List of status information on the currently inserted smartcard.
ConfigMaxPort: Integer
Denominates the maximum number of available COM-Ports in the ConfigMenu .

ConfigMenuItem: TMenuItem
ConfigPopupMenu: TPopupMenu
Either ConfigMenuItem can be assigned to a menu entry or ConfigPopupMenu to a popup
menu. The component automatically adds all necessary entries for the terminal selection and
the configuration of the SCardServer. Only one of these two properties can be set.
DeviceInfo: TStringList
List of the terminal status information on the currently selected terminal
DeviceList: TStringList
List of all available terminals

SCardServer Documentation - Release 2001-05-31 SCardServer V2.14

 - 11/11 - ©1998-2001, Towitoko AG

Enabled: Boolean
Locks all event routines. The library will not be loaded or unloaded. If the SCardServer assigns
the control on the card to the component, the command Card,Unlock is issued immediately to
pass on control to the next application (independent of property AutoUnlock).

Language: TLanguage = (lngCustom, lngEnglish, lngDeutsch)
LanguageText: TStringList
Specifies the current language. If set to lngEnglish or lngDeutsch the component will
automatically fill the string list LanguageText . If set to lngCustom , you can fill the string list
manually with messages in any other language. Any setting will only affect the component. To
change the SCardServer’s language use the command System,SetLng .

StatusLabel: TLabel
Specifies a Label which automatically displays the SCardServer’s current status. The status is
taken from StatusText .

StatusText: String
Contains a string describing the SCardServer’s current status The text is taken from the string
list LanguageText .

TaskList: TStringList
List of all applications / tasks bound to the SCardServer.
Tag: Longint
Unused in the component, available to your application.

(YHQWV�
OnCardActive: TCardEvent
The card was recognized and activated. The card can now be accessed.
OnCardDetect: TCardEvent
A card has been inserted in the terminal. The card cannot be accessed yet!
OnCardInfoChange: TNotifyEvent
Event for displaying new data in the CardInfo list

OnCardInvalid: TCardEvent
The card recognition has failed / no valid card!
OnCardLock: TCardLockEvent
Another application has started to access the card
OnCardValid: TCardEvent
All applications are finished with accessing the card (command Card,Unlock). It is now
possible to access the card again
OnCardWait: TCardEvent
No card is present in the terminal. The card has been removed from the terminal
OnDeviceError: TCardEvent
Terminal access failed. The terminal to PC connection was interrupted.
OnDeviceListChange: TNotifyEvent
Event for displaying new Data in the DeviceList
OnDeviceSearch: TSearchEvent
Event for displaying progress during search for a terminal (started with command
Device,SearchComPort or at first start of the SCardServer)

OnProgress: TProgressEvent
Event for reporting progress on memory card access
OnTaskListChange: TNotifyEvent
Event for displaying new data in the TaskList

SCardServer V2.14 SCardServer Documentation - Release 2001-05-31

© 1998-2001, Towitoko AG - 12/12 -

8VDJH�ZLWK�PXOWLSOH�DSSOLFDWLRQV�
Every time a card is handed from one application to another, a card reset will be performed (see
command Card,Reset) and any acquired access rights will be lost.

2UGHU�RI�DFWLYDWLRQ�RI�DSSOLFDWLRQV�

The SCardServer determines the order in which the applications are assigned access to the
card. The priority is determined by the following criteria in order of the List.
It is determined if:
• an application has been registered for a special card application type (e.g. SIM-Surf for GSM

cards).
• a processor card allows a assignment by the registered name (ISO7816-4).
• a memory card matches a registered mask (byte wise comparison of any memory location).
• an application has registered a AID (contained among the history bytes within the ATR of

processor cards or within the ATR (TLV encoding) of a memory card.
If several applications have the same ranking or no criteria were matched the tab sequence of
the Windows-desktop is used for determining the first application.

5XOHV�IRU�VPRRWK�FRRSHUDWLRQ�RI�PXOWLSOH�DSSOLFDWLRQV�

The automatic selection of matching applications and especially the passing of control to the
next application can be optimized. Observe the following rules:
• Register reliable criteria
• Allow the SCardServer to start up your application on demand
• Do not open modal dialog boxes as long as your application is not the active one. Otherwise it

may happen that several modal dialogs are opened simultaneously!
• Do not use the event DETECT for opening dialogs or windows. Instead, just add a line of text to

a status line, e.g. "Card being analyzed, please wait ".
• Do not use the event INVALID (invalid card) for modal dialogs.
• Issue the Card,Unlock function, if you cannot process the card or if you have finished

processing.
• Issue the command Card,Reset prior to Card,Unlock if you want to reset acquired access

rights on the card. If available you should use alternate means of resetting the rights since all
caches are erased by resetting the card as well.

• Our suggestion for a terminal selection is a windows menu with the following entries:
- COM 1 ... COM 8
- separation line
- automatic terminal detection
- separation line
- list of all connected terminals (command Device,List).

By doing so the user will have all choices for:
a) register new terminals (Device,SearchComPort,<Port>)
b) use the automatic terminal selection (Device,Select,-1)
c) select a explicit terminal - (Device,Select,<Index>)

SCardServer Documentation - Release 2001-05-31 SCardServer V2.14

 - 13/13 - ©1998-2001, Towitoko AG

*OREDO�5HWXUQ�&RGHV�
An important advantage of the SCardServer is the uniform error handling by using global return
codes. The file SCARD.ERR contains all values with the assigned text messages. Translations
are easily possible by adding a new language section according to the INI-format. Below the
error codes are listed in hexadecimal form:

0x0000 "OK"
(Command was successfully executed)

0x1001 "Serial port not available "
(The search on the selected COM port was not possible because the port is not
available on the Windows system. The port needs to be configured to be properly
recognized by the system)

0x1002 "Serial port is used by another application "
(The COM-port is used by another application, e.g. a mouse or a modem)

0x1008 "No terminal detected on selected port "
(The COM-port configured properly but no terminal was detected, check the
connection)

0x1009 "Terminal is locked by X "
(At the moment access to the terminal is not possible because another application is
accessing a card or has not released the card yet. “X“ will be replaced by the
application’s name)

0x4000 "No card present in terminal "

0x4001 "Card was removed during access "

0x4002 "Invalid card present in terminal "

0x4004 "Card ejection failed "
(Reserved for future terminals with automatic card ejection.)

0x1200 "Unknown command "
(The command string was not recognized)

0x1201 "Command execution not possible with current card "
(Not all commands can be used with all cards - especially those for memory and
processor cards)

0x1202 "Command execution not possible with this terminal "
(Occurs e.g. if a T0 command is sent to a terminal not supporting processor cards)

0x1203 "Invalid command parameter "
(e.g. invalid address range for the command Card,MemRead)

0x1310 "smartcard access failed "
(A non recoverable error occurred during access to the smartcard)

0x1311 "PIN error! X trial(s) left "
(PIN-Error for memory smartcards. “X“ is replaced by the remaining number of trials)

0x2000 "Server not available "
(The SCardServer failed to start)

SCardServer V2.14 SCardServer Documentation - Release 2001-05-31

© 1998-2001, Towitoko AG - 14/14 -

&RPPDQG�6HW�6<67(0�
The system area contains all commands for administration and task management.

6\VWHP�,QIR�

Determines information about the SCardServer and the status of the command execution.

Command: Str("System,Info[,<Field>] ")
DataIn: nil
DataOut: Str("<Data1>#13#10 [<Data2>#13#10[...]] ")

<Field> Optional, only data from one of the following fields:
"ErrCode " Error code of the last command.
"ErrText " Text of the last error message.
"Handle " Handle, assigned to the calling object instance.
"Lng " Current language for the calling application.
"UsedMemHeap" Used Heap by the SCardServer in bytes.
"UsedMemTotal " Used memory by the SCardServer in bytes.
"VersionCode " Version of the SCardServer (4 digit BCD encoding).
"VersionText " Version as string.

<DataX> the requested data.

