
������ ��
��
�����

�� �	��
�

Application
Book

1996 8-Bit Microcontroller Family

Printed in U.S.A., February 1996 SPNA017

19
96Application

������ ��
��
�����

�� �	��
�Book

TMS370 Microcontroller Family
Application Book

Microcontroller Products—Semiconductor Group

SPNA017
February 1996

IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue any semiconductor
product or service without notice, and advises its customers to obtain the latest version of relevant information
to verify, before placing orders, that the information being relied on is current.

TI warrants performance of its semiconductor products and related software to the specifications applicable at
the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are
utilized to the extent TI deems necessary to support this warranty. Specific testing of all parameters of each
device is not necessarily performed, except those mandated by government requirements.

Certain applications using semiconductor products may involve potential risks of death, personal injury, or
severe property or environmental damage (“Critical Applications”).

TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED, OR WARRANTED
TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS, DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICATIONS.

Inclusion of TI products in such applications is understood to be fully at the risk of the customer. Use of TI
products in such applications requires the written approval of an appropriate TI officer. Questions concerning
potential risk applications should be directed to TI through a local SC sales office.

In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards should be provided by the customer to minimize inherent or procedural hazards.

TI assumes no liability for applications assistance, customer product design, software performance, or
infringement of patents or services described herein. Nor does TI warrant or represent that any license, either
express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property
right of TI covering or relating to any combination, machine, or process in which such semiconductor products
or services might be or are used.

Copyright  1996, Texas Instruments Incorporated

iii

Contents

Part I: Introduction
Introduction 5.
Overview 5.
Typical Applications 5.

Part II: Software Routines
Arithmetic

16×16 (32-Bit) Multiplication 9.

Binary Division With the TMS370 13.

����
� ������ ��
	�� 	� ����� ��
	�� ��.

����
� ������ ��
	�� 	� ������ ��
	�� 16.

BCD-to-Binary Conversion on the TMS370 17.

Binary-to-BCD Conversion on the TMS370 21.

BCD String Addition With the TMS370 25.

TMS370 Floating Point Package 29.
Introduction 31.
Floating Point Format 32.
Floating Point Routines 33.

Floating Point Addition/Subtraction 33.
Floating Point Number Comparison 37.
Floating Point Division 39.
Floating Point Multiplication 43.
Floating Point Increment / Decrement 46.
Floating Point Number Test 49.
Floating Point Number Negation 50.
Floating Point To Signed 8-Bit Integer Conversion 51.
Floating Point To Signed Long (16-Bit) Integer Conversion 53.
Floating Point To Unsigned 8-Bit Integer Conversion 55.
Floating Point To Unsigned Long (16-Bit) Integer Conversion 56.
Signed 8-Bit Integer To Floating Point Conversion 57.
Signed Long (16-Bit) Integer To Floating Point Conversion Comparison 58.
Unsigned Long (16-bit) Integer To Floating Point Conversion 59.
Unsigned 8-Bit Integer To Floating Point Conversion 60.

Memory Operations
Clear RAM Routine 63.

RAM Self-Test Routine 67.

ROM Checksum on the TMS370 71.

iv

Table Search With the TMS370 75.

Bubble Sort With the TMS370 79.

Specific Functionality
Routine to Read a 16-Key Keyboard 85.

DTMF Generation With the TMS370 89.

System Integrity Check for the TMS370 95.

Part III: Module Specific Application Design Aids

RESET Operations
Reset: Explanation of Operation and Suggested Designs 101.

COLD START 103.
OSC FLT FLAG 103.
WD OVRFL INT FLAG 103.
General Operation 103.

SPI and SCI Modules
Using the TMS370 SPI and SCI Modules 107.
Introduction 109.
Module Description: Serial Peripheral Interface (SPI) 110.

The SPI – How It Works 110.
SPI Operating Modes 111.

��� ��$%�# �!�� ���.
��� ���'� �!�� ���� �

Configuring the SPI 112.
��
 ��%� �!#��% � �#� $��%%� � � � �����'� � ���� �
��� ��

�� � � ��%� �#� $��# ��%� ���� �

Controlling the SPI through Interrupts and Flag Checking 114.
The TALK Bit and Multiprocessor Communications 115.
Considerations When Using the SPI 115.
Data Integrity and the SPI 116.

SPI Module Software Examples 117.
Common Equates 117.
Master SPI Configuration 118.
Slave SPI Configuration 119.
Dynamic Bit Justification 120.
Address Recognition by SPI 121.

�!&%� � ���� �
SPI Module Specific Applications 122.

Vacuum Fluorescent Display Driver 122.
�$� ��
 %! �#� $��% ��%� %! ��#��� ����% ����$%�# ���� �

Bootstrap Loader 131.
��"#!�#�� ��%� !# �#!�#�����!#(%�#!&�� ��
 �!#% ���� �

DSP Controller 132.

 %�#���� ����	� ��
 %! ������
�� ��� ���� �

SCI Module Description 140.

v

The SCI – How It Works 140.
Choosing SCI Protocols and Formats 141.

The SCI SW RESET Bit 142.
Operating Modes of the SCI 143.
Setting the SCICLK Pins and Baud Rate 144.
SCI Receiver Operation 145.
SCI Transmitter Operation 147.
SCI Interrupts and Flags 149.
Multiprocessor Communications 150.

�0(,& 1'$ ����� �(1 ���� �
�0(,& 1'$ ���
�� �(1 ���� �
�(0 !*(,& 1'$ ��� �/ ,0+(11$/ ���� �
�'--0(,& 1'$ �(&'1 �/-1-"-* ���� �

Timing the Flow of Data 152.
�/ ,0+(11(,& ���� �
�$"$(3(,& ���� �

Detecting Transmission Errors 152.
What to Do With Transmission Errors 153.

SCI Module Software Examples 154.
Common Equates 154.
SLEEP Bit – Multiprocessing Control 155.

�-21(,$ ���� �
System Controller Configuration 156.

�-21(,$ ��	� �
Nine-Bit Data Protocol 157.

�-21(,$ ��
� �
HALT Mode Wakeup Using the SCI Receiver 158.

�-21(,$ ���� �
SCI Module Specific Applications 159.

RS-232-C Interface 159.
�,1$/% "$ ����
����� 1- ��5���5� �-,,$"1(-, ���� �

SCI Module Specific Applications 160.
�-21(,$ �	�� �

Dumb-Terminal Driver 164.
�0$ ����
����� ��� 1- �,1$/% "$ 1- �2+!5�$/+(, * �	�� �
�-21(,$ �	�� �

Low Power Remote Data Acquisition 172.
�0$ ����
����� (, ��
�����-#$ 4(1' ������)$5�. �/-"$#2/$ �
�� � � � � �

Appendix A: SPI Control Registers 178.
Appendix B: SCI Control Registers 179.
Appendix C 180.

TMS0170 Specifications 180.
Key Features 180.
Functional Description 181.

/"'(1$"12/$ ���� �
�'(%1 �$&(01$/ ���� �

Interface 182.
Electrical Specifications 184.

Glossary 185.
References 187.

vi

Fast Method to Determine Parity 189.

Automatic Baud Rate Calculation 193.
SPI Port Interfacing 195.
SCI Control Registers 196.
Automatic Baud Rate Calculation 196.

Automatic Baud Rate Routine 196.
Possible Improvements 198.

Timer and Watchdog Modules
Using the TMS370 Timer Modules 201.
Introduction 203.
Module Description 204.

Timer 1 (T1) 204.
�-". �("-��(+ ' �+0- " 	��� �
�� �+0*/"- 	�
� �
��/ %!+$ ���� 	��� �
�� �*/"--0,/. 	��� �
�� ��� �&*. 	��� �
�� �,"-�/&+*�(�+!". 	��� �

T2 212.
�	 �+0*/"- 	�	� �
�	 �*/"--0,/. 	�	� �
�	 ��� �&*. 	�
� �
�	 �,"-�/&+*�(�+!". 	��� �

Timer Formulas 216.
�&)"- �� �� �*! �� �+0*/"- �1"-#(+2 	�
� �
��� �+),�-" �"$&./"- �+-)0(� 	��� �
�&)"- 	� �	 �+0*/"- �1"-#(+2 	��� �
�&)"- 	� �+),�-" �"$&./"- �+-)0(� 	��� �

Timer Application Software Routine Examples 220.
Real-Time System Control: Periodic Interrupt of T1 221.
Output Pulse Width Generation: 1-kHz Square Wave 223.
Pulse Width Modulation #1 225.
Pulse Width Modulation #2 227.
Pulse Position Modulation (PPM) 229.
Pulse Width Measurement Using Pulse Accumulation Clock Source 231.
Counting External Pulses Relative to an External Signal 233.
Output Pulse Drive Referenced to Input Signal: TRIAC Controller or One Shot 235.
Pulse Width Measurement: Time Between Edges 236.
Output Pulse Generation (Delayed) Referenced to Input Signal 238.

Watchdog Operation and Initialization 240.
Watchdog Initialization Example 240.
WD Reset Enable Initialization #1 243.

��/ %!+$ �"."/ �*��(" �*&/&�(&4�/&+* �	 	��� �
WD Initialization When System Reset is Not Desired 246.

Specific Applications 247.
Stepper Motor Control 247.
Time-of-Day Clock Application Routine 254.

�,/&+*�(��("*!�- �0* /&+*. #+- /%" �&)"5+#5��3 ����� �(+ ' 	��� � � � � � � � � � � � � � �
Frequency Counter Application 260.

vii

Display Dimming Application Routine 263.
Speedometer and Tachometer Display Application 270.

����!��
� !�"���!�!���
�" !�� ���!$��� �%����� ���� �
Conclusion 283.
Appendix A: Timer 1 (T1) Control Registers 284.
Appendix B: Timer 2 (T2) Control Registers 287.
References 291.
Glossary 292.

Using Input Capture Pins as External Interrupts 295.
Introduction 297.
Timer 1 297.
Timer 2A 297.
Timer 2B 298.

Watchdog Design Considerations and Mask Options 299.
Introduction 301.
Standard Watchdog 301.
Hard Watchdog Mask Option 301.
Simple Counter 302.

T1PWM Set-Up Routines 305.

Analog-to-Digital Module
Using the TMS370 ADC1 Module 311.
Introduction 313.
Module Description 313.

Principles of Operation 315.
Functional Description 316.

Design Considerations 316.
A/D Input Pin Model 316.
Analog Input Pin Connection 317.
Analog Input Conditioning 319.
Resolution 322.
Ratiometric Conversion 324.
Sampling Frequency 324.
Analog Reference and Layout Considerations 325.

Software Routines 328.
Common Equates 328.
Single Channel Continuous Conversion 328.
Multiple Channel Conversions 331.

Application Examples 334.
Data Translation 335.
Temperature Sensor Interface 337.
Automatic Ranging Interface 338.
Interfacing a Serial A/D Converter with TMS370 Family Microcontrollers 343.

� ��� ��'
��� ��
 ���� �
� ��� ���!$��� !�
�!������ ��!� � ������ 	��
��#��!�� ���� � � � � � � � � � � � � � � � � � � �

Conclusions 355.
Appendix A: ADC1 Control Registers 356.

viii

Appendix B: A/D Errors 357.
Appendix C: External A/D Converters 358.
Appendix D: A /D Testing 362.
Glossary 366.
References 367.

Analog-to-Digital (A/D) Helpful Hints 369.
Analog-to-Digital VCC and VSS Pins: 371.
Power Down Operation 371.
A/D Reference Options 371.
A/D Source Impedence 371.

Example : Typical A/D Input Selection and Conversion Process 372.

PACT Module
PACT Command Macros 377.
PACT Command Macros 379.

Macro Definitions 379.

PACT Module Sample Routines 385.
Introduction 387.

Register Equates 387.
Using The Hardware Default Timer 388.

Square Wave PWM On OP1 388.
���� �*-"!* �,)1)!*)5!1)-, 	��.
�-++!,$��%&),)1)-, ��������� �,)1)!*)5!1)-, 	��� �

PWM With Period and Duty Cycle Change 391.
PACT Peripheral Initialization 391.
PACT Command /Definition Initialization 391.
Virtual Timer PWM 394.

�2*0%)$1(�-$2*!1)-, �4!+.*% � 	�
� �
�2*0%)$1(�-$2*!1)-, �4!+.*% � 	��� �

Synchronized Pulses On External Event 403� �
� ��%,%/!1)-, �, �!#(�3%,1
�	� �
� ��%,%/!1)-, �, �%*%#1%$ �3%,1
��� �

Pulse Width Measurement (PWM) 413.
�0),' �%$)#!1%$ 	�7�)1 �!.12/% �%')01%/0
�	� �
�0),' �(% �)/#2*!/ �2&&%/ �%')01%/0
�
� �

Using PACT Step Mode 422.
�/-'/!++),' �(% ���� ���
��� �

PACT Command/Definition Initialization: 426.
Appendix 429.

PACT Input Capture Structure 430.
Command And Definition Area 431.

�)/12!* �)+%/ �%&),)1)-,
	�� �
��� �!2$ �!1% �)+%/ �%&),)1)-,
	�� �

Offset Timer Definition - Time From Last Event 433.
�1!,$!/$ �-+.!/% �-++!,$
	
� �
�-,$)1)-,!* �-+.!/% �-++!,$
	�� �
�-2"*% �3%,1 �-+.!/% �-++!,$
	�� �

PACT Control Registers 437.
Interrupt Vector Sources 438.

ix

I/O Pins
Proper Termination of Unused I/O Pins 441.
Introduction 443.
What to Do: Best Solution 443.
What to Do: Alternative Solutions 445.
Summary 447.

Part IV: EEPROM Programming
EEPROM Self Programming

EEPROM Self Programming With the TMS370 Family 451.
Programming With the TMS370 Family 453.

Write Data EEPROM Routine 453.
PROGRAM Routine 453.
EEPROG Routine 454.
PROGRAM Routine (provides actual values at each step) 454.

Bootstrap Programs
Bootstrap Program for the TMS370 459.

Bootstrap Program for the SPI in Slave Mode 463.

Bootstrap Program for the TMS370 in Master 467.

Part V: External Memory Expansion Examples
Using Memory Expansion in Microcomputer Mode With
Internal Memory Disabled 475.
Introduction 477.
Special Features 477.

Interfacing and Accessing External Memory 479.
Microcomputer Interface Example 481.

Read Cycle Timing 484.
�)'"
""/#0071,7� 1 �# " �'*# �#.2'/#*#+1 ���� �
�&'-7�#)#!1 �,471,7� 1 �# " �#.2'/#*#+10 ���� �
�&'-7�#)#!1 �'%&71,7�#51 � 1 �20 �/'3# �#.2'/#*#+10 ��	� �
�# " � 1 �,)"
$1#/ �&'- �#)#!1 �'%& �#.2'/#*#+10 ��
� �

Write Cycle Timing 488.
�/'1# � 1 �#17�- �'*# �#.2'/#*#+10 ���� �
� 1 �,)"
$1#/ �&'-7�#)#!1 �'%& ���� �

Design Options 489.
�,4#/ �,01 ���� �
� 01#/ �-##" ���� �

Bank Switching Examples 490.
Equates for Examples 491.
Coding 492.

�+'1')'6'+% 1, �������
� � +(� ���� �
�& +%'+% 1, ����� � +(� ���� �
�& +%'+% 1, ����� � +(� +" �
� � +(� ���� �
�& +%'+% �
� � +(0 ���� �

x

Read/Write Serial EEPROM Data on the TMS370 495.

Part VI: Specific System Application Design Aids

EMI Reduction
PCB Design Guidelines for Reduced EMI 505.
Overview 507.
Background and Theory 507.

EMI Sources, Paths, and Receivers 507.
Loops and Antennas 508.

�,,- �/# 0
��� �
�&# �,,-
 �2//#+1 �),3 � 1&
��� �

Differential Mode and Common Mode Radiation 510.
�'$$#/#+1')6*,"# �,'0#
��� �
�,**,+6*,"# �,'0#
��� �

Coupling 511.
High-frequency Characteristics of Passive Devices 512.
Reciprocity of Emissions and Susceptibility 512.

PCB Design Implementation 513.
Floor-Plan PCB First 513.

�, /" �,+'+%
��� �
�- !# $,/ �/,2+" �1/2!12/#0
�	� �
�'+'*'5# �,21'+% �'01 +!#0
�	� �
�&,/1 �,21#0 $,/ �'%&6$/#.2#+!4 �'%+)0
�	� �

Grounding 514.
�'%'1)
 �/'" 1&# �/,2+"
�
� �
�+),% �/,2+"
��� �
�,'04 �/,2+"
��� �
�,3 �*-#" +!# �/,2+" �,"#
��� �
�/,2+" �'"1&
��� �
�,++#!1,/ �/,2+"0
��� �
�,3#/ �,21'+%
��� �
�),!(�'+#0
��� �
�2)1'6) 4#/ �, /"0
��� �

Bypassing 522.
�,3#/ �4- 00'+%
 �������� ���������
��� �
�'%+) �4- 00'+%
��� �
�,++#!1,/ �4- 00'+%
��� �

Summary 523.
Priority of Guidelines 523.

References 523.

Cost Effective Input Protection Circuitry for the Texas Instruments
TMS370 Family of Microcontrollers

Cost Effective Input Protection Circuitry for the Texas Instruments
TMS370 Family of Microcontrollers 527.
Introduction 529.
Advantages of TTL Specified Input Pins 529.
Designing With Competitors CMOS Specified Level Inputs 532.
Designing With TI’s TTL Level CMOS Inputs 534.

xi

Advantages of Internal Diode Protection Circuitry 535.
Designing Input Protection Circuitry for TMS370 Microcontrollers 537.

Calculation of External Current Limiting Resistor Value Example 539.
Cost Analysis 542.
Conclusion 545.
References 546.

xii

List of Illustrations

Binary Division With the TMS370 13.
�� �'(03' #/& �(5'3 �')+45'3 !#-6'4 (03 ���
 �+7+&' �
� �

�� �'(03' #/& �(5'3 �')+45'3 !#-6'4 (03 ����� �+7+&' ��� �

Routine to Read a 16-Key Keyboard 85.
�� �':$0#3& �%#/ �0//'%5+0/4 50 �035 �
�� �

Reset: Explanation of Operation and Suggested Designs 101.
�� �:1+%#- �'4'5 �+3%6+5 ��	� �

Using the TMS370 SPI and SCI Modules 107.
�� ��� �-0%, �+#)3#. ���� �

�� �#45'3 � �-#7' �0//'%5+0/ ���� �

�� !#%66. �-03'4%'/5 �/5'3(#%' ���� �

	� �-08%*#35 0(�005453#1 �0#&'3 �/5'33615 �'37+%' �065+/' ���� �

� ���������� � ��������
 �/5'3(#%' ���� �

�� �0/5+/6064 �0&' �0 �3#.' �:/%*30/+;#5+0/ �6-4' ���� �
�� ��� �-0%, �+#)3#. �	�� �

� ��� �#5# �3#.' �03.#54 �	�� �

�� �4:/%*30/064 �0..6/+%#5+0/ �03.#5 �	�� �

��� -404:/%*30/064 �0..6/+%#5+0/ �03.#5 �	�� �

��� �'%'+7'3 �1'3#5+0/ �-08%*#35 �	�� �

��� �3#/4.+55'3 �1'3#5+0/ �-08%*#35 �	
� �

��� ��������
� � ��=���=� �/5'3(#%' ���� �

�	� �'3.+/#- �/5'3(#%' �9#.1-' ��	� �

�
� �'.05' �#5# �%26+4+5+0/ �9#.1-' ���� �

��� ������� �-0%, �+#)3#. �
�� �

��� ������� ��� �+/ �65 �
�� �

Automatic Baud Rate Calculation 193.
�� ���������� �/5'3(#%' �9#.1-' ��
� �

�� �650$#6& "#7'(03. ��
� �

Using the TMS370 Timer Modules 201.
�� �+.'3 �-0%, �+#)3#. ��	� �

�� �� �3'4%#-'3 �-0%, �063%' ��
� �

�� ��=�+5 �30)3#..#$-' �'/'3#-=�63104' �� ���� �

	� "#5%*&0) �06/5'3 ���� �

� �':$0#3& �%#/ 4+/) ������� #4 #/ �95'3/#- �/5'33615 ��
� �

�� �6#- �0.1#3' �0&' (03 �� ���� �

�� �#1563'��0.1#3' �0&' (03 �� ���� �

� ��=�+5 �30)3#..#$-' �'/'3#-=�63104' �� ���� �

�� �6#- �0.1#3' �0&' (03 �� ��	� �

��� �6#- �#1563' �0&' (03 �� ��
� �

��� �:1+%#- �08'3= 1��08/ �+3%6+5 �	�� �

��� �80=�0+/5 �065+/' �1'3#5+0/ �	�� �

��� �/'=�0+/5 �#+/ �065+/' �-64 �/5'33615 �1'3#5+0/ �		� �

�	� �5'11'3 �0503 �3+7' �11-+%#5+0/ �%*'.#5+% �	
� �

�
� �5'11'3 �0503 �0/530- �11-+%#5+0/ �-08%*#35 �	�� �

xiii

��� �-08$)"35 '03 �*.&<0'<�": �-0$, �11-*$"5*0/ �

� �
��� �*41-": �*..*/(�11-*$"5*0/ ���� �
�
� �*41-": �*..*/(�!� �*(/"- ���� �

��� �*41-": �*..*/(�-08$)"35 ��
� �
��� �*(*5"- �/4536.&/5"5*0/ �-645&3 �11-*$"5*0/ ���� �
��� �/4536.&/5"5*0/ �-08$)"35 ���� �
��� �*.&3 � � �6"- �0.1"3& �0%& �
	� �

��� �*.&3 � � �"1563&��0.1"3& �0%& �
�� �
�	� �*.&3 � � �6"- �"1563& �0%& �
�� �
�
� �*.&3 � � �6"- �0.1"3& �0%& ���� �

Using the TMS370 ADC1 Module 311.
�� ��� �0/7&35&3 �-0$, �*"(3". ��	� �

�� �*.1-*'*&% �0%&- 0' 5)& �6$$&44*7& �11309*."5*0/ �0/7&35&3 ��
� �
�� ��� �/165 �*/ �0%&- ���� �
	� �1&3"5*0/"- �.1-*'*&3 ���� �

� �0/*/7&35*/(�6''&3 '03 �/"-0(�/165 �*/ ���� �

�� �/7&35*/(�6''&3 '03 �/"-0(�/165 �*/ ���� �
�� �"/(& �''4&55*/("/% �$"-*/(���� �

� �3*%(& �.1-*'*&3 ���� �
�� �9".1-& 0' �/5&3'"$& �*3$6*5 50 �/$3&"4& �&40-65*0/ 50 �*/& �*54 ���� � � � � � � � � � � � � � � � � � �

��� �3"/4'&3 �)"3"$5&3*45*$4 0' 5)& �/5&3'"$& �*3$6*5 ���� �
��� �/+&$5*/(�0*4& */50 5)& �/165 �*(/"- ���� �
��� �-0$, �*"(3". 0' �80 �5&1 �6#3"/(*/(�0/7&34*0/ ��	� �
��� �-*"4*/(�*(/"- �"64&% #: �/"%&26"5& �".1-*/(�"5& ��
� �

�	� �*3$6*5 8*5) �0..0/ �.1&%"/$& �"35) �"5) ���� �
�
� �*3$6*5 !*5) �0 �0..0/ �.1&%"/$& �"35) �"5) ���� �
��� �&'&3&/$& 0-5"(& �063$& �.1&%"/$& ���� �
��� ����� �0*/5&3 ��
� �

�
� �0/7&34*0/ �03.6-" ��	� �
��� �&.1&3"563& �&/403 �/5&3'"$& ���� �
��� �6503"/(*/(�*3$6*5 �*"(3". ���� �
��� �/5&3'"$*/(�*3$6*5 �4*/(��� �		� �

��� �/5&3'"$*/(�*3$6*5 �4*/(�0'58"3& �065*/& �	�� �
��� ��� �0/530- �&(*45&3 �&.03: �"1 �
�� �
�	� ��� �3"/4'&3 �)"3"$5&3*45*$4 �
�� �
�
� �6/$5*0/"- �-0$, �*"(3". 0' ��
�
� �/5&3'"$& !*5) ������ �

� �

��� �0/7&34*0/ �*.*/(�*"(3". �
�� �
��� �6/$5*0/"- �-0$, �*"(3". �4*/(��� �0/7&35&3 "4 ��� ���� �
�
� �6/$5*0/"- �-0$, �*"(3". �4*/(�� �0/7&35&3 "4 � � � ���� �
��� �-0$, �*"(3". 0' �&45 �&5<�1 ���� �
��� �0%& !*%5) �&"463&.&/5 ��	� �

��� �0%&4 �"7*/(�"9*.6. �*''&3&/5*"- �*/&"3*5: �3303 ��
� �
��� �*''&3&/5*"- �*/&"3*5: �3303 ��
� �

PACT Module Sample Routines 385.
�� �26"3& !"7& �

� �

�� �!�!*5) �&3*0% "/% �65: �:$-& �)"/(& ���� �
�� �9".1-& � �!� ��	� �

xiv

	� -0-1+ �-&+4&0 ���� �

� �#� �:&03/) � #&8) ��
� �
�� ��� -0-1+ �-&+4&0 	��� �
�� �:6)41&/ �8)16� �8)16 �)/&;� &1(�;1' �7/5)5 	��� �

� ��� -0-1+ �-&+4&0 	��� �
�� �:6)41&/ �8)16 &1(�#� 	�
� �
��� ��� -0-1+ �-&+4&05 	��� �
��� ��� &1(��� �8)165 	��� �
��� ��� �#� 	��� �
��� �6)3 �2() �#� 	��� �
�	� ��� -0-1+ �-&+4&0 	�	� �
�
� ��� -0-1+ �-&+4&0 	��� �
��� ��� �7&/ �246 �&0�&33-1+ 	��� �
��� �4+&1-<&6-21 2* 6,) �&3674) �)+-56)45 &1(6,)

�-4'7/&4 �7**)4 -1 �7&/ �246 ��� 	��� �

Proper Termination of Unused I/O Pins 441.
�� �)56 �2/76-21 *24)40-1&6-1+ !175)(��� �-15�

�7// �29 ,427+, & �)5-5624 			� �
�� �)'200)1()()40-1&6-21 *24 6,) $ ��� �-1

#,)1 !5)(-1 6,) �:6)41&/ �4-8)1 �/2'. �2() 		
� �
�� �/6)41&6) �2/76-21 *24)40-1&6-1+ !175)(��� �-15� �3)1 �-4'7-6 		�� � � � � � � � � � � � � � � � �
	� �/6)41&6) �2/76-21 *24)40-1&6-1+ !175)(��� �-15�

�,&4)(�7//=�291 �)5-5624 		�� �

Interfacing and Accessing External Memory 479.
�� �-'42'20376)4 �16)4*&') �:&03/) 	
�� �
�� "&/-(�((4)55=62=�&6& �)&(-0-1+ 	

� �
�� �,-3=�)/)'6 �29=62=�&6& �)&(-0-1+ 	
�� �
	� �,-3=�)/)'6 �-+,=62=�):6 �&6& �75 �4-8) -0-1+ 	
�� �

� �)&(�&6& �2/(�*6)4 �,-3=�)/)'6 �-+, -0-1+ 	
�� �
�� #4-6) �&6& �)6=!3 -0-1+ 	

� �
�� #4-6) �&6& �2/(�*6)4 �,-3=�)/)'6 �-+, 	
�� �

� �)4-3,)4&/ �-/) �4&0) �� �-+-6&/ �246 �21642/ �)+-56)45 	��� �

PCB Design Guidelines for Reduced EMI 505.
�� ��� �274')5� �&6,5� &1(�)')-8)45
�
� �
�� �&6,5 2* �)&56 �03)(&1') 85� �&6,5 2* �)&56 �)5-56&1')
��� �
�� �-**)4)16-&/=�2() �&(-&6-21
��� �
	� �20021=�2() �&(-&6-21
��� �

� �5'-//&624 �273/-1+ �162 ��� �-+1&/
��� �
�� �-(()1 �',)0&6-' �**)'65 2* �20021 �&55-8)

�-4'7-6 �/)0)165
��� �
�� ��� %21-1+
�	� �

� �4271(�4-(
��� �
�� �-'42=�4271(
��� �
��� �)4-)5 &1(�&4&//)/ �4271(�211)'6-21 �',)0)5
�
� �
��� π=�-/6)4 �21*-+74&6-21
��� �
��� �/26 -1 & +4271(3/&1)
��� �

Cost Effective Input Protection Circuitry for the Texas Instruments
 TMS370 Family of Microcontrollers 527.

xv

�� �.%&4&2-*."4& �".(& '/2 ��� ".% ����
�.054 �)2&3)/,%3 � $$ �
 �
��� �

�� �7*4$)*.(4/ &)*$,& �"44&29 � #"4�
��� �
�� �7*4$)*.(4/ &)*$,& �2/5.%
��� �
	� ������ �*$2/$/.42/,,&2 �5''&2 �*2$5*429 !*4) �84&2.",

 /,4"(& �*6*%&2 �*2$5*429
��� �

� ���� �.054 �&6&,3 �6&2 "2*"4*/.3 *. #"4
��� �
�� ��� �.054 �&6&,3 �6&2 "2*"4*/.3 *. �/2-", #"4
�
� �
�� �84&2.", �,&$42*$", �/*3& �5002&33*/. �*2$5*429
��� �

� ������ �"3&% �84&2.", �/*3& �5002&33*/. �*2$5*429
��� �
�� ������ �*-0,*'*&% ��� �*$2/. ".% ��� �*$2/. �*,*$/. �5''&2 �*2$5*429
��� � � � � � � � � � � � � �
��� �84&2.", �&3*34".$& ���� ",5&3 '/2 "2*/53 �84&2.",

�2".3*&.4 /,4"(& �/.%*4*/.3
	�� �
��� �8"-0,&3 /' �84&2.", �2/4&$4*/. �*2$5*429
		� �

List of Tables

Introduction 5.
�� �90*$", �00,*$"4*/.3 '/2 ������ �"-*,9 �*$2/$/.42/,,&2 �&6*$&3
� �

Binary-to-BCD Conversion on the TMS370 21.
�� �&(*34&2 ",5&3 ��� �

BCD String Addition With the TMS370 25.
�� �&(*34&2 ",5&3 ".% �5.$4*/.3 ��� �

RAM Self-Test Routine 67.
�� �&(*34&2 ",5&3 ��� �

ROM Checksum on the TMS370 71.
�� �&(*34&2 ".% �5.$4*/. ",5&3 ��� �

Table Search With the TMS370 75.
�� �&(*34&2 ".% �802&33*/. �5.$4*/.3 ��� �

Bubble Sort With the TMS370 79.
�� �&(*34&2 �5.$4*/.3
�� �

Routine to Read a 16-Key Keyboard 85.
�� �&(*34&2 �2/0&24*&3
�� �

Using the TMS370 SPI and SCI Modules 107.
�� ��� �)"2"$4&2 �*4 �&.(4) ���� �
�� ��� �,/$+ �2&15&.$9 ���� �
�� �"5% �"4&3 '/2 ��� �*4 �"4& ",5&3 ��	� �
	� �2".3-*44&2 �)"2"$4&2 �*4 �&.(4) �	�� �

� �39.$)2/./53 �"5% �"4& �&(*34&2 ",5&3 '/2 �/--/.

��� �"5% �"4&3 �		� �
�� ��� �/.42/, �&(*34&23 ��
� �
�� ��� �/.42/, �&(*34&23 ���� �

� �&$/--&.%&% �0&2"4*.(�/.%*4*/.3 �
	� �
�� �,&$42*$", �)"2"$4&2*34*$3 �6&2 �0&2"4*.(�2&& �*2 �&-0&2"452& �".(& �
	� � � � � � � � � � � � � �

xvi

Fast Method to Determine Parity 189.
�� +-/89+7 $'1:+8 '3* �:3)9/438 ���� �

Automatic Baud Rate Calculation 193.
�� �472'9 �'7'2+9+78 ���� �
	� !��� �439741 +-/89+78 ��
� �

Using the TMS370 Timer Modules 201.
�� "�!
�� �'2/1> "/2+7 �4*:1+ �'5'(/1/9/+8 	�
� �
	� "� �4*:1+ �4:39+7 �;+7,14< '9+8 	�
� �

� "� �425'7+ +-/89+7 $'1:+8 �!&!��� � � ��?� 	��� �
�� "	 �4*:1+ �4:39+7 �;+7,14< '9+8 	��� �
�� "	 �425'7+ +-/89+7 $'1:+8 �!&!��� � � ��?� 	��� �

� �42243 +-/89+7 �6:'9+ "'(1+ 		�� �
�� "/2+7 � �4*:1+ +-/89+7 �+247> �'5 	��� �
�� "/2+7 	� �4*:1+ +-/89+7 �+247> �'5 	��� �

Using the TMS370 ADC1 Module 311.
�� �+> �5@�25 �'7'2+9+78
��� �
	� �3'14- �35:9 "'(1+

�� �

� �251/,/+7 �'/3 �')947

�� �
�� "+89 �43*/9/438

	� �

Using Memory Expansion in Microcomputer Mode With
 Internal Memory Disabled 475.
�� +'* '3* %7/9+ �:3)9/438 ���� �
	� %'/9@!9'9+ �439741 �/98 ��
� �

� �+247> �39+7,')+ "/2/3- ��
� �
�� �479 �43,/-:7'9/43 +-/89+78 !+9@#5 ��	� �

Cost Effective Input Protection Circuitry for the Texas Instruments
 TMS370 Family of Microcontrollers 527.
�� �3*:897> !9'3*'7* �/)74)4397411+7 �35:9 ".7+8.41*8� �	�� �
	� ">5/)'1 ���! �'7'2+9+78 '3* !>89+2 �43*/9/438 �

� �

� ">5/)'1 ""� �'7'2+9+78 '3* !>89+2 �43*/9/438 �
�� �
�� "�!
�� �/)74)4397411+7 ��� �/3 �:,,+7 ">5+8 �
�� �
�� ">5/)'1 $'1:+8 4, 	 +6:/7+* ,47 ��	 '3* ��
 �/)743 !/1/)43

�88:2/3- '3 �=9+73'1 ����$!5/0+ ���� �

� �489 �425'7/843 ���� �

1

Part I
Introduction

2

3

Introduction

Microcontroller Products—Semiconductor Group
Texas Instruments

4

5

Overview

The TMS370 family consists of VLSI, 8-bit, CMOS microcontrollers with on-chip EEPROM storage and
peripheral support functions. These devices offer superior performance in complex, real-time control
applications in demanding environments. They are available with mask-programmable ROM and
EPROM.

Robust features in the TMS370 family of devices enhance performance and enable new application
technologies. These features include watchdog modes and low-power modes for mask-OM devices. All
family members share software compatibility, so you can run many existing applications on different
devices without having to modify the software.

This application book contains software routines, helpful hints, and other resources that will help you
take advantage of the many uses of the TMS370 family of microcontrollers. The software routines in this
book are available on the TI TMS370 Microcontroller BBS. The parameters are: 8 data, no parity, and
1 stop bit. If you have questions concerning the TMS370 family, please contact us at the following
numbers:

• Technical Hotline: (713) 274-2370

• Bulletin Board: (713) 274-3700

• Fax: (713) 274–4203

 Other info, including routines, will also be available on TI’s world wide web site: �

	�������
������

Typical Applications

In expanding its powerful TMS370 family of microcontrollers, TI offers many configurable devices for
specific applications. As microcontrollers have evolved, TI has added multiple peripheral functions to
chips that originally had only a CPU, memory, and I/O blocks. Now, with the high-performance,
software-compatible TMS370 microcontrollers, you can choose from over 78 standard products.
Alternatively, you can use as many as 16 function modules to configure your new device quickly, easily,
and cost effectively for your application.

The TMS370 family of devices is the ideal choice for (but not limited to) the applications shown in
Table 1.

Table 1. Typical Applications for TMS370 Family Microcontroller Devices

Application Area Applications

Automotive

Climate control systems
Cruise control
Entertainment systems
Instrumentation

Navigational systems
Engine control
Antilock braking

Computer
Keyboards
Peripheral interface control

Disk controllers
Terminals

Industrial
Motor control
Temperature controllers
Process control

Meter control
Medical instrumentation
Security systems

Telecommunications
Modems
Intelligent phones
Intelligent line card control

Telecopiers
Debit cards

6

7

Part II
Software Routines

Part II contains three sections:

 Arithmetic 7.

 Memory Operations 61.

 Specific Functionality 83.

8

9

16×16 (32-Bit) Multiplication
With the TMS370

Microcontroller Products—Semiconductor Group
Texas Instruments

10

11

16×16 (32-Bit) Multiplication

This example multiplies the 16-bit value in register pair R2, R3 by the value in register pair R4, R5. The
results are stored in R6, R7, R8, R9; registers A and B are altered.

Routine
**
* 16-BIT MPY: XH XL X VALUE
* X YH YL Y VALUE
* –––––––––––––––
* XLYLm XLYL1 1 = LSB
* XHYLm XHYL1 m = MSB
* XLYHm XLYH1
* + XHYHm XHYH1
* –––––––––––––––––––––––––––––––
* RSLT3 RSLT2 RSLT1 RSLT0
**
XH .EQU R2 ;Higher operand of X
XL .EQU R3 ;Lower operand of X
YH .EQU R4 ;Higher operand of Y
YL .EQU R5 ;Lower operand of Y
RSLT3 .EQU R6 ;MSbyte of the final result
RSLT2 .EQU R7
RSLT1 .EQU R8
RSLT0 .EQU R9 ;LSbyte of the final result

MPY32 CLR RSLT2 ;Clear the present value
 CLR RSLT3
 MPY XL,YL ;Multiply LSbytes
 MOVW B,RSLT0 ;Store in result register 0
 MPY XH,YL ;Get XHYL
 ADD R1,RSLT1 ;Add to existing result XLYL
 ADC R0,RSLT2 ;Add carry if present
 ADC #0,RSLT3 ;Add if carry present
 MPY XL,YH ;Multiply to get XLYH
 ADD R1,RSLT1 ;Add to existing result XLYL+XHYL
 ADC R0,RSLT2 ;Add to existing results and carry
 ADC #0,RSLT3 ;Add if carry present
 MPY XH,YH ;Multiply MSbytes
 ADD R1,RSLT2 ;Add once again to the result register
 ADC R0,RSLT3 ;Do the final add to the result reg
 RTS ;Return to call subroutine

12

13

Binary Division
With the TMS370

Microcontroller Products—Semiconductor Group
Texas Instruments

14

15

Divide 16-Bit Number by 8-Bit Number
This routine divides a 16-bit number concatenated in R1:R2 by an 8-bit number in R3 to give a 16-bit
quotient and an 8-bit remainder as shown in Figure 1. This routine uses the DIV instruction (note that a DIV
function provides maximum values of 8-bits, 25510, for both quotient and remainder). First, the dividend
MSbyte is divided to find the quotient’s MSbyte; then the concatenated remainder and dividend LSbyte
are divided to find the quotient’s LSbyte.

Figure 1. Before and After Register Values for 16/8 Divide

R1

R3

BEFORE DIVISION AFTER DIVISION

R4 R5 = Quotient B = Remainder
= Dividend

= Divisor

R2

Routine

.TEXT 7000h
;
FLAGS .EQU R7 ; Register location of FLAG bits
OVERFLOW .DBIT 0,FLAGS ; Bit 0 of FLAGS register is OVERFLOW bit
;
;
; Register assignments:
; R1/R2 contain the dividend MSbyte/LSbyte
; R3 contains the divisor
; R4/R5 contain the quotient MSbyte/LSbyte after operation
; Register B holds the remainder after operation
;
;
;
DIVIDE8 CLR A ; Clear MSbyte of registers A:B

DIV R3,A ; Divide dividend MSbyte to getquotient MSbyte
JV OVERF ; Exit if overflow
MOV A,R4 ; Move MSbyte of quotient to storage.
MOV B,A ; Move remainder to MSbyte of registers A:B
MOV R2,B ; Move dividend LSbyte to reg. B
DIV R3,A ; Divide A:B to get quotient LSbyte and remainder
JV OVERF ; Exit if overflow
MOV A,R5 ; Store the quotient LSbyte next to MSbyte with
RTS ; remainder staying in B

;
OVERF SBIT2 OVERFLOW ; Set overflow bot if overflow occurs

RTS ;

16

Divide 16-Bit Number by 16-Bit Number
This program divides a 16-bit dividend by a 16-bit divisor and produces a 16-bit quotient with a 16-bit
remainder. All numbers are unsigned positive integers and can range from 0 to FFFFh. The same principle
can be applied to larger or smaller divide routines to allow different-sized quotients, dividends, divisors,
and remainders. Registers used in the division can be visualized as shown in Figure 2.

Figure 2. Before and After Register Values for 16/16 Divide

R2 R3

R4 R5

BEFORE DIVISION AFTER DIVISION

R2 R3 = Quotient A B = Remainder
= Dividend

= Divisor

Routine

.TEXT 7000h
;
;
; Register assignments:
; R2/R3 contain the dividend MSbyte/LSbyte
; R4/R5 contain the divisor
; R2/R3 contain the quotient MSbyte/LSbyte after operation
; Registers A and B hold the remainder after operation
;
;
;
;
DIV16 MOV #16,R6 ; Set loop counter to 16 –– one for each

; quotient bit
CLR A ; Initialize result register (MSbyte)
CLR B ; Initialize result register (LSbyte)

DIVLOP RLC R3 ; Multiply dividend by 2 (MSbyte)
RLC R2 ;
RLC B ; Shift dividend into A:B for comparison
RLC A ; to divisor
JNC SKIP1 ; Check for possible error condition that
SUB R5,B ; results when a 1 is shifted past the
SBB R4,A ; MSbyte,
SET C ; Correct by subtracting divisor and

; setting carry.
JMP DIVEND ; If MSB=1, then subtract is possible

SKIP1 CMP R4,A ; Compare MSbytes of dividend and divisor
JNC DIVEND ; Jump if divisor is bigger
JNE MSBNE ; If not equal, jump
CMP R5,B ; If equal, compare LSbytes
JNC DIVEND ; Jump if divisor is bigger

MSBNE SUB R5,B ; If smaller, subtract divisor from
SBB R4,A ; dividend. Carry gets folded into next

; rotate and gets doubled each time.
DIVEND DJNZ R6,DIVLOP ; Do next bit, is divide done?

RLC R3 ; Finish last rotate.
RLC R2 ;

17

BCD-to-Binary Conversion
on the TMS370

Microcontroller Products—Semiconductor Group
Texas Instruments

18

19

BCD-to-Binary Conversion

This routine converts a four-digit BCD number to binary. The maximum BCD number is 9999 decimal.
Operands originate and are stored in general-purpose RAM. The BCD number is composed of the four
digits (D3, D2, D1, and D0) contained in the bytes DH and DL. The binary number is calculated by dividing
the number into powers of ten (Binary = D3 × 1000 + D2× 100 + D1× 10 + D0× 1). Multiplying by 10
is easier if the number is further broken up into other numbers so that D2× 10 = D2× (8 + 2) = D2× 8 +
D2× 2. Likewise, multiplying by 1000 can be calculated by D3× (1000) = D3× (1024 – 24) = D3× (1024
– (8 + 16)) = D3× 1024 – (D3× 8 + D3× 16). This may seem complex, but it works quickly and uses few
bytes.

Routine

 .TEXT 7000h
BH .EQU R2 ;Binary number MSbyte
BL .EQU R3 ;Binary number LSbyte
DH .EQU R4 ;Decimal number MSbyte
DL .EQU R5 ;Decimal number LSbyte
 ;D0=ones, D1=tens,
 ;D2=hundreds, D3=thousands
TOP CLR BH ;Clear out binary MSbyte
 MOV DL,BL ;D0 to B0
 AND #0Fh, BL ;Convert D0
 ;
 MOV DL,A ;D1 × 10=D1 × 8+D1 × 2
 AND #0F0h,A ;Isolate D1
 MOV A,B ;B=D1 × 16
 SWAP R1 ;B=D1
 RR A ;A=D1 × 16/2=D1 × 8
 RL B ;B=D1 × 2
 ADD B,A ;A=D1 × 10 (D1 × 8+D1 × 2)
 ADD R0,BL ;D1:D0 converted
 ;
 MOV DH,B ;Get upper two digits
 AND #0Fh,B ;Isolate D2
 MPY #100,B ;R0:R1=D2 × 100
 ADD R1,BL ;Add to current total
 ADC R0,BH ;D2:D1:D0 converted
 ;
 MOV DH,A ;Isolate D3
 AND #0F0h,A ;A=D3 × 16
 MOV A,B ;B=D3 × 16
 RRC B ;B=D3 × 8
 ADD B,A ;A=D3 × 24
 SUB R0,BL ;BH:BL=BH:BL–24 × D3
 SBB #0,BH ;
 CLRC ;Setup for rotate
 RRC B ;B=D3 × 4
 ADD R1,BH ;BH:BL=BH:BL+D3 × 4 × 256

20

21

Binary-to-BCD Conversion
on the TMS370

Microcontroller Products—Semiconductor Group
Texas Instruments

22

23

Binary-to-BCD Conversion

This program converts a 16-bit binary word (0 to 65.535) to a packed six-nibble BCD value.

Table 1. Register Values

Register Before After

A XX BCD MSbyte

B XX BCD

R2 XX BCD LSbyte

R3 BINARY MSbyte ZERO

R4 BINARY LSbyte ZERO

R5 XX ZERO

Routine

 .TEXT 7000H ;Absolute start address
BN2BCD CLR A ;Prepare answer registers
 CLR B ;
 CLR R2 ;
 MOV #16,R5 ;Move loop count to register
LOOP RLC R4 ;Shift higher binary bit out
 RLC R3 ;Carry contains higher bit
 DAC R2,R2 ;Double the number then add
 ;the binary bit
 DAC R1,B ;Binary bit (a 1 in carry on
 ;the 1st time is
 DAC R0,A ;doubled 16 times).
 DJNZ R5,LOOP ;Do this 16 times, once for
 ;each bit
 RTS ;Back to calling routine

24

25

BCD String Addition
With the TMS370

Microcontroller Products—Semiconductor Group
Texas Instruments

26

27

BCD String Addition

The following routine uses the addition instruction to add two multi-digit numbers together. Each number
is a packed BCD string of less than 256 bytes (512 digits), stored at memory locations STR1 and STR2.
This routine adds the two strings together and places the result in STR2. The strings must be stored with
the most significant byte in the lowest numbered register.

Table 1. Register Values and Functions

Register Before After Function

A XX ?? Accumulator

B XX 0 Length of string

R2 XX ?? Temporary save register

STR1 BINARY MSbyte no change BCD string

STR2 BINARY LSbyte STR1 + STR2 Target string, 6 bytes max

Routine

;Decimal addition subroutine. Stack must have 3 available bytes.
;On output: STR2 = STR1 + STR2

.TEXT 7000h ;Absolute start address
STR1 .EQU 80E0h ;Start of first string
STR2 .EQU 80F0h ;Start of second string

;and result
ADDBCD CLRC ;Clear carry bit

PUSH ST ;Save status to stack
LOOP MOV *STR1–1[B],A ;Load current byte

MOV A,R2 ;Save it in R2
MOV *STR2–1[B],A ;Load next byte of STR2
POP ST ;Restore carry from last add
DAC R2,A ;Add decimal bytes
PUSH ST ;Save the carry from this add
MOV A,*STR2–1[B] ;Store result
DJNZ B,LOOP ;Loop until done
POP ST ;Restore stack to starting

;position
RTS ;Back to calling routine

28

29

TMS370 Floating Point Package

Microcontroller Products—Semiconductor Group
Texas Instruments

30

31

Introduction

This report describes assembly language floating point math routines for the TMS370 family of
microcontrollers. Floating point operations allow binary processors to carry out decimal, signed arithmetic.
This package includes most of the common arithmetic and conversion routines used in floating point
operations. The routines included are:

• Floating point addition/subtraction

• Floating point number comparison

• Floating point division

• Floating point multiplication

• Floating point increment/decrement

• Floating point number test

• Floating point negation

• Floating point to signed 8-bit integer conversion

• Floating point to signed long (16-bit) integer conversion

• Floating point to unsigned 8-bit integer conversion

• Floating point to unsigned long (16-bit) integer conversion

• Signed 8-bit integer to floating point conversion

• Signed long (16-bit) integer to floating point conversion

• Unsigned long (16-bit) integer to floating point conversion

• Unsigned 8-bit integer to floating point conversion

32

Floating Point Format

Each number in this floating point format is 24 bits long. This includes eight bits for the exponent, fifteen
for the mantissa, and the remaining bits for the sign.

The format is as follows:
E E E E E E E E S M M M M M M M M M M M M M M M

The first byte is devoted to the exponent. The most significant bit of the second byte is the sign bit and the
remaining bits are the mantissa. This format has been chosen so that arithmetic on the objects are restricted
to normal 8-bit operation or a 16-bit operations.

With this format, a routine that operates on one of these floating point values can check the sign bit and
then set that bit as implied. A 16-bit operation can then be used to modify the value.

The exponent’s bias is 128: subtract 128 from the unsigned value of the eight exponential bits to find the
actual value of the exponent.

Example: exp = 00h -> real exp = 00h – 128 = –128

exp = FFh -> real exp = FFh – 128 = 127

exp = 80h -> real exp = 80h – 128 = 0

The mantissa contains 15 bits plus an implied bit. The layout is:

(m0) m1 m2 ... m15

The m0 bit is implied and is always 1. The value of each mi is the reciprocal of 2 to the ith power.

So the layout in terms of values is:

(1) 1/2 1/4 1/8 1/16 1/32 1/64 1/128 1/256 1/512 1/1024 1/2048 . . .

Given the above format, some special floating point values are:
ZERO – 000000h = 2-128 = approx 2.94E-39
MAX_POS – FF7FFFh = 2128 - 2112 = approx 3.4E38
MIN_POS – 000001h = 2-128 + 2-143 = approx 2.94E-39
MAX_NEG – FFFFFFh = 2112 - 2128 = approx -3.4E38
MIN_NEG – 008000h = -(2-128) = approx -2.94E-39
EPSILON – 710000h = 2-15 = approx 3E-5

MAX_POS is the largest positive number the format can represent. MIN_POS is the smallest positive
number that can be represented. ZERO is a special case which is treated as true 0. EPSILON is the smallest
number which can be added to 1.0 and result in a sum which is not 1.0.

The actual value of a floating point number can be expressed as : s × M × 2e-128, where s is the sign of the
number –1 or 1, M is the value of the mantissa, and e is the bit value of the exponent.

 A few more examples:

11 = 833000h –31.25 = 84FA00h

1 = 800000h –1 = 808000h

33

Floating Point Routines

Floating Point Addition/Subtraction

;Rev.1.0

;Function name - $fp_add,$fp_sub

;

;Purpose - 1) Perform the addition of two floating point numbers.

;

; OP1 + OP2

;

; 2) Perform the subtraction of two floating point

; numbers.

;

; OP1 - OP2

;

;

;Registers used - Register Before After

; ---

; Status | XX | Modified

;

; R14 | OP1 exponent | Modified

; R15 | OP1 mantissa MSB | Modified

; R16 | OP1 mantissa LSB | Modified

;

; R17 | OP2 exponent | Result exponent

; R18 | OP2 mantissa MSB | Result mantissa MSB

; R19 | OP2 mantissa LSB | Result mantissa LSB

;

;Size 200 Bytes

;

;Stack space 4 Bytes

;
;Notes - 1) Some special considerations for floating point
; operations are:
;
; ZERO + OP2 = OP2
; OP1 + ZERO = OP1
;
; ZERO - OP2 = -OP2
; OP1 - ZERO = OP1
;

34

; 2) If an operation results in a sum or difference
; which is greater than MAX_POS, then it is overflow.
; The result placed in registers R17, R18, R19 will
; be MAX_POS.
;
; 3) If an operation results in a sum or difference
; which is less than MAX_NEG, then it is overflow. The
; result placed in registers R17, R18, R19
; will be MAX_NEG.
;
; 4) If an addition results in a sum with a magnitude too
; small to represent, then it is underflow. The result
; placed in registers R17, R18, R19 will be ZERO.

exp1 .equ r14
msb1 .equ r15
lsb1 .equ r16
exp2 .equ r17
msb2 .equ r18
lsb2 .equ r19
sign1 .dbit 7,msb1
sign2 .dbit 7,msb2
subflag .dbit 1,r0

 .global $fp_add,$fp_sub

$fp_sub cmpbit sign2 ;Enter subtraction here.

$fp_add btjo #0ffh,exp2,chk_op1 ;Check for adding zero as OP2.
 btjo #07fh,msb2,chk_op1
 btjo #0ffh,lsb2,chk_op1

op2zero mov exp1,exp2 ;OP2=zero, so result will be OP1.
 movw lsb1,lsb2
 rts

chk_op1 btjo #0ffh,exp1,calc ;Check for subtracting zero.
 btjo #0ffh,msb1,calc
 btjo #0ffh,lsb1,calc

byebye rts

calc push b
 mov exp2,b ;Find the difference between
 sub exp1,b ;exponents.
 jc noswitch ;Jump if exp2 >= exp1.

switch push exp1 ;Switch operands to make OP2 > OP1.
 push msb1
 push lsb1
 movw lsb2,lsb1
 mov exp2,exp1
 pop lsb2
 pop msb2
 pop exp2
 compl b

noswitch
 cmp #16,b ;Will the smaller number affect result?
 jhs done2 ;No, we are done.
 push a
 jbit1 sign2,neg ;Determine which of four cases based on
 jbit0 sign1,pospos ;sign.

posneg mov #02h,a ;Result positive, but set subtract flag.
 jmp cont

neg jbit0 sign1,negpos

35

negneg mov #80h,a ;Eventual sign negative
 jmp cont

negpos mov #82h,a ;Result negative, set subtract flag.
 jmp cont

pospos clr a ;Eventual sign positive

cont or #80h,msb1 ;Set the implied one.
 or #80h,msb2
 or #0h,b
 jz noshift

loop clrc
 rrc msb1 ;Align the smaller mantissa.
 rrc lsb1
 djnz b,loop

noshift jbit1 subflag,sub
 add lsb1,lsb2 ;Add the mantissas.
 adc msb1,msb2
 jnc done ;If carry, adjust the mantissa and
 rrc msb2 ;increment the exponent.
 rrc lsb2
 inc exp2
 jz maxval ;If overflow occurs, return max value.

done and #7fh,msb2 ;Clear the implied one bit.
 and #080h,a ;Clear the subtract flag.
 or a,msb2 ;Set sign bit if appropriate.
 pop a

done2 pop b
 rts

sub sub lsb1,lsb2
 sbb msb1,msb2
 jc skp2 ;If borrow occurred, exp1=exp2,man1>man2,
 xor #80h,a ;toggle the sign bit, and complement result
 inv msb2
 compl lsb2
 adc #0,msb2

skp2 jn done ;Adjust the mantissa if implied one is not
 ;set.
 jnz shift ;Check the MSB and LSB.
 or #0h,lsb2
 jz zero

shift dec exp2
 jnc zero ;Underflow, return 0.
 clrc
 rlc lsb2
 rlc msb2
 jpz shift
 jmp done

zero clr exp2 ;Special case for result = 0.
 clr msb2
 clr lsb2
 pop a
 pop b
 rts

36

maxval mov #0ffh,exp2 ;Create maximum value.
 movw #07fffh,lsb2
 or a,msb2 ;Set sign bit as appropriate.
 pop a
 pop b
 rts

37

Floating Point Number Comparison

;Rev.1.0

;Function name - $fp_cmp

;

;Purpose - Perform a comparison of two floating point numbers.
; The routine compares OP2 to OP1 and sets the status
; bits. The status result of this routine will be
; equivalent to an 8-bit integer cmp such as: CMP
; OP1,OP2.
;
;
;

;Registers used - Register Before After
; ---
; Status | XX | Set on result
;
; R14 | OP1 exponent | OP1 exponent
; R15 | OP1 mantissa MSB | OP1 mantissa MSB
; R16 | OP1 mantissa LSB | OP1 mantissa LSB
;
; R17 | OP2 exponent | OP2 exponent
; R18 | OP2 mantissa MSB | Modified
; R19 | OP2 mantissa LSB | OP2 mantissa LSB

;
; The status register will be set according to the result
; of the compare:

;
; C = 0
; V = 0
; Z = 1, if OP1 is bit for bit the same as OP2,
; = 0, otherwise.
; N = 0, if OP2 is greater than or equal to OP1,
; = 1, otherwise.
;

;Size 55 bytes

;

;Stack space 1 byte

;
exp1 .EQU R14
msb1 .EQU R15
lsb1 .EQU R16
exp2 .EQU R17
msb2 .EQU R18
lsb2 .EQU R19

 .GLOBAL $fp_cmp

38

$fp_cmp PUSH msb2 ;Check for different sign first.
 XOR msb1,msb2
 BTJZ #080h,msb2,SAMESIGN ;If MSB is 0, operands have same sign.
 POP msb2 ;Operands have different sign. Test
 JN NEG ;MSB2 to check sign. Make
 ;appropriate dummy move to set
 JMP NONEG ;status.
 RTS

SAMESIGN POP msb2 ;Restore MSB2
 CMP exp1,exp2 ;OP1 > OP2 ?
 JLO LESS
 JNE GREATER
 CMP msb1,msb2
 JLO LESS
 JNE GREATER
 CMP lsb1,lsb2
 JLO LESS
 JEQ DONE

GREATER BTJZ #080h,msb1,NONEG ;ABS(OP2) > ABS(OP1)

NEG MOV #080h,msb2

DONE RTS

LESS BTJZ #80H,msb1,NEG ;ABS(OP2) < ABS(OP1)

NONEG MOV #01H,msb2

 RTS

39

Floating Point Division

;Rev.1.0

;Function name - $fp_div

;

;Purpose - Perform the division of two floating point numbers

;
; OP1 / OP2
;

;Registers used - Register Before After
; ---
; Status | XX | Modified
;
; R14 | OP1 exponent | Modified
; R15 | OP1 mantissa MSB | Modified
; R16 | OP1 mantissa LSB | Modified
;
; R17 | OP2 exponent | Result exponent
; R18 | OP2 mantissa MSB | Result mantissa MSB
; R19 | OP2 mantissa LSB | Result mantissa LSB
;

;Size 189 bytes
;

40

;Stack space 4 bytes
;

;
;Notes - 1) Some special considerations for floating point
; divide are:

;
; ZERO / OP2 = ZERO
; OP1 / ZERO = MAX_POS (if OP1 >= 0)
; MAX_NEG (if OP1 < 0)
;
; 2) If a division results in a quotient which is
; greater than MAX_POS, then it is overflow. The
; result placed in registers R17, R18, R19 will be
; MAX_POS.
;
; 3) If a division results in a quotient which is
; less than MAX_NEG, then it is overflow. The result
; placed in registers R17, R18, R19 will be MAX_NEG.
;
; 4) If a division results in a quotient with a
; magnitude too small to represent, then it is underflow.
; The result placed in registers R17, R18, R19
; will be ZERO.

EXP1 .equ R14
MAN1MSB .equ R15
MAN1LSB .equ R16
EXP2 .equ R17
MAN2MSB .equ R18
MAN2LSB .equ R19
COUNTER .equ R20
FLAGS .equ R23

OVFL .dbit 0,FLAGS
SIGN_OP1 .dbit 7,MAN1MSB
 .global $fp_div

$fp_div PUSH A ;Save registers

CHK_OP1 ;Check for OP1=ZERO.
 MOV MAN1MSB,A ;Use FLAGS here as dummy register
 OR EXP1,A ;OR all parts operand together.
 OR MAN1LSB,A ;If ZERO, no bits will be ones.
 JNZ CHK_OP2
 CLR MAN2LSB ;OP1 is ZERO, so clear OP2 as answer.
 CLR MAN2MSB ;Store results in OP2 registers.
 CLR EXP2
 POP A ;Restore registers to original
 ;values.
 RTS ;Exit fp_div.

CHK_OP2 ;Check for OP2=ZERO.
 MOV MAN2MSB,A ;Use FLAGS here as dummy register
 OR EXP2,A ;OR all parts operand together.
 OR MAN2LSB,A ;If ZERO, no bits will be ones.
 JNZ FINDSIGN
 MOV #0FFh,EXP2 ;Set result to MAX_POS or MAX_NEG
 MOVW #07FFFh,MAN2LSB ;depending on the sign bit.
 OR MAN1LSB,MAN2LSB
 POP A ;Restore registers to original
 ;values.
 RTS ;Exit fp_div.

41

FINDSIGN
 PUSH B ;Save registers.
 PUSH COUNTER
 PUSH FLAGS
 MOV MAN1MSB,FLAGS ;Find sign of quotient.
 XOR MAN2MSB,FLAGS ;If sign flags differ, FLAGS 7=1.
 AND #080h,FLAGS ;Clear other bits in FLAGS.
 OR #080h,MAN1MSB ;Set implied 1 in sign bit position.
 OR #080h,MAN2MSB ;

SUBEXP CLR B ;Clear B for result of exponent math.
 SUB EXP2,EXP1 ;Subtract exponents.
 ADC #0h,B ;Save status of carry bit from SUB.
 MOV EXP1,EXP2 ;Move result of SUB to EXP2.
 ADD #080h,EXP2 ;Correct for +128 offset.
 ADC #0FFh,B ;Save status of carry bit and
 JZ SETUP ;subtract 1 from SUB. Jump on result
 JP CHK_OVER ;of exponent math:
 ; 01 = possible overflow
 ; 00 = ok
 ; FF = definite underflow

UNDERFLOW ;Result of division is underflow.
 CLR MAN2LSB ;Store results in OP2 registers.
 CLR MAN2MSB
 CLR EXP2
 POP FLAGS ;Restore registers to original
 ;values.
 POP COUNTER
 POP B
 POP A
 RTS ;Exit fp_div.

CHK_OVER ;Subtraction of exponents may have
 BTJO #0FFh,EXP2,OVERFLOW ;overflowed. If exponent is not 00,
 SBIT1 OVFL ;then result has definitely
 ;overflowed.
 ;If result may be ok, set flag.

SETUP MOV #16,COUNTER ;Set loop counter to 16, one for each
 CLR A ;quotient bit, and initalize result
 ;registers (reg B was cleared above).

SKIP1 CMP MAN2MSB,MAN1MSB ;Compare MSBs of dividend and
 ;divisor.
 JLO DIVEND ;Jump if divisor is bigger.
 JNE MSBNE ;If equal, compare LSBs.
 CMP MAN2LSB,MAN1LSB ;Compare LSBs.
 JLO DIVEND ;Jump if divisor is bigger.

MSBNE SUB MAN2LSB,MAN1LSB ;If smaller, subtract divisor from
 SBB MAN2MSB,MAN1MSB ;dividend. Carry is folded into
 ;next rotate and doubled each time.

42

DIVEND DJNZ COUNTER,DIVIDE ;Next bit. Is divide done?
 RLC B ;Finish last rotate.
 RLC A
 JN DONE ;If MSB is not one, decrement EXP2
 SUB #01h,EXP2 ;and go back up and shift one more
 ;time.
 JNC UNDERFLOW ;If EXP2 was zero, decrement has
 ;caused an underflow.
 SBIT0 OVFL ;Clear flag to show possible overflow
 ;condition has been corrected.
 INC COUNTER ;Reset counter for 1 last loop
 ;through.
 JMP LAST1

OVERFLOW ;Result of divide is overflow.
 MOVW #07FFFh,MAN2LSB ;Store results in OP2 registers.
 MOV #0FFh,EXP2
 OR FLAGS,MAN2MSB ;Set sign bit of result.
 POP FLAGS ;Restore registers to original
 ;values.
 POP COUNTER
 POP B
 POP A
 RTS ;Exit fp_div.

DIVIDE ;16 x 16 division routine.
 RLC B ;Multiply divend by 2.
 RLC A ;

LAST1 RLC MAN1LSB ;Shift dividend into MAN1MSB:MAN1LSB
 RLC MAN1MSB ;for comparison to divisor.
 JNC SKIP1 ;Check for possible error condition
 SUB MAN2LSB,MAN1LSB ;that results when a 1 is shifted
 ;past the MSB.
 SBB MAN2MSB,MAN1MSB ;Correct by subtracting
 SETC ;divisor and setting carry.
 JMP DIVEND

DONE BTJO #01h,FLAGS,OVERFLOW ;Make sure that divide sequence fixed
 ;previous exponent overflow.
 OR #07Fh,FLAGS ;Set FLAGS bits except for sign bit.
 AND FLAGS,A ;Set sign bit.
 MOVW B,MAN2LSB ;Put answer in result register.
 POP FLAGS ;Restore registers to original
 ;values.
 POP COUNTER
 POP B
 POP A
 RTS ;Exit fp_div.

43

Floating Point Multiplication
;Rev.1.0

;Function name - $fp_mul

;

;Purpose - Perform the multiplication of two floating point
; numbers.
;
; OP1 * OP2
;

;Registers used - Register Before After
; ---
; Status | XX | Modified
;
; R14 | OP1 exponent | Modified
; R15 | OP1 mantissa MSB | Modified
; R16 | OP1 mantissa LSB | Modified
;
; R17 | OP2 exponent | Result exponent
; R18 | OP2 mantissa MSB | Result mantissa MSB
; R19 | OP2 mantissa LSB | Result mantissa LSB
;

;Size 189 Bytes

;

;Stack space 4 Bytes

;

;Notes - 1) Some special considerations for floating point
; multiplication are:
;
; ZERO * OP2 = ZERO
; OP1 * ZERO = ZERO
;
; 2) If a multiplication results in a product which is
; greater than MAX_POS, then it is overflow. The result
; placed in registers R17, R18, R19 will be MAX_POS.
;
; 3) If a multiplication results in a product which is
; less than MAX_NEG, then it is overflow. The result
; placed in registers R17, R18, R19 will be MAX_NEG.
;
; 4) If a multiplication results in a product with a
; magnitude too small to represent, then it is underflow.
; The result placed in registers R17, R18, R19
; will be ZERO.

EXP1 .equ R14
MAN1MSB .equ R15
MAN1LSB .equ R16
EXP2 .equ R17
MAN2MSB .equ R18
MAN2LSB .equ R19
FLAGS .equ R20
RSLT1 .equ R21

SIGNBIT .dbit 7,FLAGS
UNDER_BIT .dbit 0,FLAGS
IMPLIED_ONE .dbit 7,MAN1LSB

44

 .global $fp_mul

$fp_mul ;Check for OP1=ZERO.
 BTJO #0FFh,EXP2,CHK_OP2
 BTJO #0FFh,MAN1LSB,CHK_OP2
 BTJO #0FFh,MAN1MSB,CHK_OP2
 CLR MAN2LSB ;OP1 is ZERO, so clear OP2 as answer.
 CLR MAN2MSB
 CLR EXP2
 RTS ;Exit fp_mul

CHK_OP2 ;Check for OP2=ZERO
 BTJO #0FFh,EXP2,FINDSIGN
 BTJO #0FFh,MAN2LSB,FINDSIGN
 BTJO #0FFh,MAN2MSB,FINDSIGN
 RTS ;OP2 is ZERO, so done. Exit fp_mul.

