

AN132 - 1

Application Note

AN132

Introduction

In the dynamic semiconductor industry, conventions
taken for gospel today are heresy tomorrow. In one of
these classic battlegrounds, parallel busses, once
undisputed leader in system data transfer, face a seri-
ous challenge from new serial interfaces. Recent intro-
ductions and improved standards make the serial
interface an attractive choice for both memory and
peripheral control applications. In the peripheral arena,
IEEE1394, gigabit ethernet and Universal Serial Bus
(USB) are gaining favor in many systems over parallel
busses such as PCI, PCCard, IDE (disk drive), and
ISA/EISA.

In the semiconductor memory world, code storage
devices almost exclusively use the parallel bus. How-
ever, serial access data memories now find increasing
acceptance as faster serial busses allow the designer
to achieve the benefits without the drawbacks. This
application note examines serial memory interface
trends and evaluates the three leading interface stan-
dards.

Memory Density

As Parallel Flash memories and E

2

PROMs increase in
density, manufacturing lower density devices becomes
increasingly less cost effective, so these densities tend
to “disappear”. This provides opportunities for serial
memories to increase in density to “fill the gap” left by
the discontinued parallel types. These serial memory
devices prove ideal for many data storage applications.

The Emergence of Serial Memories

Serial memory devices have been around for more
than 14 years. The early low density devices found
their way into many applications and, because of their
low cost, sold in high volumes. Typical early uses
included system configuration or device identification.
These application generally required very little storage
and had few interface speed constraints. In recent
years, the use of serial nonvolatile memories has
increased at a phenomenal rate into applications rang-
ing from cellular telephones to LAN systems to auto-
mobiles to industrial equipment. In many of these
applications serial memories are beginning to displace
parallel devices.

Serial Memory Interfaces: Trends and Options

by Carlos Martinez, November 1999

Figure 1. Trends in Memory Density

Parallel Flash

0 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M 2M 4M 8M 16M 32M 64M 128M

Serial E2PROM

2PROMParallel E

AN132 - 2

Xicor Application Note AN132

Serial memories began to make inroads against paral-
lel devices in response to two related market require-
ments. First was a rapid growth of portable products,
as demonstrated by the proliferation of laptop comput-
ers, palmtop computers, pocket cellular phones, pag-
ers, etc. Portability needs drove component vendors to
find ways to reduce the size and power of their prod-
uct. Success in this area fueled more miniaturization
and the trend points to continued miniaturization in the
foreseeable future.

As devices become more portable, there is a growing
desire by consumers to customize the product that
they use. Products now are small enough that their
owners carry them everywhere. They become part of
the person’s “life-style”. When this happens, the prod-
uct must adapt to the owners preferences and habits.
This leads to an increasing need for user programma-
ble customization.

As devices get smaller, there are different interface
media, since a keyboard is not always practical. This
leads to voice or pen inputs. To optimize performance
the system must adapt to the user or be capable of
adjustment for more desirable response.

Customization in a system also includes personal
phone numbers, individual schedules, stylized sounds
or pictures. To personalize a product the user might
include records of credit card numbers, access code
lists, medical history, insurance information, etc. As
personalization and customization becomes more
common, there is a desire for more. This results in an
ever growing need for more nonvolatile memory.

One way to provide customized memory is to use a
small piece of a large parallel Flash device often seen
in many products. The Flash contains the operating
code and can be updated in the field. Why not reserve
a little of this space for data storage? The emerging
consensus is that loss of some personalization data is
manageable, but loss of program is catastrophic.
Allowing writes of personalization data to the same
device that contains the program code increases the
likelihood of these catastrophic program failures in the
field.