Example 1: System,Info returns all values, separated by the characters CR+LF (#13#10).
Command: Str(" System,Info ")
DataIn: nil
DataOut: Str(" Handle=3
 Lng=ENGLISH
 VersionCode=0214
 VersionText=CardServer V2.14.15
 ErrCode=4002
 ErrText=Invalid Card present in terminal
 UsedMemHeap=312092
 UsedMemTotal=1048576 ")

Example 2: If the command string is supplemented by a keyword, only the specified parameter
is returned, e.g. only the current language.

Command: Str("System,Info,Lng ")
DataIn: nil
DataOut: Str("ENGLISH")

SCardServer Documentation - Release 2001-05-31 SCardServer V2.14

 - 15/15 - ©1998-2001, Towitoko AG

6\VWHP�&RPDQGV�

Returns a List of all available commands, each separated by the characters CR+LF (#13#10).
The command tree can be listed recursively by adding more keywords.

Command: Str("System,Commands[,<SubSet>] ")
DataIn: nil
DataOut: Str("<Command1>#13#10[<Command2>#13#10[...]] ")

<SubSet> Optional, list only the commands from this subset.
<CommandX> The available commands.

Example 1: List the main commands.

Command: Str("System,Comands ")
DataIn: nil
DataOut: Str(" System
 Linker
 Device
 Card
 Apps ")

Example 2: List the commands from Apps,TWK.

Command: Str("System,Comands,Apps,TWK ")
DataIn: nil
DataOut: Str(" Seriennummer
 Hersteller
 Datum
 Orginalwert
 Restwert
 Chipcode
 ChipHersteller
 Betreiber ")

6\VWHP�6HW/QJ�

Sets the language for the current application. The error messages are read from the file
SCARD.ERR, which can be easily modified / translated.

Command: Str("System,SetLng,<LngStr> ")
DataIn: nil
DataOut: nil

<LngStr> Language (= section string in the file SCARD.ERR)

Example: Switch to German error messages.

Command: Str("System,SetLng,GERMAN ")
DataIn: nil
DataOut: nil

SCardServer V2.14 SCardServer Documentation - Release 2001-05-31

© 1998-2001, Towitoko AG - 16/16 -

6\VWHP�&RQYHUW(UU&RGH�

Returns the error message text for a given global return code.

Command: Str("System,ConvertErrCode,<Code> ")
DataIn: nil
DataOut: Str("<Msg>")

<Code> Error code in hexadecimal form.
<Msg> Error message from the file SCARD.ERR in the language currently set.

Example: The current language is English, get the error message for the hexadecimal error
code 0x4002 .

Command: Str("System,ConvertErrCode,4002 ")
DataIn: nil
DataOut: Str("Invalid Card present in terminal ")

6\VWHP�&UHDWH�

The SCardServer creates an instance for every connected application, based on the task
handle. It is not necessary to create an object instance, if only one instance is needed. If
multiple instances are needed they have to be set up with this command.

Important: The parameter Handle from the DLL function SCardComand needs to be set to
-1 for calling, therefore this command will not work when using the Delphi
component. However, if multiple instances are needed here, creating several
TSmartCard objects is much easier.

Example: Command: Str("System,Create ")
DataIn: nil
DataOut: Str("Handle=5 ")

6\VWHP�'HVWUR\�

Releases an object instance which was generated with System,Create . The SCardServer
automatically activates this function if the task handle of the application gets invalidated, i.e. the
application was closed.

Command: Str("System,Destroy,<Handle> ")
DataIn: nil
DataOut: nil

<Handle> Handle to be released.

Example: Release the handle 3.

Command: Str("System,Destroy,3 ")
DataIn: nil
DataOut: nil

SCardServer Documentation - Release 2001-05-31 SCardServer V2.14

 - 17/17 - ©1998-2001, Towitoko AG

6\VWHP�7DVN/LVW�

Returns the list of applications and related terminals currently connected to the SCardServer.
The application names are separated by the characters CR+LF (#13#10).

Command: Str("System,TaskList ")
DataIn: nil
DataOut: Str("<App1>,<Dev1>#13#10[<App2>,<Dev2>#13#10[...]] ")

<AppX> Name of the application.
<DevX> Name of the terminal, port and if necessary the index on this port (for details

see command Device,Info,Port).

Example: Command: Str(" System,TaskList ")
DataIn: nil
DataOut: Str(" SCard Test Tool,'CHIPDRIVE extern I' at COM1

SmartCard Demo,'CHIPDRIVE twin Slot 1' at COM2
SIM-surf profi, CHIPDRIVE twin Slot 2' at COM2 ")

6\VWHP�7DVN7LWOH�

Allows setting an explicit name for your application which occurs in the application list (see
command System,TaskList). The default is the text from your application’s title in its main
window.

Command: Str("System,TaskTitle,<Title> ")
DataIn: nil
DataOut: nil

<Title> Application’s name (spaces are allowed, but no comma or any special
characters).

Example: Set the name to “Hello SmartCard World“

Command: Str("System,TaskTitle,Hello SmartCard World ")
DataIn: nil
DataOut: nil

6\VWHP�7DVN3DWK�

Reserved for internal use.

6\VWHP�8SJUDGH���6\VWHP�2HP5HJLVWHU�

These commands are only present for compatibility reasons with older applications. They do not
have a function any longer

SCardServer V2.14 SCardServer Documentation - Release 2001-05-31

© 1998-2001, Towitoko AG - 18/18 -

6\VWHP�$GG+:QG0VJ�

Registers a window handle and a message value for the notification of your application in case
of status changes. Up to 8 windows can be registered

Command: Str("System,AddHWndMsg,<HWnd>,<MsgID> ")
DataIn: nil
DataOut: nil

<HWnd> Handle of window to receive messages (decimal).
<MsgID> Message value for the notification (Message ID, decimal). The value should be

greater or equal to WM_USER (=0x400) since this range is reserved for
application specific messages.

Example: The main window’s hexadecimal handle is 0x148B4896 (=344672406 decimal).
The SCardServer’s messages should have the ID WM_USER+0x500 (=0x900
equals 1524 decimal).

Command: Str("System,AddHWndMsg,344672406,1524 ")
DataIn: nil
DataOut: nil

6\VWHP�'HO+:QG�

Deletes a window handle from the list.

Command Str("System,DelHWnd,<HWnd> ")
DataIn: nil
DataOut: nil

<HWnd> Handle of the window that had received the messages (decimal).

Example: Delete the window with the hexadecimal handle 0x148B4896 (=344672406
decimal).

Command: Str("System,DelHWnd , 344672406 ")
DataIn nil
DataOut nil

6\VWHP�6HW0DLQ+:QG�

If the application’s main window does not exist any longer, the SCardServer assumes that the
application has been closed and will automatically delete any open handle(s). Usually the
SCardServer detects the main window correctly, but it may be possible that a temporary open
window is chosen (like help, password etc.). In this case the main window must be set manually
with this command.

Command: Str("System,SetMainWnd,<MainHWnd> ")
DataIn: nil
DataOut: nil

<MainHWnd> Main window of the application (decimal).

Example: The main window’s hexadecimal handle is 0x148B4896 (=344672406 decimal).

Command: Str("System,SetMainWnd,344672406 ")
DataIn: nil
DataOut: nil

SCardServer Documentation - Release 2001-05-31 SCardServer V2.14

 - 19/19 - ©1998-2001, Towitoko AG

6\VWHP�&U\SW.H\�

This command activates the encrypted communication with the SCardServer. Command string
and DataIn need to be presented in encrypted form after issuing this command.
Correspondingly DataOut is returned in encrypted format by the SCardServer. This command is
not a function for encrypting data nor will the data itself be stored on the card in encrypted form.
Only the communication between the SCardServer and the application is encrypted, but de- and
encryption is up to the application.

Important: Since the length of data is always a multiple of 8 when using DES please observe
the following rules:
1. Command, DataIn and DataOut have a length which is a multiple of 8. if

necessary use dummy characters (not 0x00).
2. The command needs to be concluded with a zero character before encrypting.
3. DataIn and DataOut are headed by an 16 bit integer which indicates the actual

length of the decrypted data.