FINDSIGN
 PUSH R0 ;Save values of registers used.
 PUSH RSLT1
 PUSH FLAGS
 MOV MAN1MSB,FLAGS ;Find sign of product.
 XOR MAN2MSB,FLAGS ;If sign flags differ, FLAGS 7=1.
 AND #080h,FLAGS ;Clear other bits in FLAGS.
 OR #080h,MAN1MSB ;Set implied 1 in sign bit position.
 OR #080h,MAN2MSB

ADDEXP
 CLR R0 ;Clear A for result of exponent math.
 ADD EXP1,EXP2 ;Add exponents.
 ADC #0h,A ;Save status of carry bit from ADD.
 SUB #080h,EXP2 ;Correct for +128 offset.
 ADC #0FFh,A ;Save status of carry bit and
 ;subtract 1 from SUB.
 JZ MULTIPLY ;Jump according to
 ;result of exponent math:
 JN CHK_UNDER ; FF = underflow
 ; 00 = ok
 ; 01 = definite overflow

OVERFLOW ;Result of multiplication is
 ;overflow.
 MOVW #07FFFh,MAN2LSB ;Store results in OP2 registers.
 MOV #0FFh,EXP2
 OR FLAGS,MAN2MSB ;Set sign bit of result.
 POP FLAGS ;Restore registers to original
 ;values.
 POP RSLT1
 POP R0
 RTS ;Exit fp_mul

UNDERFLOW ;Result of multiplication is
 ;underflow.
 CLR MAN2LSB ;Store results in OP2 registers.
 CLR MAN2MSB
 CLR EXP2
 POP FLAGS ;Restore registers to original
 ;values.
 POP RSLT1
 POP R0
 RTS ;Exit fp_mul

45

CHK_UNDER ;Addition of exponents has
 ;underflowed.

 BTJZ #0FFh,EXP2,UNDERFLOW ;If exponent is not FF, then the
 ;exponent has definitely
 ;underflowed.

 SBIT1 UNDER_BIT ;Set bit to indicate that an
 ;underflow is possible if not
 ;corrected at end of multiplication
 ;routine.

MULTIPLY
 PUSH R1 ;Save value of B register.
 MPY MAN1LSB,MAN2LSB ;Start multiplying.
 MOV A,RSLT1
 MPY MAN1MSB,MAN2LSB
 CLR MAN2LSB ;MAN2LSB = LSB of mantissa product.
 ADD R1,RSLT1
 ADC R0,MAN2LSB
 MPY MAN1LSB,MAN2MSB
 CLR MAN1LSB ;Since MAN1LSB is not needed anymore,
 ;use it as temporary storage during
 ;the multiplication process.
 ADD R1,RSLT1
 ADC R0,MAN2LSB
 ADC #0,MAN1LSB
 MPY MAN1MSB,MAN2MSB
 ADD R1,MAN2LSB
 ADC R0,MAN1LSB
 POP R1 ;Restore value of B register.

DONE_MULT
 JBIT0 IMPLIED_ONE,JUSTIFY ;If result has no implied one, need
 ;to justify result.
 BTJZ #0FFh,EXP2,INCEXP ;If exponent is not FFh, then
 ;increment will not cause
 JMP OVERFLOW ;overflow.

JUSTIFY JBIT1 UNDER_BIT,UNDERFLOW ;Previous underflow will not be
 ;corrected, so result is underflow.
 RL RSLT1 ;Justify result to add implied one.
 RLC MAN2LSB
 RLC MAN1LSB
 DEC EXP2 ;Value of exponent does not need to
 ;be changed, so decrement here to
 ;make up for next INC instruction.

INCEXP INC EXP2

SET_RESULTS ;Result of multiplication is in
 ;range.
 MOV MAN1LSB,MAN2MSB ;Store results in OP2 registers.
 OR #07Fh,FLAGS ;Set FLAGS bits except for sign bit.
 AND FLAGS,MAN2MSB ;Set sign bit. LSB is in correct
 ;place from multiply routine.
 POP FLAGS ;Restore registers to original
 ;values.
 POP RSLT1
 POP R0
 RTS ;Exit fp_mul

46

Floating Point Increment / Decrement

;Rev.1.0

;Function name - $fp_inc,$fp_dec

;
;Purpose - 1) Increment a floating point number,
; i.e. add a 1.0 to it.
;
; OP1 + 1.0
;
; 2) Decrement a floating point number,
; i.e. subtract 1.0 from it.
;
; OP1 - 1.0
;

;Registers used - Register Before After
; ---
; Status | XX | Modified
;
; R17 | OP1 exponent | Result exponent
; R18 | OP1 mantissa MSB | Result mantissa MSB
; R19 | OP1 mantissa LSB | Result mantissa LSB
;

;Size 180 Bytes
;

;Stack space 4 Bytes
;

;Notes - 1) Incrementing or decrementing a number with an
; exponent greater than or equal to 90 will have no
; effect.
;
; 2) Incrementing or decrementing a number with an
; exponent less than or equal to 71 will have no
; effect.

;
msb2 .equ r15
lsb2 .equ r16
exp1 .equ r17
msb1 .equ r18
lsb1 .equ r19
sign .dbit 7,r0 ;Flag to indicate whether to add or
 ;subtract numbers as a result of
 ;math.

decflag .dbit 0,r0 ;1=increment, 0=decrement.
 .global $fp_inc
 .global $fp_dec

$fp_dec .text 7000h ;Entry point for decrement.
 push a ;Save A register.
 mov #80h,a ;Complement the sign bit and set all
 xor msb1,a ;other bits of msb1=1.
 or #07fh,a ;
 sbit0 decflag ;Set flag to indicate decrement op.
 jmp $1

47

$fp_inc ;Entry point for increment.
 push a ;Save A register.
 mov msb1,a ;Move msb1 to A register and set every
 or #07fh,a ;bit except sign bit.

$1 cmp #90h,exp1 ;Check to see if 1.0 is insignificant
 jhs done ;compared with size of OP1. Exit if
 ;OP1 will not change.
 cmp #71h,exp1 ;Check to see if OP1 is insignificant
 jhs size_ok ;compared with 1.0.
 mov #80h,exp1 ;If so, result=1.0 or -1.0.
 clr lsb1
 jbit0 decflag,$5 ;Is it a decrement operation?
 clr msb1 ;No, set result to 1.0.
 jmp done ;

$5 mov #080h,msb1 ;Yes, set result to -1.0.

done pop a
 rts

size_ok push b ;Save registers that will be modified.
 push msb2
 push lsb2
 or #80h,msb1 ;Set the implied one.
 mov exp1,b ;Calculate number of spaces needed to
 sub #80h,b ;shift number to align mantissas.
 jc greater ;If exp1>#80h then OP1>1.0: adjust
 ;OP2.
 compl b ;Take absolute value of exponent diff.
 mov #80h,exp1 ;Set the exponent.

loop clrc
 rrc msb1 ;Adjust OP1 so that it has the same
 rrc lsb1 ;exponent as OP2. This is necessary
 djnz b,loop ;for the two numbers to be added.
 btjo #80h,a,subt ;Choose whether you need to add or
 ;subtract numbers based on sign of
 ;numbers and whether you are
 ;incrementing or decrementing.
 add #80h,msb1 ;Need to add numbers. Add one to OP1.

done2 jbit1 decflag,$4 ;If a decrement is in progress,
 xor #80h,a ;flip the sign of the result.
 sbit1 decflag

$4 and a,msb1 ;Set the sign bit according to the
 ;result.

done3 pop lsb2 ;Restore registers and exit.
 pop msb2
 pop a
 pop b
 rts

subt sbit0 sign ;The result is positive. (OP1 is less
 sub #80h,msb1 ;than 1.0) The operands have already
 inv msb1 ;been aligned to have the same
 compl lsb1 ;exponent. Subtract 1 from OP1 and
 adc #0,msb1 ;invert the MSB and complement the LSB
 ;to get the absolute value.

48

adjust dec exp1 ;Shift the mantissa and adjust the
 clrc ;exponent until an implied one is set.
 rlc lsb1
 rlc msb1
 jpz adjust
 jmp done2

greater clr lsb2 ;OP1 is greater than 1. Shift 1 so it
 clr msb2 ;has the same exponent as OP1. If the
 cmp #07h,b ;exponents differ by < 7, then only
 ;MSB is affected. Otherwise, implied
 jle msb_only ;one will roll on into LSB.
 sub #07h,b ;Calculate number of shifts needed.
 setc ;Since implied 1 will roll all the
$2 rrc lsb2 ;way through the MSB, go ahead and
 djnz b,$2 ;subtract 7 from number of shifts
 jmp calc ;needed and start with LSB.

msb_only inc b ;Adjust to 1 needs less than 7 shifts,
 setc ;so only the MSB will be affected.

$3 rrc msb2
 djnz b,$3

calc btjo #80h,a,subtr ;If the sign flag is negative,operands
 ;actually need to be subtracted.
 add lsb2,lsb1 ;Sign flag is positive, so add
 ;OP1+1.0.
 adc msb2,msb1

chkadj jnc done2 ;If carry occurs, need to roll back
 rrc msb1 ;mantissa and increment exponent.
 rrc lsb1
 inc exp1
 jmp done2

subtr sub lsb2,lsb1 ;Subtract mantissa2 - mantissa1.
 sbb msb2,msb1
 jn done2 ;Implied 1 is present. Do not adjust.
 jnz adjust ;If MSBs are not equal, adjust.
 or #0h,lsb1 ;MSBs are equal, check to see if
 jnz adjust ;LSBs are equal. If not, adjust.
 clr exp1 ;Mantissas are zero, so it is a
 jmp done3 ;floating point zero.

49

Floating Point Number Test

;Rev.1.0
;Function name - $fp_tst
;

;Purpose - Perform a test of the floating point number, similar
; to the hardware TST instruction for the A and B
; registers.
;
;Registers used - Register Before After
; ---
; Status | XX | Set on result
;
; R17 | OP1 exponent | OP1 exponent
; R18 | OP1 mantissa MSB | Modified
; R19 | OP1 mantissa LSB | OP1 mantissa LSB
;

;Size 22 bytes
;

;Stack space None
;

;Notes - 1) The output will be the new contents of the status
; bits C, N, Z, and V.
;
; C = 0.
; V = 0.
; N = sign bit of the floating point number.
; Z = 1, if the floating point number is ZERO.
; = 0, otherwise.
;
; 2) This routine is the same as a call to $fp_cmp,
; with OP1 = ZERO and OP2 = the number to test.
exp1 .equ r17
msb1 .equ r18
lsb1 .equ r19

 .global $fp_tst

$fp_tst mov msb1,msb1 ;Test the MSB. If negative, return
 jn done ;and status register will be set
 ;correctly.
 btjo #0ffh,exp1,$1 ;Check for zero.
 btjo #0ffh,lsb1,$1
 btjo #0ffh,msb1,$1

done rts ;Result is zero. Status reg is
 ;correct.

$1 mov #01h,msb1 ;Number is not negative and not zero,
 rts ;so it must be positive. Do a dummy
 ;move to set status flags correctly.

50

Floating Point Number Negation

;Rev.1.0
;Function name - $fp_neg
;
;Purpose - Perform the sign negation of a floating point number
;
; -OP1
;

;Registers used - Register Before After
; ---
; Status | XX | Set on result MSB
;
; R17 | OP1 exponent | Result exponent
; R18 | OP1 mantissa MSB | Result mantissa MSB
; R19 | OP1 mantissa LSB | Result mantissa LSB
;

;Size 17 Bytes
;

;Stack space None
;

;Notes - Some special considerations for floating point
; negation are:
;
; -ZERO = ZERO
exp .equ r17
msb .equ r18
lsb .equ r19

 .global $fp_neg

$fp_neg
 .text 7000h
 btjo #0ffh,exp,negate ;Check for zero.
 btjo #0ffh,msb,negate
 btjo #0ffh,lsb,negate

zero rts ;Number was zero, return.

negate xor #80h,msb ;Toggle sign bit if not zero.
 rts

51

Floating Point To Signed 8-Bit Integer Conversion

;Rev.1.0

;Function name - $fp_ftoi
;

;Purpose - Convert a 24-bit signed floating representation
; of a number to an equivalent 8-bit signed integer
; representation.
;

;Registers used - Register Before After
; ---
; Status | XX | Modified
; A | XX | Result
;
; R17 | OP2 exponent | OP2 exponent
; R18 | OP2 mantissa MSB | OP2 mantissa MSB
; R19 | OP2 mantissa LSB | OP2 mantissa LSB
;

;Size 45 bytes
;

;Stack space 1 byte
;

;Notes - 1) The fractional part of the float is discarded.
;
; 2) If the value of the integral part of the float cannot
; be represented by the signed int, the behavior is
; undefined.
;
; 3) A float value of ZERO will be converted to 0.
expon .equ r17
fsign .dbit 7,r18

 .global $fp_ftoi
 .text 7000h

$fp_ftoi ;Floating point to integer conversion.
 btjo #80h,expon,$1 ;If exponent < 1, then number is too small.
 clr a ;Set result = 0 and return.
 rts

$1 cmp #87h,expon ;Check for too big (>127).
 jhs big
 mov r18,a ;Put MSB into A reg to be adjusted.
 or #80h,a ;Set the implied one.
 push expon ;Save true value of exponent.
 sub #87h,expon ;Exponent – 87h = # of shifts needed to
 compl expon ;represent number as 7 binary digit number.

loop clrc
 rrc a ;Rotate A as needed. Loop until implied 1 is
 djnz expon,loop ;in position.
 jbit0 fsign,pos ;Check for minus sign.
 compl a ;Take the 2’s complement of integer to set
 ;sign.

pos pop expon ;Restore the original exponent.
 rts

big jbit1 fsign,bigminus ;Number is too big to be represented as a
 mov #7fh,a ;signed integer. Set result to max positive
 ;value.
 rts

52

bigminus ;Number is too small to be represented as a
 mov #80h,a ;signed integer. Set result to max negative
 rts ;value.

53

Floating Point To Signed Long (16-Bit) Integer Conversion
;Rev.1.0

;Function name - $fp_ftol
;

;Purpose - Convert a 24-bit signed floating representation
; of a number to an equivalent 16-bit signed integer
; representation.
;

;Registers used - Register Before After
; ---
; Status | XX | Modified
; A | XX | Signed integer MSB
; B | XX | Signed integer LSB
;
; R17 | OP1 exponent | OP1 exponent
; R18 | OP1 mantissa MSB | OP1 mantissa MSB
; R19 | OP1 mantissa LSB | OP1 mantissa LSB
;

;Size 56 bytes
;

;Stack space 1 byte
;

;Notes - 1) The fractional part of the float is discarded.
;
; 2) If the value of the integral part of the float cannot
; be represented by the signed long int, the behavior is
; undefined.
;
; 3) A float value of ZERO will be converted to 0.

expon .equ r17
fsign .dbit 7,r18

 .global $fp_ftol
 .text 7000h

$fp_ftol ;Floating point to long integer conversion.
 btjo #80h,expon,$1 ;If exponent < 1, then number is too small.
 clr a ;Set result = 0 and return.
 clr b
 rts

$1 cmp #8fh,expon ;Check for too big (>32767)
 jhs big
 mov r19,b
 mov r18,a
 or #80h,a ;Set the implied one
 push expon ;Save true value of exponent.
 sub #8fh,expon ;Exponent – 8Fh = # of shifts needed to
 ;represent
 compl expon ;number as binary 15 digit number.

loop clrc
 rrc a ;Rotate A and B as needed. Loop until implied 1
 rrc b ;is in position.
 djnz expon,loop
 jbit0 fsign,pos ;Check for minus sign.
 inv a ;Take the 2’s complement of integer to set
 ;sign.
 compl b
 adc #0,a

54

pos pop expon
 rts

big jbit1 fsign,bigminus
 mov #0ffh,b ;Number is too big to be represented as a
 ;signed integer.
 mov #7fh,a ;Set result to max positive value.
 rts

bigminus
 mov #0,b ;Number is too small to be represented as a
 mov #80h,a ;signed integer. Set result to max negative
 rts ;value.

55

Floating Point To Unsigned 8-Bit Integer Conversion

;Rev.1.0

;Function name - $fp_ftou
;

;Purpose - Convert a 24-bit signed floating representation
; of a number to an equivalent 8-bit unsigned integer
; representation.
;

;Registers used - Register Before After
; ---
; Status | XX | Modified
; A | XX | Result
;
; R17 | OP1 exponent | OP1 exponent
; R18 | OP1 mantissa MSB | OP1 mantissa MSB
; R19 | OP1 mantissa LSB | OP1 mantissa LSB
;

;Size 35 Bytes
;

;Stack space 1 Byte
;

;Notes - 1) The fractional part of the float is discarded.
;
; 2) If the value of the integral part of the float cannot
; be represented by the unsigned int, the behavior is
; undefined.
;
; 3) A float value of ZERO will be converted to 0.
expon .equ r17
fsign .dbit 7,r18

 .global $fp_ftou
 .text 7000h

$fp_ftou ;Floating point to unsigned integer conversion.
 btjo #80h,expon,$1;If exponent<1, then number is too small.
 clr a ;Set result = 0 and return.
 rts

$1 cmp #88h,expon ;Check for too big (>255).
 jhs big
 mov r18,a
 or #80h,a ;Set the implied one.
 push expon ;Save true value of exponent.
 sub #87h,expon ;Exponent-87h = # of shifts needed to represent
 compl expon ;number as 7 binary digit number.
 jz done

loop clrc
 rrc a ;Rotate A as needed. Loop until implied 1 is
 djnz expon,loop ;in position.

done pop expon
 rts

big mov #0ffh,a ;Number is too big to be represented as a signed
 rts ;integer. Set result to max positive value.

56

Floating Point To Unsigned Long (16-Bit) Integer Conversion
;Rev.1.0

;Function name - $fp_ftoul
;

;Purpose - Convert a 24-bit signed floating representation
; of a number to an equivalent 16-bit unsigned integer
; representation.
;

;Registers used - Register Before After
; ---
; Status | XX | Modified
; A | XX | Signed integer MSB
; B | XX | Signed integer LSB
;
; R17 | OP1 exponent | OP1 exponent
; R18 | OP1 mantissa MSB | OP1 mantissa MSB
; R19 | OP1 mantissa LSB | OP1 mantissa LSB

;

;Size 41 bytes
;

;Stack space 1 byte

;Notes - 1) The fractional part of the float is discarded.
;
; 2) If the value of the integral part of the float
; cannot be represented by the unsinged signed long int,
; the behavior is undefined.
;
; 3) A float value of ZERO will be converted to 0.
expon .equ r17
fsign .dbit 7,r18

 .global $fp_ftoul
 .text 7000h

$fp_ftoul ;Floating point to unsigned long integer.
 btjo #80h,expon,$1;If exponent < 1, then number is too small.
 clr a ;Set result = 0 and return.
 clr b
 rts

$1 cmp #90h,expon ;Check for too big (> 65535)
 jhs big
 mov r19,b
 mov r18,a
 or #80h,a ;Set the implied one.
 push expon ;Save true value of exponent.
 sub #8fh,expon ;Exponent-8fh = # of shifts needed to represent
 compl expon ;number as 7 binary digit number.
 jz ok

loop clrc
 rrc a ;Rotate A and B as needed.
 rrc b
 djnz expon,loop ;Loop until implied 1 is in position.

ok pop expon
 rts

big mov #0ffh,b ;Number is too big to be represented as a signed
 mov #0ffh,a ;integer. Set result to max positive value.
 rts

57

Signed 8-Bit Integer To Floating Point Conversion

;Rev.1.0

;Function name - $fp_itof
;

;Purpose - Convert an 8-bit signed integer representation
; of a number to an equivalent 24-bit signed floating
; point representation.
;

;Registers used - Register Before After
; ---
; Status | XX | Set on Result
; A | Signed integer | Modified
;
; R17 | XX | Result exponent
; R18 | XX | Result mantissa MSB
; R19 | XX | Result mantissa LSB
;
;Size 34 bytes
;

;Stack space None
;

;Note - A zero integer value will convert to the
; floating point ZERO value.
expon .equ r17
isign .dbit 7,r0
fsign .dbit 7,r18

 .global $fp_itof
 .text 7000h

$fp_itof ;Integer to floating point conversion.
 clr r18 ;Initialize fp to zero.
 clr r19
 mov #87h,expon ;Initialize exponent for 7 binary digit
number.
 btjo #0ffh,a,nonzero;Check to make sure the number to be converted
 ;is not zero before we go any further.

zero clr expon ;Set result to fp zero.
 rts

nonzero jp pos ;Test for negative integer.
 sbit1 fsign ;Set the implied 1.
 compl a ;Take 2s complement to get absolute value.
 jn ok ;Check if implied 1 is in position.

pos dec expon ;Implied 1 is not in posistion. Rotate
 clrc ;mantissa and decrement exponent until 1
 ;is in right place.
 rlc a
 jp pos

ok or #07Fh,r18 ;Set the sign bit of the MSB.
 and a,r18
 rts

58

Signed Long (16-Bit) Integer To Floating Point Conversion Comparison

;Rev.1.0

;Function name - $fp_ltof
;

;Purpose - Convert a 16-bit signed long integer representation
; of a number to an equivalent 24-bit signed floating
; point representation.
;

;Registers used - Register Before After
; ---
; Status | XX | Set on result MSB
; A | Signed integer MSB | Modified
; B | Signed integer LSB | Modified
;
; R17 | XX | Result exponent
; R18 | XX | Result mantissa MSB
; R19 | XX | Result mantissa LSB
;
;
;Size 42 Bytes
;
;Stack space None
;

;Note - A zero long integer value will convert to the
; floating point ZERO value.
expon .equ r17
isign .dbit 7,r0
fsign .dbit 7,r18

 .global $fp_ltof
 .text 7000h

$fp_ltof ;Long integer to floating point conversion.
 clr r18
 mov #8fh,expon ;Set resulting exponent.
 btjo #0ffh,a,nonzero;Test if MSB <> 0.

zero btjo #0ffh,b,pos ;Test if LSB <> 0. Since MSB = 0, value must
 ;be positive if not zero.
 clr expon ;Long integer is zero. Return fp = zero.
 clr r19
 rts

nonzero jp pos ;Test for negative integer.
 sbit1 fsign ;Integer is negative, so set sign bit of
 ;result.
 inv a ;Invert MSB and take 2’s complement of LSB to
 compl b ;get absolute value of mantissa.
 adc #0,a
 jn ok ;Check if implied 1 is in position.

pos dec expon ;Rotate mantissa and decrement exponent until
 clrc ;implied 1 is in position.
 rlc b
 rlc a
 jpz pos

ok and #07fh,a ;Mask out implied one
 mov b,r19
 or a,r18 ;or data with the sign bit.
 rts

59

Unsigned Long (16-Bit) Integer To Floating Point Conversion

;Rev.1.0

;Function name - $fp_ultof
;

;Purpose - Convert a 16-bit unsigned long integer representation
; of a number to an equivalent 24-bit signed floating
; point representation.
;

;Registers used - Register Before After
; ---
; Status | XX | Set on status of MSB
; A | Integer MSB | XX
; B | Integer LSB | XX
;
; R17 | XX | Result exponent
; R18 | XX | Result mantissa MSB
; R19 | XX | Result mantissa LSB
;
;
;Size 32 Bytes
;

;Stack space None
;

;Note - A zero long integer value will convert to the
; floating point ZERO value.
expon .equ r17

 .global $fp_ultof
 .text 7000h

$fp_ultof ;Unsigned long integer to floating point.
 mov #08fh,expon ;Set exponent of result.
 btjo #0ffh,a,nonzero;Test if MSB <> 0.

zero btjo #0ffh,b,pos ;Test if LSB <> 0.
 clr expon ;Number is zero. Set result to fp zero.
 clr r18
 clr r19
 rts

nonzero jn ok ;If MSB already has implied one, then done.

pos dec expon ;MSB was zero, so rotate mantissa and
 clrc ;decrement exponent to shift implied 1 into
 ;place.
 rlc b
 rlc a
 jpz pos ;Loop until implied 1 is in position.

ok and #07fh,a ;Set sign of result and save MSB.
 mov a,r18
 mov b,r19 ;Save LSB.
 rts

60

Unsigned 8-Bit Integer To Floating Point Conversion

;Rev.1.0

;Function name - $fp_utof
;

;Purpose - Convert an 8-bit unsigned integer representation
; of a number to an equivalent 24-bit signed floating
; point representation.
;

;Registers used - Register Before After
; ---
; Status | XX | Set on status of MSB
; A | Integer MSB | Modified
; B | Integer LSB | Integer LSB
;
; R17 | XX | Result exponent
; R18 | XX | Result mantissa MSB
; R19 | XX | Result mantissa LSB
;

;Size 26 Bytes
;

;Stack space None
;

;Note - A zero integer value will convert to the
; floating point ZERO value.
expon .equ r17

 .global $fp_utof
 .text 7000h

$fp_utof ;Unsigned integer to floating point
 ;conversion.
 clr r19 ;Initialize MSB.
 mov #87h,expon ;Initialize the exponent.
 btjo #0ffh,a,nonzero;Test to see if integer is zero.

zero clr r18 ;Integer is zero, result will be fp zero.
 clr expon
 rts

nonzero jn ok ;Check if implied 1 is in position.

pos dec expon ;Implied 1 is not in position, rotate and
 clrc ;decrement until implied one is in position.
 rlc a ;
 jp pos ;

ok and #07fh,a ;Set sign of result.
 mov a,r18
 rts

61

Part II
Software Routines

Part II contains three sections:

 Arithmetic 7.

 Memory Operations 61.

 Specific Functionality 83.

62

63

Clear RAM

Microcontroller Products—Semiconductor Group
Texas Instruments

64

65

Clear RAM

This routine clears all of the internal RAM registers. It can be used at the beginning of a program to
initialize the first 256 bytes of RAM to a known value. Registers A and B have the following functions
in this routine:

• Register A holds the initialization value.

• Register B serves as the index into the RAM.

Routine

.TEXT 7000h ;Absolute start address

CLEAR MOV #254,B ;Number of registers to clear less 2
CLR A ;Load the initialization

;value of zero

LOOP MOV A,1[B] ;Clear the location indexed
;by B+1

DJNZ B,LOOP ;Loop until all RAM is

;cleared
;A and B end up as zeros.

66

67

RAM Self-Test on the TMS370

Microcontroller Products—Semiconductor Group
Texas Instruments

68

69

RAM Self-Test

This routine performs a simple alternating 0/1 test on RAM locations R3–R255 by writing an AA,55 pattern
to this RAM space and then checking the RAM for this pattern. The inverted pattern is then written to RAM
and rechecked. Finally, the entire RAM is cleared. If an error is found, a bit is set in the flag register. The
error flag bit should be cleared before the routine is started.

Table 1. Register Values

Register Before After: No Error After: Error

A XX 0 ?

B XX 0 ?

FLAG XX 0 Bit 0 = 1

NOTE:

• Passing data: none

• Registers affected: all

• Ending data: all registers = 0; bit 0 in FLAG = 1 if error was found

Routine

 .TEXT 7000H ;Absolute start address
FLAG .EQU R2 ;Error register
 MOV #55h,A ;Start RAM fill with 55h
FILLR MOV #0FDh,B ;Set RAM start address – 3
 ;(don’t change registers A, B, or R2)
FILL1 MOV A,*2[B] ;Fill RAM with AA to 55 pattern
 RR A ;Change to beginning number
 DJNZ B,FILL1 ;Fill entire RAM with pattern
 RR A ;Change to beginning number
 MOV #0FDh,B ;Refresh index
COMPAR CMP *2[B],A ;Check for errors
 JNE ERROR ;Exit if values don’t match
 RR A ;Change from 55 to AA to 55
 DJNZ B,COMPAR ;Check the entire RAM
 CLRC ;Is reg A now 55, AA or 00?
 JN FILLR ;=AA, change to opposite pattern
 JZ EXIT ;=00,
FILL0 CLR A ;=55,clear the ram now
 JMP FILLR ;Repeat the fill and check routine
ERROR OR #1,FLAG ;Set bit zero in the flag
 ;register
EXIT .EQU $;Continue program here

70

71

ROM Checksum on the TMS370

Microcontroller Products—Semiconductor Group
Texas Instruments

72

73

ROM Checksum

This routine checks the integrity of a 4K-byte ROM by performing a checksum on the entire ROM. All
ROM bytes from 7002h to 7FDFh are added together in a 16-bit word. The sum is checked against the value
at the beginning of the ROM (7000h, 7001h). If the values don’t match, then an error has occurred, and a
bit is set in a register. The error flag bit should be cleared before the start of the routine. This routine can
easily be modified for other ROM sizes.

NOTE:
Addresses 7FE0h through 7FEBh are reserved for TI use only and should not
be used in a checksum calculation.

Table 1. Register and Function Values

Register Before After: No Error After: Error

A XX X X

B XX X X

R2 XX CHKSUM MSbyte CHKSUM MSbyte

R3 XX CHKSUM LSbyte CHKSUM LSbyte

R4 XX 70h 70h

R5 XX 01h 01h

R6 XX FFh FFh

R7 XX FFh FFh

FLAG XX Bit 1 = 0 Bit 1 = 1

74

Routine

.TEXT 7000h ;Absolute start address
FLAG .EQU R15 ;Error status
CHECKSUM .EQU 12345 ;Value to be checked against

.WORD CHECKSUM ;Put correct checksum into
;ROM
;Other initialization
;program here

ROMCHK MOVW #7FDFh,R5 ;Starting address (end of
;memory)

MOVW #0FDDh,R7 ;Number of bytes to add + 1
MOVW #0,R3 ;Reset summing register

;
ADDLOP MOV @R5,A ;Get ROM byte

ADD A,R3 ;Add to 16-bit sum
ADC #0,R2 ;Add any carry
INCW #–1,R5 ;Decrement address
INCW #–1,R7 ;Decrement byte counter
JC ADDLOP ;Continue until byte count

;goes past 0
;

MOV 7000h,A ;Compare MSbyte stored to
;MSbyte sum

CMP A,R2 ;
JNE ERROR ;Set error bit if different
MOV 7001h,A ;Compare LSbyte stored to

;LSbyte sum
CMP A,R3 ;
JEQ EXIT ;Set error bit if different

ERROR OR #2,FLAG ;Set bit 1 in the flag
;register

EXIT .EQU $;Continue program here

75

Table Search With the TMS370

Microcontroller Products—Semiconductor Group
Texas Instruments

76

77

Table Search

The CMPA (Compare Register A Extended) instruction efficiently performs table searches. In the
following example, a 150-byte table is searched for a match with a 6-byte string.

The indexed addressing mode is used in this example and has the capability to search a 256-byte string,
if needed. Register B alternates between a pointer into the 6-byte test string and a pointer into the longer
table string.

Table 1. Register and Expression Functions

 Register Before After Function

 A XX ??

 B XX ??

 R2 XX ?? Table length

 TABLE XX no change Long string in table

 STRING XX no change Target string, 6 bytes max

Routine

.TEXT 7000h ;Absolute start address
TABLE .EQU 2000h ;Start of data table in external RAM
STRING .EQU R10 ;Start of target string,

;6 bytes max
SEARCH MOV #150,R2 ;Table length = 150 bytes
LOOP1 MOV #6,B ;String length = 6 bytes
LOOP2 XCHB R2 ;Swap pointers, long string in B

DEC B ;Reduce index into table
JNC NOFIND ;Table end? if so, no match found
MOV *TABLE[B],A ;Load test character
XCHB R2 ;Swap pointers, string pointer in
CMP *STRING–1[B],A ;Match?
JNE LOOP1 ;If not, reset string pointer

;else test
DJNZ B,LOOP2 ;Next character

MATCH .EQU $;Match found
NOFIND .EQU $;No match found

78

79

Bubble Sort With the TMS370

Microcontroller Products—Semiconductor Group
Texas Instruments

80

81

Bubble Sort

This routine sorts up to 256 bytes using the bubble sort method. Longer tables can be sorted using the
indirect addressing mode.

Table 1. Register Functions

Register Function

A Temporary storage register

B Index into the RAM

R2 Holds flag to indicate a byte swap has been made

Routine

.TEXT 7000h ;Absolute start address
TABLE .EQU 2000h ;Start of data table in external RAM
FLAG .EQU R2 ;’Swap has been made’ flag
SORT CLR FLAG ;Reset swap flag

MOV #0FFh,B ;Load table offset value
LOOP1 MOV *TABLE[B],A ;Look at entry in table

CMP *TABLE–1[B],A ;Look at next lower byte
JHS LOOP2 ;If higher or equal, skip to next value
INC FLAG ;Entry is not lower, set swap flag
PUSH A ;Store upper byte
MOV *TABLE-1[B],A ;Take lower byte
MOV A,*TABLE[B] ;Put where upper was
POP A ;Get the old upper byte
MOV A,*TABLE-1[B] ;Put where the lower byte was

LOOP2 DJNZ B,LOOP1 ;Loop until all the table is looked at
BTJO #0FFh,FLAG,SORT ;If swap was made, then resweep table
RTS ;If no swap was made, then table is done

82

83

Part II
Software Routines

Part II contains three sections:

 Arithmetic 7.

 Memory Operations 61.

 Specific Functionality 83.

84

85

Routine to Read a 16-Key Keyboard

Microcontroller Products—Semiconductor Group
Texas Instruments

86

87

Keyboard Scan

This routine reads a 16-key keyboard through port D, returns the hex digit of the key, and debounces the
key to avoid noise. A valid-key flag is set when a new key is found.

Figure 1. Keyboard Scan Connections to Port D

D0

D1

D2

D3

D4

D5

D6

D7

TMS370

0

4

8

C

1

5

9

D

2

6

A

E

3

7

B

F

Keys

Table 1. Register Properties

After After
/CRegister Before NOKEY NEWKEY Functions/Comments

A dc† 0 Column Temporary

B dc 0 Row Temporary

R2 dc 16 Key number Temporary storage for key value

R3 Old key value 0FFh Key number Contains key pressed

R4 Debounced 0 0 Debounce counter, old key or new

R5 General bits ?xxxxxxx0 ?xxxxxxx1 One bit of register is 1 if new key

† dc = don’t care.

88

Routine

.TEXT 07000h
FLAG .EQU R2 ; ”Swap has been made” flag
DDIR .EQU P02F ; Port D data direction register
DDATA .EQU P02E ; Port D data register
;
; THESE ASSIGNMENTS NEED TO BE DONE
; IN THE MAIN INITIALIZATION
;
START MOV #00,DDATA ; Clear these registers

MOV #0,R5 ; Clear register that says keyfound
MOV #0F0h,DDIR ; Set port D data direction for

; 4 outputs and 4 inputs
;
; THIS IS THE BEGINNING OF THE KEYBOARD SCAN ROUTINE
;
GETKEY MOV #8,B ; Initialize row pointer

CLR R2 ;
LOOP RLC B ; Select next row

JC NOKEY ; Last row? if so no key was found.
ADD #4,R2 ; Add number of keys/row to key accumulator
MOV B,DDATA ; Activate row
MOV DDATA,A ; Read columns
MOV #0,DDATA ; Clear row
AND #0Fh,A ; Isolate column data
JZ LOOP ; If no keys found, check next row

KEYLSB DEC R2 ; Decrement column offset
RRC A ; Find column
JNC KEYLSB ; If not column then, try again

NEWKEY CMP R2,R3 ; Is the new key the same as the old key?
JEQ DEBONS ; If it is, then debounce it
MOV R2,R3 ; Brand new key, move it to current

 ; key value
MOV #07,R4 ; Set up debounce count, debounce 7 times

DEBONS CMP #2,R4 ; Is the debounce count 1 or 0?
 JL GOODKY ;

DJNZ R4,GETKEY ; If greater than 1 then debounce
; is not finished; go read key again

GOODKY BTJZ #01,R4,NONEW ; If debounce count = 0, key was here
; last time

 DEC R4 ; If it was one, this is a new
; valid key, make old key

OR #1,R5 ; Set new key flag in Bit register
RTS ; New key found; return to main

NOKEY MOV #0FFh,R3 ; New key not found; set key value
; to unique value of FFh

NONEW RTS ; Jump to here means it is same key
; held down, doing nothing

89

DTMF Generation With the TMS370

Microcontroller Products—Semiconductor Group
Texas Instruments

90

91

DTMF Generator

The TMS370 can be used to generate DTMF dialing. The following routine can be used to generate all 16
DTMF digits.

Routine
;***
;

.TITLE ”DTMF GENERATOR”
;***
;
; *** DTMF GENERATOR ***
; GENERATES ALL 16 DTMF DIGITS
;
; CRYSTAL: 7.158MHZ (2X COLOR BURST)
;
; OUTPUT: 4 BIT DATA TO THE LOW NIBBLE OF B–PORT
; UPPER NIBBLE OF B–PORT IS LEFT UNMODIFIED
;
; B0 LSB
; B1
; B2
; B3 MSB
;
;
;ENTRY POINTS:’CALLSETMID’
; SET D/A OUTPUT TO THE MIDPOINT VOLTAGE
; (DONE AUTOMATICALLY AFTER ’CALL DTMF’)
;
; ’CALLDTMF’
; GENERATE DTMF DIGIT IN TONE(0–3)
; GENERATE TONE FOR DURATION IN TIMER/TIMER+1
; START AT D/A MIDPOINT
; ON EXIT–SET D/A TO MIDPOINT
;
; TONE(0–3)DTMF(HZ)
; –––––––––––––––––
; 0 941/1336
; 1 697/1209
; 2 697/1336
; 3 697/1477
; 4 770/1209
; 5 770/1336
; 6 770/1477
; 7 852/1209
; 8 852/1336
; 9 852/1477
; A 697/1633
; B 770/1633
; C 852/1633
; D 941/1633
; E 941/1209
; F 941/1477
;
;***
;
TONE .EQU R020 ;BCD DTMF DIGIT IN BITS 0–3
;
PRT1 .EQU R021 ;R22 R23 POINTER FOR FREQUENCY 1
PRT2 .EQU R024 ;R25 R26 POINTER FOR FREQUENCY 2
CNT1 .EQU R027 ;FREQUENCY 1 COUNT
ADJ1 .EQU R028 ;FREQUENCY 1 ADJUST

92

CNT2 .EQU R029 ;FREQUENCY 2 COUNT
ADJ2 .EQU R02A ;FREQUENCY 2 ADJUST
TIMER .EQU R02B ;R32DIGIT DURATION: 1 = 100 µS
;
BPORT .EQU P026 ;I/O PORT
BDR .EQU P027 ;DATA DIRECTION REGISTER
;
;***
;
; CALCULATIONS:
;
; FREQ. = [(CNT,ADJ)/(# SAMPLES)] / 100.02794US
;
; CNT = INTEGER PART OF UPDATE RATE
; ADJ = FRACTION PART OF UPDATE RATE (NORMALIZED TO 256)
;
; # SAMPLES: 64
;
; CRYSTAL = 7.158 MHZ / 4
; 179 MACHINE CYCLES = 100.02794 µS
;
; DTMF FREQUENCY TIME CONSTANTS – CNT,ADJ
;
L1 .EQU 00476h ;697 HZ
L2 .EQU 004EEh ;770 HZ
L3 .EQU 00574h ;852 HZ
L4 .EQU 00606h ;941 HZ
;
H1 .EQU 007BDh ;1209 HZ
H2 .EQU 0088Eh ;1336 HZ
H3 .EQU 00975h ;1477 HZ
H4 .EQU 00A74h ;1633 HZ
;

.SECT “S1”,0F806h
;
DTMF .EQU $

MOV #00Fh,BDR ;LOWER NIBBLE OF BPORT IS OUTPUT
;
; INITIALIZE DTMF POINTERS
;

MOV TONE,B ;LOAD DIGIT INTO
AND #00Fh,B ;LOWER 4 BITS OF B
RL B ;MAKE
RL B ;ADDRESS
MOV *DIGIT[B],A ;LOAD
MOV A,CNT1 ;COUNT1
MOV *DIGIT+1[B],A ;LOAD
MOV A,ADJ1 ;ADJUST1
MOV *DIGIT+2[B],A ;LOAD
MOV A,CNT2 ;COUNT2
MOV *DIGIT+3[B],A ;LOAD
MOV A,ADJ2 ;ADJUST2

;
MOVW #TABLE,PRT1+1 ;POINT TO
MOVW #TABLE,PRT2+1 ;TABLE START

;
MOV BPORT,B ;SET OUTPUT
AND #0F0h,B
OR #008h,B ;TO D/A MIDPOINT
MOV B,BPORT

;
;***
;

93

; SINE WAVE UPDATE LOOP – 179 MACHINE CYCLES = 100 µS
;
; ADJ ADDED TO PREVIOUS ADJUSTMENT TO SINE TABLE
; CNT ADDED W CARRY TO PREVIOUS LSB OF 16 BIT SINE TABLE
; MSB OF 16 BIT ADDR FIXED
;
; REPEAT FOR EACH DTMF DIGIT
;
; DTMF: ADD SINE VALUES AT BOTH ADDRESSES
; SHIFT RIGHT (NORMALIZE)
; OUTPUT TO LOW NIBBLE OF BPORT
;
LOOP .EQU $
;
; DTMF FREQUENCY 1 MACHINE CYCLES
; ––––––––––––––

ADD ADJ1,PRT1+2 ; ADD ADJUSTMENT 9
ADC CNT1,PRT1+1 ; ADD COUNT 9
AND #03Fh,PRT1+1 ; 6-BIT ADDRESS 8
MOV *PRT1+1,A ; 9
MOV A,B ; 9

;
; DTMF FREQUENCY 2
;

ADD ADJ2,PRT2+2 ; ADD ADJUSTMENT 9
ADC CNT2,PRT2+1 ; ADD COUNT 9
AND #03Fh,PRT2+1 ; 6-BIT ADDRESS 8
MOV *PRT2+1,A ; 9
ADD B,A ; SUM INDECIES 8
RRC A ; NORMALIZE 8

;
TST B ; DELAY 10
TST B ; FOR LOOP 10
TST B ; = 179 10
INV B ; MACHINE CYCLES 8

;
MOV BPORT,B ; 7
AND #0F0h,B ; 6
OR A,B ; 7
MOV B,BPORT ; 8

;
INCW #–1,TIMER+1 ; 11
JC LOOP ; 7 (JMP TAKEN)

; –––––––
; TOTAL 179
;
SETMID .EQU $

MOV BPORT,B ; SET OUTPUT
AND #0F0h,B
OR #008h,B ; TO D/A MIDPOINT
MOV B,BPORT
RTS

;
;***
;
DIGIT .EQU $; DTMF DIGITS
;
; DATA LX,HY LX = LO FREQ TABLE INCREMENT
; HY = HI FREQ TABLE INCREMENT
;

.WORD L4,H2

.WORD L1,H1

.WORD L1,H2

94

.WORD L1,H3

.WORD L2,H1

.WORD L2,H2

.WORD L2,H3

.WORD L3,H1

.WORD L3,H2

.WORD L3,H3

.WORD L1,H4

.WORD L2,H4

.WORD L3,H4

.WORD L4,H4

.WORD L4,H1

.WORD L4,H3
;
;***
;
; 1 COMPLETE PERIOD OF A SINE WAVE IN 64 TIME SAMPLES
;
; BITS ARRANGED: B0 LSB
; B1
; B2
; B3 MSB
;

.SECT “S2”,0F900h ; PLACE TABLE AT PAGE BOUNDARY
;
; ** TABLE MUST START AT A PAGE BOUNDARY **
;
TABLE .EQU $

.BYTE 08h,09h,0Ah,0Bh,0Ch,0Ch,0Dh,0Dh

.BYTE 0Dh,0Eh,0Eh,0Eh,0Eh,0Fh,0Fh,0Fh

.BYTE 0Fh,0Fh,0Fh,0Eh,0Eh,0Eh,0Eh,0Dh

.BYTE 0Dh,0Dh,0Ch,0Ch,0Bh,0Ah,09h,08h

.BYTE 07h,06h,05h,04h,03h,03h,02h,02h

.BYTE 02h,01h,01h,01h,01h,00h,00h,00h

.BYTE 00h,00h,00h,01h,01h,01h,01h,02h

.BYTE 02h,02h,03h,03h,04h,05h,06h,07h
;

.END

95

System Integrity Check for the
TMS370

Microcontroller Products—Semiconductor Group
Texas Instruments

96

97

System Integrity

This routine provides a simple software check of system integrity. It can be placed before the return (RTS)
in a timer service routine to periodically examine the value of the return stack pointer (one byte) and return
program counter value (two bytes) to see if they are within the normal operating range.

Routine

; REQUIRED EQUATES:
; STACK = stack pointer initialized value
; SMAX = maximum value stack pointer ever attains
;
; OTHER LABELS:
; PCCHK = entry point
; RESTART = address to branch to if error condition is detected
RESTART .EQU 7000h
SMAX .EQU 07fh
STACK .EQU 07fh
PCCHK .EQU $

 STSP ; Store current stack pointer
 MOV *–3[B],A ; Load MSB return
 CMP 7FFEh,A ; Abort if < MSB reset vector
 JL ABORT
 JNE PCCHK1 ; Must be equal for next check
 MOV *–2[B],A ; Load LSB return
 CMP 7FFFh,A ; Abort if < LSB reset vector
 JL ABORT

PCCHK1 CMP #STACK+5,B ; Load best case stack
 JL ABORT ; Abort if current stack is < best case
 CMP #SMAX,B ; Load max stack
 JHS ABORT ; Abort if stack is > than max
 POP B ; Restore context
 POP A ; (if saved)
 RTI ; Return from interrupt

ABORT BR RESTART ; Else restart the program

98

99

Part III
Module Specific

Application Design Aids

Part III contains six sections:

 RESET Operations 99.

 SPI and SCI Modules 105.

 Timer and Watchdog Modules 199.

 Analog to Digital Modules 309.

 PACT Module 375.

 I/O Pins 439.

100

101

Reset: Explanation of Operation and
Suggested Designs

Michael S. Stewart
Microcontroller Products—Semiconductor Group

Texas Instruments

102

103

Explanation of Operation and Suggested Designs

The function of the RESET pin is to ensure an orderly software startup and hardware initialization. The
TMS370 family of microcontrollers has three possible reset sources:

1. Low level input on the RESET pin

2. Watchdog (WD) reset (Section 7.7 - TMS370 Family User’s Guide)

3. Oscillator fault detection (Section 4.1.3 - TMS370 Family User’s Guide)

There are also three reset status flags that will be set depending on the source of the reset. Once a reset
occurs, the program can test the status bits to determine the source of the reset and then take appropriate
actions. The reset status flags are shown below:

Table 1. Reset Status Flags

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

RegisterÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

Peripheral File
Bit Location

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Control Bit ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Source of Reset

ÁÁÁÁSCCR0 ÁÁÁÁÁÁÁÁP010.7 ÁÁÁÁÁÁÁÁÁCOLD START ÁÁÁÁÁÁÁÁÁÁÁPower-up resetÁÁÁÁ
ÁÁÁÁSCCR0

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁP010.4

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁOSC FLT FLAG

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁOscillator below minimum rangeÁÁÁÁ

ÁÁÁÁT1CTL2
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁP04A.5

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁWD OVRFL INT FLAG

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁWatchdog timer timeout

COLD START

If the COLD START bit is set, it indicates that a power-up reset has occurred since this bit was last cleared
(writing a 0). If the COLD START bit is not set when read, it indicates that no power-up reset has occurred
since last writing a 0 to this bit.

OSC FLT FLAG

The oscillator fault circuitry causes a system reset if the oscillator is operating below a minimum specified
frequency trip point that is typically below 20 KHz, but never above 500 KHz. When this condition is
detected, the OSC FLT FLAG (P010.4) is set and the reset pin is held low until normal oscillation returns
(typically about 1.8 MHz). The OSC FLT FLAG is not cleared by an active reset. Therefore, once the device
attains normal operation again and reset is released, the reset fault flags can be polled to determine the
source of the reset. The OSC FLT FLAG bit must be cleared by software. For more information, see the
TMS370 Family User’s Guide.

WD OVRFL INT FLAG

If enabled, the WD OVRFL INT FLAG (WD overflow) will cause a system reset if the TMS370 watchdog
(WD) timer is allowed to overflow or an incorrect value is written to the watchdog reset key register (P048).
The RESET pin will be held low for eight system clock cycles if the WD overflow occurs.

General Operation

The RESET pin is an I/O pin. An external signal with a duration of one system clock cycle (SYSCLK) is
guaranteed to reset the device, however a much smaller signal could actually cause a reset. If the TMS370
device detects a reset pulse with a duration of less than eight system clock cycles, the TMS370 will hold
the RESET pin low for eight system clock cycles. If an enabled WD overflow occurs, the RESET pin will
be pulled low internally for eight system clock cycles. If an oscillator fault is detected, the RESET pin will
be held low until oscillation returns to normal. The ability of the RESET pin to be pulled low internally
allows the TMS370 device to reset the entire system. However, since the RESET pin can drive a low signal,

104

care must be taken in designing the reset circuitry. A typical reset circuit is illustrated in figure 1. Additional
reset circuit information is available in the TMS370 Family User’s Guide.

Figure 1. Typical Reset Circuit

10 kΩ

VCC

2.7 kΩ

To other
devices’
resets

0.47 µF
Manual
reset

Reset in

Reset out

TMS370

• The RC network of 10 kΩ and 0.47 pF provides a power-up rise time. If this power-up rise time
is not long enough, you can use a larger capacitor. However, replacing the 10 kΩ resistor with
a larger resistor may cause the voltage at the RESET pin to be less than VIH.

• The 2.7 kΩ resistor protects the RESET pin from the capacitor discharging directly into the pin
when the pin is pulled low internally.

• The diode allows the capacitor to discharge quickly during a brownout or power-off condition.

105

Part III
Module Specific

Application Design Aids

Part III contains six sections:

 RESET Operations 99.

 SPI and SCI Modules 105.

 Timer and Watchdog Modules 199.

 Analog to Digital Modules 309.

 PACT Module 375.

 I/O Pins 439.

106

107

Using the TMS370
SPI and SCI Modules

Kevin L. Self
Microcontroller Products—Semiconductor Group

Texas Instruments

Contributions by Paul Krause, Mark Palmer, and Al Lovrich

108

109

Introduction

The TMS370 family of 8-bit microcontrollers has been designed with two serial communications modules:
the serial peripheral interface (SPI) and the serial communications interface (SCI). These two modules
greatly enhance the ability of the microcontroller to interface to other serial devices and common interfaces
such as the industry standard RS-232. External hardware and software overhead are reduced by the
flexibility and programmability of the interfaces.

This application report provides examples of hardware interfaces and software routines to illustrate the
versatility of the SPI and SCI modules. Common applications of these modules will be discussed, which
may be modified to suit the engineer’s specific needs. Additional information on the serial interfaces may
be found in the TMS370 Family User’s Guide.

NOTE:
The SCI module is available in the three pin (SCI1) and two pin (SCI2)
versions.

110

Module Description: Serial Peripheral Interface (SPI)

The SPI – How It Works

The SPI module is a high-speed synchronous serial I /O port that shifts a serial bit stream of variable length
and data rate between the device and other peripheral devices. The SPI is especially suited for
multiprocessor and external peripheral communications where the designer needs high-speed synchronous
data transfer. The use of the SPI can greatly reduce overhead when connecting several peripherals together
by transferring address or status information. The SPI can be used to communicate with other
microcontrollers, serial shift registers, or display drivers. In addition, the SPI can be used to load memory
(RAM or EEPROM) and allow the device to be reprogrammed in-socket.

A block diagram of the SPI is shown in Figure 1. In its simplest form, the SPI can be thought of as a fast,
programmable shift register. Data to be transmitted is written to the SPIDAT register, and received data is
latched into the SPIBUF register to be read. Data transmission rates and data formatting are controlled by
the SPI state logic.

Figure 1. SPI Block Diagram

SPIBUF buffer
register

SPIDAT
data register

SPIBUF.7-0

State control

SPI CHAR

SPI BIT RATE

CLOCK POLARITY

SPI INT FLAG

SPICTL.6

SPIINT ENA

SPICTL.0

RECEIVER
OVERRUN

8

SPIDAT.7-0
SPICTL.1

TALK

2 01

345

SPICCR.2-0

SPICCR.5-3

System
clock SPICCR.6 SPICLK

MASTER/SLAVE †

SPICTL.7

Level 2 Int

SPIPRI.6

1

SPIPC2.7-4

SPISIMO

SPICTL.2

SPIPC1.3-0

SPISOMI

SPIPC2.3-0

Level 1 Int
0

111

SPI Operating Modes

The Master Mode

The SPI operates in one of two modes. The master mode is used when the SPI controls the data transfer.
The master SPI initiates and controls the data transfer by issuing the SPICLK signal. Writing data to the
SPIDAT buffer starts the transfer by starting SPICLK and shifting the data out of the SPIDAT shift register
onto the SPISIMO pin. New data is simultaneously gated in on the SPISOMI pin into the SPIDAT buffer.

Since the master device controls the data transfer by issuing the SPICLK, the other devices must wait for
the master to start the transmission. Even if the master is only interested in receiving data, it is still necessary
to write dummy data to the SPIDAT register to initiate the transfer from the slave or external source.

Because of the way data is shifted through the SPIDAT register, any data value in SPIDAT is always
modified after a transmission, even if no new data value has been received into the register. The SPIDAT
register will contain indeterminate data because no new data has been received.

The Slave Mode

The slave mode is used when the SPI is controlled by another serial device. In the slave mode, the SPI is
dependent on an external clock source from a master configured device to control the data transfer. An
element of data resident in the SPIDAT buffer is shifted out upon receipt of a clock signal on the SPICLK
pin, which in slave mode becomes an input pin. Simultaneously, any data present on the SPISIMO pin is
shifted into the SPIDAT register. The data transmission of a slave can be disabled by clearing the TALK
bit. This allows many devices to be tied to the same serial network, but it eliminates the possibility of write
conflicts. Figure 2 illustrates two TMS370 devices in a master/slave connection.

112

Figure 2. Master / Slave Connection

ÉÉ
ÉÉ

SPI MASTER (MASTER/SLAVE = 1)
SIMO SLAVE IN/

MASTER
OUT

SERIAL INPUT BUFFER
(SPIBUF)

SHIFT REGISTER
(SPIDAT)

msb lsb

SOMI SLAVE OUT

MASTER IN

PROCESSOR 1
SCLK

SERIAL

CLOCK

SPI SLAVE (MASTER/SLAVE = 0)
SIMO

SERIAL INPUT BUFFER
(SPIBUF)

SHIFT REGISTER
(SPIDAT)

msb lsb

SOMI

SCLK PROCESSOR 2

ÉÉ
ÉÉ

Configuring the SPI

Data format, baud rate, interrupt generation, and operating mode are controlled by setting the SPI control
registers shown in Appendix A. The SPI should be in an SPI SW RESET condition before changing any
of the configuration registers. This freezes the state of the SPI while it is being configured. After setting
the SPI parameters, release the reset. Before initiating a data transmission, you need to initialize the
parameters discussed in the following sections.

SPI Data Format – Transmitting and Receiving

Character length is programmable and can be set from one to eight bits by the user. This is done by setting
SPICCR bits 0–2 to the appropriate values shown in Table 1. If the character length is fewer than eight bits,
it is important to note the following:

1. Data must be written to SPIDAT left-justified. Data is shifted out of the SPIDAT register MSB
first, and if the character is not left-justified, the data will be corrupted.

2. Data is received into SPIDAT right-justified. The MSB of the transmitted data is shifted into the
LSB of SPIDAT and walked across. For character lengths less than eight bits, there will be extra
bits containing information from previous transmissions that must be accounted for.

113

The SPICLK and Data Transfer Rate

The rate at which data is transferred out of SPIDAT is programmed by the SPI bit rate bits (SPICCR.3–5).
The rate can be set from SYSCLK/2 to SYSCLK/256 as shown in Table 2. The SPICLK rate is only used
in the master mode; in slave mode the SPICLK rate is irrelevant because the clock signal is external. The
SPICLK is output anytime a write is made to SPIDAT and the device is in the master mode. The polarity
of the clock bit can be set by the user (SPICCR.6) to latch the data on the rising or falling edge of the clock
pulse. When an external clock is being used (slave mode), the input clock frequency cannot be greater than
SYSCLK/8 to allow the internal clocks to synchronize.

Table 1. SPI Character Bit Length

Char2 Char1 Char0
Character

Length

0 0 0 1

0 0 1 2

0 1 0 3

0 1 1 4

1 0 0 5

1 0 1 6

1 1 0 7

1 1 1 8

Table 2. SPI Clock Frequency

SPI�
Bit

Rate 2

SPI Clock
Frequency

0 0 0 SYSCLK/2

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

SPI�
Bit

Rate 1

SPI�
Bit

Rate 0

SYSCLK/4

SYSCLK/8

SYSCLK/16

SYSCLK/32

SYSCLK/64

SYSCLK/128

SYSCLK/256

† If the SPI is a network slave, the module receives a clock on the SPICLK
pin from the network master, and these bits have no effect on SPICLK.
The frequency of the input clock should be no greater than the SYSCLK
frequency divided by 8.

114

A table showing the baud rates for common crystal frequencies versus SPI bit rate values is shown below
in Table 3. The values were found using the formula

SPI BAUD RATE = SYSCLK / (2 x 2b)

where b = bit rate specified in the SPI control register (SPICCR.5-3) (range 0–7).

Table 3. Baud Rates for SPI Bit Rate Values

SYSCLK (Crystal/Oscillator Frequency / 4) (MHz)

Divide By .5 1.25 2.5 3.75 5

2 250000 625000 1250000 1875000 2500000

4 125000 312500 625000 937500 1250000

8 62500 156250 312500 468750 625000

16 31250 78125 156250 234375 312500

32 15625 39062.5 78125 117187 156250

64 7812.5 19531.2 39062.5 58593.7 78125

128 3906.25 9765.62 19531.2 29296.8 39062.5

256 1953.12 4882.81 9765.62 14648.4 19531.2

Controlling the SPI through Interrupts and Flag Checking

The SPI interrupt logic can generate an interrupt upon receiving or transmitting a complete character as
determined by the SPI character length. This provides a convenient and efficient way to handle the
reception or transmission of data.

 The interrupt can be enabled or disabled using the SPI INT ENA bit (SPICTL.0), and the interrupt priority
set with the SPI PRIORITY bit (SPIPRI.6). Whether or not the SPI interrupt is enabled, the SPI INT flag
(SPICTL.6) will be set upon the transmission or reception of a character. The SPI INT flag cannot be
cleared as it is read only, but it is automatically cleared if SPIBUF is read, the SPI SW RESET bit is set,
or a system reset is initiated. Even if a data value is not going to be saved, it is still necessary to do a dummy
read to clear the SPI INT flag. If the flag is not cleared and the interrupts are enabled, then the interrupt
routine will be called again as soon as it is completed.

Data transmission is not instantaneous in the SPI. It is necessary to wait for the SPI to transmit or receive
a character before reading from or writing to the SPIDAT register again. There are two ways to do this:

1. When the SPI has transmitted or received new data, the SPI INT routine is generated if enabled.
The received character can be read, or a new character transmitted.

115

2. If the program cannot do anything until the new data value is received or transmitted, the SPI
INT flag can be continuously polled until it goes high. At that time, the character can be read
or a new one transmitted.

It is important to use one of the above methods to wait for the data before reading or writing again. Also,
if the exact number of cycles is known, the transmission can be timed that way. When doing fast data
transfers where the possibility of a data collision exists, polling the RECEIVER OVERRUN flag
(SPICTL.7) will indicate if you have lost any data.

The TALK Bit and Multiprocessor Communications

If more than two processors are going to be connected to the same SPI data lines (SPISIMO/SPISOMI),
it will be necessary to limit the conversation to just two processors at a time. This is done through software
using the TALK bit (SPICTL.1). When the TALK bit is 0, data transmission is disabled but reception
continues. One device, usually (but not necessarily) the master, sends out an address to other devices in the
network that have their TALK bits set to 0. Since reception is not affected, all devices receive the
transmitted address and compare it to their own addresses. If a device matches, it sets its TALK bit and
begins transmitting data. When it finishes, the receiving device clears its TALK bit and the network waits
for another address. Another scheme for using the TALK bit is to transmit groups of characters (10 or so)
in a block with the address as the first character. This way the address occurs at regular intervals and reduces
the need for address checking.

Considerations When Using the SPI

The most important thing to remember when writing SPI service routines is to keep your code short.
Received data should be quickly removed from the SPIBUF register to prevent it from being overwritten.
If you have to manipulate the data, wait until all the data has been received. This becomes more important
as the SPI baud rate increases. If your code involves long SPI routines, new data may be received before
the previous data value has been read from the SPI buffer register.

116

Data Integrity and the SPI

The SPI was designed as a fast, simple interface to serial logic. As a result, it has no direct way to check
for transmission errors. There are a number of software methods that can be used to check the integrity of
the transmission. Parity checking is one of the most common, and it can be easily implemented in software
for the SPI. Parity checking involves reserving one bit of the character to be used in setting the total number
of 1s in a character as odd or even.

If you are going to be sending large blocks of data, there are coding methods that allow faster data transfer
but still ensure data integrity. Block checksums and other encoding methods can be found in most books
on digital communications. These methods allow some degree of data integrity without significantly
slowing the data transfer rate.

117

SPI Module Software Examples

The following are examples of the various modes of operation and common software routines used in
operating the SPI. The register equate for the following examples shown below.

Common Equates

SPICCR .equ P030 ;SPI Configuration Control Register

SPICTL .equ P031 ;SPI Operation Control Register

SPIBUF .equ P037 ;Serial Input Buffer

SPIDAT .equ P039 ;Serial Data Register

SPIPC1 .equ P03D ;SPI Port Control Register 1

SPIPC2 .equ P03E ;SPI Port Control Register 2

SPIPRI .equ P03F ;SPI Priority Control Register

118

Master SPI Configuration

This routine shows how to configure the SPI to operate in the master mode. Data is sent to a peripheral
device. The value needed for the SPI bit rate register is computed from the formula:

SPI BAUD RATE = SYSCLK / (2 x 2b)

where b is the bit rate from SPICCR.3–5 in the range from 0–7. This is important in applications where
it is necessary to fix the real-time frequency of SPICLK, such as interfacing to slow peripheral logic.

The SPI in this routine with a SYSCLK of 5 MHz is connected to a shift register with a maximum operating
frequency of 250 KHz. The bit rate needed is

b = log2 [SYSCLK / (SPI baud rate x 2)]
b = log2 [5 x 106 / (250 x 103 x 2)] = 3.35 (approximately)

Since only integers are allowed, the bit rate should be set to the next highest value, such as 4, which is
SYSCLK/32. This gives an actual SPI rate of 156.25 kHz, which is within the operating range of the shift
register. The character size is eight bits.

Routine
SETMASTER MOV #0E7h,SPICCR ;SPI reset, clock active low, /128, 8 bits

MOV #006h,SPICTL ;Master mode, enable TALK, disable SPI INT

MOV #002h,SPIPC1 ;Set for SPICLK out.

MOV #022h,SPIPC2 ;Enable SPISOMI, SPISIMO pins for SPI.

MOV #040h,SPIPRI ;SPI interrupts are low priority.

AND #067h,SPICCR ;Release SPI reset.

. . . ;Execute main program here. When ready

;to transmit, call subroutine.

CALL SENDDATA ;Execute subroutine.

. . .

SENDDATA MOV DATAOUT,SPIDAT ;Move data to SPIDAT, initiate

;transmission.

WAIT BTJZ #040h,SPICTL,WAIT ;Loop until transmission complete.

MOV SPIBUF,DUMMY ;Dummy read to clear SPI INT flag.

RTS ;Return to main program.

119

Slave SPI Configuration

This routine shows how to use the SPI interrupt to interrupt a program and load two 8-bit characters from
the SPI. The program will call the SPI interrupt upon receipt of an 8-bit character, save it, and wait for one
more character. It will then save the values and return to the main program. The characters will be saved
in DATAMSB and DATALSB.

Routine
SETSLAVE DINT ;Disable global interrupts.

MOV #0E7h,SPICCR ;SPI reset, clock active low, /32, 8 bits

MOV #001h,SPICTL ;Slave mode, TALK disable, SPI INT enable

MOV #002h,SPIPC1 ;Set SPICLK.

MOV #022h,SPIPC2 ;Enable SPISOMI, SPISIMO pins for SPI.

MOV #040h,SPIPRI ;SPI interrupts are low priority.

MOV #067h,SPICCR ;Release SPI RESET.

EINT ;Enable global interrupts.

. . . ;Insert main part of program here. SPI

;INT will fetch characters when first

;is detected.

SPIINTR MOV SPIBUF,DATAMSB ;Save first character already in buffer.

WAIT BTJZ #040h,SPICTL,WAIT;Wait until second character is received.

MOV SPIBUF,DATALSB ;Save second character.

RTI ;Return to main program.

120

Dynamic Bit Justification

On occasion it may be necessary to transmit characters of length less than eight bits. As stated previously,
the data needs to be left-justified for transmitting from SPIDAT and right-justified when read from
SPIBUF. If the SPI is accessing several peripherals with different character lengths, it may be more efficient
to have one subroutine justify all the transmitted data.

This routine reads the value of the character length stored in SPICCR.0–2 and left-justifies the data to be
transmitted as needed. If the character length is less than five bits, the routine swaps nibbles to save time.
The value to be transmitted is stored in the register DATA.

Routine
LJUSTIFY MOV SPICCR,NUMBITS ;Save character length in temp register.

XOR #0FFh,NUMBITS ;8 numbits = number of shifts

AND #007h,NUMBITS ;Clear all bits except character length.

BTJZ #004h,NUMBITS,ROLL ;If < 4 shifts needed, go to roll

;routine.

SWAP DATA ;More than 4 shifts, swap is faster.

SUB #004h,NUMBITS ;Since we swapped, 4 rolls are complete.

JZ DONE ;If only 4 rolls needed, we are done.

ROLL RL DATA ;Rotate one bit left.

DJNZ NUMBITS,ROLL ;If not done rotating, continue.

DONE MOV DATA,SPIDAT ;Data is now left justified, transmit.

121

Address Recognition by SPI

In multiprocessor systems using the SPI for communication, it is necessary to keep conversations limited
to two microprocessors at a time. The TALK bit is used to disable the transmit ability of a TMS370 in slave
mode until it sees its address, MYADDRESS, at which time it will transmit a byte of data. This example
shows the SPI interrupt routine, which is called when a character is received. If it is the correct address,
the TALK bit is set, SPIDAT is loaded, and the TALK bit is cleared once again.

Routine
SPIINTR MOV SPIBUF,ADDRESS ;Store received address.

CMP #MYADDRESS,ADDRESS ;Is it my address?

JNZ DONE ;If not, ignore transmission.

OR #002h,SPICTL ;Set TALK bit.

MOV DATA,SPIDAT ;Load transmit buffer, wait for clock

;from master.

WAIT BTJZ #040h,SPICTL,WAIT ;Wait until character is sent.

MOV SPIBUF,DUMMY ;Dummy read to clear SPI INT flag.

DONE AND #0FDh,SPICTL ;Clear TALK bit.

RTI ;Return from interrupt.