With each new generation of product, engineers find
new ways to reduce the physical size of the unit and to
reduce it’s power, while at the same time increasing
the performance. To do this, the engineer uses device
integration (through the use of ASICs and more highly
integrated semiconductors), smaller packages, lower

Figure 2. Memory Power Trends

—With each new generation of devices power consumption is reduced.
Future devices will have zero standby power

PE2

SPI

MPS

P
o

w
er

1.8mW
1.8µW

15mW
750µW

400mW
250mW

100mW
75mW

I2C

1988 1992 1995

Year

PE2

SPI
13.5mW
2.7mW

250mW
2.5mW

8mW
2.7µW

I2C

MPS

1997

PE2

82mW
500µW

2.7mW
135µW

Operating
Standby

Power

PE2

50mW
66µW

AN132 - 3

Xicor Application Note AN132

operating voltage, lower current and innovative pack-
aging. Serial memories are becoming increasingly
important in managing programmability, board space
and power. Historical trends show serial memory
power requirements (Figure 2) and memory density
per square millimeter (Figure 3) decreasing rapidly,
with the trend continuing into the near future. Because
of their small size, low power characteristics and isola-
tion from program memory areas, serial memories are
key in providing new portable solutions.

While serial memories seem to be the ideal solution,
they have been troubled by two limitations, the limits of
speed and the need for special serial ports.

The Importance of Speed

Two new serial peripheral interface standards, the
IEEE1394 and USB, are examples of an increased
push in the industry toward higher serial bus speeds.
Promotions for the 1Gbit IEEE1394 standard indicate
that it may be the preferred choice over the parallel PCI
bus in the PC because of data throughput. At 1Gb/s,
the IEEE1394 serial bus transfers 64-bits of data in
less than 65nS. This is reportedly faster than current
implementations of the parallel PCI bus, because of
PCI protocol overhead. Designers predict the USB will
replace the ISA bus and both the PC parallel and serial
bus in the PC for low speed peripherals. The USB han-
dles up to 12Mb/s. This is fast enough to handle audio

I/O, telephone interfaces, keyboard and mouse control,
printers and other standard PC peripherals. The USB
is thought to have the inside track over other serial
busses like ACCESS.bus (a derivative of I

2

C), mainly
due to it’s much higher speed.

In serial memory applications speed becomes more
important as the density increases. Reading 64kbits, at
100kHz takes over 600ms seconds, while a 10MHz
interface takes only 6ms. This can make a big differ-
ence in system performance, power consumption and
user interaction.

Slow interface speeds impact system performance by
adding overhead to the CPU. The need to wait for the
next bit strains the ability of the processor to deal with
real time activities or the demands of ever more com-
plex software. This overhead can also affect the user of
a product. The average person perceives a delay with
response times in excess 200 to 300mS. Faster
response times do not interrupt thought processes and
this gives the user a more solid feel about the product.

Interface speed, coupled with low standby current, can
increase the battery life of a product. In many applica-
tions, a product operates at full power only a fraction of
the time. Most often it is in some standby, low power
state. Executing an operation faster reduces the time a
product is in full power mode, allowing it to remain in a
standby state longer (Figure 4).

Figure 3. Memory Density/Package Trends—

As process technologies shrink device geometries, more memory
can fit into smaller packages. The ultimate package is the chip itself. Chip Scale Package technology, in

development now, promises to radically reduce future package sizes.

75

70

65

60

55

50

45

40

35

30

25

20

15

10

8P-DIP

8L-SOIC
14L-TSSOP

8L-TSSOP
8L-MSOP

20L-TSSOP

24L-TSSOP

1988 1992 1996

16L-SOIC

2000

4K

16K

32K

64K

128K

256K

CSP

B
o

ar
d

 S
p

ac
e

(m
m

2)

AN132 - 4

Xicor Application Note AN132

Recent high speed serial memory product introduc-
tions from Xicor have generated tremendous interest.
This is an early indication that the simple serial mem-
ory interface speeds will track the serial peripheral bus
trends. The recent product introductions from Xicor
include 400kHz 2-wire, 5MHz SPI and 10MHz MPS
interfaces. Figure 5 shows a graphical representation
of current and projected serial bus speeds. Trends for

the SPI and MPS busses are based on projections for
expected host processor hardware capability and
memory I/O design in the near future.

The Significance of I/O Port Limitations

The second limitation of serial memories is in the need
for dedicated serial ports or the use of general purpose
serial ports to communicate with the serial memory. In

Figure 4. Power vs. Interface speed.

