{i’
TEXAS Application Report
INSTRUMENTS SPRA496

TMS320F240 DSP-Solution for High-
Resolution Position with Sin/Cos-
Encoders

Martin Staebler Digital Signal Processoring Solutions

Abstract

This application report offers a solution for obtaining high-resolution position with sin/cos-

encoders using the Texas Instrument (TI™) TMS320F240 digital signal processor (DSP)
controller.

This is achieved with a minimum of glue logic and software overhead, since the TMS320C24x
DSP controller already incorporates an on-chip quadrature encoder pulse (QEP) circuit as well as
two analog-to-digital converters (ADCs). The QEP circuit provides a glueless interface to TTL-
encoders. The two analog-to-digital converters provide the simultaneous sampling of the two
sinusoidal output signals of the sin/cos-encoders.

The software package includes all functions required for initialization and position interpolation
with sin/cos-encoders. All subroutines are ANSI C-compatible and can be called from any C
program. Position interpolation requires 15us of CPU execution time. The resolution achieved is
approximately 400 times better than with TTL-encoders of equivalent line count.

This gives the user the advantage of having either a higher position resolution or reduced sensor
cost, since sin/cos-encoders require less line counts than equivalent TTL-encoders to achieve the
same resolution.

Contents
INEFOTUCTION ... e as sabeebe e E
Incremental ROtAry ENCOUEIScooiiiiiiiiiii ettt e st ans tenanneeesnneeeaas E
Implementation on the TMS320F240cciiiiiiiiiiie s ereesreeineas E
RESUILS ... e
(070] s Tox (U1 o] E TP PPT PO
Figures

Figure 1. Output Voltage Signals (A, +B, +R) of sin/cos-Encoders with N Line Counts per

Revolution as Function of the Mechanical POSItIONcccciiiiiiiiiic e 4
Figure 2. Phase Shift of A digitized 10 A DU€ 10 HYSTEIesiScovviiiiiiiiiiiiii 6
Figure 3. High-Resolution Position Measurement AlgOrithm ... 7
Figure 4. ADC Module Timing Diagram (ADC ClOCK = IMHZ)cccooiiiiiiiiiiiaeiiiiieiee e 8
Figure 5. TMS320F240 Interface to SIN/COS-ENCOUETccooiiiiiiiiiiieiiiiiieiee e 11

Digital Signal Processing Solutions December 1998

Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10. TMS320F240 Monitor Communications Interface

SOftWare OrganiZAtioN..........cooiiuiiiiiiiee it e e s e e e
Flow Chart of Encoder_ZeroPostion()
Flow Chart of Encoder_MatchincrPhase()....
Flow Chart of Encoder_CalcPosition()

Figure 11. Maximum Absolute Phase Error over One Incremental Stepccoovvveeriivieiiiiieeeiiineeenae

Figure 12. Absolute Phase Error over One Quadrant for A/B Gain Errors of +1%

Figure 13. Maximum Rotation Speed allowing High-Resolution Position Determination as Function

Table 1.
Table 2.
Table 3.
Table 4.
Table 5.
Table 6.

Of the Delay TiImMeE DAEIAYccoeiiiiiiiiiii et e e e e e e e e

INItIAliZAtION FUNCHONSceiiiii et e e e e e e e e eeees
Functions for Obtaining High-Resolution Position
SOftWAre OrganiZatiONeveiiiiiee ittt e e snree s

TMS320F240 Utilization for ENCODERL.LIB..........cooooiiiiiiieeeeeeeeeeeeee
TMS320F240 Utilization on FUNCLIONAl LEVEIcooviviiiiiiieiieeicee e
Minimum Position Resolution with the TMS320F240 10-bit ADC for Encoders with Different

LINE COUNL......iiiiiiiie e bebesae s

Application Report Q’
SPRA496

Introduction

Incremental rotary encoders are used in many applications to measure angular position
and/or speed. Depending on the application, TTL-encoders with TTL-output signals or
sin/cos-encoders with analog sinusoidal output signals (which allow a higher resolution)
may be used.

The TMS320F240 DSP controller is designed to meet a wide range of digital motor
control applications and thus incorporates the peripherals to support TTL-encoders as
well as sin/cos encoders.

The section, Incremental Rotary Encoders, describes the principle of sin/cos-encoders
and the method to obtain high-resolution position.

The section, Implementation on the TMS320F240, explains the implementation on the
TMS320F240 with respect to the on-chip QEP unit and the dual analog-to-digital
converters. This includes a proposal for the hardware interface, a description of the
software routines, which initialize and handle the sin/cos-encoder interface, and the
usage of these functions in other application programs.

The section, Results, shows the memory requirements and the CPU loading and
discusses the position accuracy achieved.

Incremental Rotary Encoders

Output Signals

Incremental rotary encoders operate on the principle of photo-electrically scanning the
very fine gratings forming an incremental track. When rotating, the encoders modulate a
beam of light whose intensity is sensed by photo-electrical cells, producing two 90° (el.)
phase-shifted sinusoidal signals A and B. B lags A with clockwise rotation viewed from
the shaft side of the encoder. The number of periods of A and B over one mechanical
revolution equals the line count N of the encoder. The frequency is proportional to the
revolution speed and line count of the encoder. A second track carries a reference mark
that modulates the reference mark signal R at a maximum once per (mech.) revolution.

Sin/cos-encoders provide the differential analog output signals (A, £B, and £R) as
shown in Figure 1. TTL-encoders already incorporate a circuit that digitizes the
sinusoidal scanning signals and provides two 90° phase-shifted square-wave pulse trains
Uga, Up and the reference pulse Uy,.

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders 3

Application Report Q’
SPRA496

Figure 1. Output Voltage Signals (#A, B, £R) of sin/cos-Encoders with N Line Counts
per Revolution as Function of the Mechanical Position

Signal period - Quadrant
360° el. phase 1st 2nd 3rd 4th

1 Vpp

\t/ Track A

/\
\-/ Track B

0.8Vpp
iR + _
Reference mark signal
4AN-4 o 1 2 3 4 Increment Position (mech.)
N-1 0 1 Line

High-Resolution Position Determination

Rotation direction can be determined by detecting which one of the two quadrature
encoded signals, A or B, is the leading sequence. Rotation speed can be determined by
the frequency of the sinusoidal signals, A or B, with respect to the line count N of the
encoder.

According to Figure 1, the angular position can be determined by knowing the
incremental count or the line count and, when between two consecutive increments or
lines, deriving the phase from the analog signals A and B.

The reference mark signal R provides absolute position determination, if the angle at
which the encoder is mounted is known.

Incremental Position/Count

The incremental count and hence the incremental position can be determined by a timer
that counts up when A is the leading sequence and counts down when B is the leading
sequence. When digitized, both edges of A and B are counted, thus the incremental
position @ is given by

()] —(@) incr+ o
incr — 4N 0
where

[incr] is the timer count or incremental count

N is the line count of the encoder

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders 4

Application Report Q’
SPRA496

@ is the zero position.

One incremental step is equivalent to a 90° (el.) phase shift of the signals, A and B.
Phase

The phase ¢ of the sinusoidal signals A and B can be used to interpolate the position
between two consecutive line counts or four incremental steps, which are equivalent to
each other. It can be calculated as

B
9@ + arctar(—j ,A>0
A
o= (2.2)
B
270 + arctar(x) , A<O

which has the advantage that the absolute amplitudes of A and B, which are a common
function of the encoder’s rotation speed and supply voltage, do not affect the result.
Since the arctan-function is ambiguous, one has to check the sign of the sinusoidal
signals A and B to identify the correct quadrant.

Interpolated High-Resolution Position

When the incremental count [incr] is matched to the phase ¢ according to
incr=0< 0°<¢<90° incr=1 < 90° < ¢ < 180°, etc., the high-resolution
position/angle @4 can then be derived as:

® (incr (p) :@((incr >> 2) +Lj +O . (2.2
a ’ N 360 @

Note that the sinusoidal signals A and B and the incremental count [incr] must be
sampled simultaneously.

Practically, the digitized signals Auigitized, Buigiizea, Which edges are counted by the
incremental counter, have a phase shift compared to the analog signals due to hysteresis
and the propagation delay of the digitizing circuit. At the transition to the next quadrant,
the incremental counter is not updated immediately because of the phase lag, e.g., as
shown for the first quadrant in Figure 2.

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders 5

Application Report Q’
SPRA496

Figure 2. Phase Shift of Adgiizea t0 A Due to Hysteresis

Hysteresis = 15°
—>

incremental count++

-
A digitized i
|>

—p
Rotation direction

v Position

Sample A, B, incr, within 1st quadrant (0°..15°)

However , equation (2.2) can be applied as long as that phase shift is less than +90° (el.),
which is equivalent to a +1 incremental count. Since only the phase information is used to
identify the quadrant, there are only two exceptions (which may occur close to the
transition to the next line) to consider when applying equation (2.2):

a) 0°< ¢ <90° AND incr % 4 = 3.

Here the phase ¢ was obviously sampled before the incremental count was updated due
to hysteresis and/or propagation delay. [incr] points to the wrong line count. In that case
the incremental count [incr] is increased by one to compensate for that (known) error.

b) 270°< ¢ <360° AND incr % 4 = 0.

In that case, the incremental count [incr] is decreased by one to compensate that (known)
error.

Figure 3 shows the flow chart of the position measurement algorithm, utilizing equations
(2.1) and (2.2).