122

SPI Module Specific Applications

Vacuum Fluorescent Display Driver

Use SPI to Transmit Data to Serial Shift Register

One common and very practical use of an SPI is sending serial data to a display. The use of simple software
routines can simplify your design and eliminate expensive external hardware such as decoders. This
example interfaces a TMS370C010 microcontroller to a vacuum fluorescent display. The only external
logic necessary is one TMS0170 VF Display Driver. This device is a 33-bit shift register /display driver
and is especially suited for serial display applications. The design uses only SPI and Timer 1 (T1) pins, so
the designer does not need to dedicate any more I /O pins to the design. The schematic shown is for a generic
serial display application, and it can be easily modified to work with an LED or LCD display.

123

Figure 3. Vacuum Florescent Interface

TMS0170

14
13
11
10

9
8
7
3

28
24
15
1
2

23
24

21
20
22

2
3

40
38

TMS370C010

VCC

4.7 kΩ
SW1

DIM/BRIGHT TOGGLE

DATA IN
CLOCK

BLANK
LOAD ENABLE

4 DIGIT DISPLAY
COMMON ANODE

13
4
19
8
24
17
18
23
35
34
7
6
5
36
33
20
31
30
11
10
9
32
29
22
27
26
16
15

BIT 6
BIT 7
BIT 8
BIT 9

BIT 10
BIT 11
BIT 12
BIT 13
BIT 14
BIT 15
BIT 16
BIT 17
BIT 18
BIT 19
BIT 20
BIT 21
BIT 22
BIT 23
BIT 24
BIT 25
BIT 26
BIT 27
BIT 28
BIT 29
BIT 30
BIT 31
BIT 32
BIT 33 SEGMENT 1–A

SEGMENT 1–B
SEGMENT 1–C
SEGMENT 1–D
SEGMENT 1–E
SEGMENT 1–F
SEGMENT 1–G
SEGMENT 2–A
SEGMENT 2–B
SEGMENT 2–C
SEGMENT 2–D
SEGMENT 2–E
SEGMENT 2–F
SEGMENT 2–G
SEGMENT 3–A
SEGMENT 3–B
SEGMENT 3–C
SEGMENT 3–D
SEGMENT 3–E
SEGMENT 3–F
SEGMENT 3–G
SEGMENT 4–A
SEGMENT 4–B
SEGMENT 4–C
SEGMENT 4–D
SEGMENT 4–E
SEGMENT 4–F
SEGMENT 4–G

A 0
A 1
A 2
A 3
A 4
A 5
A 6
A 7

D 3
D 4
D 5
D 6
D 7

SPISIMO
SPICLK

T1PWM
T1EVT

T1IC/CR

In the example below, the display is pulsed periodically to adjust the intensity and update the display. In
addition, the display may be put into a dim mode by toggling the T1IC/CR pin. The T1 PWM pin is used
to control the brightness of the display by pulsing the blanking input of the TMS0170. The data is latched
into the TMS0170 by pulsing the T1EVT pin, which is configured as an output. When the new data value
is to be displayed, it is shifted out of the SPI.

124

This display update routine is controlled by T1 interrupts. The compare 1 and compare 2 registers are set
to control the refresh rate and intensity, respectively. Because the display is pulsed more frequently than
new values are calculated, an interval counter is used to specify when it is time to update the display value.
In this example, the following parameters are used:

Refreshes /s = 100 (eliminates flicker in display)
Display updates/s = 2
SYSCLK freq. = 5 MHz
Prescale divide = 16
Normal display intensity = 90%
Dim display intensity = 40%

The T1 compare register values are found from the formulas:

Compare 1 value =

Compare 1 value =
5,000,000

100 x 16

SYSCLK Frequency

refreshes/s x prescale divide

Compare 2 value = intensity x compare 1 value

Compare 2 value (bright) = 0.9 x 3125 = 2812 or 0AFCh

Compare 2 value (dim) = 0.4 x 3125 = 1250 or 04E2h

By XORing the bright and dim values together, we get the logical difference between the two values.
XORing the difference with either the bright or dim values will give the other. This is an easy and quick
way to toggle the brightness.

DIFFMSB = compare 2 value (dim) MSB XOR compare 2 value (bright) MSB
DIFFLSB = compare 2 value (dim) LSB XOR compare 2 value (bright) LSB

The interval counter value is found from the following formula:

Interval = 100/2 = 50 or 32h

refreshes /s
Interval = updates/s

125

Routine

The source code for this application is as follows:

.title “Display Driver”

; This routine uses the SPI and T1 modules to output values

; to a serial display. The display is updated every 0.5 seconds.

; Display intensity is changed by toggling TlIC/CR pin.

SPICCR .equ P030 ;SPI register assignments.

SPICTL .equ P031

SPIDAT .equ P039

SPIBUF .equ P037

SPIPC1 .equ P03D

SPIPC2 .equ P03E

T1CNTRMSB equ P040 ;T1 register assignments.

T1CMSBLSB .equ P041

T1CMSB .equ P042

T1CLSB .equ P043

T1CCMSB .equ P044

T1CCLSB .equ P045

T1CTL1 .equ P049

T1CTL2 .equ P04A

T1CTL3 .equ P04B

T1CTL4 .equ P04C

T1PC1 .equ P04D

T1PC2 .equ P04E

T1PRI .equ P04F

; Allocate register space for the registers used in the application

; routine.

DISPMSB .equ R5 ;High byte of display value.

DISPLSB .equ R6 ;Low byte of display value.

ICOUNT .equ R7 ;Time between display refreshes.

DCOUNT .equ R8

DIGIT0 .equ R10 ;BCD values of display digits

126

DIGIT1 .equ R11 ; ”

DIGIT2 .equ R12 ; ”

DIGIT3 .equ R13 ; ”

TEMPMSB .equ R14

TEMPLSB .equ R15

DUMMY .equ R16

; Assign values for display intensity, and refresh period.

TIMER .equ 3125 ;100 interrupts/sec @ 5 MHz

BRIGHT .equ TIMER*9/10 ;Max intensity = 90

DIFF .equ BRIGHT^(TIMER*4/10) ;Min intensity = 40

INTERVAL .equ 50

.text 07000h

START DINT ;Disable all interrupts.

; SPI Initialization

MOV #OE6h,SPICCR ;Reset SPI, data out on falling

;SPICLK,

;7-bit characters.

MOV #006h,SPICTL ;Master,enable TALK, disable SPI INT.

MOV #002h,SPIPC1 ;Enable SPICLK out.

MOV #020h,SPIPC2 ;Set SPISIMO out.

; Set delays for brightness, and value updates

MOV #HI(TIMER),T1CMSB ;Load compare 1 register with delay.

MOV #HI(TIMER),T1CLSB ;Time between refreshes (10 mS)

MOV #HI(BRIGHT),T1CCMSB ;Set display to bright intensity.

MOV #LO(BRIGHT),T1CCLSB ; ”

MOV #INTERVAL,ICOUNT ;Temp register for interval counter

; Timer 1 Initialization

MOV #001h,T1PC1 ;Set T1EVT as general I /O.

MOV #062h,T1PC2 ;Set T1IC/CR to input.

MOV #040h,T1PRI ;Set T1 interrupts to low priority.

MOV #071h,T1CTL4 ;Dual-compare,disable interrupts.

MOV #005h,T1CTL1 ;System clock / 16

MOV #000h,T1CTL3 ;Disable T1 interrupts, clear flags.

MOV #001h,T1CTL2 ;Disable overflow interrupts,reset

127

;T1.

; Enable Timer1 & SPI

MOV #005h,T1CTL3 ;Enable T1EDGE INT, enable T1C1 INT.

MOV #066h,SPICCR ;Release SPI.

MOV #0F0h,B ;Move stack pointer value to B.

LDSP ;Set stack pointer.

EINT ;Global interrupt enable

MAIN ;Main loop

; Place major portion of code here. This part of the program should

; calculate the value to be displayed, scale it from 0 to 9999, and

; store the result in DISPMSB and DISPLSB. When T1 counts down,

; the interrupt will be called and the program will jump to DISPLAY.

...

MOV #??,DISPMSB ;Move sample value into memory.

MOV #??,DISPLSB ;

...

JMP MAIN

; T1 Interrupt Routine.

; This routine pulls the value to be displayed from DISPMSB and

; DISPLSB, converts it to a packed 4 nibble BCD number, and shifts

; the result out through the SPI. The routine checks to see whether

; the routine was called by the timer or the T1C1 pin and clears

; the appropriate flag. DISPMSB and DISPLSB are temporary registers

; and will not contain their original values upon completion of the

; interrupt routine.

DISPLAY

BTJZ #080h,T1CTL3,TIMERINT ;Was interrupt from T1IC/CR pin?

; T1IC/CR pin called interrupt, toggle the intensity bright/dim.

MOV #003h,T1CTL1 ;Stop timer.

MOV #001h,T1CTL2 ;Reset timer (T1 SW RESET).

MOV #050h,T1PC2 ;Set PWM as general purpose I /O.

MOV #050h,T1PC2 ;Set T1PWM = 1 (command must be

;repeated).

128

MOV #060h,T1PC2 ;Reenable T1PWM.

MOV T1CCLSB,TEMPLSB ;Get current display intensity.

MOV T1CCMSB,TEMPMSB ;

XOR #LO(DIFF),TEMPLSB ;Toggle display intensity.

XOR #HI(DIFF),TEMPMSB ;

MOV TEMPMSB,T1CCMSB ;Update display intensity

MOV TEMPLSB,T1CCLSB ;

MOV #005h,T1CTL1 ;Restart timer.

AND #07Fh,T1CTL3 ;Clear T1IC/CR interrupt flag.

JMP DONE ;End of display toggle: wait for

;update.

TIMERINT DJNZ ICOUNT,NOTNOW ;Is it time for new value be

;displayed?

;If it is not, do not calc new value.

MOV #INTERVAL,ICOUNT ;Restore interval counter.

; Hex to BCD Conversion Routine.

CLR DIGIT2 ;Clear result registers.

CLR DIGIT0 ;”

MOV #16,R3 ;Set loop count.

LOOP RLC DISPLSB ;Shift high bit out.

RLC DISPMSB ;Carry contains the high bit.

DAC DIGIT0,DIGIT0 ;Double the number then add high bit.

DAC DIGIT2,DIGIT2 ;”

DJNZ R3,LOOP ;Loop until multiplied 16 times.

MOV DIGIT0,DIGIT1 ;Save second digit.

MOV DIGIT2,DIGIT3 ;Save third digit.

SWAP DIGIT1 ;Swap BCD nibbles.

SWAP DIGIT3 ;Swap BCD nibbles.

AND #0Fh,DIGIT0 ;Clear high nibble.

AND #0Fh,DIGIT1 ;Clear high nibble.

AND #0Fh,DIGIT2 ;Clear high nibble.

AND #0Fh,DIGIT3 ;Clear high nibble.

; Output display values.

; This part actually outputs the BCD values to the display through the

; SPI. Note that in this example the display is limited to 4

129

; characters, which gives a maximum value of 9999.

MOV #000h,DCOUNT ;Set counter for data address.

NEXTCHAR MOV DCOUNT,B ;Store DCOUNT in temp register.

MOV *DIGIT0[B],A ;Move BCD value of current char into

;A.

XCHB A ;Move BCD value into B.

MOV *TABLE[B],A ;Look up 7-seg value and store in A.

MOV A,SPIDAT ;Move character byte into SPIDAT

;register.

WAIT1 BTJZ #040h,SPICTL,WAIT1 ;Wait for character to be sent.

MOV SPIBUF,DUMMY ;Dummy read to clear SPI INT flag.

INC DCOUNT ;Location of next digit register.

BTJZ #004h,DCOUNT,NEXTCHAR ;If <4 characters sent, then send

;another.

MOV #005h,T1PC1 ;Toggle TlEVT to latch data.

MOV #001h,T1PC1 ;Pull TlEVT low again.

OR #001h,T1CTL4 ;Re-enable T1IC/CR interrupt here.

;This allows delay between

;recognition of dim/

;bright toggles to debounce switch.

NOTNOW AND #0DFh,T1CTL3 ;Clear TlCl interrupt flag.

DONE RTI ;Return from interrupt.

; Look–up table for converting BCD values to 7–segment display values.

; Display BCD value.

TABLE .byte #07Eh ;0

.byte #00Ch ;1

.byte #0B6h ;2 The segments are decoded as follows:

.byte #09Eh ;3 SEGMENT|gfedcba0

.byte #0CCh ;4 BIT |76543210

.byte #0DAh ;5

.byte #0FAh ;6

.byte #00Eh ;7

.byte #0FEh ;8

.byte #0CEh ;9

130

; Set up interrupt vector addresses

.sect “Vectors”,07FF4h

.word DISPLAY ;T1 interrupt

.word START ;All other vectors go to ’START’.

.word START

.word START

.word START

.word START

131

Bootstrap Loader

Reprogram Data or Program Memory through SPI Port

The SPI is very useful as a bootstrap loader for loading program or data information directly into RAM,
EPROM, or EEPROM. The TMS370 family SPI and instruction set provide a fast, efficient way of moving
serial data directly into memory. With the addition of a small interrupt service routine, the memory loader
can become a bootstrap loader to reprogram a device in-socket, in the field. The interrupt routine must do
the following:

Figure 4. Flowchart of Bootstrap Loader Interrupt Service Routine

CALL INTx

INITIALIZE SPI

SET COUNTER TO START OF BLOCK

WAIT FOR CHARACTER

MOVE CHARACTER TO
BLOCK START + COUNTER

COUNTER = COUNTER + 1

END
OF

DATA

N

Y

BRANCH TO START OF BLOCK
START EXECUTION

The interrupt routine loads the received data into program memory beginning at a specified location. After
the data has been loaded in, the program counter is set to the beginning of the block and program execution
is transferred to the new program. The new program can reconfigure the part as desired, or modify the
program or data memory.

132

DSP Controller

Interface TMS370 SPI to TMS320C25 DSP

This example shows how the SPI can be used to communicate with other microprocessors. The exact
method of communication varies from system to system, but the key parts can be shown to demonstrate
how to interface the TMS320C25 and TMS370 serial ports. The TMS320C25 has a serial port similar to
the TMS370, but with additional clocking and synchronization pins.

The C25’s serial port circuitry contains double buffering of both the transmit and receive registers. The
C25 can transmit data in either 8-bit or 16-bit blocks. There are also two modes of transmission: with or
without frame synchronization pulses (FSX/FSR). These serial ports (C25) are fully static; the data
contained is not lost, and to transmit or receive data CLKX/CLKR must be present.

For a complete description of the TMS320C25, see the TMS320C25 User’s Guide. An example of a typical
interconnection using a TMS370C010 is shown below.

Figure 5. TMS370C010 – TMS320C25 Interface

TMS320C25 TMS370C010

INT2
DX
DR

CLKX
CLKR

XF
FSX
FSR

A0
SPISOMI
SPISIMO
SPICLK

INT3

22
54
24
63
64
56
53
25

14
25
23
24

18

In the setup of figure 6, data to and from both devices is clocked using the SPICLK. The TMS370 is
configured so that receipt of an INT3 signal causes the TMS370 to load the SPIDAT register to start the
SPICLK. If the TMS320C25 wants to initiate the conversation, it pulls INT3 low, waits for SPIDAT, and
is clocked out by the SPICLK. If the TMS370 wants to transmit, it sends out a logic 0 on A0, which is tied
to INT2 on the TMS320C25. The TMS320C25 then loads the transmit buffer (DXR) to set up the
synchronization circuitry (FSX/FSR). This in turn will cause the TMS320C25 to bring XF low, which
activates the TMS370 INT3 routine to start the transfer. The seemingly complicated handshaking is
necessary because both the TMS320C25 and the TMS370 want to be in control of the transmission. The
TMS320C25 needs to generate its FSX/FSR pulse before data transmission, so it has to know when a data
transfer is going to happen. By using the interrupt scheme to control the transmission, a data transfer will
not start until both devices are ready. The following procedures summarize the actions required when either
device wants to transmit:

133

• TMS320C25 wants to transmit:

 C25 loads DXR. ;Places data to be transmitted in buffer.

 C25 toggles XF low. ;Generates TMS370 INT3.

 TMS370 executes INT3 routine.

• TMS370 wants to transmit:

 TMS370 sets SPEAK370 bit. ;TMS370 initiates the transmission.

 TMS370 toggles A0 low. ;Generates TMS370 INT2.

 C25 loads DXR. ;Places data to be transmitted in buffer.

 C25 toggles XF low. ;Generates TMS370 INT3.

 TMS370 executes INT3 routine C25.
 C25 clears INT2 flag.

;C25 does not initiate transmission.

• TMS370 INT3 routine:

 If first time to transmit/ receive:
 TMS370 transmits 1 character.
 TMS370 transmits 8 characters.

;Cause TMS320C25 to generate
;synchronization pulse (FSX/FSR).
;TMS370 shifts out 8 characters
;to TMS320.

;TMS370 shifts out 8 characters
;to TMS370.

 If SPEAK370 = 0:
 TMS370 clears INT3 flag.
 TMS370 clears SPEAK370 flag.

;TMS320C25 initiated transmission
;Ready for next transmission.
;Default TMS320 transmitting.

 Figure 6 shows the timing diagram of the continuous mode of 8-bit data transmission.

Figure 6. Continuous Mode No Frame Synchronization Pulse

SPICLK

FSX / FSR

SPITXD

C25 DR

C25 DX

SPIRXD

’370 Data TX Byte 1

’370 Data TX Byte 1

’370 Data TX Byte 2

’370 Data TX Byte 2

’370 Data TX Byte 3

’370 Data TX Byte 3

’370 Data RX Byte 1

C25 DX Buffer Contents C25 DXR Data 1 C25 DXR Data 2

’370 Data RX Byte 2Unknown Data From Buffer

Due to the double buffering of the transmitter, the TMS370 must also clock the C25 for one byte (word)
of data to clear the buffer register, and then runs another audit clocking sequence to receive the data.
Therefore the C25 data is always received by the TMS370 one character after being loaded into the C25
DXR.

134

Different protocols have different benefits, and the protocol used depends on the requirements of the
system. If the system requires continual transmission of data from the C25, then the no frame
synchronization mode (no FSX/FSR pulse) allows greater throughput and less system overhead on the
TMS370 processor.

If the system only has periodic data transmission of data between the two processors, and the data needs
to be transmitted immediately, then the TMS370 needs to allow 16 SPICLK cycles for the data from C25
to be received by the TMS370 with added speed. The first byte from the C25 is dummy data. This procedure
is not as efficient as the method of Figure 6, but for single bytes transmitted between long intervals, the data
transfer is quicker. This is due to the TMS370’s not having to wait for the C25 to load the next byte of
transmit data into the buffer for transmission.

Both processors’ flexible modes of transmission (such as C25’s ability to transmit in either 8-bit or 16-bit
mode) allows customization to the parameters of the desired system. The routines shown do not incorporate
any checks if both the C25 routine and TMS370 routine try to communicate at the same time. When this
situation occurs, both processors will think that they initiated the communication and ignore the received
data. If asynchronous communications can occur at the same time in your system, then you need to define
a proper protocol.

Routine
.title “TMS370-TMS320C25 Interface Continuous Mode”

; This is the framework of source code for an interface between a

; TMS370 microcontroller and a TMS320C25 DSP. The external

; interrupts on both devices are used to synchronize the data

; transfer.

; Set up equate table for peripheral file registers used in the

; routine.

SPICCR .equ P030 ;SPI register assignments.

SPICTL .equ P031

SPIBUF .equ P037

SPIDAT .equ P039

SPIPC1 .equ P03D

SPIPC2 .equ P03E

SPIPRI .equ P03F

ADATA .equ P022

ADIR .equ P023

INT1 .equ P017

INT2 .equ P018

INT3 .equ P019

; Allocate register space for communications flags and data registers.

135

COM370 .equ R4 ;Status register for TMS320–TMS370 comm

SPEAK370 .dbit 0,COM370 ;=1 if TMS370 is transmitting

FIRSTX .dbit 7,COM370 ;=1 C25 in continuous mode, need to

;generate first sync pulse

DATAIN .equ R5 ;Received data

DATAOUT .equ R6 ;Data to be transmitted

.text 07000H

START DINT ;Disable all interrupts.

MOV #100,B ;Set stack pointer to r100.

LDSP

Initialize SPI, APORT, and communication status flag.

MOV #087h,SPICCR ;Reset SPI, data out on rising SPICLK,

;8-bit characters

MOV #006h,SPICTL ;Master, enable TALK, disable SPI INT.

MOV #002h,SPIPC1 ;Enable SPICLK out.

MOV #022h,SPIPC2 ;Set SPISIMO & SPISOMI out.

MOV #020h,SPIPRI ;Enable emulator suspend.

MOV #007h,SPICCR ;Reset SPI, data out on rising SPICLK,

;8-bit characters

MOV #001h,ADIR ;Set A0 as output.

MOV #001h,ADATA ;Set A0 high.

MOV #01H,INT1 ;Initialize interrupt 1.

MOV #01H,INT2 ;Initialize interrupt 2.

MOV #01H,INT3 ;Initialize interrupt 3.

SBIT0 SPEAK370 ;Default is TMS370 not speaking.

SBIT1 FIRSTX ;Initialize as first Transmission.

 MOV #00H,DATAOUT ;Initialize the data out register.

EINT ;Enable interrupts.

; Place main program here. When TMS370 is ready to transmit, it will

; call subroutine TRANSMIT. This will cause an interrupt in the TMS320

; which will in turn activate INT1 in the TMS370. When the TMS320 wants

; to initiate a transfer it will generate an INT1 interrupt, causing the

136

; part to execute the INT1 service routine, which will prepare it to

; initiate a transfer. Since both transmissions by the TMS320 and

; TMS370 involve calling the TMS370 INT1 routine, the SPEAK370 bit is

; set by the TMS370 when it initiates a transfer. The data to be

; transmitted is stored in DATA OUT and received data, if it is valid,

; will be stored in DATA IN.

MAIN ...

;

; TMS370 initiates the data transfer to the C25; set appropriate

; flags.

;

TRANSMIT SBIT1 SPEAK370 ;TMS370 is initiating transfer.

AND #0FEh,ADATA ;Write 0 to A0, trigger INT1 in TMS320.

OR #001h,ADATA ;Release TMS320 INT1.

RTS ;Return from subroutine (after INT1

;call).

; Interrupt 3 service routine. This routine is called when the

; TMS370 is going to transmit or receive data.

; Do frame sync once (FIRSTX).

INTR3 JBIT0,FIRSTX,DATA ;If NOT the first transmission goto
DATA.

SBIT0,FIRSTX ;Clear FLAG FIRSTX, this is first time

MOV #080h,SPICCR ;Set character size=1 bit.

MOV #000h,SPICCR ;Reset SPI, data out on rising SPICLK,

MOV #000h,SPIDAT ;Transmit dummy pulse to make TMS320

;generate FSX/FSR sync pulse.

WAIT1 BTJZ #0040h,SPICTL,WAIT1 ;Wait until character has been sent.

MOV SPIBUF,DATAIN ;Clear SPI flag.

MOV #087h,SPICCR ;RESET SPI, character size=8 bit.

MOV #007h,SPICCR ;Enable SPI, character size=8 bit.

DATA MOV DATAOUT,SPIDAT ;Transmit data to TMS320. If SPEAK370=0,

;this may be dummy data.

WAIT2 BTJZ #040h,SPICTL,WAIT2 ;Wait until character has been sent.

JBIT1 SPEAK370,DONE ;If TMS370 is talking, do not save data.

MOV SPIBUF,DATAIN ;Save received data, clear SPI flag.

DONE AND #07Fh,INT3 ;Clear INT1 flag.

137

SBIT0 SPEAK370 ;Clear TMS370 transmission flag.

RTI ;End of INT3 routine.

INTR2 ... ;Interrupt 2 routine

MOV #01H,INT2 ;Clear and enable interrupt 2 flag.

RTI

INTR1 ... ;Interrupt 1 routine

MOV #01H,INT1 ;Clear and enable interrupt 1 flag.

RTI

Set up interrupt vector addresses.

.sect “Vectors”,07FF4H

.word START ;Vector goes to ’START’.

.word START ;Vector goes to ’START’.

.word INTR3 ;INT3 vector

.word INTR2 ;INT2 vector

.word INTR1 ;INT1 vector

.word START ;Reset vector.

The source code for the TMS370C25 in this application is as follows:

*

* sample program for interfacing the TMS370C10 and

* the TMS320C25 serial ports.

*

*

DRR: .equ 0 ;Serial port receive register

DXR: .equ 1 ;Serial port transmit register

IMR: .equ 4 ;Interrupt mask register

DATA: .equ 96 ;General purpose register

*

.sect “AORGO”

B START ;Power–up reset

.sect “AORG1”

B INT2 ;Interrupt 2 service routine

.sect “AORG2”

B RXINT ;Serial port receiver interrupt

*

.sect “AORG3”

138

START .equ $

DINT ;Disable interrupts.

LDPK 0 ;Point to page 0.

FORT 1 ;Set serial port to 8-bit mode.

LALK 0ffc4h ;Enable interrupt 2.

SACL IMR ;

STXM ;FSX is output.

RFSM ;Continuos mode

ZAC ;Zero the accumulator.

SACL DRR ;Initialize receiver register.

SACL DXR ;Initialize transmit register.

EINT

*

*

* Main body of program goes here. To initiate data transfer to the TMS370

* CALL subroutine XMIT. Doing this tells the TMS370 to start clocking, and

* the 320 knows not to save the received data. When subroutine INT2 is

* entered, the 320 again tells the 370 to start clocking the serial port

* and the 320 knows that it needs to save the data it receives. RXISR

* lets the processor know when the data has been received.

*

XMIT LAC DXR ;Load data for transmission.

CALL XMTISR ;Initiate data transfer to 370.

EINT ;Enable interrupts.

IDLE ;Wait for received data, do not save

RET ;received data.

INT2: .equ $

RPTK 40 ;Give 370 enough time to detect

NOP ;the XF generated interrupt. Then

CALL XMTISR ;initiate data transfer to 370.

LALK Offd4h ;

SACL IMR ;Enable int2, rxint.

EINT ;Enable interrupts.

IDLE ;Wait for received data.

LAC DRR ;Load accumulator with data receive

;register.

ANDK Offh ;Save only lower 8 bits.

139

SACL DATA ;Store received data.

RET

*

RXISR: .equ $;Serial receive interrupt

EINT ;Enable interrupts.

RET

*

XMTISR:.equ $;Initiate data transfer to 370 routine.

RXF ;Toggle XF flag low, causes 370

;interrupt

NOP ;

NOP ;

NOP ;

SXF ;and then high, to clear only, want 370

;INT3

RET ;routine to execute once.

140

SCI Module Description

The SCI – How It Works
The SCI module is a high-speed serial I /O port that permits asynchronous or isosynchronous
communication between the TMS370 and other peripheral devices such as keyboards, display terminal
drivers, and RS-232 interfaces. The SCI transmit and receive registers are double-buffered to prevent data
collisions. In addition, the TMS370 SCI is a full duplex interface, allowing for simultaneous transmission
and reception of data. Parity checking is done with on-chip hardware, eliminating the need for software
overhead. The SCI is designed with the ability to do data formatting and integrity checking in hardware,
further increasing execution speed.

The SCI module contains four major blocks as shown below: an 8-bit receiver and associated interrupt
hardware, an 8-bit transmitter with its interrupt hardware, a programmable clock for setting the baud rate,
and frame/format /parity error circuitry.

NOTE:
The TMS370 Family contains two different SCI Modules. The SCI1 Module
has three external pins (SCICLK, SCITXD, SCIRXD) while the SCI2
Module contains two external pins (SCITXD, SCIRXD). See the TMS370
Family User’s Guide for more information.

Figure 7. SCI1 Block Diagram

RXST.4–2

FE OE PE

RX ERROR

SCICTL.3

TXWAKE

SCICCR.6 SCICCR.5

Even / Odd Enable
Parity

Frame format and mode

WUT

TXBUF.7 – 0

Transmit data

buffer reg.

TXSHF reg.

SCICTL.7

SCICTL.6

TXRDY

TX EMPTY

SCI TX Interrupt

SCICTL.0

TXENA

8

SCICTL.4

BAUD MSB. 7 – 0

Baud rate
MSbyte reg.

BAUD LSB. 7 – 0

Baud rate
LSbyte reg.

SYSCLK

SCICTL.1

SCITXD

TX INT ENA

RXST.7

ERR

RXSHF reg.

RXST.1

8

Receive data
buffer reg.

RXBUF.7 – 0

RXENA

RXST.6

RXST.5

RXRDY

BRKDT

SCI RX interrupt

SCICTL.1

RX / BK INT ENA

ÎÎÎ
ÎÎÎ

SCIPRI.5

Level 1 Int

Level 1 Int

Level 1 Int

Level 1 Int

SCI TX Priority

SCI RX priority

SCITXD

SCIPC2.7 – 4

SCIRXD
SCIRXD

SCIPC2.3 – 0

SCICTL.0

RXWAKE

1 ÎÎÎSCIPRI.6 0

1

0

1

SCICLK

SCIPC1.3 – 0
CLOCK

141

Choosing SCI Protocols and Formats

Data formatting is a characteristic of the SCI that sets it off from standard serial communications interfaces
such as shift registers. The basic unit of data is called a character and is one to eight bits in length. Each
character of data is formatted with a start bit, one or two stop bits, and optional parity and address bits. A
character of data along with its formatting information is called a frame. Frames are organized into groups
called blocks. A block of data usually begins with an address frame which specifies the destination of the
data as determined by the user’s protocol.

The start bit is a low bit at the beginning of each frame which marks the beginning of a frame. The SCI uses
an NRZ (non return to zero) format, which means that in an inactive state the SCIRxA and SCITxA lines
will be held high. Peripherals are expected to pull the SCIRxA and SCITxA lines to a high level when they
are not receiving or transmitting on their respective lines.

The different SCI data framing formats are shown in Figure 8.

Figure 8. SCI Data Frame Formats

 ADDRESS BIT MODE

IDLE LINE MODE
(NORMAL NON–MULTIPROCESSOR COMMUNICATIONS)

START LSB 2 3 4 5 6 7 MSB PARITY STOPADDR/
DATA

START LSB 2 3 4 5 6 7 MSB PARITY STOP

With the exception of the start bit and NRZ formatting, all the elements mentioned above are user
programmable. These are controlled by the SCI communication control register (SCICCR).

1. Protocols: The TMS370 SCI supports two protocols, the idle line and address bit modes. The
two formats differ in how they distinguish the beginning of a block. The address bit mode adds
an extra bit to each frame of transmitted data. Setting this bit to a logic 1 means that the current
frame is an address. In the idle line mode, an address frame is the first frame following an idle
period of ten bits or more. The protocol is selected with the ADDRESS/IDLE WUP
(SCICCR.3) bit.

2. Character Length: The length of the character to be transmitted is programmable from one to
eight bits. Data loaded into TXBUF is automatically right-justified (normal byte format) for
transmission. When receiving data in RXBUF the data is also right-justified. Data is transmitted
and received LSb first. If the character length is less than eight bits the data value is automatically
buffered by leading 0s. Character length is set by programming the SCI CHAR 0–2
(SCICCR.0–2) bits to the values shown in Table 4.

142

Table 4. Transmitter Character Bit Length

SCI
Char2

SCI
Char1

SCI
Char0

Character
Length

0 0 0 1

0 0 1 2

0 1 0 3

0 1 1 4

1 0 0 5

1 0 1 6

1 1 0 7

1 1 1 8

3. Parity : Parity is a method of checking the integrity of a transmitted/received character. It sends
an extra bit with the character to make sure that the sum of 1s in the character is an odd or even
number. Parity checking and generation is done on-chip in hardware. It may be enabled or
disabled, and if used it can be set odd or even. Bits 5 and 6 of the SCICCR register control the
parity checking.

4. Stop bits: A stop bit is a high bit of data transmitted at the end of a frame. The number of stop
bits can be one or two, depending on your application. In general, data integrity is more secure
if two bits are used because the SCI is more likely to catch a framing (SCI synchronization) error.
Adding the extra bit increases the number of bits transmitted per character, however, and slows
the throughput of the serial port.

The SCI SW RESET Bit

The SCI SW RESET bit (SCICTL.5) is used to reset the condition of the SCI state machine and operating
flags. Writing a 0 to this bit sets the operating flags to their reset state and halts the operation of the SCI.
This must be done before using the SCI for the first time or after a system RESET to assure the state of the
SCI. Writing a 1 to the bit releases the SCI state machine and allows the SCI to resume operation.

It is good practice to reset the SCI by writing a 0 to the SCI SW RESET bit before setting up the control
registers. The registers are then set to the desired value and a 1 is written to the SCI SW RESET bit to release
the SCI. This stops the operation of the SCI while it is being configured initially. The SCICTL control
register values can be set in the same instruction that sets the SCI SW RESET bit to 1.

143

Operating Modes of the SCI

The SCI has two modes of operation. The first, asynchronous, is the most commonly used mode and
requires no synchronizing clock between the TMS370 and a peripheral device. When transmitting in the
asynchronous mode, each bit is held for 16 shift-clock cycles. This repetition ensures that the data will be
present long enough for the unsynchronized receiver to get valid data.

In the isosynchronous mode, a common clock is used to increase system throughput by synchronizing the
data transfer between the TMS370 and another serial port. In this mode, one bit of the frame is shifted out
on every shift-clock cycle. Using the isosynchronous mode gives a data transfer rate 16 times the
corresponding asynchronous SCICLK rate, but requires an extra line to carry the SCICLK signal. The
isosynchronous mode is superior to simpler synchronous communications such as the SPI in that you can
achieve near synchronous communication speeds but still use formatting to assure data integrity. The
format for asynchronous and isosynchronous communications is shown in Figures 9 and 10.

Figure 9. Asynchronous Communication Format

1 2 3 4 5 6 7 8 9 10 11 12 13 14 1615 1 2 3 4 5 6 7 8 9 10 11 12 13 14 1615 1

FALLING
EDGE

DETECTED
MAJORITY

VOTE
MAJORITY

VOTE

SCI CLK

RXD

START BIT LS BIT OF DATA

Figure 10. lsosynchronous Communication Format

SCI CLK

TXD

RXD

BIT OUT BIT OUT BIT OUT

BIT IN BIT IN

144

Setting the SCICLK Pins and Baud Rate

The SCICLK is usually configured internally for asynchronous communications, but can be external if
your application requires it. For isosynchronous communications, the clock can be configured internally
or externally, depending on whether the TMS370 will be issuing the clock signal. If the SCICLK pin is not
configured as the serial clock (SCICLK FUNCTION = 0), then the pin may be used for general purpose
I /O by setting SCICLK DATA DIR (SCIPC1.0) to the appropriate value and reading or writing to SCICLK
DATA IN or DATA OUT. When the SCICLK is enabled (SCICLK FUNCTION = 1), the contents of
SCICLK DATA DIR, DATA IN, and DATA OUT are ignored.

Even though the clock is configured internally and is independent in the asynchronous mode, it is necessary
to have the baud rates set to exactly the same value in the transmitting and receiving devices so that the
receivers can synchronize correctly on the frames. This holds whether communications are between two
TMS370s or a TMS370 and a different peripheral device. The baud rate is set by writing a 16-bit value to
the baud rate select registers: BAUDMSB and BAUDLSB. The equations used to calculate the baud rate
register values are shown below:

Asynchronous baud rate = SYSCLK / [(BAUD RATE REG + 1) x 32]

Isosynchronous baud rate = SYSCLK / [(BAUD RATE REG + 1) x 2]

Table 5 gives the baud rate register values for common asynchronous baud rates and frequencies. The
values for isosynchronous baud rates can be similarly calculated.

Table 5. Asynchronous Baud Rate Register Values for Common SCI Baud Rates

SYSCLK Frequency (MHz)

Baud Rate 2.4576 / 4 7.3728 / 4 19.6608 / 4 20.00 / 4

BR Reg %ERR BR Reg %ERR BR Reg %ERR BR Reg %ERR

75 255 0.00 767 0.00 2047 0.00 2082 0.02

300 63 0.00 191 0.00 511 0.00 520 -0.03

600 31 0.00 95 0.00 255 0.00 259 0.16

1200 15 0.00 47 0.00 127 0.00 129 0.16

2400 7 0.00 23 0.00 63 0.00 64 0.16

4800 3 0.00 11 0.00 31 0.00 32 -1.38

9600 1 0.00 5 0.00 15 0.00 15 1.73

19200 0 0.00 2 0.00 7 0.00 7 1.73

38400 - - - - 3 0.00 3 1.73

156000 - - - - - - 0 0.16

BR Reg = 16 bit baud rate register value.

145

NOTE:
When using an externally generated SCICLK in isosynchronous mode, the
maximum speed at which the SCICLK can run is limited to SYSCLK/10.
This is necessary so that the internal clocks of the SCI have time to
synchronize with the external clock. For this reason, use the TMS370 to drive
the master serial clock in a system where maximum throughput is a major
concern.

SCI Receiver Operation

A flowchart showing the operation of the receiver is shown in Figure 11. When the SCI senses a falling
edge on SCIRXD, the flow shown in the figure begins. Depending on the protocol and format, the receiver
checks for transmission errors and loads the data into RXSHF, the receiver shift register. When the number
of bits specified by the SCI character length control bit have been read in, the contents of RXSHF are
transferred to the receiver data buffer, RXBUF, and the RXRDY flag is set to show that the data value is
ready to be read. An SCI receiver interrupt is generated if the SCI receiver interrupt is enabled.

If errors are detected, the RXERROR and specific error (parity, framing, overrun, and break) flags are set
by the hardware and operation continues. Error control is done in software. If multiprocessor
communications are being used, frames received are checked to see if they are address frames and the
appropriate bits are set.

146

Figure 11. Receiver Operation Flowchart

Yes

No

BEGIN SCI
RECEIVER ROUTINE

START OF FRAME?
(FALLING EDGE ON SCIRXD,

FIRST BIT = 0)

READ CHARACTER
INTO RXSHF

PARITY, OVERRUN,
OR FRAMING ERRORS?

SET APPROPRIATE
FLAGS, RXERROR = 1

RX ERROR = 1?

USER DEFINED ERROR ROUTINES

RXENA?

Yes

Yes

No

No

RXSHF – RX BUF
RXRDY = 1

RXWAKE = 0

RXSHF – DATA LOCATION

RXRDY = 0

ADDRESS BIT
MODE

IDLE 11 BITSADDRESS
BIT = 1

RXWAKE = 1

IS ADDRESS
MINE?

SLEEP = 0

SLEEP = 1

MORE
DATA

SLEEP = 1

END OF ROUTINE
Yes

No

Yes

No

YesYes

No

No

Yes

SHADED = SOFTWARE

No

147

SCI Transmitter Operation

A flowchart of the operation of the SCI transmitter is shown in Figure 12. The SCI transmitter is activated
by loading the transmitter buffer, TXBUF, which clears the TXRDY flag. When TXSHF, the transmitter
shift register, is empty the contents of TXBUF are latched into TXSHF and the TXRDY flag is set to
indicate the transmitter is ready for a new character. Depending on the protocol and format, the transmitter
formats the data as needed to signal the beginning and end of frames of data.

148

Figure 12. Transmitter Operation Flowchart

Yes

No

TRANSMITTER ROUTINE

IDLE
MODE

TXWAKE = 1
ADDRESS – TXBUF

TXWAKE = 1
DUMMY – TXBUF

TXWAKE – WUT
TXBUF – TXSHF

0 – TXWAKE

IDLE FOR 10 BITS

DELAY > 10 FRAMES

ADDRESS – TXBUF

TXBUF – TXSHF
TXWAKE – WUT

TXREADY = 1
TXEMPTY = 0

TXENA

TXSHF – SCITXD
TXEMPTY = 1
TXWAKE = 0

MORE
DATA

TXRDY = 1

DATA – TXBUF

END OF ROUTINE

TXBUF – TXSHF
TXWAKE – WUT

TXREADY = 1
TXEMPTY = 0
TXWAKE = 0

No
TXENA

No
WUT = 1

ADDRESS BIT = 1 ADDRESS BIT = 0

TXSHF – SCITXD
TXEMPTY = 1

MORE
DATA

TXRDY = 1

DATA – TXBUF

END OF ROUTINE

Yes

No

No

Yes

Yes

No

Yes

Yes

Yes

Yes

Yes

No

No

SHADED = SOFTWARE

149

Data transmission is initiated by moving data into TXBUF. The status of the TXWAKE flag, set prior to
writing to TXBUF, determines whether or not the current character is an address or data. The contents of
TXWAKE and TXBUF are transferred to WUT (wake up temporary) and TXSHF, respectively, to be
shifted out as soon as the current transmission is complete. WUT and TXSHF are the actual transmission
buffers and cannot be written to directly, only through TXWAKE and TXBUF. This double buffering of
the transmission registers allows you to begin setting up for the transmission of a new character before the
previous character has been shifted out of TXSHF, speeding up data transfer. Data is shifted out of TXSHF,
LSb first.

It should be noted that there are two ways to initiate a block signal when using the idle line protocol. The
first is to write a 1 to the TXWAKE bit and then write dummy data to the TXBUF register. The transmitter
will idle for 10 bits, signalling a block start. The other method is to simply wait for a period of time greater
than the transmitter takes to transmit 10 bits (this is determined from the SCICLK frequency) and write
the address to TXBUF.

SCI Interrupts and Flags

The SCI interrupt logic generates interrupt flags when it receives or transmits a complete character as
determined by the SCI character length. This provides a convenient and efficient way of timing and
controlling the operation of the SCI transmitter and receiver. The interrupt flags for the transmitter and
receiver are TXRDY (TXCTL.7) and RXRDY (RXCTL.7), respectively. The TXRDY flag is set when a
character is transferred to TXSHF and TXBUF is ready to receive a new character. In addition, when both
the TXBUF and TXSHF registers are empty, the TX EMPTY flag (TXCTL.6) is set. The TXRDY flag
signals that you can write another character to TXBUF, and the TXEMPTY flag is set when no new data
value has been written to TXBUF and the SCI has finished transmitting.

When a new character has been received and shifted into RXBUF, the RXRDY flag is set. The status of
data transfers can be checked by polling the flags. In this way, the risk of a receiver overrun or transmitter
corruption can be avoided.

The interrupts associated with the receiver and transmitter can be enabled or disabled using the SCI RX
INT ENA (RXCTL.0) and SCI TX INT ENA (TXTCL.0) bits, respectively. When the interrupts are
enabled and the flag is set, that particular interrupt is asserted. The priority of the SCI RX and TX interrupts
can be set independently using the SCI TX and RX priority bits (SCIPRI.5-6). Note that unless the RXENA
bit (SCICTL.0) is set, the received data will not be shifted into RXBUF and no interrupt will be generated.
Data loaded into TXBUF will not be shifted out unless the TXENA bit is set.

150

Multiprocessor Communications

Using the SLEEP Bit

Quite often several serial ports will be tied to a common line, and a method is needed to restrict the
conversation between two devices to avoid a communications conflict. The SLEEP flag can be used to
disable an SCI until the start of a new block, at which time an address check can be made to see if that
particular receiver is being addressed. The SLEEP bit is used in both idle and address bit modes.

For the single microcontroller system, SLEEP is initialized to 0. In a multiprocessor environment, the SCI
uses the SLEEP (SCICTL.2) flag to control when a specific receiver is addressed. In a multiprocessor
system, the SLEEP flag is initialized to a 1. Until a sleeping receiver receives a block start signal, the
following happens:

1. SCIRX continues to load RXSHF.

2. No format errors are recognized, but BRKDT is.

3. Data is shifted into RXBUF, but RXRDY is not set.

4. RXINT is disabled.

A block start signal acts like an alarm clock for the sleeping SCI receiver. A block start signal signifies that
the current signal is an address. In the address bit mode, this is signalled by address bit = 1. In the idle mode,
a block starts when a low bit is detected after an idle period of 10 bits or more. When a block start signal
is received, the data received (an address) is loaded normally, including the RXWAKE flag. At this point,
the receiver interrupt will be called if enabled and the address byte received is checked with software
against the key for that particular processor. If it matches, the software needs to clear the SLEEP bit and
return to the main loop to read the rest of the block; if not, put the part back to bed (SLEEP = 1), return
to the program, and wait until another block start is detected. Clearing the SLEEP bit informs the
microcontroller that the following frames are data and not addresses.

151

Using the TXWAKE Bit

The TXWAKE bit is used by the transmitter to format the data going out as an address frame or a data frame.
If a data character is being transmitted, the TXWAKE flag is left at 0. If an address needs to be sent,
TXWAKE is set to 1 before the address byte is loaded into TXBUF. The TXWAKE flag is automatically
cleared when the byte is shifted from TXBUF to TXSHF.

Depending on which protocol you are using (address bit or idle), setting the TXWAKE bit has different
effects. If the address bit mode is being used, the address bit will be set for that frame as it is transmitted
out. If the idle bit mode is being used, the transmitter goes idle (transmits a logic high) for a period of 10
bits when TXBUF is loaded. This is, in effect, a dummy write; the next data written to TXBUF will be the
address and will be transmitted out as the address frame. Depending on your application, it may not be
necessary to use the TXWAKE bit. If your design has only one peripheral or device tied to the SCI, then
address bytes are not needed. TXWAKE can be left at 0 for the duration of the transmission and no address
bits will be sent.

Disabling the SCI Transmitter

Because the SCI uses the NRZ format, the transmitter is actually outputting a logic 1 when data is not being
transmitted. If the SCITXD line is going to be tied to a bus, it will be necessary to put the line in a three-state
condition so that the line is not constantly being driven high. This is done by reconfiguring the SCITX pin
as general I /O after transmission. Setting the SCITXD FUNCTION bit = 0 and the
SCITXD DATA DIR = 0 will put the pin into an input configuration that will prevent bus conflicts from
occurring.

Choosing the Right Protocol

Because no idle period is needed between blocks, the address mode is more efficient when sending small
blocks of data, typically fewer than 10 frames. When sending larger blocks, however, it is usually more
efficient to use the idle line mode because the extra bit per frame used in address bit mode becomes more
significant. If the receiver does not change very often, the idle line mode is probably the best choice because
address bytes are not sent that often. For single-processor applications, the idle line mode is usually used.
The address bit mode, because it is formatted to accommodate addressing easily, is frequently used for
multiprocessor designs.

An important consideration to take into account when using the idle line mode is the amount of time it takes
for software overhead. If the transmitter must service a lot of code between transmissions, then there is a
possibility that the transmitter will inadvertently remain idle for ten bits or more, accidentally sending a
block start signal. This becomes more and more likely as the transmitter service routines become more
involved and the baud rate increases. If you are going to be using complicated transmitter routines, it may
be a good idea to use the address bit protocol, even though the extra bit may seem unnecessary in the short
run.

The TMS370 SCI was designed for maximum compatibility with existing microcontroller protocols. For
the purposes of interfacing to other microcontrollers, the address-bit mode is compatible with the I8051
protocol. The idle line mode is in accordance with the MC6801 protocol.

152

Timing the Flow of Data

Transmitting
A few items need to be taken into consideration when using the SCI transmitter. It is important not to write
data to the TXBUF register before it has shifted its data to the TXSHF register. This becomes more likely
as the SCI baud rate decreases and it takes longer to shift out the data. Unlike the SCI receiver, there is no
transmitter overrun flag.

There are two ways to make sure that characters do not get overwritten in TXBUF. The first is to use
transmitter interrupts to control the loading of TXBUF. By setting TX INT ENA (TXCTL.0), the TX
interrupt will be called when TXRDY is set. Because TXRDY is only set (and the TX interrupt called) when
TXBUF is ready to receive a new character, there is no possibility of an overwrite if the instruction is placed
in the interrupt routine. Also, in a large program that transmits from many locations in its code,
interrupt-driven transmit routines are more memory efficient than other methods.

The second way to prevent transmitter overruns is to poll the TXRDY flag (TXCTL.6). If using
interrupt-driven routines is not practical in your application, or the program can do nothing until the data
is transmitted, it may be more practical to load TXBUF and simply loop until the TXRDY flag is set. Use
the BTJZ instruction to loop on itself until the flag is set. Several of the application examples shown later
use this technique.

Receiving
By far the most important thing to remember when receiving data is to keep your receiver routine short.
If a large amount of data is being received, store it in a table and manipulate it later. As soon as the receiver
interrupt is called, move the data out of RXBUF and store it in another register. This will prevent new data
from overwriting data that is already in RXBUF and causing a receiver overrun.

Detecting Transmission Errors

The advantage of formatting data is the ability to detect communication errors when they occur. The SCI
has hardware designed features that make it easy to detect such errors. The SCI receiver has flags to detect
the following errors:

1. Parity: The parity error bit, PE (RXCTL.2), is set when the number of 1s plus the parity bit adds
up incorrectly, depending on whether the parity is odd or even according to the EVEN/ODD
PARITY bit (SCICCR.6). Parity checking can be disabled with the PARITY ENABLE bit
(SCICCR.5).

2. Receiver Overrun: If data is not read from RXBUF before new data is received, the overrun error
bit, OE (RXCTL.3), will be set. This signifies that data received was lost before it could be read.

3. Framing: A framing error occurs when the receiver loses synchronization with the transmitter.
The framing error bit, FE (RXCTL.4), is set when the receiver does not detect a stop bit (or bits)
as expected at the end of a frame.

4. Break Detect: The break detect flag, BRKDT (RXCTL.6), is set when the receiver detects 11
continuous low bits after the FE flag is set. Because of the NRZ communications format, this
signifies a serious error in either the transmitter or the transmission line. This will cause an
interrupt if enabled.

5. RX ERROR: Any time any of the above flags are set, the RX ERROR flag is set. The RX ERROR
flag provides an easy and quick way to see if an error has occurred without polling each bit.

153

All of the above flags are cleared by reading RXBUF, executing an SCI SW RESET, or executing a system
reset.

Of course, if data integrity is not an issue, you can ignore checking for errors. Disabling parity checking
decreases the number of bits sent per frame so, in effect, a faster transmission rate is achieved. In most cases,
however, you will want to make sure your data has been transmitted correctly and leave parity checking
enabled.

In addition to on-chip error checking, there are a number of coding methods that allow faster data transfer
but still ensure data integrity. Encoding the data before it is sent can speed up the transfer without sacrificing
quality. Encoding methods such as cyclic redundancy checking (CRC) or block encoding can be found in
most good books on digital communications. The checksum method of error checking involves checking
parity on a block of data as well as the individual characters.

What to Do With Transmission Errors

Once you get an error, what do you do? Unfortunately, with digital communications there is no easy way
to correct bad data, and then it can only be done if complicated encoding schemes are used. The simplest
way to correct the data is to have the transmitter retransmit the data. This is usually done by reserving a
special NAK (negative acknowledge) character in the data to signal when an error has been detected by
the receiver. When the receiver detects an error, it transmits the NAK character to the other device,
signaling it to retransmit the data.

154

SCI Module Software Examples

The following are examples of the various modes of operation and common software routines used in the
implementation of the SCI. The register equates are shown below.

Common Equates

SCICCR .equ P050 ;SCI communication control register

SCICTL .equ P051 ;SCI operation control register

BAUDMSB .equ P052 ;Baud rate select XSB register

BAUDLSB .equ P053 ;Baud rate select LSS register

TXCTL .equ P054 ;Transmitter interrupt control and status register

RXCTL .equ P055 ;Receiver interrupt control and status register

RXBUF .equ P057 ;Receiver data buffer register

TXBUF .equ P059 ;Transmit data buffer register

SCIPC1 .equ P05D ;SCI port control register 1

SCIPC2 .equ P05E ;SCI port control register 2

SCIPRI .equ P05F ;SCI priority control register

155

SLEEP Bit – Multiprocessing Control

By using the SLEEP bit (SCICTL2), several microprocessors can be tied to common SCIRXD and
SCITXD lines. This example shows a slave microcontroller set to listen for its own address and load its
RAM with a block of data of a fixed size when it is addressed. The data is received through the use of an
interrupt routine. When the part recognizes its own address, it clears the SLEEP bit and subsequent
characters are loaded into memory starting at register DATA+BLOCKSIZE–1 and continuing down to
register DATA. The SLEEP bit is then set and the routine waits for the next address.

Routine
B1200 .equ 2082

MOV #007h,SCICCR ;l stop bit, no parity, isosynchronous,

; idle line protocol, 8–bit characters

MOV #00h,SCICTL ;SCI SW RESET

MOV #HI(B1200),BAUDMSB ;Set for 1200 baud @ 5 MHz.

MOV #LO(B1200),BAUDLSB ;

MOV #001h,RXCTL ;Enable SCIRX INT.

MOV #002h,SCIPC2 ;Set SCIRXD as input.

MOV #060h,SCIPRI ;SCIRX/SCITX interrupts low priority.

MOV #033h,SCICTL ;Release SCI, SLEEP=0,RXENA,TXENA.

.... ;Main code here

RXINT ;Receiver interrupt routine

BTJZ #004h,SCICTL,AWAKE ;If SLEEP=0, do not check address.

XOR #ADDRESS,RXBUF ;Is address mine?

JNE DONE ;If not, go back to sleep.

MOV #011h,SCICTL ;Clear SLEEP bit.

MOV #BLOCKSIZE–1,BCOUNT ;Get size of block (-l for address).

JMP DONE

;Address is mine, start reading data.

AWAKE PUSH B ;Save contents of A & B registers.

PUSH A

MOV BCOUNT,B ;Put pointer and data in temp registers.

MOV RXBUF,A

MOV A,DATA(B) ;Store character in DATAIN table.

POP A ;Restore contents of A & B register.

POP B

DJNZ BCOUNT,DONE ;Wait for next character.

MOV #015h,SCICTL ;Put part back to sleep.

DONE RTI ;Return from interrupt.

156

System Controller Configuration

In this example, the device is setup as a system controller that requests data from specific devices using
the idle line protocol. The address of the device to be interrogated is stored in ADDROUT. The address
is sent out and the controller waits for the data to be sent to it. If an error occurs, the controller asks for the
data to be transmitted again.

Routine
B1200 .equ 129

MOV #00h,SCICTL ;SCI SW RESET

MOV #077h,SCICCR ;1 stop bit, even parity, asynchronous,

;idle line protocol, 8–bit characters

MOV #HI(B1200),BAUDMSB ;Set for 1200 baud.

MOV #LO(B1200),BAUDLSB ;

MOV #001h,RXCTL ;Enable SCIRX INT.

MOV #002h,SCIPC2 ;Set SCIRXD as input.

MOV #060h,SCIPRI ;SCIRX/SCITX interrupts low priority.

MOV #032h,SCICTL ;Internal clock, TXENA, RXENA.

... ;Main code here.

CALL XMIT ;Call subroutine to transmit character.

... ;More main code here.

XMIT MOV #01Ah,SCICTL ;Set TXWAKE: address transmission.

MOV #000h,TXBUF ;Dummy write to cause SCITX idle.

MOV ADDROUT,TXBUF ;Send address.

WAIT BTJZ #040h,RXCTL,WAIT ;Wait for answer.

BTJO #080h,RXCTL,XMIT ;If error occurred, retransmit.

MOV RXBUF,DATAIN ;Save received data.

RTS ;Return to main program block.

157

Nine-Bit Data Protocol

Data transfer can be made more efficient by transferring more bits per character. By using the address bit
mode, an extra bit of data can be added to each character, creating in effect a 9-bit character protocol. Extra
bits, BITNINE for the transmitter and HIGHBIT for the receiver, are used to hold the ninth bits and can
be assigned to any unused register. The transmit and receive routines are similar to the 8-bit character length
routines with the addition of code to monitor the ninth bit. The transmitter routine, upon finding BITNINE
= 1, will set the TXWAKE bit. This will signal the transmitter that address character is going out and to
set the address bit = 1. If the TXWAKE flag is not set, the address bit will remain 0. The receiver checks
to see the value of the ninth bit by polling the status of the RXWAKE flag. If it is set, then the received
character is an address and the ninth bit is set; otherwise, it is not an address and the ninth bit is 0.

Routine
B1200 .equ 129

MOV #000h,SCICTL ;SCI SW RESET

MOV #07Fh,SCICCR ;1 stop bit, even parity, asynchronous,

;address bit protocol, 8–bit characters.

MOV #HI(B1200),BAUDMSB ;Set for 1200 baud.

MOV #LO(B1200),BAUDLSB ;

MOV #001h,RXCTL ;Enable SCIRX INT.

MOV #022h,SCIPC2 ;Set SCIRXD as input.

MOV #060h,SCIPRI ;SCIRX/SCITX interrupts low priority.

MOV #033h,SCICTL ;Internal clock, TXENA, RXENA.

... ;Main code here.

XMITTER ;Transmitter routine.

JBIT0 BITNINE,BITLOW ;Check to see if ninth bit=0.

MOV #03Bh,SCICTL ;Ninth bit is high, set TXWAKE flag.

BITLOW MOV DATAOUT,TXBUF ;Load data to be transmitted.

RTS ;End of subroutine. TXWAKE flag is

; cleared automatically.

RCVR ;Receiver routine.

SBIT1 HIGHBIT ;Address bit is set, ninth bit=1.

BTJO #002h,RXCTL,GETCHAR ;Address bit not set.

SBIT0 HIGHBIT ;HIGHBIT=0.

JMP GETCHAR

GETCHAR MOV RXBUF,DATAIN ;Save other 8 bits of data. RXWAKE is

;cleared automatically.

RTS

158

HALT Mode Wakeup Using the SCI Receiver

In many applications, power consumption is a major concern. The TMS370 has two low power modes,
HALT and STANDBY, which stop execution of various modules in the device. This greatly reduces the
power used by the part. For a complete description of the powerdown/idle modes, see the TMS370 Family
User’s Guide. In a powerdown mode, the part ignores everything but a few select interrupts. The SCIRX
interrupt is recognized in the HALT mode and can be used to wake up the device upon receipt of a falling
edge on SCIRXD. In this way, the part can be put into a low power mode and only be activated when another
device wants to talk to it. The following code shows how to put a TMS370Cx5x into HALT mode to be
awakened upon a SCIRXD interrupt.

NOTE:
You must enable interrupts before executing the IDLE instruction or the part
will not recover from the low power mode (except on a system RESET).

Routine
B1200 .equ 129

MOV #00h,SCICTL ;SCI SW RESET

MOV #077h,SCICCR ;1 stop bit, even parity, asynchronous,

;Idle line protocol, 8-bit characters.

MOV #HI(B1200),BAUDMSB ;Set for 1200 baud.

MOV #LO(B12O0),BAUDLSB ;

MOV #001h,RXCTL ;Enable SCIRX INT.

MOV #002h,SCIPC2 ;Set SCIRXD as input.

MOV #060h,SCIPRI ;SCIRX/SCITX interrupts low priority.

MOV #031h,SCICTL ;Internal clock, RXENA

OR #045h,SCCR2 ;Configure for STANDBY mode.

EINT ;Interrupts must be enabled to exit

;HALT mode.

IDLE ;Go into low power mode. Part will stay

;in standby mode until a valid standby

;interrupt is requested, including

;SCIRX.

159

SCI Module Specific Applications

RS-232-C Interface

Interface TMS370C050 to RS-232-C Connection

The most common of the myriad of serial interfaces is the RS-232-C. Over time it has become an industry
standard for digital communications, used for everything from PCs to telecommunication. This example
will show the software and hardware necessary to connect a TMS370C050 to an RS-232-C interface.
External hardware is needed because RS-232-C specifications call for non-TTL compatible voltage levels.
This example uses the Maxim MAX232 RS-232 line driver/ receiver to buffer the TTL levels to the
–12 V to 12 V levels needed for RS-232 communications. The TMS370C050 will be used as the DCE (data
communications equipment) end of the communications link, that is, as a slave to another controller. For
more information about the RS-232-C interface, consult the References Section for books on digital
communications.

RS-232-C specifications are vague about the exact uses and protocols associated with the pins. This
example shows a common format, using the CTS (clear to send) and DTR (data terminal ready) lines for
handshaking. The transmitted data and received data lines are used for the actual data transmission. In this
example, as in most RS-232-C communications, the transmission are asynchronous and need no
synchronizing clocks. When the DTR line is pulled high, the controller is ready to receive data. Otherwise,
the TMS370C050 stops data transmission until the controller pulls the line high again. The TMS370C050
can also halt data transmission from the controller by pulling the CTS line low. The SCICLK and seven
analog input pins are configured as general I /O pins for the CTS and DTR signals, respectively. The basic
configuration for an RS-232-C connection is shown in Figure 13.

160

SCI Module Specific Applications

Figure 13. TMS370C050 – RS-232-C Interface

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

2

5

14

7

13

8

15

1

11

10

12

9

3

4

5

15

43

29

28

30

15 �F

15 �F

AN7

SCIRXD
SCICLK

SCITXD

TMS370C050 MAX232

RS-232 CONNECTOR

GND

C1+

C1–

C2+

C2–

T1 IN
T2 IN

R1OUT

R2 OUT
VCC

T1 OUT

T2 OUT
R1 IN

R2 IN

GND

V +

V –

VCC

VSS

VSS

VCC

DTR

SG
CTS

RD

TD

161

The framework of a program for controlling communications between the TMS370C050 and a DTE (data
terminal equipment) configured device is shown below.

Routine
.title “RS-232-C Interface”

; This example shows the skeleton of a program for implementing an

; RS-232-C interface in hardware and software.

; Set up EQUATE table for peripheral file registers used in the

; program.

SCICCR .equ P050 ;SCI configuration control register

SCICTL .equ P051 ;SCI operation control register

BAUDMSB .equ P052 ;Baud rate select MSB register

BAUDLSB .equ P053 ;Baud rate select LSB register

TXCTL .equ P054 ;Transmitter int. control /status

;register

RXCTL .equ P055 ;Receiver int. control /status register

RXBUF .equ P057 ;Receiver data buffer register

TXBUF .equ P059 ;Transmit data buffer register

SCIPC1 .equ P05D ;SCI port control register 1

SCIPC2 .equ P05E ;SCI port control register 2

; Define registers & constants used in program

DATAIN .equ R2 ;Temporary register for received data

DATAOUT .equ R3 ;Temporary register for transmitted data

B9600 .equ 15 ;Baud rate register value for 9600 baud.

.text 07000h

START DINT

; SCI Initialization

MOV #000h,SCICTL ;SCI SW RESET

MOV #077h,SCICCR ;stop bit, even parity, asynchronous,

162

;Idle line protocol, 8-bit characters
MOV #HI(B9600),BAUDMSB ;Set for 9600 baud (@ 4.9152MHz)

MOV #LO(B9600),BAUDLSB ;

MOV #002h,SCIPC1 ;Set SCICLK as function pin.

MOV #022h,SCIPC2 ;Set SCIRXD,SCITXD as input.

MOV #060h,SCIPRI ;SCIRX interrupt low priority

MOV #033h,SCICTL ;Release SCI, set internal clock,

;Sleep=0,RXENA,TXENA

MOV #200,B ;Start stack pointer at R200.

LDSP

EINT ;Enable interrupts

; Main part of program manages and stores the data. When the program is

; ready to receive new data it calls subroutine RXCHAR. When the

; program is ready to transmit, it loads register DATA OUT and calls

; subroutine TXCHAR.

MAIN

...

RECEIVE CALL RXCHAR ;Get next character.

MOV A,DATAIN

...

XMIT MOV DATAOUT,A

CALL TXCHAR ;Transmit character.

...

JMP MAIN

; SCI receiver subroutine.

; The subroutine brings CTS high to signal that the TMS370 is ready to

; receive data, then it waits until a character is received. After a

; character has been received, CTS is pulled low again to stop

; transmission by the other device, and the character is saved in

; register A.

RXCHAR MOV #005h,SCIPC1 ;Set CTS high. (TMS370 ready to receive)

RXWAIT BTJZ #040h,RXCTL,RXWAIT ;Loop until character received.

MOV #001h,SCIPC1 ;Set CTS low to stop transmission.

163

MOV RXBUF,A ;Save received character.

RTS

; SCI transmitter subroutine.

; The subroutine waits for the other device to bring the DTR line high

; before transmitting. The character is then sent and the TXCTL

; register is polled to make sure the character has been transmitted

; before continuing.

TXCHAR BTJZ #080h,ADIN,TXCHAR ;Wait for DTR to go high.

TXWAIT BTJZ #080h,TXCTL,TXWAIT ;Wait until previous characters are

;transmitted out.

MOV A,TXBUF ;Send out the character.

RTS

; Set up interrupt vector addresses.

.sect “VECTORS”,07FF2h

.word START ;No interrupts are used:

.word START ;All vectors will jump to ’START’.

.word START

.word START

.word START

.word START

164

Dumb Terminal Driver

Use TMS370C050 SCI to Interface to Dumb Terminal

The power of the TMS370C050 microcontroller allows it to control a large number of tasks at the same
time. The on-chip peripherals can operate independently of each other, releasing the CPU to do other tasks.
This example shows a TMS370C050 microcontroller configured as a dumb terminal driver. ASCII data
is received from a terminal and stored in a buffer. Data to be transmitted is stored in another buffer and
shifted out of the SCI when the terminal is ready to receive. An example of how the TMS370C050 and the
terminal are connected is shown in Figure 14.

Figure 14. Terminal Interface Example

SCITXD
30

INTERFACE

SCIRXD
29

DUMB TERMINAL

KEYBOARD

MONITOR

TMS370C050

This example uses the X-On/X-Off method of handshaking. Only the data transmit and receive lines are
needed because the handshaking is done in software. When either the terminal or TMS370 receive buffers
fill up, the respective device forces an X-Off (013h) onto the transmit line to stop the other device from
transmitting. When the buffer on either device empties sufficiently, the respective device transmits an
X-On character (011h) and the other device begins transmitting again. This simple and effective
handshaking technique eliminates the need for additional signals and/or hardware to control the
transmission. Because the receive and transmit routines are independent and interrupt driven, they can be
combined with other routines to expand the uses beyond that of a simple terminal controller.

The example shown below is the framework for a terminal controller showing the code necessary for
receiving from and transmitting to the terminal. When the program receives a character, it automatically
branches to RXINT, the SCI receiver interrupt routine, where the character is stored in the receiver buffer.
If the 32-character receiver buffer contains more than 27 characters, the receiver immediately sends an
X-Off signal to the terminal to stop the flow of data to the controller. The 27-character limit is set because
the terminal will not recognize the X-Off immediately and may send a few more characters. When the
controller is ready to process the received data, it pulls the character from the receiver buffer. If the buffer
contains less than four characters and an X-Off had been previously sent, then an X-On signal is sent to
the terminal to start data transmission to the controller again.

After the data is manipulated by the controller (special characters added, brightness, or cursor position
changed), subroutine TXCHAR is called. This subroutine loads the data into the transmitter buffer and
enables the TX interrupt. The program jumps to the interrupt routine where the character is transmitted out.
If the terminal has sent an X-Off, the routine waits until an X-On is received to transmit.

165

Routine
.title “SCI Terminal Driver”

; Set up equate table for peripheral registers used in program.

SCCR0 .equ P010 ;System configuration register

;assignments.