This figure shows an example of a processor that draws 7mA active and
10

µ

A in standby. The serial memory current increases linearly as the speed increases. Having the processor active
for less time reduces system power, demonstrating one value of a high speed serial device

Figure 5. Serial Bus Speed Trends

Time

P
o

w
er

 (
u

A
-h

r)

dT = 13mS

dT = 660mS 100kHz

Read 64kbits

5MHz

Standby

11µA

11µA

Active

7.02mA

8 mA

System Current

1MHz 11µA7.2mA

dT = 66mS

B
u

s
S

p
ee

d

400MHz

12MHz
10MHz

1MHz

100KHz

Peripheral bus

Memory I/O bus
25MHz

2

5

20

40

1GHz

I2C

1394

MPS USB

µWire

SPI

AN132 - 5

Xicor Application Note AN132

many systems there is a need for all the ports possible
for system management or user interface functions.
Giving up even two general purpose port pins can
cause serious design restrictions.

With the need for ever smaller products, there is a
growing use of ASICs and more highly integrated con-
trollers in new designs. These new ASICs and control-
lers often have built in serial busses. The most
common of these are I

2

C and SPI. These memory
interfaces off-load the general purpose ports for other
functions and provide higher speed and more code
efficient interfaces. However, it does this at a price. To
put a serial port in an ASIC requires extra silicon, addi-
tional pins, more design and design verification
resources and more testing. The addition of a serial
port on a microcontroller is often associated with other
“bells and whistles”, driving up the cost of the control-
ler. There are systems where the benefits of serial
hardware justify the extra expense, but there is another
option. As will be discussed later, a new interface from
Xicor, called MPS

™

, allows connection of serial memo-
ries without the need for dedicated serial ports.

Engineers designing with microprocessors have a
slightly different problem. Serial memories do not con-
nect to microprocessors, since microprocessors have
no serial ports. In order to connect a serial memory,
the engineer must add a serial bus master to an ASIC
or add a parallel to serial converter and memory map it
into the address space. This added complexity, cost
and board space precludes the use of standard serial
memories. To give engineers a simple “no overhead”
serial memory for microprocessors, Xicor introduced
the MPS

™

interface. This interface works by using only
4 pins of the already present parallel memory bus.

Interface Options

The earliest memory busses were the microwire bus
and the I

2

C bus. The microwire bus began as an inter-
processor communication port for the COPs microcon-
troller. The I

2

C (Inter-Integrated Controller) bus began
as a peripheral bus, meant to interface to many
devices with a single set of two wires.

SPI is a Synchronous Peripheral Interface that was
created by Motorola. This interface is a more recent
introduction that is proliferating as high speed
becomes more important and as more products exploit
the interface.

Perhaps the ultimate interface is one created by Xicor.
This interface, called MPS, provides a high speed
serial solution for products that do not have ports avail-
able for conventional serial memories. Because MPS

makes use of the standard system memory bus, it
interfaces to most microcontrollers, microprocessors,
DSPs and ASICs, with no additional hardware.

The Microwire Bus

As one of the oldest serial busses, the microwire bus
has been a popular and high volume solution for a long
time. It supports some of the lowest cost serial memo-
ries and is fast enough for many applications. How-
ever, there are a few drawbacks.

1. The microwire interface does not support as many
density options as the other interfaces, with densi-
ties topping out at 16kbits. There also have been
few new products introduced with this bus. This
limits the designer’s choices in new designs.

2. The microwire requires more port pins than the I

2

C
bus, so it’s use can be more costly to the system
designer.

3. The microwire bus is limited in speed and architec-
ture. Microwire devices limit the interface speed to
1MHz and clock data out and in on the same edge.
This imposes some limitations on the design. A
similar bus (SPI) clocks data in and out on oppo-
site edges of the clock and has higher speed spec-
ifications.

So while microwire has some advantages, it will likely
be one of the first of today’s serial busses to disappear.

The I

2

C Bus

The I

2

C bus, developed at about the same time as the
microwire bus, will likely be around for some time.
Since it was developed as a peripheral bus, it works
very well in systems that have few ports available on
the host controller and must connect to a number of
peripheral devices. Some of the more common I

2

C
devices are A/D converters, LCD displays, Real Time
Clocks and memories.

in 1985 Xicor introduced a 2-wire serial memory
device that could operate on the I

2

C bus. Xicor is still
one of the industry leaders in 2-wire density, interface
speed and features and has one of the widest selec-
tions of 2-wire memories with densities ranging from
128 bits to 128kbits.