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders 6

Application Report ”
SPRA496

Figure 3. High-Resolution Position Measurement Algorithm

synchronously
sample A,B,incr

¢ (A,B) eq. (2.1)
incr = i yes (0° < ¢ < 90°) AND (incro4 ==3) ?
incr = incr + 1 @ 0 _
no
Y ot
incr = incr -1 yes > (270° < ¢ < 360°) AND (incr%4 ==0) ?
no
Y ot
Do(,incr) eq. (2.1)
End

Maximum Tracking Speed n max

The maximum revolution speed at which the algorithm tracks the high resolution position
depends on the following:

O Line count, N, of the encoder
O Hysteresis angle a of the digitizing circuit
O Propagation delay between the analog and the digitized signals

U Delay time between sampling the analog signals and capturing the incremental
counter

60 (90-a Hysteresisj

N 1P = 360°

delay

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders 7

Application Report Q’
SPRA496

Implementation on the TMS320F240

TMS320F240 QEP-Unit and ADC Module

The TMS320F240 incorporates a QEP circuit as well as two 10-bit analog-to-digital
converters with two built-in sample and hold circuits. This minimizes the glue logic
required to interface incremental encoders with analog sin/cos-output to the
TMS320F240.

The QEP circuit decodes and counts the quadrature encoded input pulses on the TTL-
compatible input pins, CAP1/QEP1 and CAP2/QEP2. The selected timer counts up, if
CAP1/QEP1 is the leading sequence, and counts down, if CAP2/QEP?2 is the leading
sequence. Both edges are counted. However, a synchronization circuit suppresses
spikes, since the input is sampled twice at two consecutive falling edges of the CPU
instruction clock and is only recognized when its level is constant during that time. Hence,
for a nominal CPU instruction cycle time tc(CO) = 50ns, any spike with a pulse width less
than 50ns is suppressed. The maximum input frequency is given by

1
f <——=89Mhz
maXQER) T 2ty ooy + 1208

and is quite enough to meet the maximum output frequency of incremental rotary
encoders.

The ADC module comprises two 10-bit analog-to-digital converters with eight multiplexed
analog input channels per converter and has a minimum conversion time of
tw(sHc) = 6.2us. Both ADCs can be started simultaneously by software, by external

hardware pin, or by the event manager, allowing synchronization, e.g., to the PWM.

Figure 4. ADC Module Timing Diagram (ADC Clock = 1MHz)

td(SOC-SH) = 300ns tw(SH))=1us Conversion (SAR)

»
>

A
Y

«<

_I < Hold >

< Sample -
- »

500ns
< 800ns >
S/W starts ADC analog input
A/D conversion sampling finished

After the ADCs are started, e.g., by software, the sampling of the two selected input
channels starts with a delay of

td(SOC-SH) = 3 te(sys) = 300ns @SYSCLK of 10 MHz.

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders 8

Application Report Q’
SPRA496

The sample-and-hold time is tw(SH) = 1us (ADC clock = 1MHz), where the internal
switched capacitor samples the analog input for 500ns and holds it for another 500ns
before starting successive approximation conversion. Note that the external circuitry
should be capable of charging the capacitor within £1/2 LSB during sampling time.

To achieve simultaneous sampling of the two sinusoidal input signals, A and B, (ADC
module) and the incremental counter (QEP module), the incremental counter has to be
read/captured by software with a delay of td(SOC-SH) + %2 tw(SH) = 800ns

(16 DSP instruction cycles), after writing a start command to the ADC control register.

For more information on the TMS320F240 peripherals, refer to [1],[2].

Hardware Interface

Any sin/cos-encoder, with analog output signals as shown in Figure 1, can be interfaced
to the TMS320F240 DSP controller as shown in Figure 5. Note that the components and
values used are applicable to an incremental encoder with a line count N = 2048 and a
maximum speed of 12000 rpm, hence the maximum frequency is fa g max = 410 kHz. The

main aspects of the circuit are discussed below.
Supply Voltage

The total circuit is supplied with only a single +5V supply for analog (VCCA) and digital
part (VCC), respectively. Analog and digital ground should be connected close to the
TMS320F240 AGND and GND input pins. AGND can be used to shield the differential
signals +A and %B of the incremental rotary encoder.

Virtual Ground

The TL2425, a precision by-two voltage divider, generates the virtual ground at
VREFH/2, which is exactly the mid-voltage of the ADC input and is interpreted as digital
offset 0x8000. This eliminates the influence of the reference voltage to that digital offset.

ADC Input Voltage Range

The TMS320F240 VREFH input is connected to VCCA = +5V. VREFL is connected to
AGND and decoupled with a 10uF tantalum capacitor. A 1.5 ohm resistor may be
inserted to filter high frequency noise. The input range is VREFL = 0V . . +5V = VREFH.

Driving the ADC Input

The differential input signals +A and B first pass through a high impedance unity-gain
buffer (TLV2772) to eliminate the influence of the line impedance. The buffered
differential signals are input to a differential amplifier (TLV2772) with a gain of 22/10. The
resistors, which set the non-inverting and inverting gain, should be 1%, to keep the
common mode rejection CMRR > 60dB. The non-inverting input network is referenced to
the virtual ground VREFH/2 = 2.5V, hence the output voltage swing is:

03V<u,g(p)<aw.

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders 9

Application Report Q’
SPRA496

The output of the differential amplifier is filtered with an RC network, providing good noise
rejection and accuracy at lower revolution speeds, where a precise analog phase
information is required to increase position and/or speed resolution. The cut-off frequency
is approximately 40kHz, which is, for the sin/cos-encoder, used in that report, with a line
count N = 2048, equivalent to a rotation speed of approximately 1200rpm, and has to be
changed according to the encoders parameter and other requirements. However, the
capacitor should be as close as possible to the ADC's input and will charge the ADC's
internal switched-capacitor rather than the op amp, which increases noise immunity and
relaxes the op amp requirements for settling time and output current capability.

The TLV2772 LinCMOS dual rail-to-rail op amp is used because it allows single-supply
operation and provides a gain bandwidth of 5MHz and a slew rate of 9V/us, hence
operating up to the maximum encoders frequency fa g max = 410 kHz. Since 1/2 LSB =
2.5mV, offset voltage drift over temperature of 2uV/K does not affect system accuracy.
Any initial offset voltage is removed digitally by software.

Driving the QEP Unit

The sinusoidal output of the differential amplifier is also input to a high-speed comparator
(TLC3702). The threshold voltage is adjusted to 2.5V and has a hysteresis of
approximately 0.6V to increase noise immunity and prevent the comparator from
toggling. The hysteresis of +0.6V is equivalent to a phase hysteresis of +15°. The
TLC3702 LinCMOS dual-voltage comparator allows single-supply operation and provides
TTL-compatible outputs with a rise time of 50ns; thus, it can be directly interfaced to the
TMS320F240 QEP1,2 inputs without an additional Schmitt-trigger. The propagation delay
[tp] for a 40mV overdrive is typically 1us.

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders 10

Application Report Q’
SPRA496

Figure 5. TMS320F240 Interface to sin/cos-Encoder

22k 15p
AN
VCCA 220k
+
A e Tvern2) CAP3/IOPC6
1/2 TL3702
i /2 TL370:
VCCA 15"1
shield — -
+
112 TLV2772
- COS(PHI) 1k
‘V\/‘r ADCIN13
4n7
15t) 82k 330k
AN il AN
VCCA 10k) AN
| 22k
+ +
12 TLV2772 25V | 0EP2
1/2 TL3702
veea | 10k 12 TLV2772 0.1uI
p 1k
112 TLV2772 + SIN(PHI)
O'IUI ’\N‘r ADCINS
4n7
10k 150 82k 330k
AN ’ I ’
VCCA
A 12 TLv2T2 QEPL
1/2 TL3702
voon | 10k 112 TLV2772 0.1uI
) . — VCCA
+
12TLV2772 0 luy 330 g 0wy
VREFH
= 0.1u
VREFL
TL2425
330 ;
AGND
AGND AGND
GND
l 0
ND
SIN/COS-Encoder G TMS320F240

Software Implementation

Overview

The main part of the application software is written in ANSI C language to provide well-
structured and readable software and ease the usage of the subroutines in own
applications. However, time critical functions, such as fractional division or arctan-
function are written in assembler but provide a C-compatible interface, thus can be called
from any C program.

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders 11

Application Report
SPRA496

g

Figure 6 gives an overview of the software modules, which are structured into four

directories. Each source module has its own header file, declaring the global variables,

functions and constants.

Figure 6. Software Organization

_| source

encoder.c |

—| evm_gep.c |

—| g1l5_ atan.asm |

—| include

| g15_div.asm |

encoder.h |

I
—| evm_qgep.h |
_|

gl5_atan.h |

— qi5.divh |
—| adc.h |

— b

— build

| caem |

|—| encoder.lib |
|—| lib.bat |

The source files provide the following functions:

O encoder.c contains subroutines for initialization and position determination of the

added sin/cos-encoders.

O evm_gep.c contains functions to initialize and serve the TMS320F240 QEP unit.

U gl5_atan.asm and q15_div.asm provide fractional Q15 math functions arc tangents
and division, respectively, and can be called from C.

The include directory contains the header files (which declare the global variables,

functions, and constants) and TMS320F240 memory-mapped register as well as the C-
macros to serve the TMS320F240 ADC module. The batch file lib.bat can be used to
compile all source files and build the object library encoder.lib.