SCCR1 .equ P011

SCCR2 .equ P012

SCICCR .equ P050 ;SCI configuration control register

SCICTL .equ P051 ;SCI operation control register

BAUDMSB .equ P052 ;Baud rate select MSB register

BAUDLSB .equ P053 ;Baud rate select LSB register

TXCTL .equ P054 ;Transmitter int. control /status register

RXCTL .equ P055 ;Receiver int. control /status register

RXBUF .equ P057 ;Receiver data buffer register

TXBUF .equ P059 ;Transmit data buffer register

SCIPC1 .equ P05D ;SCI port control register 1

SCIPC2 .equ P05E ;SCI port control register 2

SCIPRI .equ P05F ;SCI priority control register

; Allocate register space for registers used in program. Also mark

; beginning of spaces to be used by 32-byte data transfer buffers.

COMSTAT .equ R2 ;Communications status register

LOCSTAT .dbit 0,COMSTAT ;X-Status from local TKS370 (1=Xoff)

REMSTAT .dbit 1,COMSTAT ;X-Status from remote terminal (1=Xoff)

RXPTR .equ R3 ;Location of last received data in BUFFER.

RXPTRI .equ R4 ;Interrupt routine data pointer.

RXDIFF .equ R5 ;Number of characters in RXBUFFER

TXPTR .equ R6 ;Next location to be transmitted in BUFFER

TXPTRI .equ R7 ;Interrupt routine data pointer

TXDIFF .equ R8 ;Number of characters in TXBUFFER

RXBUFFER .equ R9 ;Beginning of 32-byte receiver data buffer

TXBUFFER .equ R41 ;Beginning of 32-byte transmit data buffer

; Define constants used in program.

TXLIMIT .equ 27 ;Maximum # of characters in buffers before

166

RXLIMIT .equ 27 ;XOFF or XON is sent

RXLIMIT2 .equ 4

XON .equ 011h ;Control-Q character

XOFF .equ 013h ;Control-S character

.text 07000h

START DINT

; Initialize SCI.

MOV #077h,SCICCR ;1 stop bit, even parity, asynchronous,

;Idle line protocol, 8-bit characters

MOV #000h,SCICTL ;SCI SW RESET.

MOV #000h,BAUDMSB ;Set for 9600 (@ 5MHz)

MOV #00Fh,BAUDLSB ;

MOV #001h,RXCTL ;Enable SCIRX INT

MOV #001h,TXCTL ;Enable SCITX INT

MOV #002h,SCIPC1 ;Set SCICLK as function pin.

MOV #022h,SCIPC2 ;Set SCIRXD,SCITXD as input.

MOV #050h,SCIPRI ;SCIRX INT — high priority

;SCITX INT — low priority

MOV #033h,SCICTL ;Release SCI, internal clock,

;sleep=0,RXENA,TXENA

; Clear data registers.

CLR COMSTAT ;Set status flags to XON.

CLR RXPTR ;Clear data pointer registers.

CLR RXPTRI

CLR RXDIFF

CLR TXPTR

CLR TXPTRI

CLR TXDIFF

Mov #200,B ;Set stack pointer below BUFFER table.

LDSP

EINT ;Global interrupt enable

;

167

; Place main block of code here. When a character is received the SCI

; receiver interrupt routine is called, and the character is stored in

; the data buffer. When the program is ready to process a character

; that has been received, the subroutine RXCHAR is called. When a

; character is ready to be transmitted, the routine TXCHAR is called,

; and the character is transmitted.

MAIN

; ...

CMP #00H,RXDIFF ;Characters waiting to be processed?

JEQ NORCVR ;If not, continue on.

CALL RXCHAR ;Pull character from RXBUFFER.

MOV A,DATA

NORCVR NOP

; ... ;Massage data for terminal

;(formatting, uppercase, etc).

MOV DATA,A

CALL TXCHAR ;Place character in TXBUFFER to be

;transmitted.

JMP MAIN

; SCI Receiver Subroutine.

; This routine is called whenever the program is ready to process a

; character in the receiver buffer.

RXCHAR

BTJO #0FFh,RXDIFF,CHKXON ;Any characters in buffer?

JMP RXCHAR ;If not, wait.

CHKXON DEC RXDIFF ;One less character in RXBUFFER

JBIT0 LOCSTAT,GRABCHAR ;XON already sent? Don’t send another.

CMP #RXLIMIT2,RXDIFF ;Receiver buffer emptying?

JGE GRABCHAR ;No, do not send XON.

WAIT1 BTJZ #080h,TXCTL,WAIT1 ;Wait until present transmission

;complete.

MOV #XON,TXBUF ;Put XON in transmitter buffer

SBIT0 LOCSTAT ;I have sent an XON.

168

GRABCHAR PUSH B

MOV RXPTR,B ;Increment pointer.

INC B

BTJZ #020h,B,NOROLL1 ;Does RXPTR need to be rolled over?

MOV #0,B ;Yes, reset RXPTR to start of RXBUFFER.

NOROLL1 MOV B,RXPTR ;Save new value of RXPTR.

MOV *RXBUFFER[B],A ;Get new value from RXBUFFER.

POP B

RTS

; SCI Transmitter Subroutine.

; This routine is called whenever the program is ready to transmit a

; character to the terminal.

TXCHAR

CKP #TXLIMIT,TXDIFF ;Wait until there is room in buffer.

JGE TXCHAR

PUSH B

MOV TXPTR,B

INC B ;Next character to be transmitted

BTJZ #020h,B,NOROLL2 ;Does TXPTR need to be rolled over?

MOV #0,B ;Reset TXPTR to beginning of TXBUFFER.

NOROLL2 MOV B,TXPTR ;Save new value of TXPTR.

INC TXDIFF ;Inc. # of characters to be transmitted.

MOV A,*TXBUFFER[B] ;Save character in transmitter buffer.

POP B ;Restore value of B.

OR #001h,TXCTL ;Enable TX interrupt.

RTS ;Exit.

; SCI Transmitter Interrupt Routine.

; This routine is called whenever the program is ready to transmit a

; character to the terminal.

TXINT

JBIT1 REMSTAT,TXEXIT ;If terminal has sent XOFF, do not

;transmit.

PUSH A

PUSH B

INC TXPTRI ;Next BUFFER location

169

BTJZ #020h,TXPTRI,NOROLL3 ;If TXPTRI past end of buffer, clear

;it.

CLR TXPTRI ;Set TXPTRI to beginning of buffer.

NOROLL3 DEC TXDIFF ;If so, nothing to transmit.

MOV TXPTRI,B ;

MOV *TXBUFFER[B],A

TXWAIT1 BTJZ #080h,TXCTL,TXWAIT1 ;Wait until previous characters have

;finished transmitting.

MOV A,TXBUF ;Transmit character.

POP B ;Increment TXPTR.

POP A ;

BTJO #0FFh,TXDIFF,TXEXIT ;If no more characters to send,

AND #0FEh,TXCTL ;disable interrupts.

TXEXIT RTI

; SCI Receiver Interrupt Service Routine

;

; This interrupt routine receives characters and checks for XON and

; XOFF characters sent by the terminal. The received characters are

; stored in RXBUFFER for the subroutine RXCHAR to manipulate them.

RXINT

PUSH A ;Save A register contents.

MOV RXBUF,A ;Grab received character from buffer.

CMP #XON,A ;Was an XON received?

JNE TRYXOFF

SBIT0 REMSTAT ;Set flag: XON received.

JMP RXDONE

TRYXOFF CMP #XOFF,A ;Was an XOFF received?

JNE SAVECHAR

SBIT1 REMSTAT ;Set flag: XOFF received.

JMP RXDONE

SAVECHAR

PUSH B ;Save B register contents.

MOV RXPTRI,B ;Point to location to store new

;character.

INC B

BTJZ #020h,B,NOROLL4 ;Does RXPTR1 need to be rolled over?

MOV #O,B ;Reset RXPTRI to beginning of BUFFER.

170

NOROLL4 MOV B,RXPTRI ;Save new value of RXPTRI.

MOV A,*RXBUFFER[B]

INC RXDIFF ;# of stored characters + 1.

POP B ;Restore B register contents.

JBIT1 LOCSTAT,RXDONE ;XOFF already sent? Don’t send another.

CXP #RXLIMIT,RXDIFF ;Receiver buffer getting full?

JL RXDONE ;No, exit interrupt routine.

RXWAIT BTJZ #080h,TXCTL,RXWAIT ;Wait until present transmission

;complete.

Mov #XOFF,TXBUF ;Put XOFF in transmitter buffer.

SBIT1 LOCSTAT ;I have sent an XOFF.

RXDONE POP A ;Restore A register contents.

RTI ;End of receiver interrupt routine.

; Setup interrupt vectors addresses.

.Sect “VECTORS”,07FF0h

.word TXINT ;SCITX interrupt routine.

.word RXINT ;SCIRX interrupt routine.

.word START ;All other vectors will jump to ’START’.

.word START

.word START

.word START

.word START

.word START

171

There are a few things that should be noted about any terminal controller code. The most important is to
watch the timing of the transmission of X-Off and X-On characters from the receiver routines. It is
important that as soon as the receiver buffer passes its limit (in this case 27 characters) that an X-Off be
transmitted to make sure that the buffer does not overflow. A problem arises in that the routine to transmit
the X-Off character should be placed inside the RXINT routine so that it can be called immediately.
Unfortunately, you have to wait to make sure that the current transmission is finished before starting the
X-Off transmission. With all this waiting and transmitting inside the RXINT routine, it is possible at high
SCI speeds that the routine will not be able to finish the current receiver interrupt and get the next character
out of RXBUF before it is overwritten.

There is no simple way around this problem. One suggestion is to find the maximum time it takes for the
interrupt routine with the X-Off transmission and tailor your SCI speed accordingly. If the receiver buffer
size is greatly increased, it may be possible to wait for the next transmitter interrupt to send the X-Off. You
may also want to poll the receiver overrun flag and transmit a special NAK (negative acknowledge)
character to the terminal to have it retransmit the data. The exact solution for your particular case depends
on your application.

172

Low Power Remote Data Acquisition

Use TMS370CO50 in STANDBY Mode with SCIRX Wake-Up Procedure

The low-power modes and flexible serial interface of the TMS370 family make it ideal for applications
involving remote sensing. In this application example, a TMS370C050 is acting as a climate recorder in
a remote location. Data from measuring instruments is collected via the on-board A/D and stored until
requested by the host controller. Power consumption is a major concern because the system is designed to
be battery-operated and serviced infrequently. A basic configuration is shown below in Figure 15. The
TMS370C050 is connected through the A/D port to a variety of analog sensing devices. The transmit and
receive lines are buffered through external logic to whatever levels are necessary to communicate with the
host controller. The communications link may be as simple as a direct wire connection or as complicated
as a modem interface.

Figure 15. Remote Data Acquisition Example

+

–

HOST
CONTROLLER

TMS370C050

HOST
TRANSMIT

HOST
RECEIVE

29

30

SCIRX

SCITX

36

37

38

39

40

41

42

43

33, 61

15, 63

9

16, 62

SENSOR 1

SENSOR 2

SENSOR 3

SENSOR 4

SENSOR 5

SENSOR 6

SENSOR 7

AN0

AN1

AN2

AN3

AN4

AN5

AN6

VCC1
VCC2

VSS1
VSS2

SENSOR 8

173

The program uses T1 to periodically read the A/D values and store them in ATABLE. T1 can also bring
the device out of STANDBY mode through the T1 interrupt. In this way, the device will draw less than
one-quarter its normal operating current most of the time. The A/D conversion routine is not shown here,
but examples can be found in the TMS370 Family User’s Guide and related application notes. In particular,
the A/D routine is similar to the one shown in the Design Aids section of the TMS370 Family User’s Guide.
The data can be stored in RAM, or if power loss is a consideration, EEPROM memory may be used.

Because of the minimum speed of the part and the size of the timer registers, the longest timer period we
can have is 33.6 seconds. For this example, the time between updates is 10 minutes. To allow for the extra
time, a counter is included in the timer interrupt routine. If a full 10 minutes have not passed, the part goes
back into STANDBY mode to wait for the next interrupt. The equation used to calculate the timer and
counter values is:

Time between updates =

10 min = 600 sec =
256

0.5 MHz

PRESCALE

SYSCLK
x T1 value x interval counter

For this example:

x 65104 x 18

The device will periodically update ATABLE, where the data is stored. Upon receipt of information from
the host (SCIRXD goes low), the remote THS037C050 will come out of STANDBY mode. If the received
data does not match the internal address, the part goes back into STANDBY mode. If the address matches,
the remote will first send one byte of information with the number of bytes of data to be sent, followed by
the data itself. After the device sends all the data, it will put itself back into STANDBY mode to wait for
another inquiry or data acquisition.

Routine

.title “Remote Data Acquisition program”

; This routine uses T1 and SCI receiver interrupts to bring a

; THS0370C050 out of STANDBY mode. The T1 interrupt is used to

; collect data from the A/D converter.

; Set up EQUATE table for peripheral file registers used in the

; program.

SCCR2 .equ P012 ;System configuration register

;assignments.

SCICCR .equ P050 ;SCI configuration control register

SCICTL .equ P051 ;SCI operation control register

BAUDMSB .equ P052 ;Baud rate select MSB register

BAUDLSB .equ P053 ;Baud rate select LSB register

174

TXCTL .equ P054 ;Transmitter int. control/status

;register

RXCTL .equ P055 ;Receiver int. control/status register

RXBUF .equ P057 ;Receiver data buffer register

TXBUF .equ P059 ;Transmit data buffer register

SCIPC1 .equ P05D ;SCI port control register 1

SCIPC2 .equ P05E ;SCI port control register 2

SCIPRI .equ P05F ;SCI priority control register

T1CNTRMSB .equ P040 ;T1 register assignments

T1CXSBLSB .equ P041

T1CMSB .equ P042

T1CLSB .equ P043

T1CCMSB .equ P044

T1CCLSB .equ P045

T1CTL1 .equ P049

T1CTL2 .equ P04A

T1CTL3 .equ P04B

T1CTL4 .equ P04C

T1PC1 .equ P04D

T1PC2 .equ P04E

T1PRI .equ P04E

; Allocate register space for variables and data table used in the

; routine.

ADDRESS .equ R2 ;Temp register for received value.

ICOUNT .equ R3 ;Counter for number of T1 interrupts

;before data is sampled for table.

ATABLE .equ R4 ;Table where A/D data is stored before

;being transmitted.

; Define constants used in program.

TIMEMSB .equ 0FEh ;Interrupt timing

TIMELSB .equ 050h

INTERVAL .equ 18 ;Number of timer interrupts before data

;is stored

MYADDRESS .equ 0FFh ;Personal address of this device

.text 07000h

175

START DINT ;Disable interrupts while initializing.

; System Initialization

MOV #041h,SCCR2 ;STANDBY mode, no priv mode, no osc

;fault reset

; SCI Initialization

MOV #000h,SCICTL ;SCI SW RESET

MOV #077h,SCICCR ;1 stop bit, even parity, asynchronous,

;idle line protocol, 8-bit characters

MOV #000h,BAUDMSB ;Set for 9600 baud @ 5 MHz.

MOV #00Fh,BAUDLSB ;

MOV #001h,RXCTL ;Enable SCIRX INT.

MOV #022h,SCIPC2 ;Set SCIRXD, SCITXD function.

MOV #070h,SCIPRI ;SCIRX interrupt low priority

MOV #033h,SCICTL ;Release SCI SW RESET.

;Internal clock, TXENA, RXENA

; T1 Initialization

MOV #TIMEMSB,TlCMSB ;Set timer values.

MOV #TIMELSB,TlCLSB

MOV #040h,T1PRI ;Set T1 interrupts to low priority.

MOV #010h,T1CTL4 ;Dual compare, disable interrupts.

MOV #007h,T1CTL1 ;System clock / 256

MOV #001h,T1CTL3 ;Disable T1 interrupts, clear flags.

MOV #001h,T1CTL2 ;Disable overflow interrupts,reset Tl.

MOV #INTERVAL,ICOUNT ;Initialize counter.

Mov #200,B ;Initalize the stack pointer to start at

LDSP ;register 200 (away from ATABLE).

MOV #000h,B ;Reset ATABLE pointer.

EINT ;Interrupts must be enabled to exit

;STANDBY mode.

; Main part of program actually does nothing but wait for interrupts.

; The T1 and SCIRX interrupt service routines actually do the work.

MAIN IDLE ;Go into low-power mode.

176

JMP MAIN ;Main loop

; Tl Interrupt Routine

; When the interrupt routine is called, the part will come out of

; STANDBY mode. The routine will collect information from the A/D

; and store it in register A. The data is then loaded into ATABLE so

; it can be easily transmitted out. The number of bytes of stored

; data is in B. At the end of the routine, the part will return to

; the main program where it will go into STANDBY mode again.

TIMERINT AND #00Fh,T1CTL3 ;Clear interrupt flags.

DJNZ ICOUNT,DONE ;Time to get new A/D value? If not,

;skip.

... ;A/D data gathering & formatting. Value

;is stored in register A.

INC B ;Increment data counter /pointer.

MOV A,*ATABLE–1[B] ;Store data in ATABLE.

MOV #INTERVAL,ICOUNT ;Restore counter.

DONE RTI ;End of service routine

; SCI Receiver Interrupt Routine

; This routine is called when the part receives a low pulse on the

; SCIRX pin. The received datum is compared against an internal

; address to see if the device was addressed. If so, the routine

; transmits one character indicting the number of bytes to be

; transmitted. The routine then transmits all the data stored in

; ATABLE, LIFO.

RXINT MOV RXBUF,ADDRESS ;Read received address.

BTJ0 #080h,RXCTL,RXDONE ;If there was an error, wait for another

;transmission.

CMP #MYADDRESS,ADDRESS ;If address not mine, ignore wake-up

;call.

JNE RXDONE ;

MOV B,TXBUF ;# of characters to be transmitted

CMP #00,B ;If no data stored yet, ignore.

JEQ WAIT

LOOP BTJZ #080h,TXCTL,LOOP ;Wait until character sent.

MOV *ATABLE[B]–1,A ;Transmit character.

177

MOV A,TXBUF ;

DJNZ B,LOOP ;If not done, send next character.

WAIT BTJZ #040h,TXCTL,WAIT ;Wait for last character to be sent.

RXDONE RTI ;Exit interrupt routine and go back into

;STANDBY mode.

; Set up interrupt vectors.

.sect “VECTORS”,07FF2h

.word RXINT ;SCIRX interrupt routine.

.word TIMERINT ;T1 interrupt routine.

.word START ;All other vectors will jump to ‘START’.

.word START

.word START

.word START

.word START

178

Appendix A: SPI Control Registers

The SPI is controlled and accessed through registers in the peripheral file. These registers are listed in Table
6 and described in the TMS370 Family User’s Guide. The bits shown in shaded boxes in Table 6 are
privilege mode bits; that is, they can only be written to in the privilege mode.

Table 6. SPI Control Registers

Designa-
tion

ADDR PF Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SPICCR 1030h P030 SPI SW
RESET

CLOCK
POLARITY

SPI BIT
RATE2

SPI BIT
RATE1

SPI BIT
RATE0

SPI
CHAR2

SPI
CHAR1

SPI
CHAR0

SPICTL 1031h P031 RECEIVER
OVERRUN

SPI INT
FLAG — — — MASTER/

SLAVE TALK SPI INT
ENA

1032h P032

to to Reserved

1036h P036

SPIBUF 1037h P037 RCVD7 RCVD6 RCVD5 RCVD4 RCVD3 RCVD2 RCVD1 RCVD0

1038h P038 Reserved

SPIDAT 1039h P039 SDAT7 SDAT6 SDAT5 SDAT4 SDAT3 SDAT2 SDAT1 SDAT0

103Ah P03A

to to Reserved

103Ch P03C

SPIPC1 103Dh P03D — — — — SPICLK
DATA IN

SPICLK
DATA OUT

SPICLK
FUNCTION

SPICLK
DATA DIR

SPIPC2 103Eh P03E SPISIMO
DATA IN

SPISIMO
DATA OUT

SPISIMO
FUNCTION

SPISIMO
DATA DIR

SPISOMI
DATA IN

SPISOMI
DATA OUT

SPISOMI
FUNCTION

SPISOMI
DATA DIR

SPIPRI 103Fh P03F SPI
STEST

SPI
PRIORITY

SPI
ESPEN — — — — —

179

Appendix B: SCI Control Registers

The SCI is controlled and accessed through registers in the peripheral file. These registers are listed in Table
7 and described in the TMS370 Family User’s Guide. The bits shown in shaded boxes in Table 7 are
privilege mode bits; that is, they can only be written to in the privilege mode.

Table 7. SCI1 and SCI2 Control Registers

SCI1
Designa-

tion
ADDR PF Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SCICCR 1050h P050 STOP
BITS

EVEN/ODD
PARITY

PARITY
ENABLE

ASYNC/
ISOSYNC

ADDRESS/
IDLE WUP

SCI
CHAR2

SCI
CHAR1

SCI
CHAR0

SCICTL 1051h P051 — — SCI SW
RESET CLOCK TXWAKE SLEEP TXENA RXENA

BAUD
MSB

1052h P052 BAUDF
(MSB) BAUDE BAUDD BAUDC BAUDB BAUDA BAUD9 BAUD8

BAUD LSB 1053h P053 BAUD7 BAUD6 BAUD5 BAUD4 BAUD3 BAUD2 BAUD1 BAUD0
(LSB)

TXCTL 1054h P054 TXRDY TX
EMPTY — — — — — SCI TX

INT ENA

RXCTL 1055h P055 RX
ERROR RXRDY BRKDT FE OE PE RXWAKE SCI RX

INT ENA

1056h P056 Reserved

RXBUF 1057h P057 RXDT7 RXDT6 RXDT5 RXDT4 RXDT3 RXDT2 RXDT1 RXDT0

1058h P058 Reserved

TXBUF 1059h P059 TXDT7 TXDT6 TXDT5 TXDT4 TXDT3 TXDT2 TXDT1 TXDT0

105A
h

P05A

105B
h

P05B Reserved

105C
h

P05C

SCIPC1 105D
h

P05D — — — — SCICLK
DATA IN

SCICLK
DATA OUT

SCICLK
FUNCTION

SCICLK
DATA DIR

SCIPC2 105E
h

P05E SCITXD
DATA IN

SCITXD
DATA OUT

SCITXD
FUNCTION

SCITXD
DATA DIR

SCIRXD
DATA IN

SCIRXD
DATA OUT

SCIRXD
FUNCTION

SCIRXD
DATA DIR

SCIPRI 105Fh P05F SCI
STEST

SCITX
PRIORITY

SCIRX
PRIORITY

SCI
ESPEN — — — —

180

SCI2
Designa-

tion
ADDR PF Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SCICCR 1050h P050 STOP
BITS

EVEN/ODD
PARITY

PARITY
ENABLE — ADDRESS/

IDLE WUP
SCI

CHAR2
SCI

CHAR1
SCI

CHAR0

SCICTL 1051h P051 — — SCI SW
RESET — TXWAKE SLEEP TXENA RXENA

BAUD
MSB

1052h P052 BAUDF
(MSB) BAUDE BAUDD BAUDC BAUDB BAUDA BAUD9 BAUD8

BAUD LSB 1053h P053 BAUD7 BAUD6 BAUD5 BAUD4 BAUD3 BAUD2 BAUD1 BAUD0
(LSB)

TXCTL 1054h P054 TXRDY TX
EMPTY — — — — — SCI TX

INT ENA

RXCTL 1055h P055 RX
ERROR RXRDY BRKDT FE OE PE RXWAKE SCI RX

INT ENA

1056h P056 Reserved

RXBUF 1057h P057 RXDT7 RXDT6 RXDT5 RXDT4 RXDT3 RXDT2 RXDT1 RXDT0

1058h P058 Reserved

TXBUF 1059h P059 TXDT7 TXDT6 TXDT5 TXDT4 TXDT3 TXDT2 TXDT1 TXDT0

105A
h

P05A

105B
h

P05B Reserved

105C
h

P05C

105D
h

P05D

SCIPC2 105E
h

P05E SCITXD
DATA IN

SCITXD
DATA OUT

SCITXD
FUNCTION

SCITXD
DATA DIR

SCIRXD
DATA IN

SCIRXD
DATA OUT

SCIRXD
FUNCTION

SCIRXD
DATA DIR

SCIPRI 105Fh P05F SCI
STEST

SCITX
PRIORITY

SCIRX
PRIORITY

SCI
ESPEN — — — —

181

Appendix C: TMS0170 Specifications

The TMS0170 Vacuum Fluorescent (VF) Display Driver is a one-chip interface between low voltage
digital logic (5.0 V) and low voltage (< 18 V) VF displays.

Key Features
• 33 individually controllable VF drivers: 8 high current drivers and 25 low current drivers

• Blanking input allows duty cycling of outputs for brightness control.

• Serial interface minimizes connections between the TMS0170 and the digital system.

• Multiple TMS0170’s can be cascaded using the data out latch.

• Self-load feature allows elimination of load enable line.

• Single supply, from 8 V to 18 V

• Fabricated with high voltage PMOS technology.

• 40 pin DIP and 44-pin PLCC plastic packages are available.

Functional Description

Architecture

The TMS0170, shown in Figure 16 as a block diagram, consists of a 34-bit data shift register, a 33-bit data
latch, and 33 VF drivers. A bit pattern is shifted into the TMS0170 using the clock input, then transferred
to the data latch using the load enable input. The blanking input can be used to turn off all of the drivers
at any time. By duty cycling the blanking input, the brightness of the display can be varied.

Figure 16. TMS0170 Block Diagram

DATA SHIFT REGISTER

LOAD

DATA LATCH

(33-01)
33

BITS

DATA IN

CLOCK

33
BIT (SEE NOTE) BIT

00
DATA OUT

25
BITS

8
BITS

LOW CURRENT
DRIVERS

HIGH CURRENT
DRIVERS

BLANK

LOAD

�
���� ��� �� �� ��� ����
�� ������� ���� ���� 	
 ����

182

Shift Register

The 34-bit shift register consists of 34 D-type flip-flops. The bits are numbered from 33 down to 00. Each
data bit is clocked in on the rising edge of the clock pin, and enters the shift register in flip-flop #33. Upon
each successive clock rising edge, the bit is shifted sequentially through the shift register, from flip-flop
#33 to flip-flop #00. The data in the first 33 flip-flops (from #33 down to #01) is transferred into the data
latch on the rising edge of load enable. Flip-flop #00 is not connected to the data latch, but instead, is
connected to the Data Out output pin. This output can be used for cascading several TMS0170s together
or for self loading. All of the flip-flops in the shift register are cleared by the rising edge of load enable.

Interface

The interface between the TMS0170 and the digital logic consists of four lines; a clock in line, a data in
line, and a load enable line, and a Blank input.

• Data Input: Determines what data value is loaded into the data shift register. This data can then
be latched to the output drivers upon a valid load enable input. A latched high level will turn the
output driver on. A latched low level will turn the output driver off.

• Clock: The rising edge of the clock input will latch the current value of the data input into the
data shift register and cause the shift register to shift by one.

• Load Enable: The rising edge of the load enable input transfers the data from the data shift
register into the data latches and sets the data shift register to zero.

• Blank: This input is used to disable all the drivers. A low level on this pin will force all driver
outputs to a low level. A high level will enable the drivers to output whatever data has been
loaded into their respective latches. This pin has an internal pull-up resistor.

183

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

40

39

38

37

36

35

34

33

32

31

30

29

28

27

26

25

24

23

22

21

VSS
DATA IN

CLOCK

LC OUTPUT-(BIT 21)

LC OUTPUT-(BIT 22)

LC OUTPUT-(BIT 23)
LC OUTPUT-(BIT 30)

LC OUTPUT-(BIT 13)
LC OUTPUT-(BIT 14)

LC OUTPUT-(BIT 15)

LC OUTPUT-(BIT 1)

LC OUTPUT-(BIT 33)

LC OUTPUT-(BIT 5)

LC OUTPUT-(BIT 6)
LC OUTPUT-(BIT 7)

LC OUTPUT-(BIT 28)

LC OUTPUT-(BIT 27)

LC OUTPUT-(BIT 31)
LC OUTPUT-(BIT 18)

LC OUTPUT-(BIT 32)

VDD

BLANK

LOAD ENABLE

LC OUTPUT-(BIT 20)

LC OUTPUT-(BIT 25)

LC OUTPUT-(BIT 24)
LC OUTPUT-(BIT 19)

LC OUTPUT-(BIT 12)
LC OUTPUT-(BIT 17)

LC OUTPUT-(BIT 16)

LC OUTPUT-(BIT 11)

LC OUTPUT-(BIT 4)

LC OUTPUT-(BIT 9)

LC OUTPUT-(BIT 8)
LC OUTPUT-(BIT 3)

LC OUTPUT-(BIT 29)

LC OUTPUT-(BIT 26)

LC OUTPUT-(BIT 10)
LC OUTPUT-(BIT 2)

DATA OUT
T
M
S
0
1
7
0

Figure 17. TMS0170 DIP Pin Out

184

Electrical Specifications

Table 8. Recommended Operating Conditions

Parameter Min Max Units

VSS Supply Voltage 8 18 V

VIH
VIL

High Level Input Voltage
Low Level Input Voltage

VDD + 3.5
VDD - 0.3

VSS + 0.3
VDD + 0.8

V
V

Ta Operating Free-Air Temperature -40 85 *C

Table 9. Electrical Characteristics Over Operating Free Air Temperature Range

Parameter Min Max Units

ISS Supply Current
(all outputs open)
VSS = 8 V to 18 V

17 mA

VOH High Level Output Voltage
(low current drivers)
VSS = 9.5 V IOH = 1.5 mA

Vss - 0.3 V

VOH High Level Output Voltage
(high current drivers)
VSS = 9.5 V IOH = 30.0 mA

VSS - 2.5 V

VOH High Level Output Voltage
(DATA OUT output)
VSS = 9.5 V IOH = 500 µA

VSS - 5.0 V

VOL Low Level Output Voltage
(DATA OUT output)
VSS = 9.5 V IOL = 1 µA
VSS = 9.5 V IOL = 500 µA

VDD + 0.4
VDD + 5.0

V
V

VOL Low Level Output Voltage
(DATA OUT output)
VSS = 9.5 V IOL = 1µA

VDD + 0.4 V

IIH High Level Input Current
(CLOCK DATA LOAD)
VIH = VSS

1 µA

IIL Low Level Input Current
(CLOCK DATA LOAD)
VIL = VDD

1 µA

IIH High Level Input Current
(BLANK)
VIH = 3.5 V

-5 -125 µA

IIL Low Level Input Current
(BLANK)
VIL = VDD

-5 -125 µA

185

Glossary

address bit mode: An SCI mode of communication incorporating an extra bit into each frame to
distinguish address frames from data frames. Setting the address bit to a logic 1 signifies a frame beginning
a new block.

asynchronous mode: A communication format in which no synchronizing clocks are used. The data being
transmitted is repeated several times and a majority vote is taken of selected bits to determine the
transmitted value. This format is commonly used in RS-232-C and systems communications.

block: A collection of one or more frames, the first of which is an address frame.

baud rate: The communication rate for digital transfers, measured in line changes per second. For serial
communications, this equals one bit per second.

character: A group of bits, from one to eight bits in length, that makes up one unit of data.

DCE (data communications equipment): The hardware responsible for controlling digital
communications.

DTE (data terminal equipment): Equipment which receives or originates data transfer in a communications
network.

double-buffered: Using a temporary storage register to hold data between register reads or writes. In the
SCI, the temporary registers are TXBUF and RXBUF. They are used to hold data while transmitting or
receiving and TXSHF or RXSHF are being used, speeding up data transfer and reducing the possibility of
transmitter or receiver overruns.

frame: The basic packet of serial communication. It typically contains one start bit, one to eight bits of data,
and one or two stop bits. It may also contain a parity bit and an address designator bit depending on the
protocol.

full-duplex: A mode of communication in which transmission and reception of signals happens
simultaneously.

idle line mode: A serial communications protocol in which the beginning of a new block (an address frame)
is identified as being the first frame after an idle period.

idle period: A period of ten bits or longer in which no data is received.

isosynchronous mode: A communication format in which synchronizing clocks are used. This is typically
faster than asynchronous communications because one bit of data is transmitted on each shift-clock cycle.

LSb: Least significant bit.

LSB: Least significant byte.

master: In its most general meaning, a mode of operation in which a microcontroller controls another
microcontroller or peripheral and issues timing signals to it. It also refers to a specific mode of operation
of the SPI.

MSb: Most significant bit.

MSB: Most significant byte.

186

NRZ (non return to zero) format: A communication format in which the inactive state is a logic one.

RS-232-C: An industry standard serial communications interface. The most commonly used serial
interface for personal computers.

parity: An error checking protocol based on the assumption that the number of 1s in a character of data
is odd or even. Usually one bit is reserved in each frame to make sure that it plus the number of bits in the
actual data is an odd or even number, depending on whether odd or even parity is used.

protocol: The rules of communication and data format in a communications link between two devices.

shift-clock cycle: One cycle of the SCI clock that gates one bit of data. For isosynchronous
communications, one shift-clock cycle gates one bit of data or format information. In the asynchronous
mode, 16 shift-clock cycles are needed per bit of information.

slave: A mode of operation in which a microcontroller is controlled by and receives synchronizing signals
from another microprocessor.

UART: Universal Asynchronous Receiver/Transmitter; an interface designed to receive and transmit
asynchronous signals for a serial device.

187

References

Friend, G. E., Fike, J. L., Baker, H. C., Bellamy, J.C., Understanding Data Communications, Texas
Instruments Information Publishing Center, 1984.

Schwartz, Mischa. Information, Transmission, Modulation, and Noise. McGraw-Hill Book Company,
1980.

T. I. Microcontroller Applications Group. TMS370 Family User’s Guide, Texas Instruments Technical
Publishing. 1996.

T. I. Digital Signal Processing Applications Group. TMS320C25 User’s Guide, Texas Instruments
Technical Publishing, 1986.

188

189

Fast Method to Determine Parity
With the TMS370

Microcontroller Products — Semiconductor Group
Texas Instruments

190

191

Fast Method to Determine Parity

This routine presents a quick way to determine the parity of a byte. Exclusive ORing all the bits of the byte
together derives a single bit that is the even parity of the word. With exclusive ORing, an even number of
1s combines to form a 0, leaving either an odd 1 or 0 bit. This routine keeps splitting the byte in half and
exclusive ORing the two halves. Table 1 shows register and function values for the routine.

Table 1. Register Values and Functions

Register Before After Function

A TARGET ?? Passing byte from program

B XX ??

CARRY XX Parity Status bit, result to calling routine

Routine

* STEP 1 SUBROUTINE
* Byte bits 7654 3210 TO FIND
* XOR 7654 [MSB above] EVEN PARITY
* ===========
* xxxx ABCD
* STEP 2 –––––> AB CD
* XOR AB [MS bits above]
* =======
* xx ab
* STEP 3 –––> a b
* XOR a [MS bit]
* =====
* x P {answer}
*
**

.TEXT 7000h ;Absolute start address
PARITY MOV A,B ;Duplicate the target byte

SWAP A ;Line up the ms nibble with the ls
;nibble

XOR B,A ;Exclusive OR the nibbles to get a
;nibble answer

MOV A,B ;Duplicate the nibble answer
RR A ;Line up bits 0,1 of the answers to

;bits
RR A ;2, 3 of the answer
XOR B,A ;XOR to get a new 2-bit answer
MOV A,B ;Duplicate this 2 bit answer
RR A ;Line up bit 0 with bit 1
XOR B,A ;XOR for final even parity answer
RR A ;Rotate answer into the carry bit and bit 7
RTS ;Carry = 0 = even # of 1’s

;Carry = 1 = odd # of 1’s
;Use JC, JN, or JNC in next
;executed instruction

192

193

Automatic Baud Rate Calculation
With the TMS370

Microcontroller Products—Semiconductor Group
Texas Instruments

194

195

SCI Port Interfacing

The SCI port provides communication with a variety of peripheral devices in either asynchronous or
isosynchronous mode. The format parameters of the SCI are programmable:

Table 1. Format Parameters

Parameter Options

Mode Asynchronous, isosynchronous

Bit rate (baud) 64K possible bit rates

Character length 1 to 8 bits

Parity Even, odd, off

Number of stop bits 1 or 2

Interrupt priorities Receiver/transmitter

The SCI port is configured for an RS-232-C type interface in Figure 1. Since the TMS370 family uses
TTL-level I/O, the transmit and receive data signals must be converted to RS-232 levels; the 75,188 and
75189 devices provide this function. In the asynchronous mode, the clock signal does not need to be
transmitted but is generated locally at both ends.

Figure 1. SCI/RS-232 Interface Example

TMS370

TTL Level
SCITXD

SCIRXD

75189

+5 V

75188

TX Out

RX In
TTL Level

±12 V

±12 V

SCI Control Registers

The SCI is controlled and accessed through registers listed in the table below and described in the following
subsections. The bits shown in shaded boxes in the table are privilege mode bits; that is, they can only be
written to in the privilege mode. The SCI1 control registers are listed here, for the SCI2 control registers
see Appendix B in Using the SCI/SPI Modules located in this application book.

196

Table 2. SCI1 Control Registers

Designa-
tion

ADDR PF Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

SCICCR 1050h P050 STOP
BITS

EVEN/ODD
PARITY

PARITY
ENABLE

ASYNC/
ISOSYNC

ADDRESS/
IDLE WUP

SCI
CHAR2

SCI
CHAR1

SCI
CHAR0

SCICTL 1051h P051 — — SCI SW
RESET CLOCK TXWAKE SLEEP TXENA RXENA

BAUD
MSB

1052h P052 BAUDF
(MSB) BAUDE BAUDD BAUDC BAUDB BAUDA BAUD9 BAUD8

BAUD LSB 1053h P053 BAUD7 BAUD6 BAUD5 BAUD4 BAUD3 BAUD2 BAUD1 BAUD0
(LSB)

TXCTL 1054h P054 TXRDY TX
EMPTY — — — — — SCI TX

INT ENA

RXCTL 1055h P055 RX
ERROR RXRDY BRKDT FE OE PE RXWAKE SCI RX

INT ENA

1056h P056 Reserved

RXBUF 1057h P057 RXDT7 RXDT6 RXDT5 RXDT4 RXDT3 RXDT2 RXDT1 RXDT0

1058h P058 Reserved

TXBUF 1059h P059 TXDT7 TXDT6 TXDT5 TXDT4 TXDT3 TXDT2 TXDT1 TXDT0

105A
h

P05A

105B
h

P05B Reserved

105C
h

P05C

SCIPC1 105D
h

P05D — — — — SCICLK
DATA IN

SCICLK
DATA OUT

SCICLK
FUNCTION

SCICLK
DATA DIR

SCIPC2 105E
h

P05E SCITXD
DATA IN

SCITXD
DATA OUT

SCITXD
FUNCTION

SCITXD
DATA DIR

SCIRXD
DATA IN

SCIRXD
DATA OUT

SCIRXD
FUNCTION

SCIRXD
DATA DIR

SCIPRI 105Fh P05F SCI
STEST

SCITX
PRIORITY

SCIRX
PRIORITY

SCI
ESPEN — — — —

Automatic Baud Rate Calculation

The automatic baud rate routine automatically calculates the baud for the SCI port by timing the length of
the start bit. This eliminates the need for external select switches, which can cause confusion.

The routine converts the SCIRXD pin to a general-purpose input pin and then samples this pin until it finds
the start bit. Sampling is controlled by the baud counter, which takes 32 cycles for one complete count. At
each count or every 32 cycles, the input pin is sampled. When the start bit is received, its low state is sampled
until the high state of the first data bit (of an odd ASCII value) is detected. The baud register figures the
bit rate according to the number of times the start bit is sampled. Refer to Figure 3 as you examine the
routine.

Automatic Baud Rate Routine

NOTE:
This routine is written for the SCI1 Module. Minor modifications may be
necessary when using the SCI2 Module.

SCICCR .EQU P050 ;SCI communication control register
SCICTL .EQU P051 ;SCI control register
BAUDMSB .EQU P052 ;Baud counter MSB

197

BAUDLSB .EQU P053 ;Baud counter LSB
TXCTL .EQU P054 ;Transmitter control
RXCTL .EQU P055 ;Receiver control
RXBUF .EQU P057 ;Receiver buffer
TXBUF .EQU P059 ;Transmitter buffer
SCIPC1 .EQU P05D ;Port control 1 (SCLK)
SCIPC2 .EQU P05E ;Port control 2 (TXD,RXD)
SCIPRI .EQU P05F ;Priority register
COUNT .EQU R04 ;Temporary counting register
.TEXT 07000h ;Initialize SCI port with a;<CR> (return)

;Baud automatically set on odd
;ASCII character

AUTOBAUD CLR COUNT ;Clear count register
CLR COUNT-1 ;COUNT–1
MOV #0,SCIPC2 ;Set RXD to general-purpose input pin

WAITSTRT BTJO #8,SCIPC2,WAITSTRT ;Wait for a start bit to go low
WAITBIT INC A ;Dummy, gives 32 clock states

;(1 min baud)
INCW #1, COUNT ;Increment counter
BTJZ #8,SCIPC2,WAITBIT ;Wait until start bit ends

;(ASCII char=odd)
SETUP INCW #–1,COUNT ;One less than count into baud reg

MOV COUNT,BAUDLSB ;since the SCI starts from count 0
MOV COUNT–1,BAUDMSB ;Initialize baud registers
MOV #22h,SCIPC2 ;Enable RX and TX pins
MOV #2,SCIPC1 ;Enable SCLK pin (if needed)
MOV #01110111b,SCICCR ;8-bit length, even parity, 1 stop bit

;only even, odd, or no parity
;determined by SCICCR value

MOV #00110011b,SCICTL ;Enable TX, RX, SCLK = internal
;program after input character finishes

MOV #1,TXCTL ;Enable TX interrupts
MOV #1,RXCTL ;Enable RX interrupts
MOV TXBUF,A ;Clear out garbage from SCI (Place in

;program after input character finishes)
EINT

198

Figure 2. Autobaud Waveform

Idle Start
Bit

Data
Bit 1

Data
Bit 2

Waitstart Waitbit Setup

Possible Improvements

To increase flexibility and accuracy, you can improve the routine by using some of the following
suggestions:

• For greater accuracy, time more than one bit and then divide by the number of bits. To do this,
you must choose carefully the character to start the automatic baud routine. The current routine
can use 50% of the ASCII values (all odd ASCII values).

• Add a routine to check the parity of the incoming character and set the parity of the SCI port
accordingly. Again, this means a limited number of characters will correctly autobaud the
routine.

• As an accuracy check, add routines to compare the count of another bit in the character to the
start bit count. Again, you must choose the correct character to start the automatic baud rate
routine.

For a more in-depth discussion of the uses of the TMS370 SCI1 or SCI2, refer to Using the TMS370 SPI
and SCI Modules Application Report located in this book.

199

Part III
Module Specific

Application Design Aids

Part III contains six sections:

 RESET Operations 99.

 SPI and SCI Modules 105.

 Timer and Watchdog Modules 199.

 Analog to Digital Modules 309.

 PACT Module 375.

 I/O Pins 439.

200

201

Using the TMS370 Timer Modules

Microcontroller Products—Semiconductor Group
Texas Instruments

202

203

Introduction

The TMS370 family of 8-bit microcontrollers presently provides up to three timer modules designed to
meet user demands for timer applications.

This application report provides examples of software routines and hardware interface circuits designed
to illustrate how the features of the timer modules may be used to solve a variety of system timer
requirements. These concepts may be adapted and applied to fit the specific needs of your individual
project. Additional information for T1 and T2n may be found in the TMS370 Family User’s Guide, Sections
7 and 8.

Table 1. TMS370 Family Timer Module Capabilities

System Requirements Timer Resources

Real-Time System Control Interval Timers with Interrupts

Input Pulse Width Measurement Pulse Accumulate or Input Capture Functions

External Event Synchronization Event Count Function

Timer Output Control Compare Function

Pulse-Width Modulated Output Control PWM Output Function

System Integrity Watchdog (WD) Function

204

Module Description

Timer 1 (T1)

The T1 module is available on most TMS370 devices, and contains three major blocks as shown in
Figure 1: an 8-bit prescaler/clock source block, a 16-bit general-purpose timer (T1), and a 16-bit watchdog
timer (WD). Additional functions of the T1 module not illustrated in Figure 1 include the interrupts and
l/O pins.

Figure 1. Timer Block Diagram

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

8-Bit
Prescale

MUX

MUX

ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ
ÁÁÁ

Edge
Detect

16-Bit
Capture/
Compare
Register

16-Bit
Counter

16 PWM
Toggle

16-Bit
Compare
Register

16-Bit
WD

Counter
(Third Timer)

T1IC/CR
Pin

T1EVT
Pin

T1PWM
Pin

205

Prescaler / Clock Source

The prescaler/clock source block provides eight available clock sources for the general-purpose timer (T1)
and the WD. (See Figure 2.)

These clock sources are:

• System clock

• Pulse accumulation

• Event input

• System clock with /4 prescale tap

• System clock with /16 prescale tap

• System clock with /64 prescale tap

• System clock with /256 prescale tap

• System clock off (timer not running)

The clock sources may be independently selected for T1 and the WD. For example, you could select the
event input clock source for T1 while the WD uses the system clock with /64 prescale tap.

Figure 2. T1 Prescaler / Clock Source

Prescale
T1EVT

Pin

System
Clock

4 16 64

256 T1 Select
WD Select

General-
Purpose
Counter
Clock

WD
Counter
Clock

Event

Accum

Accum

Event

206

T1 Counter

The T1 block (Figure 3) contains a 16-bit counter, a 16-bit compare register, and a 16-bit capture/compare
register. It provides input capture, output compare, and external event functions. T1 can be operated in
either the dual compare mode or the capture/compare mode, depending on the needs of your individual
application.

The basic functions of the T1 block can be defined as follows:

• The input capture function is used to latch the present value of the 16-bit counter register into
the 16-bit capture/compare register on the occurrence of a selected edge on the T1IC/CR pin.
This function is available only when operating in the capture/compare mode.

• The output compare function is used to trigger an action, such as toggling the T1PWM pin, when
the contents of a compare register equal the present value of the counter register.

• The external edge detection function is used to trigger an action such as loading the capture
register, and occurs when an appropriate external edge is present on the T1IC/CR pin. This
function can also toggle the T1PWM pin or reset the counter in the dual compare mode.

For additional information concerning modes of operation or functions of the T1 block, see Section 7.2 in
the TMS370 Family User’s Guide.

Figure 3. 16-Bit Programmable General-Purpose T1

ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ
ÁÁ

16
Clock

Source

Edge
Detect

16-Bit
Capture/Compare

Register

PWM
Toggle

16-Bit
Compare
Register

Interrupt
Logic

T1IC/CR
Pin

T1PWM
Pin

16-Bit
Counter

207

Standard Watchdog (WD)

The WD (Figure 4) is a separate 16-bit counter in the T1 module. The WD can be used to cause a system
reset or can be software configured as a simple counter/ timer, an event counter, or a pulse accumulator if
the WD reset feature is not needed. The time-out duration for the WD depends on the clock source selected
and can be programmed with an overflow resolution ranging from 15–24 bits.

NOTE:
The TMS370 Family contains3 different WD options: standard WD, hard
WD, and simple counter. Additional information concerning the WD is
available in Section 7.3 of the TMS370 Family User’s Guide.

Figure 4. WD Counter

16-Bit
WD

Counter

WD
Overflow

Flag

4A.7

WD OVRFL
RST ENA

WD OVRFL
INT ENA

4A.5

WD OVRFL
TAP SEL

49.7

WD Reset Key

Clock
Prescaler

Reset

48

46

47

System
Reset

Interrupt
4A.6

T1 Interrupts

The T1 module provides up to five different interrupt flags, depending on the mode of operation. The
actions that trigger an interrupt are as follows:

• External edge detection/ input capture: An active transition on the T1IC/CR pin will cause the
T1EDGE INT FLAG bit (T1CTL3.7) to be set if the T1EDGE DET ENA bit (T1CTL4.0) is set.
In the dual compare mode, this action can reset the T1 counter if the T1CR RST ENA bit
(T1CTL4.1) is set, and also toggle the T1PWM pin if the T1CR OUT ENA bit (T1CTL4.3) is
set.

In the capture/compare mode, the T1EDGE INT FLAG bit (T1CTL3.7) is set if enabled, and
the contents of the T1 counter is loaded into the capture/compare register if the T1EDGE DET
ENA bit (T1CTL4.0) is enabled.

• Compare equals 1: When the value of the compare register matches the value of the T1 counter,
the T1C1 INT FLAG bit (T1CTL3.5) is set during both modes of operation. This action also
toggles the T1PWM pin if the T1C1 OUT ENA bit (T1CTL4.6) is enabled. The T1PWM toggle
function is true only for the dual compare mode of operation.

208

• Compare equals 2: In the dual compare mode, the capture/compare register functions as an
additional compare register, and when the value of the capture/compare register matches the
value of the T1 counter, the T1C2 INT FLAG bit (T1CTL3.6) is set. This action also toggles the
T1PWM pin if the T1C2 OUT ENA bit (T1CTL4.5) is enabled. Note that this function is only
available in the dual compare mode of operation.

• Counter overflow: When the T1 counter overflows from 0FFFFh to 0000h, the T2n OVRFL INT
FLAG bit (T1CTL2.3) is set.

• WD overflow: The WD has overflowed and the WD OVRFL FLAG bit (T1CTL2.5) is set. A
system reset occurs if the WD OVRFL RST ENA bit (T1CTL2.7) is enabled. Also, an interrupt
without system reset can occur when the WD OVRFL RST ENA bit is cleared, and the WD
OVRFL INT ENA bit (T1CTL2.6) is set.

Figure 5. Keyboard Scan Using T1IC/CR as an External Interrupt

TMS370

T1IC/CR

A0
A1
A2
A3
A4
A5
A6
A7

R R R R
VCC

* R = 4.7 k�

0 1 2 3
4 5 6 7
8 9 A B
C D E F

5
4
2
1

6

74LS21

209

T1 I/O Pins

The T1 module includes three I/O pins which can be dedicated for timer functions or as general-purpose
I/O pins. The configuration for these pins is controlled through the timer port control registers T1PC1 and
T1PC2. Their names and T1 functions are as follows:

• T1EVT: This pin may be used as an external clock input to the prescaler /clock source block.
Input frequency may not exceed SYSCLK/2.

• T1IC/CR: Depending on the mode of operation, this pin may be used to input an external signal
to trigger loading of the capture register, toggle the T1PWM output pin, reset the counter, or
generate an interrupt.

• T1PWM: The T1 function of this pin is to output a pulse width modulated (PWM) signal from
the module.

210

T1 Operational Modes

The T1 module may be used in either of two modes of operation: dual compare mode or capture/compare
mode. See Section 7.2 of the TMS370 Family User’s Guide for additional information.

• Dual compare mode: To operate in the dual compare mode, the T1 MODE bit (T1CTL4.7) must
be cleared. This mode provides two compare registers (the capture/compare register is
configured as a compare register) which can be used to control the period and duty cycle of a
PWM signal or for other applications. A block diagram of T1 in the dual compare mode is shown
in Figure 6.

Figure 6. Dual Compare Mode for T1

T1CTL4.1

T1CTL4.4

Prescaler/
clock

source

16-bit
counter

16-bit

16

Compare=

Compare=Reset

T1C1
RST ENAT1 SW

RESET

Edge
select

T1EDGE DET ENA

Output
enable

capture/compare
register MSB

LSB

MSB

LSB

T1CR OUT ENA

T1IC/CR

T1EDGE POLARITY

To
gg

le

16-bit
compare

MSB

LSB

register

T1CC.15-0

T1C1 INT FLAG

T1CTL3.0

T1CTL3.5

T1C1 INT ENA

T1C2 INT FLAG

T1CTL3.1

T1CTL3.6

T1C2 INT ENA

T1 OVRFL INT FLAG

T1CTL2.4

T1CTL2.3

T1 OVRFL INT ENA

T1EDGE INT FLAG

T1CTL3.2

T1CTL3.7

T1EDGE INT ENA

T1 PRIORITY

T1C2 OUT ENA

T1C1 OUT ENA

T1CTL4.3

T1CTL4.6

T1CTL4.5

T1PWM

T1PC2.7-4

T1PRI.6

T1C.15-0

T1CNTR.15-0

T1CTL2.0

T1CR
RST ENAT1PC2.3-0

T1CTL4.0

T1CTL4.2

Level 1 Int

Level 2 Int

0

1

NOTE: The numbers on the diagram, such as 4B.5, identify the register and the bit in the peripheral frame. For example,
the actual address of 4B.5 is 104Bh, bit 5, in the T1CTL3 register.

211

• Capture/compare mode: To operate in the capture/compare mode, the T1 mode bit (T1CTL4.7)
must be set. This mode provides one compare register, and the capture/compare register is
configured as a capture register. The compare register can be used to generate periodic interrupts
or toggle the T1PWM pin and the capture register can be used for pulse measurement. A block
diagram of T1 in the capture/compare mode is shown in Figure 7.

Figure 7. Capture/Compare Mode for T1

T1CTL4.2

16

Compare=

Edge
select

T1IC/CR

T1EDGE POLARITY

T1EDGE DET ENA

Prescale
clock

source

16-bit
counterMSB

LSB

T1CNTR.15-0

Reset

T1C1
RST ENA

T1 SW
RESET

T1CTL2.0

T1CTL4.4

T1PC2.3-0

T1CTL4.0

T1EDGE INT FLAG

T1EDGE INT ENA

T1CTL3.7

T1CTL3.2

T1 OVRFL INT FLAG

T1 OVRFL INT ENA

T1CTL2.3

T1CTL2.4

T1C1 INT FLAG

T1C1 INT ENA

T1CTL3.5

T1CTL3.0

T1C1
OUT ENA

T1PWM
T1CTL4.6

To
gg

le T1PC2.7-4

16-bit
capture/compare

MSB

LSB

register

T1CC.15-0

T1C.15-0

16-bit
compare

MSB

LSB

register

T1 PRIORITY

ÏÏÏT1PRI.6 Level 1 Int

Level 2 Int

0

1

212

T2n (T2A and T2B)

The Timer 2 (T2n) module is a 16-bit general-purpose timer available on several TMS370 devices and is
illustrated in Figure 8. TMS370 devices may contain more than 1 T2n Timer Module. T2A and T2B (T2n)
refer to these timer modules. T2n allows program selection of four input clock sources: system clock,
external event, pulse accumulate, or no clock. Additional blocks of the T2n module not shown in Figure 8
include the interrupts and I/O pins.

Figure 8. 16-Bit Programmable General-Purpose T2n

Interrupt
Logic

16-Bit
Capture/Compare

Register

Edge
Detect

Edge
Detect

16-Bit
Capture
Register

16-Bit
Counter

16-Bit
Compare
Register

Interrupt
Logic

PWM
Toggle

Clock
Select

T2nEVT
Pin

T2nIC2/PWM
Pin

T2nIC1/CR
Pin

T2nIC2/
PWM
Pin

T2n Counter

The T2n block (Figure 8) contains a 16-bit counter, a 16-bit compare register, and a 16-bit capture/compare
register just like T1. T2n also contains an additional capture register. T2n provides input capture, output
compare, timer overflow, and external event functions. You can choose either the dual compare mode or
the dual capture mode of operation for T2n, depending on the needs of your application.

The basic functions of the T2n block are similar to those described for the T1 block (see T1 Counter Section,
page 206). The addition of an extra capture register and the lack of a prescale block are the main differences
between T1 and T2n. For additional information concerning modes of operation or functions of the T2n
block, see Section 8.2 in the TMS370 Family User’s Guide.

T2n Interrupts

The T2n module provides four different interrupt flags. Depending on the mode of operation, these
interrupt flags can be set by one of five different sources. The actions that trigger an interrupt are as follows:

213

• Input capture 1/external edge detection 1: When an active transition occurs on the T2nIC1/CR
pin, the T2nEDGE1 INT FLAG bit (T2nCTL2.7) is set. If the T2nEDGE1 DET bit
(T2nCTL3.0) is enabled, then this action also loads the contents of the T2n counter into the
capture/compare register. Please note, you must be in the dual capture mode of operation for
the capture function.

• Input capture 2/external edge detection 2: When an active transition occurs on the
T2nIC2/PWM pin, the T2nEDGE2 INT FLAG bit (T2nCTL2.6) is set. If the T2nEDGE2 DET
bit (T2nCTL3.1) is enabled, then this action also loads the contents of the T2n counter into the
capture register. Please note, you must be in the dual capture mode of operation for these actions
to occur.

• Compare equals 1: When the value of the compare register matches the value of the T2n counter,
the T2nC1 INT FLAG bit (T2nCTL2.5) is set. This is true for both modes of operation.

• Compare equals 2: When the value of the capture/compare register matches the value of the T2n
counter, the T2nC2 INT FLAG bit (T2nCTL2.6) is set. This is true for the dual compare mode
of operation only.

• Counter overflow: When the T2n counter overflows from 0FFFFh to 0000h; the T2n OVRFL
INT FLAG bit (T2nCTL1.3) is set.

T2n I/O Pins

The T2n module includes three I/O pins which can be dedicated for timer functions or as general-purpose
I/O pins. Their names and T2n functions are as follows:

• T2nEVT: This pin may be used as an external clock input or pulse accumulation signal to the
T2n module. Input frequency may not exceed SYSCLK/2.

• T2nIC1/CR: Depending on the mode of operation, this pin may be used to input an external
signal to trigger loading of the capture/compare register or to toggle the T2nPWM output pin.
A signal on this pin may also reset the counter.

• T2nIC2/PWM: In the dual compare mode, the function of this pin is to output a PWM signal
from the module. In the dual capture mode, this pin is used to input an external signal to trigger
loading the capture register with the contents of the T2n counter.

The configuration for these pins is controlled through the timer port control registers T2nPC1 and T2nPC2.

214

T2n Operational Modes

The T2n module may be used in either of two modes of operation: the dual compare mode or the dual
capture mode. See Section 8.2 of the TMS370 Family User’s Guide for additional information.

• Dual compare mode: To operate in the dual compare mode, the T2nMODE bit (T2nCTL3.7)
must be cleared. This mode provides two compare registers (the capture/compare register is
configured as a compare register) which can be used to control the period and duty cycle of a
PWM signal or for other applications. The dual compare mode of T2n is identical in function
to the dual compare mode of T1 with the exception of no optional prescale input for the clock
source. A block diagram of T2n in the dual compare mode is shown in Figure 9.

• Dual capture mode: To operate in the dual capture mode, the T2nMODE bit (T2nCTL3.7) must
be set. This mode provides two capture registers as well as one compare register. In this mode,
the capture/compare register is configured as a capture register. The two capture registers may
be used for pulse width measurement and timing, and the compare register can be used to
generate periodic interrupts. A block diagram of T2n in the capture/compare mode is shown in
Figure 10.

Figure 9. Dual Compare Mode for T2n

16

T2nC.15-0

T2nCTL2.1

T2nCTL3.2

T2nCTL3.1

T2nCTL3.5

T2nCTL3.3

Clock
source

16-Bit
counter

16-bit

Compare=

Compare=Reset

T2nC1
RST ENAT2n SW

RESET

Edge 1
select

T2nEDGE1 DET ENA

Output
enable

capture/compare
register MSB

LSB

MSB
LSB

T2nEDGE1
OUT ENA

T2nIC1/CR

T2nEDGE1 POLARITY

To
gg

le

16-bit
compare

MSB

LSB

register

T2nCC.15-0

T2nC1 INT FLAG

T2nCTL2.0

T2nCTL2.5

T2nC1 INT ENA

T2nC2 INT FLAG

T2nCTL2.6

T2nC2 INT ENA

T2n OVRFL INT FLAG

T2nCTL1.4

T2nCTL1.3

T2n OVRFL INT ENA

T2nEDGE1 INT FLAG

T2nCTL2.2

T2nCTL2.7

T2nEDGE1 INT ENA

T2n PRIORITY

T2nC2 OUT ENA

T2nC1 OUT ENA

T2nCTL3.6

T2nIC2/PWM

T2nPC2.7-4

T2nPRI.6

T2nCNTR.15-0

T2nCTL1.0
T2nCTL3.4

T2nEDGE1
RST ENA

T2nPC2.3-0

T2nCTL3.0 Lvl 1 Int

Lvl 2 Int

0

1

215

Figure 10. Dual Capture Mode for T2n

T2nCTL2.5

T2nCTL3.3

0

capture/compare

T2nPC2.3–0

Compare =

Clock
source

16-bit
counterMSB

LSB

T2nCNTR.15–0

Reset

T2nC1
RST ENA

T2n SW
RESET

T2nCTL1.0

T2nCTL3.4

T2nCTL2.6

T2nCTL2.1

T2nCTL2.7

T2nCTL2.2

T2nCTL2.0

16-bit

MSB

LSB

register 1

T2nC.15–0

16-bit
compare

MSB

LSB

register

T2n PRIORITY

Level 1 Int

Level 2 Int
1

T2nCTL1.3

T2nCTL1.4

16-bit
capture

MSB

LSB

register 2

T2nIC.15–0

Edge 2
select

T2nIC2/CR

T2nPC2.7–4

T2nCTL3.1

Edge 1
selectT2nIC1/CR T2nCTL3.2

T2nCTL3.0

16

T2nEDGE1 POLARITY

T2nEDGE1 DET ENA

T2nEDGE2 DET ENA

T2nEDGE2 POLARITY

T2nC1 INT FLAG

T2nC1 INT ENA

T2n OVRFL INT FLAG

T2n OVRFL INT ENA

T2nEDGE1 INT FLAG

T2nEDGE1 INT ENA

T2nEDGE2 INT ENA

T2nEDGE2 INT FLAG

T2nPRI.6

T2nCC.15– 0

216

Timer Formulas

The following formulas are used to calculate the timer overflow, WD overflow, and compare register values
for the T1 and T2n modules. The formulas illustrated in this section deal with time periods. Therefore, the
variable SYSCLK is used in the formulas.

Timer 1: T1 and WD Counter Overflow

The maximum counter duration using the internal clock is determined by the internal system clock time
(SYSCLK) and the prescale tap (PS). The counter overflow formula is shown below:

Maximum counter duration (seconds) = 216 � PS � SYSCLK

Counter resolution = PS � SYSCLK

where:
SYSCLK = internal operational frequency
PS = 1, 4, 16, 64, or 256 depending on the prescale tap selected

Table 2 gives the real-time counter overflow rates for various SYSCLK and prescaler values. Please note
that the value shown must be divided by two for the WD if the WD OVRFL TAP SEL bit (T1CTL1.7) is
set (see Section 7.3 in the TMS370 Family User’s Guide).

Table 2. T1 Module Counter Overflow Rates

SYSCLK Frequency (MHz)

0.5 1.0 2.5 5.0

Select Select Select Divide
System Clock Period (ns)

Select
2

Select
1

Select
0

Divide
By 2000 1000 400 200

0 0 0 216 0.131 0.066 0.026 0.013

0 0 1 (P.A.) † † † †

0 1 0 (Event) † † † †

0 1 1 (Stop) † † † †

1 0 0 218 0.524 0.262 0.105 0.052

1 0 1 220 2.10 1.05 0.419 0.210

1 1 0 222 8.39 4.19 1.68 0.839

1 1 1 224 33.6 16.8 6.71 3.355

† Not applicable.

217

T1: Compare Register Formula

The compare register value required for a specific timing application can be calculated using the following
formula:

Compare value� SYSCLK x t
PS

� 1

where:
t = desired timer compare period (seconds)
SYSCLK = external clock frequency
PS = 1, 4, 16, 64, or 256 depending on the prescale tap selected

Table 3 provides some sample compare register values to achieve various desired timings using a 5-MHz
SYSCLK.

Table 3. T1 Compare Register Values (SYSCLK = 5 MHz)

���� �� ������� �������� ����� �
�
� �����

������ �
������ �������� ������� 	��

� �����
�
��
����

0.0005 0.5 None 2499 009C3h 0.000

0.001 1 None 4999 01387h 0.000

0.002 2 None 9999 0270Fh 0.000

0.005 5 None 24999 061A7h 0.000

0.01 10 None 49999 0C34Fh 0.000

0.02 20 /4 24999 061A7h 0.000

0.05 50 /4 62499 0F423h 0.000

0.1 100 /16 31249 07A11h 0.000

0.2 200 /16 62499 0F423h 0.000

0.5 500 /64 39062 09896h 0.000

1.0 1000 /256 19530 04C4Ah 0.001

2.0 2000 /256 39061 09895h 0.001

3.0 3000 /256 58593 0E4E1h 0.001

NOTE: % error induced by the T1 formula. This error margin will vary depending on the desired timer compare period
and the minimum timer resolution (PS � SYSCLK).

218

Timer 2: T2n Counter Overflow

The maximum counter duration using the internal clock is determined by the internal system clock time
(SYSCLK). This relationship is shown below:

Maximum counter duration (seconds) = 216 � SYSCLK

Counter resolution = SYSCLK

where:
SYSCLK = internal operational frequency

Table 4 gives the real-time counter overflow rates for various SYSCLK values.

Table 4. T2n Module Counter Overflow Rates

SYSCLK Frequency
(MHz) Timer Overflow Rates

20.0 13.11 ms

12.0 21.85 ms

8.0 32.77 ms

5.0 52.43 ms

3.579 73.23 ms

2.0 131.07 ms

219

Timer 2: Compare Register Formula

The compare register value required for a specific timing application can be calculated using the following
formula:

Compare value� (SYSCLK x t)� 1

where:
t = desired timer compare period (seconds)
SYSCLK = internal operational frequency

Table 5 provides some sample compare register values to achieve various desired timings.

Table 5. T2n Compare Register Values (SYSCLK = 5 MHz)

Time T2n Compare Register Value (N)

Seconds mSeconds Decimal Hex % Error (See Note)

0.0005 0.5 2499 009C3h 0.000

0.001 1 4999 01387h 0.000

0.002 2 9999 0270Fh 0.000

0.005 5 24999 061A7h 0.000

0.010 10 49999 0C34Fh 0.000

0.013 13 64999 0FDE7h 0.000

NOTE: % error induced by the T2n formula. This error margin will vary depending on the desired timer compare period
and the minimum timer resolution (SYSCLK).

220

Timer Application Software Routine Examples

The following examples show various uses of the timer modules. Each example includes source code and
timing diagram. The examples shown attempt to illustrate typical timer application requirements. The
Common Register Equate table for all the software examples (T2A) is shown below. (See the Conclusion
section of this report to determine how to download copies of the software examples). The equates for T2B
are the same but the addresses are P080–P08F

Table 6. Common Register Equates

T1CNTRM .EQU P040 ;T1 Counter MSB

T1CNTRL .EQU P041 ;T1 Counter LSB

T1CM .EQU P042 ;T1 Compare register 1 MSB

T1CL .EQU P043 ;T1 Compare register 1 LSB

T1CCM .EQU P044 ;T1 Capture 1/compare 2 register MSB

T1CCL .EQU P045 ;T1 Capture 1/compare 2 register LSB

T1CTL1 .EQU P049 ;T1 Control register 1

T1CTL2 .EQU P04A ;T1 Control register 2

T1CTL3 .EQU P04B ;T1 Control register 3

T1CTL4 .EQU P04C ;T1 Control register 4

T1PC1 .EQU P04D ;T1 Port control 1

T1PC2 .EQU P04E ;T1 Port control 2

T1PRI .EQU P04F ;T1 Priority control

T2ACNTRM .EQU P060 ;T2A Counter MSB

T2ACNTRL .EQU P061 ;T2A Counter LSB

T2ACM .EQU P062 ;T2A Compare register 1 MSB

T2ACL .EQU P063 ;T2A Compare register 1 LSB

T2ACCM .EQU P064 ;T2A Capture 1/compare 2 register MSB

T2ACCL .EQU P065 ;T2A Capture 1/compare 2 register LSB

T2AICM .EQU P066 ;T2A Capture 2 register MSB

T2AICL .EQU P067 ;T2A Capture 2 register LSB

T2ACTL1 .EQU P06A ;T2A Control register 1

T2ACTL2 .EQU P06B ;T2A Control register 2

T2ACTL3 .EQU P06C ;T2A Control register 3

T2APC1 .EQU P06D ;T2A Port control 1

T2APC2 .EQU P06E ;T2A Port control 2

T2APRI .EQU P06F ;T2A Priority control

221

Real-Time System Control: Periodic Interrupt of T1

Interrupt the main program every 10 ms (100 times a second).