Command: Str("System,CryptKey,<Type> ")
DataIn: <KeyID>
DataOut nil
<Type> "DES" indicates a standard DES algorithm ("CDES" and "NIL " are reserved for

internal use).
<KeyID> 8 byte KeyID, the DES key is not transmitted directly but in encrypted form (for

more details see command System,GenCryptKey).

Example: Start the encrypted communication. The generated KeyID is 0x2F 0x83 0xFC

0x5C 0x4F 0x0D 0xBE 0x48 .

Command: Str("System,CryptKey,DES ")
DataIn: 0x2F 0x83 0xFC 0x5C 0x4F 0x0D 0xBE 0x48
DataOut nil

6\VWHP�*HQ&U\SW.H\�

Of course the encryption only makes sense if the key itself is not transmitted. Therefore it is
necessary to generate a KeyID in a secure environment which is used in the final application
phase for hiding the actual DES key. The command System.CryptKey transmits this KeyID to
start the encrypted communication.

Command: Str("System,GenCryptKey,<Type> ")
DataIn: <DES-Key>
DataOut <KeyID>
<Type> "DES" indicates a standard DES algorithm ("CDES" and "NIL " are reserved for

internal use).
<DES-Key> 8 byte DES key which is really used to encrypt the data.
<KeyID> The KeyID computed by the SCardServer.

Example: Generate the SCardServer’s KeyID for the DES Key 0x4D 0x59 0x4B 0x45

0x59 0x49 0x53 0x42 .

Command: Str("System,CryptKey,DES ")
DataIn: 0x4D 0x59 0x4B 0x45 0x59 0x49 0x53 0x42
DataOut 0x2F 0x83 0xFC 0x5C 0x4F 0x0D 0xBE 0x48

SCardServer V2.14 SCardServer Documentation - Release 2001-05-31

© 1998-2001, Towitoko AG - 20/20 -

&RPPDQG�6HW�/,1.(5�
These commands are reserved for internal use.

SCardServer Documentation - Release 2001-05-31 SCardServer V2.14

 - 21/21 - ©1998-2001, Towitoko AG

&RPPDQG�6HW�'(9,&(�

'HYLFH�,QIR�

Returns a list of all terminal parameters. The information relates to the terminal currently
assigned to the application (see command Device,Select).

Command: Str("Device,Info[,<Field>] ")
DataIn: nil
DataOut: Str("<Data1>#13#10[<Data2>#13#10[...]] ")

<Field> optional, only data from one of the following fields:
"Status " indicates the terminal status:

"error " terminal inaccessible.
"valid " terminal ready.

"Port " COM-port and index on which the terminal is connected:
"COM1" COM 1
"COM2-2" COM 2, third terminal

"Type ", "ShortName " Device type and short name, according to the following list:
"CHIPDRIVE micro" , "CDM"
"CHIPDRIVE extern I" , "CDX"
"CHIPDRIVE extern II" , "CDD"
"CHIPDRIVE intern" , "CDI"
"CHIPDRIVE twin Slot 1" , "CDT1"
"CHIPDRIVE twin Slot 2" , "CDT2"
"KartenZwerg" ,"KTZ" (OEM version)
"CardReader" , "CCR" (OEM version)

"Index " Index in the terminal list (see command Device,List).
"Version " Hardware revision number.
"Serial ", "LotNr " Lot and serial number (starting with hardware revision 4.3 a ROM

mask is used so these devices don’t have an unique lot and serial
number any longer; in this case the returned values are not related
to a explicit terminal).

"Baudrate " Current COM-port transmission speed.
"MaxBaudrate " Maximum transmission speed for this device (not the card!).
"Led " Status display (see command Device,SetLed)
"Caps" Supported types of smartcards (comma separated string):

"MEM" memory smartcards.
"CPU" processor smartcards

"Mode" Select mode for this device:
,,"AUTO" automatically selected by the SCardServer.
"SELECTED" selected explicitly (see Device,Select).

"MouseDetect " Mouse state:
"1" mouse detected.
(empty) no mouse detected.

"PowerFail " Error counter for power supply failures(see also command
Device,CheckPowerFail).

<DataX> The requested data.

SCardServer V2.14 SCardServer Documentation - Release 2001-05-31

© 1998-2001, Towitoko AG - 22/22 -

Example 1: Device,Info returns all values separated by the characters CR+LF (=#13#10).

Command Str("Device,Info ")
DataIn: nil
DataOut: Str(" Status=valid
 Port=COM2
 Type=CHIPDRIVE micro
 (...)
 MouseDetect=1 ")

Example 2: If the command string is supplemented by a keyword, only the specified parameter
is returned, e.g. only the current device type.

Command: Str("Device,Info,Type ")
DataIn: nil
DataOut: Str("CHIPDRIVE micro ")

'HYLFH�,QIR'HYLFH,'�

This is quite similar to the command Device,Info , but relating to a specified terminal within
the terminal list (see command Device,List). There is no need to select this terminal, which
would not work if it is already occupied by another application.

Command: Str("Device,InfoDeviceID,<DevID>[,<Field>] ")
DataIn: nil
DataOut: Str("<Data1>#13#10[<Data2>#13#10[...]] ")

<DevID> Terminal index ("0" = first entry).
<Field> Optional, analogous to <Field> at command Device,Info .
<DataX> Analogous to <DataX> at command Device,Info .

Example: Command: Str("Device,InfoDeviceID,1,Port ")

DataIn: nil
DataOut: Str("COM1")

'HYLFH�,QIR'HYLFH,'&DUG�

This is quite similar to the command Card,Info , but relating to a card in a specified terminal
within the terminal list (see command Device,List). There is no need to select this terminal
which would not work if it is already occupied by another application
Command: Str("Device,InfoDeviceIDCard,<DevID>[,<Field>] ")
DataIn: nil
DataOut: Str("<Data1>#13#10[<Data2>#13#10[...]] ")

<DevID> Terminal index ("0" = first entry).
<Field> Optional, analogous to <Field> at command Card,Info .
<DataX> Analogous to <Data> at command Card,Info .

Example: Request card type in terminal 1.

Command: Str("Device,InfoDeviceIDCard,1,Type ")
DataIn: nil
DataOut: Str("SLE4428")

SCardServer Documentation - Release 2001-05-31 SCardServer V2.14

 - 23/23 - ©1998-2001, Towitoko AG

'HYLFH�/LVW�

Returns a list of all terminals connected to the SCardServer. The entries are separated by the
characters CR+LF (=#10#13) each.

Command: Str("Device,List ")
DataIn: nil
DataOut: Str("<Dev1>#13#10[<Dev2>#13#10[...]] ")

<DevX> N ame and port, index if necessary.

Example: Command: Str("Device,List ")
DataIn: nil
DataOut: Str(" 'CHIPDRIVE micro' at COM2

'CHIPDRIVE exten I' at COM2-1
'CHIPDRIVE twin Slot1' at COM3
'CHIPDRIVE twin Slot2' at COM3 ")

'HYLFH�5HIUHVK�

Refreshes the device list, but will not search for new devices.

Command: Str("Device,Refresh ")
DataIn: nil
DataOut: nil

'HYLFH�6HOHFW�

This command can be used to select a specific terminal from the terminal list or to activate the
automatic terminal selection.

Command: Str("Device,Select[,<Device>] ")
DataIn: nil
DataOut: nil

<Device> Optional, one of these:
"-1 " Automatic terminal selection.
<Index> Index in the terminal list (e.g. "0" = first entry).
<Typ> See list at Device,Info,Type).
<ShortName> See list at Device,Info,ShortName .
<Port> Port and number (e.g. "COM3" or "COM2-1").