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders

12

Application Report Q’
SPRA496

Functional Description

Global Variables

int qep_diff;
unsigned qep_rollover;
unsigned encoder_position[2];

The encoder’s incremental count per revolution is held in gep_rollover; gep_diff s
used as incremental offset. Both variables are required to handle the QEP-unit.

The array encoder_position[] is used to store the actual high-resolution position of
the sin/cos-encoder. A 16-bit integer array was used rather than a 32-bit long variable
because it better fits to the DSP architecture and results in lower code size.
encoder_position[0] equals the (scaled) phase, 0° - 360°, between two consecutive
incremental lines (four incremental steps); encoder_position[1] equals then the
incremental line position. The high-resolution position angle is given by

360 - encoder positio[m]j
©, = (qep_rollover) .(encoder_ positiofd] + i
4

Initialization Routines

The following functions are used for initialization. Note that the functions of level 2 or 3
are called from ‘higher’ level functions of level 1 and 2, respectively.

Table 1. Initialization Functions

Function Declaration Level
void Encoder_Init(unsigned encoder_rollover) 1

void QEP_ Init(void) 2

void Encoder_ZeroPosition(void) 2

void Encoder_MatchincrPhase(void) 2

void QEP_GetlIncr(void) 3

void Encoder_Init(unsigned encoder_rollover)

This is the main (level 1) initialization routine, which calls the other initialization functions
of level 2, to initialize the ADC module,

Q enable both ADCs, ADC clock = 1 MHz,

the QEP unit,
O 16-bit timer 2 counter, enable QEP inputs

and the global variables, where gep_rollover is initialized with the parameter
encoder_rollover, as explained above. void Encoder_ZeroPosition(void) , as
shown in Figure 7, is called to obtain absolute encoder position information.

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders 13

Application Report Q’
SPRA496

The encoder has to be turned until the reference mark signal gets high, indicating its zero
position. void Encoder_MatchincrPhase(void) (see Figure 8) then modifies the
variable gqep_diff, so that the phase information, stored in encoder_paosition[0] and
the incremental count, which is returned from the function unsigned QEP_Getlncr(void),
explained later, match according to equation (3.1):

0, if 0X0000< encoder_ positib] @ 0x4000
1, if 0x4000< encoder_positibl @ 0x8000
2, if 0x8000< encoder_ positib] @ 0xC000

3, if 0XC000< encoder _positipr] @ OxFFFF

QEP_ GetlIncr() % 4= (3.1)

void Encoder_ZeroPosition(void)

To obtain absolute encoder position, the encoder is turned until the reference index gets
high. The reference index is high only within its zero line, which is equal to the
incremental counts 0,1,2 and 3. On the transition to high the software immediately
initializes the timer 2 counter T2CNT = 0, indicating it's ‘zero’ line. The quadrant
information is adjusted later by the function Encoder_MatchincrPhase(). A second
method would be turning the encoder into its zero position, lock it and then initialize timer
2 accordingly. The advantage of the first method is that the encoder does not have to be
locked, thus it can be turned during initialization, since any quadrant offset error is
compensated later.

Figure 7. Flow Chart of Encoder_ZeroPostion()

(Start D

—>

turn encoder

no reference pulse R (IOPC6) = high ?

yes

T2CNT =0

void Encoder_MatchincrPhase(void)

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders 14

Application Report Q’
SPRA496

This function aligns the incremental count and the phase according to equation (3.1).
Therefore, the encoder has to be turned slowly. Matching is done only in the ‘middle’ of a
guadrant to exclude hysteresis effects.

Figure 8. Flow Chart of Encoder_MatchincrPhase()

C Start D

e

turn encoder

Sample A,B and
incr = QEP_Getlncr()

30° < arctan(|A|/|B]) < 60° ?

gep_diff += ((incr % 4) - quadrant (A,B))

|

Routines for Obtaining Incremental Position

Obtaining the encoder's incremental position requires the two global variables,
gep_rollover and gep_diff, which are derived from the sinusoidal signals A and B,
described earlier. gep_rollover is equal to the incremental counts per revolution. gep_diff
is used to match the incremental position to the phase as well as to handle rollover. Here
Timer 2 is the selected QEP counter. Since it wraps at OxFFFF to 0x0000, software has
to take care of wrapping at the desired number, which corresponds to the number of
incremental counts per revolution.

Two methods are used, depending on whether an encoder with 2" counts, n = integer,
per revolution is used or not.

For encoders with 2" counts , it can be done by simply masking the upper 16-n
unwanted bits of timer 2 counter:

(T2CNT - gep_diff) & (gep_increments-1).

For non-2" encoders the function:

unsigned QEP_GetIncr(void)

returns the (absolute) incremental count or position.

unsigned QEP_Getincr(void).

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders 15

Application Report Q’
SPRA496

This function checks timer 2 counter [T2CNT] for upper and lower limit, where gep_diff points
to the lower and gep_diff + gep_rollover to the upper limit. If out of limit gep_diff is
incremented or decremented by gep_rollover, as shown below:

volatile unsigned buffer;
buffer = T2CNT - gep_diff;
while(buffer < 0)
{
buffer += qep_rollover;
gep_diff -= qep_rollover;
}
while(buffer > gep_rollover)
{
buffer -= gep_rollover;
gep_diff += gep_rollover;

}

return buffer; /*0 < buffer < gqep_rollover */

Note: The subroutine is written in assembler to optimize speed and guarantee
simultaneous capturing of the timer 2 counter (T2CNT) and the sinusoidal signals, A and
B.

Routines for High-Resolution Position Interpolation

The following functions are used to obtain high-resolution position, which is stored in the
array encoder_position[]. There are only two level 1 functions, which call functions of
level 2 or 3.

Table 2. Functions for Obtaining High-Resolution Position

Function Declaration Level |
unsigned Encoder_SamplePosition(void) 1
void Encoder_CalcPosition(unsigned incr) 1
unsigned Encoder_CalcPhase(int sin, int neg_cos) 2
unsigned QEP_GetIncr(void)

unsigned g15p_atan(unsigned) 3
unsigned g15_div(unsigned nom, unsigned denom) 3

N

unsigned Encoder_SamplePosition(void),

This command initiates an analog-to-digital conversion of the sinusoidal input signals at
the TMS320F240 analog input pins, ADCIN5 and ADCIN13. The command calls
QEP_Getincr() , which returns the modified incremental count [incr] that was sampled
at the same time as the ADC inputs, hence simultaneously. This is achieved by reading
the timer 2 counter (T2CNT), which holds the (not processed) incremental count exactly
sixteen DSP clock cycles after writing a start command to the ADC control register.
During that time slot interrupts must be disabled. (Refer to the section, TMS320F240
QEP-Unit and ADC Module.)

void Encoder_CalcPosition(unsigned incr).

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders 16

Application Report ”
SPRA496

This function calculates the interpolated high-resolution position and stores it to the global

array encoder_position[] as defined in the section, Global Variables. The flow chart is
outlined in Figure 9.

Figure 9. Flow Chart of Encoder_CalcPosition()

no End-of-conversion ?

yes

o

sin = ADCO - Offset
ncos = ADC1 - Offset

encoder_position[0] = Encoder_CalcPhase(sin,ncos)

encoder_position = 0x0..0xFFFF
incr = 0x0..gep_rollover

(encoder_position[0]>>14 == 3) & (incr % 4 ==0) ?

. . yes
incr=incr+1
no
g
(encoder_position[0]>>14 ==0) & (incr% 4==3) ?
] . yes
incr = incr - 1 >

no

encoder_position[1] = incr >> 2;

The function passes the incremental count, which was sampled at the same time as the
analog signals A and B, polls the ADC for end-of-conversion, reads the ADC FIFOs and
adds an offset to get the 2's complement of the signals A = sin(¢) and

B = -cos(¢). Optionally, software performs gain compensation. The two variables

A = sin(¢) and B = -cos(p) are passed to the function unsigned

Encoder_CalcPhase() , which returns the scaled phase ¢ to encoder_position[0].

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders 17

Application Report Q’
SPRA496

The next step is to ensure that the incremental count (the two LSBs, or least significant
bits) and the phase (the two MSBs, or most significant bits) match as outlined in the
section, High-Resolution Position Determination. This is done to compensate any
hysteresis and propagation delay of the digitizing circuit, as shown in Figure 2 . This is
required only for the 1* and 4" guadrant. The algorithm checks for these two cases and
compensates the incremental count, if required. After that it performs the by-two right-
shift of the incremental count (removing the redundant information) before storing the
now correct incremental position to encoder_position[1]. (Refer also to High-Resolution
Position Determination.)

unsigned Encoder_CalcPhase(int sin, int negcos)

This function returns the scaled phase @scaed, Which is derived from the quotient of the

two arguments sin = sin(¢) and negcos = -cos(). First it checks for sign to identify the
correct quadrant and then it utilizes fractional division and arctan routines to derive the
scaled phase according to: 0x0 < 0°, ..., OXFFFF< 360°.

Fractional Math Routines

Two mathematical routines for division and inverse tangents support (positive) fractional
numbers (Q15).

unsigned _g15_div(unsigned nom, unsigned denom),

with nom [0..+1], denom [0..+1] > nom, and return value = nom/denom [0..+1].

unsigned g15p_atan(unsigned arg)

with arg [0..+1] and the return value the (by PI) scaled angle according to

[0 & 0°, 0x2000 < PI1/4 = 45°]. The function uses a 128 point lookup table with
interpolation, the error of the scaled angle is less that 2LSBs.