Timer
Interrupt

Period

10 ms

This application routine provides a T1 compare equal interrupt 100 times a second. This routine compares
the present value of the 16-bit T1 counter to the value stored in the 16-bit T1C1 register. When these two
registers are equal, an interrupt will occur and the T1 counter will be reset. The compare value to give 10 ms
is as follows:

 compare = ((time needed � SYSCLK)/PS) –1
 compare = (.010 � 5 � 106) –1
 compare = 49999 or C34Fh

where:
SYSCLK = 5 MHz

The program loads the value C34Fh into the T1 compare register putting the MSB value in first. All output
pins associated with T1 are set as general-purpose input pins since their T1 pin functions are not needed for
this application. The system clock is chosen as the T1 clock source, while the watchdog prescale remains
unchanged. The program then resets the counter, clears all interrupt flags, and enables the T1C1 interrupt.
The timer is set to run in the dual compare mode but the capture/compare mode will work just as well in this
example. The counter is initialized to reset whenever the T1C1 register equals the counter register so that
the counter will be reset every 10 milliseconds. This routine will continue to interrupt the processor until the
global interrupt or the T1C1 interrupt enable in T1CTL3 is disabled.

222

10-ms Timer Interrupt Routine
T1INIT MOV #0C3h,T1CM ;Value to give 10 ms with 5-MHz SYSCLK
 ; (C34F)
 MOV #04Fh,T1CL ;Must load MSB first then LSB.
 MOV #00000000b,T1PC1 ;T1EVT, T1PWM, AND T1IC/CR pins are set to
 MOV #00000000b,T1PC2 ; general-purpose input pins.
 MOV #00000000b,T1PRI ;Select interrupt priority level 1.
 MOV #00010000b,T1CTL4 ;Select dual compare mode and cause T1
 ; to reset on compare equal.
 MOV #00000001b,T1CTL3 ;Clear any pending interrupt flags, and allow
 ; the compare 1 flag to cause an interrupt.
 AND #11110000b,T1CTL1 ;Select the system clock as timer clock
 ; source and leave the WD unchanged.
 MOV #00000001b,T1CTL2 ;Reset the counter (could enable WD here).
 EINT ;Begin interrupting main program.
MAIN ... ;Execute main program here.
 ...
; ––TIMER 1 INTERRUPT SERVICE ROUTINE––
T1INT ;Enter T1 interrupt service routine
 ; 100 times/s.
 MOV #00000001b,T1CTL3 ;Clear the T1C1 interrupt flag, reenable
 ; T1C1.
 ... ;Execute interrupt code.
 ...
 RTI

223

Output Pulse Width Generation: 1-kHz Square Wave

Output a 1-kHz square wave (50% duty cycle).

T1PWM
Pin

This application routine generates a 1-kHz square wave output signal by using the 16-bit T1 compare regis-
ter to toggle the T1PWM output pin. Since the timer needs to toggle the output pin twice to produce one
square wave pulse, the timer needs to toggle at a 2-kHz rate, or every 0.5 ms. The compare value to give 0.5
ms is:

 compare = ((time needed � SYSCLK)/PS) –1
 compare = (0.0005 � 5 � 106) –1
 compare = 2499 or 09C3h

where:
SYSCLK = 5 MHz

The program loads the value 09C3h into the T1 compare register, putting the MSB value in first. The
T1PWM pin is set to the PWM output function and the other T1 pins are set to general-purpose input pins
since their T1 pin functions are not needed for this application. The system clock is chosen as the T1 clock
source, while the WD prescale remains unchanged. The program then resets the counter, clears all interrupt
flags, and disables all T1 interrupts. The timer is set to run in dual compare mode, but the capture/compare
mode works just as well in this example. The counter resets whenever the T1C1 register equals the counter
register, so that the counter resets every 0.5 ms. Once the T1 module is initialized, a 1-kHz square wave
signal is output continuously on the T1PWM pin without further program intervention.

224

50% Square Wave Signal Routine
SQUARE MOV #009h,T1CM ;Value to give .5 ms with 5-MHz SYSCLK (9C3h)
 MOV #0C3h,T1CL ;Must load MSB first, then LSB.
 MOV #00000000b,T1PC1 ;T1EVT pin is set as a general-purpose input
 ; pin .
 MOV #00100000b,T1PC2 ;Enable T1PWM pin (initial output value
 ; selected by bit 6). T1IC/CR is
 ; general-purpose input pin.
 MOV #01010000b,T1CTL4 ;Select dual compare mode, enable PWM toggle,
 ; and cause T1 to reset on compare equal.
 AND #11110000b,T1CTL1 ;Select the system clock as timer clock source
 ; and leave the WD unchanged.
 MOV #00000000b,T1CTL3 ;Clear and disable all interrupts.
 MOV #00000001b,T1CTL2 ;Reset the counter (could enable
 ; WD here).
MAIN ... ;Execute main program here.

225

Pulse Width Modulation (PWM) #1

Output a 1-kHz signal with a fixed 20% duty cycle.

T1PWM
Pin

t1 t2

In this example of pulse width modulation, the pulse frequency remains 1 kHz while the duty cycle is 20%.
The duty cycle is defined as the time the pulse remains high divided by the period of the pulse, so in this
case, the pulse remains high for 0.2 ms per cycle. The registers get configured like the square wave example
on page 223, but now the second compare register gets used to provide the high pulse period, t2, while the
first compare register is used to provide the 1-ms period, t1. The program loads the value 1387h into the
T1 compare register to control the 1-ms period (t1) and 03E7h into the T1 capture/compare register to
control the t2 pulse width. Both compare registers are enabled to toggle the output pin to give the proper
pulse signal. Once the program starts the PWM signal, the signal continues without any further program
intervention.

If the duty cycle or frequency needs changing once under way, modify only the capture/compare 2 register
or the compare 1 register, respectively (See PWM #2, page 227).

226

Routine
PWM MOV #013h,T1CM ;Value to give 1 ms with
 ; 5-MHz SYSCLK (1387h)
 MOV #087h,T1CL ;Must load MSB first then LSB.
 MOV #003h,T1CCM ;Value to give .2 ms with
 ; 5-MHz SYSCLK (3E7h)
 MOV #0E7h,T1CCL ;Must load MSB first then LSB.
 MOV #000000000b,T1PC1 ;T1EVT pin is set as a general-
 ; purpose input pin.
 MOV #01110000b,T1CTL4 ;Select dual compare mode, enable
 ; toggle function of compare registers
 ; 1 and 2, and cause T1 to reset
 ; on C1 equal.
 AND #11110000b,T1CTL1 ;Select the system clock as timer clock source
 ; and leave the WD unchanged.
 MOV #00000001b,T1CTL2 ;Reset the counter (could enable
 ; WD here).
 MOV #00000000b,T1CTL3 ;Clear and disable all interrupts.
 MOV #01100000b,T1PC2 ;Enable T1PWM pin (initial output value
 ; selected by bit 6). T1IC/CR is a general-
 ; purpose input pin.
MAIN ... ;Execute main program here.
 ...

227

PWM #2

Output a 1-kHz signal with a varying duty cycle.

T1PWM
Pin

t1

t2 t2

t1

t2

t1

t2

In this example of PWM, a fixed-frequency signal (1 kHz) is output with a varying duty cycle. The main
difference between this routine and the the previous routine (PWM #1) is that the duty cycle, t2, may vary. In
this PWM example, the program changes the pulse width by altering the value in the capture/compare reg-
ister. The compare register controls the period of the signal, t1, and is not changed in this routine, while the
capture/compare register controls the varying duty cycle, t2.

The T1 service routine is entered each time the compare register equal flag gets set (every 1 ms in this exam-
ple). The main program is required to load any new values for the PWM duty cycle into the HIDC and
LODC working registers. The T1 service routine is only enabled whenever the HIDC:LODC register pair is
updated and the T1C1 interrupt is enabled (T1CTL3.0). The routine stops the PWM signal, loads the new
values, and restarts. Stopping the PWM signal helps avoid the possibility of inverting the signal if a larger
value is written than previously existed (for example, changing from a 20% to an 80% duty cycle signal.)

228

Routine
T1INIT MOV #013h,T1CM ;Value to give 1 ms with 5-MHz
 ; SYSCLK (1387h)
 MOV #087h,T1CL ;Must load MSB first then LSB.
 MOV HIDC,T1CCM ;Load value for the duty cycle.
 MOV LODC,T1CCL ;Must load MSB first then LSB.
 MOV #00000000b,T1PC1 ;T1EVT pin is set as a general-
 ; purpose input.
 MOV #00000000b,T1PRI ;Set the T1 interrupt priority to level 1.
 MOV #01110000b,T1CTL4 ;Select dual compare mode, enable toggle
 ; function of compare registers 1 and 2,
 ; and enable T1 to reset on C1 equal.
 MOV #00000000b,T1CTL1 ;Select the system clock as
 ; timer clock source.
 MOV #00000001b,T1CTL2 ;Reset the counter (could enable WD here).
 MOV #00000000b,T1CTL3 ;Clear and disable all interrupts.
 MOV #01100000b,T1PC2 ;Enable T1PWM (initial output value
 ; selected by bit 6). T1IC/CR is a
 ; general-purpose input.
 EINT ;Enable interrupts.
MAIN ... ;Execute main program here.
 ... ;Any updates to the PWM duty cycle registers
 ... ; (HIDC/LODC) need to be done here.
UPDATE MOV #01h,T1CTL3 ;Allow the compare flag to cause a timer
 ... ; interrupt only when the duty cycle
 ... ; (HIDC/LODC) registers have been altered.
 ...
; –––Timer 1 Interrupt Routine to follow–––
T1INT MOV #00000011b,T1CTL1 ;Stop T1 if an update has been made.
 MOV #00000001b,T1CTL2 ;Reset the counter.
 MOV #01010000b,T1PC2 ;Reset the T1PWM pin to general-purpose
 ; output with the present value of the
 ; PWM pin.
 MOV #01010000b,T1PC2 ;T1PWM pin outputs a 1.
 MOV #01100000b,T1PC2 ;Reenable the T1PWM function with an initial
 ; value of 1.
 MOV HIDC,T1CCM ;Load new value for the PWM duty cycle.
 MOV LODC,T1CCL ; Must load MSB first then LSB.
 MOV #00h,T1CTL1 ;Reselect the system clock as the T1 clock
 ; source.
 MOV #0000000b,T1CTL3 ;Clear the T1C1 interrupt flag and
 ; disable the T1C1 flag again.
RETURN RTI ;Return to the main routine.

229

Pulse Position Modulation (PPM)

Output a fixed 0.2-ms pulse at a variable frequency (1-kHz rate initially).

T1PWM
Pin

t2 t2

t1 t1

t2
t2

t1

In this example of PPM, the high pulse width, t2, remains constant while the periods, t1, of the pulses vary.
The program code for this example is similar to the PWM #2 example. In the PWM #2 example, the pro-
gram changes the pulse width by varying the value in the capture/compare register. In this PPM example,
the program varies the frequency of the pulses by changing the value in the compare register (T1CM,
T1CL).

For the cleanest transition, clear the compare 1 equal flag and wait until that flag gets set again before putt-
ing a new value into the compare register. This will help to avoid inverting the signal which could happen if
a larger value was written than previously existed.

230

Routine
T1INIT MOV #013h,T1CM ;Value to give 1 ms with 5-MHz
 ; SYSCLK (1387h)
 MOV #087h,T1CL ;Must load MSB first then LSB.
 MOV #004h,T1CCM ;Load value for the .2-ms duty cycle
 MOV #0E1h,T1CCL ;Must load MSB first then LSB.
 MOV #00000000b,T1PC1 ;T1EVT pin is set as a general-
 ; purpose input.
 MOV #01100000b,T1PC2 ;Enable T1PWM (initial output value
 ; selected by bit 6). T1IC/CR is a
 ; general-purpose input.
 MOV #00000000b,T1PRI ;Set the T1 interrupt priority to level 1.
 MOV #01110000b,T1CTL4 ;Select dual compare mode, enable toggle
 ; function of compare registers 1 and 2,
 ; and enable T1 to reset on C1 equal.
 MOV #00000000b,T1CTL1 ;Select the system clock as
 ; timer clock source.
 MOV #00000000b,T1CTL3 ;Clear and disable all interrupts.
 MOV #00000001b,T1CTL2 ;Reset the counter (could enable WD here).
 EINT ;Enable interrupts.

MAIN ... ;Execute main routine here.
 ... ;Any updates to the PPM frequency registers
 ... ; HIFREQ/LOFREQ will need to be done here.
UPDATE MOV #01h,T1CTL3 ;Allow the compare flag to cause a timer
 ... ; interrupt only when the duty cycle
 ... ; (HIFREQ/LOFREQ) registers have been
 ... ; altered.

T1INT MOV #00000000b,T1CTL3 ;Clear the T1 compare 1 interrupt flag and
 ; disable the T1 compare 1 flag again.
 MOV #00000011b,T1CTL1 ;Stop T1 if an update has been made.
 MOV #00000001b,T1CTL2 ;Reset the counter.
 MOV #01010000b,T1PC2 ;Reset the T1PWM pin to general-purpose
 ; output with the present value of the
 ; PWM pin.
 MOV #01010000b,T1PC2 ;T1PWM pin outputs a 1.
 MOV #01100000b,T1PC2 ;Reenable the T1PWM function with an initial
 ; value of l.
 MOV HIFREQ,T1CM ;Load new value for the PPM frequency.
 MOV LOFREQ,T1CL ;Must load MSB first then LSB.
 MOV #0C0h,T1CTL1 ;Reselect the system clock as the T1 clock
 ; source.
RETURN RTI ;Return to the Main routine.

231

Pulse Width Measurement Using Pulse Accumulation Clock Source

Measures the positive pulse of a signal with input connected to both T1IC/CR and T1EVT pins.

T1IC/CR
and

T1EVT
Pin Time x

Time y

This method measures the time that a single pulse remains high. The signal line connects to both the input
capture (T1IC/CR) and the event counter (T1EVT) inputs. T1 runs in the dual compare mode and uses the
pulse accumulate clock source, which allows the system clock to increment the counter as long as the
T1EVT input pin remains high. The signal is also connected to the T1IC/CR counter reset pin to give the
program an indication of when the external pulse goes low and ends the pulse accumulation function. The
routine configures the T1 pins first and then selects a dual compare mode of operation. The interrupt flags
are cleared and a falling edge on the T1IC/CR pin is enabled to cause an interrupt. The pulse accumulation
clock source is chosen and the counter is then reset.

The counter does not start until the pulse signal goes high, and stops counting when the signal goes back
low. The interrupt routine checks for the end of the pulse or a counter overflow. If the interrupt is caused by
an overflow, the counter increments the STOREOF register, which is equivalent to the most significant byte
of the timer register, then returns to the main routine. If the interrupt is caused by the pulse going low, the
routine reads the contents of the T1 counter register, stores it into the STOREM:STOREL register pair and
returns to the main routine. This method measures pulses up to approximately 3.36 seconds with the help of
the STOREOF overflow storage register. If longer pulses are required to be measured, additional overflow
storage registers can be used.

232

Pulse Accumulation Measurement PWM Routine
 .REG STOREOF ;Registers used in this routine
 .REG STOREM
 .REG STOREL
 .REG BITS

 CLR STOREOF ;Initialize the registers that will be used
 CLR STOREM ; in this routine.
 CLR STOREL
 CLR BITS

TIMEPULSMOV #00000010b,T1PC1 ;T1EVT and T1IC/CR pins enabled; T1PWM pin
 MOV #00000010b,T1PC2 ; is set up as general-purpose input pin.
 MOV #00,T1PRI ;Select level 1 interrupts for T1.
 MOV #00000001b,T1CTL4 ;Select dual compare mode and watch for
 ; a falling edge on the T1IC/CR pin.
 MOV #00000001b,T1CTL1 ;Select the pulse accumulate clock source.
 MOV #00000100b,T1CTL3 ;Clear interrupt flags, enable falling
 ; edge on the T1IC/CR pin to cause
 ; an interrupt.
 MOV #00010001b,T1CTL2 ;Reset the counter, clear and enable the
 ; the overflow interrupt. (Could enable WD
 ; here.)
 EINT ;Enable interrupts.
 ...
MAIN ... ;Main routine here.
 ...
; –– T1 interrupt routine to follow ––
T1INT BTJO #08h,T1CTL2,OVERFLW ;Was this interrupt caused by overflow?
 AND #0F7h,T1CTL2 ; Yes, jump to OVERFLW.
 MOV T1CNTRL,STOREL ; No, load the value in the T1CNTRL
 MOV T1CNTRM,STOREM ; registers (LSB first) into the STORE
 ; registers.
 MOV #00000100b,T1CTL3 ;Clear the T1IC/CR flag.
 MOV #00000001b,T1CTL4 ;Reenable the T1IC/CR falling edge detect.
 OR #00000001b,BITS ;Signal to main routine that pulse was read.
 ; BITS register may be used by main routine.
 MOV #00000001b,T1CTL2 ;Reset the counter.
 RTI ;Return from interrupt.
OVERFLW AND #11110111b,T1CTL2 ;Clear the overflow flag, then increment #
 INC STOREOF ; of overflows (equivalent timer bits
 ; 16–23).
 RTI ;Return from interrupt.

233

Counting External Pulses Relative to an External Signal

Determines the number of external clock pulses per measure signal with the measure signal attached to the
T1IC/CR pin and the clock signal attached to the T1EVT pin.

T1IC/CR

T1EVT

Measure Signal

Clock Signal

In this example, two signals are input to the processor, a measure signal and a clock signal. The goal is to
determine how many clock signals happen during one high pulse of the measure signal. The clock signal
connects to the T1EVT pin and the measure signal connects to the T1IC/CR pin. The clock signal will now
increment the counter instead of the system clock as in the previous example. Because clock continues to
run after measure goes low, the timer module will run in the capture/compare mode and use the 16-bit cap-
ture/compare register to store the value of the counter the instant that measure goes low.

One condition can occur when a counter overflow happens at almost exactly the same time the measure
signal goes low, so that both interrupt flags are set. The problem is then whether or not to increment the
MSB counter register (STOREOF). If the capture register reads FFxxh, then the counter overflowed just
after the measure signal went low. If the register reads 00xxh, the counter overflowed just before the mea-
sure pulse went low, so the MSB counter register (STOREOF) should be incremented.

234

External Pulse Counting Routine
 .REG STOREOF ;Registers used in this routine
 .REG STOREM
 .REG STOREL
 .REG BITS

 CLR STOREOF ;Clear registers used to store the sum of
 CLR STOREM ; the T1EVT pulses.
 CLR STOREL
T1INIT MOV #02h,T1PC1 ;T1EVT and T1IC/CR pins enabled, T1PWM pin
 MOV #02h,T1PC2 ; set to general-purpose input pin.
 MOV #40h,T1PRI ;Select interrupt priority level 2 for T1.
 MOV #81h,T1CTL4 ;Select capture/compare mode, enable the
 ; T1IC/CR pin to load the capture register
 ; on a falling pulse.
 MOV #04h,T1CTL3 ;Clear the interrupt flags and enable the
 ; T1IC/CR pin to cause an interrupt.
 MOV #02h,T1CTL1 ;Choose event input as clock source.
 MOV #11h,T1CTL2 ;Reset the counter, clear and enable the
 ; overflow interrupt (WD can enable here).
 EINT
 ...
; –– Interrupt routine to follow. ––
T1INT ;Interrupt routine
 BTJZ #08h,T1CTL2,PULSELO ;Was interrupt caused by a low pulse?
 AND #0F7h,T1CTL2 ;No, clear overflow flag, then increment
 INC STOREOF ; the overflow register (STOREOF).
 RTI
PULSELO MOV T1CCL,STOREL ;YES, load the value in the capture
 ; register LSB first into the STORE
 MOV T1CCM,STOREM ; registers.
 BTJZ #08h,T1CTL2,NOOVER ;Was there an overflow just now?
 AND #0F7h,T1CTL2 ;Yes, clear the overflow flag.
 CMP #0FFh,STOREM ;If overflow and pulse low, which came
 ; first?
 JEQ NOOVER ;If FFxxh, overflow happened after pulse
 ; low
 INC STOREOF ;if 00xxh, overflow happened first,
 ; increment register.
NOOVER MOV #01h,T1CTL2 ;No, reset the counter.
 MOV #04h,T1CTL3 ;Clear the interrupt flag, reenable edge
 ; interrupt.
 MOV #81h,T1CTL4 ;Reenable the T1IC/CR edge detect.
 OR #1,BITS ;Signal to the main routine that pulse was
 ; read.
 RTI ;Return from interrupt.

235

Output Pulse Drive Referenced to Input Signal: TRIAC Controller or One Shot

Output a 1-ms pulse on every positive edge of an input signal. The input signal goes to IC/CR pin.

T1IC/CR
Pin

T1PWM
Pin

16-Bit Resolution Maximum

1 ms

In this example, a rising edge on the T1IC/CR input pin causes a 1-ms pulse to be output on the T1PWM
pin. To give a simple application, this could be used in 60-Hz lamp dimmer or motor speed controller where
the input is the 60-Hz signal and the output connects to the output driver. The timer is set up to clear the
counter whenever the input pulse goes high and at the same time toggle the PWM pin. The counter then
begins counting and whenever it equals the compare register, the PWM pin toggles. The program then
enters the interrupt service routine after the rising edge and resets the edge detection circuitry. This routine
is the only program intervention needed to do this function. If the pulse length becomes greater than one
overflow value plus 1 ms, the PWM will toggle and may corrupt the output. The overflow time for this value
of a prescaler is about 54 ms. Change the prescaler to a higher value if a greater range is needed.

One Shot Routine
 ;Single cycle should be under 1 timer overflow.
TRIAC MOV #04h,T1CM ;Value to give 1 ms with 5-MHz SYSCLK (04E1h)
 MOV #0E1h,T1CL ;Must load MSB first then LSB.
 MOV #00h,T1PC1 ;T1EVT pin is set as a general-purpose input
 ; pin.
 MOV #22h,T1PC2 ;Enable the T1PWM and T1IC/CR pins.
 MOV #4Fh,T1CTL4 ;Select dual compare mode, enable the C1
 ; register and a rising edge on the T1IC/CR
 ; pin to toggle the T1PWM pin, enable the
 ; T1IC/CR pin to reset the counter.
 MOV #74h,T1CTL1 ;Select the /4 prescale value and init the WD.
 MOV #04h,T1CTL3 ;Clear interrupt flags, enable active edge on
 ; T1IC/CR to cause an interrupt.
 MOV #01h,T1CTL2 ;Reset the counter (could enable WD here).
 EINT
 ...

T1INTERR
 MOV #4Fh,T1CTL4 ;Re-enable T1IC/CR active edge interrupt.
 MOV #04h,T1CTL3 ;Clear T1IC/CR active edge interrupt.
 RTI

236

Pulse Width Measurement: Time Between Edges

Measures the time between the rising edge on one signal and the falling edge of another signal using T2A in
dual capture mode.

Time

T2AIC1/CR
Pin

T2AIC2/PWM
Pin

Time

How much time is between the rising edge of one signal and the falling edge of another signal? This exam-
ple uses the T2A module with its dual capture registers to accurately give the answer to this problem. In this
example, the program configures T2A in the dual capture mode with the rising signal input into the
T2AIC1/CR pin and the falling signal input into the T2AIC2/PWM pin. The port pins are configured to the
correct value and the interrupts are set up to allow the correct edges to generate interrupts and store the
counter value into the appropriate capture register.

The counter continually increments, overflows, and generates an interrupt even though it has not detected
the first rising edge. This is necessary because the counter may overflow immediately after the circuit de-
tects a rising edge. The software could be too slow to react to this condition, which is only a few microse-
conds wide, so the overflow interrupt remains active. When the circuit detects the rising edge of the first
signal, the processor stores the capture register value into a register pair. The processor then keeps track of
the overflows which happen about every 13.1 ms with a 5-MHz SYSCLK signal, and waits for the falling
edge of the second signal.

When it detects this falling edge, the first capture latch value is subtracted from this second capture latch
value and overflows to give the time from one edge to the other. As in the external pulse counting example
on page 233, the program must consider the possibility of the falling edge coming at the same time as the
counter overflow. By using the two capture latches, this program can handle the instances when the rising
and falling edges happen very close together. Since an 8-bit register (TIME2OF) is used to keep track of
timer overflows, this application has a range of 24 bits. This example application can time edges as far apart
as about 3.3 seconds, and could easily be increased by adding additional overflow registers.

237

Edge Measurement Routine
EDGES MOV #02h,T2APC1 ;Set up T2AEVT pin as general-purpose input
 ; pin
 MOV #22h,T2APC2 ;Enable T2AIC1/CR and T2AIC2/PWM pins.
 MOV #8Bh,T2ACTL3 ;Select dual capture mode, enable rising
 ; edge of T2AIC1/CR and falling edge of
 ; T2AIC2/PWM to load the capture registers.
 MOV #11h,T2ACTL1 ;Reset counter, enable T2A overflow
 ; interrupt.
 MOV #06h,T2ACTL2 ;Clear flags, enable T2AIC1/CR and
 ;T2AIC2/PWM edges to cause interrupts.
 EINT
 ...
 ;T2A interrupt routine to follow.
T2AINTERR
 BTJO #80h,T2ACTL2,EDGE1 ;Jump on T2AIC1/CR rising edge?
 BTJO #40h,T2ACTL2,EDGE2 ;Jump on T2AIC2/PWM falling edge?
OVERFLOW INC TIME2OF ;Neither? Increment the TIME2OF overflow
 ; storage register (Timer bits 16–23).
 AND #F6h,T2ACTL1 ;Clear overflow interrupt.
 RTI
EDGE2 MOV T2AICL,TIME2L ;Get 2nd capture latch value LSB and store
 ; it.
 MOV T2AICM,TIME2M ;Get 2nd capture latch value MSB and store
 ; it.
 BTJZ #08h,T2ACTL1,NOOVER;Was there an overflow just now?
 CMP #0FFh,TIME2M ;If overflow and pulse low, which came
 ; first?
 JEQ NOOVER ;If FFxxh, overflow happened after pulse
 ; low.
 INC TIME20F ;If 00xxh, overflow happened first,
 ; increment register.
 AND #0F6h,T2ACTL1 ;Clear overflow interrupts.
NOOVER MOV #06h,T2ACTL2 ;Clear edge 2 interrupts and enable edge
 ; 1,2 interrupts.
 SUB TIME1L,TIME2L ;Get the difference between the two times.
 SBB TIME1M,TIME2M ;Store the difference in TIME2.
 SBB #0,TIME2OF ;Subtract any borrows from the overflows.
 RTI
EDGE1 AND #62,T2ACTL2 ;Disable T2AIC1/CR interrupt untilT2AIC2/PWM
 ; edge occurs.
 CLR TIME2OF ;Reinitialize the TIME2OF overflow
 ; register.
 MOV T2ACCL,TIME1L ;Get 1st capture latch value LSB and store
 ; it.
 MOV T2ACCM,TIME1M ;Get 1st capture latch value MSB.
 RTI

NOTE: This code can work for T2A as well as T2B Timer Modules.

238

Output Pulse Generation (Delayed) Referenced to Input Signal

Output a 1-ms pulse 5 ms after the input signal goes high.

1 ms

Input
T1IC/CR

Output
T1PWM

5 ms
delay

This program outputs a 1-ms pulse 5 ms after the input line goes high. This example uses T1 in the dual
compare mode with the output toggle function of the T1IC/PWM pin. The program initializes the counter
to look for the rising edge of the input signal on the T1IC/CR pin, and when it finds the edge, the program
enters the interrupt service routine. The service routine checks to see if the interrupt was caused by the input
rising or the output falling by checking the C1 flag. If the input rising caused the interrupt, the program
quickly switches the clocking source from pulse accumulation to the system clock. If the input signal goes
low before this switch is made, then the output pulse will be slightly delayed. After it switches the clock
source, the routine enables the PWM to toggle at the 5- and 6-ms points, and also generates an interrupt
when the C1 register toggles low at the 6-ms point. When the program enters the interrupt service routine
again, it switches the clock back to the pulse accumulation mode and disables the PWM output toggling.
The program then resets the timer to trigger only on the rising edge of the T1IC/CR input pin.

239

Delayed Output Pulse Generation Routine
 ;Put 6 ms into C1 and 5 ms into C2.
 ;Input pulse must remain high at least 9 �s.
 ;Input = T1IC/CR output = T1PWM.
DELAY MOV #18h,T1CCM ;Value to give 5 ms with 5-MHz SYSCLK
 ; (1869h)
 MOV #69h,T1CCL ;Must load MSB first then LSB.
 MOV #1Dh,T1CM ;Value to give 6 ms with 20-MHz crystal
 ; (1D45h)
 MOV #45h,T1CL ;Must load MSB first then LSB.
 MOV #00h,T1PC1 ;T1EVT pin is set up as general-purpose
 ; input.
 MOV #22h,T1PC2 ;Enable the T1IC/CR and T1IC/PWM pins, and
 ; initialize the T1IC/PWM pin to 0.
 MOV #07h,T1CTL4 ;Select dual compare mode, look for rising
 ; edge on T1IC/CR pin, and enable edge
 ; detection.
 MOV #04h,T1CTL3 ;Clear interrupts, and enable T1IC/CR edge
 ; interrupts.
 MOV #71h,T1CTL1 ;Setup WD, clock source=pulse
 ; accumulator.
 MOV #01h,T1CTL2 ;Reset the counter (could enable WD here).
 EINT
 ...
MAIN ... ;Main routine goes here.
 ...
T1INTERR ;T1 interrupt routine to follow.
 BTJO #20h,T1CTL3,ENDPUL ;Jump if at end of pulse (C1 flag=1).
 MOV #70h,T1CTL1 ;Counter now clocked by system clock.
 MOV #64h,T1CTL4 ;Enable PWM outputs, disable edge detect.
 MOV #01h,T1CTL3 ;Clear flag, enable C1 to trigger at end.
 RTI
ENDPUL MOV #71h,T1CTL1 ;Counter now clocked by pulse accumulations.
 MOV #07h,T1CTL4 ;Re-enable edge interrupt, disable PWM
 ; output.
 MOV #04h,T1CTL3 ;Clear flag, enable C1 to trigger at end.
 RTI

240

Watchdog (WD) Operation and Initialization

A WD timer operates as a sentry to guard against improper program flow. Any time the WD is enabled to
cause a system reset and then overflows without being reset by a proper value being written to the WDRST
register, a system reset will occur. In other words, the program must write the proper values to the WDRST
key register before the WD has a chance to time-out or the WD causes a system reset. This interaction be-
tween the program and the WD helps ensure program integrity. After the WD is enabled to reset the device,
it can only be disabled by removing power from the part.

WD Initialization Example

To initialize the WD to generate a system reset, do the following:

1. Select the appropriate clock source and WD overflow tap select bits (T1CTL1.4, 5, 6, and 7).

2. Clear the WD OVRFL INT FLAG bit (T1CTL2.5). This bit must be cleared in order to receive
WD-generated resets.

3. Set the WD OVRFL RST ENA bit (T1CTL2.7). Once this bit is set, only a power-up reset can
clear it. For this condition to occur, VCC must fall to somewhere around 1 V. The actual trip point
depends on variables such as processing and temperature. The device stops working before the
WD OVRFL RST ENA bit gets cleared. Also, once this bit is set, the following WD bits can not
be altered until after a power-up reset:

a. WD OVRFL INT ENA (T1CTL2.6)

b. WD OVRFL INT FLAG (T1CTL2.5)

c. WD OVRFL TAP SEL (T1CTL1.7)

d. WD INPUT SELECT0–2 (T1CTL1.4–6)

e. Write 55h to the WD RESET key register (WDRST) to enable a proper reset sequence.

241

There are conditions where the program will fail to work properly due to low VCC levels and the WD will
not catch the failure. Your system should incorporate circuitry to cause a RESET when VCC is out of spec.
(See Figure 11.)

If a reset occurs, the RESET subroutine needs to determine if the reset was caused by the WD or not by
checking the WD OVRFL INT FLAG (T1CTL2.5). If the reset was caused by the WD, the WD OVRFL
INT FLAG bit (T1CTL2.5) must be cleared in order to receive additional WD resets.

242

Figure 11. Typical Power-Up/Down Circuit

10 kΩ

VCC

2.7 kΩ

To other
devices’
resets

0.47 µF
Manual
reset

Reset in

Reset out

TMS370

243

WD Reset Enable Initialization #1
This example can be used for those programs that always pass periodically through two or more points (see
Figure 12) in the main program routine, but not interrupt service routines. In this example, the main pro-
gram resets the WD at those points by writing immediate values directly to the WD reset register.

Figure 12. Two-Point Routine Operation

Start

Routine
A

Routine
B

Routine
C

Common
Point #1

Routine
D

Routine
E

Routine
F

Common
Point #2

The WD overflow rate depends on the worst case time through the routines A, D, and C as well as D, E, and
F. In this example, the WD is set to 16 bits in length and the full 8-bit prescale tap is used. If a reset occurs,
the reset subroutine needs to determine if the reset was caused by the WD or not by checking the WD
OVRFL INT FLAG (T1CTL2.5).

Routine
INITWD MOV #00h,P048 ;Reset the WD while in the general-purpose
 ; timer mode.
 MOV #70h,P049 ;Select prescale according to program needs.
 MOV #88h,P04A ;Lock the WD in the WD reset mode.

MAIN1 ...
 MOV #55h,P048 ;Must write a 55 first, and on odd writes
 ; (1,3,5,..).
 ...

MAIN2 ...
 MOV #0AAh,P048 ;Must write an AA second, and on even writes
 ; (2,4,6,.).
 ...

 ;Was the reset caused by the WD or not?
 ;The following routine can be used to find
 ;out.

RESET BTJZ #20h,P04A,GPINIT ;Is the WD flag set? If not
 ; go to GPINIT.
WDINIT AND #DFh,P04A ;Clear the WD flag.
 MOV #55h,P048 ;Reset the WD counter.
 ...
 ;Do any initialization here
 ...
 RTS
 ...
GPINIT ;Power-up reset routine goes here.
 ...
 RTS

244

WD Reset Enable Initialization #2

This example can be used for those programs that have many paths through the main routine, but also con-
tain a periodic interrupt service routine (ISR), as shown in Figure 13. Since a program could get lost in a
continuous loop in either the main or interrupt routine, the WD routine should not be entirely contained in
either one. For example, a program could get caught in a loop in the main or interrupt routines. The program
may not be executing properly, but if the WDRST key register is written to correctly in the loop, the WD
will not cause a reset. Therefore, it is best if you have two separate actions in your code that must operate
properly so that the WD will NOT cause a system reset. If either one fails, a system reset will occur.

In this WD example, two separate actions are required so the WD routine will NOT cause a system reset:

1. The main program must clear a counter register (R4) before an interrupt routine occurs a set
number of times (30 in this example). If the counter register is not cleared, the interrupt service
writes an invalid data byte to the WDRST key register which causes a system reset.

2. A periodic interrupt routine must be entered before the WD completely times out, or a system
reset will occur. Also, each time the interrupt routine is entered, the counter register (R4) is
incremented once and compared to a set value (30 in this example). If the counter is ever
incremented past 30, the interrupt routine writes an invalid data byte to the WDRST key register
to cause a system register. Note that the only reason the counter register should ever get past 30
is if the main routine does not clear it.

Figure 13. One-Point Main Routine Plus Interrupt Operation

Start

Routine
A

Routine
B

Routine
C

Common
Point

Begin
ISR

WD
Routine

Routine
X Return

(Main Routine) (Interrupt Service Routine)

The WD is set to 16 bits in length and no prescale tap is used. If a reset occurs, the RESET subroutine needs
to determine if the reset was caused by the WD or not (or by checking the WD OVRFL INT FLAG
T1CTL2.5).

245

Routine
WDCOUNT .EQU R4
WDSTORE .EQU R5

 ; The following routine detects whether the reset was caused by the
 ; WD or not.

RESET BTJZ #20h,P04A,GPINIT ;Is the WD flag set? If NOT go to GPINIT.
WDINIT AND #0DFh,P04A ;Clear the WD flag.
 ...

 ;Do any initialization here you desire specific to the WD.
 ...

GPINIT ;Power-up reset routine goes here.

 MOV #00h,P048 ;Reset the WD while in the general-purpose
 ; timer mode.
 MOV #00h,P049 ;Select prescale according to program needs.
 MOV #80h,P04A ;Lock the WD in the WD reset mode.
 ;Set up the register values used in the
 ; following routine. R4 used as a counter,
 CLR WDCOUNT ; R5 used as the storage register for the next
 MOV #0AAh,WDSTORE ; write to WDRST.

MAIN ...
 CLR WDCOUNT ;Clear the register before interrupt routine
 ... ; increments it past the value 30. The
 ; register can be cleared at several points in
 ; a program if necessary.

INTERR ;Interrupt routine.
 INC WDCOUNT ;Increment the counter register each interrupt
 ; routine.
 CMP #30,WDCOUNT ;Has the counter register been incremented to
 ; 30?
 JL PETDOG ;No, jump to PETDOG. Yes, write an invalid
 MOV #00,P048 ; value to WDRST. This will cause a system
 ; reset.

PETDOG INV WDSTORE ;Everything OK, invert old value (AA to 55, or
 MOV WDSTORE,P048 ; 55 to AA) then pet the watchdog to keep it
 ; happy.
 ...
 RTI

246

WD Initialization When System Reset is Not Desired

If a program does not use the WD reset circuit, any erroneously enabled WD can generate a reset. If the
program also clears the WD overflow interrupt flag, then the WD reset can continue to occur until a power-
down.

If a program does not use the WD circuit, then take the following actions to avoid the continuous reset
condition.

1. Assure the RESET pin is low during power up and oscillator start up.

2. Write x011xxxxb to T1CTL1 (P049) to halt clocking to the WD circuit.

3. Do not clear or write a zero to the WD overflow interrupt flag (P04A.5). Consider the
read-modify-write actions of the AND and XOR instructions and use them with care at this
address.

247

Specific Applications

This section describes sample routines for specific applications using the timer modules.

Stepper Motor Control

This application routine uses the T1 compare register to generate an interrupt which drives a stepper motor
through the following series of activities:

1. Start stepping the motor at a desired minimum speed of approximately 92 rpm.

2. Accelerate the motor to a desired maximum speed of approximately 1378 rpm.

3. Decelerate the motor back to the minimum speed.

4. Change the motor rotation direction and repeat from step one.

Acceleration, deceleration, and change of direction are controlled by checking bits in the flag register. Bit 7
of flag is checked to determine the desired direction of rotation, while bit 0 is tested to see if the speed of
rotation should be accelerated or decelerated. If bit 0 is a 1, then the speed needs to be decreased, and con-
versely if bit 0 is a 0, the speed needs to be increased.

The change of speed is accomplished by altering the value of the MSCOMP and LSCOMP working
registers. Since the MSCOMP:LSCOMP register pair is continually loaded into the T1 compare register
during the algorithm, any changes to the these registers between writes to the compare register will cause
the compare equal interrupt period to change. If the value of the MSCOMP:LSCOMP register pair
decreases, the T1 interrupt period decreases and the motor steps faster. If the value of the
MSCOMP:LSCOMP register pair increases, the T1 interrupt period increases and the motor steps slower.
Change of direction is accomplished at the minimum desired speed, and is completed by altering bit 7 in
the flag register.

The hardware circuitry required for this application includes any TMS370 microcontroller with the T1
module, two SN75603 chips and two SN75604 driver chips, and the stepper motor. The SN75603/4 driver
chips are power peripherals with three-state outputs having the capability to sink or source currents up to
2 A. Other driver chips may be used in this application. The stepper motor used in this application is
configured with four stator poles and 25 permanent magnet rotor poles. One hundred steps are required to
complete one revolution of the rotor, each step being 3.6 degrees. VCC for the driver chips depends on the
stepper motor which is rated at 1 A at 20 V.

The schematic for the application is shown in Figure 14.

248

Figure 14. Stepper Motor Drive Application Schematic

+5 V VCC

RESET

VCCVSS MC

A5

A7

A4

A6

U1

EN

DIR

EN

DIR

EN

DIR

EN

DIR U5
B’

U4
A’

U3
B

U2
A

(10–20 V)

VCC

GND

(10–20 V)

VCC

GND

(10–20 V)

VCC

GND

(10–20 V)

VCC

GND

XTAL2 XTAL1

OUT

OUT

OUT

OUT A

A’

B’ B

U1 = TMS370 Family Microcontroller
U2, U3 = SN75603 Peripheral Drivers
U4, U5 = SN75604 Peripheral Drivers

249

The flowchart for the stepper motor application is shown in Figure 15.

Figure 15. Stepper Motor Control Application Flowchart

Begin Stepper Motor
Application.

Initialize:
1. Stack Pointer
2. Port A
3. Registers
4. T1

Start Accelerating the Stepper
Motor in the Forward Direction.

Is STEPCT Flag = 0
?

Increase the Motor Speed
Until the Max Speed is

Detected.

Is Motor Speed = Max
?

Is STEPCT Flag = 0
?

Is Motor Speed = Min
?

Decrease the Motor
Speed to the
Min Value.

Change Motor Rotation
Direction and Start Again

Y

Y

Y

N

N

N

Begin T1
Interrupt Routine.

Did T1EDGE Flag
Cause Interrupt

?

Did T1C2 Flag
Cause Interrupt

?

T1C1 Caused Interrupt. Clear
and Re-Enable T1 Compare

Register Flag.

Is Motor Direction
Forward

?

Output the Motor Drive
on Port A.

Set the STEPCT Flag

Return from Interrupt.

Y

Y

N

Y

Optional:
Do Interrupt Code Here.

Optional:
Do Additional Interrupt

Code Here.

Move REVERSE Mask
to Port A.

N

N

Y

250

Stepper Motor Routine
 .title “Stepper Motor Control”

; Allocate register space for the four registers used in the routine.

MSCOMP .equ R5 ;Working registers for new values for
LSCOMP .equ R6 ; the T1 compare register.
FLAG .equ R7 ;Register tellS if acceleration or
 ; deceleration routine is to be used (bit 0),
 ; and what direction to operate (bit 7).
STEPCT .equ R8 ;Used to signal a complete write cycle to the
 ; 4 motor poles. (Write cycle rev counter.)

; Set up Equate table for peripheral file registers used in routine.

APORT2n .equ P021 ;Port A control register
ADATA .equ P022 ;Port A data register
ADIR .equ P023 ;Port A data direction register
T1CM .equ P042 ;T1 compare register 1 (MSB)
T1CL .equ P043 ;T1 compare register 1 (LSB)
T1PC1 .equ P04D ;T1 port control register 1
T1PC2 .equ P04E ;T1 port control register 2
T1CTL1 .equ P049 ;T1 control register 1
T1CTL2 .equ P04A ;T1 control register 2
T1CTL3 .equ P04B ;T1 control register 3
T1CTL4 .equ P04C ;T1 control register 4
T1PRI .equ P04F ;T1 priority control register

 .text 7000h

; Begin initialization:
;
; Set up stack pointer to begin at R10.
; Use MS nibble of Port A as the stepper motor drive port.
; Initialize registers to their start values.
; Initialize T1 operation.

START MOV #10,B ;Initialize the stack pointer to begin at
 LDSP ; register 10.
 MOV #00h,APORT2n ;Set up port A MS nibble to be used as the
 ; 4 pole stepper motor drive port.
 MOV #00h,ADATA ;Initialize data = 00.
 MOV #0F0h,ADIR ;Direction: A7=A6=A5=A4=OUT, A3=A2=Al=A0=IN
 ;REGISTERS:
 MOV #080h,MSCOMP ; MSCOMP = 80h MSCOMP&gm1.LSCOMP = 08000h)
 MOV #000h,LSCOMP ; LSCOMP = 00h
 CLR STEPCT ; STEPCT = 0
 CLR FLAG ; FLAG = 0
 MOV #04h,B ; B = 4, (optional) Used only to count
 ; complete write cycles to the 4 motor poles.
 ; Could add additional code in the T1
 ; interrupt service routine to count
 ; revolutions.

251

; Initialize the T1 module.

INTPGM MOV #080h,T1CM ;Value to give minimum speed (rpm) using a
 MOV #00h,T1CL ; 20-MHz crystal. Must load the MS byte
 ; first then the LS byte.
 MOV #00000000b,T1PC1 ;T1EVT, T1PWM, AND T1IC/CR pins are set to
 MOV #00000000b,T1PC2 ; general-purpose input pins.
 MOV #00010000b,T1CTL4 ;Select dual compare mode and cause T1 to
 ; reset on compare equal.
 MOV #01110000b,T1CTL1 ;Select the system clock as timer clock
 ; source and leave the WD unchanged.
 MOV #00000111b,T1CTL3 ;Clear any pending interrupt flags, and
 ; allow the compare 1, compare 2, or
 ; T1EDGE interrupt flag to cause the T1
 ; interrupt.
 ; (Optional) Only compare 1 interrupt is
 ; required.
 MOV #00000001b,T1CTL2 ;Reset the counter (could enable WD here).
 MOV #00000000b,T1PRI ;Set the T1 interrupt priority to level 1.

 EINT ;Allow interrupts to the main routine.

; Begin main program: Accelerate and decelerate the stepper motor by
; changing the value in the T1 compare register. Also, change
; direction when the minimum speed has occurred.

FASTER BTJZ #01,STEPCT,FASTER ;Execute acceleration program here.
 CLR STEPCT ;Clear the STEPCT rev counter register.
 INCW #–80h,LSCOMP ;Decrease the STORE register pair by 80h
 BTJO #0F7h,MSCOMP,UPDATE ;Has the maximum desired speed been
 ; reached?
 ; (True when (MSCOMP:LSCOMP) = 0880h)
 ; No, update the T1 compare register.
 INC FLAG ; Yes, set the ACCEL/DECEL bit in FLAG.
UPDATE MOV MSCOMP,T1CM ;Update the T1 compare register with
 MOV LSCOMP,T1CL ; the values in the MSCOMP and LSCOMP
 ; registers.
 BTJO #01h,FLAG,SLOWER ;If ACCEL/DECEL bit is set jump to SLOWER,
 JMP FASTER ; if not, jump to SPEEDUP.
SLOWER BTJZ #01,STEPCT,SLOWER ;Execute deceleration program here.
 CLR STEPCT ;Clear the STEPCT rev counter register.
 ADD #80h,LSCOMP ;Increase the STORE register pair by 80h.
 ADC #00,MSCOMP
 BTJZ #80h,MSCOMP,UPDATE ;Has the minimum desired speed been
 ; reached?
 ; (True when (MSCOMP:LSCOMP) = 08000h)
 ; No, update the T1 compare register.
CLRFLG XOR #81h,FLAG ; Yes, clear the ACCEL/DECEL bit and
 ; change the DIRECTION bit.
 JMP UPDATE ;Update the T1 compare register.

252

; T1 interrupt service routine: Routine will first check to see which
; of three possible flags caused the interrupt, and jump to the
; correct routine. If the T1C1 flag (compare register 1) is set, the
; STPMTR routine is entered. This routine loads the motor pole
; drivers with a value that causes the motor to accelerate or
; decelerate in either the forward or reverse direction, depending on
; the values of the ACCEL/DECEL and DIRECTION bits in the FLAG
; register.

T1INT BTJO #80h,T1CTL3,EDGE ;Check to see if the T1 EDGE flag caused
 ; interrupt.
 BTJO #40h,T1CTL3,CAPCMP ; No, check the T1C2 flag.
 ; No, must have been the T1C1 flag.
STPMTR MOV #11000111b,T1CTL3 ;Clear the T1C1 interrupt flag, reenable
 ; all interrupts.
 ;Execute interrupt code.
 BTJZ #80h,FLAG,FORWRD ;Is DIRECTION bit clear? Yes, then jump
 ; to the FORWRD routine. No, continue.
 MOV *REV–1[B],A ;Move the appropriate motor pole mask
 JMP LOAD ; into the port A data register (reverse
 ; direction).
FORWRD MOV *DRIVE–1[B],A ;Move the appropriate motor pole mask
LOAD MOV A,ADATA ; into the port A data register (forward
 ; direction).
 DJNZ B,FINIS ;(Optional) Decrement the cycle register
 MOV #04,B ; count and reload with 4 if zero.
SETREV INC STEPCT ;Set the STEPCT rev counter register.
FINIS RTI ;Return to the main routine.

EDGE
 MOV #01100111b,T1CTL3 ;Clear the T1IC/CR interrupt flag,
 ; reenable all interrupts
 ;Execute interrupt code.
; An interrupt routine for a valid signal on the T1IC/CR pin can go
; here.
 RTI ;Return to main routine.

CAPCMP
 MOV #0100111b,T1CTL3 ;Clear the T1C2 interrupt flag, reenable
 ; all interrupts.
 ;Execute interrupt code.
; An interrupt routine for a capture/compare register equal can go
; here.
 RTI ;Return to main routine.

 .data 7E00h
DRIVE .byte 00010000b ;A=B=0, A’=B’=1, only B and B’ poles
 ; enabled.
 .byte 00100000b ;A=B=0, A’=B’=1, only A and A’ poles
 ; enabled.

 .byte 11010000b ;A=B=1, A’=B’=0, only B and B’ poles
 ; enabled.
 .byte 11100000b ;A=B=1, A’=B’=0, only B and B’ poles
 ; enabled.
REV .byte 11100000b ;A=B=1, A’=B’=0, only B and B’ poles
 ; enabled.
 .byte 11010000b ;A=B=1, A’=B’=0, only B and B’ poles
 ; enabled.
 .byte 00100000b ;A=B=0, A’=B’=1, only A and A’ poles
 ; enabled.
 .byte 00010000b ;A=B=0, A’=B’=1, only B and B’ poles
 ; enabled.

 .sect ”VECTOR”,7FF4h
 .word T1INT ;Location for the T1 interrupt routine.

253

 .word START ; All other interrupt vectors point to
 .word START ; the reset vector.
 .word START
 .word START
 .word START
 .end

254

Time-of-Day Clock Application Routine

This application routine uses the T1 compare register to generate an interrupt service routine every 1/10
second (100 ms), which will be used to update a time-of-day clock. The value required by the compare
register to generate a 100-ms interrupt period with a 5-MHz SYSCLK is 07A11h . See page 217 for formula
and look-up table.

The application software uses five registers to keep track of hours, minutes, seconds, tenths of seconds, and
an AM/PM mode flag. Additional code and circuitry may be added for external time setting control and
calendar application requirements. See page 258.

The flowchart for the application is shown in Figure 16.

255

Figure 16. Flowchart for Time-of-Day Clock Application

Main Loop T1 Interrupt Routine

Begin

Initialize Stack
Pointer to Begin at

R10.

Set Up the 5
Registers Used in the

Routine.

Initialize the T1
Module to Cause an

Interrupt Every 100 ms.

Main Routine:
Wait for an Interrupt.

Enter T1 Interrupt Routine.

Clear and Reenable
the T1C1 Flag.

Increment the TENTH
Register.

Does Time = 1 s
?

Does Time = 1 min.
?

Reload the TENTH
Register and Increment
the Seconds Register.

Clear the Seconds
Register and Increment

the Min Register

Does Time = 1 hour
?

Clear the Minutes Register
and Increment the

Hour Register.

Have 12 Hours
Elapsed

?

Set the Hour Register to 1.
Toggle the AM/PM Flag.

Return from Interrupt.

N

Y

Y

Y

Y

N

N

N

256

Time-of-Day Routine
 .title “Time-of-Day Clock”

; This routine will use T1 in the dual compare mode to implement a
; real-time 12-hour clock (with AM/PM flag) down to tenths of seconds.

; Allocate register space for the five registers used in the
; application routine.

AMPM .equ R5 ;AM/PM flag register
HOUR .equ R6 ;HOUR register
MIN .equ R7 ;MIN register
SEC .equ R8 ;SEC register
TENTH .equ R9 ;Register used to count 10 – 1/10 second
 ; T1C1 interrupts. (Required only to increase
 ; accuracy of clock.)

; Set up Equate table for peripheral file registers which will be
; used in the routine.

T1CM .EQU P042 ;T1C1 register (MSB)
T1CL .EQU P043 ;T1C1 register (LSB)
T1PC1 .EQU P04D ;T1 port control register 1
T1PC2 .EQU P04E ;T1 port control register 2
T1CTL1 .EQU P049 ;T1 control register 1
T1CTL2 .EQU P04A ;T1 control register 2
T1CTL3 .EQU P04B ;T1 control register 3
T1CTL4 .EQU P04C ;T1 control register 4
T1PRI .EQU P04F ;T1 interrupt priority register

 .text 7000h

; Begin initialization:
;

; Set up stack pointer to begin at R10.
; Initialize registers to their Start value (12:00 A.M.).
; Initialize the T1 operation.

BEGIN MOV #10,B ;Initialize the stack pointer to begin at
 LDSP ; register 10.

257

; Initialize the clock registers to 12:00 a.m.

 CLR SEC ;Initialize SEC register to 00.
 CLR MIN ;Initialize MIN register to 00.
 MOV #12h,HOUR ;Initialize HOUR register to 12.
 MOV #00,AMPM ;Initialize AMPM. 0 = AM, 1 = PM
 MOV #0Ah,TENTH ;Initialize TENTH register with 10.
 MOV #00,T1PRI ;Set T1 priority for level 1.
 MOV #7Ah,T1CM ;Move 07A11h into the T1C1 register
 MOV #11h,T1CL ; MSB first.
 MOV #00h,T1PC1 ;Initialize all T1EVT, T1PWM, and T1IC/CR
 MOV #00h,T1PC2 ; to general-purpose inputs.
 MOV #l0h,T1CTL4 ;Select dual compare register mode and
 ; allow C1 register to reset timer.
 MOV #05h,T1CTL1 ;Choose the /16 prescale tap for T1.
 MOV #01h,T1CTL3 ;Clear flags, enable only the T1C1 flag
 ; to cause an interrupt. Other timer flags
 ; may be enabled if desired.
 MOV #01h,T1CTL2 ;Disable WD, reset T1.
 EINT ;Allow interrupts to the main program.

; Begin your main routine here. (The jump loop shown is for
; demonstration only.)

MAIN JMP MAIN

; T1C1 interrupt service routine to follow.

T1INT MOV #01h,T1CTL3 ;Clear the C1 flag.
 DJNZ TENTH,END ;Check to see if a second has gone by, if
 MOV #0Ah,TENTH ; not, RTI, if so, continue routine.
 DAC #01,SEC ;Add a decimal 1 to SEC then see if
 CMP #060h,SEC ; 60 seconds have elapsed.
 JNE END ; If not, return to main program.
 CLR SEC ; If so, clear SEC then,
 DAC #01,MIN ;Add a decimal 1 to MIN. See if
 CMP #060h,MIN ; 60 minutes have elapsed.
 JNE END ; If not, return to main program.
 CLR MIN ; If so, clear MIN then,
 DAC #01,HOUR ;Add a decimal 1 to HOUR. See if
 CMP #013h,HOUR ; 13 hours have elapsed.
 JNE END ; If not, return to the main program.
 MOV #01,HOUR ; If so, set the HOUR register to 1,
 XOR #01,AMPM ; and toggle the AM/PM flag bit.
END RTI ;Return to the main program.

 .sect ”VECTOR”,7FF4h
 .word T1INT ;Location of the T1 interrupt vector.
 .word BEGIN ;All other vectors jump to BEGIN.
 .word BEGIN
 .word BEGIN
 .word BEGIN
 .word BEGIN
 .end

258

Optional Calendar Functions for the Time-of-Day (TOD) Clock

This code could be substituted for the T1 interrupt service routine of the previous example to give a TOD
clock which keeps track of days, months, and years including leap years. To implement these functions,
you need to replace the register equates, the T1 interrupt service routine, and the value of the stack pointer.
Also, the new registers need to be initialized, the previous register references deleted, and three look-up
tables added. The T1 initialization and peripheral file equates remain the same, since this routine uses the
same 1/10th second interrupt time base as the previous routine.

The new code blocks required for the calendar functions are as follows:

1) New register equate values:

TIME .equ R4
; R4 = TENTH 0
; R5 = SECONDS 1
; R6 = MINUTES 2
; R7 = HOURS 3
; R8 = DAYS 4
; R9 = MONTH 5
; R10= YEAR 6
MONTH .equ R9
YEAR .equ R10
YEAR100 .equ R11 ;Century FLAG register. Incremented on
 ; 100-year intervals.

2) New stack pointer value and register initialization.

START MOV #l2, B ;The stack needs to start at #12
 LDSP ; or greater.

 CLR TIME ;Clear TENTHS
 CLR TIME+l ;Clear SECONDS
 CLR TIME+2 ;Clear MINUTES
 CLR TIME+3 ;Clear HOURS
 MOV #1,TIME+4 ;Set DAYS to 1.
 MOV #l,TIME+5 ;Set MONTHS to 1.
 MOV #89,TIME+6 ;Set YEARS to 1989.
 CLR TIME+7 ;Clear the century flag register.

3) New Timer 1 Interrupt Service Routine:

T1INT PUSH A ;Save the A and B registers if
 ; necessary.
 PUSH B
 CLR B ;Start index at TENTHS.
LOOP MOV *TIME[B],A ;Get the value of the present time
 ; unit.

 CMP #4,B ;Are we checking DAYS?
 JEQ DOMONTH ; If so, special check for months
 CMP *MAX[B],A ;If not, has the MAX value of this time
 ; unit been met yet?

 JLO DONE ;If not then exit.

NEXT MOV *MIN[B],A ;Replace the value the time unit with
 MOV A,*TIME[B] ; its minimum value.
 CMP #6,B ;Are we at the end of the century yet?
 JNE NXTUNIT ;If not, continue incrementing B.
 INC YEAR100 ;If so, increment the century flag
 ; register.
 JMP LOOP
NXTUNIT INC B ;Point to next higher time unit.
 JMP LOOP ;Jump to loop.

259

RESTOREB POP B ;Restore B with time unit
 ; count.
DONE INC A ;Increment the present time
 ; unit.
 MOV A,*TIME[B]
 POP B ;Restore B and A then exit.
 POP A
 RTI ;Return from interrupt.

DOMONTH PUSH B ;M O N T H S
 MOV MONTH,B ;Get the value of the MONTH
 ; register.
 CMP #2,B ;Is it Feb? If not jump to
 ; NORMAL.
 JNE NORMAL
 BTJO #3,YEAR,NORMAL ;If it is Feb, check for a leap
 ; year (leap years end with
 ; 00b).
 ;If not leap year jump to
 ; NORMAL.

 CMP #28+1,A ;If leap year is it Feb. 29th
 ; yet?
 JMP DODAYS

NORMAL CMP *DAYS–1[B],A ;If month is not Feb, is it
 ; maxed out yet?
DODAYS JLO RESTOREB ;If not, restore index and go
 ; to DONE.

DONEMON POP B ;If so, restore index and go to
 ; NEXT.
 JMP NEXT ;Exit to next time unit

4) New look-up tables required for routine:

MAX .BYTE 09,59,59,23,31,12,99 ;Maximim values for TENTH,
 ; SECOND, MINUTE, HOUR, DAY,
 ; MONTH, and YEAR.
MIN .BYTE 00,00,00,00,01,01,00 ;Minimum values for TENTH,
 ; SECOND, MINUTE, HOUR, DAY,
 ; MONTH, and YEAR.
DAYS .BYTE 31,28,31,30,31,30 ;Maximum days in each month.
 .BYTE 31,31,30,31,30,31

260

Frequency Counter Application

This routine uses the T1 module in a frequency counter application. The frequency is calculated by keeping
track of the number of pulses for one second. The pulse count is input on the T1IC/CR pin, and the T1
compare register is set up to give a one-second interrupt. The value required by the compare register to
generate a one-second interrupt period with a 5-MHz SYSCLK is 04C4Ah with a /256 prescale. See page
217 for formula and look-up table. This counter application is designed to measure an input signal from
1 Hz to approximately 60 kHz.

A series of three registers keeps a decimal count of the number of pulses seen on the T1IC/CR pin until
the compare equal interrupt is detected. After each T1 compare equal interrupt, the values in the COUNTX
registers are loaded into the STOREX registers for use by your program. The COUNTX registers are then
cleared and ready to keep count of any pulses during the next second.

261

Frequency Counter Routine

 .title “Frequency Counter”;accurate to approx 60 kHz

; Allocate space for the seven registers used in the routine.
COUNTH .equ R2 ;The COUNTX registers are used to keep
COUNTM .equ R3 ; track of the external pulses on the
COUNTL .equ R4 ; T1IC/CR pin. They are incremented for
 ; each pulse.
STOREH .equ R5 ;The program uses the STOREX registers to
STOREM .equ R6 ; keep, a record of the last frequency
STOREL .equ R7 ; count. These registers are updated
 ; every second.
ERROR .equ R8 ;(Optional, not used by program) This
 ; register is provided to signal the
 ; program if an invalid frequency is
 ; detected. (Overflow out of the COUNTH
 ; register)

; Set up Equate table for peripheral file registers used in routine.

T1CM .equ P042 ;T1 compare register 1 (MSB)
T1CL .equ P043 ;T1 compare register 1 (LSB)
T1CTL1 .equ P049 ;T1 control register 1
T1CTL2 .equ P04A ;T1 control register 2
T1CTL3 .equ P04B ;T1 control register 3

T1CTL4 .equ P04C ;T1 control register 4
T1PC1 .equ P04D ;T1 port control register 1
T1PC2 .equ P04E ;T1 port control register 2
T1PRI .equ P00F ;T1 priority control register

; Begin initialization:
;

; Set up stack pointer to begin at R10.
; Initialize registers to their start values.
; Initialize T1 operation.

 .text 7000h ;Program start location

START MOV #10,B ;Initialize the stack pointer to begin at
 LDSP ; register 10.

 CLR COUNTL ;Initialize the registers used in this
 CLR COUNTM ; routine to zero.
 CLR COUNTH
 CLR STOREL
 CLR STOREM
 CLR STOREH
 CLR ERROR

 MOV #4Ch,T1CM ;Load the T1 compare register with
 MOV #4Ah,T1CL ; #04C4Ah (MSB first) to give a 1 s
 ; compare.
 MOV #00h,T1PC1 ;T1EVT and T1PWM are general-purpose
 ; input pins
 MOV #02h,T1PC2 ;Enable T1IC/CR.
 MOV #11h,T1CTL4 ;Select dual compare mode, enable falling
 ; edge and detect enable of T2nIC1/CR.
 MOV #07h,T1CTL1 ;Select the /256 prescale value.
 MOV #00h,T1PRI ;Set up interrupt priority as level 1.
 MOV #01h,T1CTL2 ;Reset counter.
 MOV #05h,T1CTL3 ;Clear flags, enable T1IC/CR and the
 ; capture register to cause interrupts.
 EINT ;Globally enable interrupts.

262

; Begin your main program here. A simple jump/loop routine is used in
; this application.

MAIN JWP MAIN ;Loop on self while waiting for interrupt.

; T1 interrupt service routine: Routine first checks to see which of the
; two enabled T1 interrupt sources caused the interrupt. If the T1C1 flag
; (compare register 1) is set, the service routine jumps to SAVE and
loads
; the contents of the COUNTX registers into the STOREX registers,
; reinitializes the COUNTX registers to zero, then resets the timer. If
; the T1EDGE flag (T1IC/CR pin) is set, the service routine increments
; the COUNTX registers.

T1INT BJTO #20h,T1CTL3,SAVE ;Did T1 compare register cause the T1
 ; interrupt? Yes, jump to SAVE.
 MOV #65h,T1CTL3 ; No, clear the T1IC/CR pin flag.
 MOV #11h,T1CTL4 ;Reenable falling edge and detect enable of
 ; T2nIC1/CR.
LOW DAC #l,COUNTL ;Increment the pulse count register COUNTL.
 JC MID ;If the low count register does not roll
 RTI ; over, (carry = 0) then return to the main
 ; program.
MID DAC #0,COUNTM ;If carry = 1, then COUNTM = <COUNTM> + 1.
 JC HIGH ;If the mid count register does not roll
 RTI ; over, (C=0), then return to the main
 ; program.
HIGH DAC #0,COUNTH ;If carry = 1, then COUNTH = <COUNTH> + 1.
 JNC RETURN ;(Optional) If the high count register rolls
 MOV #0FFh,ERROR ; over, set the ERROR register.
RETURN RTI ;Return to the main program.

SAVE MOV COUNTL,STOREL ;Save the contents of the present pulse
 MOV COUNTM,STOREM ; counter registers into the
 ; STOREH:STOREM:STOREL registers.
 MOV COUNTH,STOREH
 CLR COUNTL ;Clear the contents of the pulse counter
 ; registers.
 CLR COUNTM
 CLR COUNTH
 MOV #0C5h,T1CTL3 ;Clear the T1C1 flag. Keep interrupts
 ; enabled.

; Code could be added here to use the frequency count data. For example,
; you could use the SPI port to send the data to your display.

 MOV #01,T1CTL2 ;Reset the timer.
DONE RTI ;Return to the main program.

 .sect ”VECTOR”,7FF4h
 .word T1INT ;Set the T1 interrupt vector to T1INT.
 .word START ;All other vectors point to the reset
 ; vector.
 .word START
 .word START
 .word START
 .word START
 .end

263

Display Dimming Application Routine

Output a PWM signal with a varying duty cycle to control the brightness of a display. (VF, LED, etc.)

The schematic for this application is as follows:

Figure 17. Display Dimming Application

T1

SPI

TMS370
Microcontroller

T1PWM

I/O Pin

SPICLK

SIMO

ENABLE

CLKIN

DATA

Shift Register

Display

This application requires a PWM signal with a duty cycle which can vary from 0% to 100%. The resolution
of the signal is 0.5% (200 steps from 0% to 100%). The T1 module is used in this example, but T2n may be
used in a similar manner for those devices which contain T2n. Only the dimming function is covered in this
application. The SPI interface is illustrated in Using the TMS370 SPI and SCI Modules Application Report
(SPNA006).

Figure 18. Display Dimming PWM Signal

t1

t2

In this PWM application, the pulse width duty cycle (t2) may be changed under program control by altering
the value in the capture/compare register. The compare register controls the period of the signal (t1) and
is not changed in this routine.

