

Microchip

PIC16F876-20/P

102

20.000

47
2

22
0

22
0

47
0

47
0

47
2

47
2

472

MAX232

22
022

0

22
0

47
2

47
2

33
0

33
0

+
-

~

~

POWER

RESET

VCC

+5V

0V

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0CON1

CON2

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 1

Please Note.

Although every precaution has been taken with the preparation of this docu-
ment to ensure that any projects, designs or programs enclosed operate in a
correct and safe manner. The author and publisher assume no responsibility
for errors or omissions. Neither is any liability assumed for the failure of any
project, design or program, or any damage caused to equipment that it may
be connected to, or used in combination with.

Copyright Crownhill Associates. All right reserved. No part of this publication
may be reproduced, or distributed in any form or by any means without the
written permission of the publisher or author.

The Microchip logo and name are registered trademarks of Microchip Tech-
nologies.

The PROTON+ Compiler is a registered name of Crownhill Associates Ltd.

First Published by Crownhill Associates Ltd.
June 2003

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 2

Table of Contents.

INTRODUCTION 3

Interfacing a 14C02 Memory Card. 6
Physical characteristics of the 14C02. 6
Step by Step Guide. 7
I feel a Presence. 8
Storing data in the 14C02 memory card. 10

Interfacing a 24C16 Memory Card. 15

Interfacing a 24C256 Memory Card. 18
Something to think about. 18

Accessing the SLE4442 smart card. 19
Operation of the SLE4442 card. 19
Reset and Answer-to-Reset (ATR). 21
Operational Modes. 24
Outgoing Data Mode. 24
Processing Mode. 24
Commands. 24
Reading MAIN Memory. 25
Reading PROTECTION Memory. 30
Reading SECURITY Memory. 31
Open Wide Please. 33
Writing to MAIN memory. 38

PROTON SMART ELECTRICAL AND SOFTWARE SPECIFICATIONS. 52

WHAT IS A BOOTLOADER? 54

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 3

Introduction

What is a Smart card? In general a smart card is a plastic card, the size of a
credit card, with an embedded microprocessor containing an operating sys-
tem and erasable non-volatile memory. Physical protection against unauthor-
ized tampering with the card is provided by integrating the microprocessor
and memory in a single chip with special attention to ensure that there are
no data paths that can be monitored or probed. This secure chip is connected
to a thin circuit board and encapsulated with an epoxy. The "module" is then
glued within a well routed into the plastic card. This prohibits physical access
to the microprocessor and provides a more durable medium than more tradi-
tional magnetic stripe cards. In a smart card a microprocessor operates un-
der the control of a integral program called an operating system. A serial in-
terface - which makes it impossible to access the memory directly - is em-
ployed to communicate with the card. An ISO (International Standards Or-
ganization) protocol is used to exchange commands and data with the card.

Smart Cards come in two types: chip cards and chipless cards. Chip cards
contain an integrated circuit (IC) chip that gives the card "smartness" or the
ability to process data and make decisions about data.
The following questions and answers are from the web site for the Smart Card
Forum.
 Q: What is a contactless card?
 A: There are two types of contactless cards. The first is a
 contactless proximity card in which the card is read by inserting it
 in a special reader. The second is a remote contactless card, in
 which the card can be read from a distance such as at a toll both.

 Q: How is a chip card different from the magnetic stripe cards that
 I carry in my wallet or purse?
 A: Existing magnetic stripe cards usually access an on-line data
 base. A chip card carries more information than can be accommo-

dated
 on a magnetic stripe card. A chip card can make a decision; it has
 relatively powerful processing capabilities that allow it to do more
 than a magnetic stripe card, e.g. data encryption.

 Q: You will hear the terms "chip card," "integrated circuit card"
 and "smart card" used to refer to a plastic card with a chip. Are
 these different types of technology?
 A: No, a chip card is the same as an integrated circuit card. There
 are three types of integrated circuit cards:

Over the last decade, the use of smart cards has increased dramatically, to
the extent that few industries have not seen their introduction at some level.

Why smart cards? They resemble the familiar credit card in appearance, but

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 4

they can do a whole lot more than the simple magnetic strip cards. Smart
cards contain integrated circuits that give them the ability to retain and proc-
ess data. As a result, they have several benefits over the familiar magnetic
strip card:

• Without the magnetic strip, they are more secure, they don’t lose their
data during normal use

• They can store significantly more data than a magnetic strip card.
• They can be used for more than one application.
• They can be extremely secure, or not, as the application demands.

Currently the most common use for the smart card is for authentication,
whether GSM, PayTV, credit/debit cards, loyalty cards, however they are also
popular in areas such as, event logging cards, building security access cards,
and identification cards, telephone calling cards and vending machine pur-
chase cards.

Smart cards make excellent security devices. Where magnetic strip cards
used to be deployed smart cards are now becoming the norm, being more
user friendly and exhibiting a higher degree of security whilst being particu-
larly difficult to copy and at the same time possessing the capability of retain-
ing a larger amount of information, the Smart card is the natural choice for
security conscious applications.

Security is not the only asset of the smart card, memory is also a big factor in
its wide spread adoption. Where data needs collecting, storing or transporting
Smart cards make the ideal medium, being user friendly, robust and reliable.

 As technology moves forward Smart cards adopt and exploit the available
technology, Smart cards are now autonomously processing data. They are
able to receive and execute a program from the machine with which they are
communicating. These cards are able to interpret the program downloaded to
them and perform the appropriate processing, without machine or user inter-
vention.

Why Proton-SMART, because Proton-SMART provides a comprehensive intro-
duction to using the embedded micro-controller in a smart card environment,
starting with memory, leading to protected memory, then in module two and
three, specialist secure memory through to GSM and SCOS. Proton-SMART
will become an invaluable building block and essential tool in your venture
into this evolving technology.

Smart Card use in the embedded environment is usually only half of the total
package. Often smart cards are used with computers and terminals to allow
graphical user interfaces to be utilised to make the whole user experience
less alien.
Crownhill also supply a package to assist with Smart Card application devel-
opment, the “ChipDrive starter pack” , there are several different manufac-

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 5

turers of smartcards, terminals, and drivers. There are also many industry
standards for card protocols. The Crownhill ChipDrive starter pack aims to
make the integration of smartcards and terminals into your application as
easy as possible.

The ChipDrive starter pack is supplied with an Intelligent Smart Card reader
writer terminal, a selection of Smart Cards, example application Source code
in C, Delphi and VB for the Windows environment.

The Starter pack makes extensive use of the cardserver.dll API to ease access
to and use of many different cards. The ChipDrive card terminal is available
with Serial or USB interfaces and is compliant with PCSC as well as proprie-
tary communications protocols.

The ChipDrive starter pack has been utilized to create many very successful
commercial applications, integrating PC’s and embedded solutions, one ex-
ample of a ChipDrive application, created with the starter pack can be found
at www.edsim2000.com

The CHIPDRIVE StarterPack enables effective development of customized ap-
plications and systems using smart cards, card terminals, and PCs. Incorpo-
rate smart card technology into your current application using the Proton
Smart development system and the ChipDrive starter pack, Develop systems
specific to your needs as well as those of your clients.

 For more information on the ChipDrive Starter pack contact
lester@Crownhill.co.uk

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 6

Interfacing a 14C02 Memory Card.

The 14C02 card (sometimes supplied as 24C02) contains 2kbits of re-
programmable eeprom memory, which relates to 256 bytes. It is capable of
working from 3 to 5 Volts, and has an endurance of 1 million write cycles,
with a minimum data retention of 10 years. It uses a standard I2C interface
for communications, and is extremely easy to use with the PROTON+ Com-
piler.

In this era of multi megabyte media-cards, 256 bytes of memory is often
frowned upon, or is not seen as being useful. But not all applications require
megabytes of storage, or even kilobytes. For transporting a few bytes of code
from one application to another, the 14C02 is an ideal solution.

Physical characteristics of the 14C02.
Before we look at programming for the 14C02 memory card, we must take
some time out to look at the physical makeup of the card, or indeed, any
smartcard. Most smartcards follow a standard named ISO7816, (some more
loosely than others). This, among other things, dictates the physical appear-
ance of the card. i.e. size, and contact placements etc.

The 14C02 has a 6 pin (M3), or 8 pin (M4) footprint (shown below). These are
electrically identical, but the MODE pin is brought out for use on the M4
type. The MODE pin enables/disables write protection, and is often left float-
ing (which internally disables write protection). Hence the M3 footprint. It's
an ironic twist that the official datasheet for the 14C02 card shows an M4
footprint, but as of this date, no 14C02 card has ever been produced with an
M4 type contact pattern.

14Cxxx M3 Footprint.
 14Cxxx M4 Footprint.

As you can see, the card uses the standard I/O lines associated with the I2C
bus, namely SCL (clock), and SDA (data). One criteria of the ISO7816 stan-
dard, is the placement of the VCC, GND, and I/O lines on the card's contact
footprint. All cards that follow this standard will have pad C1 as VCC, C5 as
GND, and C3, C7 as clock and data. The other pads are used for various in-
terface pins on differing types of card that require a different communications
protocol. We'll see this later in the document.

VCC GND

SCL SDA

NC NC

C1

C2

C3 C7

C5

C6

VCC GND

SCL SDA

NC NC

NC MODE

C2

C3

C1

C6

C7

C8C4

C5

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 7

Step by Step Guide.

In this first application using a memory card, we'll look at each part of the
development step by step. Later applications in the document will assume
that this section has been read and understood.

We'll start with a simple, but very important program, to detect if a card is in-
serted into the card socket. The ISO7816 socket used in the PROTON SMART
has two separate contacts that open when a card is inserted fully, this means
that they are normally closed when not being used. This is important to re-
member, as the code relies on this fact for correct operation. The illustration
below shows this more clearly.

ISO7816 Socket. Card-In Contacts.

One of the contacts is connected to the PICmicro's RA4 pin (PORTA.4), via a
pull-up, and current limiting resistor. The other is connected to common
ground. Shown below.

Card-In Contacts circuit.

This means that the PICmicro sees a LOGIC 0 with no card present, and a
LOGIC 1 when a card is inserted.

NOTE: Not all ISO7816 card sockets have normally closed contacts, some
have normally open types. This is important to remember, as the program
code will require altering slightly.

CARD OUT
Normally Closed

CARD IN
Contacts Open

SMARTCARD

+5 Volts

GND

To PICmicro
RA4

R4
4.7k

Card-In
ContactsR5

220

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 8

I feel a Presence.
We'll now put this knowledge into practice, and write a small program to
demonstrate the action of the card sensor. This will also allow you to familiar-
ise yourself with the PROTON+ compiler.

Run the compiler, and load the program CARD_SENSE.BAS. You will find
this on the CDROM, inside the SAMPLES folder. The program is also shown
below.

' Program CARD_SENSE.BAS
' Demonstrate the card sensor switch.
' The CARD VCC LED will illuminate when the card is inserted.

Device = 16F876 ' PICmicro used in the PROTON SMART
XTAL = 20 ' We're using a 20MHz crystal

' Create some alias names to make the code more readable
Symbol CARD_IN = PORTA.4 ' CARD in sensor switch (normally closed)
Symbol CARD_VCC = PORTA.5 ' Supplies the card with 5 Volts
' ** THE MAIN PROGRAM LOOP STARTS HERE **
ALL_DIGITAL = True ' Make PORTA all digital IO
Input CARD_IN ' Make the CARD IN contact pin an input
Low CARD_VCC ' Turn OFF the VCC LED, and the 5 Volts to the card.

AGAIN:
While CARD_IN = 0 : Wend ' Wait in a loop until the card is inserted
High CARD_VCC ' Illuminate the LED when the card is inserted
While CARD_IN = 1 : Wend ' Wait for the card to be removed
Low CARD_VCC ' Extinguish the LED when the card is removed
Goto AGAIN ' Do it all forever

Compile the program, by clicking on the COMPILE icon located on the
toolbar, and you should see the screen shown below.

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 9

If no errors were produced while compiling, the program is ready for
downloading to the PROTON SMART board. The PROTON SMART has a serial
bootloader incorporated into the on-board PICmicro. This allows it to be pro-
grammed using a standard RS232 serial cable connected to a COM port of
the PC (more details of this can be found in the compiler's documentation,
and in the electrical specifications located at the end of this document.

Connect a 9 to 12 Volt power supply to the PROTON SMART board, and a
suitable 9-pin serial cable to a free COM port on the PC, and the PROTON
SMART. The POWER LED should now be illuminated. If not, check the power
supply, and its connections before proceeding.

Click on the DOWNLOAD icon, also located on the toolbar, and a small
window will appear on the screen, shown below.

If a COM port other than COM 1 was used for the serial connection, click on
the PORT menu located in the downloader's window, and change the port
(this will be saved so that the chosen port will always be default).

Press the RESET button on the PROTON SMART board, and the program will
begin downloading to the on-board PICmicro. If the screen stays the same, or
an error message appears, then check the serial cable, and COM port for er-
rors. A common error is in the choice of serial cables. There are two types of
serial cable available, a NULL MODEM, and a STRAIGHT CONNECTION. A
null modem cable has the pins internally reversed, and is therefore not suit-
able for the downloading process.