Application Interface (API)

All subroutines discussed in the previous paragraph are archived in the object library
ENCODER.LIB and can be called from any C program.

The following steps are required when using sin/cos-encoders interfaced to the
TMS320F240, as shown in Figure 5.

Step 1: Modify ENCODER.H

The encoder’s incremental count per revolution and the analog input offset voltage of the
sinusoidal signals, A and B, are defined in the header file ENCODER.H, as shown below
for an sin/cos-encoder with a line count N=2048, equal to an incremental count of 8192.
Note that A and B are interfaced to ADCINS and ADCIN13, respectively.

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders 18

Application Report Q’
SPRA496

#define QEP_ROLLOVER 8192 /*incremental counts/rev.*/

asm("QEP_ROLLOVER .set 8192 "); /*dito, assembler

support */

#define QEP_POWER2 [*undefine if incremental*/
[*count isn't power of 2*/

#define ENC_UO_OFFSET (0x8000 + 0) /* A (sin) offset*/
#define ENC_U90_OFFSET (0x8000 + 300) /* B (-cos)
offset*/

Step 2: Run LIB.BAT

This recompiles the library ENCODER.LIB

dspcl -v2xx -as ..\source*.asm

dspcl -v2xx -gs -mn -02 -i..\include ..\source*.c
dspar -r encoder.lib *.obj

copy *.lib .\lib

Step 3: Calling Conventions when Using Sin/Cos-Encoders

Three function calls and one local variable are required within your own application
software to initialize the TMS320F240 sin/cos-encoder interface and obtain high-
resolution position, stored into the global array encoder_position[], declared in
ENCODER.H.

#include "encoder.h"

/~k ___ */
/* Initialize TMS320F240 sin/cos-encoder interface */
/~k ___ */

Encoder_Init(QEP_ROLLOVER);

The two functions required for obtaining high-resolution position can be called from any C
program, in many cases the interrupt service routine, e.g., current controller in field-
oriented controlled AC drives.

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders 19

Application Report Q’
SPRA496

#include "encoder.h"
volatile unsigned buffer; /* local variable */

/~k ___ */
[*Get position: encoder_position[0]= 0. FFFFh = 0°.360°*/
I* encoder_position[1]= 0..QEP_ROLLOVER/4 */
/~k ___ */

buffer = Encoder_SamplePosition();
[* insert any signal processing during the 6us a/d
conversion time */

Encoder_CalcPosition(buffer); /* writes to
encoder_position*/

Step 4: Include the Library ENCODER.LIB in Your Linker Command File

-i \encoden\lib /* library search path */
-l encoder.lib

Step 5: Compile All

Monitor and Test Program

The monitor program allows testing sin/cos-encoders interfaced as shown in the
schematics, Figure 2, via any VT100 terminal program, without the need of writing your
own application software.

All files necessary are packed into the file, ENCODER.ZIP, which can be downloaded
from the Internet [8]. After unzipping you will get the following structure:

Table 3. Software Organization

File/Directory Description

MAIN.C Main program, TMS320F240 initialization
MONITOR.C Monitor program

MONITOR.H Terminal settings (Baudrate)
RS232\LIB\RS323.LI1B RS232 terminal handler object library
RS232\INCLUDE Directory of header files for RS232.LIB
ENCODER\LIB\ENCODER.LIB Encoder functions object library
ENCODER\INCLUDE Directory of header files for ENCODER.LIB
LINK.CMD TMS320F240 Linker command file
CC.BAT C compiler & linker batch file
ENCODER.TRM Windows terminal settings (TERMINAL.EXE)

U If you do not have a 10 MHz external oscillator (such as TI's EVM-240), open MAIN.C
and modify the clock option as shown in MAIN.C

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders 20

Application Report
SPRA496

g

U Modify ENCODER.LIB according to steps 1 and 2 in the section, Application Interface

(API).

U Run CC.BAT, make sure you've set the DOS path for the Tl code generation tools.

U Load MAIN.OUT with the JTAG emulator to your target or program it into the on-chip

flash memory.

O Open any VT100 terminal program, e.g., terminal.exe, where encoder.trm defines the
terminal settings: 9600 baud, 8 data bits, no parity, append LF (CR = CR/LF).

U Run the program.

You will see the following communication interface.

Figure 10. TMS320F240 Monitor Communications Interface

&1 Terminal - ENCODER.TRM _ (O] x|

Eile Edit Settng: Phone Transfers Help

TH53280F248 SIH/C0S Incremental Encoder Test Software 1.8 ﬂ

Hain Henu
1) Encoder Initialization
2) ADC1,2 & OQEP Test
3) Print Encoder Increment & Phase
4) Print Position (1/1888 Degrees)

Press "1'..'4'. Please make your choice.g

A

Results

Processor Utilization

For the following benchmarking results, all files compiled with the Texas Instruments

Fixed-Point C Compiler 6.60, optimization level 2. [4]

Table 4 shows the required program and data memory for the library ENCODER.LIB and

the cycle time required for obtaining high-resolution position.

Table 4. TMS320F240 Utilization for ENCODER.LIB

Program memory (ROM) 2ABh
Data memory 5 + 20h (stack)
CPU cycles / time 325/16.25 us

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders

21

Application Report ”
SPRA496

Table 5 shows the CPU cycles and memory requirements for the subroutines, which
calculate the sin/cos-encoders high-resolution position. Note that all functions with level 2
or 3 are called by functions of level 1 or 2, respectively.

Table 5. TMS320F240 Utilization on Functional Level

Function Level Program Memory (FLASH) Data Memory CPU
RAM Cycles
Encoder_SamplePosition() 1 15h - 40
Encoder_CalcPosition() 1 6Ch 2 285
Encoder_CalcPhase() 2 71h - 164
QEP_GetIncr() 2 24h 3 19 -
gql5p_atan() 3 29h + 80h - 48
q15_div() 3 Bh - 30

NOTE:
CPU cycles are expected to be reduced by 20-50% when
software routines are written in assembler language and calls
are minimized.

Accuracy Analysis

Parameters that influence the position resolution or accuracy are — besides the encoders
accuracy itself — especially rotation speed, analog gain and offset (signal conditioning)
and quantization (ADC, DSP), The equation below shows the absolute phase error as a
function of quantization, gain and offset errors.

1+ A ‘A A +A
A(P — arcta (GAIN) OFFSET ADC | ©

(17 Agan)-B TA FA poc

OFFSET

Quantization

Quantization is limited by the TMS320F240 10-bit ADC converter, which has a total error
of less than +£1.5LSB. Digital truncation and rounding errors, as well as the accuracy of
the inverse tangent function are negligible. Figure 11 shows the maximum absolute
phase error (in degrees) within one incremental step for TMS320F240 implementation,
which is independent of the sin/cos-encoders line count. The x-axis corresponds to the
(el.) phase over one incremental step, the y-axis to the absolute phase error. The error
shows a maximum at 45° and repeats each incremental step, respectively.

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders 22

Application Report
SPRA496

Figure 11. Maximum Absolute Phase Error over One Incremental Step

0.25
5 0.2
I 0.15
2

a 0.1
c

o & 0.05
3 0

T 5 0
§ & 005
= 0.1
L 015
=

S 0.2
o]

< 025

r_*,--"""“-‘Y_

—a—+1.5LSB quantization error

O O O O O O O O o o
1 N MO < IO ©O© N~ 00 O

(Incremental) Phase [Degrees]

For an accuracy of +1.5LSB of the ADC, the minimum position resolution for sin/cos-
encoders is shown in Table 6. Compared to TTL-encoders with identical line count N, the
resolution achieved is approximately 400-times better.

Table 6. Minimum Position Resolution with the TMS320F240 10-bit ADC for Encoders
with Different Line Count

Line count N

500

1024

1024

Min. position resolution [arc seconds]

1.75

0.87

0.43

Signal Conditioning

Signal conditioning should not introduce additional error, therefore, the hardware

parameter's accuracy should be within %2 LSB, equivalent to 5mV.

Any initial offset voltage is corrected by software and the op amps offset voltage

temperature drift of 50uV/K can be neglected, since 1 LSB = 5mV.

The gain accuracy of the op amps, amplifying the two sinusoidal signals, A and B,

naturally affects position accuracy, as shown in Figure 12, where the absolute phase
error is shown over one quadrant for gain errors of 1%.

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders

23

Application Report Q’
SPRA496

Figure 12. Absolute Phase Error over One Quadrant for A/B Gain Errors of +1%

03)/._i—l-h..\
0.2

0.1

—a—+1% gain error A, B

[Degrees]

Absolute (Incremetal) Phase Error

- w

-0.3 I I I]

O O O O O O O o o o
— (o2}

N ™ < W0 O N~ e}
(Incremental) Phase [Degrees]

The error has a maximum at 45° and is in the range of the ADC. Therefore either the
resistors, which set the gain, must match better than 1%, or software has to correct the
gain accordingly, which is the preferred method. It is recommended to place resistors
close together, however even with resistors’ temperature drifts of 50ppm, gain keeps
within +0.1% for 20K temperature drop. Thus, this effect can be neglected.

