ProductsServicesSolutionsResource LibraryNewsOnline StoreOur Company
  MathWorld  >    Number Theory  >    Parity  v   
 
  Eric Weisstein's World of Mathematics
 
  Search
 
  By Subject
  Algebra
  Applied Mathematics
  Calculus and Analysis
  Discrete Mathematics
  Foundation of
Mathematics
  Geometry
  History and Terminology
  Number Theory
  Probability and Statistics
  Recreational Mathematics
  Topology
  Alphabetical
  About this Site
  FAQs
  What's New
  Random Entry
  Contribute
  Sign the Guestbook
  Email Comments
 


Binary Carry Sequence
    

The sequence $a(n)$ given by the exponents of the highest power of 2 dividing $n$, i.e., the number of trailing 0s in the binary representation of $n$. For $n=1$, 2, ..., the first few are 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, ... (Sloane's A007814). Amazingly, this corresponds to one less than the number of disk to be moved at $n$th step of optimal solution to towers of Hanoi problem, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, ... (Sloane's A001511).


The anti-parity of this sequence is given by 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, ... (Sloane's A035263) which, amazingly, also corresponds to the accumulation point of $2^n$ cycles through successive bifurcations.

see alsoDouble-Free Set, Towers of Hanoi

fade-teal.gif

References

Atanassov, K. "On the 37th and the 38th Smarandache Problems. Notes on Number Theory and Discrete Mathematics, Sophia, Bulgaria 5, 83-85, 1999.

Atanassov, K. On Some of the Smarandache's Problems. Lupton, AZ: American Research Press, pp. 16-21, 1999.

Derrida, B.; Gervois, A.; and Pomeau, Y. " Iteration of Endomorphisms on the Real Axis and Representation of Number." Ann. Inst. Henri Poincaré, Section A: Physique Théorique 29, 305-356, 1978.

Karamanos, K. and Nicolis, G. "Symbolic Dynamics and Entropy Analysis of Feigenbaum Limit Sets." Chaos, Solitons, Fractals 10, 1135-1150, 1999.

Metropolis, M.; Stein, M. L.; and Stein, P R. "On Finite Limit Sets for Transformations on the Unit Interval." J. Combin. Th. A 15, 25-44, 1973.

Sloane, N. J. A. Sequences A001511/M0127, A007814, and A035263 in "An On-Line Version of the Encyclopedia of Integer Sequences." http://www.research.att.com/~njas/sequences/eisonline.html.

Smarandache, F. Only Problems, Not Solutions!, 4th ed. Phoenix, AZ: Xiquan, 1993.

Vitanyi, P. M. B. " An Optimal Simulation of Counter Machines." SIAM J. Comput. 14, 1-33, 1985.


© 1996-2000 Eric W. Weisstein and Wolfram Research, Inc.
Sponsored by Wolfram Research, Inc., makers of Mathematica