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 10

Assuming that all has gone well, and the program is now situated in the
PICmicro, we can test it.

Insert a card into the socket, and watch the CARD VCC LED Illuminate. Re-
move the card, and the LED will extinguish. At this stage it doesn't matter
which way the card is oriented when inserted into the socket, or which type
of card is used, as we are not actually accessing the card, we're simply sens-
ing it's presence. If the LED behaves as it should, then well done! You've now
programmed the PROTON SMART correctly. It really is simple isn't it ?

We'll use this method of card sensing throughout all the future applications.
Maybe with a little twist, or tweak here and there, but it will remain the same
principal.

Storing data in the 14C02 memory card.
The previous application may seem trivial, however being able to tell if the
card is in its socket is a crucial lesson for any code to work successfully. So
we'll put it to good use now, and actually write, and read some data from the
14C02 card. As we've already seen, the I2C memory cards follow the well
documented protocols of the Philips I2C bus. However, not all I2C devices are
accessed the same. One of the main differences is the SLAVE address, as
each I2C device has a different 4-bit value incorporated into the slave ad-
dress, that signifies what it is on the two-wire bus. For serial eeproms, and
this includes an I2C memory cards, the address is binary 1010. Also, some
devices require a 16-bit address, while others only require 8-bits. There are
other small differences, but these are well documented in the datasheets pro-
vided on the CDROM. Make sure you read and understand these before at-
tempting any practical applications.

Load the program MC_14C02.BAS, and compile it. The BASIC code is shown
below.

' Program MC_14C02.BAS
' Access a 14C02 (2K bits) 12C memory card

Device = 16F876 ' PICmicro used in the PROTON SMART
XTAL = 20 ' We're using a 20MHZ crystal
SCL_PIN = PORTC.3 ' Assign the compiler's SCL pin for BUSIN/BUSOUT
SDA_PIN = PORTC.4 ' Assign the compiler's SDA pin for BUSIN/BUSOUT
HSERIAL_BAUD = 9600 ' Set baud rate to 9600
HSERIAL_RCSTA = %10010000 ' Enable serial port and continuous receive
HSERIAL_TXSTA = %00100100 ' Enable transmit and asynchronous mode
HSERIAL_CLEAR = ON ' Enable Error clearing on received characters
'---
' Declare some variables
Dim DATA_BYTE as BYTE ' Declare a BYTE type variable for data transfer
Dim ADDRESS as BYTE ' Declare a BYTE type variable for an address
Dim DATA_IN as DATA_BYTE.Lowbyte ' Alias DATA_IN to the lowbyte of DATA_BYTE
Dim DATA_OUT as DATA_BYTE.Lowbyte ' Also alias DATA_OUT to the lowbyte of DATA_BYTE

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 11

'---
' Define some aliases
Symbol CARD_VCC = PORTA.5 ' Supplies the card with 5 Volts
Symbol CARD_IN = PORTA.4 ' CARD in sensor switch (normally closed)
Symbol SCL = PORTC.3 ' Card's CLK line
Symbol SDA = PORTC.4 ' Card's IO line
'---
' Create some data to write to the card
DATA "THIS HAS BEEN WRITTEN TO, AND READ FROM THE 14C02 MEMORY CARD." , 13 , 0

Delayms 500 ' Wait for the power supply to fully stabilise
Hrsout 1 ' Clear the serial terminal's screen before we start
Goto Main ' Then jump over the subroutines to the main program
loop
'---
' Read a BYTE from the card
' From address, held in the variable ADDRESS
' Returns the BYTE in variable DATA_IN
READ_BYTE:
Busin $A1,ADDRESS,[DATA_IN]
Return
'---
' Write a BYTE to the card
' The BYTE to send must be loaded into variable DATA_OUT
' At address, held in the variable ADDRESS
WRITE_BYTE:
Busout $A0,ADDRESS,[DATA_OUT] ' Write each location
Delayms 10 ' Delay 10ms after each write
Return
'---
' Wait for the card to be inserted into the socket before continuing
WAIT_FOR_INSERTION:
Low CARD_VCC ' Disable the card's VCC (5 Volts)
Hrsout 13," 14C02 ACCESS",13,"PLEASE INSERT CARD",13
While CARD_IN = 0 : Wend ' Wait for card insertion
High CARD_VCC ' Enable the card's VCC (5 Volts)
Delayms 100 ' Wait for the card to fully power up
Return
'---
' ** THE MAIN PROGRAM LOOP STARTS HERE **
MAIN:
ALL_DIGITAL = True ' Make PORTA all digital IO
Input CARD_IN ' Make the card sensor pin an input

MAIN_LOOP:
Gosub WAIT_FOR_INSERTION ' Wait for the card to be inserted into the socket
' Write to the card
Restore 0 ' Point to the first character in the DATA line
ADDRESS = 0 ' Reset the address to point to 0
Repeat ' Create a loop
If CARD_IN = 0 Then MAIN_LOOP ' Make sure the card is inserted before we continue
DATA_OUT = READ ' Gather the information from the DATA statement
Gosub WRITE_BYTE ' Place each character into the card's eeprom

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 12

Inc ADDRESS ' Point to the next memory element
Until DATA_OUT = 0 ' Loop until a zero value is found
' Read and display data from the card
ADDRESS = 0 ' Reset the address to point to 0
Repeat ' Create a loop
If CARD_IN = 0 Then MAIN_LOOP ' Make sure the card is inserted before we continue
Gosub READ_BYTE ' Read a byte from the card's eeprom
Hrsout DATA_IN ' Display the characters on the serial terminal
Delayms 50 ' Delay between characters displayed
Inc ADDRESS ' Point to the next memory element
Until DATA_IN = 0 ' Loop until a zero value is found

While CARD_IN = 1 : Wend ' Wait for the card to be removed before proceeding
Goto MAIN_LOOP ' Got look for another card insertion

The above program, writes a text message to the card, then reads it back and
displays it on the Serial Terminal (which is part of the compiler's IDE).
Download the program to the PROTON SMART using the serial bootloader
(discussed earlier). And initiate the Serial Terminal by clicking VIEW-
>SERIAL TERMINAL. The COM port for the serial terminal must now be cho-
sen, this will need to be the same com port as used by the serial bootloader.
This is shown below.

The COM port must now be configured to match the RS232 data sent by the
PROTON SMART board. This is 9600 baud, 1 Stop bit, 8 data bits, and no
flow control.

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 13

Once this has been setup, and the computer has not complained about open
com errors etc, press RESET on the PROTON_SMART board to re-initialise
the program held within it. The serial terminal screen should display: -

Insert a 14C02 memory card into the PROTON SMART's socket, making sure
that it is oriented correctly, with the contact footprint facing up towards the
RESET button (shown on next page).

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 14

Card Orientation for the PROTON SMART board.

The program senses the card's presence (which was discussed earlier), and
writes characters to the card using the WRITE_BYTE subroutine. It then sits
in a loop reading characters from the card using the READ_BYTE subroutine,
and outputs the characters serially using the PICmicro's internal USART. The
serial terminal should look like the image below: -

You will have noticed in the code listing, that we've kept basically the same
test for card insertion, but wrapped it in a subroutine named
WAIT_FOR_INSERTION. Two other tests are made for the card's presence, one
in the write loop, and one in the read loop. This is an important feature in all
card applications because it tests for the card before it is accessed. It also
removes the socket's VCC (5 Volts) when a card is not inserted.

The rest of the applications in this document will follow the same procedures
as this one. i.e. Compile program, download program, view the results on the
serial terminal. So these actions will not be explained in detail, and we can
get on with discussing the actual coding.

Contact Footprint

Card Socket

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 15

Interfacing a 24C16 Memory Card.

The 24C16 I2C memory card, has 8 times as much memory as the 14C02, in
that it contains 16kbits which relates to 2kbytes of storage capacity. And has
a retention time of 40 years. Accessing the card is primarily the same as ac-
cessing the 14C02, but with one important difference, it's SLAVE byte (some-
times known as its CONTROL byte).

The 24C16 memory card, can be thought of as being eight 14C02 packages in
a single wafer of silicon, each 2k block of data can be accessed separately.
The 24C16 uses an 8-bit address, which poses a problem in accessing a
memory element over 255. The way round this is to use 3 bits of the CON-
TROL byte to indicate which block of 2k you're talking to.

For example, a standard CONTROL byte for an eeprom write, in binary looks
like 10100000. The last four bits denote which type of device we require on
the bus. And the first bit indicates read or write. Bits 1 to 3 are commonly
known as ADDRESS bits A0, A1, and A2 (not to be confused with the address
byte), and are used to indicate which of the same type of device attached to
the bus we want to talk to. And as the 24C16 is actually eight 14C02 devices,
these bits control which part within the card we are communicating with.

These extra three bits are extracted from the actual memory address we need
to access. For example, lets say we need to access address 1000 within the
card. The binary for 1000 is 1111101000. We'll ignore the lower 8-bits for the
moment, and we're left with binary 11 (or decimal 3), shift this value one bit
to the left for alignment with bits 1 to 3 of CONTROL, MASK the bits required
with an AND operator, then OR it into the CONTROL byte, which was
10100000. The CONTROL byte now has the binary value of 101000110,
which will point to device 4 (remember, binary counts from 0 to 3) within the
24C16 card.

The lower 8-bits of the address that we ignored previously, which was binary
11101000 (decimal 232) is now placed as the standard 8-bit address byte.
This means we're accessing address 232 from device 4 within the card.

This sounds complex, but ends up as one line of BASIC code, shown below: -

CONTROL = %10100000 | ((ADDRESS.HIGHBYTE << 1) & %00001110)

And the BUS commands looks like: -

Busin CONTROL,ADDRESS.LOWBYTE,[DATA_IN] ' Read a byte of data from the
card
Busout CONTROL,ADDRESS.LOWBYTE,[DATA_OUT] ' Write a byte of data to the card

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 16

There is another difference that may cause some concern, this time in the ac-
tual architecture of the 24C16 card. Some cards have an extra pin named
WC. This is the WRITE CONTROL pin, and enables or disables write protect
for the card. Leaving this floating (unconnected), or setting it high disables
write protection, while pulling it to ground enables write protection. The BA-
SIC code configures this pin as an input, so as not to interfere with cards
that contain this pin, and those that don't. The contact footprint for the
24C16 is shown below.

The footprint pattern may be different on the card supplied with the PROTON
SMART, but the functionality and positioning of the contacts remains the
same.

Now that we have that out of the way, we can look at the code for accessing
the 24C16 memory card. Load the program MC_24C16.BAS, and compile it.
You might have noticed the similarity to the previous 14C02 program. This is
because both devices require similar coding. With the differences for the ad-
dress handling in 3 subroutines, shown below.

'---
' Calculate the address required, and adjust the CONTROL byte for the card
' By moving bits 8 to 10 of the 16-bit ADDRESS, to bits 1 to 3 of CONTROL
CALCULATE_ADDRESS:
CONTROL = %10100000 | ((ADDRESS.HIGHBYTE << 1) & %00001110)
Return
'---
' Read a BYTE from the card
' From address, held in the variable ADDRESS
' Returns the BYTE in variable DATA_IN
READ_BYTE:
Gosub CALCULATE_ADDRESS ' Arrange the address for the 24C16
Busin CONTROL,ADDRESS.LOWBYTE,[DATA_IN] ' Read a byte of data from the card
Return
'---
' Write a BYTE to the card
' The BYTE to send must be loaded into variable DATA_OUT
' At address, held in the variable ADDRESS
WRITE_BYTE:
Gosub CALCULATE_ADDRESS ' Arrange the address for the 24C16
Busout CONTROL,ADDRESS.LOWBYTE,[DATA_OUT] ' Write a byte of data to the card
Delayms 5 ' Delay 5ms after each write
Return

VCC GN

SCL SD

NC

NC

C2

C3

C1

C6

C7

C8C4

C5

NC

NC

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 17

Download the program to the PROTON SMART board, and open the Serial
Terminal window (discussed earlier). After pressing RESET on the PROTON
SMART board, and inserting a card. You should be greeted with: -

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 18

Interfacing a 24C256 Memory Card.

The 24C256 I2C memory card, has 128 times as much memory as the 14C02,
in that it contains 256kbits which relates to 32kbytes of storage capacity.
And has a retention time of 40 years. Accessing the card is again, primarily
the same as accessing the 14C02, but this card accepts a 16-bit ADDRESS.
This allows all 32768 bytes of memory to be accessed without having to ma-
nipulate the CONTROL byte. The contact footprint for this card is the same as
the 24C16.

Load the program MC_24C256.BAS, and you will see that there is very little
difference between it and the MC_14C02.BAS program. The only real differ-
ences are that the ADDRESS variable is now defined as a WORD (16-bit) type,
and the WC pin is left floating to enable writing to a card that has this pin,
just in case the card used requires this pin.

There's not much more that can be said for the code, other than compile it,
then download it to the PROTON SMART board, and view the results on the
Serial Terminal window.