Rotation Speed

Rotation speed does not affect the high-resolution position determination, as long as the
phase shift between the analog sinusoidal signals and digitized signals, triggering the
incremental counter is less than £90°. If the analog signals and the incremental counter
are sampled with a delay, this does increase or decrease the phase shift, respectively,
and has to be considered. The maximum rotation speed allowing high-resolution position
determination is given by:

n max[I’pm] e~ 60 (90~ HySteresisj

N-t 360

delay

where [o] is the hysteresis of the comparator and [tgeis,] the sum of propagation delay
between the analog and digitized signal plus any delay time between sampling the
analog signals and capturing the incremental counter.

Figure 13 shows the maximum speed to determine high-resolution position according to
the above equation for a hysteresis a= 15° as function of the delay time, tdelay, for
encoders with different line count N. To achieve these maximum ratings, the RC filter at
the analog input of the ‘F240 has to be modified accordingly.

Note that the ‘F240 incremental counter runs up to 9MHz, thus there is no speed
limitation regarding the incremental resolution.

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders 24

Application Report Q’
SPRA496

Figure 13. Maximum Rotation Speed allowing High-Resolution Position Determination as
Function of the Delay Time Ddelay

15000 \ \\
—e—N=2048

12500 \ _
—m—N=1024

10000 N —a—N=500

7500 \ L

Max. high-resultion speed [rpm]

5000
"~
2500 -
0
Lo — Lo N Lo ™ Lo
o — N ™
tdelay [us]

Conclusion

The TMS320F240 DSP controller is designed to meet a wide range of digital motor
control applications, and thus also incorporates the peripherals to support TTL-encoders
as well as sin/cos encoders.

This application report should help the user use sin/cos-encoders interfaced to the
TMS320F240 DSP controller, which have the advantage of either a higher position
resolution or reduced sensor cost, since sin/cos-encoders require less line counts as
equivalent TTL-encoders to achieve the same resolution.

The sin/cos-encoder hardware interface requires only a few active components. A careful
hardware design is also important, as shown in the previous section, to achieve the
optimum results. The software to initialize the TMS320F240 and obtain high-resolution
position is fully C-compatible and allows a quick and easy implementation within own
digital control application programs, as shown in the section, Implementation on the
TMS320F240.

The position resolution achieved is approximately 400 times better than with TTL-
encoders of identical line count. The CPU execution time for obtaining high-resolution
position is approximately 15us. The total program code size is approximately 680 words.

Note CPU cycles are expected to be reduced by 30-50%, when all software routines are
written in assembler language and calls are minimized.

References
[1] TMS320C24x DSP Controllers - Reference Set. Vol.1 + 2, Texas Instruments Inc.,
1997.

[2] TMS320F240 Data Sheet, Texas Instruments Inc., 1997.

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders 25

Application Report Q’
SPRA496

[3] TMS320C2x/C2xx/C5x Optimizing C Compiler User’s Guide, Texas
Instruments Inc., 1995.

[4] Obtaining Absolute Encoder Position on a TMS320F240, Designer's Notebook #82,
Texas Instruments Inc.,1997.

[5] TLV2772 Advanced LinCMOS Rail-to-Rail Dual Op Amp Data Sheet, Texas
Instruments Inc.,1998.

[6] TLC3702 Dual Micropower LinCMQOS Voltage Comparator Data Sheet, Texas
Instruments Inc.,1991.

[7] Selection Guide for Incremental Rotary Encoders, Heidenhain GmbH, 1997.
[8] INTERNET: http://www.ti.com
[9] FTP Server: ftp://ftp.ti.com/pub/tms320bbs

Appendix A. Source Code

Appendix A provides the listing the C and assembler source code discussed in the
section, Software Implementation.

ENCODER.C
/*
Name: ENCODER.C
Project: ENCODER
Originator: Martin Staebler
Description: Provides functions for handling incremental
encoder with analog sin/cos output signal
to achieve higher position resolution

Function List: void Encoder_Init(unsigned rollover)
void Encoder_ZeroPosition(void)
void Encoder_MatchincrPhase(void)
void Encoder_CalcPhase(int sin,int ncos)
unsigned Encoder_SamplePosition(void)
void Encoder_CalcPosition(unsigned
gep_incr_sample)

Status: OK
Target: TMS320C240

History: (Date, Revision, Who, What)

02/11/97 1.0 STAE Preliminary

==%*

L — */
/* Header Files */
L */

#include <stdlib.h>
#include <math.h>

#include <q15_div.h> /* q15.lib */
#include <g15_atan.h> /* q15.1ib */
#include "c240.h" /* TMS320C240 memory mapped registers */

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders 26

Application Report

SPRA496
#include "adc.h" /* ADC macros */
#include "evm_gep.h" /* QEP unit */
#include "monitor.h" /* test program & monitor */
#include "encoder.h" /* encoder definition */
/* ______________________ */
[* Variable Declaration */
/* ______________________ ~k/

volatile unsigned encoder_position[2];

*/

*/

*/

*

*/

/*
/* void Encoder_Init(unsigned rollover) */
/*
/* Function: Incremental encoder initialization */
/*
/* Arguments: Incremental counts/revolution = 4-times line count */
/*
/* Return value: None */
/*
void Encoder_Init(unsigned rollover)
{
/* _____________________ */
/* Initialize F240 ADC */
/* _____________________ ~k/
ADCTRL1 = 0x1800; /* enable both ADC's */
ADCTRL1 |= 0x0100; [* clear interrupt flag */
ADCTRL2 = 0x0003; /* ADC_CLOCK = SYSCLK/10 = 1MHz */
* */
/* Initialize F240 QEP Circuit */
* */
QEP_Init(0Ox0,rollover); /* QEP counts Timer 2 */
I* *
[* Get zero incremental position (via index) and */
/* synchronize incremental count and phase */
* */
Encoder_MSG(); /* turn encoder into zero position */

Encoder_ZeroPosition(); /* detect zero position adjust counter */
Encoder_MatchincrPhase();/* match counter (quadrant) and phase */

} I* end Encoder_Init */

/*

/* void Encoder_ZeroPosition(void) */

/*

/* Function: Modify/adjust gep_diff, so that the incremental count */
/* of the encoder (using function QEP_GetIncr() matches with*/
I* phase derived from the analog sin/-cos signal, as shown */
I* below. */

/*

void Encoder_ZeroPosition(void)

/* Configure IOPC6/CAPS to detect level */
OCRB &= OxFFBF; /* clear bit 6 */
PCDATDIR &= 0xBFFF; [* clear bit 14 */

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders

*/

*/

*/

27

Application Report
SPRA496

while ((PCDATDIR & 0x0040)); * poll bit 6 */

T2CNT = 0x0;
}
I* *
/* void Encoder_MatchincrPhase(void) */
I* *
/* Function: Modify/adjust gep_diff, so that the incremental count*/
/¥ of the encoder (using function QEP_Getlncr() matches with */
I* phase derived from the analog sin/-cos signal, as shown */
I* below. */
I* */
void Encoder_MatchincrPhase(void)
{ /* _________________ */
* local variables */
/* _________________ */
char c;
volatile int buffer[2];
volatile unsigned ubuffer[2];
I* *
/* Synchronize incremental count and encoder phase *
* */
/* Assumption: ADCIN5S <--> QEP1/sin(x) *
I* ADCIN13 <--> QEP2/negcos(x) *
I* */
[* (T2CNT % QEP_ENCODER) % 4 + gep_diff = Quadrant 0,1,2,3 */
I* *
do
{
* */
/* aquire encoder signals */
* */
ubuffer[1] = Encoder_SamplePosition();
ADC_READ?2(buffer[0],buffer[1]);
/* Correct U0 and U90 input signals offset */
buffer[0] = buffer[0] - ENC_UO_OFFSET;
buffer[1] = buffer[1] - ENC_U90_OFFSET;
* */
/* check, if nearly in the middle of a quadrant */
* */
} while (‘abs(abs(buffer[0])-abs(buffer[1])) > 0x4000);
I* */
/* init gep_diff for phase/count matching */
* */
ubuffer[0] = Encoder_CalcPhase(buffer[0],buffer[1]);
ubuffer[0] = (ubuffer[0] >> 14) & 0x0003; /* extract quadrant */
ubuffer[1] = ubuffer[1] & 0x0003;
gep_diff = gep_diff + ((int) ubuffer[1] - (int) ubuffer[0]);
}
I* *

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders

28

Application Report

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders

SPRA496
/* unsigned Encoder_SamplePosition(void); */
I* *
/* Function: Sample encoder signals SIMULTANEOUSLY */
I* SIN, -COS --> Channel 5, 13 (hardcoded) */
I* INCREMENTS --> Timer 2 counter (T2CNT) */
I* */
/* Arguments: Buffer for increments sample */
I* *
/* Return value: Incremental count *
I* */
asm("ADCTRL1 .set 7032h ");
asm("T2CNT .set 7405h ");
asm(" ref _qep_diff ");
asm(" ref _QEP_Getincr ");
asm(" .def _Encoder_SamplePosition ");
asm("_Encoder_SamplePosition: ");
asm(" ldp #ADCTRL1/128 ");
asm(" laci ADCTRLL1 ");
asm(" and #O0FF81h :clear channels ");
asm(" or #005Bh ;select channel 5 and 13");
asm(" sacl ADCTRL1 ;(1) start ADC's ");
#ifdef QEP_POWER2
asm(" Idp #_qep_diff ");
asm(" lacl #0 ");
asm(" sub _qgep_diff ");
asm(" ldp #(T2CNT/128) ";
asm(" rpt #6 ");
asm(" nop ");
asm(" ;capture Timer 2 800ns after ADC start (1 ");
asm(")
asm(" add T2CNT ");
asm(" and #(QEP_ROLLOVER-1) ");
asm(" ret ");
#else
asm(" rpt #5 ");
asm(" nop ");
asm(" ;capture Timer 2 800ns after ADC start (1) ");
a.Sm(ll ; "w ;
asm(" call _QEP_Getincr ;500ns (NOP) + 200ns (call)
II);
asm(" ; +100ns in subroutine ");
asm(" ret ");
#endif
I* */
/* void Encoder_CalcPosition(unsigned gep_incr_sample); */
I* */
/* Function: Calc encoder position *
I* increments (Timer 2) */
I* */
/* Arguments: increments sample *
I* */
/* Global var's: unsigned gep_position[2] */
I* *