Furthermore, the combinations <Typ><Port> and <ShortName><Port>

If more than one device matches the given criteria (e.g. COM port for CHIPDRIVE twin or short
name when several terminals are present) the first matching device in the list is selected. This
list is not supposed to be sorted according to the COM ports. The following criteria apply to an
automatic selection:
- If no valid or active cards are present the first valid terminal from the list is selected,
- If a valid card is present in any terminal this terminal becomes the active terminal for a

application and remains assigned until the card is removed.

Example: Select CHIPDRIVE micro at COM1.

Command: Str("Device,Select,CHIPDRIVE micro COM1 ")
DataIn: nil
DataOut: nil

SCardServer V2.14 SCardServer Documentation - Release 2001-05-31

© 1998-2001, Towitoko AG - 24/24 -

'HYLFH�6HDUFK&RP3RUW�

Use this command for initiating a search for a terminal device on the indicated COM-Port. Since
all devices are Plug&Play capable this command should be used in case of exception only, e.g.
if Plug&Play detection fails or after a previous modification of the terminal list with the command
Device,Remove . If a terminal is detected, the SCardServer determines all device specific data
such as device type and serial number. Functional devices are stored in the INI file of the
SCardServer. On the next start of the SCardServer, previously detected devices are again
tested and installed

Command: Str("Device,SearchComPort [,<Port>] ")
DataIn: nil
DataOut: nil

<Port> Optional, number of the COM port on which the terminal is connected; If no
parameter is assigned all COM ports not used otherwise are searched.

Example: Search a device on COM1.

Command: Str("Device,SearchComPort,1 ")
DataIn: nil
DataOut: nil

'HYLFH�5HPRYH�

This command will cause the SCardServer to permanently remove a terminal from its list and
the serial port will be released. With the command Device,SearchComPort a terminal can be
reconnected again.
Disconnecting a terminal from the serial port will also cause the SCardServer to release the port
itself momentarily. However, the SCardServer will check for about 30 seconds to see if the
CHIPDRIVE reappears and in this case, will automatically add it to the terminal list again.

Command: Str("Device,Remove,<DevID> ")
DataIn: nil
DataOut: nil

<DevID> Terminal index ("0" = first entry).

Example: Delete the terminal 1.

Command: Str("Device,Remove,1 ")
DataIn: nil
DataOut: nil

'HYLFH�6HW0RGH�

Reserved for internal use.

SCardServer Documentation - Release 2001-05-31 SCardServer V2.14

 - 25/25 - ©1998-2001, Towitoko AG

'HYLFH�&KHFN3RZHU)DLO�

This command checks to see if there is enough power available for the card. In case of a lack of
power, the communication with the card can be disturbed or even break down. The
consequence of wrong or cut off commands caused but such a failure could cause a card to be
locked or even permanently damaged. An application should check this counter if several card
commands return invalid data or unusual error codes. To recharge the battery of a CHIPDRIVE
(if available), connect the device to the running computer for about half an hour.

Command: Str("Device,CheckPowerFail ")
DataIn: nil
DataOut: Str("<FailCount> ")

<FailCount> Power failure counter that is incremented on each error in the card’s power
supply.

Example: Command: Str("Device,CheckPowerFail ")
DataIn: nil
DataOut: Str("0")

'HYLFH�6HW/HG�

This command refers to the active terminal of your application and controls its status display.
We do not recommend a manual control of this LED since the SCardServer usually does this.
Any LED setting will last until the next LED command is issued. This can either be issued by
your application or by the SCardServer in case of a card event or card access. An application
can never get permanant control over the status LED.

Command Str("Device,SetLed,<ColorStr> "")
DataIn: nil
DataOut: nil

<ColorStr> Max. 8 characters, according to this color ID:
"0" = off, "1" = red, "2" = green, "3" = yellow.

Example1: Slow red blinking.

Command: Str("Device,SetLed,0011 ")
DataIn: nil
DataOut: nil

Example2: Steady green signal.

Command: Str("Device,SetLed,2 ")
DataIn: nil
DataOut: nil

Example3: Red green yellow cycling.

Command: Str("Device,SetLed,123 ")
DataIn: nil
DataOut: nil

SCardServer V2.14 SCardServer Documentation - Release 2001-05-31

© 1998-2001, Towitoko AG - 26/26 -

&RPPDQG�6HW�&$5'�

&DUG�,QIR�

Returns a list with card specific information.

Command: Str("Card,Info[,<Field>] ")
DataIn: nil
DataOut: Str("<Data1>#13#10[<Data2>#13#10[...]] ")

<InfoField> optional, only the data from one of these fields:
"Status " Card state:

"error " terminal/card error.
"wait " no card in slot.
"detect " card inserted and detection in progress.
"invalid " card invalid or not identified.
"valid " card valid, available to any application.
"active " card valid, locked by your application.
"locked " card valid, locked by another application.

"LockedBy " Index and name of the active application within the task list, comma
separated string (see command System,Tasklist).

"LinkerApps " Reserved for internal use.
"LinkerCards " Reserved for internal use.
"PtsAuto " Reserved for internal use.
"PtsBinary " The four characters PTSS, PTS0, PTS01 and PCK of the PTS

(PTS2 and PTS3 are not used and skipped), only available after a
PTS has been issued.

"PtsBinaryLen " See PtsBinary .
"Baudrate " Current baud rate of the card.
"CardCount " Number of cards inserted since the last reboot.
"CardPower " Power state of the current card; a memory card is deactivated about

two seconds after the last access, a smart card remains active.
"0" card active.
"1" card deactivated.

"Type " The chip type of a memory card. The most recent list can be found
on our homepage at http://www.towitoko.de.

"Protocol " The card’s current protocol:
"ATR" cards with special bit protocols (e.g. SLE4406/4436).
"2W" 2-Wire protocol.
"3W" 3-Wire protocol.
"I2C " I2C-bus protocol.
"I2CX " I2C-bus protocol with 2 byte addressing.
"XC... " special I2C-bus protocols for XICOR chips.
"T0", "T1" CPU smart card protocols..

"Apps " List of detected card application modules (separated by comma):
"KVK" valid German health insurance card.
"TWK" German prepaid telecom debit card.
"TLV" valid TLV structure.

"MemSize" Memory cards only: size of accessible data memory in bytes.
"PinSize " Memory cards only: size of the PIN in bytes.
"PinCnt " Memory cards only: remaining number of PIN entry trials.
"PageSize " I2C memory cards only: page size for write commands.
"ErrMem" Memory cards only: error counter for write and verify access.

SCardServer Documentation - Release 2001-05-31 SCardServer V2.14

 - 27/27 - ©1998-2001, Towitoko AG

"ErrMemPB" Memory cards only: error counter for write and verify access to the
 protection bits.
"AtrBinary " ATR in binary form (not available for all memory cards).
"AtrBinarySize " See AtrBinary .
"AtrHistory " T0/T1 smartcards only: history bytes according to ISO7813-3.
"AtrHistorySize " See AtrHistory .
"TS", "T0",
"TA1"-"TD8" Decoded ATR according to ISO7816-3.
"SAD", "DAD" T1 smartcards only: source and destination address.
"IFSC ", "IFSD " T1 smartcards only: buffer size of card and terminal.
"CWT", "BWT" T0/T1 smartcards only: character and block wait time.

<DataX> The requested data.

Example1: Card,Info returns all values, separated by the characters CR+LF (=#13#10).

Command: Str(" Card,Info ")
DataIn: nil
DataOut: Str(" Status=active

LockedBy=1,Value Card Station
Type=CPU
Protocol=T1
CardCount=4
CardPower=0
Baudrate=9600
(....) ")

Example 2: If the command string is supplemented by a keyword, only the specified parameter
is returned, e.g. only the current card’s historical bytes.

Command: Str("Card,Info,ATRHistroy ")
DataIn: nil
DataOut: 0x65 0x63 0x06 0x03 0x14 0x02 0x50 0x00 0x06 0x51

0x04 0xB7 0x3E 0x01 0x41

&DUG�/RFN�

Locks a card form access by other applications. The command can only be executed if a valid
card is present in the terminal and no other application currently is processing this card
(Card,Info,Status = "VALID "). The command only needs to be issued if a card is to be
processed again after it has been released with Card,Unlock for other applications.