The original I

2

C bus specified 100kHz maximum
speed. Based on industry feedback, this increased to
400kHz, and was recently increased by Philips to
3.4MHz. The I

2

C bus speed was initially limited by it’s
peripheral roots. Potentially long I

2

C bus lengths and
the activity of a number of devices on the bus (including

AN132 - 6

Xicor Application Note AN132

multiple masters) increase the possibility of noise
induced errors as the speed increases. This, coupled
with the indeterminate loading and collision detection
protocols, makes I

2

C a noise sensitive interface.

The I

2

C interface consists of two lines clock (SCL) and
data (SDA). The protocol specifies that communication
begins with a start bit and ends with a stop bit. Data
going HIGH to LOW while the clock is HIGH defines a
start bit (see Figure 6.) Data going LOW to HIGH while
the clock is HIGH defines a stop bit. During transmis-
sion of data the SDA line cannot change while the
clock is high. This protocol makes it difficult to discrimi-
nate between a start/stop bit and data on a higher
speed, noisy bus.

Noise on the I

2

C bus can sometimes result in cor-
rupted data. In the I

2

C protocol, a random read of the
array (see Figure 7) consists of two parts. First, the
host writes the address where the desired read will
start. Then the host sends a repeated start bit followed
by a current address read instruction. The host then
clocks data in from the SDA line. Since the current
address read instruction differs from a write instruction
by a single bit, noise at a critical time turns a read
operation into a write and clocks intended for a read
operation become clocks writing data into the device.
The result can be uncontrollable data corruption. This
doesn’t happen often, but when it does it can be seri-
ous. As I

2

C speeds increase, there is much less mar-
gin for error, which leads to higher probability of failure.

To limit the probability of this type of error, Xicor intro-
duced 2-wire devices that provided input noise filtering,
schmidt triggers and input latching. To give engineers
additional control over memory write operations, some

devices include Block Lock features. This gives the
system designer the ability to lock critical parts of the
array, so unexpected and uncontrolled writes due to
noise cannot damage critical system data.

In order to allow a number of peripherals to connect to
the same set of two wires, the I

2

C bus requires an
open collector with pull-up on the SDA output of any
device on the bus. For multi-master systems, the SCL
line also needs an open collector and a pull-up. This
configuration allows one device to “win” over another
when two devices try to send data at the same time
(collision). However, this configuration increases sys-
tem power, since there is 270

µ

A

1

 current flowing
through the pull-up resistor for the duration of a “0” bit .

In summary, the I

2

C bus has the advantages of need-
ing few port pins and supporting a number of periph-
eral devices. However, the I

2

C bus has the
disadvantages of lower speed, noise susceptibility and
higher system current.

The SPI Bus

Motorola created the SPI port in the mid 1980’s for use
with their 68HC11 and 68HC05 product families. The
SPI port shares similarities with the microwire port,
using similar signal names and command protocols.
SPI clocks data in and out differently from the micro-
wire and can be clocked at a much higher rate.

Xicor was the first company to introduce an SPI serial
memory (the X25C02 in 1991) and led the industry in
developing higher density devices. Xicor also pio-
neered the use of Block Lock

™

 mechanisms on SPI

1.

Assumes 100pF bus capacitance and 2.7V operation.

Figure 6. I

2

C Start, Stop and Data bits

SCL

SDA

Start Stop

SCL

SDA

Data Stable Data
Change

Data Stable

AN132 - 7

Xicor Application Note AN132

devices to improve data integrity. In the last few years
microcontrollers, DSPs, RISC processors and ASICs
all feature built-in SPI ports. These developments
prompted Dataquest in 1996 to report SPI as the fast-
est growing serial interface. Today, as processors
increase in performance, the capabilities of the SPI
port increase. To keep up with this trend, Xicor intro-
duced SPI memories with a 5MHz clock rate and plans
future speed increases.