29

Application Report
SPRA496

/* Return value: None

*

/*

*/

void Encoder_CalcPosition(unsigned gep_incr_sample)

{

volatile int sin_sample;
volatile int ncos_sample;
volatile unsigned incr;
volatile unsigned buffer;

incr = gep_incr_sample;

I* */

* read converted sin and -cos encoder signals */
I* */
ADC_READ2(sin_sample,ncos_sample);

/* Correct U0 (sin_sample and U90 (ncos_sample) offset */
sin_sample =sin_sample - ENC_UO_OFFSET;
ncos_sample = ncos_sample - ENC_U90_OFFSET,;

encoder_position[0] = Encoder_CalcPhase(sin_sample, ncos_sample);

I* */

/* correct incremental steps according to phase information */
/* */

buffer = ((encoder_position[0] >> 14) & 0x0003);

switch (buffer)

case 0: if ((incr & 0x0003) == 3)
incr = (incr + 1) & (qep_rollover-1);
break;

case 3: if ((incr & 0x0003) == 0)
incr = (incr - 1) & (gep_rollover-1);
break;
} I* switch */

/* remove (redundant) quadrant information (last two bits) */
encoder_position[1] = (incr >> 2);

}

/*

*/

/* int Encoder_CalcPhase(int gep_sin,int gep_negcos); *

/*
/* Function: Incremental encoder initialization */
/*

/* Arguments: None

/*

/* Return value: None

*/

*
*

*
*

/*

*/

int Encoder_CalcPhase(int gep_sin, int gep_negcos)

{

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders

30

Application Report

SPRA496
int phase;
int buffer;
I* */
/* general calculation, within 1st quadrant */
I* */

if (abs(gep_sin) == abs(gep_negcos))
phase = (Pl/4);
else if (abs(gep_sin) < abs(gep_negcos))

buffer = q15_div(abs(gep_sin),abs(gep_negcos));
[* phase = ql15_atan(buffer); */
phase = ql5p_atan(buffer);

else
buffer = q15_div(abs(gep_negcos),abs(qep_sin));

/* phase = (P1/2) - q15_atan(buffer); */
phase = (PI/2) - q15p_atan(buffer);

}

I* */

/* get 2nd, 3rd to 4th quadrant */
I* */

if (gep_sin >=0)
{

if (qep_negcos > 0)
phase = PI - phase; /* 2nd quadrant */
}*endif */

else
if (qep_negcos >0)
phase = Pl + phase; /* 3rd quadrant */
else

phase = -phase; [* 4th quadrant */
} /* end else */

return phase;

}

EVM_QEP.C

/*

Name: EVM_QEP.C

Project: C240.LIB

Originator: Martin Staebler

Description: Initializes the QEP circuit module
Provides functions for serving module

Function List: void QEP_Init(unsigned zero_position)
unsigned QEP_GetIncr(void)

Status:

Target: TMS320C240

History: (Date, Revision, Who, What)

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders

Application Report
SPRA496

02/11/97 1.0 STAE Preliminary

/

/% */

/* Include Files */

/* */
#include "c240.h"
#include "evm_gep.h"

I* */

/* Global Var's */

I* */

asm(" .bss _gep_rollover,1 "); /* align on ONE PAGE */
asm(" .bss _gep_diff,1 "),

asm(" .bss _gep_temp,1 ");

/*

*/

/* void QEP_Init(unsigned zero_position, unsigned rollover) */

/*
/*Function: Incremetal encoder (QEP Circuit) initialization */
/* based on timer 2 */

I* */

/* Arguments: unsigned zero_position *

I* unsigned rollover */

/* Return value: none */

*/

/*
void QEP_Init(unsigned zero_position, unsigned rollover)
OCRB |= 0x30; /* enable gepl/2 mux'd inputs */

T2CON = 0xD83A; /* enable gep circuit using timer2 */
/* bit 15,14: timer 2 doesn't on emulation suspend */
/* bit 13-10: directional up/down */
[* bit 5-4: qep pulse circuit triggers timer 2 */
[* bit 3-2: compare no shadowed *
/* bitl: enable compare */

T2CON |= 0x0040; /* enable timer 2 */

CAPCON &= 0x1DOF;
CAPCON |= 0XxE000; /* enable gep decoder circuit */

/* init rollover value and zero position for gep timer 2 */
T2CNT = zero_position;
gep_rollover = rollover;
gep_diff = 0;
}

*/

/*

*/

/* unsigned QEP_GetIncr(void) */

/*
/* Funtion Returns incremental step of encoder */
I* 4-times resolution */

/* Arguments: None */

I* */

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders

*/

32

Application Report
SPRA496

/* Return value: unsigned incremental value module gep_rollover */

I* !
asm(" text ");

asm(" .def _qep_rollover ");
asm(" .def _qep_diff ")

asm(" .def _qgep_temp)
asm(" def _QEP_Getincr ")
asm("T2CNT .set 7405h ");
asm("_QEP_Getincr: "
asm(" ;read timer 2 counter ")
asm(" T)

asm(" Idp #T2CNT/128 ");
asm(" lacc T2CNT ");
asm(" ldp #_qep_temp B
asm(" sacl _gep_temp :save temporarely ")
asm(" ")

asm(" ;modulo calculation ");
asm(" jrTmmmmmmmmeeees R
asm("check: lacc _gep_temp,16 O
asm(" sub _gep_diff,16)
asm(" bcnd Nega,lt ; ACC negative "),
asm(" sub _gep_rollover,16 ");
asm(" bend OK, It ; ACCis OK ");
asm(" lacc _gep_diff,16 ")
asm(" add _qgep_rollover,16 ");
asm(" sach _qep_diff ")
asm(" b check; ");

asm(" "
asm("Nega: lacc _qep_diff,16 ")
asm(" sub _gep_rollover,16 ");
asm(" sach _qep_diff)
asm(" b check ");

asm(" "

asm("OK: add _qgep_rollover,16 ");
asm(")

asm("EP!I: sach _gep_temp ;
asm(" lacc _gep_temp ;ACC = Return Value ");
asm(" ret ");
Q15_DIV.ASM

- Name: Q15 _DIV.ASM

; Project: Q15.LIB
; Originator: Martin Staebler

; unsigned _qg15_div(unsigned nom,unsigned denom)

; Function: positive fractional g15 division
; range from 0000h .. 7FFFF

; Arguments: unsigned nominator: q15 [0000h - 7FFFFh]
; unsigned denominator: 15 > nominator
; --> 1l check beforehand !!!

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders

33

Application Report

SPRA496

; Return value: dividend q15 <--> 0000h - 7FFFh
.def _qgl5 div
text

_q15_div:

;context save
popd *+ ;push return address
;no local var's

sar AR1*
lar AR2,* AR2
sbrk #2 ;AR2 points to first parameter

:division for POSITIV fractional numbers

lacc

rpt

subc

*-16
#14

*

;ACCL = quotient

;context restore

mar *AR1

sbrk #1 ;pop local var's + 1 from stack
pshd * :restore return address

ret

Q15 _ATAN.ASM

Name:
Project:

Q15_ATAN.ASM
Q15.LIB

; Originator: Martin Staebler

Function: int g15_atan(int)
unsigned q15p_atan(unsigned)

Status:
Target: TMS320C240
History: (Date, Revision, Who, What)
02/11/97 1.0 STAE Preliminary
Include files
.include "gl5_atan.inc" ;lookup table

int g15_atan(int);

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders

34

Application Report
SPRA496

: Function: arcus tanges, for fractional g15 format

; Arguments: fractional g15
: min: -1.0 <-->8000h
: max: 0.9999 <--> 7FFFh

Return value: scaled angle (-P1/4 .. Pl/4)
; scaling: Pl (e.g. atan(1.0) = 0.25 or 2000h)

; Error: <2 LSB (128 point lookup table)
.def _ql15_atan ;define global
text
_Qg15_atan:
;context save
popd *+ ;push return address
sar ARO, *+ ;push old frame pointer
sar AR1,*
lar ARO,* ;init new frame pointer
adrk #3 ;alocate space for two

;local variables

mar *AR2
lar AR2,#-3
mar *0+ ;AR2 = ¶meter

;check if negative or -1

lacc *

adrk #3

sacl * ;local #1 = abs(parameter)
bcnd OK,GEQ

sub #8000h

bcnd MINUS_1,EQ

lacc *

neg

sacl * ;local #1 = abs(parameter)