Something to think about.
We have only scratched the surface of accessing these cards, there are other
ways of writing to the cards that have not been discussed. These are called
PAGE writes, and allow up to 64 bytes of data to be written to the card in a
single operation. The PAGE size differs from card to card, but the information
is well documented in the datasheets supplied on the CDROM. I'll leave the
coding of page writes up to you, but I will give you some pointers as to what
commands and operators to use.

Start by creating a byte array to hold the page size required.
Use the STR directive to send and receive data from the card.
You must calculate the next address based on the page size written or read,
and the current address.

Good luck, and I look forward to seeing any further code you produce on the
forum. www.picbasic.org/forum

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 19

Accessing the SLE4442 smart card.

The Siemens SLE4442 Intelligent eeprom card, is well on it's way to becoming
what is commonly thought of as a smartcard. It has protected memory, se-
cure memory, and a PIN (personal identification number). It also has an in-
ternal counter that renders the card invalid if the PIN is not entered correctly
within a set number of attempts (three to be exact).

Operation of the SLE4442 card.
Because of the more complex nature of this card, you will need to understand
its internal operations and requirements before any code is written. More so
than the previous I2C memory cards, because the I2C bus is a well docu-
mented, and readily understood protocol. So bear with me, because this does
get rather involved. You may need to read the following section a few times
before an understanding is reached, but it is worth persevering.

The SLE4442 consists of 256 bytes of eeprom main memory, and a 32-bit (4
byte) protection memory with PROM functionality. The main memory is
erased and written on a byte to byte basis. When erased, all 8-bits of a data
cell are set to logic one (hex FF). When written, the information in the indi-
vidual eeprom cells is, according to the input data, altered bit by bit to logical
zeros (logical AND between the old and the new data in the eeprom). Nor-
mally, a data change consists of an erase and write procedure. It depends on
the contents of the data byte already contained in the main memory and the
new data byte as to whether the eeprom is really erased and/or written. If
none of the 8 bits in the addressed byte require a zero-to-one transition, the
erase access will be suppressed. Vice versa the write access will be sup-
pressed if no one-to-zero transition is necessary. The write and erase opera-
tions take a minimum of 2.5ms each.

Each of the first 32 bytes of memory can be irreversibly protected against
data change by writing the corresponding bit in the protection memory. Each
data byte in this address range is assigned to one bit of the protection mem-
ory, and has the same address as the data byte in the main memory which
it's assigned to. Once written, the protection bit cannot be erased, this is the
PROM functionality of the card.

The SLE4442 also includes security code logic, which controls write/erase
access to the memory. For this purpose, the SLE4442 contains a 4 byte secu-
rity memory area with an Error Counter EC (bit-0 to bit-2), and 3 bytes of ref-
erence data. These 3 bytes as a whole are called Programmable Security Code
(PSC).

After power on, the whole memory, except for the reference data can only be
read. Only after a successful comparison of the PIN, can the memory be
erased, or written. After three UNSUCCESSFUL comparisons, the Error
Counter blocks any subsequent attempts, and hence any possibility to write

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 20

or erase, which renders the card virtually useless. A block diagram illustrat-
ing the internal operations of the SLE4442 is shown overleaf.

SLE4442 Intelligent eeprom card, internal diagram.

The protocol used by the SLE4442 is a two wire interface, loosely based on an
I2C model, in that it has a START, and STOP condition. All data changes on
the I/O are initiated by the falling edge of the clock line.

The transmission protocol consists of 4 modes: -

• Reset, and Answer-to-Reset.
• Command Mode.
• Outgoing Data Mode.
• Processing Mode.

It's should be pointed out at this stage that the I/O pin is open drain, and
therefore requires a pull-up resistor to achieve a high level. This is already in-
corporated in the PROTON SMART board, but is important to remember
when a stand-alone application is created.

Reset
Blockade Logic

Data Address

High-Voltage
Generator,
Substrate-Current
Generator

Decoder,
Column Sampling,
Comparator

Programming
Control

Sequencer and
Security Logic Interface

Area
for Permanent
Data Storage

EEPROM
256x8

0

31
32

255
Main Memory

31

0

Selection of
Main/Protection/
Security Memory

Data DataAddr Addr

Reference Data
Reference Data
Reference Data
Reference Data

3
2
1
0

PSC

AddrData

Protection Memory

Security Memory

VCC GND I/O RST CLK

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 21

The contact footprint for the SLE4442 card is an M3 type, shown below.

Reset and Answer-to-Reset (ATR).
Answer-to-Reset occurs as soon as the card is powered up, and a reset is im-
plemented. ATR is described in ISO7816 part 3. The reset can be given at any
time during operation. When the card is reset, the address counter is cleared
to zero together with a clock pulse, and the first data bit (LSB) is output to
I/O then the RST line is pulled from logic HIGH to logic LOW. Under a con-
tinuous input of additional 31 clock pulses, the contents of the first 4 eeprom
addresses is read out. The 33rd clock pulse switches I/O to high impedance,
and finishes the ATR procedure.

The format of the 4 bytes of ATR sent by the card are shown below.

The 4 byte response from an Answer-to-Reset is set when the card is
manufactured, and each card has a different sequence. The meaning of each
byte is somewhat long winded, and follows the ISO7816 part 4 standard.
More information is contained in the SLE4442 datasheet on the CDROM. The
important information for us is that it should contain the hex values A2, 13,
10, and 91.

Before we go any further, we'll look at a program that reads the ATR from the
SLE4442 card. Load the program READ_ATR.BAS located in the SLE4442
folder. Compile and download it to the PROTON SMART board. Open the se-
rial terminal, and press RESET on the board, and insert an SLE4442 card.
You should be greeted with the display below: -

D07 ... D00 D015 ... D08 D023 ... D016 D031 ... D024

Byte 1 Byte 2 Byte 3 Byte 4

VCC GND

CLK I/O

RST NC

C1

C2

C3 C7

C5

C6

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 22

The program is based around two key subroutines, SEND_RESET, and
READ_ATR. As explained earlier, a reset is accomplished by pulling the RST
line from high to low, while pulsing the clock line. This is shown below: -

' Send a RESET condition by:-
' Pulling the RST line HIGH-LOW while the CLK line is toggled HIGH-LOW
SEND_RESET:
High RST ' Bring the RESET line HIGH (to RESET the card)
High CLK ' Bring the CLOCK line HIGH
Low CLK ' Pull the CLOCK line LOW
Low RST ' Pull the RESET line LOW (to release the card from RESET)
Return

The subroutine to actually read the ATR is shown below: -

' Read the 32 bit ATR (ANSWER-TO-RESET)
' The DWORD variable ATR_MEM holds the 32 bit ATR result
READ_ATR:
Clear ERROR_CODE
 If CARD_IN = 0 Then ERROR_CODE = 1 : Low CARD_VCC : Return ' Indicate if card removed
Gosub SEND_RESET ' Send a RESET
Shiftin
SIO,CLK,LSBPRE,[ATR_MEM.BYTE3,ATR_MEM.BYTE2,ATR_MEM.BYTE1,ATR_MEM.BYTE0]
Return

The SHIFTIN command reads each byte of the 4-byte response, into a
DWORD (32-bit) variable. The subroutine is also responsible for checking if
the card is inserted into the socket before it attempts a read. If not, then it
disables the VCC to the socket, and indicates an error (held in the variable
ERROR_CODE). This is a theme that will be implemented in the rest of the
demonstration programs.

The full program for reading the ATR is shown below: -

' Program READ_ATR.BAS
' Read the ATR (ANSWER-TO-RESET) from a SIEMENS SLE4442 Smartcard.

DEVICE = 16F876 ' PICmicro used in the PROTON SMART
XTAL = 20 ' We're using a 20MHZ crystal
HSERIAL_BAUD = 9600 ' Set baud rate to 9600
HSERIAL_RCSTA = %10010000 ' Enable serial port and continuous receive
HSERIAL_TXSTA = %00100100 ' Enable transmit and asynchronous mode
HSERIAL_CLEAR = ON ' Enable Error clearing on received characters
'---
' Declare some variables
Dim ERROR_CODE as BIT ' Returns NON-ZERO if an error occurs in any process
Dim ATR_MEM as DWORD ' Holds the 4 bytes of ATR data
'---
' Define some aliases to make the code more readable
Symbol CARD_VCC = PORTA.5 ' Supplies the card with 5 Volts
Symbol CARD_IN = PORTA.4 ' CARD in sensor switch (normally closed)
Symbol CLK = PORTC.3 ' Card's CLK line

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 23

Symbol SIO = PORTC.4 ' Card's IO line
Symbol RST = PORTA.3 ' Card's RESET line
Delayms 500 ' Wait for the power supply to fully stabilise
Hrsout 1 ' Clear the serial terminal's screen before we start
Goto MAIN ' Then jump over the subroutines to the main program
loop
'---
' Send a RESET condition by:-
' Pulling the RST line HIGH-LOW
' While the CLK line is toggled HIGH-LOW
SEND_RESET:
High RST ' Bring the RESET line HIGH (to RESET the card)
High CLK ' Bring the CLOCK line HIGH
Low CLK ' Pull the CLOCK line LOW
Low RST ' Pull the RESET line LOW (to release the card from RE-
SET)
Return
'---
' Read the 32 bit ATR (ANSWER-TO-RESET)
' The DWORD variable ATR_MEM holds the 32 bit ATR result
READ_ATR:
Clear ERROR_CODE
If CARD_IN = 0 Then ERROR_CODE = 1 : Low CARD_VCC : Return ' Indicate if card removed
Gosub SEND_RESET ' Send a RESET
Shiftin
SIO,CLK,LSBPRE,[ATR_MEM.BYTE3,ATR_MEM.BYTE2,ATR_MEM.BYTE1,ATR_MEM.BYTE0]
Return
'---
' Wait for the card to be inserted into the socket before continuing
WAIT_FOR_INSERTION:
Low CARD_VCC ' Disable the card's VCC (5 Volts)
Hrsout 13,"SLE4442 ATR READER",13,"PLEASE INSERT CARD",13
While CARD_IN = 0 : Wend ' Wait for card insertion
High CARD_VCC ' Enable the card's VCC (5 Volts)
Delayms 100 ' Wait for the card to fully power up
Return
'---
' *** MAIN PROGRAM LOOP STARTS HERE ***
MAIN:
ALL_DIGITAL = True ' Make PORTA all digital IO
Input CARD_IN ' Make the card sensor pin an input

CARD_LOOP:
Gosub WAIT_FOR_INSERTION ' Wait for the card to be inserted into the socket

Gosub READ_ATR ' Read the ATR (ANSWER-TO-RESET) of the
card
If ERROR_CODE != 0 Then CARD_LOOP ' Check for card insertion error

' Display the ATR value on the serial terminal
Hrsout "ATR : ",HEX2 ATR_MEM.BYTE3,",",HEX2 ATR_MEM.BYTE2,",",HEX2 ATR_MEM.BYTE1
,",",HEX2 ATR_MEM.BYTE0,13

While CARD_IN = 1 : Delayms 10 : Wend ' Wait for the card to be removed before proceed-
ing
Goto CARD_LOOP

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 24

Operational Modes.
After the Answer-to-Reset, the card waits for a command. Every command
begins with a Start Condition, includes a 3 byte command entry, followed by
an additional clock pulse, and ends with a Stop Condition.

A Start Condition consists of a Falling edge on I/O during CLK high.

Input SIO ' Keep the DATA line HIGH
Delayus 1 ' Wait for 1 microsecond (us)
High CLK ' Bring the CLOCK line HIGH
Delayus 1 ' Wait for 1 microsecond (us)
Low SIO ' Pull the DATA line LOW

A Stop Condition consists of a Rising edge on I/O during CLK high.

Low SIO ' Keep the DATA line LOW
Delayus 1 ' Wait for 1 microsecond (us)
High CLK ' Bring the CLOCK line HIGH
Delayus 1 ' Wait for 1 microsecond (us)
Input SIO ' Bring the DATA line HIGH

After the reception of a command, there are two possible modes: -

• Outgoing data mode for Reading.
• Processing mode for Writing, or Erasing.

Outgoing Data Mode.
In this mode, the card sends data to the PROTON SMART board. The first bit
becomes valid on I/O after the first falling edge on CLK. After the last data
bit, an additional clock pulse is necessary in order to set the I/O to high im-
pedance, and to prepare the card for a new command. During this mode, any
Start or Stop condition is ignored.

Processing Mode.
In this mode, the card processes internally. The card has to be clocked
continuously until I/O (which was switched to high after the falling edge of
CLK) , is set to high impedance. Any Start and Stop condition is discarded
during this mode.

Commands.
Each command consists of three bytes: -

A7 A6 A5 A4 A3 A2 A1 A0

MSB LSBAddress

B7 B6 B5 B4 B3 B2

Control LSBMSB

B1 B0 D7 D6 D5 D4 D3 D2 D1 D0

MSB LSBData

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 25

The table below shows the effect of each command byte, and its requirements
for address, and data.