The SPI interface consists of four control lines: CS,
SCK, SO, and SI. The host controls the CS line to
select the serial memory, then uses the clock and data
lines to transfer data back an forth. Current implemen-
tations of the SPI interface for memory devices are
“half duplex”, meaning that data does not go out on the
SO line while writing data on the SI line. So it is possi-
ble to connect SI and SO to get a three wire interface.
Most microcontroller SPI implementations provide a
“full duplex” mode. That means that data clocks into
the device at the same time data clocks out. This can
help increase the data throughput. Future SPI memories
will likely take advantage of this full duplex capability.

The SPI interface is command driven (see Figure 8.)
To read data from the memory, the host selects the
device, sends a READ command, sends the address
of the desired data, then clocks the data out of the
device through the SO pin. At the end of the transac-
tion, the host deselects the device. There are com-
mands to READ and WRITE the array, read (RDSR)
and write (WRSR) to a status register, and set (WREN)
and clear (WRDI) a write enable latch.

Before any successful nonvolatile write to an SPI
device, the host must select the device, send a WREN
command, deselect the device, select the device
again, send a WRITE command, send the 16 bits of
address (older low density devices had 8 address bits),

send a multiple of 8 bits and deselect the device. Any
violation of this sequence terminates a write operation.
Also, the completion of a nonvolatile write resets the
write enable latch, forcing the entire sequence to be
repeated for the next write operation. This makes SPI
memories insensitive to noise. Block Locking further
decreases the probability of inadvertent writes due
both to noise and programming glitches.

SPI is a high speed memory port supported by a vari-
ety of microcontrollers, DSPs and ASICs. It is growing
in popularity as host performance increases and as
built in SPI ports become more common. New features
as well as higher speeds indicate that the SPI interface
will be around for quite a while.

The MPS bus

As fast and common as the SPI interface becomes and
as versatile the I

2

C has been, some applications will
never be able use either type. As discussed, there are
systems that simply have no ports to spare and there
are other systems where the host has no ports that
can handle serial interfaces. It is for these applications
that Xicor developed the MPS interface. The MPS
interface is not entirely new. In fact, most processors,
microcontrollers, ASICs, DSPs and RISC chips
already have the MPS interface built in. It is commonly
called the memory bus! MPS simply takes one of the
standard memory bus I/Os, two memory bus control
lines and a chip select and uses a special protocol to
create a high speed serial bus. This bus needs no spe-
cial or general purpose port pins and gives the
designer all the benefits of serial memories with none
of the drawbacks.

The diagram of Figure shows the connections of the
MPS interface. In operation, the host loads the accu-
mulator with the desired data address and sends the
address to the MPS device through a series of write

Figure 7. I

2

C Random Read

—This figure shows a random read of one byte.

0

Slave
Address

Byte
Address

A
C
K

A
C
K

S
t
a
r
t

S
t
o
p

Slave
Address

Data

A
C
K

1

S
t
a
r
t

SDA Bus

Signals from
the Slave

Signals from the
Master

AN132 - 8

Xicor Application Note AN132

and rotate accumulator operations. The host then
reads the data with a series of read and rotate accu-
mulator operations. Since all CPUs contain read, write
and rotate instructions, the MPS protocol is simply
implemented in software. Also, since no host address
lines connect to the MPS, it works equally well with 8,
16, 32 or 64 bit systems and with both multiplexed non-
multiplexed busses.

Like all serial devices, the MPS has an interface proto-
col to manage the transfer of data. The read protocol
consists of a “software reset” sequence, followed by 16
bits of address, followed by the reading of an unlimited
number of data bits. The write protocol consists of the
“software reset” sequence, followed by 16 bits of
address, followed by a multiple write of 8 data bits, fol-
lowed by a “start nonvolatile write” sequence. In a write
operation, the host must meet all conditions exactly or
the nonvolatile write will not happen. This protocol
makes it very unlikely that noise will result in an

inadvertent write. Future MPS devices will also provide
Block Lock features to give the designer the ability to
differentiate between nonvolatile system and user
memory.

The clock frequency is the normal measure of speed
for I

2

C and SPI busses. The MPS uses a similar termi-
nology with reference to the “10MHz” speed, however
the terminology is not exactly correct. Since the MPS
devices connect to the parallel memory bus, different
timing parameters become important.

The most important factor in looking at the MPS inter-
face is read access time. The host expects valid data
on the bus within a certain fixed time after the read sig-
nal goes active. This assures a proper data setup time
before the host latches in the data. The new MPS
devices have a 25ns read access speed. This is fast
enough for most processors to read data at full speed
without adding bus wait states.