Command: Str("Card,Lock ")
DataIn: nil
DataOut: nil

&DUG�8QORFN�

This command is used to release a card for processing by other applications. Before assigning
the card to another application a reset is performed and any acquired access rights are lost.

Command: Str("Card,Unlock ")
DataIn: nil
DataOut: nil

SCardServer V2.14 SCardServer Documentation - Release 2001-05-31

© 1998-2001, Towitoko AG - 28/28 -

&DUG�0HP'LVDEOH&DFKH���&DUG�0HP(QDEOH&DFKH�

Disables or enables the cache function for memory cards, i.e. even data already read is
physically read again from the card for each access. The card is enabled by default.

Commands: Str("Card,MemDisableCache ")
Str("Card,MemEnableCache ")

DataIn: nil
DataOut: nil

&DUG�,QLW%ZW&ZW���&DUG�,QLW6DG'DG���&DUG�,QLW,IVG,IVF�

Allows setting the Block Waiting Time (time-out of the first character of a block in ms) and the
Character Waiting Time (time-out for the following characters in ms) manually. The initial values
that are taken from the ATR are overwritten.

T=1 smartcards also allow setting a Source Address and a Destination Address. Initially both
values are set to zero. Furthermore, the terminal’s buffer size and the smartcard’s buffer size
can also be set. The initial values are taken from the ATR.

Commands: Str("Card,InitBwtCwt,<Bwt>,<Cwt> ")
 Str("Card,InitSadDad,<Sad>,<Dad> ")
Str("Card,InitIfsdIfsc,<Ifsd>,<Ifsc> ")

DataIn: nil
DataOut: nil

<Bwt> Block Waiting Time (decimal 0 – 60.000 , i. e. 1 ms to 60 seconds)
<Cwt> Character Waiting Time (decimal 0 – 60.000 , i. e. 1 ms to 60 seconds)
<Sad> Source Address (decimal 0 - 255).
<Dad> Destination Address (decimal 0 - 255).
<Ifsd> Terminal ‘s buffer size (decimal 0 - 255).
<Ifsc> Smartcard ‘s buffer size (decimal 0 - 255).

Example: Set a block waiting time of 1600 ms and a character waiting time of 4 ms.

Command: Str("Card,InitBwtCwt,1600,4 ")
DataIn: nil
DataOut: nil

&DUG�5HVHW�

This command initiates a hardware reset of the card and any obtained access rights are lost.
Such a reset is also performed every time a card is handed from one application to another.
Command: Str("Card,Reset ")
DataIn: nil
DataOut: nil

SCardServer Documentation - Release 2001-05-31 SCardServer V2.14

 - 29/29 - ©1998-2001, Towitoko AG

&DUG�$3'8�

This command sends an APDU to the card and receives the card’s response. ‘Case 1’, ‘Case 2
short’ up to ‘Case 4 short’ with maximum data length of 254 bytes are supported. The translation
to the T0/T1 protocol is done according to ISO7816-4. GSM return codes (9Fxx, 61xx and 6Cxx)
are not interpreted, this complies to the CTAPI specification of an APDU and not to ISO7816-4.

Command: Str("Card,APDU ")
DataIn: <CLA><INS><P1><P2>[<LC><DataIn>][<LE>]
DataOut: <SW1><SW2>[<DataOut>]

<CLA><INS> Class and Instruction, one byte each.
<P1><P2> Parameter 1 and 2, one byte each.
<LC><DataIn> Optional, <LC> (one byte) specifies the number of byte to be sent to the card,

<DataIn> contains these data bytes.
<LE> optional, one byte, expected length of <DataOut> in byte.
<SW1><SW2> Status Word, byte 1 and 2.
<DataOut> Optional, if <LE> is set it specifies the length in bytes.

The following cases are supported. Maximum data length is 254 byte.

• ISO CASE 1: Command without data.

DataIn: <CLA><INS><P1><P2>
DataOut: <SW1><SW2>

Example: DataIn: 0x00 0x42 0x05 0x01
DataOut: 0x90 0x00

• ISO CASE 2 short: Command with response data from the card (<Le> : 0x00 - 0xFF).
DataIn: <CLA><INS><P1><P2><LE>
DataOut: <SW1><SW2><DataOut>

Example: DataIn: 0x00 0x42 0x05 0x02 0x03
DataOut: 0x90 0x00 0x54 0x57 0x4B

• ISO CASE 3 short: Command with data block for the card (<Lc> : 0x01 - 0xFF).
DataIn: <CLA><INS><P1><P2><LC><DataIn>
DataOut: <SW1><SW2>

Example: DataIn: 0x00 0x42 0x05 0x03 0x03 0x54 0x57 0x4B
DataOut: 0x90 0x00

• ISO CASE 4 short: Command with data block and response data (<Le> : 0x01 - 0xFF).
DataIn: <CLA><INS><P1><P2><LC><DataIn><LE>
DataOut: <SW1><SW2><DataOut>

Example: DataIn: 0x00 0x42 0x05 0x04 0x03 0x54 0x57 0x4B 00x4
DataOut: 0x90 0x00 0x4A 0x55 0x50 0x21

SCardServer V2.14 SCardServer Documentation - Release 2001-05-31

© 1998-2001, Towitoko AG - 30/30 -

&DUG�,62$3'8�

This Command is similar to Card,APDU , but the return codes 61xx and 6Cxx are interpreted
and lead to a GetResponse command, i.e. T0- and T1-cards react identical on APDU level. This
complies with the exact ISO 7816-4 requirements and allows a T0 / T1 independent APDU.

Important: GSM-cards operate with the T0-protocol but are (unfortunately) not compatible
with ISO-standards with respect to the APDU since the return code 9Fxx is used
instead of 61xx.

&DUG�,62$3'8(;77����&DUG�,62$3'8(;77��

This command works similar to Card,APDU , but it allows sending extended APDUs with more
than 256 bytes of data to a T=0 or T=1 smartcard. Currently, only few smartcards support this
feature. Details about the structure of extended APDUs can be found in ISO 7816-4.

&DUG�7��

This command executes a T1 command (including chaining if necessary). The same ADPU
cases mentioned in Card,APDU are supported. But in contrast to Card,APDU , all data will be
passed to the card transparently. This can be necessary if crypted APDUs are used.

Command: Str("Card,T1 ")
DataIn: <DataIn>
DataOut: <SW1><SW2>[<DataOut>]
<DataIn> Can be an APDU or raw (crypted) data
<SW1><SW2> Status word, byte 1 and 2.
<DataOut> Optional, response data depending on <DataIn> .

Example: analogous to Card,APDU

&DUG�7�7;�

This command sends a T0 command with data to the card:

Command: Str("Card,T0TX ")
DataIn: <CLA><INS><P1><P2><P3><DataIn>
DataOut: <SW1><SW2>

<CLA><INS> Class and Instruction, one byte each.
<P1><P2><P3> Parameter 1, 2 and 3, one byte each.
<DataOut> Data block.
<SW1><SW2> Status Word, byte 1 and 2.

Example: analogous to Card,APDU

SCardServer Documentation - Release 2001-05-31 SCardServer V2.14

 - 31/31 - ©1998-2001, Towitoko AG

&DUG�7�5;�

This command sends a T0 command to the card and receives data from the card:

Command: Str("Card,T0RX ")
DataIn: <CLA><INS><P1><P2><P3>
DataOut: <SW1><SW2><DataOut>
<CLA><INS> Class and Instruction, one byte each.
<P1><P2><P3> Parameter 1, 2 and 3, one byte each.
<SW1><SW2> Status word, byte 1 and 2.
<DataOut> Response data from the card, length depends on the command.

Example: analogous to Card,APDU

&DUG�7VS7[5[/HQ�

Sends a string to the card and receives a given number of bytes from the card. The command
does not respect any protocols, i.e. sends and receives absolutely transparent on byte level.
The time-out values CWT and BWT are effective here as well.