264

The main program loads any new values for the PWM duty cycle into the MS/LSDATA working registers.
These values are checked against the latest values in the HI/LODUTY registers. If they are different, the
HI/LODUTY registers are updated, and the MAIN loop compares to see if the new value is 0% or 100%.
If so, the PWM pin is set either LO or HIGH. If the new value is not 0% or 100%, the T1 interrupt service
routine is enabled, and on the next interrupt, the PWM duty cycle changes.

When the T1 service routine is entered, the routine stops the PWM signal, loads the new values, and restarts.
Stopping the PWM signal helps avoid the possibility of inverting the signal if the new value is larger than
the old; for example, when changing from a 20% to a 30% duty cycle signal.

The program flowchart diagram for this routine is illustrated in Figure 19.

265

Figure 19. Display Dimming Flowchart

Begin

Initialize:
1. Stack Pointer
2. Registers
3. T1 Module

Begin Main Program:
Load Duty Cycle

Information into the MS/LS
Data Register Pair.

Display Dimming
Applications

Does
MS/LS Data =

HI/LO Duty
?

Clear the NEWVALUE Flag.

Continue With Main
Program Loop.

Does Duty Cycle = 0%
?

Set the T1PWM Pin Low.

Update the HI/LO Duty
Register Pair and Set the

NEWVALUE Flag.

Continue With Main
Program Loop.

Does Duty Cycle = 100%
?

Enable the T1 Compare
Register to Cause an

Interrupt.

Set the T1PWM Pin High.

T1 Interrupt
Service Routine

Begin T1 INT,
Service Routine.

Clear T1C Flag, Stop T1.
Load Upgrade Duty Cycle

Information.

Reset T1.
Reset T1PWM Pin.

Restart T1.

Return From Interrupt.

N

Y

Does NEWVALUE
Flag = 1

?

266

Display Dimming Routine
 .title “Display Dimming Function”
 .text 7000h

; Allocate register space for the five registers used in the
; application routine.

HIDUTY .equ R2 ;Register used to store MSB of any new
 ; duty cycle value.
LODUTY .equ R3 ;Register used to store LSB of any new
 ; duty cycle value.
MSDATA .equ R4 ;Working registers where duty cycle information
LSDATA .equ R5 ; is stored before the main program loads it
 ; into the HI/LODUTY registers.
FLAGS .equ R6 ;Register used to store any software flags.

NEWVALUE .dbit 0,FLAGS ;Flag used to trigger a new PWM duty cycle.
 ; (Bit 0 of the FLAGS register is used.)

; Set up Equate table for peripheral file registers which are used
; in the routine.

T1CM .EQU P042 ;T1C1 register (MSB)
T1CL .EQU P043 ;T1C1 register (LSB)
T1CCM .EQU P044 ;T1 compare/compare 2 register (MSB)
T1CCL .EQU P045 ;T1 capture/compare 2 register (LSB)
T1PC1 .EQU P04D ;T1 port control register 1
T1PC2 .EQU P04E ;T1 port control register 2
T1CTL1 .EQU P049 ;T1 control register 1
T1CTL2 .EQU P04A ;T1 control register 2
T1CTL3 .EQU P04B ;T1 control register 3
T1CTL4 .EQU P04C ;T1 control register 4
T1PRI .EQU P04F ;T1 interrupt priority register

; Begin initialization:

; Set up stack pointer to begin at R050.
; Initialize registers to their START values.
; Initialize the T1 operation.

START MOV #50h,B ;Initialize the stack pointer to start at
 LDSP ; register R050.

RESET CLR HIDUTY ;Clear all registers. The duty cycle of the
 CLR LODUTY ; PWM signal is initialized to 0%.
 CLR MSDATA
 CLR LSDATA
 CLR FLAGS

267

; Initialize the T1 module

T1INIT MOV #04Eh,T1CM ;Set up the T1 compare register to contain
 MOV #020h,T1CL ; (4E20h). PWM frequency = 250 Hz. (The
 ; actual frequency is not very important
 ; But should be > 100 Hz.)
 ; Must load MSB first then LSB.

 MOV HIDUTY,T1CCM ;Load value for the duty cycle.
 MOV LODUTY,T1CCL ; Must load MSB first then LSB.

 MOV #0,T1PC1 ;T1EVT pin is set as a general-purpose
 ; input.
 MOV #0,T1PRI ;Set the T1 interrupt priority to level 1.
 MOV #01110000b,T1CTL4 ;Select dual compare mode, enable toggle
 ; function of compare registers 1 and 2,
 ; and reset T1 on compare 1 equal.
 MOV #00000000b,T1CTL1 ;Select system clock as timer clock source.
 MOV #00000001b,T1CTL2 ;Reset the counter (could enable WD here).
 MOV #00000000b,T1CTL3 ;Clear and disable all interrupts.

 MOV #00100000b,T1PC2 ;Enable T1PWM (Initial output value (0)
 ; selected by bit 6), T1IC/CR is general–
 ; purpose input.
 EINT ;Enable interrupts.

MAIN ... ;Begin main program loop here.
 ...

; In this example, the main program checks the values of the
; MS/LSDATA register pair against the HI/LODUTY register pair. If the
; values are different, the PWM duty cycle needs to be changed. The
; main loop also checks to see if any new value is between 0% and
; 100%. If so, the T1INT service is entered. If the new value is
; 0% or 100% exactly, the T1PWM pin is set to a general-purpose
; output pin, with the data value of 0 (0%) or 1 (100%).

CHKSAME CMP MSDATA,HIDUTY ;Check to see if the new reading in MSDATA
 JNE UPDATE ; equals HIDUTY. If not, jump to UPDATE.
 CMP LSDATA,LODUTY ;If so, check to see if new reading in
 JEQ SAMEVALU ; LSDATA equals LSDUTY. If value is same
 ; as last time, no need to update
 ; HI/LODUTY. If not, go to UPDATE.

; The values in the MS/LSDATA registers are not equal to the
; HI/LODUTY values, therefore the HI/LODUTY registers need to be
; updated.

UPDATE MOVW LSDATA,LODUTY ;A new value has been read and stored in
 SBIT1 NEWVALUE ; the HIDUTY/LODUTY register pair.
 JMP ONWARD ; Set NEWVALUE then jump to ONWARD.

; The values in the MS/LSDATA registers are equal to the HI/LODUTY
; values. No update of the HI/LODUTY registers is required.

SAMEVALU SBIT0 NEWVALUE ;The value read from MS/LSDATA equals
 ; HI/LODUTY. Clear NEWVALUE.

268

; Continue on with the main loop.

ONWARD ;(NEXT INSTRUCTION)
 ...
 ...

 JBIT1 NEWVALUE,CHK0 ;Check to see if a new value has been
 ; stored into the HI/LODUTY regs.
 ; If so check for 0% or 100%.
 BR ONWARD1 ; If not, branch to ONWARD1.

; Check to see if the NEW duty cycle is either 0% or 100%. If so,
; set the T1PWM pin accordingly.

CHK0 CMP #0,LODUTY ;Is LODUTY = 0? No, check to see = 100%.
 JNE CHK100 ; Yes, check the HIDUTY register.
 CMP #0,HIDUTY ;Is HIDUTY also = 0?
 JEQ SETLOW ; Yes, set T1PWM line low.
 ; No, check if 100%.
CHK100 CMP #20h,LODUTY ;Is LODUTY = 20h?
 JNE T1ENABLE ; No, jump to T1ENABLE.
 CMP #4Eh,HIDUTY ; If so, is HIDUTY = 4Eh?
 JEQ SETHIGH ; Yes, set T1PWM line high.

; If there has been a new value detected for the PWM duty cycle, and
; that new value is not 0 (0%) or 4E20h (100%), then clear the
; NEWVALUE flag and enable T1INT.

T1ENABLE SBIT0 NEWVALUE ;Clear the NEWVALUE flag.
 MOV #01h,T1CTL3 ;Allow the compare flag to cause a timer
 ; interrupt only when the PWM duty cycle
 ; needs to be altered.

 ... ;Continue main routine.
 ...
 BR MAIN

; This next section of code is only executed if the desired duty
; cycle is either 0% or 100% exactly.

SETLOW MOV #00010000b,T1PC2 ;Make the T1PWM pin an output pin with the
 ; present data output.
 MOV #0001000b,T1PC2 ;Output a low value on the T1PWM pin.
 JMP ONWARD1

SETHIGH CLR MSDATA
 CLR LSDATA
 MOV #01010000b,T1PC2 ;Make the T1PWM pin an output pin with the
 ; present data output.
 MOV #01010000b,T1PC2 ;Output a high value on the T1PWM pin.
ONWARD1 ... ;Continue with the main routine.
 ...
 ...
GOBACK BR MAIN

269

; The T1 interrupt service routine follows. This routine is only
; entered if a different duty cycle value is detected, and that new
; duty cycle value is: 0 < value < 4E20h. (Between 0% and 100%.)

T1INT MOV #00000011b,T1CTL1 ;Stop T1 since an update has been read.
 MOV HIDUTY,T1CCM ;Load new value for the PWM duty cycle.
 MOV LODUTY,T1CCL ; Must load MSB first then LSB.
 MOV #00000001b,T1CTL2 ;Reset the counter.
 MOV #01010000b,T1PC2 ;Reset the T1PWM pin to general-purpose
 ; output with the present value of the PWM
 ; pin.
 MOV #01010000b T1PC2 ;T1PWM pin will output a 1.
 MOV #01100000b T1PC2 ;Reenable the T1PWM function with an
 ; initial value of 1.
 MOV #01110000b,T1CTL4 ;Reenable the PWM toggling (T1C and T1CC).
 MOV #00h,T1CTL1 ;Reselect the system clock as the T1 clock
 ; source.
 ;The PWM signal now runs with the new
 ; duty cycle until the next change.
 MOV #00000000b,T1CTL3 ;Clear the T1 compare 1 interrupt flag and
 ; disable the T1 compare 1 flag again.

RETURN RTI ;Return to the main routine.

; Set up the interrupt vectors. Only T1INT is used in this example,
; but the rest of the vectors have been loaded with the reset vector
; in case of an extraneous pulse.

 .sect ”VECTORS”,7FF4h ;Location of the vector table.
 .word T1INT ;T1 interrupt vector.
 .word START ;Points to reset vector.
 .word STMT ; ”
 .word START ; ”
 .word START ; ”
 .word START ;Reset vector.
 .end

270

Speedometer and Tachometer Display Application

The purpose of this application example is to show you how a TMS370 device could be used to control a
digital instrumentation cluster. The TMS370 module requirements for this example include T1, T2n, one
A/D channel, and the SPI module. Also, the on-chip EEPROM could be used to keep a nonvolatile record
of the odometer readings. This routine is written to show how the timer modules could be used to control
the dimming and pulse width measurement requirements of a digital instrument cluster. Certain calculation
algorithms and subroutines are application specific and are left uncoded. Additional information
concerning the A/D, EEPROM, and SPI modules may be found in this book:

A block diagram of the digital instrumentation example is shown in Figure 20.

Figure 20. Digital Instrumentation Cluster Application

TMS370Cx5x

Ignition
T1EVT

T1PWM

Dimming
Load Enable

Data In

Clock

Speed

Tach

(T1)

SPISOMI
(Output)

SPISMO

SPICLK
(SPI)

5 V

(T2n)
T2nIC1T2nIC1

T2nIC2

VCC3

VSS3
(A/D)

AN0

5 V

Interior Light
Diming Potientiometer

20 MHz

Speedometer

Odometer

Tachometer

Shift Register(s)

271

Application Overview and Theory of Operation

The basic functions of this application example include input signal measurement, display dimming, serial
communication, and conversion of one A/D channel. The speed and tach readings are measured using the
two input capture registers of T2n. The dimming of the display is controlled by reading an A/D channel
which is connected to a potentiometer. This A/D information is used to determine the duty cycle of a PWM
signal output from T1. The information sent to the display is controlled using the SPI module. The main
routine in this example checks to see that the ignition switch is on. Once the ignition switch is on, the display
begins to be updated, and a series of flags is checked to determine any needed operation.

The flowchart for this route is shown in Figure 21.

272

Figure 21. Instrumentation Flowchart

Begin

Initialize
1. Registers
2. Peripheral Files
3. Stack Pointer

Initialization Modules:
1. T1
2. T2n
3. SPI
4. A/D

Is IGNITION On
?

Update the Display

Is the A/D
Flag Set

?

Is the SPEED
Flag Set

?

Is the TACH
Flag Set

?

Clear A/D Flag.
Calculate and Store New

T1PWM Duty Cycle Values.

Clear SPEED Flag.
Calculate New

Speedometer and
Odometer Values.

Update the Data
Buffer With New
Display Values.

Begin A/D Interrupt
Service Routine.

Read New Dimming
Potentiometer Value.

Restart A/D for Next Read.

Return From Interrupt.

Begin T2n Interrupt
Service Routine.

Did Overflow
Flag Cause INT

?

Clear TACH Flag.
Calculate the New

Tachometer Values.

Update the Data Buffer
With New Display Values.

Begin T1 Interrupt
Service Routine.

Set the DELAY1 FLAG
Every 10th Interrupt.

Has a New
Duty Cycle Value Been

Detected
?

Output New
T1PWM Signal.

Return From Interrupt.

Did SPEED
Signal Cause INT

?

Read the T2n Capture
Register.

Set the TACH Flag.

Return From Interrupt.

Increment Overflow
Register.

(Used by Speed
Calculation Routine.)

Read the T2n Capture/
Compare Register.
Set SPEED Flag.

Y

Y

Y

N

N

N

N

Y

Y

Y

N

Y

273

T1 Module Operation

The T1 module is used to output a PWM signal to control the brightness of the display. T1 operates in the
dual compare mode. The period of the PWM signal is controlled by the T1 compare 1 register, and the pulse
width is controlled by the T1 capture/compare register. The pulse width duty cycle may be changed under
program control by altering the value in the T1 capture/compare register.

The main routine checks to see if the newest reading from the A/D has changed since it was last read. If
the values are different, the NEWVALUE flag is set. If the values are the same, the NEWVALUE flag is
cleared. The T1 service routine checks this flag. If the NEWVALUE flag is cleared, the present PWM duty
cycle continues. If the NEWVALUE flag is set, the interrupt routine stops the PWM signal, loads the new
duty cycle values (HI/LODUTY) into the T1CC registers, and restarts the PWM signal. Stopping the PWM
signal helps avoid the possibility of inverting the signal if the new value is larger than the old; for example,
when changing from a 20% to a 30% duty cycle signal.

T2n Module Operation

The T2n module is used to measure the speed and tach input signals. The module is set up for the dual cap-
ture mode to enable both 16-bit capture registers. The T2nIC1 pin, the T2n capture/compare register, and
any T2n counter overflows are used to determine the speed function, while the T2nIC2 pin, the T2n capture
register, and any T2n counter overflows are used for the tach function.

When a valid signal occurs on either T2n input capture pin, the associated capture register is loaded with
the value of the T2n counter. The T2n service routine then reads the contents of the capture register and
any T2n overflows that may have occurred. This information can be used to determine the speed and tach
readings by keeping track of how long it has been since the last pulse occurred. The actual conversion
routines used to determine the speedometer, odometer, and tachometer display information is application
dependent, and is not coded in this example.

SPI Module Operation

The SPI module is used to send the display information to the instrument cluster. The main routine
constantly updates the display with any new tach information every 1/20 second, and updates the complete
display every 1/2 second. The actual number of bytes to be sent, the data format, and how often the display
needs to be updated are all application specific variables that you may alter for your needs.

274

ADC1 Module Operation

One channel of the ADC1 module (AN0) is read continually to determine the desired brightness of the
display. The display brightness is application specific, so you need to define the algorithm used to
determine the duty cycle of the T1 PWM signal. Also, the brightness of the display may not be in direct
proportion to the duty cycle of the PWM signal.

Digital Instrumentation Cluster Routine

The source code for the instrument cluster is as follows:

 .title “Digital Instrument Cluster Controller”
 .text 7000h

; Allocate space for the registers used in the application routine.

HIDUTY .equ R2 ;Register used to store MSB of any new duty cycle value.
LODUTY .equ R3 ;Register used to store LSB of any new duty cycle value.
MS50 .equ R4 ;Used for the 50-ms delay in T1 interrupt routine.
HALFSEC .equ R5 ;Used for 1/2 second decrementer value.

ODO100K .equ R6 ;Used to store the Odo’s 100K digit info.
ODO10K .equ R7 ;Used to store the Odo’s 10K digit info.
ODO1000 .equ R8 ;Used to store the Odo’s 1K digit info.
ODO100 .equ R9 ;Used to store the Odo’s 100’s digit info.
ODO10 .equ R10 ;Used to store the Odo’s 10’s digit info.
ODO1 .equ R11 ;Used to store the Odo’s 1’s digit info.
ODOTENTH .equ R12 ;Used to store the Odo’s 1/10’s digit info.

FLAGS .equ R13 ;Register used to store any software flags.
OVERCNT .equ R14 ;Used to keep count of T2n overflows.
OVERSPD .equ R15 ;Used for any T2n overflows during speed pulse.
OVERTACH .equ R16 ;Used for any T2n overflows during tach pulse.
TEST1 .equ R17 ;Used for the ignition switch test.
ADREAD .equ R18 ;Used to store A/D data in A/D interrupt routine.
TACH1 .equ R19 ;Used to store a byte of tach information.
TACH2 .equ R20 ;Used to store a byte of tach information.
TACH3 .equ R21 ;Used to store a byte of tach information.
TACH4 .equ R22 ;Used to store a byte of tach information.

HISPEED .equ R23 ;Used to store the Speedo’s 100’s digit info.
MIDSPEED .equ R24 ;Used to store the Speedo’s 10’s digit info.
LOSPEED .equ R25 ;Used to store the Speedo’s 1’s digit info.
ADLAST .equ R26 ;Storage register for the last A/D reading.
SPEEDMSB .equ R27 ;Used in the speed calculation routine for the MSB.
SPEEDLSB .equ R28 ;Used in the speed calculation routine for the LSB.
TACHMSB .equ R29 ;Used in the tach calculation routine for the MSB.
TACHLSB .equ R30 ;Used in the tach calculation routine for the LSB.

275

DATA .equ R31 ;Set aside a 20-byte block of RAM that will be used
 ; to store the SPI information.
 ; In this example the DATA block is set up as
 ; follows:
 ; DATA : Tach information (n)
 ; DATA+1 : Tach information (n+1)
 ; DATA+2 : Tach information (n+2)
 ; DATA+3 : Tach information (n+3)
 ; DATA+4 : Speedometer (100’s Digit)
 ; DATA+5 : Speedometer (10’s Digit)
 ; DATA+6 : Speedometer (1’s Digit)
 ; DATA+7 : Odometer (100K digit)
 ; DATA+8 : Odometer (10K digit)
 ; DATA+9 : Odometer (lK digit)
 ; DATA+10 : Odometer (100’s digit)
 ; DATA+11 : Odometer (10’s digit)
 ; DATA+12 : Odometer (1’s digit)
 ; DATA+13 : Odometer (1/10’s digit)
 ; DATA+14 : Unused in this example.
 ; DATA+15 ”
 ; DATA+16 ”
 ; DATA+17 ”
 ; DATA+18 ”
 ; DATA+19 ”
 ; DATA+20 ”

NEWVALUE .dbit 0,FLAGS ;Flag used to trigger a new PWM duty cycle.
IGNITION .dbit 1,FLAGS ;Flag used to tell the main routine if the ignition
 ; switch is on or off.
DELAY1 .dbit 2,FLAGS ;Flag used to signal a 1/10th second delay.
SPDREAD .dbit 3,FLAGS ;Flag used to show a new speed reading has been
 ; taken.
TACHREAD .dbit 4,FLAGS ;Flag used to show a new tach reading has been
 ; taken.
ADFLAG .dbit 5,FLAGS ;Flag used to signal new A/D information has been
 ; read.

276

; Set up Equate table for peripheral file registers which are used
; by the T1, T2n, SPI, and A/D modules.

T1CNTRM .EQU P040 ;T1 counter MSB
T1CNTRL .EQU P041 ;T1 counter LSB
T1CM .EQU P042 ;T1 compare register MSB
T1CL .EQU P043 ;T1 compare register LSB
T1CCM .EQU P044 ;T1 capture/compare register MSB
T1CCL .EQU P045 ;T1 capture/compare register LSB
T1CTL1 .EQU P049 ;T1 control register 1
T1CTL2 .EQU P09A ;T1 control register 2
T1CTL3 .EQU P04B ;T1 control register 3
T1CTL4 .EQU P04C ;T1 control register 4
T1PC1 .EQU P04D ;T1 port control 1
T1PC2 .EQU P04E ;T1 port control 2
T1PRI .EQU P04F ;T1 interrupt priority control

T2ACNTRM .EQU P060 ;T2A counter MSB
T2ACNTRL .EQU P061 ;T2A counter LSB

T2ACM .EQU P062 ;T2A compare register MSB
T2ACL .EQU P063 ;T2A compare register LSB
T2ACCM .EQU P064 ;T2A capture 1/compare 2 register MSB
T2ACCL .EQU P065 ;T2A capture 1/compare 2 register LSB
T2ACTL1 .EQU P06A ;T2A control register 1
T2ACTL2 .EQU P06B ;T2A control register 2
T2ACTL3 .EQU P06C ;T2A control register 3
T2APC1 .EQU P06D ;T2A port control 1
T2APC2 .EQU P06E ;T2A port control 2
T2APRI .EQU P06F ;T2A interrupt priority control

SPICCR .EQU P032 ;SPI configuration control register
SPICTL .EQU P033 ;SPI control register
SPIBUF .EQU P037 ;Receive data buffer register
SPIDAT .EQU P039 ;Serial data register
SPIPC1 .EQU P03D ;SPI port control register 1
SPIPC2 .EQU P03E ;SPI port control register 2
SPIPRI .EQU P03F ;SPI interrupt priority register

ADCTL .EQU P070 ;Analog control register
ADSTAT .EQU P071 ;Analog status and interrupt register
ADDATA .EQU P072 ;Analog conversion data register
ADIN .EQU P07D ;Port E data input register
ADENA .EQU P07E ;Port E input enable register
ADPRI .EQU P07F ;Port E interrupt priority register

277

; Begin initialization:

; Set up stack pointer to begin at R60.
; Initialize registers to their START values.
; Initialize the T1 module.
; Initialize the T2A module.
; Initialize the SPI module.
; Initialize the A/D module.

START MOV #60,B ;Initialize the stack pointer to start at
 LDSP ; register R60.
 DINT ;Globally disable all interrupts.

; Initialize the registers to their power-up values.

RESET MOV #0C3h,HIDUTY ;The duty cycle of the PWM signal is
 MOV #048h,LODUTY ; initialized to approximately 100%.

; Also, update the ODO registers from EEPROM (not shown).

 MOV #10,HALFSEC ;Start with the value 10.
 MOV #5,MS50 ;Start with the value 5.

; Clear the remaining registers.

 MOV #39,B ;This routine clears the 38 registers
 CLR A ; starting at FLAGS and ending at DATA+20.
CLRREGS MOV A,*FLAGS–1[B]
 DJNZ B,CLRREGS

 Begin the module initialization routines.

T1INIT MOV #0C3h,T1CM ;Set up the Tl compare register to contain
 MOV #04Fh,T1CL ; (C34Fh). PWM frequency = 100 Hz. (The
 ; actual frequency is not very important
 ; for this application.)
 ;Must load MSB first then LSB.

 MOV HIDUTY,T1CCM ;Load value for the duty cycle.
 MOV LODUTY,T1CCL ;Must load MSB first then LSB.

 MOV #0,T1PC1 ;T1EVT pin is set as a general-purpose input.
 MOV #00100000b,T1PC2 ;Enable T1PWM (initial output value (0)
 ; selected by bit 6), T1IC/CR is a
 ; general-purpose input.
 MOV #0,T1PRI ;Set the T1 interrupt priority to level 1.
 MOV #01110000b,T1CTL4;Select dual compare mode, enable toggle
 ; function of compare registers 1 and 2, and
 ; reset T1 on compare 1 equal.
 MOV #00000000b,T1CTL1;Select system clock as timer clock source.
 MOV #00000001b,T1CTL3;Clear all and enable T1C1 interrupt.
 MOV #00000001b,T1CTL2;Reset the counter (could enable WD here).

278

T2AINIT MOV #0,T2APC1 ;T2nEVT pin is set as a general-purpose
 ; input
 MOV #00100010b,T2APC2 ;Enable T2nIC1 and T2nIC2 pin to function
 ; as input capture triggers.
 MOV #O,T2APRI ;Set the T2n interrupt priority to level 1.
 MOV #10000011b,T2ACTL3;Select dual capture mode, enable high to
 ; low pulse to cause a capture for both
 ; the speed and tach signals.
 MOV #00000110b,T1CTL2 ;Clear and enable both input capture
 ; interrupts
 MOV #011h,T2ACTL1 ;Enable and clear the T2n overflow flag
 ; Select the system clock as clock source,
 ; and reset T2n.

SPIINIT MOV #2,SPIPC1 ;Enable the SPICLK pin.
 MOV #20h,SPIPC2 ;Enable the SPISIMO pin, make SPISOMI
 ; a general-purpose input pin.
 MOV #11000110b,SPICCR ;Reset SPI, 7-bit data out on falling
 ; SPICLK. Baud rate = CLKIN/8.
 MOV #00000110b,SPICTL ;Master mode, enable TALK.

ADINIT MOV #001h,ADSTAT ;Enable interrupt clear flags.
 MOV #0,ADPRI ;Select interrupt level 1 for the A/D.
 MOV #040h,ADCTL ; Start sampling. V SS3 selected as V REF,
 ; AN0 selected as input channel.
 MOV #0C0h,ADCTL ;Start conversion

 EINT ;Enable interrupts.

; The initialization block is completed.

; Begin main program here.
; Check to see if the ignition switch is turned on.

MAIN MOV T1PC1,TEST1 ;See if the ignition switch is on or off.
 BTJZ #08h,TEST1,CLRIGN ;If low (ignition off) jump to CLRING.
SETIGN SBIT1 IGNITION ; If hi (ignition on), set the IGNITION
 ; bit.
 JMP PAST1
CLRIGN SBIT0 IGNITION ;If ignition is off, clear the IGNITION
 ; bit.
PAST1 ... ;Continue on with the main routine.
 ...
 ...

CHKIGN JBIT0 IGNITION,MAIN ;If the IGNITION flag is cleared (ignition
 ; off) then jump back to main.
 SBIT0 IGNITION ;If IGNITION flag is set (ignition on),
 ; clear the flag then update the display.

279

; Update the display.

; When the ignition switch is on, the display needs to be updated.
; How often the display needs updating depends on your system
; requirements. Also, all information may not need updating each time
; (for example, the odometer does not need updating as often as the
; tachometer does.) Also, the number of data bytes sent via the SPI
; depends on the type of display being used. Typically, one bit of
; data will be sent per segment displayed.

; The display routine assumes that partial information needs updating
; every 1/20th second, and all display information needs updating
; every 1/2 second. It is up to you to decide what values are
; required and how often they need updating. A block of 20 bytes
; starting at DATA is set aside to store the information required.

UPDATE JBIT0 DELAY1,UPDATE ;Wait for the 1/20th second delay from the
 ; T1 interrupt routine.
 SBIT0 DELAY1 ;Clear the DELAY1 flag after being set.
 DJNZ HALFSEC,LOADPART ;Check to see if the complete display
 ; needs updating yet.
 MOV #10, HALFSEC ;Yes, reload SECOND and set the B
LOADALL MOV #??,B ; register to your desired value.
 JMP CHKSPI
LOADPART MOV #??,B ;Load B register with your desired
 ; value.

CHKSPI BTJZ #040h,SPICTL,CHRSPI;Check to see if you can send a byte of
 ; data yet. If so, continue.
 MOV *DATA–1[B],A ;Load the data to be sent out into
 MOV A,SPIDAT ; the SPIDAT register.
 DJNZ B,CHKSPI ;Is the data string through yet?
 MOV #025h,SPIPC2 ;Toggle SPISOMI to latch data.
 MOV #021h,SPIPC2 ;Pull SPISOMI low again.
; Check to see if a new A/D reading has been taken. If so, check to
; see if this reading is different from the last reading.

CHKAD JBIT0 ADFLAG,RETURN ;Has a new value been read by the A/D
 SBIT0 ADFLAG ; interrupt service routine? No, jump
 ; to RETURN.
CHKSAME CMP ADREAD,ADLAST ; Yes, are values same?
 JEQ RETURN ;Yes, jump to RETURN.
 MOV ADREAD,ADLAST ;No, load new A/D data into the ADLAST
 ; register.

CALCDUTY ... ;Calculate the new duty cycle values.
 ...
; In this section of code, you will need to decide what algorithm and
; variables your application requires for the dimming function. The
; register pair HI/LODUTY will need to be loaded with the values that
; will then be loaded into the T1 capture/compare register by the
; T1 interrupt service routine to determine a new PWM duty cycle. A
; possible solution could be a table look-up algorithm that loads a
; 16-bit value into the HI/LODUTY registers with a maximum value of
; less than C34Fh. (Value of the T1 PWM signal period.)
 ...
 ...
 MOV #??,HIDUTY ;Load the new duty cycle value into the
 MOV #??,LODUTY ; HI/LODUTY register pair.

SBIT1 NEWVALUE ; Set the NEWVALUE flag, which is used
 ; in the T1 service routine.

; Check for a new speedometer value.

280

CHKSPEED JBIT0 SPDREAD,CHKTACH ;Has a new speed value been seen by the
 ; T2n interrupt routine? No, jump to
 ; CHKTACH.
 SBIT0 SPDREAD ;Yes, reset the flag and calculate the
 ; speed variable

CALCSPD ... ;Calculate the new speed and odometer
 ; values.

LDSPEED MOV #3,B ;Move the calculated speed readings to the
 MOV *HISPEED–1[B],A ; 3 registers in the data buffer set up
 MOV A,*DATA+3[B] ; for the speed information (used by the
 ; SPI).
 DJNZ B,LDSPEED

LOADODO MOV #7,B ;Move the calculated odometer values to the
 MOV *ODO100K–1[B],A ; 7 registers in the data buffer set up
 MOV A,*DATA+6[B] ; for the odometer information (used by
 ; the SPI).
 DJNZ B,LOADODO

; Check for a new tachometer value.

CHKTACH JBIT0 TACHREAD,RETURN ;Has a new tach value been seen by the
 ; T2n interrupt routine? No, jump to
 ; RETURN.
 SBIT0 TACHREAD ;Yes, reset the flag and calculate the
 ; tach variable.

CALCTACH ... ;Your tach calculation routine goes here...

LOADTACH MOV #4,B ;Move the calculated tach readings to the
 MOV *TACH1–1[B],A ; 4 registers in the data buffer set up
 MOV A,*DATA–1[B] ; for the tach information (used by
 DJNZ B,LOADTACH ; the SPI).

RETURN BR MAIN ;Return to beginning.

; Interrupt routines to follow:

; The T1 interrupt service routine follows. This routine is entered
; every 10 ms. The duty cycle is altered only when the new data is
; loaded into the HIDUTY/LODUTY register pair.

T1INT DJNZ MS50,CLEAR ;Every 5th time through this routine,
 ; the DELAY1 flag needs to be set.
 MOV #5,MS50 ;Reset the MS50 register.
 SBIT1 DELAY1 ;Set the DELAY1 flag.

CLEAR MOV #00000001b,T1CTL3 ;Clear the T1C1 interrupt flag and reenable
 ; the T1C1 flag.
 JBIT0 NEWVALUE,T1RET ;If an update to the PWM duty cycle is
 SBIT0 NEWVALUE ; required, continue with the rest of
 ; the routine. If not, jump to RTI.

 MOV #00000011b,T1CTL1 ;Stop T1 since an update has been read.
 MOV HIDUTY,T1CCM ;Load new value for the PWM duty cycle.
 MOV LODUTY,T1CCL ; Must load MSB first then LSB.
 MOV #00000001b,T1CTL2 ;Reset the counter.
 MOV #01010000b,T1PC2 ;Reset the T1PWM pin to general-purpose
 ; output with the present value of the PWM
 ; pin.
 MOV #01010000b,T1PC2 ;T1PWM pin outputs a 1.

281

 MOV #01100000b,T1PC2 ;Reenable the T1PWM function with an
 ; initial value of 1.
 MOV #01110000b,T1CTL4 ;Reenable the PWM toggling (T1C and T1CC).
 MOV #00h,T1CTL1 ;Reselect the system clock as the T1 clock
 ; source.
 ;The PWM signal now runs with the new
 ; duty cycle until the next change.
T1RET RTI ;Return to the main routine.

; The T2n interrupt service routine follows. This routine provides
; the frequency data from the speed and tach inputs.

T2AINT BTJO #08h,T2ACTL1,OVRFLW;Was the interrupt caused by the T2n
 ; overflow bit? If so, go to OVRFLW.

 BTJO #040h,T2nCTL2,CAPT2;Was interrupt caused by tach signal?
 ; if so, go to CAPT2. If not, interrupt
 ; must have caused by speed signal.

; Read the capture/compare register for the speed value.

CAPT1 MOV #01100110b,T2ACTL2 ;Clear the flag and reenable the interrupt.
 MOV T2ACCL,SPEEDLSB ;Read the capture/compare register and
 MOV T2ACCM,SPEEDMSB ; store values into SPEEDMSB/LSB register
 ; pair. Must read LSB first.
 MOV OVERCNT,OVERSPD ;Save the contents of the OVERCNT register
 ; in OVERSPD. Used in CALC routine.
 SBIT1 SPDREAD ;Set the SPDREAD flag.
SPDRET RTI

; Read the capture register for the tach value.

CAPT2n MOV #10100110b,T2ACTL2 ;Clear the flag and reenable the interrupt.
 MOV T2ACL,TACHLSB ;Read the capture register and store values
 MOV T2ACM,TACHMSB ; into the TACHMSB/LSB register pair. Must
 ; read LSB first.
 MOV OVERCNT,OVERTACH ;Save the contents of the OVERCNT register
 ; in OVERTACH. Used in CALC routine.
 SBIT1 TACHREAD ;Set the TACHREAD flag.
TACHRET RTI

; Increment the OVERCNT register.

OVRFLW INC OVERCNT ;Increment the overflow counter register
 ; if an overflow has occurred.
 RTI

; The A/D interrupt service routine follows. This routine reads
; ADDATA and stores the value into the ADREAD register.

ADINT MOV ADDATA,ADREAD ;Read the A/D data.
 MOV #040h,ADCTL ;Start new sample.
 MOV #080h,ADCTL ;Start new conversion
 SBIT1 ADFLAG ;Set the ADFLAG bit to signal an A/D
 ; reading has recently been completed.
GOBACK RTI ;Return to the main routine.

282

 .sect ”VECTORS”,7FFCh ;Interrupt vectors:
 .word ADINT ; A/D vector
 .word T2AINT ; T2A vector
 .word GOBACK ; SCI TX vector (not used)
 .word GOBACK ; SCI RX vector (not used)
 .word T1INT ; Timer 1 vector
 .word GOBACK ; SPI vector (not used)
 .word GOBACK ; INT 3 vector (not used)
 .word GOBACK ; INT 2 vector (not used)
 .word GOBACK ; INT 1 vector (not used)
 .word START ; RESET vector
 .end

283

Conclusion

The timer modules of the TMS370 8-bit microcontroller family are designed to provide the flexibility to
meet a broad range of timer and counter applications. The software and interface examples illustrate how
the basic functions of the timer modules, along with other modules of the TMS370 family, can be used to
provide cost-effective system solutions. This application report has been designed to be used in conjunction
with the TMS370 Family User’s Guide. The manual is a valuable reference and provides many answers to
questions not addressed in this report.

284

Appendix A

Timer 1 (T1) Control Registers

T1 is controlled and accessed through registers in the peripheral file. These registers are shown in Table 7
and are described in the TMS370 Family User’s Guide. The bits shown in the shaded boxes in Table 7 are
privilege mode bits; they can only be written to in the privilege mode. The T1 operational mode block
diagrams are shown in Figure 22 and Figure 23.

Figure 22. Timer 1 – Dual Compare Mode

T1C1
RST ENA

4C.4
4C.1

16-Bit
Counter

LSB

MSB

41

40

16-Bit
Compare
Register

LSB

MSB

43

42

Prescaler/
Clock

Source

16-Bit
Capture/
Compare
Register

LSB

MSB

45

44

T1C2 INT FLAG

Flag

4B.1

INT ENA

Compare =

4B.6
T1C2

T1C1 INT FLAG

Flag

4B.0

INT ENA4B.5
T1C1

Compare =Reset

T1 OVRFL INT

Flag

4A.4

T1 OVRFL
INT ENA4A.3

T1CR
RST ENA

T1 SW
RESET

4A.0

T1
IC/CR

Pin

Edge
Select

T1EDGE DET
ENA

4C.0

T1 EDGE
POLARITY 4C.2

T1EDGE INT

Flag

4B.2

INT ENA
4B.7

Level 1 INT
4F.6

Level 2 INT

Output
Enable

4C.5

4C.6

4C.3

T1C2
OUT ENA

T1C1
OUT ENA

T1CR
OUT ENA

T
O
G
G
L
E

T1PWM
PIN

16

T1EDGE

285

Table 7. Timer 1 Module Register Memory Map

Designa-
tion

ADDR PF Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

T1CNTR 1040h P040 Bit 15 T1 Counter MSbyte Bit 8

T1CNTR 1041h P041 Bit 7 T1 Counter LSbyte Bit 0

T1C 1042h P042 Bit 15 Compare Register MSbyte Bit 8

T1C 1043h P043 Bit 7 Compare Register LSbyte Bit 0

T1CC 1044h P044 Bit 15 Capture/Compare Register MSbyte Bit 8

T1CC 1045h P045 Bit 7 Capture/Compare Register LSbyte Bit 0

WDCNTR 1046h P046 Bit 15 WD Counter MSbyte Bit 8

WDCNTR 1047h P047 Bit 7 WD Counter LSbyte Bit 0

WDRST 1048h P048 Bit 7 WD Reset Key Bit 0

T1CTL1 1049h P049ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ

WD
OVRFL

TAP SEL †
(RP–0)

ÎÎÎ
ÎÎÎ
ÎÎÎ

WD
INPUT

SELECT2†
(RP–0)

ÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ

WD
INPUT

SELECT1†
(RP–0)

ÎÎÎ
ÎÎÎ
ÎÎÎ

WD
INPUT

SELECT0†
(RP–0)

—

T1
 INPUT

SELECT2
(RW–0)

T1
INPUT

SELECT1
(RW–0)

T1
INPUT

SELECT0
(RW–0)

T1CTL2 104Ah P04AÎÎÎÎ
ÎÎÎÎ
ÎÎÎÎ

WD
OVRFL

RST
ENA †
(RS–0)

WD
OVRFL

INT ENA
(RW–0)

WD
OVRFL

INT
FLAG
(RC–*)

T1
OVRFL

INT ENA
(RW–0)

T1
OVRFL

INT
FLAG

(RC–0)

— —

T1
SW

RESET
(S–0)

Dual Compare Mode

T1CTL3 104Bh P04B T1EDGE
INT

FLAG
(RC–0)

T1C2
INT

FLAG
(RC–0)

T1C1
INT

FLAG
(RC–0)

— —

T1EDGE
INT
ENA

(RW–0)

T1C2
INT
ENA

(RW–0)

T1C1
INT
ENA

(RW–0)

Capture / Compare Mode

T1EDGE
INT

FLAG
(RC–0)

—

T1C1
INT

FLAG
(RC–0)

— —

T1EDGE
INT
ENA

(RW–0)

—

T1C1
INT
ENA

(RW–0)

Dual Compare Mode

T1CTL4 104Ch P04C T1
 MODE = 0

(RW–0)

T1C1
OUT ENA
(RW–0)

T1C2
OUT ENA
(RW–0)

T1C1
RST ENA
(RW–0)

T1CR
OUT ENA
(RW–0)

T1EDGE
POLARITY

(RW–0)

T1CR
RST ENA
(RW–0)

T1EDGE
DET ENA
(RW–0)

Capture / Compare Mode

T1
MODE = 1

(RW–0)

T1C1
OUT ENA
(RW–0)

—
T1C1

RST ENA
(RW–0)

—
T1EDGE

POLARITY
(RW–0)

—
T1EDGE
DET ENA
(RW–0)

T1PC1 104Dh P04D
— — — —

T1EVT
DATA IN

(R–0)

T1EVT
DATA OUT

(RW–0)

T1EVT
FUNCTION

(RW–0)

T1EVT
DATA DIR

(RW–0)

T1PC2 104Eh P04E T1PWM
DATA IN

(R–0)

T1PWM
DATA OUT

(RW–0)

T1PWM
FUNCTION

(RW–0)

T1PWM
DATA DIR

(RW–0)

T1IC/CR
DATA IN

(R–0)

T1IC/CR
DATA OUT

(RW–0)

T1IC/CR
FUNCTION

(RW–0)

T1IC/CR
DATA DIR

(RW–0)

T1PRI 104Fh P04F T1
STEST
(RP–0)

T1
PRIORITY

(RP–0)
— — — — — —

† Once the WD OVRFL RST ENA bit is set, these bits cannot be changed until a reset
occurs; this applies only to the standard WD and to the simple counter. In the hard WD,
these bits can be modified at any time; the WD INPUT SELECT2 bit is ignored.

286

Figure 23. Timer 1 – Capture/Compare Mode

16-Bit
Counter

LSB

MSB

41

40

Prescaler/
Clock

Source

16-Bit
Capture/
Compare
Register

LSB

MSB

45

44

T1C1 INT FLAG 4B.0

4B.5 T1EDGE INT ENA
Compare =

T1 OVRFL INT FLAG
4A.4

4A.3 T1EDGE INT ENA

T1EDGE INT FLAG
4B.2

4B.7 T1EDGE INT ENA

16-Bit
Compare
Register

LSB

MSB

43

42

Edge
Select

SW
RESET

4A.0

T1
IC/CR

Pin

T1EDGE DET
ENA

4C.0

TI EDGE POLARITY

Reset

T1C1
RST ENA

4C.4

T1C1 OUT
ENA

4C.6

T
O
G
G
L
E

T1PWM
PIN

Level 1 INT4F.6

Level 2 INT
Flag

Flag

Flag

16

287

Appendix B

Timer 2 (T2A) Control Registers

T2A is controlled and accessed through registers in the peripheral file. These registers are shown in Table 8
and are described in the TMS370 Family User’s Guide. The bits shown in the shaded boxes in Table 8 are
privilege mode bits; they can only be written to in the privilege mode. Figure 24 and Figure 25 illustrate
the T2A operational mode block diagrams.

288

Table 8. Timer 2A Module Register Memory Map

Designa-
tion

ADDR
T2A/T2B

PF
T2A/T2B

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

T2nCNTR 1060h/1080h P060/P080 Bit 15 T2n Counter MSbyte Bit 8

T2nCNTR 1061h/1081h P061/P081 Bit 7 T2n Counter LSbyte Bit 0

T2nC 1062h/1082h P062/P082 Bit 15 Compare Register MSbyte Bit 8

T2nC 1063h/1083h P063/P083 Bit 7 Compare Register LSbyte Bit 0

T2nCC 1064h/1084h P064/P084 Bit 15 Capture/Compare Register MSbyte Bit 8

T2nCC 1065h/1085h P065/P085 Bit 7 Capture/Compare Register LSbyte Bit 0

T2nIC 1066h/1086h P066/P086 Bit 15 Capture Register 2 MSbyte Bit 8

T2nIC 1067h/1087h P067/P087 Bit 7 Capture Register 2 LSbyte Bit 0

T2nCTL1 106Ah/108Ah P06A/P08A

— — —

T2n
OVRFL

INT ENA
(RW–0)

T2n
OVRFL

INT FLAG
(RC–0)

T2n INPUT
SELECT1
(RW–0)

T2n INPUT
SELECT0
(RW–0)

T2n SW
RESET
(S–0)

In Dual Compare Mode

T2nCTL2 106Bh/108Bh P06B/P08B T2nEDGE1
INT FLAG

(RC–0)

T2nC2
INT FLAG

(RC–0)

T2nC1
INT FLAG

(RC–0) — —

T2nEDGE
1

INT ENA
(RW–0)

T2nC2
INT ENA
(RW–0)

T2nC1
INT ENA
(RW–0)

In Dual Capture Mode

T2EDGE1
INT FLAG

(RC–0)

T2EDGE2
INT FLAG

(RC–0)

T2nC1
INT FLAG

(RC–0) — —

T2nEDGE
1

INT ENA
(RW–0)

T2nEDGE
2

INT ENA
(RW–0)

T2nC1
INT ENA
(RW–0)

In Dual Compare Mode

T2nCTL3 106Ch/108Ch P06C/P08
C

T2n
MODE= 0
(RW–0)

T2nC1
OUT ENA
(RW–0)

T2nC2
OUT ENA
(RW–0)

T2nC1
RST ENA
(RW–0)

T2nEDGE
1

OUT ENA
(RW–0)

T2nEDGE
1

POLARITY
(RW–0)

T2nEDGE
1

RST ENA
(RW–0)

T2nEDGE
1

DET ENA
(RW–0)

In Dual Capture Mode

T2n
MODE= 1
(RW–0) — —

T2nC1
RST ENA
(RW–0)

T2nEDG2
POLARITY

(RW–0)

T2nEDGE
1

POLARITY
(RW–0)

T2nEDGE
2

DET ENA
(RW–0)

T2nEDGE
1

DET ENA
(RW–0)

In Dual Compare and Dual Capture Mode

T2nPC1 106Dh/108Dh P06D/P08
D — — — —

T2nEVT
DATA IN
(RW–0)

T2nEVT
DATA OUT

(RW–0)

T2nEVT
FUNC-
TION

(RW–0)

T2nEVT
DATA DIR

(RW–0)

T2nPC2 106Eh/108Eh P06E/P08E T2nIC2/
PWM

 DATA IN
(R–0)

T2nIC2/PM
DATA OUT

(RW–0)

T2nIC2/PM
FUNC-
TION

(RW–0)

T2nIC2/PM
DATA DIR

(RW–0)

T2nIC1/CR
DATA IN

(R–0)

T2nIC1/CR
DATA OUT

(RW–0)

T2nIC1/CR
FUNC-
TION

(RW–0)

T2nIC1/CR
DATA DIR

(RW–0)

T2nPRI 106Fh/108Fh P06F/P08F T2n
STEST
(RP–0)

T2n
PRIORITY

(RP–0)
— — — — — —

289

Figure 24. Dual Compare Mode for T2n

16

T2nC.15-0

T2nCTL2.1

T2nCTL3.2

T2nCTL3.1

T2nCTL3.5

T2nCTL3.3

Clock
source

16-Bit
counter

16-bit

Compare=

Compare=Reset

T2nC1
RST ENAT2n SW

RESET

Edge 1
select

T2nEDGE1 DET ENA

Output
enable

capture/compare
register MSB

LSB

MSB
LSB

T2nEDGE1
OUT ENA

T2nIC1/CR

T2nEDGE1 POLARITY

To
gg

le

16-bit
compare

MSB

LSB

register

T2nCC.15-0

T2nC1 INT FLAG

T2nCTL2.0

T2nCTL2.5

T2nC1 INT ENA

T2nC2 INT FLAG

T2nCTL2.6

T2nC2 INT ENA

T2n OVRFL INT FLAG

T2nCTL1.4

T2nCTL1.3

T2n OVRFL INT ENA

T2nEDGE1 INT FLAG

T2nCTL2.2

T2nCTL2.7

T2nEDGE1 INT ENA

T2n PRIORITY

T2nC2 OUT ENA

T2nC1 OUT ENA

T2nCTL3.6

T2nIC2/PWM

T2nPC2.7-4

T2nPRI.6

T2nCNTR.15-0

T2nCTL1.0
T2nCTL3.4

T2nEDGE1
RST ENA

T2nPC2.3-0

T2nCTL3.0 Lvl 1 Int

Lvl 2 Int

0

1

290

Figure 25. Dual Capture Mode for T2n

T2nCTL2.5

T2nCTL3.3

0

capture/compare

T2nPC2.3–0

Compare =

Clock
source

16-bit
counterMSB

LSB

T2nCNTR.15–0

Reset

T2nC1
RST ENA

T2n SW
RESET

T2nCTL1.0

T2nCTL3.4

T2nCTL2.6

T2nCTL2.1

T2nCTL2.7

T2nCTL2.2

T2nCTL2.0

16-bit

MSB

LSB

register 1

T2nC.15–0

16-bit
compare

MSB

LSB

register

T2n PRIORITY

Level 1 Int

Level 2 Int
1

T2nCTL1.3

T2nCTL1.4

16-bit
capture

MSB

LSB

register 2

T2nIC.15–0

Edge 2
select

T2nIC2/CR

T2nPC2.7–4

T2nCTL3.1

Edge 1
selectT2nIC1/CR T2nCTL3.2

T2nCTL3.0

16

T2nEDGE1 POLARITY

T2nEDGE1 DET ENA

T2nEDGE2 DET ENA

T2nEDGE2 POLARITY

T2nC1 INT FLAG

T2nC1 INT ENA

T2n OVRFL INT FLAG

T2n OVRFL INT ENA

T2nEDGE1 INT FLAG

T2nEDGE1 INT ENA

T2nEDGE2 INT ENA

T2nEDGE2 INT FLAG

T2nPRI.6

T2nCC.15– 0

291

References

Linear and Interface Circuits Applications, SLYA003, Texas Instruments Incorporated, 1987.

TMS370 Family User’s Guide, SPNU127, Texas Instruments Incorporated, 1996.

292

Glossary

C

capture register: A T1 or T2n register that is loaded with the 16-bit counter value when an external input
transition occurs. Either edge of the external input can be configured to trigger the capture.

CLKIN: The external oscillator frequency (20 MHz maximum)

compare register: The compare register, in the T1 or T2n module, contains a value that is compared to
the counter value. The compare function triggers when the counter matches the contents of the compare
register.

E

edge detection: Edge detection circuitry senses an active pulse transition on a given timer input and
provides appropriate output transitions to the rest of the module. The active transition can be configured
to be low to high or high to low.

event count: A T1 or T2n clock source option where the timer is clocked from the rising edge of a signal
on an external pin (T1EVT or T2nEVT).

EEPROM: Electrically erasable programmable read-only memory; has the capability to be programmed
and erased under direct program control.

I

interrupt: A signal input to the CPU to stop the flow of a program and force the CPU to execute instructions
at an address corresponding to the source of the interrupt. When the interrupt is finished, the CPU resumes
execution at the point where the input occurred.

P

PPM: Pulse position modulation; a serial signal in which the information is contained in the frequency of
a signal with a constant pulse width. A TMS370 device can output a PPM signal with a constant duty cycle
without any program intervention using the T1 or T2n compare registers.

prescale: Circuitry in the T1 module that effectively divides the SYSCLK by a set value. For example, /64
prescale divides the SYSCLK signal by 64.

pulse accumulation: A T1 mode which keeps a cumulative count of SYSCLK pulses as long as the T1EVT
pin is high.

PWM: Pulse width modulation; a serial signal in which the information is contained in the width of a pulse
of a constant frequency signal. A TMS370 device can output a PWM signal with a constant duty cycle
without any program intervention using the T1 or T2n compare features.

293

S

SPI module: Serial peripheral interface module; used to send serial data in a simple bit format to devices
such as shift registers.

SYSCLK: The internal system clock period.

W

Watchdog timer: A free-running counter in the T1 module which must be cleared by the program at a set
interval. If the program is not working properly, the counter will overflow, causing a system reset.

294

295

Using Input Capture Pins as
External Interrupts

Michael S. Stewart
Microcontroller Products — Semiconductor Group

Texas Instruments

296

297

Introduction

The TMS370 family of microcontrollers are typically available with three external interrupt pins.

• INT1: Maskable or non maskable interrupt of general purpose input only pin

• INT2: Maskable interrupt or general purpose bidirectional I/O pin

• INT3: Maskable interrupt or general purpose bidirectional I/O pin

For applications that require more than three individual external interrupts, the timer input capture pins can
be used to cause interrupts.

Timer 1 (T1)

The T1IC/CR pin may be configured to operate as an external interrupt. To initialize this pin as an external
interrupt, do the following:

1. Select the mode of operation for T1. The T1 MODE (T1CTL4.7) bit can be selected for either
dual compare mode or capture/compare mode. The T1IC/CR pin can operate as an external
interrupt in either mode.

2. Select the rising edge or falling edge polarity of the interrupt by writing to the T1EDGE
POLARITY (T1CTL4.2) bit.

3. Enable the selected edge to set the T1EDGE INT flag by setting the T1EDGE DETECT
(T1CTL4.0) bit.

4. Enable the active T1EDGE INT flag to request an interrupt by setting the T1EDGE INT ENA
(T1CTL3.2) bit.

Timer 2A (T2A)

The pins T2AIC1/CR and T2AIC2/PWM may be configured to operate as external interrupts. To initialize
the T2AIC1/CR pin to cause an external interrupt, do the following:

1. Select the mode of operation for T2A. The T2A MODE (T2ACTL3.7) bit can be selected for
either dual compare mode or dual capture mode. The T2AIC1/CR pin can operate as an external
interrupt in either mode.

2. Select the rising edge or falling edge polarity of the interrupt by writing to the T2AEDGE1
POLARITY (T2ACTL4.2) bit.

3. Enable the selected edge to set the T2AEDGE1 INT flag by setting the T2AEDGE1 DETECT
(T2ACTL4.0) bit.

4. Enable the active T2AEDGE1 INT flag to request an interrupt by setting the T2AEDGE1 INT
ENA (T2ACTL3.2) bit.

To initialize the T2AIC2/PWM pin to cause an external interrupt, do the following:

1. Select the dual capture mode of operation for T2A. The T2A MODE (T2ACTL3.7) bit must
be set. The T2AIC2/PWM pin can operate as an external interrupt in the dual capture mode only.
In the dual compare mode this pin operates as a pulse width modulation (PWM) output pin.

2. Select the rising edge or falling edge polarity of the interrupt by writing to the T2AEDGE2
POLARITY (T2ACTL4.3) bit.

298

3. Enable the selected edge to set the T2AEDGE2 INT flag by setting the T2AEDGE2 DETECT
(T2ACTL4.1) bit.

4. Enable the active T2AEDGE2 INT flag to request an interrupt by setting the T2AEDGE2 INT
ENA (T2ACTL3.1) bit.

Timer 2B (T2B)

The T2B pins T2BIC1/CR and T2BIC2/PWM may be configured to operate as external interrupts. To
initialize the T2BIC1/CR pin to cause an external interrupt, do the following:

1. Select the mode of operation for T2B. The T2B MODE (T2BCTL3.7) bit can be selected for
either dual compare mode or dual capture mode. The T2BIC1/CR pin can operate as an external
interrupt in either mode.

2. Select the rising edge or falling edge polarity of the interrupt by writing to the T2BEDGE1
POLARITY (T2BCTL4.2) bit.

3. Enable the selected edge to set the T2BEDGE1 INT flag by setting the T2BEDGE1 DETECT
(T2BCTL4.0) bit.

4. Enable the active T2BEDGE1 INT flag to request an interrupt by setting the T2BEDGE1 INT
ENA (T2BCTL3.2) bit.

To initialize the T2BIC2/PWM pin to cause an external interrupt, do the following:

1. Select the dual capture mode of operation for T2B. The T2B MODE (T2BCTL3.7) bit must be
set. The T2BIC2/PWM pin can operate as an external interrupt in the dual capture mode only.
In the dual compare mode this pin operates as a PWM output pin.

2. Select the rising edge or falling edge polarity of the interrupt by writing to the T2BEDGE2
POLARITY (T2BCTL4.3) bit.

3. Enable the selected edge to set the T2BEDGE2 INT flag by setting the T2BEDGE2 DETECT
(T2ACTL4.1) bit.

4. Enable the active T2BEDGE2 INT flag to request an interrupt by setting the T2BEDGE2 INT
ENA (T2BCTL3.1) bit.

NOTE:
Remember that T1, T2A, and T2B all have multiple sources that
may cause an interrupt. If multiple sources are enabled to cause
an interrupt, the interrupt service routine must poll the
individual flag bits to determine the source(s) of an interrupt.

299

Watchdog Design Considerations
and Mask Options

Michael S. Stewart
Microcontroller Products — Semiconductor Group

Texas Instruments

300

301

Introduction

Many applications require the presence of a watchdog (WD) timer to increase system integrity. The
TMS370 family of microcontrollers provides three different mask options for WD timer functionality.

1. A standard watchdog for ROM-less, EPROM, and mask-ROM devices.

2. A hard watchdog for mask-ROM devices

3. A simple counter for mask-ROM devices

Standard WD

The standard WD counter option on the TMS370 has been designed to be as flexible as possible for a wide
range of system designers. The TMS370 WD counter was designed to add a greater level of system integrity
to the software operation. External conditions that cause the TMS370 to operate outside the specified
ranges may cause the WD counter to lose functionality. It may be used as a WD counter with variable
timeout ranges, as an event counter, or as a simple overflow timer. The standard WD timer is designed as
part of the Timer 1 (T1) module, and consists of the following functional blocks:

• 16–bit, WD/event counter which provides up to 224 clock cycles between counter resets. The
WD counter can be read by the program at locations P046 (MSB) and P047 (LSB).

• Prescaled clock input selection or external clock may be options for clocking the WD counter.

• WD Reset key, which provides protection against illegal counter resets.

• An overflow flag which the program may read following reset to determine if the WD caused
the reset.

• Programmable interrupt and system reset.

The standard WD counter option is available on all ROM-less, mask ROM, and some EPROM devices.
Mask ROM devices may be selected with the standard WD mask option by selecting the appropriate box
in the device New Code Release Form (NCRF). EPROM devices that are represented with the ‘A’ version
designator (TMS370C756A for example) are designed with the standard WD counter. All ROM-less
devices are available only with the standard WD counter mask option. See the TMS370 Family User’s
Guide for additional WD operational information.

The flexible design of the TMS370 standard WD counter allows the counter to be used in a wide range of
system applications. This flexibility also brings with it certain limitations.

• The WD counter is not enabled on power–up to cause a system reset. However, the first
instruction executed can enable the WD counter and select the WD clock source.

• The WD overflow flag must be cleared once set to enable any further WD resets. This means
that if the WD counter overflows and causes a reset, the WD OVRFL INT FLAG must be written
with a ’0’ to clear the flag, or the WD counter will not cause any additional resets. This would
effectively disable the WD counter from causing any additional resets.

• The WD counter is not free standing. In other words, internal circuitry can override the WD reset
ability. This was required for testing purposes of the TMS370.

Hard Watchdog Mask Option

The hard WD counter mask option on the TMS370 has been designed to eliminate any features from the
standard WD option that could cause the WD to not cause a system reset. The hard WD counter is enabled

302

on reset and cannot be disabled. The hard WD design provides a WD counter that will always cause a
system reset if the WDRST key register is not properly written. It may be used as a WD counter with
variable timeout ranges based on one of four prescale clock options and the tap select. The hard WD timer
is designed as part of the T1 module, and consists of the following functional blocks:

• 16–bit, WD which provides up to 224 clock cycles between counter resets. The WD counter can
be read by the program at locations P046 (MSB) and P047 (LSB).

• Prescaled clock input selection for clocking the WD counter.

• WD reset key which provides protection against illegal counter resets.

• An overflow flag which the program may read following reset to determine if the WD caused
the reset.

• System reset enabled at all times. No programmable interrupt or system reset enable capability.

NOTE:
Selecting the hard WD mask option enables the external
interrupt 1 (INT1) as a non-maskable interrupt (NMI) during
a low-power mode. Since the hard WD option is disabled in a
low-power mode, any active edge on the external interrupt INT1
will wake-up the microcontroller regardless of the state of the
INT1 individual interrupt enable and the global interrupt
enable bits.

The hard WD counter option is available on all mask ROM, and some EPROM devices. Mask ROM
devices may be selected with the hard WD mask option by selecting the appropriate box in the device
NCRF. EPROM devices represented with the ‘B’ version designator (for example TMS370C576B) are
designed with the standard WD counter. See section 7.7.2 of the TMS370 Family Data Manual for
additional hard WD operational information.

The design of the TMS370 hard WD counter allows the counter to be used only to generate a system reset.
Therefore, writes to the WDRST key must occur before the WD can overflow assuming the fastest
overflow rate.

Simple Counter

The simple counter option on the TMS370 provides an additional timebase for applications that to not
require or desire a WD counter. It may be used as an event counter, or as a simple overflow timer. The simple
counter is part of the T1 module, and consists of the following functional blocks:

• A 16-bit counter, which provides up to 224 clock cycles between counter resets. The counter can
be read by the program at locations P046 (MSB) and P047 (LSB).

• A prescaled clock input selection or external clock, which are options for clocking the counter.

• An overflow flag, which the program may read following reset to determine if the counter caused
the interrupt.

303

• A programmable overflow interrupt.

The simple counter option is available only on mask ROM devices by selecting the simple counter mask
option box in the device NCRF. See the TMS370 Family User’s Guide for additional WD operational
information.

The limited design of the TMS370 simple counter allows the counter to be used as an counter overflow
interrupt. The actual timebase of the overflow is dependent on SYSCLK speed, tap select, and clock
prescale select. This design does not allow a compare feature and limits the counter functionality.

304

305

T1PWM Set-Up Routines

Microcontroller Products—Semiconductor Group
Texas Instruments

306

307

T1PWM Pin Set-Up

This application note provides three T1PWM pin set-up routines:

Routine 1

This routine starts and stops the PWM function with a certain value on the PWM pin. Starting the
T1PWM pin with a specific value can be done with one instruction as shown below. The value of the data
out bit will become the initial value of the PWM pin.

MOV #60h,P04E ;Start with PWM pin high

MOV #20h,P04E ;Start with PWM pin low

Routine 2

This routine shows the two instructions needed to change the T1PWM pin from a PWM pin to a
general-purpose output pin with a specific value. The first instruction changes the pin to a
general-purpose output pin with the same value as the current PWM pin. The second instruction changes
the pin to a particular value.

MOV #50h,P04E ;Stop with PWM pin high.
MOV #50h,P04E ;

MOV #10h,P04E ;Stop with PWM pin low.
MOV #10h,P04E ;

Routine 3

This routine starts and stops the PWM function with the current value on the pin. Starting the function
requires four instructions, while stopping the function takes only one.

MOV #20h,A ;Start with PWM pin same as
BTJZ #80h,P04E,SKIP ;current state.
MOV #60h,A ;

SKIP MOV A,P04E ;

MOV #10h,P04E ;Stop with PWM pin same as
;current state.

308

309

Part III
Module Specific

Application Design Aids

Part III contains six sections:

 RESET Operations 99.

 SPI and SCI Modules 105.

 Timer and Watchdog Modules 199.

 Analog to Digital Modules 309.

 PACT Module 375.

 I/O Pins 439.

310

311

Using the TMS370
ADC1 Module

Henry Kwan
Microcontroller Products—Semiconductor Group

Texas Instruments

312

313

Introduction

To provide advanced performance and cost effective system solutions for complex control applications,
the TMS370 family combines an 8-bit CPU containing powerful peripherals such as an Analog to Digital
converters, timers, serial peripheral interface, and serial communication interface with on-chip memory:
RAM, ROM, EEPROM, and EPROM. Many applications involve the determination of the values of
physical parameters, such as temperature, position, and pressure, which must be transformed into electrical
analog signals and then converted to digital codes for the controller. With the on-chip ADC1, the TMS370
microcontrollers greatly simplify interactions between the analog world and a digital system. This
application report illustrates the operation of the ADC1 on-chip A/D converter and provides some
application examples for ADC1 conversions with the TMS370 family microcontrollers.

Many applications involve the determination of the values of physical parameters, such as temperature,
position, and pressure, that must be transformed into electrical analog signals and then converted to digital
codes for the controller. With the on-chip ADC1, the TMS370 microcontrollers greatly simplify
interactions between the analog world and a digital system. This application report illustrates the operation
of the ADC1 on-chip A/D converter and provides some application examples for ADC1 conversions with
the TMS370 family microcontrollers.

NOTE:
This application report was written for the ADC1 Module. Minor
modifications will need to be implemented for ADC2 and ADC3 Modules.

Module Description

The ADC1 converter module is an 8-bit successive approximation converter with internal sample-and-hold
circuitry. The module has eight multiplexed analog input channels which allow the processor to convert
the voltage levels of up to eight different sources. The ADC1 converter contains three major blocks: an
analog (input and reference) multiplexer, successive approximation A/D converter with internal
sample-and-hold circuitry, and interrupt logic.

314

Figure 1. ADC1 Converter Block Diagram

ADCTL.5–3

5 4 3

ADENA.0

REF VOLTS SELECT

ADCTL.2–0

2 1 0

AD INPUT SELECT

ADIN.0

Port E input
ENA 0

Port E data
AN 0

AN0

ADENA.1 ADIN.1

Port E input
ENA 1

Port E data
AN 1

AN1

ADENA.2 ADIN.2

Port E input
ENA 2 Port E data

AN 2

AN2

ADENA.3 ADIN.3

Port E input
ENA 3 Port E data

AN 3

AN3

ADENA.4 ADIN.4

Port E input
ENA 4 Port E data

AN 4

AN4

ADENA.5 ADIN.5

Port E input
ENA 5 Port E data

AN 5

AN5

ADENA.6 ADIN.6

Port E input
ENA 6 Port E data

AN 6

AN6

ADENA.7 ADIN.7

Port E in-
put

ENA 7

Port E data
AN 7

AN7

VCC3

VSS3

ADCTL.6

Sample
start

ADCTL.7

Convert
start

ADDATA.7–0

ADC
data register

ADSTAT.2

AD ready

AD priority

ADPRI.6 0

1

Level 1 Int

Level 2 Int

AD INT FLAG

ADSTAT.1

AD INT ENA

ADSTAT.0

A/
D

315

Principles of Operation

Successive approximation is one of the most common techniques used in A/D conversion. The technique
generates each bit of the digital code sequentially, starting with the MSB, and compares the analog input
with binary-weighted values to produce the output in a fixed number of steps. Successive approximation
provides an excellent trade-off between resolution, speed, accuracy, and cost.

Figure 2 shows a simplified diagram of the successive approximation A/D converter.

Figure 2. Simplified Model of the Successive Approximation Converter

VREF GND

HOLDSAMPLE

CO CS

1 2 4 8 1 2 4 8

SC

THRESHOLD
DETECTOR

TO
OUTPUT
LATCHES

VREF
VIN

Sr

St

Sr

St

Sr

St

Sr

St

Sr

St

Sr

St

Sr

St

Sr

St

The series capacitor, CS, effectively divides the value of the left hand side capacitors by 16 to form a
binary-weighted capacitor array. The conversion process is accomplished by a sequence of three
operations. In the first sequence, called the sample mode, the analog input is sampled by connecting VIN
to the analog input, and closing switch Sc and all St switches. All capacitors charge up to the input voltage
simultaneously during the sampling time. Capacitor Co is switched to VREF during sample mode. In the
second sequence, the hold mode, capacitor Co is switched to GND; switch Sc is opened, and VIN is
connected to GND. In the third sequence, the redistribution mode begins by identifying the charge on each
capacitor relative to the reference voltage.