Sending a command to the SLE4442 is simplicity itself, as the subroutine be-
low illustrates: -

' Send a command to the card
' The command to send is held in variable COMMAND
' The address (if any) is held in variable ADDRESS
' The data to send (if any) is held in variable DATA_BYTE
SEND_COMMAND:
ERROR_CODE = 0 ' Default to no errors
If CARD_IN = 0 Then ERROR_CODE = 1 : Low CARD_VCC : Return ' Indicate an error if card
removed
Gosub SEND_START ' Send a START condition
Shiftout SIO , CLK , LSBFIRST , [COMMAND,ADDRESS,DATA_BYTE] ' Shift out the command
byte
Gosub SEND_STOP 'Send a STOP condition
Return

The SEND_COMMAND subroutine (above), uses the subroutines we looked at
earlier namely, SEND_START, and SEND_STOP. It also indicates if the card
has been removed, and disables the card's VCC if so.

The SEND_COMMAND subroutine is of paramount importance, as no access
to or from the card is possible without calling it first.

Reading MAIN Memory.
We'll now look at a program for reading all 255 bytes of MAIN MEMORY from
the SLE4442 card. Load and compile program READ_MAIN.BAS, then
download it to the PROTON SMART. After opening the serial terminal window,
and inserting a card into the socket, you should be greeted with the following
display.

Byte 3
DATA

Byte 1
CONTROL

Byte 2
ADDRESS

A7 - A0B7 B6 B5 B4 B3 B2 B1 B0 D7 - D0

OPERATION MODE

0 0 1 1 0 0 1 1 Address Input Data COMPARE
VERIFICATION DATA Processing

0 0 1 1 1 0 0 1 Address Input Data UPDATE SECURITY
MEMORY Processing

0 0 1 1 0 00 0 1 No Effect No Effect READ SECURITY
MEMORY Outgoing Data

0 0 1 1 1 1 0 0 Address Input Data WRITE PROTECTION
MEMORY Processing

0 0 1 1 0 1 0 0 No Effect No Effect READ PROTECTION
MEMORY Outgoing Data

0 0 1 1 1 0 0 0 Address Input Data UPDATE MAIN
MEMORY Processing

0 0 1 1 0 0 00 0 Address No Effect READ MAIN MEMORY Outgoing Data

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 26

The full program for reading the MAIN MEMORY is shown below.

' Program READ_MAIN.BAS
' Read, and display the MAIN MEMORY from a SIEMENS SLE4442 Smartcard.

DEVICE = 16F876 ' PICmicro used in the PROTON SMART
XTAL = 20 ' We're using a 20MHZ crystal
HSERIAL_BAUD = 9600 ' Set baud rate to 9600
HSERIAL_RCSTA = %10010000 ' Enable serial port and continuous receive
HSERIAL_TXSTA = %00100100 ' Enable transmit and asynchronous mode
HSERIAL_CLEAR = ON ' Enable Error clearing on received characters
'---
' Declare some variables

Dim CLEARED_ONCE as Bit ' Toggle flag for clearing the serial terminal only once in a
loop
Dim ERROR_CODE as Bit ' Returns NON-ZERO if an error occurs in any
process
Dim LOOP as Byte
Dim LOOP2 as Byte
Dim TEMP as Byte
Dim COMMAND as Byte ' Command to send to the card
Dim ADDRESS as Byte ' The card address to read and write
Dim DATA_BYTE as Byte ' Data byte used for some commands
Dim ATR_MEM as Dword ' Holds the 4 bytes of ATR data
Dim MEMORY[255] as Byte ' 255 bytes of MAIN memory
'---
' Define some aliases to make the code more readable

Symbol CARD_VCC = PORTA.5 ' Supplies the card with 5 Volts
Symbol CARD_IN = PORTA.4 ' CARD in sensor switch (normally closed)
Symbol CLK = PORTC.3 ' Card's CLK line
Symbol SIO = PORTC.4 ' Card's IO line
Symbol RST = PORTA.3 ' Card's RESET line
' Card commands
Symbol READ_MAIN_MEM = %00110000

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 27

'---
Delayms 500 ' Wait for the power supply to fully stabilise
ALL_DIGITAL = True ' Make PORTA all digital IO
Hrsout 1 ' Clear the serial terminal's screen before we start
Goto Main ' Then jump over the subroutines to the main program
loop
'---
' Send a START condition by:-
' Falling Edge of IO line, while CLK is HIGH
Send_Start:
Input SIO ' Keep the DATA line HIGH
Delayus 1 ' Wait for 1 microsecond (us)
High CLK ' Bring the CLOCK line HIGH
Delayus 1 ' Wait for 1 microsecond (us)
Low SIO ' Pull the DATA line LOW
Return
'---
' Send a STOP condition by:-
' Rising Edge of IO line, while CLK is HIGH
Send_Stop:
Low SIO ' Keep the DATA line LOW
Delayus 1 ' Wait for 1 microsecond (us)
High CLK ' Bring the CLOCK line HIGH
Delayus 1 ' Wait for 1 microsecond (us)
Input SIO ' Bring the DATA line HIGH
Return
'---
' Send a RESET condition by:-
' Pulling the RST line HIGH-LOW
' While the CLK line is toggled HIGH-LOW
SEND_RESET:
High RST ' Bring the RESET line HIGH (to RESET the card)
High CLK ' Bring the CLOCK line HIGH
Low CLK ' Pull the CLOCK line LOW
Low RST ' Pull the RESET line LOW (to release the card from RE-
SET)
Return
'---
' Send a command to the card
' The command to send is held in variable COMMAND
' The address (if any) is held in variable ADDRESS
' The data to send (if any) is held in variable DATA_BYTE
SEND_COMMAND:
ERROR_CODE = 0 ' Default to no error
If CARD_IN = 0 Then ERROR_CODE = 1 : Low CARD_VCC : Return ' Indicate an error if card
removed
Gosub SEND_START ' Send a START condition
Shiftout SIO , CLK , LSBFIRST , [COMMAND,ADDRESS,DATA_BYTE] ' Shift out the command
byte
Gosub SEND_STOP ' Send a STOP condition
Return

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 28

'---
' READ MAIN MEMORY
' Reads all of memory into array MEMORY
' Reads from address 0 to 255
READ_MAIN_MEMORY:
ERROR_CODE = 0 ' Default to no error
ADDRESS = 0 ' Start at address 00
COMMAND = READ_MAIN_MEM ' Set up for a READ MAIN MEMORY
command
Gosub SEND_COMMAND ' Send the READ MAIN MEMORY com-
mand
Gosub SEND_START ' Send a START condition
LOOP = 0 ' Clear the loop variable before we start
Repeat ' Create a loop
If CARD_IN = 0 Then ERROR_CODE = 1 : Low CARD_VCC : Return ' Indicate an error if card
removed
MEMORY[LOOP] = Shiftin SIO , CLK , LSBPRE , 8
Inc LOOP ' Point to the next data byte
Until LOOP = 0 ' 0 is byte sized 256
High CLK : Delayus 1 : Low CLK ' Send an extra clock
Gosub SEND_STOP ' Send a STOP condition
Return
'---
' Read the 32 bit ATR (ANSWER-TO-RESET)
' The DWORD variable ATR_MEM holds the 32 bit ATR result
READ_ATR:
Clear ERROR_CODE
If CARD_IN = 0 Then ERROR_CODE = 1 : Low CARD_VCC : Return ' Indicate an error if card
removed
Gosub SEND_RESET ' Send a RESET
Shiftin
SIO,CLK,LSBPRE,[ATR_MEM.BYTE3,ATR_MEM.BYTE2,ATR_MEM.BYTE1,ATR_MEM.BYTE0]
High CLK : Delayus 1 : Low CLK ' Send an extra clock
Return
'---
' Wait for the card to be inserted into the socket before continuing
WAIT_FOR_INSERTION:
While CARD_IN = 0 ' Wait for the card to be inserted into the socket
Low CARD_VCC
If CLEARED_ONCE = 0 Then ' Make sure CLS is carried out only once in the
loop
Hrsout 1," SLE4442 READER",13,"PLEASE INSERT CARD",13
Set CLEARED_ONCE
Endif
Wend
High CARD_VCC ' Enable the card's VCC (5 Volts)
If CLEARED_ONCE = 1 Then Hrsout 1 : CLEARED_ONCE = 0
Delayms 200 ' Wait for the card to fully power up
Return
'---
' Check if the card is the right type, and is inserted correctly
' i.e. not upside down, or back to front
CHECK_CARD_TYPE:
ERROR_CODE = 0
' Check if the card in the socket correctly. Will return all $FF if not
If ATR_MEM.BYTE3 == $FF AND ATR_MEM.BYTE2 == $FF Then
Hrsout 1,"CARD INSERTION ERROR",13

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 29

While CARD_IN = 1 : Delayms 10 : Wend ' Wait for the card to be removed before proceed-
ing
ERROR_CODE = 1 ' Indicate an error
Return
Endif
' Check if the correct type of card is inserted
' By examining the first byte of the ATR
If ATR_MEM.BYTE3 != $A2 Then ' Is the first byte equal to $A2 ?
Hrsout 1,"INVALID CARD TYPE",13
While CARD_IN = 1 : Delayms 10 : Wend ' Wait for the card to be removed before proceed-
ing
ERROR_CODE = 1 ' Indicate an error
Endif
Return
'---
' Display the MAIN MEMORY via RS232
DISPLAY_MAIN_MEMORY:
Hrsout "MAIN MEMORY",13
For LOOP = 0 to 255 Step 16
Hrsout HEX2 LOOP , ": "
For LOOP2 = 0 to 15 ' Display HEX
Hrsout HEX2 MEMORY[LOOP + LOOP2]
If LOOP2 < 15 Then Hrsout ","
Next
Hrsout " | "
For Loop2 = 0 to 15 ' Display ASCII
TEMP = MEMORY[LOOP + LOOP2]
If TEMP > 32 AND TEMP < 127 Then
Hrsout TEMP
Else
Hrsout "."
Endif
Next
Hrsout 13
Next
Return
'---
' *** MAIN PROGRAM LOOP STARTS HERE ***
MAIN:
Clear ' Clear all user RAM
CLEARED_ONCE = 0
Input CARD_IN
Delayms 50 ' A small delay
Gosub WAIT_FOR_INSERTION ' Wait for the card to be inserted into the socket
Gosub Read_ATR ' Read the ATR (ANSWER-TO-RESET) of the
card
If ERROR_CODE != 0 Then MAIN ' Check for card insertion error
Gosub CHECK_CARD_TYPE
If ERROR_CODE != 0 Then MAIN

' Display the ATR value on the serial terminal
Hrsout "ATR : ",HEX2 ATR_MEM.BYTE3,",",HEX2 ATR_MEM.BYTE2,",",HEX2
ATR_MEM.BYTE1,",",HEX2 ATR_MEM.BYTE0,13,13

Gosub READ_MAIN_MEMORY ' Read all of MAIN memory into an array
If ERROR_CODE != 0 Then MAIN ' Check for card insertion error
Gosub DISPLAY_MAIN_MEMORY
If ERROR_CODE != 0 Then MAIN

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 30

While CARD_IN = 1 : Delayms 10 : Wend ' Wait for the card to be removed before proceed-
ing
Goto MAIN

To read a byte from the SLE card, we must send a READ_MAIN_MEMORY
command (hex 30) using the SEND_COMMAND subroutine, along with the
starting address we require (0 in the program above). After the command en-
try, the program has to supply sufficient clock pulses for the amount of bytes
required. The number of clock pulses is (256 – ADDRESS) x 8 + 1. The data is
read out LSB (least significant bit) first. To read the main memory, a PIN is
not required.

Reading PROTECTION Memory.
The first 32 bytes of MAIN memory can be set to READ ONLY by use of a 32-
bit block of memory known as PROTECTION MEMORY. Each bit in this block
of memory corresponds to the read/write attribute of the first 32 bytes of
MAIN memory. Setting a bit to
ZERO in PROTECTION MEM-
ORY will mean that the rele-
vant byte in MAIN memory is
READ ONLY.

To illustrate more clearly this
principal, load and compile
the program
READ_PROT.BAS. As usual,
download the program to the
PROTON SMART, then open
the serial terminal window,
insert the card, and view the
results. You should see the
display to the right.

The program is fundamentally the same as READ_MAIN.BAS, except that the
PROTECTION memory is now read and displayed, along with the MAIN mem-
ory. The relevant parts of the display are:

MAIN MEMORY
00: A2,13,10,91,FF,FF,81,15,FF,FF,FF,FF,FF,FF,FF,FF |
................
10: FF,FF,FF,FF,FF,D2,76,00,00,04,00,FF,FF,FF,FF,FF |
......v.........

PROTECT : 11111000000111111111111100110000

As you can see by the data pre-programmed my the manufacturer, some
bytes are already write protected. Namely, bits 0 to 3, bits 6 and 7, bits 21 to
26. Examining the binary string of PROTECT, you will see that these bits are
all set to ZERO, indicating that they are read only.

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 31

It must be noted at this point that the PROTECTION memory area cannot be
written to directly, as will be demonstrated in later programs.

To read the PROTECTION memory, the program uses the subroutine
READ_PROT_MEMORY, shown below.