Command: Str("Card,TspRxLen,<RxLen ")
DataIn: <DataIn>
DataOut: <DataOut>

<RxLen> number of bytes expected as response data from the card (decimal).
<DataIn> data to be sent to the card
<DataOut> response data, length given in <RxLen>

Example: analogous to Card,APDU

&DUG�376�

Sets the smart card’s protocol and data transfer speed. If these features are supported by the
card. The PTS (Protocol Type Selection) consists of the six characters PTSS (PTS-ID), PTS0-
PTS3 and PCK (Checksum). The characters PTS2 and PTS3 are currently unused.

Command: Str("Card,PTS,<N1><N2><N3> ")
DataIn: nil
DataOut: nil

<N1> Protocol (Bits 0-3 of PTS0, "0" = T0 and "1" = T1 are valid)
<N2> Clock rate conversion factor FI (Bits 4-7 of PTS1, "0" to "F")
<N3> Baud rate adjustment factor DI (Bits 0-3 of PTS1, "0" to "F")

N2 and N3 are necessary to change the smart card’s transfer rate. The default values are
obtained from the ATR’s TA1 character. Please refer to ISO 7816-3 and the smart card’s
documentation for other settings for N2 and N3 (FI and DI) and thus for the possible transfer
rates.

Example: Set protocol T0, FI = 1, DI = 1

Command: Str("Card,PTS,011 ")
DataIn: nil
DataOut: nil

SCardServer V2.14 SCardServer Documentation - Release 2001-05-31

© 1998-2001, Towitoko AG - 32/32 -

&DUG�0HP5HDG�

Reads the selected area from a memory card’s data memory. Independent of any of the
supported memory chips (most recent list available at http://www.towitoko.de).

Command: Str("Card,MemRead,<Offset>,<Len> ")
DataIn: nil
DataOut: <DataOut>

<Offset> Offset of the first byte to read (0 = first byte of card memory) .
<Len> Number of bytes to read.
<DataOut> Data read.

Example: Read 21 bytes starting at offset 16.

Command: Str("Card,MemRead,16,21 ")
DataIn: nil
DataOut: 0x48 0x65 0x6C 0x6C 0x6F 0x20 0x53 0x6D 0x61 0x72

0x74 0x43 0x61 0x72 0x64 0x20 0x57 0x6F 0x72 0x6C
0x64 (as String: "Hello SmartCard World")

&DUG�0HP:ULWH�

Writes data to a memory card’s data memory, independent of any of the supported memory
chips (most recent list available at http://www.towitoko.de). If the cache function is active
(default), only data bytes which have actually changed are written to the card – but this only
works if the same data areas have been previously read from the card. Every write access is
(internally) followed by a verify command. In case of a write error, Card,MemReadStatus can
be used to retrieve the exact result.

Command: Str("Card,MemWrite,<Adr>,<Len> ")
DataIn: <DataIn>
DataOut: nil

<Adr> Offset of the first bye to write.
<Len> Number of bytes to write.
<DataOut> Data to write.

Example: Write "Hello SmartCard World" (21 characters/bytes) at offset 16.

Command: Str("Card,MemWrite,16,21 ")
DataIn: 0x48 0x65 0x6C 0x6C 0x6F 0x20 0x53 0x6D 0x61 0x72

0x74 0x43 0x61 0x72 0x64 0x20 0x57 0x6F 0x72 0x6C
0x64 (as string "Hello SmartCard World")

DataOut: nil

SCardServer Documentation - Release 2001-05-31 SCardServer V2.14

 - 33/33 - ©1998-2001, Towitoko AG

&DUG�0HP9HULI\�

Performs a byte by byte comparison between the transmitted data and the data stored on a
memory card. The number of errors in data bytes and write protection bits can also be retrieved
with Card,Info . In case of a verify error the error code 0x1310 (”Card access failed “) is
returned. By using Card,MemReadStatus the exact result of the comparison can be retrieved.

Command: Str("Card,MemVerify,<Adr>,<Len> ")
DataIn: <VerifyData>
DataOut: nil

<Adr> Offset of the first byte to check (0 = first byte in card memory).
<Len> Number of bytes to compare, must be length of <VerifyData> .
<VerifyData> Data bytes to compare with card memory.

Example: Verify "Hello SmartCard World" (21 characters/bytes) at offset 16.

Command: Str("Card,MemVerify,16,21 ")
DataIn: 0x48 0x65 0x6C 0x6C 0x6F 0x20 0x53 0x6D 0x61 0x72

0x74 0x43 0x61 0x72 0x64 0x20 0x57 0x6F 0x72 0x6C
0x64 (as string "Hello SmartCard World")

DataOut: nil

&DUG�0HP5HDG3%���&DUG�0HP:ULWH3%���&DUG�0HP9HULI\3%�

These three commands are similar to the previous three commands Card,MemRead /
Card,MemWrite and Card,MemVerify , but the functions do not relate to the data memory
but instead to the write protect information of the card. Some cards allow the activation of the
write protection independently for any (or a subset) of the data memory.

Important: Once a write protection bit is set, some cards (e.g. SLE4428 or SLE4442) don’t
allow resetting it again. Thus, this data byte can’t be changed any longer

Every byte transmitted in <DataIn> or received in <DataOut> resembles the information on
the write protection of one data byte on the card. The following values are defined:

0x00 : write protection not active.
0x01 : write protection active.

&DUG�0HP6HW3%�

Activates the write protection for the specified address range of the card. The same result can
be archived with Card,MemWritePB but for most cases this command is easier to use.

Command: Str("Card,MemVerify,<Adr>,<Len> ")
DataIn: nil
DataOut: nil

<Adr> Offset of the first byte to set the protection bit for (0 = first byte).
<Len> Number of bytes to set the protection bits for.

Example: Set the protection bit for the next 21 bytes starting at offset 16.

Command: Str("Card,MemSetPB,16,21 ")
DataIn: nil
DataOut: nil

SCardServer V2.14 SCardServer Documentation - Release 2001-05-31

© 1998-2001, Towitoko AG - 34/34 -

&DUG�0HP5HDG6WDWXV�

Reads status information on the cache, write protection and verify errors.

Command: Str("Card,MemReadStatus,<Adr>,<Len> ")
DataIn: nil
DataOut: <Status>

<Adr> Offset of the first byte to read the status information for (0 = first byte).
<Len> Number of bytes to read the status information for.
<Status> The status information is encoded as follows:

Bit 7 (0x80 , MSB): verify error on data byte.
Bit 6 (0x40): verify error on protection bit.
Bit 3 (0x08): data byte already in cache.
Bit 2 (0x04): write protection bit already in cache.
Bit 0 (0x01 , LSB): write protection bit set for this data byte.

Example: Read status information for 21 bytes starting at offset 16. The data any write
protection bit are already present in the cache for every byte. Furthermore the first
five bytes are write protected.

Command: Str("Card,MemReadStatus,16,21 ")
DataIn: nil
DataOut: 0x0D 0x0D 0x0D 0x0D 0x0D 0x0C 0x0C 0x0C 0x0C 0x0C

0x0C 0x0C 0x0C 0x0C 0x0C 0x0C 0x0C 0x0C 0x0C 0x0C
0x0C

SCardServer Documentation - Release 2001-05-31 SCardServer V2.14

 - 35/35 - ©1998-2001, Towitoko AG

&DUG�0HP9HULI\3LQ�

Runs a PIN verification test of the card which may be required to get write or read access to the
data contents. The PIN is given as a plain text string, and valid characters are "0" to "9" and
"AA" to ”A".

Command: Str("Card,MemVerifyPin,<PIN>[,<Nr>] ")
DataIn: nil
DataOut: nil

<PIN> The PIN.
<Nr> Optional, number of PIN if card supports multiple PINs.

Important: If a wrong PIN is given too often, the card might be locked forever and thus become

unusable. Please see the card’s manual for details.

Example1: Run a PIN verification with the PIN "1234 ".