All eight capacitors are examined separately until all eight bits are determined. The rightmost capacitor
(corresponding to MSB) is first switched to the reference voltage, and all of the other capacitors are
switched to GND. If the voltage at the summing node is greater than the trip point of the threshold detector,
a bit is set in the output register and the capacitor is switched back to GND. If the voltage at the summing
node is less than the trip point of the threshold detector, the capacitor remains connected to VREF throughout
the remainder of the conversion process. This process is repeated for all eight capacitors.

316

Functional Description

The ADC1 module has ten input pins. Two pins are used for analog voltage supply: VCC3 and VSS3. This
isolates the ADC1 module from digital switching noise. The other eight pins (AN0–AN7) are used for
analog input channels and can be configured as general purpose input pins if not needed. The analog
reference can be either VCC3 or one of the analog input channels, AN1 to AN7. This allows for ratio
measurement of one analog signal to another.

The internal sample-and-hold circuitry is used to maintain the analog input during conversion. This
minimizes inaccuracies in the converted value of an analog signal due to changes in the signal’s value
during the conversion process. The input sampling begins when the SAMPLE START bit (bit 6 of the
ADCTL) is set. The application program should allow 1 µs for each kilohm of source output impedance
or a minimum of 1 µs for the low-impedance source to sample the analog signal. This allows time to charge
the internal capacitor array. When the sampling time is completed, the SAMPLE START and the
CONVERT START bit (bit 7 of the ADCTL) are set. The analog signal’s value will be held by the ADC1
module for 18 cycles after the CONVERT START bit is set. By that time, the ADC1 module has cleared
both the SAMPLE START and CONVERT START bit to signify the end of the internal sampling phase.

After the internal sampling phase, the program can change the input channel without affecting the
conversion. The reference voltage should remain constant throughout the conversion. The conversion
process takes 164 system clock cycles after the CONVERT START bit is set. Upon completion, the AD
INT FLAG will be set. If the AD INT ENA bit is set, the module will generate an interrupt request.

Design Considerations

The following section provides a starting point for the digital designer by offering some hints for the analog
interface. For a more thorough discussion of additional analog devices (such as op-amp and filter circuits),
refer to additional analog applications literature mentioned in the References section at the end of this
report.

ADC1 Input Pin Model

The model of the ADC1 input pin shown in Figure 3 is intended to facilitate your understanding of the
effects of interface circuitry on A/D conversion.

317

Figure 3. ADC1 Input Pin Model

D1, D2, R1, R2, TYPICAL INTERNAL
EQUIVALENT PROTECTION CIRCUIT COMPONENTS

VCC

D1
0.7 V

A

R1
900 Ω

AN
PIN

R2
2.7 Ω

D2
0.6 V

INTERCONNECTION
RESISTANCE

MAX
2 µ A
LEAKAGE
CURRENT

2 pF

CAPACITOR
ARRAY
INSIDE A / D
MODULE

SAMPLE

15 kΩ

Analog Input Pin Connection

The external pin connection can greatly affect the performance and accuracy of the A/D conversion. Since
the ADC1 converter uses the charge redistribution technique to sample the analog signal, there is no need
to use external sample-and-hold circuitry. Using an external low-pass filter to reduce system noise may help
to prevent errors. Simple noise filtering can be accomplished by adding a resistor and capacitor across the
ADC1 inputs as shown in Figure 5 and Figure 6. For inexpensive filtering, CX acts with RX to form a
first-order, low-pass network. However, the capacitor and resistor size should be chosen carefully to
preclude additional system errors.

One of the most common A/D application errors is inappropriate source impedance. Too much source
impedance might introduce unexpected system errors, and too little source impedance might cause
permanent damage to the ADC1 input pins because of a possible latch-up problem. In practice, minimum
source impedance should be used to limit the error as well as minimize the required sampling time;
however, source impedance should be large enough to limit the current sufficiently to protect against an
overvoltage condition.

318

When the reference voltage, Vref, is at 5.1 V, one LSB corresponds to 20 mV. From the input pin model,
the maximum leakage current is 2 µA (see note). That is, for the worst case of 2-µA leakage, current flow
through a 1kΩ external resistor will result in a 2-mV voltage drop or induce 0.1 LSB error. If the source
impedance induces an error higher than can be tolerated by the system, a buffering device, such as an
(op-amps), might be considered.

Latch-up poses a different problem for the input pin connection. Latch-up is the uncontrolled flow of
current through the parasitic silicon controlled rectifier (SCR) inherent in all CMOS devices. This SCR
might be triggered into a low-impedance state, resulting in excessive supply current. Once the SCR is
triggered, the current flow is limited only by the impedance of the power supply and the forward resistance
of the SCR. An external resistance should be used to limit the current flow through the ADC1 pin so that
the current is never high enough to cause CMOS latch-up. The source resistance will depend on the total
system.

The absolute maximum rating of the analog pin should not exceed the values specified in the electrical
specification. The input voltage range should be within –0.3 to 7 V, and the input current should be within
�10 µA.

Suppose, for example, the analog input signal is shorted to 12V, the worst case for an application. An
external resistor would be required to limit the input voltage below 7 V to protect the input pin from
damage. Also, the internal diode to VCC (5 V) would clamp the voltage at node A (see Figure 3) at 5.7 V.
Let X be the resistance of the external resistor. Therefore,

12 – 7 12 – 5.7
=

X 900 + X

or X = 3.46 k

It is suggested that the designer add in some guard band for tolerance of the internal resistance and
fluctuations of the external power supplies. The designer may also consider using external clamping diodes
to limit the analog voltage range between VSS3 and 7 V. However, if clamping diodes are used, the leakage
current induced by the diodes should be kept as low as possible.

If an external capacitor is added to form a low-pass filter, the capacitance value should be chosen carefully.
The capacitor size mainly depends on the frequency of the analog input signal and the sampling time
allowed. Obviously, the RC time constant needs to be large enough to filter any undesirable noise signal,
but it must be expected that the external filter also introduces a delay between the analog source and the
ADC1 input pin. It is important to make sure that the RC time constant is much smaller (for example, 10
times smaller) than the sample time to allow the internal capacitor array to become fully charged within
the sampling window. Adding an external capacitor can also increase protection in case an overvoltage
condition occurs. In combination with the external resistor, the external capacitor limits the rise time of
large spikes so that the diode can clip them before they do any damage.

NOTE: Absolute resolution = 20 mV. At Vref = 5 V, this is one LSB. As Vref decreases, LSB size decreases; therefore,
the absolute accuracy and differential/integral linearity errors in terms of LSBs increase.

319

Analog Input Conditioning

For applications dealing with stringent conditions, one might consider adding op-amps or related devices
for signal conditioning, for example: buffering, amplification, level translation, linearization, or
current-to-voltage conversion. The following figure and table show the op-amp symbol and some key
op-amp parameters.

Figure 4. Operational Amplifier

INVERTING

NONINVERTING

–

+

V1

V2
V0 = AV (V2–V1)

Table 1. Key Op-Amp Parameters

Key Parameters Description Ideal Op-amp

Input Resistance Resistance at either input of the op-amp (load of
the source)

Infinity

Output Resistance Source impedance of the output stage 0

Differential Voltage Gain or
Open-Loop Voltage Gain (Av)

The ratio of the input voltage to output voltage
without external feedback

Infinity

Slew Rate
(V /µs)

Response time of the op-amp’s output (rise and fall
time)

Infinity

Common Mode Rejection Ability to limit a response to a common mode
voltage (noise rejection)

Infinity

Bandwidth Frequency response of the op-amp Infinity

Op-amps can be configured to perform a large number of functions. Because of their variable
characteristics and wide range of adaptability, they are very handy for analog signal interfacing. Two
popular input buffer configurations for the op-amp are shown in Figure 5 and Figure 6.

The noninverting configuration provides amplification of small input signals and provides low source
impedance for the ADC1 converter. The inverting amplifier configuration affords convenient scaling of
negative input for the ADC1 converter (the ADC1 module does not convert input below the value of VSS3).
Resistors R1 and R2 determine the transfer function (gain) of the amplifier circuitry. Resistor R3
(equivalent to R1 in parallel with R2) is included to correct the dc offset caused by internal input offset or
input bias current. Some op-amps like LinCMOS (TLC272) provide extremely low input bias
performance, thus eliminating the need for bias compensation resistors and thereby simplifying the
interface circuits. Some op-amps also provide additional terminals for input offset or frequency
compensation.

320

Figure 5. Noninverting Buffer for Analog Input Pin

+

–
AN

VIN

R3 (R1 // R2)

R2

R1

VO RX

CX

VO = – VIN
R2
R11 +)(

Figure 6. Inverting Buffer for Analog Input Pin

+

–
AN

VIN

R1

R2

VO

RX

CX

VO = – VIN
R2
R11 +)(

R3 (R1 / / R2)

LOW- PASS FILTER

With these two basic configurations, the resistance value and reference can be manipulated to provide
optimal scaling and range offsetting of the input signal for A/D conversion. For example, in Figure 7 the
output of a transducer, with an output of range 2.5 to 12.5 V, might be offset by
2.5 V [(2.5 V to 12.5 V) - 2.5 V], and then scaled down 0.5 (R / 2R) by the amplifier to provide 0 to 5 V
input signals to the ADC1 converter.

Figure 7. Range Offsetting and Scaling

2.5 V
VOLTAGE
REFERENCE

2R

+

–
VO (0 V–5 V)

R
TRANSDUCER

R2

2.5 V–12.5 V

The bridge amplifier is another very popular interfacing circuit especially applicable with input
transducers. Transducers, like strain gauges and thermistors, simply produce a varying resistance over a
range of parameter (pressure or temperature) changes. Figure 8 shows a typical bridge amplifier circuit.
A bridge consists of four terminal elements, one of them (resistance) is variable by a factor of 1 + X, where
X is a fraction as a function of other parameters (for example, temperature and pressure). The bridge
amplifier measures the deviation of the resistance (good common mode rejection) from the initial value
as an indication of change of the parameter (temperature).

321

Figure 8. Bridge Amplifier

VS

R1

+

–

R1

R R

R
R (1 + X)

Other basic operational amplifier circuits which might be configured with the ADC1 module can provide
different types of signal conditioning for different applications. For example,

• A unit gain voltage follower can be used as an input buffer to the ADC1 converter,

• A current amplifier can provide current to a voltage converter

• A low-pass filter can reduce system noise to achieve a better A/D conversion accuracy

• A logarithmic amp can compress the input signal from several orders of magnitude to a nonlinear
input signal with a fixed percent of relative accuracy throughout the required range

For more information, refer to linear circuits application manuals and literature in the References section
of this report.

322

Resolution

Some applications may need more resolution than an 8-bit A/D converter can provide. One way to get
around this problem is to apply scaling and offsetting in order to manipulate the input signal and use more
than one channel for conversion as shown in Figure 9.

Figure 9. Example of Interface Circuit to Increase Resolution to Nine Bits

R1

+

–

+

–

R7

R8

R2

R5

R4

AN0

AN1

R3 (R1 / / R2)
VIN

VMAX

R6 (R4 // R5)

The input signal is split into two ranges: one channel converts the input signal from 0 to VMAX /2, while
the other channel converts the input signal from VMAX /2 to VMAX . The following discussion describes
an application that requires the conversion of an input signal from 0 to 5 V, with 10 mV resolution per step.

Resistors R1, R2, R4, and R5 are set to provide a gain of two for the amplifier. Resistors R7 and R8 form
a voltage divider to provide an offset of 2.5 V (VMAX /2) for the op-amp. When the input signal is within
the range 0 to 2.5 V, channel AN0 provides the conversion result (8-bit digital output) with the MSB (bit
8, the extra bit) equal to 0. The output of channel AN1 will be zero because of the offset. When the input
signal is within the range 2.5 to 5 V, channel AN1 provides the conversion result (8-bit digital output) with
the MSB (bit 8, the extra bit) equal to 1. The output of channel AN0 will be FF (its full scale value). The
user should note that when the input signal is within the range 2.5 to 5 V, the output of channel AN0 can
be clamped to VCC + 0.3 V by using a protection diode.

Usually, additional variable resistors are needed to adjust the gain and offset of the amplifiers. However,
with on-chip EEPROM, the gain error can be compensated for without adjusting the external resistor. The
precise value of the resistor is not important. The amplifier can be calibrated with known input values, and
the actual gain of the circuit is calculated and stored in the EEPROM. The actual value of the conversion
result can be calculated based on this gain factor.

You can also avoid adjusting the offset of the amplifier by sacrificing the resolution. Resistors R7 and R8
are chosen so that the ranges are overlapping. In that case, the exact values of the resistors (offset of the

323

op-amp) are not important. You can also use an additional op-amp or increase the gain of the amplifier to
compensate for overlapping.

Figure 10. Transfer Characteristics of the Interface Circuit

FF AN0 AN1

INPUT 50
00

O
U
T
P
U
T

Another technique used to increase the effective resolution is oversampling. The digital output is
determined by averaging several conversion results. The transition noise or uncertainty can be greatly
reduced. For some applications, pseudorandom noise might be injected into the input and the average of
many conversions computed to determine the digital output. The integral of the pseudorandom noise is zero
over a long period of time. When the pseudo noise is injected, the conversion result varies by some number
of LSBs from a nominal value (see Figure 11). The final average value depends on where the original input
signal lies within the code width of the converter. If the input signal is not at the center of a code, the
computed average will show either a negative or positive offset from the center.

Figure 11. Injecting Noise into the Input Signal

INPUT +
NOISE

MIDPOINT OF
CODE 7F

TRANSITION POINT
INPUT

MIDPOINT OF
CODE 7E

Another technique used to increase effective resolution is the two step subranging conversion. The ADC1
converter first generates the most significant eight bits of the digital value of the input signal. A fast, very

324

high accuracy D/A converter uses the most significant six bits(with the least significant bits set to zero)
to generate a precise analog signal, which is then subtracted from the input. The difference is then amplified
and digitized to provide the additional least significant bits. The accuracy of the result depends on the
accuracy of the generated analog signal.

Figure 12. Block Diagram of Two Step Subranging Conversion

+

–

AN1

I / O

AN0

TMS370

8 / 10 BITS
DIGITAL
INPUT (D)

TO D / A
CONVERTER

DIGITAL
INPUT A0

8 / 10 BITS
D / A
CONVERTER

R1

R1

R2

R2

OP
AMP

VIN

Ratiometric Conversion

Ratiometric conversion is another way to obtain greater output resolution if the maximum of the input
signal is less than VCC3. In ratiometric conversions, the conversion result is the ratio of the reference
voltage, VREF, to the analog input signal. In other words, the absolute value of the analog input is of no
particular concern, but the ratio of the output to the full-scale value is important. The analog reference
(maximum of the input signal) can be one of the analog input channels AN1 to AN7. This allows maximum
full-scale utilization of the ADC1 converter. However, the absolute accuracy of the ADC1 converter is
tested at VREF equal to 5.1 V. The absolute accuracy will decrease when VREF is below 5.1 V in the
ratiometric conversion.

Sampling Frequency

Sampling frequency is the rate at which the conversions take place. This factor can greatly affect system
performance. The application or ultimate use of the converted data determines the required sampling
frequency.

Consider the following example of a case in which an analog input signal is sampled at a frequency much
lower than the frequency of the actual signal. The resultant frequency is the alias of the original. Figure 13
illustrates the aliasing error caused from an insufficient number of samples.

325

Figure 13. Aliasing Signal Caused by Inadequate Sampling Rate

ALIASED SIGNAL

ACTUAL SIGNAL

When sampling an analog signal, the Nyquist criterion must be used in order to reproduce the sampled data
with no loss of information. The Nyquist criterion requires that the sampling frequency must be greater than
twice that of the highest frequency to be sampled.

On the other hand, sampling the input signal at a much higher rate than its input frequency can reduce the
system throughput due to poor CPU utilization. Choose the sampling frequency carefully to obtain an
optimal solution.

The ADC1 takes 164 cycles to convert the analog input to a digital result. If the controller operates using
a system clock frequency of 5 MHz, the conversion will take 32.8 µs. The ADC1 module allows a
programmable sampling time depending on the system application. Allow 1 µs sampling time for each
kilohm of source impedance or a minimum of 1 µs for a low impedance source. Assuming the analog source
impedance is less than or equal to 1 kilohm for minimum sampling time (the sampling time is limited by
the instruction cycle time to set up the SAMPLE START bit; the minimum sampling time is 1.6 µs using
a 5 MHz SYSCLK). In that case, the ADC1 can convert an analog input in every 34.4 µs for a maximum
conversion rate of 29,069 conversions per second.

To meet the Nyquist criterion, the maximum frequency of the input signal must be limited to approximately
14 kHz.

In multi-sensor systems, the ADC1 uses time-multiplexing techniques to scan between inputs from various
sensors. When these techniques are used, the scan frequency must take into account the number of
channels, so that the ADC1 captures changes occurring at the fastest rate of interest for a given signal.

Analog Reference and Layout Considerations

We have discussed various techniques using signal conditioning and filtering to improve system accuracy.
It is important to observe that no filter is justifiable as a substitute for proper attention to layout and
shielding techniques. Rather, it is adjunct to them. Every effort should be made to keep noise out of the

326

system. Filtering is added to the system only if it becomes necessary to clean up the remaining undesirable
noise, especially that present in the original signal.

To minimize noise and digital clock coupling to an input which might be causing conversion errors, the
lead to the analog input should be kept as short as possible. Furthermore, a low impedance shield between
the noisy signals and the analog input signal can be used to block out the capacitor coupling effect.

Digital ground lines are usually quite noisy and have a large current spike. All analog grounds should be
run separately from the digital ground line to make sure that there are no common impedance earth paths
with digital ground or other circuits (as shown in Figure 14 and Figure 15). Analog ground should be
connected to a low impedance point near the power supply. During the conversion, current flow into the
analog ground can be changed with a high impedance in the ground line. Such changes can cause changes
in voltage at the analog ground pin (VSS3), and they might cause conversion errors near the transition point.

Figure 14. Circuit with Common Impedance Earth Path

POWER
SUPPLY

TMS370 ANALOG
CIRCUITVSS3

AN

COMMON IMPEDANCE EARTH PATH

Figure 15. Circuit With No Common Impedance Earth Path

POWER
SUPPLY

SINGLE
POINT
OR
GROUND
PLANE

TMS370 ANALOG
CIRCUITVSS3

AN

327

Supply transients should be prevented by good decoupling practice; that is, by having a decoupling
capacitor close to the VCC3 and VSS3 pins. The reference voltage (VREF) can also affect the conversion
accuracy. It should be kept clean, well filtered, and used only by the ADC1 converter if possible. VREF can
be from 2.5 V to VCC3 + 0.1. However, it is important to note that the absolute accuracy is only tested at
VREF equal to 5.1 V, and as VREF decreases, the LSB size decreases and the absolute error in term of the
LSB may increase.

The source impedance (ZREF) of VREF (Figure 16) should not exceed the value specified in the electrical
specification (24 kΩ for SYSCLK less than 3 MHz and 10 kΩ for SYSCLK higher than 3 MHz). During
the conversion process, the reference voltage charges and discharges the capacitor array to determine the
conversion value. If the reference voltage source impedance is too high, it will limit the currents
appropriately charging or discharging the capacitor array, and this will cause conversion errors.

Figure 16. Reference Voltage Source Impedance

VREF

TMS370

ZREF

SOURCE
IMPEDANCE

REFERENCE
CHANNEL

ZREF <24K, SYSCLK <3MHz
ZREF <10K, SYSCLK ≥3MHz

328

Software Routines

The following TMS370 software routine examples show various uses of the ADC1. The register equate
directives shown below are common for all examples.

Common Equates
ADCTL .EQU P070 ;Analog control register

ADSTAT .EQU P071 ;Analog status and interrupt register

ADDATA .EQU P072 ;Anolog conversion data register

ADIN .EQU P07D ;Analog port E data input register

ADENA .EQU P07E ;Analog port E input enable register

ADPRI .EQU P07F ;Analog itnerrupt priority register

Single Channel Continuous Conversion
The first program example performs a single channel conversion. The sampling frequency is controlled
by using the on-chip timer, and the digital results are stored in a table beginning at ATABLE (eight bytes
long). The conversions continue with the data updated in a round robin fashion. APNTR is the pointer to
the most recently converted result. The channel assignments for this program are:

• Analog input channel: AN0

• Ref channel: VCC3

Figure 17. APNTR Pointer

ATABLE

APNTR

OLDEST

MOST RECENTLY CONVERTED RESULT

We have shown that the maximum sampling frequency is limited by the conversion rate of the ADC1 and
the Nyquist criterion. With a SYSCLK of 5 MHz, the maximum conversion rate is 29,069 conversions per
second, or the maximum frequency of the input signal according to the Nyquist criterion is limited to
approximately 14 kHz. However, this only shows the maximum conversions that the ADC1 can handle.
You should also consider the software overhead required to initiate a conversion and any processor loading
that might affect how fast the conversion data will be processed.

This example routine sets up the timer to generate an interrupt at a rate of 10 kHz. The interrupt routine
initiates an A/D conversion. That is, one conversion occurs for every 100µs. Assuming the system clock
period is 200 ns, the timer will be set to a period of 500 (01F4h) counts.

329

The following section sets up the table (ATABLE) and the control registers for the ADC1.

.REG ATABLE,8 ;8 BYTE TABLE THAT STORES CONVERTED DATA

.REG APNTR ;POINTER TO MOST RECENTLY CONVERTED DATA

T1C .EQU P043 ;LSB TIMER COMPARE REGISTER

T1CTL1 .EQU P049 ;TIMER COUNTER CONTROL REG 1

T1CTL2 .EQU P04A ;TIMER COUNTER CONTROL REG 2

T1CTL3 .EQU P04B ;TIMER INTERRUPT CONTROL REG

T1CTL4 .EQU P04C ;TIMER COUNTER CONTROL REG 4

;

INIT MOV #0FEH,ADENA ;ENABLE AN0 AS ANALOG CHANNEL

MOV #01H,ADSTAT ;SET THE INTERRUPT ENABLE AND

;CLEAR FLAG

MOV #0A0H,B

LDSP ;INITIALIZE STACK POINTER TO 0A0H

;CLEAR THE TABLE BEFORE CONVERSION

MOV #08H,B

MOV B,APNTR ;SET POINTER TO FIRST BYTE

CLR A

INIT0 MOV A,*ATABLE–1[B] ;CLEAR ALL EIGHT BYTES

DJNZ B,#INIT0

The following section sets up the on-chip timer to control the sampling frequency. The conversion period
is loaded into the timer compare register (T1C). When the counter (T1CNTR) matches the T1C, an
interrupt request will be generated. The timer interrupt service routine will initiate an A/D conversion and
set up the time for the next conversion in the compare register. For more detailed information about the
T1C, see the TMS370 Family User’s Guide.

;

; SET UP THE TIMER COMPARE FUNCTION TO CONTROL THE SAMPLING FREQ

;

MOV #00H,T1CTL1 ;SET TIMER CLOCK TO SYSTEM CLOCK

MOV #090H,T1CTL4 ;SET TIMER TO CAPTURE/COMPARE MODE

;SET COMPARE RESET ENABLE

MOV #HI(500-1),T1C–1 ;SETUP THE SAMPLING TIME IN COMPARE

;REGISTER

MOV #LO(500-1),T1C

MOV #01,T1CTL2 ;RESET TIMER TO ZERO

MOV #01,T1CTL3 ;ENABLE COMPARE 1 INTERRUPT

;

; MAIN PROGRAM

;

330

; THE ANALOG INPUT SIGNAL IS SAMPLED AND CONVERTED

; CONTINUOUSLY AT A RATE OF 10 KHZ

;

;

The following section is the timer interrupt routine. It sets up the time for the next conversion in the compare
register and initiates the A/D conversion. The address of the label T1SERV must be placed in the interrupt
vector table located at 7FF4h and 7FF5h.

;

; INTERRUPT ROUTINE FOR TIMER COMPARE

;

T1CINT .DBIT 5,T1CTL3 ;NAMED T1 COMPARE INTERRUPT FLAG

T1SERV SBITO T1CINT ;CLEAR INTERRUPT FLAG

SAMPLE MOV #040H,ADCTL ;START SAMPLING (APPROX. 2uS DELAY

;FOR CLOCKIN = 20 MHZ)

MOV #0C0H,ADCTL ;START CONVERSION

RTI

The following section is the ADC1 interrupt routine. It saves the conversion results in the ATABLE and
sets the pointer to the next available location. The address of the label ATOD must be placed in the interrupt
vector table located at 7FECh and 7FEDh.

;

; INTERRUPT ROUTINE FOR ADC1

;

ADFLAG .DBIT 1,ADSTAT ;NAMED THE INTERRUPT FLAG AS ADFLAG

ATOD PUSH A ;SAVE THE REGISTERS

PUSH B

SBIT0 ADFLAG ;CLEAR THE INTERRUPT FLAG

MOV APNTR,B ;GET THE CURRENT POINTER

MOV ADDATA,A ;GET THE CONVERSION RESULTS

MOV A,*ATABLE–1[B] ;SAVE THE RESULT IN THE TABLE

DJNZ APNTR,EXITAD ;CHECK FOR WRAP AROUND

MOV #08H,APNTR ;START FROM LOCATION ATABLE(7)

EXITAD POP B ;RESTORE REGISTER

POP A

RTI

;

; INIT INTERRUPT VECTORS

.SECT ”vect”,7FECH

.WORD ATOD,0,0,0,T1SERV,0,0,0,0,INIT

331

Multiple Channel Conversions

The second example program samples and converts data from four channels, each of which uses a different
channel for reference input. The program stores the results in a table beginning at ATABLE. The routine
stops interrupting the main program after it finishes all four channels. If the main program wants more
recent data, it only needs to execute the code SAMPLE, and the routine will again sample and convert all
four channels of data. The ADC1 interrupt enable bit is cleared by the ADC1 interrupt routine as a signal
to the main program that all four channels have been processed. The address of the label ATOD must be
placed into the interrupt vector table located at 7FECh and 7FEDh.

Table 2. Analog Input Table

Analog Input Channel Ref Channel

AN3 AN7

AN2 AN6

AN1 AN5

AN0 AN4

Routine

.REG ADCHANL ;KEEP CURRENT CHANNEL NUMBER

.REG ATABLE,4 ;4-BYTE TABLE THAT STORES CHANNEL DATA

INIT MOV #00H,ADENA ;ENABLE AN0 - AN7 AS ANALOG CHANNEL

MOV #0A0H,B

LDSP ;INITIALIZE STACK POINTER

;

; INITIALIZE THE TABLE FOR CONVERSION RESULTS

; CLR A

MOV #04,B ;INIT THE TABLE

INIT0 MOV A,*ATABLE–1[B]

DJNZ B,INIT0

EINT ;ENABLE INTERRUPTS

CALL SAMPLE ;SAMPLE ALL THE DATA

;

;

;

; MAIN PROGRAM

;

;

; CHECK THE CONVERSION COMPLETED BEFORE USING THE DATA

;

332

WAITC BTJO #01H,ADSTAT,WAITC

;

; ALL CONVERSIONS HAVE BEEN DONE, RESULTS ARE READY

; READ DATA HERE

;

;

CALL SAMPLE ;SAMPLE ANOTHER SET OF DATA

;

;

The following section is the subroutine to initiate the first A/D conversion. When the conversion is
completed, an interrupt request will be generated. Subsequent conversions will be driven by the interrupt
routine.

;

; SUBROUTINE SECTION

;

SAMPLE MOV #3BH,ADCHANL ;RESET THE CHANNEL SELECTION FOR

;NEW SET OF CONVERSION

MOV #01H,ADSTAT ;ENABLE THE INTERRUPT AND CLEAR

;ANY FLAGS

MOV #07BH,ADCTL ;START SAMPLING (APPROX. 2uS DELAY

;FOR CLOCKIN – 20 MHZ)

MOV #0FBH,ADCTL ;START CONVERSION

RTS

The following section is the ADC1 interrupt routine. It saves the conversion result in the ATABLE and
initiates another conversion. If it does not, all four channels have already been processed.

;

; INTERRUPT ROUTINE FOR ADC1

;

ATOD PUSH A ;SAVE THE REGISTERS

PUSH B

MOV #01,ADSTAT ;CLEAR THE INTERRUPT FLAG

MOV ADCHANL,B ;GET THE CURRENT CHANNEL NUMBER

AND #07H,B ;GET ANALOG INPUT CHANNEL ONLY

INC B

MOV ADDATA,A ;GET THE CONVERSION RESULTS

MOV A,*ATABLE–1[B] ;SAVE THE RESULT IN THE TABLE

DJNZ B,NEXTCON ;GO TO NEXT CONVERT

333

ENDCON AND #0FEH,ADSTAT ;CLEAR THE INTERRUPT ENABLE

;TO SIGNAL THE END OF 4 CONVERSIONS

JMP EXITAD

NEXTCON SUB #09H,ADCHANL ;SET THE NEXT REFERENCE CHANNEL AND

;ANALOG INPUT CHANNEL

MOV ADCHANL,ADCTL ;SET UP INPUT AND REF CHANNEL

OR #40H,ADCTL ;START SAMPLE DATA

OR #0E0H,ADCTL ;START CONVERSION

EXITAD POP B ;RESTORE REGISTER

POP A

RTI

;

; INIT INTERRUPT VECTORS

.SECT ”vect”,7FECH

.WORD ATOD,0,0,0,0,0,0,0,0,INIT

The above examples illustrate two basic operations of analog to digital conversion. The first uses the
TMS370 timer to control the sampling frequency of conversions, and the second example illustrates
multiple channel conversion; that is, using multiple input and reference sources.

The routines can be easily extended to multiple channel conversions with the on-chip timer controlling the
sampling frequency. In some cases, the user may even want different sampling frequencies for different
channels to account for any disparity in the frequencies of the input signals.

One way to achieve this is to set the time base (output compare function) to the period of the fastest
sampling frequency. The sampling frequency of slower input signals will be a multiple of this time base.
Additional registers may be allocated to indicate the number of timer interrupts that might have occurred
since the last conversion of a particular signal (slow input signal). The interrupt routine will determine
whether single or multiple conversions will be initiated.

334

Application Examples

The following section shows some A/D conversion applications using the TMS370 family
microcontrollers. All hardware is tested only under specific conditions. The user should take all standard
precautions when using these circuits in their respective applications.

Data Translation
Many applications involve monitoring physical parameters. Temperature, force, pressure, position, and
other parameters must be translated before they can be processed by the microcontroller. Physical
parameters are first transformed to analog signals (voltage, current) by transducers. These analog signals
are then converted to digital data. However, most of the transfer functions between the physical parameters
and the digital output are nonlinear. Calculating the value of the physical parameters from the digital output
may be time consuming and severely limit the system throughput.

One way to simplify the interpretation of the converted data is to linearize the analog input before the
conversion. Signal conditioning amplifiers, log amplifiers, and other linear circuit techniques can be used.
However, analog linearization may not be cost effective or possible for certain applications. Also, analog
components suffer aging (gain, offset drift over time) and tolerance problems that can affect system
accuracy. Alternatives such as table lookup techniques or linearization algorithms might reduce the need
for expensive hardware linearization.

The values of physical parameters can be calculated beforehand and stored in a table. Upon conversion
completion, the application software will simply retrieve the value of the parameter by using the conversion
result as the index to the table.

Instead of code-by-code conversion, it is also possible to interpret all 256 discrete values (00–FF) with a
table of fewer than 256 entries. Values of the function between table values can be determined by
interpolation techniques. For example, the conversion output can be split into two fields: the upper N bits
are used as an offset to retrieve data from the table, the lower 8 – N bits are used as the weighting factor
for interpolation. The value of any conversion result can be expressed as:

Figure 18. Conversion Formula

8 BITS

I W

N BITS 8–N BITS

F(I.W) = F (I) +
W

28-N
[F(I + 1) – F (I)]

The following program example uses the result of the conversion and the interpolation technique to
calculate the value of the physical parameter. The table is 33 bytes long starting at location ATABLE. The
most significant five bits of the conversion result are used as the index to the table, whereas the least
significant three bits are used as the weighting factor.

F(I.W) = F(I) + W/B[F(I+1) – F(I)]

335

Assuming the conversion result is 01100010 (98), the value of the physical parameter can be calculated
by the following equation:

F(01100.010) = F(01100) + 2/8[F(01101) – F(01100)]

.REG ATABLE,33 ;33-BYTE TABLE

.REG RESULT ;REGISTER FOR FINAL RESULT

.REG ATPNT ;TEMPORARY REGISTER

;

;

BEGIN PUSH A ;SAVE REG A

PUSH B ;SAVE REG B

MOV ADDATA,ATPNT ;SAVE THE CONVERSION RESULT

MOV ATPNT,B

SWAP B ;GET THE INDEX FIELD

RL B

AND #1FH,B

;

; GET THE VALUE FROM THE TABLE

;

MOV *ATABLE[B],A ;GET F(I)

MOV A,RESULT

;

; CHECK IF INTERPOLATION NECESSARY

; IF THE MOST LEAST SIGNIFICANT THREE BITS ARE ZERO, NO

; INTERPOLATION IS NECESSARY

BTJO #07H,ATPNT,INTERP

JMP FINISH ;

INTERP INC B ;SET INDEX POINT TO NEXT ENTRY

MOV *ATABLE[B],A ;GET F(I+1)

SUB RESULT,A ;CALCULATE THE DIFFERENCE
;F(I+1) – F(I)

AND #07H,ATPNT ;GET THE WEIGHTING FACTOR

MPY ATPNT,A ;W * [F(I+1) – F(I)]

;RESULT STORE IN A:B

MOV #08,ATPNT

DIV ATPNT,A ;DIVIDE A:B BY 8

ADD A,RESULT ;F(I) + INTERPOLATION VALUE

336

FINISH POP B ;RESTORE REGISTERS A AND B

POP A

RTS

TMS370 microcontrollers contain on-chip data EEPROM, which provides an excellent area to implement
the translation table. With the on-chip EEPROM capability, the translation table can be adjusted for
correction as environmental conditions change. Also, the write protection feature of the data EEPROM can
be used to protect the translation table from inadvertent overwriting by the application software. For more
detailed information about the on-chip data EEPROM, refer to the TMS370 Family User’s Guide.

337

Temperature Sensor Interface

A typical temperature measurement application is shown in Figure 19. The main principle of this example
applies to most other input transducers. The interfacing circuitry consists of a bridge amplifier detecting
the resistance variation over the temperature range.

Figure 19. Temperature Sensor Interface

R1

Vref = 5 V

62K

R4
1M

P1
10K

R2
24K

RS1

R3
2K7

RF

100k�

RS2

VT

470� 470�

1k�

TLC272

VO
RX

RP
47k�

0.1 µF
CX

VCC3

AN0

TMS370

I / O I / O

4.7 µF

1K

1k�

The bridge is comprised of resistors R1, R2, R3, and a temperature sensor (either RS1 or RS2). The
differential output voltage of the bridge is forced to zero by the feedback connection. The circuit is
configured as a current amplifier.

Potentiometer P1 and resistor R4 are used to adjust any offset present in the components.

 Assuming the transistor turn-on resistance is negligible compared to RS, then

VT = Vref [RS � (R3 +RS)]

The circuit can be analyzed using the virtual ground technique.

338

R1

R2

VT

VREF

0 V

I1

I2 RF
VO

 I1 = [Vref - VT] � R1
I2 = –VT � R2

Therefore,

VO = VT – RF(I1 + I2)

VO = VT + RF[(VT � R2) – (VREF – VT) � R1]

I1 + I2 = –[V0 – VT] � RF

RS is a positive temperature coefficient silicon sensor approximately 0.8 % per�C at 25�C. Its nominal
resistance at 25�C is 1 k�. Resistor R3 is chosen to linearize the exponential temperature coefficient of RS.

The temperature sensor interface is required to convert the temperature from 0–100 �C
(RS = 850 � to 1700 �) to an output ranging from 0 to 5 V. A reasonable value of RF (100 k�) is chosen.
R1 and R2 are then determined by substituting the conditions of temperature at 0 and 100 degrees C to
equation (1) and equation (2).

Rp is a non-critical pull-down resistor. It is used at the output of the op-amp for best amplifier linearity near
0 V. RX and CX form a low-pass filter for inexpensive noise filtering.

Automatic Ranging Interface
The following case is an example of autoranging interface circuitry. The circuit has a total of four gain
ranges which can be easily extended to more if desired. The gain ranges are 1, 2, 4, and 8. A/D resolution
is effectively improved at lower voltage ranges.

The ranging is done by changing the amplification (resistance at the noninverting terminal) of the
noninverting amplifier (TLC272). The actual gain of the amplifier is greatly dependent on the accuracy of
the resistors. Usually, additional variable resistors are used to adjust the gain of the amplifier. However,
if the exact gain of the amplifier at each range is calibrated and stored in the data EEPROM, these manual
adjustments can be avoided. The conversion result is then based on the calibration gain to calculate its
actual value. For applications requiring high accuracy, the application program can calibrate the gain value
at multiple locations in each range.

Two voltage comparators (LM339) are used to provide the lower and higher trip points for ranging. Two
analog input pins (AN6, AN7) are configured as general purpose input pins to determine whether the input
signal is within the trip points. It is important to leave some margin between the lower (higher) trip points
and the minimum (maximum) of the output of the amplifier, such that the amplifier output will not clip at
its minimum (maximum) value during the A/D sampling phase. For cost sensitive applications, the user
may use the ADC1 itself instead of the voltage comparators to determine the input signal range. However,
three additional conversions (98.4 µs at 5 MHz SYSCLK) may be required in the worst case.

339

Two output pins (INT2, INT3) are used to select the desired gain factor of the amplifier.

Table 3. Amplifier Gain Factor

INT2 INT3 GAIN FACTOR

0 0 1

0 1 2

1 0 4

1 1 8

Figure 20. Autoranging Circuit Diagram

+

–

+
–

+
–

VIN
3

2

VCC3

8

1

4

TLC272

68 kΩ

VCC3

30 kΩ

15 kΩ

VCC3

10 kΩ

23

LM399

LM399

10 kΩ

VCC3

17

24

5

4

3
2

12

’370Cx5x

AN6 (DIGITAL I / O)

AN0

AN7 (DIGITAL I /O)

51

50

INT2

INT3

(DIGITAL I / O)

(DIGITAL I / O)9

8 14

30 kΩ

10 kΩ

VCC3

10 kΩ 20 kΩ 68 kΩ
TLC4066 TLC4066 TLC40662 3 9

B B B
C
R
T
L

C
R
T
L

C
R
T
LA A A

13 5

42

6

6

6

4 8

4

5

7

1 3 5

74LS04 74LS04 74LS04

74LS139

1

3

2
Y0

Y1

Y2

Y3

A

B

G

1

340

Autoranging Interface Routine
;

; ANALOG INPUT CHANNEL REF CHANNEL

; ANC VCC3

;

; AN6 GENERAL PURPOSE INPUT PIN (DETERMINE GAIN RANGE)

; AN7 GENERAL PURPOSE INPUT PIN (DETERMINE GAIN RANGE)

; INT2 GENERAL PURPOSE OUTPUT PIN (SELECT GAIN RANGE)

; INT3 GENERAL PURPOSE OUTPUT PIN (SELECT GAIN RANGE)

;

INT2 .EQU P018 ;INT2 PIN CONTROL REGISTER

G1 .DBIT 3,INT2 ;GAIN FACTOR CONTROL BIT 1

INT3 .EQU P019 ;INT3 PIN CONTROL REGISTER

G0 .DBIT 3,INT3 ;GAIN FACTOR CONTROL BIT 0

;

;

;

;

.REG RESERVE,10

;

; RESULT-1 : INDICATE THE INPUT SIGNAL RANGE (GAIN FACTOR)

; RESULT : CONVERSION RESULT

;

.REGPAIR RESULT ;16-BIT REGISTER FOR CONVERSION

;RESULT

.REGPAIR GAIN ;TEMP REG

.TEXT 7000H

;

;

;

INIT MOV #0FEH,ADENA ;ENABLE ANO AS ANALOG CHANNELS

;AN1 — AN7 AS GENERAL PURPOSE

;INPUT PINS

MOV #10H,INT3 ;SET INT3 PIN AS GENERAL PURPOSE

;OUTPUT PIN

MOV #10H,INT2 ;SET INT2 PIN AS GENERAL PURPOSE

;OUTPUT PIN

;

341

MOV #20H,A ;OPTIONAL — NOT NECESSARY IF

;ENOUGH TIME BETWEEN THE LAST INSTR

;AND THE FIRST SAMPLE

INIT0 DJNZ A,INIT0 ;WAIT UNTIL OP-AMP IS STABLE

;

;

MOV #0A0H,B

LDSP ;INITIALIZE STACK POINTER

MOVW #0,RESULT ;INITIALIZE THE REGISTER

;INITIAL GAIN FACTOR EQUAL TO 1

EINT ;ENABLE INTERRUPT

;

;

;

; MAIN PROGRAM

;

;

;

AGAIN2 CALL SAMPLE ;SAMPLE ANOTHER SET OF DATA

WAIT2 BTJZ #04H,ADSTAT,WAIT2 ;CHECK THE “AD READY” BIT

;

;

The following section is the subroutine to initiate the A/D conversion. The subroutine first reads the output
of the comparators (via AN6 and AN7) to determine the input voltage range. If the input signal is within
the desired range, then an A/D conversion will be initiated. Otherwise, the subroutine will adjust the gain
factor and repeat the process one more time.

;

; SUBROUTINE SECTION

;

SAMPLE PUSH A

UPPER MOV ADIN,A

BTJO #80H,A,LOWER ;DOES THE INPUT SIGNAL EXCEED THE

;UPPER LIMIT

CMP #0,RESULT-1 ;IS THE GAIN FACTOR ALREADY SET TO

;MIN GAIN

JEQ CONVRT

DEC RESULT-1 ;SET TO LOWER GAIN FACTOR

SBIT0 G0

BTJZ #1,RESULT-1,WAIT

342

SBIT0 G1

SBIT1 G0

JMP WAIT

LOWER BTJO #40H,A,CONVRT ;IS THE INPUT SIGNAL BELOW THE

;LOWER LIMIT

CMP #3,RESULT-1 ;IS THE GAIN FACTOR ALREADY SET TO

;MAX GAIN

JEQ CONVRT

INC RESULT-1 ;SET TO HIGHER GAIN FACTOR

SBIT1 G0

BTJO #1,RESULT-1,WAIT

SBIT0 G0

SBIT1 G1

WAIT MOV #10,A ;SET COUNT

LOOP DJNZ A,LOOP ;WAIT FOR 20 us UNTIL THE OP-AMP

;IS STABLE

JMP UPPER

CONVRT MOV #01H,ADSTAT ;ENABLE THE INTERRUPT AND CLEAR

;ANY FLAGS

MOV #040H,ADCTL ;START SAMPLING (APPROX. 2 µS DELAY

;FOR CLOCKIN = 20 MHZ)

MOV #0C0H,ADCTL ;START CONVERSION

POP A

RTS

The following section is the ADC1 interrupt routine. It saves the conversion result in the register RESULT.

;

; INTERRUPT ROUTINE FOR ADC1

ATOD MOV #01,ADSTAT ;CLEAR THE INTERRUPT FLAG

MOV ADDATA,RESULT ;SAVE THE CONVERSION RESULTS

RTI ;

;

; INIT INTERRUPT VECTORS

.SECT “vect”,7FECH

.WORD ATOD,0,0,0,0,0,0,0,0,INIT

;

;

343

Interfacing a Serial A/D Converter with TMS370 Family Microcontrollers

The following demonstrates the interface between a 10-bit serial A/D converter (TLC1 540/1) and
TMS370. This will be useful for those who want to use the TMS370 devices that do not possess on–chip
ADC functions but still need A/D conversion, or those systems that require high accuracy (down to 5 mV
resolution) and better isolation of the analog system from the relatively noisy digital controller.

The TLC1540 and TLC1541 are both 10-bit, 11 channel serial A/D converters with sample-and-hold
circuitry. TLC1540 has ±0.5 LSB error, whereas TLC1541 has ±1 LSB error. The serial A/D converter
has four control inputs: chip select (CS), address input, I /O clock, and system clock. The first example uses
the on-chip serial peripheral interface (SPI) to interface with the serial A/D, whereas the second example
uses software routines to interface with the serial A/D.

Using On-Chip SPI

Figure 21 shows the circuit diagram of the interface between TLC1540/1 and TMS370. This section
describes the interface of a 10-bit serial A/D converter through the SPI. The system clock of the
TLC1540/1 is provided by the CLKOUT pin of the TMS370. Note that the maximum TLC1540/1 system
clock frequency is only 2.1 MHz; an additional frequency divider/counter may required if the SYSCLK
frequency is higher than 2.1 MHz.

The serial A/D receives the I/O clock 500 ns after (delay by the dual D flip-flops as shift register) the
SPICLK is active; this ensures enough set up time for the channel address. The conversion cycle takes 44
TLC1540/1 system clock cycles and is initiated on the tenth falling edge of the I /O clock.

The following example program converts data from all 11 channels consecutively. It assumes a TMS370
using an 8.4 MHz crystal; for example, 2.1 MHz for CLKOUT. If the application program requires different
system clock rates or I /O transmission clock rates, you must ensure that the time between executing the
instruction at label TRAN8 for initiating the conversion and TRAN2 for transmitting the next channel
address is greater than the time transmitting 8-bit data plus 44 TLC1540/1 system clock cycles.

344

Figure 21. Interfacing Circuit Using SPI

CLKOUT

SPICLK

TMS370

SPISIMO
SPISOMI

INT3

CLK

D Q

7474

CLK

D Q

7474

SYSTEM
CLOCK

I / O

TLC1540/ 1

ADDRESS
DATA

CS

CLOCK

This example program converts data from all 11 channels and stores the digital results in a table beginning
at ATABLE. The table contains 11, 16-bit registers. The least significant byte is located at the lower address.
The routine stops interrupting the main program after it finishes all 11 channels. If the main program wants
more recent data, it needs only to execute the code at RESTART, and the SPI routine will again transmit
the channel address to the serial A/D (TLC1540/1) and receive data from the A/D. The flag CNVCMPL
is set by the SPI routine as a signal to the main program that all 11 channels have been processed. The
address label SPIINT must be placed in the interrupt vector table located at 7FF6h and 7FF7h.

Data Conversion Routine

; SPISIMO SPI FUNCTIONAL PIN, (CONNECT TO TLC1540/1 ADDRESS INPUT)

; SPISOMI SPI FUNCTIONAL PIN, (CONNECT TO TLC1540/1 DATA OUTPUT)

; SPICLK SPI FUNCTIONAL PIN, (CONNECT TO TLC1540/1 I/O CLOCK)

; CLKOUT SYSTEM CLKOUT, (CONNECT TO TLC1540/1 SYSTEM CLOCK)

; INT3 GENERAL PURPOSE OUTPUT PIN (CONNECT TO TLC1540/1 CHIP

; SELECT)

;

SPICCR .EQU P030 ;SPI CONFIGURATION CONTROL REG

SPICTL .EQU P031 ;SPI CONTROL REGISTER

SPIBUF .EQU P037 ;RECEIVE DATA BUFFER REGISTER

SPIDAT .EQU P039 ;SERIAL DATA REGISTER

SPIPC1 .EQU P03D ;SPI PIN CONTROL 1

SPIPC2 .EQU P03E ;SPI PIN CONTROL 2

SPIPRI .EQU P03F ;SPI PRIORITY CONTROL

DPORT2 .EQU P02C ;DPORT 2, CLKOUT CONFIGURATION REG

345

INT3 .EQU P019 ;INT3 PIN CONTROL REGISTER

.REG ATABLE,22 ;16-BIT REGISTERS FOR CONVERSION RESULT

.REG FLAGS ;REG FLAG

TRANSL .DBIT 0,FLAGS ;INDICATE MSB OR LSB TRANSMISSION

CNVCMPL .DBIT 1,FLAGS ;CONVERSIONS COMPLETE

.REG ADCHANL

.TEXT 7000H

The following section sets up the SPI for communication. The SPI is configured as the master processor
to control the communication. For more detailed information about the on-chip SPI, refer to the TMS370
Family User’s Guide.

;

; SET UP SPI CONFIGURATION

;

INIT MOV #087H.SPICCR ;INITIALIZES SPI CIRCUITRY

;SELECT CLOCK POLARITY INACTIVE LOW

;SELECT BIT RATE = CLKIN/8

;SELECT CHARACTER LENGTH = 8

MOV #07H,SPICTL ;CONFIGURE AS MASTER

;TRANSMISSION ENABLE, TALK = 1

;INTERRUPT ENABLE

MOV #02H,SPIPC1 ;SET SPICLK AS FUNCTION PIN

MOV #22H,SPIPC2 ;SET SPISOMI AND SPISIMO AS

;FUNCTION PIN

MOV #20H,SPIPRI ;SET EMULATOR SUSPEND BIT

;

MOV #18H,INT3 ;SET INT3 AS OUTPUT PIN

MOV #08H,DPORT2 ;SET CLKOUT AS FUNCTIONAL PIN

;

MOV #0A0H,B

LDSP ;INITIALIZE STACK POINTER TO 0A0H

;

CLR A

MOV #22,B

AGAIN MOV A,*ATABLE–1[B] ;INITIALIZE THE TABLE

DJNZ B,AGAIN

EINT ;ENABLE INTERRUPT

346

LOOP CALL RESTART ;START CONVERSIONS

;

;

;

;

; CHECK CNVCMPL BIT IF ALL 11 CONVERSIONS DONE

;

WAIT BTJZ #02H,FLAGS,WAIT

;

; ALL CONVERSIONS DONE, DATA ARE READ

;

;

; MAIN PROGRAM GOES HERE

;

;

; NEED MORE RECENT DATA

CALL RESTART ;START TAKING MORE DATA

;

; MORE MAIN PROGRAM

The following section is the subroutine to initiate the transmission. When the transmission is completed,
an interrupt request will be generated. Subsequent transmissions will be driven by the interrupt routine.

;

; SUBROUTINE SECTION

RESTART CLR ADCHANL ;INITIALIZE CHANNEL ADDRESS

CLR FLAGS ;CLEAR ALL FLAGS

MOV #01H,SPICCR ;SET CHARACTER LENGTH TO 2

MOV #10H,INT3 ;ACTIVATE TLC1540/1 CHIP SELECT

MOV #00H,SPIDAT ;TRANSMIT THE CHANNEL ADDR

RTS

The following section is the SPI interrupt routine. It saves the previous conversion result in ATABLE and
initiates transmissions until all 11 channels have been processed.

;

; INTERRUPT ROUTINE FOR SPI

347

SPIINT PUSH A ;SAVE REGISTERS

PUSH B

MOV SPIBUF,A ;GET THE CONVERSION RESULT AND CLEAR

;INTERRUPT FLAG

MOV ADCHANL,B ;GET CHANNEL NUMBER

JZ NOST0 ;DO NOT DECREMENT IF THIS IS CHANNEL 0

DEC B ;GET CHANNEL NUMBER FOR RECEIVING DATA

RL B ;MULTIPLY BY 2

NOST0 BTJO #01H,FLAGS,CMPLT ;CHECK IF ALL 10 BITS DATA RECEIVED

;

; SAVE THE MSB 2 BITS’ RESULT AND

; INITIATE THE TRANSMISSION OF THE LAST 8 BITS’ RESULT

;

MOV #07H,SPICCR ;SET THE CHARACTER LENGTH TO 8

;

; THE MOST SIGNIFICANT 2 BITS ARE LEFT OVER FROM FROM PREVIOUS TRANSMISSION

; THEY ARE THE LEAST 2 SIGNIFICANT BITS OF THE CHANNEL ADDRESS

;

TRAN8 MOV A,SPIDAT ;INITIATE TRANSMISSION

AND #03H,A ;GET THE LAST 2 BITS ONLY

MOV A,*ATABLE+1[B] ;STORE THE MOST SIGNIFICANT 2 BITS

NOST INC FLAGS ;SET THE FLAG INDICATE THE

;LSB RESULT ALREADY RECEIVED

JMP EXITSP

CMPLT MOV A,*ATABLE[B] ;STORE THE LEAST SIGNIFICANT 8 BITS

NOST1 CMP #0BH,ADCHANL ;CHECK IF ALL CONVERSIONS DONE

JNZ GOCONVT

MOV #18H,INT3 ;DESELECT TLC1540/1 CHIP SELECT

SBIT1 CNVCMPL ;INDICATE ALL CONVERSIONS COMPLETED

JMP EXITSP

;

; INITIATE MORE CONVERSION

GOCONVT

INC ADCHANL ;POINT TO NEXT CHANNEL

MOV ADCHANL,B

SWAP B ;LEFT JUSTIFY THE CHANNEL ADDR

MOV #01H,SPICCR ;SET CHARACTER LENGTH TO 2

348

TRAN2 MOV B,SPIDAT ;INITIATE ANOTHER TRANSMISSION

CLR FLAGS ;CLEAR THE FLAG, INDICATE THE

;CHANNEL ADDRESS ALREADY TRANSMITTED,

EXITSP POP B ;RESTORE THE REGISTERS.

POP A

EXIT RTI

;

;

; INIT INTERRUPT VECTORS

.SECT “vect”,7FECH

.WORD 0,0,0,0,0,SPIINT,0,0,0,INIT

;

;

349

Using Software to Interface With a Serial A/D Converter

This section demonstrates the interface of TLC1540 through software routines. This will be useful for cost
sensitive applications that need to minimize external hardware.

Four general purpose I /O pins are used to interface with the TLC1540. The following software example
performs the same function as explained in the “Using On-Chip SPI” Section of this report, without any
additional hardware. It converts data from all 11 channels and stores the digital results into a table beginning
at ATABLE. The table contains 11, 16-bit registers. The least significant byte is located at the lowest
address. The routine stops interrupting the main program after it finishes all 11 channels. If the main
program wants more recent data, it needs only to execute the code at CONVRT. Figure 22 shows the
interconnection between TMS370 and TLC1540.

Figure 22. Interfacing Circuit Using Software Routines

D3

TMS370

INT3

SYSTEM
CLOCK

I / O
CLOCK

TLC1540

ADDRESS

DATA

CS

INT1

INT2

(DIGITAL I / O)

(DIGITAL I / O)

(DIGITAL I / O)

350

Interfacing Software Routines
;

;

; D3/CLKOUT GENERAL PURPOSE OUTPUT PIN, (CONNECT TO TLC1540/1

; I/O CLOCK AND TLC1540/1 SYSTEM CLOCK)

; INT1 GENERAL PURPOSE INPUT PIN (CONNECT TO TLC1540/1

; DATA OUTPUT)

; INT2 GENERAL PURPOSE OUTPUT PIN (CONNECT TO TLC1540/1

; ADDRESS INPUT)

; INT3 GENERAL PURPOSE OUTPUT PIN (CONNECT TO TLC1540/1

; CHIP SELECT)

DPORT1 .EQU P02C ;DPORT 1, CLKOUT CONFIGURATION REG

DPORT2 .EQU P02D ;DPORT 2, CLKOUT CONFIGURATION REG

DDATA .EQU P02E ;DPORT DATA REG

DDIR .EQU P02F ;DPORT DATA DIR REG

INT1 .EQU P017 ;INT1 PIN CONTROL REGISTER

INT2 .EQU P018 ;INT2 PIN CONTROL REGISTER

INT3 .EQU P019 ;INT3 PIN CONTROL REGISTER

.REG RESERVE,10

.REG ATABLE,22 ;16-BIT REGISTERS FOR CONVERSION RESULT

.REGPAIR RESULT,2 ;TEMPORARY RESULT REGISTER

.REG FLAG ;REG FLAG

.REG ADCHANL

.REG BITCNT

.REG CHNLCNT

IOCLK .DBIT 3,DDATA ;TLC1540 SYSTEM CLOCK

;AND I/O CLOCK FOR TRANSMISSION

CS .DBIT 3,INT3 ;TLC1540 CHIP SELECT

ADADDR .DBIT 3,INT2 ;TLC1540 ADDRESS INPUT

DATAOUT .DBIT 6,INT1 ;TLC1540 DATA OUTPUT

;

;

.TEXT 7000H

;

;

351

BEGIN MOV #18H,INT3 ;SET INT3 AS OUTPUT PIN

MOV #18H,INT2 ;SET INT2 AS OUTPUT PIN

MOV #00H,DPORT1 ;SET CLKOUT AS GENERAL PURPOSE I/O

MOV #00H,DPORT2

MOV #08H,DDIR

;

MOV #0A0H,B

LDSP ;INITIALIZE STACK POINTER TO 0A0H

;

CLR A

MOV #22,B

AGAIN MOV A,*ATABLE–1[B] ;INITIALIZE THE TABLE

DJNZ B,AGAIN

EINT ;ENABLE INTERRUPT

LOOP CALL CONVRT ;START CONVERSIONS

;

;

;

;

;

; MAIN PROGRAM GOES HERE

;

;

;

;

; NEED MORE RECENT DATA

NOP

CALL CONVRT ;START TAKING MORE DATA

NOP

;

; MORE MAIN PROGRAM

;

352

The following section is the subroutine CONVRT that initiates the A/D conversion. It sets up the channel
address and invokes subroutine ADTRAN for serial transmission. When the transmission finishes, it saves
the previous conversion result in ATABLE and generates 44 I /O clocks for current A/D conversion.

;

; SUBROUTINE SECTION

;

;

; SUBROUNTINE CONVRT

;

; ENTER : NO PARAMETERS

; EXIT : ATABLE - FILL 22 ENTRIES STARTING FROM ATABLE

CONVRT PUSH A

PUSH B

CLR ADCHANL ;INITIALIZE CHANNEL ADDRESS

;THE UPPER 4 BITS INDICATE THE CHANNEL

;ADDRESS

CLR FLAG ;CLEAR ALL FLAGS

MOV #12,CHNLCNT ;SET COUNT TO NUMBER OF CHANNELS + 1

;ONE MORE TRANSMISSION TO READ BACK

;THE CONVERSION RESULT

NEXT MOV ADCHANL,B ;

SWAP B ;PASS THE CHANNEL ADDRESS TO

;SUBROUTINE THROUGH REGISTER B,

;THE UPPER 4 BITS IS THE CHANNEL ADDRESS

CLR RESULT ;CLEAR THE TEMPORARY REGISTER

CLR RESULT–1

CALL ADTRAN ;TRANSMIT ADDRESS AND RECEIVE DATA

MOV ADCHANL,B ;IS THE CHANNEL ADDRESS 0?

JZ SKSAVE ;SKIP THE FIRST ONE

RLC B ;MULTIPLY BY TWO

MOV RESULT–1,A ;SAVE THE RESULT

MOV A,*ATABLE–2[B]

MOV RESULT,A

MOV A,*ATABLE–1[B]

SKSAVE INC ADCHANL ;NEXT CHANNEL

;

MOV #44,B

353

REPEAT SBIT1 IOCLK ;44 SYSTEM CLOCKS FOR CONVERSION

SBIT0 IOCLK

DJNZ B,REPEAT

;

DJNZ CHNLCNT,NEXT

POP B

POP A

RTS

The following section is subroutine ADTRAN that handles the communication between TMS370 and
TLC1540/1.

;

; SUBROUTINE ADTRAN

;

; BIT BANGING ROUTINE

; TRANSMITTING AND RECEIVING DATA TO/FROM TLC1540

;

; ENTER : B - AD CHANNEL ADDRESS (UPPER 4 BITS)

; EXIT : RESULT - 10-BIT RESULT

;

ADTRAN SBIT0 CS ;CHIP SELECT ACTIVE

SBIT1 IOCLK ;SEND TWO CLOCK PULSES TO TLC1540

SBIT0 IOCLK

SBIT1 IOCLK

SBIT0 IOCLK

MOV #8,BITCNT ;SET UP COUNTER

ADRTRA SBIT1 ADADDR ;TRANSMIT THE ADDRESS

RL B

JC BIT1 ;IS ADDRESS EQUAL TO 1

SBIT0 ADADDR ;NO, SET IT BACK TO 0

BIT1 SBIT1 IOCLK

RLC RESULT ;GET THE CONVERTED RESULT

RLC RESULT-1 ;THE BIT IS EQUAL TO 1

JBIT0 DATAOUT,BIT0 ;IS THE DATA BIT EQUAL TO 0

OR #1,RESULT ;NO, SET IT BACK TO 1

354

BIT0 SBIT0 IOCLK

DJNZ BITCNT,ADRTRA

;

;

INV FLAG ;UPDATE THE FLAG

BTJZ #1,FLAG,DONE

MOV #2,BITCNT ;SET COUNTER FOR THE LAST 2 BITS

SBIT1 CS ;CS GO INACTIVE AFTER THE EIGHTH

;I/O CLOCK, CS MUST BE DEACTIVATED

;TWO I/O CLOCK BEFORE THE END OF

;TRANSMISSION

JMP BIT1

DONE RTS

;

;

; INIT INTERRUPT VECTORS

.SECT “vect”,7FFEH

.WORD BEGIN

The above examples demonstrate the basic principle of interfacing a serial A/D with the TMS370 family
microcontrollers. For applications that use TMS370x10, but only need one channel A/D, you may consider
TLC548/9, which is a single-channel 8-bit A/D converter.

355

Conclusions

This application report provides information on using the ADC1 converter module with the TMS370
family microcontrollers to a provide cost-effective system solution. Examples have been given to
demonstrate the operation of the ADC1, typical methods of interfacing to the external circuits, and
interactions with other modules. The TMS370 on-chip timer provides a handy method to control the
sampling frequency of conversions. Calibration data of analog components can be stored in the data
EEPROM module. This data can be used to adjust the conversion result to achieve high system accuracy
while using inexpensive analog components.

356

Appendix A: ADC1 Control Registers

The ADC1 is controlled and accessed through registers in the peripheral file. These registers are listed in
Figure 23 and described in the TMS370 Family User’s Guide. The bits shown in shaded boxes in Figure
23 are privilege mode bits: they can only be written to in the privilege mode.

Figure 23. ADC1 Control Register Memory Map

BIT 7 BIT 6 BIT 5 BIT 4 BIT 3 BIT 2 BIT 1 BIT 0
CONVERT

START
SAMPLE
START

REF VOLT
SELECT 2

AD
INT ENA

RESERVED

PORT E DATA INPUT REGISTER

AD
STEST

AD
PRIORITY

AD
ESPEN

ADDR PF

1070h 070

1071h 071

1073h 073
 to to
107Ch 07C
107Dh 07D
107Eh 07E

ADSTAT

1072h 072 A - TO - D CONVERSION DATA REGISTER

PORT E INPUT ENABLE REGISTER

107Fh 07F

ADCTL

ADDATA

ADIN
ADENA

ADPRI

REF VOLT
SELECT 1

REF VOLT
SELECT 0

AD INPUT
SELECT 0

AD INPUT
SELECT 1

AD INPUT
SELECT 2

AD
INT FLAG

AD
READY

357

Appendix B

ADC1 Errors

Figure 24 shows the transfer characteristics of the A/D conversion and the related errors.

Figure 24. A/D Transfer Characteristics

X

X

X

X

X

X

a

b

a

cc

X

DIGITAL OUTPUT CODES

IDEAL A / D CHARACTERISTICS
X = THEORETICAL MIDPOINT

SPEC RANGES INDICATED

FOR CODE 0...010

ANALOG INPUT VOLTAGE (mV)
1 LSB = 20 mV, V REF = 5.1 V

0...000

0...001

0...010

0...011

0...100

0...101

0...110

0...111

0 10 20 30 40 50 60 70 80 90 100 110 120

absolute accuracy: An indication of the discrepancy between the A/D converted value of a given input
and the theoretical value. It is measured by the difference (positive or negative) between the theoretical
midpoint of a given digital output code and any analog input that will produce that code. Absolute error
comprises offset error, gain error, linearity error, and is generally expressed in terms of LSB. The absolute
error, denoted by “a”, is � 1 LSB.

differential linearity error: The difference between the actual step width and the ideal value. If the
differential linearity error is greater than 1 LSB, this can lead to missing codes in the A/D conversion
(nonmonotonicity). The absolute error, denoted by “b”, is � 1/2 LSB.

gain error: The difference between the actual midstep value and the nominal midstep value in the transfer
curve at the specified gain point after the offset error has been adjusted to zero. It refers to absolute accuracy.

offset error: The difference between the actual midstep value and the nominal midstep value at the offset
point. It refers to absolute accuracy.

quantization error: Quantization error is an inherent error in any A/D converter. It is the maximum
possible deviation of the actual analog input value from the nominal midstep value. The quantization error,
denoted by “c”, is � 1/2 LSB.

358

Appendix C

External A/D Converters

The following section provides some hints for using external components to perform A/D conversion. This
will be useful for low end applications using TMS370 without A/D but still needing A/D conversion, or
those applications that need more resolution than the on-chip A/D can provide.

For applications requiring high accuracy but slow conversion rate (in ms), one can use a dual slope A/D
converter like TL505C. The on-chip timer can be used to generate precise timing control signals and
measure the output timing (input capture function) to determine the input voltage.

Figure 25. Functional Block Diagram of TL505C Interface With TMS370

INTEG
RES

INTEG
IN

INTEG
IN

TL505C

ANALOG
IN

COMP
OUT

VIN

VCC

T1IC / CR

I / O

I / O

TMS370

9 VCXRX

1Y
7
4
0
7

2Y

1A

2A

359

Figure 26. Conversion Timing Diagram

VO(ofs)V1

V2
V3

A

B

INTEGRATOR
OUTPUT

COMPARATOR
OUTPUT

t0 t1 t2 t0

V1 = V2 – V3 = VI + VO (ofs)

CONTROL ANALOG

A B SWITCHES CLOSED

L L S1, S2

H H S3

L H S1, S4

VIN = – VREF
t2
t1

H = VIH , L = VIL

360

Instead of using commercial A/D converters, you can also build your own A/D. One of the simplest
implementations is to use a 10-bit D/A converter with a voltage comparator to determine the input voltage.
The TMS370 performs a binary search to determine the digital value of the input voltage (10 conversions
for 10-bit D/A converter).

Figure 27. Functional Block Diagram Using D/A Converter as A/D

UP/
DOWN

OUT1

OUT2

GND

BIT1 BIT10.

TLC7533
D / A CONVERTER

RFB

REF

DATA IN
CLK SHIFT REGISTER

COMPARATOR

DIGITAL
INPUT (D)

THRESHOLD = – VREF
D

1024

– VIN

VREF

SPISIMO
SPICLK

TMS370

I / O

361

Another way to implement an A/D is by using a voltage/frequency (V/F) converter. The frequency output
can be measured by the on-chip timer using the input capture function. The V/F converter can generate
frequency outputs up to 500 kHz. The on-chip timer can provide precise timing measurements for the
frequency output signal. For a clock frequency of 5 MHz, the timer clock period is 200 ns, the accuracy
of the A/D conversion will mainly depend on the V/F converter.

Figure 28. Functional Block Diagram Using V/F Converter as A / D

AD654
V / F
CONVERTER

T1IC / CRFOUT

Rt

TMS370

VCC

R

C

INPUT VIN

FOUT =
VIN

10RC

362

Appendix D: A /D Testing

The following section provides information about testing two A / D converter parameters, absolute
accuracy and differential linearity error.