' READ PROTECTION MEMORY
' Reads the 4-bytes of memory into variable P_MEM
' ADDRESS, and DATA_BYTE are ignored by the card, so do not need initialising
READ_PROT_MEMORY:
COMMAND = READ_PROT_MEM
Gosub SEND_COMMAND ' Send the READ PROTECTED MEMORY com-
mand
If ERROR_CODE != 0 Then Return
Gosub SEND_START ' Send a START condition
If CARD_IN = 0 Then ERROR_CODE = 1 : Low CARD_VCC : Return ' Indicate error ?
Shiftin SIO , CLK , MSBPRE ,
[P_MEM.BYTE3,P_MEM.BYTE2,P_MEM.BYTE1,P_MEM.BYTE0]
High CLK : Delayus 1 : Low CLK ' Send an extra clock
Gosub SEND_STOP ' Send a STOP condition
Return

The command READ_PROT_MEM (hex 34) transfers the protection bits under
a continuous input of 32 clock pulses. The reading of PROTECTION memory
does not require a PIN to be entered, but writing to it does.

Before we look at writing to the card, there is one more piece of memory that
we need to read. This is the SECURITY MEMORY, which holds the PIN, and
PIN attempts counter.

Reading SECURITY Memory.
The SECURITY memory is of paramount importance when the card is in eve-
ryday use, as it helps inhibit illegal writes to the card, unless a valid PIN is
entered. Reading the SECURITY memory will not reveal the PIN stored in the
card, until a valid PIN is entered first. But it will show the amount of at-
tempts left if an invalid PIN is entered. SECURITY memory consists of 4
bytes, the first 3 bytes hold the PIN (not visible at this point), while the last
byte holds the attempts counter.

Load and compile the program
READ_SECURE.BAS. Then follow the
standard procedures of downloading to
the PROTON SMART, opening the serial
terminal, pressing RESET, and insert-
ing a card. You should be greeted with
the following display.

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 32

Reading the SECURITY memory is almost exactly the same as reading
PROTECTION memory, with the exception of a different command, and
receptor variable. The subroutine is shown below.

' READ SECURITY MEMORY
' Reads the 4-bytes of memory into variable S_MEM
' ADDRESS, and DATA_BYTE are ignored by the card, so do not need initialising
READ_SECURE_MEMORY:
COMMAND = READ_SECURE_MEM
Gosub SEND_COMMAND ' Send the READ SECURITY MEMORY com-
mand
If ERROR_CODE != 0 Then Return ' Was there an error ?
Gosub SEND_START ' Send a START condition
If CARD_IN = 0 Then ERROR_CODE = 1 : Low CARD_VCC : Return ' Indicate an error if card
removed Shiftin SIO , CLK , LSBPRE ,
[S_MEM.BYTE0,S_MEM.BYTE1,S_MEM.BYTE2,S_MEM.BYTE3]
Gosub SEND_STOP ' Send a STOP condition
Return

The rest of the program is essentially the same as the previous one, but now
reads and displays the SECURITY memory of the card.

The 4 bytes of SECURITY memory look like: -

Byte 0 of the SECURITY memory is the ERROR COUNTER. This is decre-
mented in the event of an incorrect PIN being entered, thus indicating the
amount of attempts left.

The next 3 bytes hold the PIN, which will read as 0's until a valid value is en-
tered.

We can now read all areas of the card, but we cannot write to it yet. For this
we need a different set of subroutines, but we still require the card reading
subroutines. We'll now look at writing to the various memory locations of the
card, and also entering a valid PIN.

SECURITY MEMORY

D07 ... D00D015 ... D08D023 ... D016D031 ... D024

Byte 0Byte 1Byte 2Byte 3

Error
Counter

PIN
Byte 0

PIN
Byte 1

PIN
Byte 2

ERROR COUNTER
D0D1D200000

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 33

Open Wide Please.
Before we can write or erase the SLE4442 card, we must enter a valid 3 byte
PIN (Personal Identification Number). This will open all areas of the memory
for writing, except those areas that have been set to read only by the PRO-
TECTION memory. When the card is first supplied, it contains a PIN set to
hex FFFFFF. This makes it easy to work with for now, and we can change the
PIN later.

Opening the card for writing, must follow a set sequence of events, with the
correct PIN. The following procedure has to be carried out exactly as de-
scribed. Any variation will leads to a failure, so that a write/erase access will
not be achieved.

At first, the ERROR COUNTER bit has to be written to 0 by an UPDATE
command (see the flowchart overleaf) followed by three COMPARE VERIFICA-
TION DATA commands beginning with byte 1 of the reference data (PIN
bytes). A successful conclusion of the whole procedure can be recognised by
being able to erase the error counter, which is not automatically erased. Now
write/erase to all areas of memory is possible as long as the card's VCC is
applied. This also applies to the 3 PIN bytes, which allows them to be
changed. In case of error, the whole procedure can be repeated, as long as
the ERROR COUNTER byte contains 1's. The ERROR COUNTER byte starts
off with the first three bits set to 1. Each invalid PIN entry, decrements one
bit.

The following table gives an overview of the necessary commands for the PIN
entry, and memory opening.

Control Address Data Command B7…B0 A7…A0 D7…D0 Remarks

Read Security Memory 31H No Effect No Effect Check Error Counter

Update Security Memory 39H 00H Input Data
Write free bit in Error
Counter
0000 0ddd binary

Compare Verification
Data 33H 01H Input Data PIN byte 1

Compare Verification
Data 33H 02H Input Data PIN byte 2

Compare Verification
Data 33H 03H Input Data PIN byte 3

Update Security Memory 33H 00H FFH Erase Error Counter
Read Security Memory 31H No Effect No Effect Check Error Counter

The card remembers the ERROR COUNTER even if power is removed. And
will only be reset when a valid PIN is entered successfully.

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 34

To demonstrate the above procedure, load the program
OPEN_MEMORY.BAS, and compile it. Download it to the PROTON SMART
board, but do NOT insert a card until the serial terminal is opened, and RE-
SET is pressed. After inserting the card you should be greeted with the dis-
play shown below: -

Read Error Counter

(EC) = 000?YComparison
Blocked

Write one bit
of Error Counter to 0

Comparison
verification PIN
reference data

Erase Error Counter

Read Error Counter

(EC) = 111?N

Comparison
unsuccesful.
Number of 1's
= number of

possible
retries Y

Comparison
succesful.

Card is now
unlocked.

Verification
Procedure Commands

READ SM Don't Care Don't Care

COMPARE VD Address 1 Byte 1

COMPARE VD Address 2 Byte 2

COMPARE VD Address 3 Byte 3

UPDATE SM Address 0 Data

UPDATE SM Address 0 11111111

READ SM Don't Care Don't Care

EC = Error Counter
SM = Security Memory
VD = Verification Data

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 35

What the program is doing is reading the MAIN memory, and displaying only
64 bytes of it. Then opening the memory, and writing a small sentence to ad-
dress 32 onwards. Then reading and displaying the results. It also displays
the SECURITY memory, before, and after the card is opened.

Opening the memory is accomplished by the subroutine OPEN_MEMORY,
shown below.

' OPEN_MEMORY for write
' Opens the card for writing by entering the correct PIN number
' The PIN is loaded into a DWORD sized variable named PIN
' SECURITY MEMORY byte 0 must be decremented before the card is unlocked
' The CARD remains unlocked as long as VCC power is applied
OPEN_MEMORY:
Gosub READ_SECURE_MEMORY ' Read all of SECURE memory
If ERROR_CODE != 0 Then Return ' Return if an error occurred during the
READ_SECURE_MEMORY process
If S_MEM.BYTE0 = 0 Then ' Indicate NO ATTEMPTS left
ERROR_CODE = 2 ' Indicate we have an error opening the card
Delayms 50
Hrsout 1,1
Delayms 50
Hrsout 13,"THE CARD HAS BEEN DE-ACTIVATED!",13
Return ' Return from the subroutine prematurely
Endif

' Update SECURE memory, at address 0
COMMAND = UPDATE_SECURE_MEM ' Setup the command to UPDATE SECURITY
ADDRESS = 0 ' Point to SECURE memory address 0
DATA_BYTE = S_MEM.BYTE0 - 1 ' Decrement the attempts counter. Required before
open
Gosub SEND_COMMAND ' Send the command to UPDATE SECURITY MEM-
ORY
If ERROR_CODE != 0 Then Return ' Return if an error occurred during the process
Gosub START_WRITE_PROCESS ' Start of PROCESSING CONDITION.

' Send PIN byte 1.
COMMAND = COMPARE_SECURE_MEM ' Setup the command for COMPARE SECU-
RITY
Inc ADDRESS ' ADDRESS now points to $01
DATA_BYTE = PIN.Byte0 ' Load the FIRST PIN number
Gosub SEND_COMMAND ' Send the COMPARE SECURITY MEMORY com-
mand
If ERROR_CODE != 0 Then Return ' Return if an error occurred during the process
Gosub START_WRITE_PROCESS ' Start of PROCESSING CONDITION.

' Send PIN byte 2.
Inc ADDRESS ' ADDRESS now points to $02
DATA_BYTE = PIN.Byte1 ' Load the SECOND PIN number
Gosub SEND_COMMAND ' Send the COMPARE SECURITY MEMORY com-
mand

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 36

If ERROR_CODE != 0 Then Return ' Return if an error occurred during the process
Gosub START_WRITE_PROCESS ' Start of PROCESSING CONDITION.
' Send PIN byte 3.
Inc ADDRESS ' ADDRESS now points to $03
DATA_BYTE = PIN.Byte2 ' Load the THIRD PIN number
Gosub SEND_COMMAND ' Send the COMPARE SECURITY MEMORY com-
mand
If ERROR_CODE != 0 Then Return ' Return if an error occurred during the process
Gosub START_WRITE_PROCESS ' Start of PROCESSING CONDITION.

' Try and erase the ERROR COUNTER
ADDRESS = $00 ' Point to SECURE memory address 0
DATA_BYTE = $FF ' Write $FF to address of SECURITY memory
COMMAND = UPDATE_SECURE_MEM ' Setup the command to UPDATE SECURITY
MEMORY
Gosub SEND_COMMAND ' Send the UPDATE SECURITY MEMORY com-
mand
If ERROR_CODE != 0 Then Return ' Return if an error occurred during the process
Gosub START_WRITE_PROCESS ' Start of PROCESSING CONDITION.
Gosub READ_SECURE_MEMORY ' Read the SECURITY memory again

If S_MEM.BYTE0 <> 7 Then ' Has the ERROR COUNTER been decremented ?
ERROR_CODE = 2 ' Indicate we have an error opening the card
Delayms 50
Hrsout 1,1
Delayms 50
Hrsout "WRONG PIN ENTERED",13
Endif
If S_MEM.BYTE0 = 6 Then
Hrsout "WARNING! ONLY TWO ATTEMPTS LEFT AT ENTERING THE CORRECT PIN",13
Endif
If S_MEM.BYTE0 = 4 Then
Hrsout "WARNING! ONLY ONE ATTEMPT LEFT AT ENTERING THE CORRECT PIN",13
Endif
Return

Notice on the display, that the SECURITY memory shows 00000007 before
the card is opened, and FFFFFF07 after the card is opened. The FFFFFF
bytes correspond to the PIN. The 07 corresponds to the amount of attempts
left, which is seven (bin 00000111) in this case because the correct PIN was
entered.

Now we'll see what happens when a wrong PIN is entered.

WARNING. Incorrect usage of the following changes in the program could
render the card as invalid. Read and understand the next few paragraphs
before attempting any code changes.

Change line 345 of the OPEN_MEMORY.BAS program from: -

PIN = $FFFFFF ' Set the PIN number to default $FFFFFF

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 37

to: -

PIN = $FFFF00 ' Set the PIN number to $FFFF00

Make sure there is NO card in the PROTON SMART board, and re-compile the
program, then download it. Open the serial terminal, and RESET the board.

Now insert the card into the PROTON SMART's socket, and you will be
greeted with the following display: -

Notice that the SECURITY memory still only displays 000000 because an in-
correct PIN has been entered, but the ERROR COUNTER has been decre-
mented by one bit (from 00000111 to 00000110). Remove the card from its
socket and re-insert it. WARNING. This will decrement the ERROR COUNTER
once again. If you do not feel brave enough to attempt this, then skip this
part. Upon re-entering the card, you will be greeted (if that's the correct ter-
minology) with the display below.

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 38

Notice, that the ERROR counter has decremented once again because of the
invalid PIN (from 00000110 to 00000100). NOW REMOVE THE CARD, AND
DO NOT RE-INSERT IT until changes have been made to the program.

We now need to reset the ERROR COUNTER in order for the card not to be
invalidated. Change line 345 of the OPEN_MEMORY.BAS program from: -

PIN = $FFFF00 ' Set the PIN number to $FFFF00

to: -

PIN = $FFFFFF ' Set the PIN number to default $FFFFFF

Re-compile the program, and download it to the PROTON SMART board.
Open the serial terminal, and press RESET. Only now can the card be re-
inserted into the socket. This will enter the correct PIN value of FFFFFF, thus
resetting the ERROR COUNTER to 07. See display below: -

Notice that before the
card was opened, the SECURITY memory still read as 00000004, but after
the card was presented with a valid PIN, the SECURITY memory reads
FFFFFF07. We're safe now, the card has 3 attempts again.