Command: Str("Card,MemVerifyPin,1234 ")
DataIn: nil
DataOut: nil

Example2: Run a PIN verification with "89ABCD" for PIN number 4.

Command: Str("Card,MemVerifyPin,98ABCD,4 ")
DataIn: nil
DataOut: nil

&DUG�0HP&KDQJH3LQ
Change the card’s PIN. The PIN is given as a plain text string and valid characters are "0" to "9"
and "A" to "F".

Command: Str("Card,MemChangePin,<PIN>,<NewPIN>[,<Nr>] ")
DataIn: nil
DataOut: nil

<PIN> The current PIN.
<NewPIN> The new PIN.
<Nr> O ptional, number of PIN if card supports multiple PINs.

Important: If a wrong PIN is given too often, the card might be locked forever and thus become
unusable. Please see the card’s manual for details.

Example1: Change PIN from "AB34" to "5678 ".

Command: Str("Card,MemChangePin,AB34,5678 ")
DataIn: nil
DataOut: nil

Example2: Change PIN number 2 from "987F " to "CD12"

Command: Str("Card,MemChangePin,987F,CD12,2 ")
DataIn: nil
DataOut: nil

SCardServer V2.14 SCardServer Documentation - Release 2001-05-31

© 1998-2001, Towitoko AG - 36/36 -

&DUG�0HP6SHFLDO�
Returns a list of special commands which are supported by the current card. Currently, such
commands are implemented for the chip types SLE4404, SLE4406 and SLE4436.

Command: Str("Card,MemSpecial ")
DataIn: nil
DataOut: Str("<Cmd1>[,<Cmd2>[...]] "
<CmdX> Special command

Example: Special commands for a SLE4436

Command: Str("Card,MemSpecial ")
DataIn: nil
DataOut: Str("Deduct,ProgUser,ProgAuxData ")

Warning: Sending the following commands to a card may lock it or even make it unusable.
The commands will not be explained. Please refer to the data sheets for a detailed
description. Towitoko can neither provide these data sheets nor offer any support
about these commands.

The cache function is disabled for the following commands. DataIn must contain the entire
card memory with changes. DataOut is empty (nil).
The first by of the card memory has the offset 0x00. Every byte is interpreted with the least
significant bit first and the most significant bit last, i.e. 1100 1010 corresponds to 0x53.
Turning a bit from 1 to 0 is called writing and turning one from 0 to 1 is called erasing. In
general, erasing is not always possible.

SLE4404: Verifying the correct User Code with Card,MemVerifyPin once is required before
issuing one of the following SLE4404 specific commands. This also deletes the
card’s error counter.

&DUG�0HP6SHFLDO�3URJ,VVXHU$UHD��(SLE4404)�
Allows modifying the Issuer Area (offset 0x02-0x07) while the Fuse is not blown.

&DUG�0HP6SHFLDO�3URJ8VHU&RGH��(SLE4404)�
Allows changing the User Code (offset 0x08-0x09). The command Card,MemChangePin can
also be used.

&DUG�0HP6SHFLDO�3URJ(UURU&RXQWHU��(SLE4404)�
Allows modifying the Error Counter area (offset 0x0A-0x0B). The real counter is located in the
first four bytes at offset 0x0A. The remaining 12 bits are unused. The card becomes locked if the
first four bits are each set to 0.

&DUG�0HP6SHFLDO�3URJ6FUDWFK3DG0HPRU\��(SLE4404)�
Allows modifying the Scratch Pad Memory area (offset 0x0C-0x0D).

SCardServer Documentation - Release 2001-05-31 SCardServer V2.14

 - 37/37 - ©1998-2001, Towitoko AG

&DUG�0HP6SHFLDO�3URJ8VHU0HPRU\��(SLE4404)�
Allows writing to the User Memory area (offset 0x0E-0x27). Bits can only turn from 1 to 0. If the
Fuse is blown, access may also depend on several other status bits.

&DUG�0HP6SHFLDO�3URJ0HPRU\&RGH��(SLE4404) �
Allows modifying the Memory Code (offset 0x28-0x2B) while the Fuse is not blown. When the
Fuse is blown, this command must be used to verify the Memory Code before erasing the User
Memory area becomes possible.

&DUG�0HP6SHFLDO�3URJ0HPRU\&RXQWHU��(SLE4404)�
Allows modifying the Memory Counter area (offset 0x2C-0x34). When the fuse is not blown,
writing and erasing is possible. Otherwise bits can only be written, i.e. be turned from 1 to 0.

&DUG�0HP6SHFLDO�(UDVH8VHU0HPRU\��(SLE4404)�
After verifying the correct Memory Code with Card,MemSpecial,ProgMemoryCode , this
command allows erasing the whole User Memory area. Every erasing attempt will also cause
one bit in the Memory Counter area to be set from 1 to 0. If no bit is left here, erasing becomes
impossible.

&DUG�0HP6SHFLDO�3URJ)XVH��(SLE4404)�
Allows blowing the card’s Fuse. Set bit 5 at offset 0x3E to 0 (value 0xEF). After the fuse is
blown, some memory is protected and can’t be modified any longer. Blowing the Fuse is
irreversible.

&DUG�0HP6SHFLDO�'HGXFW��(SLE4406, SLE4436))�
Allows writing to the Counter Area (offset 0x08- 0x0C). Bits can only turn from 1 to 0, except on
carry. This is detected and handled.

&DUG�0HP6SHFLDO�3URJ8VHU��(SLE4436)�
Allows writing to the User Memory area (offset 0x28-0x2F), if possible. Bits can only turn from 1
to 0.

&DUG�0HP6SHFLDO�3URJ$X['DWD��(SLE4436)�
Allows writing to the Auxiliary Data area (offset 0x0E-0x0F). Bits can only turn from 1 to 0.

SCardServer V2.14 SCardServer Documentation - Release 2001-05-31

© 1998-2001, Towitoko AG - 38/38 -

&RPPDG�6HW�$336�
These commands include modules which provide an easy access to functions which are used
frequently.

$SSV�7/9�

This module provides easy access to memory cards with a Tag-Length-Value (TLV) structure.
This format uses the first byte for a tag ID or name. The second byte specifies the length of the
data which starts at the third byte. If the bit 5 (0x40) is set in the tag name, the data itself
contains another TLV structure – similar to a sub directory.

$SSV�7/9�/LVW�
Returns a list of all TLV tags with complete path and data length. Name and length are
separated by commas. List entries are separated by CR+LF (= #13#10). Length is given in
decimal form.

Command: Str("Apps,TLV,List ")
DataIn: nil
DataOut: Str("<Tag1>,<Length1>#13#10[<Tag2>,<Length2>#13#10[...]] ")
<TagX> Path and name of tag.
<LengthX> Length of data in bytes (decimal form).

Example: Tag 0x61 with length 10 contains two sub-tags: 0x4F with 5 bytes of data and 0x53

with 1 bytes of data.
Command Str(" Apps,TLV,List ")
DataIn nil
DataOut Str(" 61,10

 614f,5
 6153,1 ")

$SSV�7/9�5HDG7DJ�

Read the data of a given tag.

Command: Str(" Apps,TLV,ReadTag,<Tag> ")
DataIn: nil
DataOut: <TagData>
<Tag> Path and name of a tag.
<TagData> Data of this tag.

Example: Read tag 0x61 , it contains a sub directory with the tags 0x4F with 5 data bytes and
tag 0x53 with 1 data byte.

Command: Str("Apps,TLV,ReadTag,61 ")
DataIn: nil
DataOut: 0x4F 0x05 0x01 0x02 0x03 0x04 0x05 0x53 0x01 0x01

$SSV�7/9�:ULWH7DJ�

This command is currently not implemented.

SCardServer Documentation - Release 2001-05-31 SCardServer V2.14

 - 39/39 - ©1998-2001, Towitoko AG

$SSV�7:.�

Returns the decoded fields of a German prepaid telephone debit card.