:calculte atan for POSITIV fractional numbers

OK: lacc *+tablen_lg2+1
;lookup table length = 2*tablen_Ig2
sach * :local #2 = first table address
lacc #table
add *
thlr *+ ;local #2 = first value
add #1
tblr * :local #3 = second value
lacc *-
sub *+ :ACC = difference = local #3 - #2
sacl * ;local #3 = difference
t = ;T = difference

sbhrk #2 ;AR2 points to local #1
lacc *tablen_Ig2 ;ACC =local #1 << tablen_Ig2

and #7FFFh ;make distance positiv value
sacl * :local #1 = distance
mpy *+ ;differnce * distance

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders

Application Report
SPRA496

spm 1

lacc *-,16 ;ACCH = local #2 = first value
apac ;ACC += distance * difference
sach * ;local #1 = "positiv' result

;correct sign, if necessary

POSITIV:

lar AR2#-3
mar *O+ ;AR2 = ¶meter
lacc *
adrk #3
bcnd POSITIV,GEQ
lacc *
neg ;2's complement
b EPIO
MINUS_1: lacc #-4000h
b EPIO
lacc * :ACCL = fractional result
b EPIO ;does already

:context restore

spm O ;default 'C' setting
mar *AR1
sbrk #(3+1) ;pop local var's+1 from stack
lar ar0, *- ;restore old frame pointer
pshd * restore return address
ret

unsigned q15p_atan(unsigned);

; Function: arcus tanges, for positiv fractional g15 format

; Arguments: fractional 15

: Return v

min: 9.0 <-->0000h
max: 0.9999 <--> 7FFFh

alue: scaled angle (0 .. Pl/4)
scaling: Pl (e.g. atan(1.0) = 0.25 or 2000h)

; Error: <2 LSB (128 point lookup table)
.def _qgl5p_atan ;define global
text

_Qq15p_atan:

;context save
popd *+ ;push return address
sar ARO, *+ ;push old frame pointer
sar AR1,*
lar ARO,* ;init new frame pointer

adrk #3 ;alocate space for three local variables

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders

36

Application Report

SPRA496

mar *AR2
lar AR2#-3
mar *O+ ;AR2 = ¶meter

;local #1 = parameter
lacc *
adrk #3
sacl * ;local #1 = parameter

:calculte atan for POSITIV fractional numbers
lacc *+tablen_lg2+1

;lookup table length = 2*tablen_Ig2

sach * :local #2 = first table address
lacc #table
add *
tblr *+ :local #2 = first value
add #1
tblr * :local #3 = second value
lacc *-
sub *+ ;ACC = difference = local #3 - #2
sacl * ;local #3 = difference
t = T = difference
shrk #2 ;AR2 points to local #1
lacc *tablen_Ig2 ;ACC = local #1 << tablen_Ig2
and #7FFFh ;make distance positiv value
sacl * ;local #1 = distance
mpy *+ ;differnce * distance
spm 1
lacc *-,16 :ACCH = local #2 = first value
apac :ACC += distance * difference
sach * ;local #1 = 'positiv' result
lacc * ;put into lowwer ACC

;context restore
spm O ;default 'C' setting
mar *AR1
sbrk #(3+1) ;pop local var's+1 from stack
lar ar0, *- ;restore old frame pointer
pshd * ;restore return address
ret

Q15_ATAN.INC

;atan(x), with0 <=x <=1

; output scalingfactor = PI

tablen_Ig2 .set 7
text

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders

Application Report
SPRA496

.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders

81
163
244
326
407
489
570
651
732
813
894
975
1056
1136
1217
1297
1377
1457
1537
1617
1696
1775
1854
1933
2012
2090
2168
2246
2324
2401
2478
2555
2632
2708
2784
2860
2935
3010
3085
3159
3233
3307
3380
3453
3526
3599
3670
3742
3813
3884
3955
4025
4095
4164
4233
4302
4370

38

Application Report
SPRA496

.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word
.word

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders

4438
4505
4572
4639
4705
4771
4836
4901
4966
5030
5094
5157
5220
5282
5344
5406
5467
5528
5589
5649
5708
5768
5826
5885
5943
6000
6058
6114
6171
6227
6282
6337
6392
6446
6500
6554
6607
6660
6712
6764
6815
6867
6917
6968
7018
7068
7117
7166
7214
7262
7310
7358
7405
7451
7498
7544
7589
7635

39

Application Report

/* Pin ADCIN5 (ADCO, channel 5) selected for U0 */

/* Pin ADCIN13 (ADC1, channel 5) selected for U90 */

#define ENC_UO_OFFSET (0x8000 +0) /*UO (sin) offset */
#define ENC_U90_OFFSET (0x8000 + 300) /* U90 (-cos) offset */

I* ==*/
/* OTHER CONSTANTS */
/* ——%
#define Pl 32768
#define ENABLE 1
#define DISABLE 0
£ */

/* Global Variables */

JH e */

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders

SPRA496
.word 7679
.word 7724
.word 7768
.word 7812
.word 7856
.word 7899
.word 7942
.word 7984
.word 8026
.word 8068
.word 8110
.word 8151
.word 8192
ENCODER.H
* */
/* Name: ENCODER.H */
/* Project: ENCODER */
/* Originator: Martin Staebler */
/* Description: Header File for ENCODER.C */
I* */
#ifndef _ ENCODER_H_
#define _ ENCODER_H_
I* *
/* USER SETTABLE ENCODER CONSTANTS */
I* *
* */
/* 1) Incremental resolution */
* */
#define QEP_ROLLOVER 8192 /* incremental counts */
asm("QEP_ROLLOVER .set 8192 "); /* dito, assembler support */
/* #define QEP_POWER?2 */ /* undefine if incremental */
/* countisn't a power of 2 */
* */
/* 2) 'F240 ADC's input channel selection & offset */
I* *

40

Application Report
SPRA496

/* Function Declaration */

extern void Encoder_Init(unsigned rollover);

extern void Encoder_ZeroPosition(void);

extern void Encoder_MatchincrPhase(void);

extern int Encoder_CalcPhase(int sin,int ncos);

extern unsigned Encoder_SamplePosition(void);

extern void Encoder_CalcPosition(unsigned gep_incr_sample);

#endif

EVM_QEP.H

I* */
/* Name: EVM_QEP.H *

/* Project: ENCODER */

/* Originator: ~ Martin Staebler */

/* Description: QEP module functions header */

I* */
#ifndef _ EVM_QEP_H_

#define __ EVM_QEP_H_

extern volatile unsigned gep_rollover;

extern volatile int gep_diff;

unsigned QEP_GetIncr(void);

void QEP_lInit(unsigned zero_position, unsigned rollover);

#endif

Q15 _ATAN.H

* */
/* Name: Q15 _ATAN.H *

I* */

int q15_atan(int);

Function: arcus tanges, for unsigned fractional q15 format

Arguments: unsigned fractional q15
min: 0 <-->0000h
max: 0.9999 <--> 7FFFh

Return value: scaled angle (0.. P1/4)
scaling: Pl (e.g. atan(1.0) = 0.25 or 2000h)

Error: <2 LSB (128 point lookup table)
*/

#ifndef _ Q15 ATAN_H_
#define _ Q15_ATAN_H_

unsigned q15p_atan(unsigned value); /* dito, but only positive q15 */
#endif

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders

41

Application Report
SPRA496

Q15 DIV.H
/*
unsigned _q15_div(unsigned nom,unsigned denom)

Function: positive fractional q15 division
range from 0000h .. 7FFFF

Arguments: unsigned nominator: q15 [0000h - 7FFFFh]
unsigned denominator: 15 > nominator
--> lll check beforehand !!!

Return value: dividend q15 <--> 0000h - 7FFFh
*/

#ifndef _ Q15 DIV_H_
#define Q15 DIV_H_

unsigned q15_div(unsigned nom, unsigned denom);

#endif

ADC.H

/*

/* Name: ADC.H */

/* Project: ENCODER */

/* Originator: Martin Staebler */

/* Description: ADC Converter 'C' Marcos *
/*

#ifndef __ ADC_H_
#define __ADC_H_

#include "c240.h"

I* */

/* select ADCO/1 channel and start ADC's */

1* */

#define ADC_START(ch_0_7,ch_8 _15) \
\

ADCTRL1 &= OXFF81; \
ADCTRLL |= ((ch_0_7<<1) | ((ch_8_15-8)<<4) | 0x0001); \

#define ADC_READ2(valO,vall) \
{ \
while((ADCTRL1 & 0x0100)); \
valo = ADCFIFO1;
vall = ADCFIFO2; \
ADCTRL1 |= 0x0100; \

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders

*/

*/

42

Application Report
SPRA496

}
#endif

C240.H

/* */
/* Name: C240.H */

/* Project: C240.LIB */

/* Description: TMS320C240 memory mapped registers */

I* */

#ifndef __ C240_H_
#define __C240_H_

[rx* *kkkkkkk *kkkkk *kk *kkkkk /

/* Memory Mapped Register */
/**/
#define IMR *(volatile unsigned int*) 0x0004

#define IFR *(volatile unsigned int*) 0x0006

/**/

/* Watchodg and Real time Interrupt Control Registers */
/**/
#define RTICNTR *(volatile unsigned int*) 0x7021