Writing to MAIN memory.
The program OPEN_MEMORY.BAS, also writes to the MAIN memory of the
card using the subroutine WRITE_MAIN_MEMORY. Shown below.

' WRITE MAIN MEMORY
WRITE_MAIN_MEMORY:
RESTORE 0 ' Point to beginning of DATA statement
COMMAND = UPDATE_MAIN_MEM ' Setup the correct command
ADDRESS = 32 ' Write from address 32 of the card
Repeat ' Create a loop
DATA_BYTE = READ ' Read the data from the DATA state-
ment
Gosub SEND_COMMAND ' Write the data to the card

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 39

If ERROR_CODE != 0 Then Return ' Was there an error ?
Gosub START_ERASE_WRITE_PROCESS ' Start of PROCESSING CONDITION.
Inc ADDRESS ' Point to the next address location within the
card
Until DATA_BYTE = 0 OR LOOP = 0 ' Loop until finished
Return

The WRITE_MAIN_MEMORY subroutine uses the command UPDATE MAIN
memory, and another subroutine named START_ERASE_WRITE_PROCESS.
So we'll look at the UPDATE MAIN memory command first.

This command programs the addressed eeprom byte with the data byte
transmitted. Depending on the old and new data, one of the following se-
quences will take place during the processing mode: -

Erase and Write (5ms)Corresponding to m = 255 clock pulses.
Write without Erase (2.5ms)Corresponding to m = 124 clock pulses.
Erase without Write (2.5ms)Corresponding to m = 124 clock pulses.

The subroutine START_ERASE_WRITE_PROCESS, performs the task that its
name suggests, in that it starts the process for erasing a memory cell before
data is written to it. The subroutine is shown below: -

' START of ERASE_AND_WRITE PROCESSING CONDITION.
' Falling Edge of IO line, while CLK is LOW
START_ERASE_WRITE_PROCESS:
Input SIO ' Keep the DATA line HIGH (via pullup resis-
tor)
Low CLK ' Bring the CLOCK line HIGH
Low SIO ' Pull the DATA line LOW
Clear LOOP2
Repeat
High CLK : Delayus 1 : Low CLK ' Send 255 dummy clocks
Inc LOOP2
Until LOOP2 = 255
Input SIO ' Bring the DATA line HIGH
Return

The subroutine START_WRITE_PROCESS, allows two tasks to be performed,
Write without Erase, or Erase without Write, depending on what is placed in
the variable DATA_BYTE prior to sending the UPDATE_MAIN_MEM com-
mand. If hex FF is loaded into DATA_BYTE, then an Erase without Write will
be performed, any other value will perform Write without Erase. This subrou-
tine is shown below: -

' START of WRITE PROCESSING CONDITION.
' Falling Edge of IO line, while CLK is LOW
START_WRITE_PROCESS:
Input SIO ' Keep the DATA line HIGH (via pullup resis-
tor)

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 40

Low CLK ' Bring the CLOCK line HIGH
Low SIO ' Pull the DATA line LOW
Clear LOOP2
Repeat
High CLK : Delayus 1 : Low CLK ' Send 124 dummy clocks
Inc LOOP2
Until LOOP2 = 124
Input SIO ' Bring the DATA line HIGH
Return

These two subroutines are the key to writing data to the SLE4442 card, and
are used throughout the rest of the programs. The program
OPEN_MEMORY.BAS already demonstrates writing to the card, so we need
not create another demonstration program for this. But instead, we'll take a
look at write protecting parts of the MAIN memory.

As was discussed earlier, the first 32 bytes of MAIN memory can be write pro-
tected, which effectively creates a PROM area, as opposed to EEPROM. To ac-
complish write protection we must issue the WRITE PROTECTION MEMORY
command (hex 3C), with the address required (0 to 31), and the data byte
containing the value that is already written to the memory cell at that ad-
dress.

For example, suppose we wish to write protect address 4 of MAIN memory.
The sequence of events is: -

• Perform a conventional WRITE to address 4, using the UP-
 DATE MAIN MEMORY command.

• Read the value from address 4.
• Re-write this value into address 4, using the WRITE PROTECTION

 MEMORY command, instead of the UPDATE MAIN MEMORY
com mand.

If the MAIN memory cell is to be write protected along with being written,
then step two of the above list may be omitted, as the value is already known.

This breaks down into the following BASIC code: -

' Write the value $50 (ASCII P) to address 4 of the card
COMMAND = UPDATE_MAIN_MEM ' Setup the correct command
ADDRESS = 4 ' Write from address 4 of the card
DATA_BYTE = $50 ' Setup for a value of $50 to be written
Gosub SEND_COMMAND ' Write the data to the card
If ERROR_CODE != 0 Then MAIN ' Was there an error ?
Gosub START_ERASE_WRITE_PROCESS ' Start of PROCESSING CONDITION.

' Now WRITE Protect the value at address 4
' By loading variable ADDRESS with the memory address required for write protect (0 - 31)
' And placing the same value ($50) into DATA_BYTE

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 41

' These are already pre-loaded by the code above.
COMMAND = WRITE_PROT_MEM ' Setup to write to protected memory
Gosub SEND_COMMAND ' Send the WRITE PROTECTION MEMORY com-
mand
If ERROR_CODE != 0 Then MAIN ' Was there an error ?
Gosub START_WRITE_PROCESS ' Start of WRITE PROCESSING CONDITION.

A program to illustrate write protection is included on the CDROM, named
WRITE_PROT.BAS. Load the program, and follow the standard compilation
and downloading, but DO NOT insert the card yet.

Once, the serial terminal has been opened, and RESET has been pressed, you
can insert the card. WARNING! THIS WILL WRITE AND PROTECT A SIN-
GLE CELL IN MAIN MEMORY. THIS CELL WILL NOT BE ABLE TO BE
ERASED OR REWRITTEN WITH ANOTHER VALUE.

When the card is inserted, you will be greeted with the display below: -

What the program does is reads the card and displays the MAIN memory, and
the PROTECTION memory. Then writes ASCII P to address 4 and write pro-
tects it.

As you can see, the PROTECTION memory before the write is: -

PROTECT : 11111000000111111111111100110000

But after the write, and write protection, the PROTECTION memory is: -

PROTECT : 11111000000111111111111100100000

Bit 4 of the PROTECTION memory is now set to 0, which indicates that ad-
dress 4 (containing ASCII P), is now write protected, and cannot be erased, or
written to, even with a valid PIN.

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 42

The full code listing of WRITE_PROT.BAS:

' Program WRITE_PROT.BAS
' Opens the SLE4442 memory for writing or erasing, by entering a valid PIN.
' Then writes information to MAIN memory, and locks a cell to read only.

' WARNING! THIS CODE HAS THE POTENTIAL TO RENDER A CARD USELESS IF AL-
TERED

DEVICE = 16F876 ' PICmicro used in the PROTON SMART
XTAL = 20 ' We're using a 20MHZ crystal

HSERIAL_BAUD = 9600 ' Set baud rate to 9600
HSERIAL_RCSTA = %10010000 ' Enable serial port and continuous receive
HSERIAL_TXSTA = %00100100 ' Enable transmit and asynchronous mode
HSERIAL_CLEAR = ON ' Enable Error clearing on received characters
'---
' Declare some variables
Dim CLEARED_ONCE as Bit ' Toggle flag for clearing the terminal only once in a
loop
Dim ERROR_CODE as Byte ' Returns NON-ZERO if an error occurs in any proc-
ess
Dim LOOP as Byte
Dim LOOP2 as Byte
Dim TEMP as Byte
Dim COMMAND as Byte ' Command to send to the card
Dim ADDRESS as Byte ' The card address to read and write
Dim DATA_BYTE as Byte ' Data byte used for some commands
Dim P_MEM as Dword ' 32 bits (4 bytes) of PROTECTION memory
Dim ATR_MEM as Dword ' Holds the 4 bytes of ATR data
Dim PIN as Dword ' Holds the 3 byte PIN
Dim S_MEM as Dword ' Holds the 4 bytes of SECURITY memory
Dim MEMORY[255] as Byte ' 255 bytes of MAIN memory
'---
' Define some aliases to make the code more readable

Symbol CARD_VCC = PORTA.5 ' Supplies the card with 5 Volts
Symbol CARD_IN = PORTA.4 ' CARD IN sensor switch (normally closed)
Symbol CLK = PORTC.3 ' Card's CLK line
Symbol SIO = PORTC.4 ' Card's IO line
Symbol RST = PORTA.3 ' Card's RESET line

' Card commands
Symbol READ_MAIN_MEM = %00110000
Symbol UPDATE_MAIN_MEM = %00111000
Symbol READ_PROT_MEM = %00110100
Symbol WRITE_PROT_MEM = %00111100
Symbol READ_SECURE_MEM = %00110001
Symbol UPDATE_SECURE_MEM = %00111001
Symbol COMPARE_SECURE_MEM = %00110011
'---
Delayms 500 ' Wait for the power supply to fully stabilise
ALL_DIGITAL = True ' Make PORTA all digital IO

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 43

Hrsout 1 ' Clear the serial terminal's screen before we start
Goto Main ' Then jump over the subroutines to the main pro-
gram loop

'---
' Send a START condition by:-
' Falling Edge of IO line, while CLK is HIGH
Send_Start:
Input SIO ' Keep the DATA line HIGH
Delayus 1 ' Wait for 1 microsecond (us)
High CLK ' Bring the CLOCK line HIGH
Delayus 1 ' Wait for 1 microsecond (us)
Low SIO ' Pull the DATA line LOW
Return
'---
' Send a STOP condition by:-
' Rising Edge of IO line, while CLK is HIGH
Send_Stop:
Low SIO ' Keep the DATA line LOW
Delayus 1 ' Wait for 1 microsecond (us)
High CLK ' Bring the CLOCK line HIGH
Delayus 1 ' Wait for 1 microsecond (us)
Input SIO ' Bring the DATA line HIGH
Return
'---
' Send a RESET condition by:-
' Pulling the RST line HIGH-LOW
' While the CLK line is toggled HIGH-LOW
SEND_RESET:
High RST ' Bring the RESET line HIGH (to RESET the card)
High CLK ' Bring the CLOCK line HIGH
Low CLK ' Pull the CLOCK line LOW
Low RST ' Pull the RESET line LOW (to release the card from RE-
SET)
Return
'---
' START of WRITE PROCESSING CONDITION.
' Falling Edge of IO line, while CLK is LOW
' Send 125 clock pulses
START_WRITE_PROCESS:
Input SIO ' Keep the DATA line HIGH (via pullup resistor)
Low CLK ' Bring the CLOCK line HIGH
Low SIO ' Pull the DATA line LOW
Clear LOOP2
Repeat
High CLK : Delayus 1 : Low CLK ' Send 124 dummy clocks
Inc LOOP2
Until LOOP2 = 125
Input SIO ' Bring the DATA line HIGH
Return
'---
' START of ERASE_AND_WRITE PROCESSING CONDITION.
' Falling Edge of IO line, while CLK is LOW

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 44

START_ERASE_WRITE_PROCESS:
Input SIO ' Keep the DATA line HIGH (via pullup resistor)
Low CLK ' Bring the CLOCK line HIGH
Low SIO ' Pull the DATA line LOW
Clear LOOP2
Repeat
High CLK : Delayus 1 : Low CLK ' Send 255 dummy clocks
Inc LOOP2
Until LOOP2 = 0
Input SIO ' Bring the DATA line HIGH
Return
'---
' Send a command to the card
' The command to send is held in variable COMMAND
' The address (if any) is held in variable ADDRESS
' The data to send (if any) is held in variable DATA_BYTE
SEND_COMMAND:
ERROR_CODE = 0 ' Default to no error
If CARD_IN = 0 Then ERROR_CODE = 1 : Return ' Indicate an error if card removed
Gosub SEND_START ' Send a START condition
Shiftout SIO , CLK , LSBFIRST , [COMMAND,ADDRESS,DATA_BYTE] ' Shift out the com-
mand
Gosub SEND_STOP ' Send a STOP condition
Return
'---
' READ SECURITY MEMORY
' Reads the 4-bytes of memory into variable S_MEM
' ADDRESS, and DATA_BYTE are ignored by the card, so do not need initialising
READ_SECURE_MEMORY:
COMMAND = READ_SECURE_MEM
Gosub SEND_COMMAND ' Send the READ SECURITY MEMORY
command
If ERROR_CODE != 0 Then Return ' Was there an error ?
Gosub SEND_START ' Send a START condition
If CARD_IN = 0 Then ERROR_CODE = 1 : Return ' Indicate an error if card removed
Shiftin SIO , CLK , LSBPRE ,
[S_MEM.BYTE0,S_MEM.BYTE1,S_MEM.BYTE2,S_MEM.BYTE3]
High CLK : Delayus 1 : Low CLK ' Send an extra clock
Gosub SEND_STOP ' Send a STOP condition
Return
'---
' READ PROTECTION MEMORY
' Reads the 4-bytes of memory into variable P_MEM
' ADDRESS, and DATA_BYTE are ignored by the card, so do not need initialising
READ_PROT_MEMORY:
COMMAND = READ_PROT_MEM
Gosub SEND_COMMAND ' Send the READ PROTECTED MEMORY com-
mand
If ERROR_CODE != 0 Then Return
Gosub SEND_START ' Send a START condition
If CARD_IN = 0 Then ERROR_CODE = 1 : Return ' Indicate an error if card removed
Shiftin SIO , CLK , LSBPRE ,
[P_MEM.BYTE0,P_MEM.BYTE1,P_MEM.BYTE2,P_MEM.BYTE3]