Command: Str("Apps,TWK[,<Field>] ")
DataIn: nil
DataOut: Str("<Data1>#13#10[<Data2>#13#10[...]] ")
<Field> Data field, these names are valid: "Seriennummer ", "Hersteller ", "Datum",

"Orginalwert ". "Restwert ", "Chipcode ", "ChipHersteller ",
"Betreiber "

<DataX> The data.

Note: The last two digits of the card’s 9- or 11 digit serial number are only printed on the
card, but not stored on the chip. Thus, there are 100 cards with an equal serial
number.

Example 1: Apps,TWK returns all values, separated by the characters CR+LF (#13#10).

Command: Str("Apps,TWK")
DataIn nil
DataOut Str(" Seriennummer=131212752

Hersteller=Giesecke & Devrient, München
Datum=DEZ 19x3
Orginalwert=50,00 DM
Restwert=0,00 DM
Chipcode=1304
ChipHersteller=THOMSON
Betreiber=Deutsche Telekom AG ")

Example 2: If the command string is supplemented by a keyword, only the specified parameter
is returned, e.g. only the remaining value.

Command Str("Apps,TWK,Restwert ")
DataIn nil
DataOut Str("0,00 DM ")

SCardServer V2.14 SCardServer Documentation - Release 2001-05-31

© 1998-2001, Towitoko AG - 40/40 -

$SSV�.9.�

Decodes the fields of a German health insurance card. The data on this card is stored in a TLV
structure.

Command: Str("Apps,KVK[,<Field>] ")
DataIn: nil
DataOut: Str("<Data1>#13#10[<Data2>#13#10[...]] ")
<Field> Data field, the following names are valid: "Krankenkasse ", "KNummer",

"VkNr ", "VNummer","Status, "StatusExt ", "Titel ", "Vorname ",
"Zusatz ", "Name", "GebDatum", "Strasse ", "Land ", "PLZ", "Ort ",
"Gultigkeit "

<DataX> The data.

Example 1: Apps,KVK returns all values, separated by the characters CR+LF (#13#10).

Command: Str("Apps,TWK")
DataIn nil
DataOut Str(" Krankenkasse=Bundesknappschaft

KNummer=9905003
VkNr=74701
VNummer=1234567801
Status=1000
StatusExt=1
Titel=Dr.
Vorname=Martin
Zusatz=Baron
Name=Mustermann
GebDatum=12031960
Strasse=Alte Holstenstraße 46
Land=D
PLZ=21031
Ort=Hamburg
Gultigkeit=1201 ")

Example 2: If the command string is supplemented by a keyword, only the specified parameter
is returned, e.g. only the date until the card is valid.

Command Str("Apps,TWK,Gultigkeit ")
DataIn nil
DataOut Str("1201 ")

SCardServer Documentation - Release 2001-05-31 SCardServer V2.14

 - 41/41 - ©1998-2001, Towitoko AG

$SSV�,62���$SSV�(&%���$SSV�*60���$SSV�753���$SSV�3$<�

These commands will not be implemented.

SCardServer V2.14 SCardServer Documentation - Release 2001-05-31

© 1998-2001, Towitoko AG - 42/42 -

&RPPDQG�7UHH�
Here is a complete list of all SCardServer commands organized as a tree:

System Info ErrCode
 ErrText
 Handle
 Lng
 UsedMemHeap
 UsedMemTotal
 VersionCode
 VersionText
 TaskList
 Create
 Destroy
 TaskTitele
 TaskPath
 AddHWndMsg
 DelHWnd
 SetMainHWnd
 SetLng
 ConvertErrCode
 Comands
 CryptKey DES
 GenCryptKey DES

Device Info Status
 Port
 Type
 ShortName
 Index
 Version
 Serial
 LotNr
 Baudrate
 MaxBaudrate
 Led"
 Caps
 Mode
 MouseDetect
 PowerFail
 CheckPowerFail
 List
 Refresh
 Select
 SearchComPort
 Remove
 InfoDeviceID
 InfoDeviceIDCard
 SetLed
 SetMode

Card Info Status
 LockedBy
 LinkerApps
 LinkerCards
 PtsAuto
 PtsBinary
 PtsBinaryLen
 Baudrate
 CardCount
 CardPower
 Type
 Protocol
 ATR
 Apps
 MemSize
 PinSize
 PinCnt
 PageSize
 ErrMem
 ErrMemPB
 AtrBinary
 AtrBinarySize
 AtrHistory
 AtrHistorySize
 TS, T0, TA1..TD8
 SAD
 DAD
 IFSC
 IFSD
 CWT
 BWT
 Lock
 Unlock
 APDU
 ISOAPDU
 Reset
 T0TX
 T0RX
 T1
 PTS
 TspTxRxLen
 InitBwtCwt
 InitSadDad
 InitIfsdIfsc
 MemDisableCache
 MemEnableCache
 MemRead
 MemWrite
 MemVerify
 MemReadPB
 MemWritePB
 MemVerifyPB
 MemSetPB
 MemReadStatus
 MemVerifyPin
 MemChangePin
 MemSpecial
 Deduct
 ProgUser
 ProgAuxData

Apps TLV List
 ReadTag
 WriteTag
 TWK Seriennummer
 Hersteller
 Datum
 Orginalwert
 Restwert
 Chipcode
 ChipHersteller
 Betreiber
 KVK Krankenkasse
 KNummer
 VkNr
 VNummer
 Status
 StatusExt
 Titel
 Vorname
 Zusatz
 Name
 GebDatum
 Strasse
 Land
 PLZ
 Ort
 Gultigkeit

SCardServer Documentation - Release 2001-05-31 SCardServer V2.14

 - 43/43 - ©1998-2001, Towitoko AG

)XUWKHU�,QIRUPDWLRQ�6RXUFHV�

,QWHUQHW�3DJHV�

Semiconductor companies:

Atmel http://www.atmel.com
Giesecke & Devrient http://www.gdm.de
Hitachi http://semiconductor.hitachi.com
Infineon (Siemens) http://www.infineon.com
Motorola http://www.mot-sps.com
Philips http://www.semiconductors.philips.com
Samsung: http://www.samsungsemi.com
ST Microelectronics (SGS Thomson) http://www.st.com
Texas Instruments http://www.ti.com
XICOR http://www.xicor.com

More links leading to manufacturers, interfaces etc. can be found at the Towitoko homepage
http://www.towitoko.de or at http://www.scdk.com

/LWHUDWXUH�

Wolfgang Rankl, Wolfgang Effing: Handbuch der Chipkarten
3. Auflage, März 1999, Carl Hanser, München, ISBN 3-446-21115-2

Francesco P. Volpe, Safinaz Volpe: Chipkarten. Grundlagen, Technik, Anwendungen
1996, Heinz Heise Verlag, Hannover, ISBN: 388229065X

Stefan Schütt, Bert Kohlgraf: Chipkarten
April 1996, R. Oldenbourg, München, ISBN 3-486-23738-1

Yahya Haghiri, Thomas Tarantino: Vom Plastik zur Chipkarte
November 1999, Carl Hanser, München, ISBN 3-446-21249-3

Patrick Horster: Chipkarten
1998, Vieweg, Wiesbaden, ISBN: 3528056673

Scott Guthery: Smart Card Developer´s Kit
Dezember 1997, Macmillan, ISBN 1-57870-027-2

Mike Hendry: Smart Card Security and Applications
September1997, Artech House Publishers; ISBN 0-89006-953-0

Dreifus Henry: Smart Cards: A Guide to Building and Managing Smart Card Applications
Dezember 1997, John Wiley & Sons, ISBN: 0471157481

SCardServer V2.14 SCardServer Documentation - Release 2001-05-31

© 1998-2001, Towitoko AG - 44/44 -

KartenZwerg® und CHIPDRIVE™ are trademarks of Towitoko AG.
Delphi® is a trademark of Inprise Corporation.
Windows 3.1®, Windows 95®, Windows 98®, Windows ME®, Windows NT® and Windows 2000 are trademarks
of Microsoft Corporation