#define WDCNTR *(volatile unsigned int*) 0x7023

#define WDKEY *(volatile unsigned int*) 0x7025

#define RTICR *(volatile unsigned int*) 0x7027

#define WDCR *(volatile unsigned int*) 0x7029

/**/

/* PLL Clock Registers */

[F** Fxkkkokokok ek ok e /
#define CKCRO *(volatile unsigned int*) Ox702B

#define CKCR1 *(volatile unsigned int*) 0x702D

/**/

/* Output Logic

[F* Fxkkkokokok HkkkAR ok Hkkkkk /
#define OCRA *(volatile unsigned int*) 0x7090

#define OCRB *(volatile unsigned int*) 0x7092

#define PADATDIR *(volatile unsigned int*) 0x7098
#define PBDATDIR *(volatile unsigned int*) 0Ox709A
#define PCDATDIR *(volatile unsigned int*) 0x709C

[rx* *kkkkkkk *kkkkk *kk *kkkkk /

/* Definitions for SCI Module */
/**/
#define SCICCR *(volatile unsigned int*)0x7050 /* SCI comms.

ctrl. reg */
#define SCICTL1 *(volatile unsigned int*)0x7051 /* SCI control

register */
#define SCIHBAUD *(volatile unsigned int*)0x7052 /* Baud rate

select MSB */
#define SCILBAUD *(volatile unsigned int*)0x7053 /* Baud rate

select LSB */
#define SCICTL2 *(volatile unsigned int*)0x7054 /* Xmit int. ctrl

& status reg*/

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders

*/

43

Application Report
SPRA496

#define SCIRXST *(volatile unsigned int*)0x7055 /* RCV ctrl and

status reg*/
#define SCIRXEMU *(volatile unsigned int*)0x7056 /* Receiver data

buffer */
#define SCIRXBUF *(volatile unsigned int*)0x7057 /* Transmit data

buffer */
#define SCITXBUF *(volatile unsigned int*)0x7059 /* Transmit data

buffer*/
#define SCIPC2 *(volatile unsigned int*)0x705E /* Port ctrl

register #2 */
#define SCIPRI *(volatile unsigned int*)Ox705F /* Int. priority

ctrl reg */

[F* Fkkkkokokok ek ok Hkkkkk /
/¥ Definitions for ADC Module */
/* structures are computed uncorrectly by the C Compiler v6.60 ! */
/* therefore following approach has to be used */
/***/
#define ADCTRL1 *(volatile unsigned int*) 0x7032 /* ADC Control

reg 1*
#define ADCTRL2 *(volatile unsigned int*) 0x7034 /* ADC Control

reg 2 */
#define ADCFIFOL1 *(volatile unsigned int*) 0x7036 /* ADC1 result

FIFO */
#define ADCFIFO2 *(volatile unsigned int*) 0x7038 /* ADC2 result

FIFO */

/**/

/¥ Definitions for EV Module */

/* structures are computed uncorrectly by the C Compiler v6.60 ! */
[rex i kkkkk oxk kkkkk /
#define GPTCON *(volatile unsigned int*) 0x7400

#define TLCNT *(volatile unsigned int*) 0x7401

#define TLCMPR *(volatile unsigned int*) 0x7402

#define TLPR *(volatile unsigned int*) 0x7403

#define TLCON *(volatile unsigned int*) 0x7404

#define T2CNT *(volatile unsigned int*) 0x7405

#define T2CMPR *(volatile unsigned int*) Ox7406

#define T2PR *(volatile unsigned int*) 0x7407

#define T2CON *(volatile unsigned int*) 0x7408

#define T3CNT *(volatile unsigned int*) 0x7409

#define T3SCMPR *(volatile unsigned int*) Ox740A

#define T3PR *(volatile unsigned int*) 0x740B

#define T3CON *(volatile unsigned int*) 0x740C

#define COMCON *(volatile unsigned int*) 0x7411
#define ACTR *(volatile unsigned int*) 0x7413
#define SACTR *(volatile unsigned int*) 0x7414
#define DBTCON *(volatile unsigned int*) 0x7415
#define CMPR1 *(volatile unsigned int*) 0x7417
#define CMPR2 *(volatile unsigned int*) 0x7418
#define CMPR3 *(volatile unsigned int*) 0x7419
#define SCMPR1 *(volatile unsigned int*) 0x741A
#define SCMPR2 *(volatile unsigned int*) 0x741B
#define SCMPR3 *(volatile unsigned int*) 0x741C

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders

Application Report

SPRA496

#define CAPCON *(volatile unsigned int*) 0x7420
#define CAPFIFO *(volatile unsigned int*) 0x7422
#define CAP1FIFO *(volatile unsigned int*) 0x7423
#define CAP2FIFO *(volatile unsigned int*) 0x7424
#define CAP3FIFO *(volatile unsigned int*) 0x7425
#define CAP4FIFO *(volatile unsigned int*) 0x7426

#define EVIMRA *(volatile unsigned int*) 0x742C
#define EVIMRB *(volatile unsigned int*) 0x742D
#define EVIMRC *(volatile unsigned int*) 0x742E

#define EVIFRA
#define EVIFRB
#define EVIFRC
#define EVIVRA
#define EVIVRB
#define EVIVRC

#endif

(volatile unsigned int) Ox742F
(volatile unsigned int) 0x7430
(volatile unsigned int) 0x7431
(volatile unsigned int) 0x7432
(volatile unsigned int) 0x7433
(volatile unsigned int) 0x7434

INTERNET
www.ti.com

Register with TI&ME to build custom information

pages and receive new product updates
automatically via email.

TI Semiconductor Home Page
http://www.ti.com/sc

Tl Distributors

http://www.ti.com/sc/docs/distmenu.htm
PRODUCT INFORMATION CENTERS

US TMS320
Hotline

Fax

BBS

email

Americas
Phone
Fax
Email

(281) 274-2320
(281) 274-2324
(281) 274-2323
dsph@ti.com

+1(972) 644-5580
+1(972) 480-7800
sc-infomaster@ti.com

Phone
Deutsch
English
Francais
Italiano

Fax

Email

Japan

Phone
International
Domestic

Fax
International
Domestic

Email

Asia

Phone
International
Domestic

Australia

Europe, Middle East, and Africa

+49-(0) 8161 80 3311
+44-(0) 1604 66 3399
+33-(0) 1-30 70 11 64
+33-(0) 1-30 70 11 67
+33-(0) 1-30-70 10 32
epic@ti.com

+81-3-3457-0972
+0120-81-0026
+81-3-3457-1259
+0120-81-0036
pic-japan@ti.com
+886-2-3786800

1-800-881-011

Asia (continued)

TI Number
China

TI Number
Hong Kong

TI Number
India

TI Number
Indonesia

TI Number
Korea
Malaysia

TI Number
New Zealand

TI Number
Philippines

TI Number
Singapore

TI Number
Taiwan
Thailand

TI Number

-800-800-1450
10811
-800-800-1450
800-96-1111
-800-800-1450
000-117
-800-800-1450
001-801-10
-800-800-1450
080-551-2804
1-800-800-011
-800-800-1450
+000-911
-800-800-1450
105-11
-800-800-1450
800-0111-111
-800-800-1450
080-006800
0019-991-1111
-800-800-1450

) . IMPORTANT NOTICE N . o]
Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor product or service without notice, and advises its customers to obtain the latest

version of relevant information to verify, before placing orders, that the information being relied on is current and complete. TI warrants performance of its semiconductor products and related
software to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are utilized to the extent TI deems necessary to
support this warranty. Specific testing of all parameters of each device is not necessarily performed, except those mandated by government requirements. Certain application using semiconductor
products may involve potential risks of death, personal injury, or severe property or environmental damage (“Critical Applications”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED,
INTENDED, AUTHORIZED, OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS. Inclusion of
Tl products in such applications is understood to be fully at the risk of the customer. Use of Tl products in such applications requires the written approval of an appropriate Tl officer. Questions
concerning potential risk applications should be directed to TI through a local SC sales office. In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards. Tl assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does Tl warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right of TI covering or relating to any combination, machine, or process in which such semiconductor products or services might be or are used.

Copyright © 1998, Texas Instruments Incorporated

Tl is a trademark of Texas Instruments Incorporated.
Other brands and names are the property of their respective owners.

TMS320F240 DSP-Solution for High-Resolution Position with Sin/Cos-Encoders

45

	Abstract
	Contents
	Figures
	Tables
	Introduction
	Incremental Rotary Encoders
	Output Signals
	High-Resolution Position Determination
	Incremental Position/Count
	Phase
	Interpolated High-Resolution Position
	Maximum Tracking Speed n max

	Implementation on the TMS320F240
	TMS320F240 QEP-Unit and ADC Module
	Hardware Interface
	Supply Voltage
	Virtual Ground
	ADC Input Voltage Range
	Driving the ADC Input
	Driving the QEP Unit

	Software Implementation
	Overview
	Functional Description
	Global Variables
	Initialization Routines
	Routines for Obtaining Incremental Position
	Routines for High-Resolution Position Interpolation
	Fractional Math Routines

	Application Interface (API)
	Step 1: Modify ENCODER.H
	Step 2: Run LIB.BAT
	Step 3: Calling Conventions when Using Sin/Cos-Encoders
	Step 4: Include the Library ENCODER.LIB in Your Linker Command File
	Step 5: Compile All

	Monitor and Test Program

	Results
	Processor Utilization
	Accuracy Analysis
	Quantization
	Signal Conditioning
	Rotation Speed

	Conclusion
	References
	Source Code
	IMPORTANT NOTICE