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 45

High CLK : Delayus 1 : Low CLK ' Send an extra clock
Gosub SEND_STOP ' Send a STOP condition
Return
'---
' READ MAIN MEMORY
' Reads all of memory into array MEMORY
' Reads from address 0 to 255
READ_MAIN_MEMORY:
ADDRESS = 0
COMMAND = READ_MAIN_MEM
Gosub SEND_COMMAND ' Send the READ MAIN MEMORY command
If ERROR_CODE != 0 Then Return
Gosub SEND_START ' Send a START condition
LOOP = 0
Repeat
If CARD_IN = 0 Then ERROR_CODE = 1 : Return ' Indicate an error if card removed
MEMORY[LOOP] = Shiftin SIO , CLK , LSBPRE , 8
Inc LOOP
Until LOOP = 0 ' 0 is byte sized 256
High CLK : Delayus 1 : Low CLK ' Send an extra clock
Gosub SEND_STOP ' Send a STOP condition
Return
'---
' Read the 32 bit ATR (ANSWER-TO-RESET)
' The DWORD variable ATR_MEM holds the 32 bit ATR result
READ_ATR:
ERROR_CODE = 0 ' Default to no error
If CARD_IN = 0 Then ERROR_CODE = 1 : Return ' Indicate an error if card removed
Gosub SEND_RESET ' Send a RESET
Shiftin
SIO,CLK,LSBPRE,[ATR_MEM.BYTE3,ATR_MEM.BYTE2,ATR_MEM.BYTE1,ATR_MEM.BYTE0]
High CLK : Delayus 1 : Low CLK ' Send an extra clock
Return
'---
' OPEN_MEMORY for write
' Opens the card for writing by entering the correct PIN number
' The PIN is loaded into a DWORD sized variable named PIN
' SECURITY MEMORY byte 0 must be decremented before the card is unlocked
' The CARD remains unlocked as long as VCC power is applied
OPEN_MEMORY:
Gosub READ_SECURE_MEMORY ' Read all of SECURE memory into variable S_MEM
If ERROR_CODE != 0 Then Return ' Return if an error occurred during the proc-
ess
If S_MEM.BYTE0 = 0 Then ' Indicate NO ATTEMPTS left
ERROR_CODE = 2 ' Indicate we have an error opening the card
Delayms 50
Hrsout 1,1
Delayms 50
Hrsout 13,"THE CARD HAS BEEN DE-ACTIVATED!",13
Return ' Return form the subroutine prematurely
Endif

' Update SECURE memory, at address 0

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 46

COMMAND = UPDATE_SECURE_MEM ' Setup the command to UPDATE SECURITY
MEMORY
ADDRESS = 0 ' Point to SECURE memory address 0
DATA_BYTE = S_MEM.BYTE0 - 1 ' Decrement the attempts counter. Required before
open
Gosub SEND_COMMAND ' Send the command to UPDATE SECURITY MEM-
ORY
If ERROR_CODE != 0 Then Return ' Return if an error occurred during the process
Gosub START_WRITE_PROCESS ' Start of PROCESSING CONDITION.

' Start sending the PIN number. $FF $FF $FF in this case
' Send PIN byte 1.
COMMAND = COMPARE_SECURE_MEM ' Setup command COMPARE SECURITY MEM-
ORY
Inc ADDRESS ' ADDRESS now points to $01
DATA_BYTE = PIN.Byte0 ' Load the FIRST PIN number
Gosub SEND_COMMAND ' Send the COMPARE SECURITY MEMORY com-
mand
If ERROR_CODE != 0 Then Return ' Return if an error occurred during the proc-
ess
Gosub START_WRITE_PROCESS ' Start of PROCESSING CONDITION.
' Send PIN byte 2.
Inc ADDRESS ' ADDRESS now points to $02
DATA_BYTE = PIN.Byte1 ' Load the SECOND PIN number
Gosub SEND_COMMAND ' Send the COMPARE SECURITY MEMORY com-
mand
If ERROR_CODE != 0 Then Return ' Return if an error occurred during the process
Gosub START_WRITE_PROCESS ' Start of PROCESSING CONDITION.
' Send PIN byte 3.
Inc ADDRESS ' ADDRESS now points to $03
DATA_BYTE = PIN.Byte2 ' Load the THIRD PIN number
Gosub SEND_COMMAND ' Send the COMPARE SECURITY MEMORY com-
mand
If ERROR_CODE != 0 Then Return ' Return if an error occurred during the proc-
ess
Gosub START_WRITE_PROCESS ' Start of PROCESSING CONDITION.

' Try and erase the ERROR COUNTER
ADDRESS = $00 ' Point to SECURE memory address 0
DATA_BYTE = $FF ' Write $FF to address of SECURITY memory
COMMAND = UPDATE_SECURE_MEM ' Setup the command to UPDATE SECURITY
MEMORY
Gosub SEND_COMMAND ' Send the UPDATE SECURITY MEMORY com-
mand
If ERROR_CODE != 0 Then Return ' Return if an error occurred during the proc-
ess
Gosub START_WRITE_PROCESS ' Start of PROCESSING CONDITION.
Gosub READ_SECURE_MEMORY ' Read the SECURITY memory again
If S_MEM.BYTE0 <> 7 Then ' Houston, we have a problem!
ERROR_CODE = 2 ' Indicate we have an error opening the card
Delayms 50
Hrsout 1,1
Delayms 50

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 47

Hrsout "WRONG PIN ENTERED",13
Endif
If S_MEM.BYTE0 = 6 Then
Hrsout "WARNING! ONLY TWO ATTEMPTS LEFT AT ENTERING THE CORRECT PIN",13
Endif
If S_MEM.BYTE0 = 4 Then
Hrsout "WARNING! ONLY ONE ATTEMPT LEFT AT ENTERING THE CORRECT PIN",13
Endif
Return
'---
' Wait for the card to be inserted into the socket before continuing
WAIT_FOR_INSERTION:
While CARD_IN = 0 ' Wait for the card to be inserted into the
socket
Low CARD_VCC
If CLEARED_ONCE = 0 Then ' Make sure CLS is carried out only once in
the loop
Hrsout 1," SLE4442 READER",13,"PLEASE INSERT CARD",13
Set CLEARED_ONCE
Endif
Wend
High CARD_VCC ' Enable the card's VCC (5 Volts)
If CLEARED_ONCE = 1 Then Hrsout 1 : CLEARED_ONCE = 0
Delayms 200 ' Wait for the card to fully power up
Return
'---
' Check if the card is the right type, and is inserted correctly
' i.e. not upside down, or back to front
CHECK_CARD_TYPE:
ERROR_CODE = 0
' Check if the card in the socket correctly
' Will return all $FF if not
If ATR_MEM.BYTE3 = $FF AND ATR_MEM.BYTE2 = $FF Then
Hrsout 1,"CARD INSERTION ERROR",13
While CARD_IN = 1 : Delayms 10 : Wend ' Wait for the card to be removed before pro-
ceeding
ERROR_CODE = 1
Return
Endif

' Check if the correct type of card is inserted
' By examining the first byte of the ATR
If ATR_MEM.BYTE3 != $A2 Then ' Is the first byte equal to $A2 ?
Hrsout 1,"INVALID CARD TYPE",13
While CARD_IN = 1 : Delayms 10 : Wend ' Wait for the card to be removed before pro-
ceeding
ERROR_CODE = 1
Endif
Return
'---
' Display the PROTECTED part of MAIN MEMORY (first 32 bytes)
DISPLAY_MAIN_MEMORY:
Hrsout "MAIN MEMORY",13

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 48

For LOOP = 0 to 31 Step 16
Hrsout HEX2 LOOP , ": "
For LOOP2 = 0 to 15 ' Display HEX
Hrsout HEX2 MEMORY[LOOP + LOOP2]
If LOOP2 < 15 Then Hrsout "," : Else Hrsout " | "
Next
For Loop2 = 0 to 15 ' Display ASCII
TEMP = MEMORY[LOOP + LOOP2]
If TEMP > 32 AND TEMP < 127 Then
Hrsout TEMP
Else
Hrsout "."
Endif
Next
Hrsout 13
Next
Return
'---
' *** MAIN PROGRAM LOOP STARTS HERE ***
MAIN:
Clear ' Clear all user RAM
CLEARED_ONCE = 0
Input CARD_IN
PIN = $FFFFFF ' Set the PIN number to default $FFFFFF

Gosub WAIT_FOR_INSERTION ' Wait for the card to be inserted into the
socket
Gosub Read_ATR ' Read the ATR (ANSWER-TO-RESET) of the
card
If ERROR_CODE != 0 Then MAIN ' Check for card insertion error
Gosub CHECK_CARD_TYPE ' Make sure it's the right type of card
If ERROR_CODE != 0 Then MAIN ' Check for card insertion error

' Display the ATR value on the serial terminal
Hrsout "ATR : ",HEX2 ATR_MEM.BYTE3,",",HEX2 ATR_MEM.BYTE2,",",HEX2
ATR_MEM.BYTE1,",",HEX2 ATR_MEM.BYTE0,13,13

' Read and Display MAIN and PROTECTION memory before writing to it
Hrsout "BEFORE WRITE",13,13
Gosub READ_MAIN_MEMORY ' Read all of MAIN memory into an array
If ERROR_CODE != 0 Then MAIN ' Check for card insertion error
Gosub READ_PROT_MEMORY ' Read the 4 bytes of PROTECTION memory
If ERROR_CODE != 0 Then MAIN ' Check for card insertion error
Gosub DISPLAY_MAIN_MEMORY ' Display 32 bytes of MAIN memory
If ERROR_CODE != 0 Then MAIN ' Check for card insertion error
Hrsout 13,"PROTECT : ",BIN32 P_MEM,13 ' Display the PROTECTION memory

Gosub OPEN_MEMORY ' Open the memory, ready for writing
If ERROR_CODE = 1 Then MAIN ' The card has been removed ?
If ERROR_CODE = 2 Then ' There was an error with opening the card ?
Hrsout 13,"SECURE : ",HEX8 S_MEM,13 ' Display the SECURITY memory area
While CARD_IN = 1 : Wend ' Wait for the card to be removed
Goto MAIN ' Then start again

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 49

Endif

' Write the value $50 (ASCII P) to address 4 of the card
COMMAND = UPDATE_MAIN_MEM ' Setup the correct command
ADDRESS = 4 ' Write from address 4 of the card
DATA_BYTE = "P" ' Setup for a value of $50 to be written
Gosub SEND_COMMAND ' Write the data to the card
If ERROR_CODE != 0 Then MAIN ' Was there an error ?
Gosub START_ERASE_WRITE_PROCESS ' Start of PROCESSING CONDITION.
' Now WRITE Protect the value at address 4
' Load variable ADDRESS with the memory address required for write protect (0 - 31)
' This is already pointed to by previous code above.
COMMAND = WRITE_PROT_MEM ' Setup to write to protected memory
Gosub SEND_COMMAND ' Send the WRITE PROTECTION MEMORY com-
mand
If ERROR_CODE != 0 Then MAIN ' Was there an error ?
Gosub START_WRITE_PROCESS ' Start of WRITE PROCESSING CONDITION.

' Read and Display MAIN, and PROTECTION memory after writing to it
Hrsout 13,"AFTER WRITE",13,13
Gosub READ_MAIN_MEMORY ' Read all of MAIN memory into an array
If ERROR_CODE != 0 Then MAIN ' Check for card insertion error
Gosub READ_PROT_MEMORY ' Read the 4 bytes of PROTECTION memory
If ERROR_CODE != 0 Then MAIN ' Check for card insertion error
Gosub DISPLAY_MAIN_MEMORY ' Display 32 bytes of MAIN memory
If ERROR_CODE != 0 Then MAIN ' Check for card insertion error
Hrsout 13,"PROTECT : ",BIN32 P_MEM,13 ' Display the PROTECTION memory
While CARD_IN = 1 : Delayms 10 : Wend ' Wait for the card to be removed before pro-
ceeding
Goto MAIN

Let's recap on what we can now do with the SLE4442 card. We can read all of
it's memory, as well as write all and write protect parts of the MAIN memory,
using a PIN. What we need to examine now is a means of changing the PIN
from the default value of FFFFFF to whatever 3 byte combination is desired.