Figure 8. SPI Read Command

7 6 5 4 3 2 1 0

1 1 3 2 1 0

CS

SCK

SI

SO

5 4

Command Address Data
(1 byte) (2 byte)

Figure 9. The MPS Interface

makes use of one data line and two control lines on a standard parallel memory bus.

1

8Data

Accumulator

4 pins/8 pin package

Dx

9

A0-An

13

MPS

Address

Data

µP, µC, DSP

Decode CE

WE
OE

I/O

AN132 - 9

Xicor Application Note AN132

The second important timing parameter is the data
transfer rate. The memory device must provide data
fast enough to support successive read instructions
without adding software wait states. In this case the
host instruction cycle time becomes important. The
new MPS parts support processors with 100nS
instruction cycle times, providing a 10Mbps maximum
data rate. This rate meets or exceeds that of most host
processors.

Since the MPS works with different bus widths and
with either multiplexed or non-multiplexed memory
busses, a large number of host processors and appli-
cation specific controllers can use the MPS memory. A
summary of these processors appears in Table 1.

In summary, the MPS is a serial memory device with a
fast interface that makes use of the existing parallel
memory bus. MPS requires no extra hardware, no
ASIC silicon design or design verification, no special
serial ports, and no general purpose ports. MPS
devices provide all the advantages of serial memories,
(like low power, small size and low cost) without the
need for special hardware.

Conclusion

Industry-wide, there is a trend to serial interfaces and
away from parallel, as demonstrated by several new
industry standards. The need for low power, small size
and lower cost fuels this conversion and there is no
sign that the trend will change in the near future.

In order to provide a communication medium to the
serial memory, there are several types of interfaces.
The discussion here focused on 2-wire, SPI and MPS
solutions. The value of each lies in the design trade-off
between how they connect to the host and how fast
each transfers data.

In recent years, consumers have demanded more
portability, performance and customization from the
products they buy. These needs fueled decreases in
package size and power and increases in memory
density and speed. With state of the art speed and
packaging, Xicor 2-wire, SPI and MPS serial memories
provide designers and consumers with the right solu-
tions for today and for the future.

Figure 10. MPS Interface Protocol—Write to memory

A
15

A
14

A
13

A
12

A
11

A
10

A
9

A
8

A
7

A
6

A
5

A
4

A
3

A
2

A
1

A
0

D
7

D
6

D
5

D
4

D
3

D
2

D
1

D
0

CE

OE

WE

I/O (in)

I/O (out)

*

* 1 to 32 bytes
Software Reset

Initiate Nonvolatile
Write

AN132 - 10

Xicor Application Note AN132

Table 1: Controllers with an MPS Compatible Interface

Microcontrollers Microprocessors DSP RISC
Application Specific

Controllers

i8031/51 M68HC05 M68000 TMS320C2xx SH70xx MSM
 Cellular Chipset

(Qualcomm)i80151/251 M68HC08 M68300 TMS320C5x SH77xx

P51XA M68HC11 i8086/186 TMS320C3x

µ

PD30101
(Vr4101)

GEM 300
GSM Chipset

(GEC Plessey)DS89Cxxx M68HC12 i80188 TMS320C4x

AT89Sxxx M68HC16 i8096/196 M56000

µ

PD70xxxx
(V8x)

DCAM-101
Digital Camera Chip

(LSI/Minolta)H8-300 M68330

µ

PD70xxx
(V20/V25/V30/35)

M96000

H8-300H MPC82x ADSP21xx PR31500
(Philips)

PC Chip Sets
(ISA Bus)

H8S2000 MPC860 Z80 ADSP21msp58/
59

µ

PD780xx PIC16C662 Z180 D950-Core
(SGS-Thomp-

son)

IDT79R3500
(IDT-MIPS)

ARM7100
Single Chip Organizer

µ

PD782xx PIC17C4x Z380 DSP16xx
(Lucent)

ARM Core ARM7500
Single Chip Netsurfer

µ

PD783xx Z8 MCF5202
(Motorola)

NAV-2100
GPS Chipset

µ

PD784xx