Remove any card that's inserted into the socket, and load the program
CHANGE_PIN.BAS, compile, and download it to the PROTON SMART board,
then open the serial terminal window. Press RESET on the PROTON SMART
to re-initialise the program, and insert the card. You will be greeted with the
display be- low:

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 50

As can be seen from the above display, the PIN has been changed from the
default value FFFFFFH, to the new value of 123456H. To ensure that the PIN
really has been changed, remove the card, and re-insert it into the socket.
The display will inform you that an incorrect PIN has been entered. This is
because the card requires a valid PIN before it can be changed, and as the
card now contains a different PIN, the card does not now recognise the origi-
nal PIN.

The key elements to the CHANGE_PIN.BAS program are shown below:

On lines 349 and 350 of the program, there are these two statements.

PIN = $FFFFFF ' Set the PIN value to default $FFFFFF
NEW_PIN = $123456 ' The new pin value for the card

The variable PIN holds the default (or original) PIN of the card, which is
FFFFFF in this case. The variable NEW_PIN contains the new PIN value that
we require. The subroutine that actually changes the PIN is named
CHANGE_PIN, and is shown below:

' Write a new PIN to the card
' The card must already be opened by a valid PIN,
' and the new PIN value required must be loaded into variable NEW_PIN
CHANGE_PIN:
COMMAND = UPDATE_SECURE_MEM ' Setup command UPDATE SECURITY
MEMORY
ADDRESS = 1 ' ADDRESS points to $01
' Send PIN byte 0.
DATA_BYTE = NEW_PIN.Byte0 ' Load the FIRST NEW PIN value
Gosub SEND_COMMAND ' Send the COMPARE SECURITY MEMORY com-
mand
If ERROR_CODE != 0 Then Return ' Return if an error occurred during the proc-
ess
Gosub START_ERASE_WRITE_PROCESS ' Start of PROCESSING CONDITION.
' Send PIN byte 1.
Inc ADDRESS ' ADDRESS now points to $02
DATA_BYTE = NEW_PIN.Byte1 ' Load the SECOND NEW PIN value
Gosub SEND_COMMAND ' Send the UPDATE SECURITY MEMORY com-
mand
If ERROR_CODE != 0 Then Return ' Return if an error occurred during the proc-
ess
Gosub START_ERASE_WRITE_PROCESS ' Start of PROCESSING CONDITION.
' Send PIN byte 2.
Inc ADDRESS ' ADDRESS now points to $03
DATA_BYTE = NEW_PIN.Byte2 ' Load the THIRD NEW PIN value
Gosub SEND_COMMAND ' Send the UPDATE SECURITY MEMORY com-
mand
If ERROR_CODE != 0 Then Return ' Return if an error occurred during the proc-

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 51

ess
Gosub START_ERASE_WRITE_PROCESS ' Start of PROCESSING CONDITION.
Return

To change the PIN value back to its default value of FFFFFF, change lines 349
and 350 to:

PIN = $123456 ' Set the PIN value to 123456
NEW_PIN = $FFFFF ' The new pin value for the card

Download the program to the PROTON SMART board, and re-insert the card.
The PIN is now back to it's original value.

The CHANGE_PIN subroutine is similar in appearance to the OPEN_MEMORY
subroutine that validates the PIN, except that it now issues the UPDATE SE-
CURITY MEMORY command, instead of the COMPARE SECURITY command.

That's it! We've come to the end of the functionality explanations of the
SLE4442 card. We can now read, write, enter, and change the PIN value. It's
up to you now!

One thing you must take into consideration when using the SLE4442 card, or
any of the memory cards, is that they can be read without using a PIN value.
Therefore any delicate or secure data placed on the card should use some
sort of encoding. This can be as simple as an XOR with the previous value, or
a full blown DES or Triple DEC encoding scheme. The internet has a wealth
of resources regarding such encryption techniques, and some have even been
implemented on the PIC microcontroller.

The possible applications for smartcards, or memory cards is endless, and far
too involved for a tutorial such as this. Some applications include: -

• Customer/Employee ID.
• Automatic Door Entry.
• Remote Data Logging.
• Firmware upgrades using removable memory cards.
• Hardware configuration changes using a memory card.

The list goes on……

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 52

PROTON SMART Electrical and Software Specifications.

The PROTON SMART board offers a flexible approach to developing hardware
and software solutions for the all kinds of smartcards. 8K Bytes of program
space in the PROTON SMART, means that large, or complex programs may be
written without worrying too much about running out of memory.

The PROTON SMART also offers an exceedingly easy to use programming
method using a serial bootloader. Simply connect the board to a spare serial
port on the PC.

Writing code for the PROTON SMART is independent of the language used.
i.e. Assembler, C, or BASIC etc. However, for this document, we'll assume the
language of BASIC for simplicity, and clarity.

The BASIC language used is the PROTON+ Compiler Version 2.0 onwards
from Crownhill Associates. Not only is this language flexible and easy to use,
but it incorporates a bootloader within the Windows IDE. Two clicks of the
mouse button can compile and download the newly created source code into
the PROTON SMART's on-board PICmicro.

The same serial link can be used to communicate with the PC when develop-
ing new software, using the Compiler's serial terminal window.

The PROTON SMART is based around a PIC16F876 Microcontroller from Mi-
crochip. This device has 8K of program space, 368 bytes of user ram for stor-
age of variables etc, and 256 bytes of eeprom space for storage of data. A
20MHz crystal oscillator ensures fast, accurate timing over a large range of
temperatures and environment changes. Eight digital I/O lines allow external
devices to be connected to the PROTON SMART, and are fully TTL level com-
patible, with each line having a pullup resistor associated with it, which may
be enabled/disabled through software.

There are also two fully isolated output lines for connection to higher powered
devices, such as relays, solenoids etc. Or circuits that have a higher voltage
requirement, such as an H-Bridge.

The power requirements for the PROTON board are also extremely flexible,
and robust. Being either an AC or DC, 6 to 12 Volts supply at approx 500mA.

The full circuit of the PROTON SMART is shown overleaf.

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 53

C
7

0.
1u

F

5
Vo

lts

V
+V

+
VC

C

G
N

D

M
A

X2
32

10 91211
14

15

13 87 6

543

2
1

16

C
1+

C
1-

C
2+

C
2-

V
-

T1
in

T2
in

R
1o

ut
R

2o
ut

T1
ou

t
T2

ou
t

R
1i

n
R

2i
n

C
8

0.
1u

F

C
10

0.
1u

F

C
9

0.
1u

F

G
N

D9-
w

ay
D

-S
oc

ke
t

0VC
6

0.
1u

F

1 2 3 4 5

6 7 8 9

R
XTX

J6 J7

9 10 11 12

8 7 6 5

C
4

C
3

C
2

C
1

C
8

C
7

C
6

C
5

18

17

SW
1(

N
C

)

SW
1(

N
C

)

5
Vo

lts

R
3

4.
7k

R
4

4.
7k

R
2

4.
7k

SE
N

SE

VC
C

R
ST

C
8

C
6

C
4

I/O
C

LK

C
ar

d
So

ck
et

R
14 1k R
13 47
0

C
14

0.
1u

F

D
2

LE
D

TR
1

B
C

54
8

O
P2

O
P1

CON1CON2 O
pt

o-
Is

ol
at

or
 1

O
pt

o-
Is

ol
at

or
 2

R
B

7

V
D

D

R
B

6
R

B
5

R
B

4
R

B
3

R
B

2
R

B
1

R
B

0

R
A

4
R

A
3

R
A

2
R

A
1

R
A

0

M
C

LR

O
S

C
1

O
S

C
2

V
S

S20

PI
C

16
F8

76

C
3

15
pF

C
2

0.
1u

F

C
2

15
pF

5
Vo

lts

18

R
C

0
R

C
1

R
C

2
R

C
3

R
C

4
R

C
5

R
C

6
R

C
7

V
S

S

R
A

5

20
m

H
z

C
ry

st
al

0V

R
1 1k

17 16 15 14 13 12 11 28 27 26 25 24 23 22 21 7 6 5 4 3 2

19
8

1091

C
4

0.
1u

FD
1

1N
41

48

R
ES

ET

TXR
X R
B

0
R

B
1

R
B

2
R

B
3

R
B

4
R

B
5

R
B

6
R

B
7

J1

I/O C
LK C

4
C

6
C

8
R

STSE
N

SE
VC

C

O
P2

O
P1

22
0

22
0

22
0

22
0

22
0

22
0

22
0

33
0

33
0

IN
O

U
T

G
N

D

78
L0

5

D
3

LE
D

A
C

A
C

+V
e 0v

B
R

1

C
11

22
0u

F

R
12 47
0

6
to

 1
2

Vo
lts

5
Vo

lts

0V

PR
O

TO
N

 S
M

A
R

T
C

irc
ui

t D
ia

gr
am

.

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 54

What is a bootloader?

The PIC16F87x range of devices have a unique feature, in that they can pro-
gram their own FLASH code space while running. All other PICmicros must
be programmed by a device programmer, such as the PICSTART or EPIC pro-
grammers. This self-modifying feature allows a PIC16F87x device to run a
program named a bootloader.

A bootloader is a program that resides in the code space of the target PIC. It
can be activated to allow additional program code to be written to and read
from that same target PIC. A bootloader consists of 2 elements, connected by
a serial cable.

The first part of the bootloader is a program resident on the PICmicro. This
program occupies the upper 256 words of the FLASH code space. This small
program must be placed into the PICmicro using a conventional programmer.

The program resident in the PICmicro communicates with the second element
of the loader over a serial connection. This second program is the bootloader
window within the compiler’s IDE and is the user interface. It allows the
compiled BASIC code to be programmed.

Only the code space and data space may be read and programmed on the
target PIC. The ID space and CONFIGURATION fuses are not accessible to the
bootloader. The configuration fuses must be set at the time the actual loader
program is programmed into the PICmicro. Once they are set, they cannot be
changed by the bootloader.

The bootloader software resident in the PICmicro, intercepts the reset vector.
When the PIC powers up, it enters the loader’s boot supervisor, this watches
the USART’s serial input pin for a start bit for 200 milliseconds (ms). If it sees
activity during this period, it enters the communications section of the soft-
ware to download a program. If it does not see any activity during the 200ms,
it starts the user program in the PICmicro.

The interception of the reset vector is accomplished by automatically relocat-
ing the first 4 user program words from address’s 0 to 3 to a reserved place in
the bootloader's code space (within the top 256 words). A jump to the boot-
loader is then placed at locations 0 to 3. When the loader software running
on the PC reads or writes these addresses the values seen are as if the boot-
loader was not resident and the reset code had not been moved.

The USART’s serial pins used by the bootloader are only required when the
loader is actually programming the PIC. They are unattached while the
downloaded user program is running on the target and may be assigned to
any other task or serial baud rate, with one exception. As we’ve already dis-
cussed, the bootloader checks the serial input pin at power up and reset, to
determine if it should run, or if the user (downloaded) program should run.

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 55

Therefore, for the user program to run, this pin must not be in the start bit
condition when the device is powered up.

Make sure the serial in pin (PORTC.7) is in the idle state when the PIC is first
powered up.

The serial communication speed is set at 19200 baud. The bootloader pro-
gram resident in the PICmicro can easily communicate at this speed with an
oscillator frequency from 4MHz to 20MHz. This oscillator frequency is deter-
mined at the time the loader code is programmed into the target PIC. The tar-
get PIC must then only be run at this frequency in order to be able to com-
municate with its matching part running on the PC. The bootloader uses no
PICmicro resources while the user program is running. All the data memory,
RAM, and I/O pins are available to the user program.

However, there are a few considerations that should be noted when writing
programs that will be loaded by the bootloader. The first is that the boot-
loader takes over at power up and any subsequent resets. Any time the pro-
gram vectors through the reset address, the loader becomes active and
watches the RX pin (PORTC.7) for any activity. If there is any action on this
pin, the loader will start, and the user program will not execute. Even if there
is no activity on this pin, the start of the user program will be delayed by the
200 milliseconds while the bootloader is watching the RX pin.

Another consideration is the fact that the configuration fuses are not alter-
able by the bootloader. If some programs require the use of the Watchdog
Timer and others don't, then separate PICmicros will be necessary. One PIC
programmed with the WDT on and one with it off. The same is true for the
Power up Timer, Brownout Detect Enable and Oscillator type. The standard
programmed defaults are WATCHDOG TIMER ON, POWERUP TIMER ON,
BROWNOUT DETECT ENABLE ON and HS OSCILLATOR.

The configuration fuses for code protection CANNOT be enabled. The boot-
loader needs to be able to freely read and write to the PIC’s code and data
space. Therefore, the device cannot be code protected. The bootloader is pri-
marily aimed at development work, any final products that require code pro-
tection must be programmed in the conventional way.

The bootloader software occupies the last 256 words of code space. A com-
piled program is written starting at location 0 and grows upward so the
loader's position in memory is not noticeable. You must make sure that the
program code does not attempt to enter the upper 256 words of code space.
The bootloader inserts its own code at the reset vector and automatically re-
locates the user’s reset code to an area reserved within the top 256 words of
memory. Normally, these locations contain a jump to the start-up routine for
the user program. However, since the user code is no longer situated at these
locations, the user program should not attempt to jump to, or call any rou-
tine within the code area between 0 and 3.

PROTON SMART

Copyright  Crownhill Associates Limited 2003
All Rights Reserved Page 56

NOTES