Table 4. Test Conditions

SYSCLK 0.5 MHz and 5 MHz

VCC3 5.5 V

Vref 5.1 V

Sampling time 2 µs (SYSCLK = 5 MHz)
20 µs (SYSCLK = 0.5 MHz)

363

Figure 29. Block Diagram of Test Set-Up

8-BIT LATCH 8-BIT LATCH 8-BIT LATCH 8-BIT LATCH

T
E
S
T
E
R

50 kΩ
2 mΩ

510 kΩ5
0
k
Ω

VSS3 VSS3

50 kΩ

5
0
k
Ω

510 kΩ

2.2 mΩ

DUT
PIN
43

DUT
PIN
42

VSS3

–15 V1 16

19

21

22 20 18 17
23

DAC-HP16BMC

1 16

19

23

21

22201817

DAC-HP16BMC

Note: Pin 24 of DAC is left open; latches are connected to digital +5 V and GND.

Two 16-bit D/A converters are used to provide accurate reference voltage and an analog input signal.

At the theoretical midpoint of each code, 256 conversions are performed. If all 256 digital codes are
generated by these conversions, this guarantees that the A / D conversions are within one LSB absolute
accuracy.

The differential linearity error is measured by the code width or voltage range, of each individual code.
With Vref at 5.1V, 1/2 LSB corresponds to 10 mV. For � 1/2 LSB differential linearity error, the code width
of any individual code will need to be from 10 to 30 mV. Figure 30 illustrates code width measurement:

364

Figure 30. Code Width Measurement

x

x

x

x

80 MIN
MIN INPUT VOLTAGE

FOR CODE 80

7F MIN
MIN INPUT VOLTAGE

FOR CODE 7F

7E MAX
MAX INPUT VOLTAGE

FOR CODE 7E

7F MAX
MAX INPUT VOLTAGE

FOR CODE 7F

7E

7F

80

81

TO SATISFY THE � 1⁄2 LSB DIFFERENTIAL NONLINEARITY ERROR
7F MAX – 7F MIN > 10 mV
80 MIN – 7E < 30 mV

Conversions are performed with input incremented by steps of 2 mV starting from the midpoint of 7E. The
analog voltage 7Emax is the maximum possible value before any conversion that generates 7F.

Another set of conversions is performed with input decremented at a step of 2 mV starting from the
midpoint of 80. The analog voltage 80min is the minimum possible value before any conversion that
generates 7F.

In order to minimize the test time for the ADC1 modules, only 14 codes are tested for the differential
linearity error (see Figure 31). These 14 codes have the largest differential linearity errors. In the Module
Description Section (page 313), we explained that conversion is achieved by switching the capacitors one
at a time. The transition of these codes corresponds to switching the capacitor array to the next significant,
or weighted, capacitance stage. Figure 32 shows a typical A/D differential linearity characterization result.

365

Figure 31. Codes Having Maximum Differential Linearity Error

0000 0000 0000 0011

0000 0001 0000 0100

0000 0111 0000 1111

0000 1000 0001 0000

0001 1111 0000 1111

0010 0000 0100 0000

0111 1111

1000 0000

Figure 32. Differential Linearity Error

CONVERTED DIGITAL CODE

TMX37050
 TEMPERATURE= 25° C, FREQUENCY = 2MHz.

D
IS

TA
N

C
E

 F
R

O
M

 M
ID

 P
O

IN
T

 (
m

V
)

25

20

15

10

5

0

–5

–10

–15

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

366

Glossary

aliasing signal: The false lower frequency signal reconstructed from an analog input because of
insufficient sampling rate (see Nyquist Criterion).

conversion speed: Provides an indication of system sampling rate. It is usually expressed in conversions
per second.

code width or step width: The voltage corresponding to the difference between two adjacent code
transitions.

input leakage: Leakage current of an analog input pin.

monotonicity: The state of having at least one analog input voltage for every possible digital output code
(that is, no missing code) occurring in ascending or descending order.

Nyquist criterion: A criterion that requires using a sampling frequency which is greater than twice that
of the highest frequency to be sampled to recover the original signal without distortion.

ratiometric conversion: The output of an A/D conversion which is a digital number proportional to the
ratio of the input to a fixed or variable reference. In some applications where the measurement is affected
by the slow, varying changes of the reference voltage comparable to the conversion time, it is advantageous
to use that same reference as the reference for the conversion to eliminate the effect of variation.

resolution: The ability of the converter to distinguish between adjacent analog input levels. An 8-bit
converter is capable of distinguishing between input levels that differ by 1/256 of the full scale range.

sample-and-hold circuit: A circuit that accurately acquires and stores an analog voltage on a capacitor
for a certain period of time.

transducer: A device that converts input energy of one form into output energy of another, such as an
electrical signal.

367

References

Linear Applications Group, Linear Circuits Applications, LinCMOS Products: Op-Amps, Comparators
and Timers, Texas Instruments Technical Publishing, Dallas, Texas, 1987.

Linear Applications Handbook, Linear Technology Corporation, Milpitas, California, 1987.

Linear Products, TLC1540 LinCMOS 10-Bit Analog-to-Digital Converter, Texas Instruments Technical
Publishing, Dallas, Texas, 1986.

McCreary, James L, “All-MOS Charge Redistribution Analog-to-Digital Conversion Technique.” IEEE
Journal of Solid-State Circuits, 1975.

Pippenger, D.E., and Tobaben, E. J. Linear and Interface Circuits Applications, Texas Instruments
Technical Publishing, Dallas, Texas, 1986.

Sheingold, Daniel H, Transducer Interface Handbook, Analog Devices, Inc, Massachusetts, 1981.

The Handbook of Linear IC Applications, Burr-Brown Corporation, Tucson, Arizona, 1987.

T. I. Microcontroller Applications Group, TMS370 Family User’s Guide, Texas Instruments Technical
Publishing, Dallas, Texas, 1996.

T. I. Microcontroller Group, TMS370 Family Assembly Language Tools User’s Guide, Texas Instruments
Technical Publishing, Dallas, Texas, 1996.

T. I. Microcontroller Group, TMS370Cx5x 8-Bit Microcontrollers, Texas Instruments Technical
Publishing, Dallas, Texas, 1995.

368

369

Analog-to-Digital (A/D) Helpful Hints

Michael S. Stewart
Microcontroller Products — Semiconductor Group

Texas Instruments

370

371

Analog-to-Digital V cc and Vss Pins

The A/D module has been designed with separate power (VCC3) and ground (VSS3) reference pins. This
was done to allow a greater level of noise immunity for the A/D conversion requirements. When using the
A/D module, the VCC3 and VSS3 pins must be connected to an appropriate power source and current return
path. This must be done when using the XDS development system or an actual device. If these pins are not
connected and an A/D conversion is attempted, the results will vary and could include an invalid conversion
or A/D completion flag not being set.

Power Down Operation

It is recommended to complete any A/D conversion before entering a power down mode. If you are in the
middle of an A/D conversion and then enter a power down mode, the conversion will be completed after
the power down mode is exited, but the results of the conversion will be indeterminate. Also, it is not
necessary to disconnect the VCC3 and VSS3 pins when entering a power down mode.

A/D Reference Options

You may use up to one of eight A/D pins as the voltage reference (Vref) for the TMS370 A/D conversion.
These eight references include AN1 – AN7, and VCC3. There are three bits (REF VOLT SELECT0–2) in
the ADCTL register (P070.5–3) that control the A/D voltage reference selection. The design flexibility of
the TMS370 A/D module voltage reference selection allows various voltages or input signals to be used
as reference voltages for other analog input signals. See Chapter 11 of the TMS370 Family User’s Guide
for additional information.

A/D Source Impedence

The TMS370 A/D module incorporates a successive approximation design for the conversion circuitry. To
guarantee the internal circuitry is allowed to charge sufficiently, the specification tw(s) must be met. This
specification requires a minimum delay time from when the SAMPLE START (P070.6) bit is set until prior
to setting the CONVERSION START (P070.7) bit. The tw(s) specification requires 1 µS delay per kΩ of
source impedance of the analog input channel used in the conversion. This delay is needed to allow the
internal circuitry to charge sufficiently during the sample time before the conversion actually starts. Delay
times of less than those specified may result in inaccurate conversion results.

For example, if you had a signal connected to the AN0 pin that had a source impedance of 5 kΩ, you would
need to delay 5 µs between setting the SAMPLE START bit and setting the CONVERSION START BIT.
Assuming an internal system clock (SYSCLK) frequency of 5 MHz, (200 ns period) the tw(s) delay time
would be equivalent to 25 SYSCLK cycles. The formula required to determine the number of SYSCLK
cycles required for delay is:

SYSCLK Cycles = [Source impedance (kΩ) × 1 µs / kΩ] / SYSCLK period

Substituting for the above example we would get:

SYSCLK cycles = [5 kΩ × 1 µs / kΩ] /200 ns

= 5 µs / 200 ns

= 25

372

NOTE:
The TMS370 devices require the SAMPLE bit be set before the
CONVERSION bit. This requirement means that separate instructions are
required to set these two bits. The maximum SYSCLK frequency for the
TMS370 family is 5 MHz. The MOV #iop,Pd instruction format requires 10
SYSCLK cycles to complete. At 5 MHz SYSCLK these 10 cycles will take 2
µS to complete. Therefore if the source impedance of the A/D input pin
selected for conversion is 2 kΩ or less, then no additional delay.

Example : Typical A/D Input Selection and Conversion Process

The following code example will provide a template for initializing an A/D conversion. The following
conversion variables are initialized:

• Input channel used for conversion – AN5

• Voltage reference (Vref) – VCC3

• Source impedance of AN5 = 5 kΩ

• The result of the conversion will be polled (interrupt driven routines are similar)

• SYSCLK = 5 MHz

Code
ADCTL .EQU P070 ;A/D equates

ADSTAT .EQU P071

ADDATA .EQU P072

ADIN .EQU P07D

ADENA .EQU P07E

ADPRI .EQU P07F

AD_READY .DBIT 2,ADSTAT ;Bit definitions

AD_FLAG .DBIT 1,ADSTAT

.REG BUFFER ;Define a register

START MOV #0DFh,ADENA ;Make sure AN5 can be selected an analog
;input. All others may be digital inputs.

MOV #000h,ADSTAT ;Clear the AD INT FLAG and ENA bits.

MOV #000h,ADPRI ;Optional – Select level 1 ints (not used).

READY JBIT0 AD_READY,READY ;Wait until the converter is ready before
;starting the sample process.

MOV #10000101b,ADCTL ;Start sample, select V CC3 as VREF, and AN5
;as input channel.

;This instruction takes 10 SYSCLK cycles (2 µs). We still need to delay 3 µS
;more.

DELAY INV A ;Dummy write takes 8 SYSCLK cycles (1.6 µs)

INV A ;Dummy write takes 8 SYSCLK cycles (1.6 µs)

OR #040h,ADCTL ;Set CONVERSION START bit and keep
 ;SAMPLE BIT and previous init the same.

373

WAIT JBIT0 AD_FLAG,WAIT ;Wait on the AD INT FLAG bit to be set.

MOV ADDATA,A ;Read conversion data, store in BUFFER.

MOV A,BUFFER

374

375

Part III
Module Specific

Application Design Aids

Part III contains six sections:

 RESET Operations 99.

 SPI and SCI Modules 105.

 Timer and Watchdog Modules 199.

 Analog to Digital Modules 309.

 PACT Module 375.

 I/O Pins 439.

376

377

PACT Command Macros

Microcontroller Products—Semiconductor Group
Texas Instruments

378

379

PACT Command Macros

This application note contains macro definitions for all PACT commands and definitions. All the actions
desired in each of the commands/definitions must be passed in the macro as they are defined in the
following equates. All the actions are passed as one parameter in the macro. These actions are concatenated
by ’|’ to form one parameter. These actions can be defined in any order.

NOTE:
If an action, which is not a valid action for a particular command or
definition, is used in that command, incorrect assembly may occur without
flagging an error. If the user wants to use different action names, the equate
table must be modified.

Macro Definitions

;OUTPUT PINS
op1 .EQU 1
op2 .EQU 2
op3 .EQU 3
op4 .EQU 4
op5 .EQU 5
op6 .EQU 6
op7 .EQU 7
op8 .EQU 8
;
;ACTIONS VTD BRD OTD SCC CCC DEC
clr_pin .EQU 0 ; x x Default condition
clr_evt1 .EQU 0 ; x Default condition
nxt_def .EQU 1 ; x x x Next entry is a def
int_cmp .EQU 2 ; x x Interrupt on compare
int_evt1 .EQU 2 ; x Interrupt on event 1
int_trst .EQU 4 ; x x Interrupt on timer = 0
enable .EQU 8 ; x x x x Enable timer or pin
rst_def_tmr .EQU 10h ; x Reset def tmr on evt max
rst_def_ev2 .EQU 10h ; x Reset def tmr on evt 2
set_pin .EQU 20h ; x x Set output pin on =
set_evt1 .EQU 20h ; x Set output pin on evt1
step .EQU 40h ; x x x Go to half resolution
int_evt .EQU 80h ; x Interrupt on each event
int_max_evt .EQU 100h ; x Interrupt on max event
opp_act .EQU 200h ; x x Opp action on timer rst
int_evt2 .EQU 400h ; x Int on event 2
tx .EQU 800h ; x Use as tx baud rate
rx .EQU 1000h ; x Use as rx baud rate
vir_cap .EQU 2000h ; x Cap virt timer each evt
cap_def_ev1 .EQU 2000h ; x Cap def timer on event 1
def_cap .EQU 4000h ; x Cap def timer on evt max
cap_def_ev2 .EQU 4000h ; x Cap def timer on event 2
evt_plus1 .EQU 8000h ; x Action on event plus 1
;
;
;
;STANDARD COMPARE COMMAND
;stdcmp <compare value>,<pin>,<actions>,<register label>
;
;compare value: 16-bit timer compare value
;pin: Output pin selection. (D18–D20)
;possible actions: enable,set_pin,clr_pin,int_cmp,step,
; nxt_def,int_trst,opp_act
;register label: a symbol to be equated to the register containing the

380

; least significant byte of this command
;
STDCMP .MACRO cmpval,pin,actions,lab

.var b1,b2,b3,b4

.if ((pin.v<1)|(pin.v>8))&((actions.v&enable)=enable)
** ERROR, pin selection is illegal **

.endif

.if (actions.v&0FD90h)!=0
** ERROR, illegal action specified **

.endif

.asg cmpval.v&0FFh,b1.v

.asg (cmpval.v>>8)&0FFh,b2.v

.if (pin.v<1)|(pin.v>8)

.asg 1,pin.v

.endif

.asg pin.v–1,pin.v

.asg actions.v&63h|pin.v<<2,b3.v

.asg actions.v&0Ch|actions.v>>8&2h,b4.v

.byte b1.v,b2.v,b3.v,b4.v

.if lab.l!=0

.asg cmd_st–$+table+4,b1.v
:lab: .equ r:b1.v:

.endif

.ENDM
;
;CONDITIONAL COMPARE COMMAND
;CONCMP <event compare value>,<time compare value>,<pin>,<actions>,
;<register label>
;
;event compare value: 8-bit value compared to the event counter
;time compare value: 16-bit value compared to the reffered timer
;pin: Output pin (only pin 1–7 are valid)
;possible actions: nxt_def,int_cmp,set_pin,clr_pin,evt_plus1
;register label: a symbol to be equated to the register containing the
; least significant byte of this command
;
CONCMP .MACRO evcmpval,cmpval,pin,actions,lab

.var b1,b2,b3,b4

.if (cmpval.v=0)|(cmpval.v=1)
** ERROR, compare value must be greater than 1 **

.endif

.asg cmpval.v–2,cmpval.v

.if (pin.v>7)|(pin.v<0)
** ERROR, pin selection is illegal **

.endif

.if (actions.v&07FDCh)!=0
** ERROR, illegal action specified **

.endif

.if (evcmpval.v>255)|(evcmpval.v<0)
** ERROR, Event counter compare value out of range **

.endif

.asg cmpval.v&0FFh,b1.v

.asg (cmpval.v>>8)&0FFh,b2.v

.if pin.v=0

.asg 7,pin.v

.else

.asg pin.v–1,pin.v

.endif

.asg 80h|actions.v&23h|pin.v<<2|actions.v>>9&40h,b3.v

.asg evcmpval.v,b4.v

.byte b1.v,b2.v,b3.v,b4.v

.if lab.l!=0

.asg cmd_st–$+table+4,b1.v

381

:lab: .equ r:b1.v:
.endif
.ENDM

;
;DOUBLE EVENT COMMAND
;DEVCMP <event value 1>,<event value 2>,<output pin>,<actions>,
;<register label>
;
;event value 1: 8-bit value compared to the event counter
;event value 2: 8-bit value compared to the event counter
;pin: Output pin
;possible actions: nxt_def,int_evt1,set_pin,clr_pin,step,opp_act,int_evt2
; rst_def_ev2,cap_def_ev1,cap_def_ev2,enable,
;register label: a symbol to be equated to the register containing the
; least significant byte of this command
;
DEVCMP .MACRO e1cmpval,e2cmpval,pin,actions,lab

.var b1,b2,b3,b4

.if (e1cmpval.v>255)|(e1cmpval.v<0)
** ERROR, Event compare 1 value out of range **

.endif

.if (e2cmpval.v>255)|(e2cmpval.v<0)
** ERROR, Event compare 2 value out of range **

.endif

.asg e1cmpval.v,b1.v

.asg e2cmpval.v,b2.v

.if (pin.v<1)|(pin.v>8)

.asg 1,pin.v
** ERROR, pin selection is illegal **

.endif

.asg pin.v–1,pin.v

.if (actions.v&09984h)!=0
** ERROR, illegal action specified **

.endif

.asg actions.v&063h|pin.v<<2,b3.v

.asg actions.v&18h|actions.v>>8&66h|1,b4.v

.byte b1.v,b2.v,b3.v,b4.v

.if lab.l!=0

.asg cmd_st–$+table+4,b1.v
:lab: .equ r:b1.v:

.endif

.ENDM
;
;VIRTUAL TIMER DEFINITION
;virtmr <period>,<actions>,<initial timer value>,<register label>
;
;period: The period of the virtual timer, the maximum count plus 1
;possible actions: enable,int_trst
;initial timer value: 16-bit virtual timer initial value.
;register label: a symbol to be equated to the register containing the
; least significant byte of this definition
;
VIRTMR .MACRO period,actions,tmrval,lab

.var b1,b2,b3,b4

.if (period.v=0)|(period.v=1)
** Error, Max Timer value must be greater than 2 **

.endif

.if (actions.v&0FFF3h)!=0
** ERROR, illegal action specified **

.endif

.asg period.v–2,period.v

.asg tmrval.v&0FEh,b1.v

.asg (tmrval.v>>8)&0FFh,b2.v

382

.if ((period.v>>8)&0FFh) > 1Fh

.asg (period.v>>9)&70h|(period.v<<3)&80h|08h,b3.v

.if (period.v&0Fh)!=0
** ERROR, Max. Timer value truncated in last 4 bits **

.endif

.else

.asg (period.v<<3)&0F0h|(actions.v&0Ch)>>1,b3.v

.if period.v&01h!=0
** ERROR, Max. Timer value truncated in last bit **

.endif

.endif

.if tmrval.v&01h!=0
** ERROR, Timer value truncated in last bit **

.endif

.asg b3.v|actions.v&0Ch>>1,b3.v

.asg (period.v>>5)&0FFh,b4.v

.byte b1.v,b2.v,b3.v,b4.v

.if lab.l!=0

.asg cmd_st–$+table+4,b1.v
:lab: .equ r:b1.v:

.endif

.ENDM
;
;BAUD RATE TIMER DEFINITION
;BRTMR <maximum count>,<actions>,<initial timer value>,<register label>
;
;maximum count: number that determines the baud rate
;initial timer value: 16-bit virtual timer initial value
;possible actions: rx,tx
;register label: a symbol to be equated to the register containing the
; least significant byte of this definition
;
BRTMR .MACRO maxcount,actions,tmrval,lab

.var b1,b2,b3,b4

.if ((actions.v&0E7FFh)!=0)
** ERROR, illegal action specified **

.endif

.asg tmrval.v&0FEh,b1.v

.asg (tmrval.v>>8)&0FFh,b2.v

.if ((maxcount.v>>8)&0FFh) > 1Fh

.asg (maxcount.v>>9)&70h|(maxcount.v<<3)&80h|08h,b3.v

.if maxcount.v&0Fh!=0
** ERROR, Max. Timer value truncated in last 4 bits **

.endif

.else

.asg (maxcount.v<<3)&0F0h,b3.v

.if maxcount.v&01h!=0
** ERROR, Max. Timer value truncated in last bit **

.endif

.endif

.if tmrval.v&01h!=0
** ERROR, Timer value truncated in last bit **

.endif

.asg (maxcount.v>>5)&0FFh,b4.v

.asg b3.v|((actions.v&1800h)>>10)|1,b3.v

.byte b1.v,b2.v,b3.v,b4.v

.if lab.l!=0

.asg cmd_st–$+table+4,b1.v
:lab: .equ r:b1.v:

.endif

.ENDM
;
;OFFSET TIMER DEFINITION

383

;OFSTMR <max event count>,<actions>,<inital value>,<register label>
;
;max event count: The maximum value the event counter may reach before
;being reset.
;possible actions: step,int_max_evt,enable,rst_def_tmr,
; vir_cap,def_cap,int_evt
;initial value: 16-bit initial timer value
;register label: a symbol to be equated to the register containing the
; least significant byte of this definition
;
OFSTMR .MACRO maxcount,actions,tmrval,lab

.var b1,b2,b3,b4

.if (maxcount.v>255)|(maxcount.v<0)
** ERROR, Maximum event value out of range **

.endif

.if ((actions.v&09E27h)!=0)
** ERROR, illegal action specified **

.endif

.asg (tmrval.v&0FFh|1),b1.v

.asg (tmrval.v>>8)&0FFh,b2.v

.asg (actions.v&090h)|((actions.v&8)>>1)|(actions.v&40h)>>6,b3.v

.asg b3.v|((actions.v&100h)>>7)|((actions.v>>8)&60h),b3.v

.asg maxcount.v&0FFh,b4.v

.byte b1.v,b2.v,b3.v,b4.v

.if lab.l!=0

.asg cmd_st–$+table+4,b1.v
:lab: .equ r:b1.v:

.endif

.ENDM

384

385

PACT Module Sample Routines

J. L. Pettegola
Microcontroller Products—Semiconductor Group

Texas Instruments

386

387

Introduction

This report provides software routines to illustrate the basic functions and characteristics of PACT8 module
in the TMS370Cx36 8-bit microcontroller. Each example includes the source code and related timing
diagrams. All routines are based on a system clock of 200 ns.

For a complete description of the PACT8 module, refer to the TMS370Cx36 8-Bit Microcontroller data
sheet, literature number SPNS039, or the TMS370 Family User’s Guide, literature number SPNU127.

Register Equates

The following are register equates that are used for routines throughout this report:

PACTSCR EQU P040 ;setup control register

CDSTART EQU P041 ;CMD/DEF area start register

CDEND EQU P042 ;CMD/DEF area end register

BUFPTR EQU P043 ;buffer pointer register

DUMMY EQU P044 ;unused register

SCICTLP EQU P045 ;PACT SCI control register

RXBUFP EQU P046 ;PACT SCI receive data register

TXBUFP EQU P047 ;PACT SCI transmit data register

OPSTATE EQU P048 ;output pin 1 to 8 state register

CDFLAGS EQU P049 ;CMD/DEF entry flags register

CPCTL1 EQU P04A ;setup CP1,CP2 control register

CPCTL2 EQU P04B ;setup CP3,CP4 control register

CPCTL3 EQU P04C ;setup CP5,CP6 control register

CPPRE EQU P04D ;CP input control register

WDRST EQU P04E ;watchdog reset key control register

PACTPR EQU P04F ;global function control register

388

Using The Hardware Default Timer

Square Wave PWM On OP1

This routine shows how to generate a simple square wave on pulse width modulator (PWM) output OP1.

Figure 1. Square Wave

OP1 ...

T=26.5ms

PACT Global Initialization
• Set the watchdog (WD) time out in the global function control register (or disable it if no

watchdog is required).

• Define the number command and definitions required to generate the PWM as well as the related
number of time slots. Then the minimum divide rate for the prescaled clock can be derived.

• Set and reset the PWM output. No timer definition is required for the default timer, so only two
standard compares will be needed.

• Since there are no captures, no capture register or circular buffer is required.

• Define the size of the command and definition area and set the start and end address in the dual
port RAM.

1 TS NEEDED, FREQUENCY MAX => SYSCLK / 2 (2 TS AVAILABLE)

PRESCALER VALUE = 00H, FAST MODE

BUFFER NOT USED (MIN), NO CAPTURE => MODE A

START ADDRESS = 01EFH

2 CMD / DEF NEEDED (2 STD COMPARE) => END ADDRESS = 01E8H

PACT RESOLUTION = SYSCLK x 2 = 400nS

OP1 OUTPUT PERIOD = COMPARE VALUE x 2 x RESOLUTION = 26.2 mS

389

Command/Definition (CMD/DEF) Initialization

CMD/DEF 1: STANDARD COMPARE COMMAND ON DEFAULT TIMER (1 time slot or TS)

COMPARE VALUE = 10000H/2 = 8000H => DUTY CYCLE 50%

SET OP1 ON COMPARE = 8000H

ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved
ÁÁÁ
ÁÁÁ

EN
ÁÁ
ÁÁ

IR
ÁÁÁ
ÁÁÁ

RA
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

ST
ÁÁÁ
ÁÁÁ

CA
ÁÁÁ
ÁÁÁ

Pin
Select
ÁÁÁ
ÁÁÁ

IC
ÁÁÁ
ÁÁÁ

NX
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare Value

ÁÁ
ÁÁ

0
ÁÁ
ÁÁ

0
ÁÁ
ÁÁ

0
ÁÁ
ÁÁ

0
ÁÁÁ
ÁÁÁ

1
ÁÁ
ÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

1
ÁÁ
ÁÁ

0
Á
Á

0
ÁÁ
ÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁÁÁ
ÁÁÁÁÁ

8000hÁÁÁÁÁ
ÁÁÁÁÁ

D31.........D28 ÁÁÁ
ÁÁÁ

D27 ÁÁ
ÁÁ

D26ÁÁÁ
ÁÁÁ

D25ÁÁÁ
ÁÁÁ

D24ÁÁÁ
ÁÁÁ

D23ÁÁÁ
ÁÁÁ

D22ÁÁÁ
ÁÁÁ

D21 ÁÁÁ
ÁÁÁ

D20..D18ÁÁÁ
ÁÁÁ

D17ÁÁÁ
ÁÁÁ

D16ÁÁÁÁÁ
ÁÁÁÁÁ

D15....................D0

.WORD 00820H,08000H ;SET OP1 ON 08000h (DEFAULT TIMER)

CMD/DEF 2: STANDARD COMPARE COMMAND ON DEFAULT TIMER (1 TS)

COMPARE VALUE = 0000H

RESET OP1 ON COMPARE = 8000H
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved

ÁÁÁ
ÁÁÁ
ÁÁÁ

EN

ÁÁ
ÁÁ
ÁÁ

IR

ÁÁÁ
ÁÁÁ
ÁÁÁ

RA

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

ST

ÁÁÁ
ÁÁÁ
ÁÁÁ

CA

ÁÁÁ
ÁÁÁ
ÁÁÁ

Pin
Select

ÁÁÁ
ÁÁÁ
ÁÁÁ

IC

ÁÁÁ
ÁÁÁ
ÁÁÁ

NX

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare Value

ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁ
ÁÁ

0 Á
Á

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

8000h

ÁÁÁÁÁ
ÁÁÁÁÁ

D31.........D28 ÁÁÁ
ÁÁÁ

D27 ÁÁ
ÁÁ

D26ÁÁÁ
ÁÁÁ

D25ÁÁÁ
ÁÁÁ

D24ÁÁÁ
ÁÁÁ

D23ÁÁÁ
ÁÁÁ

D22ÁÁÁ
ÁÁÁ

D21 ÁÁÁ
ÁÁÁ

D20..D18ÁÁÁ
ÁÁÁ

D17ÁÁÁ
ÁÁÁ

D16ÁÁÁÁÁ
ÁÁÁÁÁ

D15....................D0

.WORD 00800H,08000H ;RESET OP1 ON 0000h (DEFAULT TIMER)

NOTES:

• By changing the PACT resolution, you can change the PWM period.

• By adding more standard compare commands, you may create more output PWM.

• By changing the compare value, you can change the PWM duty cycle.

390

Square Wave PWM Routine
 .TEXT 7000H

 .global deb

;**

; START END ADDRESS DEFINITION

;**

STARTAD .EQU 01EFH

PACTPRI .EQU p04F ; Global function control register

CDSTART .EQU p041 ; Command/definition area start register

CDEND .EQU p042 ; Command/definition area end register

PACTSCR .EQU p040 ; Setup control register

ENDAD .EQU 01E8H

;**

; INIT PACT PERIPHERAL FRAME

;**

 OR #003H,PACTPRI ;DISABLE WATCHDOG, MODE A

 MOV #(STARTAD-0100H-080H),CDSTART ;START AD, CMD/DEF INT DIS

 MOV #(ENDAD-0100H),CDEND ;END AD

 MOV #010H,PACTSCR ;SYSCLK DIVIDED BY 2 => RESOL=400NS AT
 ;20MHZ

;...

;**

; MAIN PGM

;**

MAIN

 OR #020H,PACTSCR ;ENABLE PACT CMD/DEF AREA

 JMP $;LOOP MAIN PGM

;**

; INIT PACT CMD/DEF AREA

;**

 .sect “CMDEF”,(ENDAD) ;CMD/DEF SECTION PROGRAM

 .WORD 0800H,0000H ;RESET OP1 ON 0000h (DEFAULT TIMER) ERO

 .WORD 0820H,8000H ;SET OP1 ON 08000h (DEFAULT TIMER) ERO

;...

391

PWM With Period and Duty Cycle Change

Figure 2. PWM With Period and Duty Cycle Change

O P 1

O P 2

O P 3

...

...

...

T=65.5 ms

T/4

PACT Peripheral Initialization

PACT RESOLUTION 1�S, PRESCALER VALUE = 05H, FAST MODE

BUFFER NOT USED (MIN), NO CAPTURE => MODE A

START ADDRESS = 01EFH, END ADDRESS = 0D8H (6 CMD/DEF NECESSARY)

OP1 OUTPUT PERIOD = 8000H x 2 x 1 �S = 65.5 mS , 50% DUTY CYCLE

OP2 OUTPUT PERIOD = 65.5 mS 25 % DUTY CYCLE , ZERO DELAY

OP3 OUTPUT PERIOD = 65.5 mS 50% DUTY CYCLE , QUARTER PHASE DELAY

PACT Command /Definition Initialization

CMD/DEF 1: STANDARD COMPARE COMMAND ON DEFAULT TIMER (1 TS)

COMPARE VALUE = 10000H/2 = 8000H => DUTY CYCLE 50%

RESET OP1 ON COMPARE, SET ON ZERO
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved

ÁÁÁ
ÁÁÁ
ÁÁÁ

EN

ÁÁ
ÁÁ
ÁÁ

IR

ÁÁÁ
ÁÁÁ
ÁÁÁ

RA

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

ST

ÁÁÁ
ÁÁÁ
ÁÁÁ

CA

ÁÁÁ
ÁÁÁ
ÁÁÁ

Pin
Select

ÁÁÁ
ÁÁÁ
ÁÁÁ

IC

ÁÁÁ
ÁÁÁ
ÁÁÁ

NX

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare Value

ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁ
ÁÁ

0 Á
Á

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

8000h

ÁÁÁÁÁ
ÁÁÁÁÁ

D31.........D28 ÁÁÁ
ÁÁÁ

D27 ÁÁ
ÁÁ

D26ÁÁÁ
ÁÁÁ

D25ÁÁÁ
ÁÁÁ

D24ÁÁÁ
ÁÁÁ

D23ÁÁÁ
ÁÁÁ

D22ÁÁÁ
ÁÁÁ

D21 ÁÁÁ
ÁÁÁ

D20..D18ÁÁÁ
ÁÁÁ

D17ÁÁÁ
ÁÁÁ

D16ÁÁÁÁÁ
ÁÁÁÁÁ

D15....................D0

.WORD 00A00H,08000H ;RESET OP1 ON 08000h (DEFAULT TIMER) , SET ON ZERO

CMD/DEF 2: STANDARD COMPARE COMMAND ON DEFAULT TIMER (1 TS)

COMPARE VALUE = 4000H => DUTY CYCLE 25%

RESET OP2 ON COMPARE, SET ON ZERO
ÁÁÁÁÁ
ÁÁÁÁÁReserved

ÁÁÁ
ÁÁÁEN

ÁÁ
ÁÁIR
ÁÁÁ
ÁÁÁRA

ÁÁÁ
ÁÁÁ0

ÁÁÁ
ÁÁÁ0

ÁÁÁ
ÁÁÁST

ÁÁÁ
ÁÁÁCA

ÁÁÁ
ÁÁÁ

Pin
Select

ÁÁÁ
ÁÁÁIC

ÁÁÁ
ÁÁÁNX

ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare ValueÁÁ

ÁÁ0
ÁÁ
ÁÁ0
ÁÁ
ÁÁ0
ÁÁ
ÁÁ0

ÁÁÁ
ÁÁÁ1

ÁÁ
ÁÁ0
ÁÁÁ
ÁÁÁ1
ÁÁÁ
ÁÁÁ0

ÁÁÁ
ÁÁÁ0

ÁÁÁ
ÁÁÁ0

ÁÁÁ
ÁÁÁ0

ÁÁ
ÁÁ0

Á
Á0
ÁÁ
ÁÁ1
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0

ÁÁÁÁÁ
ÁÁÁÁÁ4000hÁÁÁÁÁ

ÁÁÁÁÁD31.........D28
ÁÁÁ
ÁÁÁD27
ÁÁ
ÁÁD26
ÁÁÁ
ÁÁÁD25
ÁÁÁ
ÁÁÁD24
ÁÁÁ
ÁÁÁD23
ÁÁÁ
ÁÁÁD22
ÁÁÁ
ÁÁÁD21
ÁÁÁ
ÁÁÁD20..D18
ÁÁÁ
ÁÁÁD17
ÁÁÁ
ÁÁÁD16
ÁÁÁÁÁ
ÁÁÁÁÁD15....................D0

.WORD 00A04H,04000H ;RESET OP2 ON 04000h (DEFAULT TIMER) , SET ON ZERO

392

CMD/DEF 3: STANDARD COMPARE COMMAND ON DEFAULT TIMER (1 TS)

COMPARE VALUE = 04000H ; DUTY CYCLE 50%

SET OP3 ON COMPARE.
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved

ÁÁÁ
ÁÁÁ
ÁÁÁ

EN

ÁÁ
ÁÁ
ÁÁ

IR

ÁÁÁ
ÁÁÁ
ÁÁÁ

RA

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

ST

ÁÁÁ
ÁÁÁ
ÁÁÁ

CA

ÁÁÁ
ÁÁÁ
ÁÁÁ

Pin
Select

ÁÁÁ
ÁÁÁ
ÁÁÁ

IC

ÁÁÁ
ÁÁÁ
ÁÁÁ

NX

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare Value

ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0 Á
Á

1ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

4000h

ÁÁÁÁÁD31.........D28 ÁÁÁD27 ÁÁD26ÁÁÁD25ÁÁÁD24ÁÁÁD23ÁÁÁD22ÁÁÁD21 ÁÁÁD20..D18ÁÁÁD17ÁÁÁD16ÁÁÁÁÁD15....................D0

 .WORD 00828H,04000H ;SET OP3 ON 04000h (DEFAULT TIMER)

CMD/DEF 4: STANDARD COMPARE COMMAND ON DEFAULT TIMER (1 TS)

COMPARE VALUE = 0C000H ; DUTY CYCLE 50%

RESET OP3 ON COMPARE

ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved ÁÁÁ
ÁÁÁ

EN ÁÁ
ÁÁ

IRÁÁÁ
ÁÁÁ

RAÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

ST ÁÁÁ
ÁÁÁ

CA ÁÁÁ
ÁÁÁ

Pin
SelectÁÁÁ
ÁÁÁ

ICÁÁÁ
ÁÁÁ

NX ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare Value

ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁ
ÁÁ

0 Á
Á

1ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

C000h

ÁÁÁÁÁ
ÁÁÁÁÁ

D31.........D28 ÁÁÁ
ÁÁÁ

D27 ÁÁ
ÁÁ

D26ÁÁÁ
ÁÁÁ

D25ÁÁÁ
ÁÁÁ

D24ÁÁÁ
ÁÁÁ

D23ÁÁÁ
ÁÁÁ

D22ÁÁÁ
ÁÁÁ

D21 ÁÁÁ
ÁÁÁ

D20..D18ÁÁÁ
ÁÁÁ

D17ÁÁÁ
ÁÁÁ

D16ÁÁÁÁÁ
ÁÁÁÁÁ

D15....................D0

 .WORD 00808H,0C000H ;RESET OP3 ON 0C000h (DEFAULT TIMER)

393

Square Wave PWM Routine With Period and Duty Cycle Change

 .TEXT 7000H

 .GLOBAL deb

;**

; START END ADDRESS DEFINITION

;**

STARTAD .EQU 01EFH

PACTPRI .EQU p04F ; Global function control register

CDSTART .EQU p041 ; Command/definition area start register

CDEND .EQU p042 ; Command/definition area end register

PACTSCR .EQU p040 ; Setup control register

ENDAD .EQU 01D8H

;**

; INIT PACT PERIPHERAL FRAME

;**

DEBUT

;...

 OR #003H,PACTPRI ;DISABLE WATCHDOG, MODE A

 MOV #(STARTAD-0100H-080H),CDSTART ;START AD, CMD/DEF INT DIS

 MOV #(ENDAD-0100H),CDEND ;END AD

 MOV #014H,PACTSCR ;SYSCLK DIVIDED BY 5 =>
 ;RESOL=1 µS AT 20MHz

;...

;**

; MAIN PGM

;**

MAIN

 OR #020H,PACTSCR ;ENABLE PACT CMD/DEF AREA

 JMP $;LOOP MAIN PGM

;**

; INIT PACT CMD/DEF AREA

;**

 .sect “CMDEF”,(ENDAD) ;CMD/DEF SECTION PROGRAM

 .WORD 00808H,0C000H ;RESET OP3 ON 0C000h (DEFAULT TIMER) ERO

 .WORD 00828H,04000H ;SET OP3 ON 04000h (DEFAULT TIMER) ERO

 .WORD 00a04H,04000H ;RST OP2 ON 04000h (DEFAULT TIMER),SET ON 00h

 .WORD 00a00H,08000H ;RST OP1 ON 08000h (DEFAULT TIMER),SET ON 00h

...

394

Virtual Timer PWM

The standard way to create a PWM is to use a virtual timer definition associated with a standard compare
command. The programmer can add any number of virtual timers for an application and is only limited by
the number of time slots allowed for the application PACT resolution. This section shows some examples
using the virtual timer.

Pulse Width Modulation Example 1

Figure 3. PWM

O P 1

O P 2

resol=800 ms

T=1.6 �s

PACT Peripheral Initialization

APPLICATION RESOLUTION MAX = 800 ns => SYSCLK / 4 (9 TS AVAILABLE)

PRESCALER VALUE = 03H, FAST MODE

BUFFER NOT USED , NO CAPTURE => MODE A

START ADDRESS = 01EFH

7 CMD/DEF NEEDED: 2 x (1 VIRTUAL TIMER + 2 STD COMPARE) => END ADDRESS = 01D4H

PACT Command /Definition Initialization

CMD/DEF 1:DUMMY STANDARD COMPARE COMMAND ON DEFAULT TIMER (1 TS)

USE ONLY TO IDENTIFY NEXT COMMAND AS A TIMER DEFINITION

ÁÁÁÁÁ
ÁÁÁÁÁReserved

ÁÁÁ
ÁÁÁEN
ÁÁ
ÁÁIR
ÁÁÁ
ÁÁÁRA
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁST
ÁÁÁ
ÁÁÁCA
ÁÁÁ
ÁÁÁ

Pin
Select
ÁÁÁ
ÁÁÁIC
ÁÁÁ
ÁÁÁNX
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare ValueÁÁ

ÁÁ0
ÁÁ
ÁÁ0
ÁÁ
ÁÁ0
ÁÁ
ÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁ
ÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁ
ÁÁ0
Á
Á0
ÁÁ
ÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ1
ÁÁÁÁÁ
ÁÁÁÁÁ0000hÁÁÁÁÁ

ÁÁÁÁÁ
D31.........D28

ÁÁÁ
ÁÁÁ

D27
ÁÁ
ÁÁ

D26
ÁÁÁ
ÁÁÁ

D25
ÁÁÁ
ÁÁÁ

D24
ÁÁÁ
ÁÁÁ

D23
ÁÁÁ
ÁÁÁ

D22
ÁÁÁ
ÁÁÁ

D21
ÁÁÁ
ÁÁÁ

D20..D18
ÁÁÁ
ÁÁÁ

D17
ÁÁÁ
ÁÁÁ

D16
ÁÁÁÁÁ
ÁÁÁÁÁ

D15....................D0

.WORD 00001H,00000H ;NEXT IS A TIMER DEFINITION

CMD/DEF 2: VIRTUAL TIMER 1 DEFINITION (2 TS)

MAX VALUE = 0000H -> INCREMENTED EACH RESOLUTION
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Maximum Virtual Timer Value ÁÁÁ
ÁÁÁ

RNÁÁÁÁ
ÁÁÁÁ

EN ÁÁÁ
ÁÁÁ

INT ÁÁÁ
ÁÁÁ

0 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Virtual Timer value ÁÁÁ
ÁÁÁ

0

ÁÁÁÁÁÁÁÁÁÁÁ000 ÁÁÁ0ÁÁÁÁ1 ÁÁÁ0 ÁÁÁ“0” ÁÁÁÁÁÁÁ0000 ÁÁÁ“0”ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

D31..................................D23
ÁÁÁÁÁ
ÁÁÁÁÁ

D22...........D20
ÁÁÁ
ÁÁÁ

D19
ÁÁÁÁ
ÁÁÁÁ

D18
ÁÁÁ
ÁÁÁ

D17
ÁÁÁ
ÁÁÁ

D16
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

D15..................................D1
ÁÁÁ
ÁÁÁ

D0

.WORD 0004h,0000h ;VIRT1 MAX VALUE = 0000H

395

CMD/DEF 3: STANDARD COMPARE COMMAND ON VIRTUAL TIMER 1 (1 TS)

SET OP1 ON VIRTUAL TIMER 1 VALUE = 0000H
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved

ÁÁÁ
ÁÁÁ
ÁÁÁ

EN

ÁÁ
ÁÁ
ÁÁ

IR

ÁÁÁ
ÁÁÁ
ÁÁÁ

RA

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

ST

ÁÁÁ
ÁÁÁ
ÁÁÁ

CA

ÁÁÁ
ÁÁÁ
ÁÁÁ

Pin
Select

ÁÁÁ
ÁÁÁ
ÁÁÁ

IC

ÁÁÁ
ÁÁÁ
ÁÁÁ

NX

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare Value

ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0 Á
Á

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0000h

ÁÁÁÁÁD31.........D28 ÁÁÁD27 ÁÁD26ÁÁÁD25ÁÁÁD24ÁÁÁD23ÁÁÁD22ÁÁÁD21 ÁÁÁD20..D18ÁÁÁD17ÁÁÁD16ÁÁÁÁÁD15....................D0

.WORD 0820h,0000h ;SET OP1 ON 0000H VIRT1

CMD/DEF 4: STANDARD COMPARE COMMAND ON VIRTUAL TIMER 1 (1 TS)

RESET OP1 ON VIRTUAL TIMER 1 VALUE = 0001H

NEXT IS A TIMER DEFINITION
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved

ÁÁÁ
ÁÁÁ
ÁÁÁ

EN

ÁÁ
ÁÁ
ÁÁ

IR

ÁÁÁ
ÁÁÁ
ÁÁÁ

RA

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

ST

ÁÁÁ
ÁÁÁ
ÁÁÁ

CA

ÁÁÁ
ÁÁÁ
ÁÁÁ

Pin
Select

ÁÁÁ
ÁÁÁ
ÁÁÁ

IC

ÁÁÁ
ÁÁÁ
ÁÁÁ

NX

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare Value

ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁ
ÁÁ

0 Á
Á

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

0001h

ÁÁÁÁÁD31.........D28 ÁÁÁD27 ÁÁD26ÁÁÁD25ÁÁÁD24ÁÁÁD23ÁÁÁD22ÁÁÁD21 ÁÁÁD20..D18ÁÁÁD17ÁÁÁD16ÁÁÁÁÁD15....................D0

.WORD 0801h,0001h ;RST OP1 ON 0001H VIRT1 + NEXT DEF

CMD/DEF 5: VIRTUAL TIMER 2 DEFINITION (2 TS)

MAX VALUE = 0001H -> INCREMENTED EACH 2 RESOLUTIONS

ÁÁÁÁÁÁÁÁÁÁÁMaximum Virtual Timer Value ÁÁÁRNÁÁÁÁEN ÁÁÁINT ÁÁÁ“0” ÁÁÁÁÁÁÁVirtual Timer value ÁÁÁ“0”ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

001
ÁÁÁ
ÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

“0”
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0000
ÁÁÁ
ÁÁÁ

“0”
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

D31................................D23ÁÁÁÁÁ
ÁÁÁÁÁ

D22...........D20ÁÁÁ
ÁÁÁ

D19ÁÁÁÁ
ÁÁÁÁ

D18 ÁÁÁ
ÁÁÁ

D17 ÁÁÁ
ÁÁÁ

D16ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

D15..................................D1ÁÁÁ
ÁÁÁ

D0

.WORD 0014h,0000h ;VIRT2 MAX VALUE = 0004H

CMD/DEF 6: STANDARD COMPARE COMMAND ON VIRTUAL TIMER 1 (1 TS)

SET OP2 ON VIRTUAL TIMER 1 VALUE = 0000H
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved

ÁÁÁ
ÁÁÁ
ÁÁÁ

EN

ÁÁ
ÁÁ
ÁÁ

IR

ÁÁÁ
ÁÁÁ
ÁÁÁ

RA

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

ST

ÁÁÁ
ÁÁÁ
ÁÁÁ

CA

ÁÁÁ
ÁÁÁ
ÁÁÁ

Pin
Select

ÁÁÁ
ÁÁÁ
ÁÁÁ

IC

ÁÁÁ
ÁÁÁ
ÁÁÁ

NX

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare Value

ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0 Á
Á

0ÁÁ
ÁÁ

1ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0000h

ÁÁÁÁÁD31.........D28 ÁÁÁD27 ÁÁD26ÁÁÁD25ÁÁÁD24ÁÁÁD23ÁÁÁD22ÁÁÁD21 ÁÁÁD20..D18ÁÁÁD17ÁÁÁD16ÁÁÁÁÁD15....................D0

.WORD 0824h,0000h ;SET OP2 ON 0000H VIRT2

CMD/DEF 7: STANDARD COMPARE COMMAND ON VIRTUAL TIMER 1 (1 TS)

RESET OP2 ON VIRTUAL TIMER 1 VALUE = 0002H

ÁÁÁÁÁ
ÁÁÁÁÁReserved

ÁÁÁ
ÁÁÁEN
ÁÁ
ÁÁIR
ÁÁÁ
ÁÁÁRA
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁST
ÁÁÁ
ÁÁÁCA
ÁÁÁ
ÁÁÁ

Pin
Select
ÁÁÁ
ÁÁÁIC
ÁÁÁ
ÁÁÁNX
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare ValueÁÁ

ÁÁ0
ÁÁ
ÁÁ0
ÁÁ
ÁÁ0
ÁÁ
ÁÁ0
ÁÁÁ
ÁÁÁ1
ÁÁ
ÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁ
ÁÁ0
Á
Á0
ÁÁ
ÁÁ1
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁÁÁ
ÁÁÁÁÁ0002hÁÁÁÁÁ

ÁÁÁÁÁ
D31.........D28

ÁÁÁ
ÁÁÁ

D27
ÁÁ
ÁÁ

D26
ÁÁÁ
ÁÁÁ

D25
ÁÁÁ
ÁÁÁ

D24
ÁÁÁ
ÁÁÁ

D23
ÁÁÁ
ÁÁÁ

D22
ÁÁÁ
ÁÁÁ

D21
ÁÁÁ
ÁÁÁ

D20..D18
ÁÁÁ
ÁÁÁ

D17
ÁÁÁ
ÁÁÁ

D16
ÁÁÁÁÁ
ÁÁÁÁÁ

D15....................D0

.WORD 0804h,0002h ;RST OP2 ON 0002H VIRT2

396

Figure 4. Timing Diagram

PACT RESOLUTION

CMD/DEF SCAN

DEFAULT TIMER

VIRTUAL TIMER 1

OP2

OP1

VIRTUAL TIMER 2

800nS

NOTES:
This example shows the maximum speed resolution in normal mode. By changing the timer max value you
can modify the PWM period. By changing the compare values you can modify the duty cycle. It is possible
to increase the speed resolution by using the step mode.

397

Virtual Timer PWM Routine
 .TEXT 7000H

 .GLOBAL deb

;**

; START END ADDRESS DEFINITION

;**

STARTAD .EQU 01EFH

PACTPRI .EQU p04F ; Global function control register

CDSTART .EQU p041 ; Command/definition area start register

CDEND .EQU p042 ; Command/definition area end register

PACTSCR .EQU p040 ; Setup control register

ENDAD .EQU 01D4H

;**

; INIT PACT PERIPHERAL FRAME

;**

DEBUT

 OR #003H,PACTPRI ;DISABLE WATCHDOG, MODE A

 MOV #(STARTAD-0100H-080H),CDSTART ;START AD, CMD/DEF INT DIS

 MOV #(ENDAD-0100H),CDEND ;END AD

 MOV #013H,PACTSCR ;SYSCLK DIVIDED BY 4 =>
 ;RESOL=800nS AT 20MHz
;**

; MAIN PGM

;**

MAIN

 OR #020H,PACTSCR ;ENABLE PACT CMD/DEF AREA

 JMP $;LOOP MAIN PGM

;**

; INIT PACT CMD/DEF AREA

;**

 .sect “CMDEF”,(ENDAD) ;CMD/DEF SECTION PROGRAM

 .WORD 0804h,0002h ;RST OP2 ON 0002H VIRT2

 .WORD 0824h,0000h ;SET OP2 ON 0000H VIRT2

 .WORD 0014h,0000h ;VIRT2 MAX VALUE = 0004H

 .WORD 0801h,0001h ;RST OP1 ON 0001H VIRT1 + NEXT DEF

 .WORD 0820h,0000h ;SET OP1 ON 0000H VIRT1

 .WORD 0004h,0000h ;VIRT1 MAX VALUE = 0002H

 .WORD 0001h,0000h ;NEXT IS A DEF

398

Pulse Width Modulation Example 2
This example show how to combine compare commands and the virtual timer.

Figure 5. PWM

T1

T2

T1 T1 T1

T3

T3 T4

T2

T1

T4

OP1

O P 2

T1 = 1�s, T2 = 2�s, T3 = 4�s, T4 = 4�s

PACT Configuration

PACT RESOLUTION = T1 = 1mS => SYSCLK / 5 -> 12 TS AVAILABLE

CMD/DEF CONFIG: 1 NEXTDEF, 1 VIRT TIMER, 8 STANDARD COMPARE => 11 TS NEEDED

BUFFER NOT USED (MIN), NO CAPTURE => MODE A => START ADDRESS = 01EFh

10 CMD/DEF => END ADDRESS = START ADDRESS - (4 x NB CMD/DEF) + 1 = 01C8h

SEQUENCE PERIOD = T1+T2+3xT1+T2+T4 = 12mS => VIRT MAX VALUE = PERIOD-2 = 000Ah

PACT Command/Definition Initialization

CMD/DEF 1: DUMMY STANDARD COMPARE COMMAND ON DEFAULT TIMER (1 TS)

USE ONLY TO IDENTIFY NEXT ENTRY AS A TIMER DEFINITION

NO ACTION

ÁÁÁÁÁ
ÁÁÁÁÁReserved

ÁÁÁ
ÁÁÁEN
ÁÁ
ÁÁIR
ÁÁÁ
ÁÁÁRA
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁST
ÁÁÁ
ÁÁÁCA
ÁÁÁ
ÁÁÁ

Pin
Select
ÁÁÁ
ÁÁÁIC
ÁÁÁ
ÁÁÁNX
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare ValueÁÁ

ÁÁ0
ÁÁ
ÁÁ0
ÁÁ
ÁÁ0
ÁÁ
ÁÁ0

ÁÁÁ
ÁÁÁ0

ÁÁ
ÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0

ÁÁÁ
ÁÁÁ0

ÁÁÁ
ÁÁÁ0

ÁÁÁ
ÁÁÁ0

ÁÁ
ÁÁ0

Á
Á0
ÁÁ
ÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ1

ÁÁÁÁÁ
ÁÁÁÁÁ0000hÁÁÁÁÁ

ÁÁÁÁÁ
D31.........D28

ÁÁÁ
ÁÁÁ

D27
ÁÁ
ÁÁ

D26
ÁÁÁ
ÁÁÁ

D25
ÁÁÁ
ÁÁÁ

D24
ÁÁÁ
ÁÁÁ

D23
ÁÁÁ
ÁÁÁ

D22
ÁÁÁ
ÁÁÁ

D21
ÁÁÁ
ÁÁÁ

D20..D18
ÁÁÁ
ÁÁÁ

D17
ÁÁÁ
ÁÁÁ

D16
ÁÁÁÁÁ
ÁÁÁÁÁ

D15....................D0

.WORD 00001H,0000H ;NEXT IS A TIMER DEFINITION

CMD/DEF 2: VIRTUAL TIMER DEFINITION (2 TS)

MAX VALUE = 000AH

ENABLE TIMER

ÁÁÁÁÁÁÁÁÁÁÁMaximum Virtual Timer Value ÁÁÁRNÁÁÁÁEN ÁÁÁINT ÁÁÁ0 ÁÁÁÁÁÁÁVirtual Timer value ÁÁÁ0ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

005

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

“0”

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0000

ÁÁÁ
ÁÁÁ
ÁÁÁ

“0”

ÁÁÁÁÁÁÁD31..................................D23ÁÁÁÁÁD22...........D20ÁÁÁD19ÁÁÁÁD18 ÁÁÁD17 ÁÁÁD16ÁÁÁÁÁÁÁD15..................................D1ÁÁÁD0

.WORD 00054H,0000H ;MAX VALUE = 000Ah, D19 = 0

399

CMD/DEF 3: STANDARD COMPARE COMMAND ON VIRTUAL TIMER (1 TS)

SET OP2 ON COMPARE VALUE = 0001HÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved

ÁÁÁ
ÁÁÁ
ÁÁÁ

EN

ÁÁ
ÁÁ
ÁÁ

IR

ÁÁÁ
ÁÁÁ
ÁÁÁ

RA

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

ST

ÁÁÁ
ÁÁÁ
ÁÁÁ

CA

ÁÁÁ
ÁÁÁ
ÁÁÁ

Pin
Select

ÁÁÁ
ÁÁÁ
ÁÁÁ

IC

ÁÁÁ
ÁÁÁ
ÁÁÁ

NX

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare Value

ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0 Á
Á

0ÁÁ
ÁÁ

1ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0001h

ÁÁÁÁÁ
ÁÁÁÁÁ

D31.........D28 ÁÁÁ
ÁÁÁ

D27 ÁÁ
ÁÁ

D26ÁÁÁ
ÁÁÁ

D25ÁÁÁ
ÁÁÁ

D24ÁÁÁ
ÁÁÁ

D23ÁÁÁ
ÁÁÁ

D22ÁÁÁ
ÁÁÁ

D21 ÁÁÁ
ÁÁÁ

D20..D18ÁÁÁ
ÁÁÁ

D17ÁÁÁ
ÁÁÁ

D16ÁÁÁÁÁ
ÁÁÁÁÁ

D15....................D0

.WORD 00824H,0001H ;SET OP2; FIRST OP2 RISING EDGE,ON COMPARE VALUE = 0001H

CMD/DEF 4: STANDARD COMPARE COMMAND ON VIRTUAL TIMER (1 TS)

SET OP1 ON COMPARE VALUE = 0002HÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved

ÁÁÁ
ÁÁÁ
ÁÁÁ

EN

ÁÁ
ÁÁ
ÁÁ

IR

ÁÁÁ
ÁÁÁ
ÁÁÁ

RA

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

ST

ÁÁÁ
ÁÁÁ
ÁÁÁ

CA

ÁÁÁ
ÁÁÁ
ÁÁÁ

Pin
Select

ÁÁÁ
ÁÁÁ
ÁÁÁ

IC

ÁÁÁ
ÁÁÁ
ÁÁÁ

NX

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare Value

ÁÁ
ÁÁ

0
ÁÁ
ÁÁ

0
ÁÁ
ÁÁ

0
ÁÁ
ÁÁ

0
ÁÁÁ
ÁÁÁ

1
ÁÁ
ÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

1
ÁÁ
ÁÁ

0
Á
Á

0
ÁÁ
ÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁÁÁ
ÁÁÁÁÁ

0002h

ÁÁÁÁÁ
ÁÁÁÁÁ

D31.........D28 ÁÁÁ
ÁÁÁ

D27 ÁÁ
ÁÁ

D26ÁÁÁ
ÁÁÁ

D25ÁÁÁ
ÁÁÁ

D24ÁÁÁ
ÁÁÁ

D23ÁÁÁ
ÁÁÁ

D22ÁÁÁ
ÁÁÁ

D21 ÁÁÁ
ÁÁÁ

D20..D18ÁÁÁ
ÁÁÁ

D17ÁÁÁ
ÁÁÁ

D16ÁÁÁÁÁ
ÁÁÁÁÁ

D15....................D0

.WORD 00820H,0002H ;SET OP1; FIRST OP1 RISING EDGE,ON COMPARE VALUE = 0002H

CMD/DEF 5: STANDARD COMPARE COMMAND ON VIRTUAL TIMER (1 TS)

RESET OP1 ON COMPARE VALUE = 0004HÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved

ÁÁÁ
ÁÁÁ
ÁÁÁ

EN

ÁÁ
ÁÁ
ÁÁ

IR

ÁÁÁ
ÁÁÁ
ÁÁÁ

RA

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

ST

ÁÁÁ
ÁÁÁ
ÁÁÁ

CA

ÁÁÁ
ÁÁÁ
ÁÁÁ

Pin
Select

ÁÁÁ
ÁÁÁ
ÁÁÁ

IC

ÁÁÁ
ÁÁÁ
ÁÁÁ

NX

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare Value

ÁÁ
ÁÁ

0
ÁÁ
ÁÁ

0
ÁÁ
ÁÁ

0
ÁÁ
ÁÁ

0
ÁÁÁ
ÁÁÁ

1
ÁÁ
ÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁ
ÁÁ

0
Á
Á

0
ÁÁ
ÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁÁÁ
ÁÁÁÁÁ

0004h
ÁÁÁÁÁ
ÁÁÁÁÁ

D31.........D28 ÁÁÁ
ÁÁÁ

D27 ÁÁ
ÁÁ

D26ÁÁÁ
ÁÁÁ

D25ÁÁÁ
ÁÁÁ

D24ÁÁÁ
ÁÁÁ

D23ÁÁÁ
ÁÁÁ

D22ÁÁÁ
ÁÁÁ

D21 ÁÁÁ
ÁÁÁ

D20..D18ÁÁÁ
ÁÁÁ

D17ÁÁÁ
ÁÁÁ

D16ÁÁÁÁÁ
ÁÁÁÁÁ

D15....................D0

.WORD 00800H,0004H;RESET OP1; FIRST OP1 FALLING EDGE, ON COMPARE VALUE =
0004H

CMD/DEF 6: STANDARD COMPARE COMMAND ON VIRTUAL TIMER (1 TS)

RESET OP2 ON COMPARE VALUE = 0005H
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved

ÁÁÁ
ÁÁÁ
ÁÁÁ

EN

ÁÁ
ÁÁ
ÁÁ

IR

ÁÁÁ
ÁÁÁ
ÁÁÁ

RA

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

ST

ÁÁÁ
ÁÁÁ
ÁÁÁ

CA

ÁÁÁ
ÁÁÁ
ÁÁÁ

Pin
Select

ÁÁÁ
ÁÁÁ
ÁÁÁ

IC

ÁÁÁ
ÁÁÁ
ÁÁÁ

NX

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare Value

ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁ
ÁÁ

0 Á
Á

0ÁÁ
ÁÁ

1ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0005h

ÁÁÁÁÁ
ÁÁÁÁÁ

D31.........D28 ÁÁÁ
ÁÁÁ

D27 ÁÁ
ÁÁ

D26ÁÁÁ
ÁÁÁ

D25ÁÁÁ
ÁÁÁ

D24ÁÁÁ
ÁÁÁ

D23ÁÁÁ
ÁÁÁ

D22ÁÁÁ
ÁÁÁ

D21 ÁÁÁ
ÁÁÁ

D20..D18ÁÁÁ
ÁÁÁ

D17ÁÁÁ
ÁÁÁ

D16ÁÁÁÁÁ
ÁÁÁÁÁ

D15....................D0

.WORD 00804H,0005H ;RESET OP2 ;FIRST OP2 FALLING EDGE, ON COMPARE VALUE =
 ;0005H

CMD/DEF 7: STANDARD COMPARE COMMAND ON VIRTUAL TIMER (1 TS)

SET OP1 ON COMPARE VALUE = 0006H

ÁÁÁÁÁ
ÁÁÁÁÁReserved

ÁÁÁ
ÁÁÁEN
ÁÁ
ÁÁIR
ÁÁÁ
ÁÁÁRA
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁST
ÁÁÁ
ÁÁÁCA
ÁÁÁ
ÁÁÁ

Pin
Select
ÁÁÁ
ÁÁÁIC
ÁÁÁ
ÁÁÁNX
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare ValueÁÁ

ÁÁ0
ÁÁ
ÁÁ0
ÁÁ
ÁÁ0
ÁÁ
ÁÁ0

ÁÁÁ
ÁÁÁ1

ÁÁ
ÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0

ÁÁÁ
ÁÁÁ0

ÁÁÁ
ÁÁÁ0

ÁÁÁ
ÁÁÁ1

ÁÁ
ÁÁ0

Á
Á0
ÁÁ
ÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0

ÁÁÁÁÁ
ÁÁÁÁÁ0006hÁÁÁÁÁ

ÁÁÁÁÁ
D31.........D28

ÁÁÁ
ÁÁÁ

D27
ÁÁ
ÁÁ

D26
ÁÁÁ
ÁÁÁ

D25
ÁÁÁ
ÁÁÁ

D24
ÁÁÁ
ÁÁÁ

D23
ÁÁÁ
ÁÁÁ

D22
ÁÁÁ
ÁÁÁ

D21
ÁÁÁ
ÁÁÁ

D20..D18
ÁÁÁ
ÁÁÁ

D17
ÁÁÁ
ÁÁÁ

D16
ÁÁÁÁÁ
ÁÁÁÁÁ

D15....................D0

.WORD 00820H,0006H;SET OP1; SECOND OP1 RISING EDGE, ON COMPARE VALUE = 0006H

400

CMD/DEF 8: STANDARD COMPARE COMMAND ON VIRTUAL TIMER (1 TS)

SET OP2 ON COMPARE VALUE = 0007H
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved

ÁÁÁ
ÁÁÁ
ÁÁÁ

EN

ÁÁ
ÁÁ
ÁÁ

IR

ÁÁÁ
ÁÁÁ
ÁÁÁ

RA

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

ST

ÁÁÁ
ÁÁÁ
ÁÁÁ

CA

ÁÁÁ
ÁÁÁ
ÁÁÁ

Pin
Select

ÁÁÁ
ÁÁÁ
ÁÁÁ

IC

ÁÁÁ
ÁÁÁ
ÁÁÁ

NX

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare Value

ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0 Á
Á

0ÁÁ
ÁÁ

1ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0007h

ÁÁÁÁÁD31.........D28 ÁÁÁD27 ÁÁD26ÁÁÁD25ÁÁÁD24ÁÁÁD23ÁÁÁD22ÁÁÁD21 ÁÁÁD20..D18ÁÁÁD17ÁÁÁD16ÁÁÁÁÁD15....................D0

.WORD 00824H,0007H;SET OP2; SECOND OP2 RISING EDGE, ON COMPARE VALUE = 0007H

CMD/DEF 9: STANDARD COMPARE COMMAND ON VIRTUAL TIMER (1 TS)

RESET OP2 ON COMPARE VALUE = 0009H

ÁÁÁÁÁ
ÁÁÁÁÁReserved

ÁÁÁ
ÁÁÁEN

ÁÁ
ÁÁIR
ÁÁÁ
ÁÁÁRA

ÁÁÁ
ÁÁÁ0

ÁÁÁ
ÁÁÁ0

ÁÁÁ
ÁÁÁST

ÁÁÁ
ÁÁÁCA

ÁÁÁ
ÁÁÁ

Pin
Select

ÁÁÁ
ÁÁÁIC

ÁÁÁ
ÁÁÁNX

ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare ValueÁÁ

ÁÁ0
ÁÁ
ÁÁ0
ÁÁ
ÁÁ0
ÁÁ
ÁÁ0

ÁÁÁ
ÁÁÁ1

ÁÁ
ÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0

ÁÁÁ
ÁÁÁ0

ÁÁÁ
ÁÁÁ0

ÁÁÁ
ÁÁÁ0

ÁÁ
ÁÁ0

Á
Á0
ÁÁ
ÁÁ1
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0

ÁÁÁÁÁ
ÁÁÁÁÁ0009hÁÁÁÁÁ

ÁÁÁÁÁ
D31.........D28

ÁÁÁ
ÁÁÁ

D27
ÁÁ
ÁÁ

D26
ÁÁÁ
ÁÁÁ

D25
ÁÁÁ
ÁÁÁ

D24
ÁÁÁ
ÁÁÁ

D23
ÁÁÁ
ÁÁÁ

D22
ÁÁÁ
ÁÁÁ

D21
ÁÁÁ
ÁÁÁ

D20..D18
ÁÁÁ
ÁÁÁ

D17
ÁÁÁ
ÁÁÁ

D16
ÁÁÁÁÁ
ÁÁÁÁÁ

D15....................D0

.WORD 00804H, 0009H ;RESET OP2 ;SECOND OP2 FALLING EDGE,ON COMPARE VALUE =
 ;0009H

CMD/DEF 10: STANDARD COMPARE COMMAND ON VIRTUAL TIMER (1 TS)

RESET OP1 ON COMPARE VALUE = 000AH
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved

ÁÁÁ
ÁÁÁ
ÁÁÁ

EN

ÁÁ
ÁÁ
ÁÁ

IR

ÁÁÁ
ÁÁÁ
ÁÁÁ

RA

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

ST

ÁÁÁ
ÁÁÁ
ÁÁÁ

CA

ÁÁÁ
ÁÁÁ
ÁÁÁ

Pin
Select

ÁÁÁ
ÁÁÁ
ÁÁÁ

IC

ÁÁÁ
ÁÁÁ
ÁÁÁ

NX

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare Value

ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁ
ÁÁ

0 Á
Á

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

000Ah

ÁÁÁÁÁ
ÁÁÁÁÁ

D31.........D28 ÁÁÁ
ÁÁÁ

D27 ÁÁ
ÁÁ

D26ÁÁÁ
ÁÁÁ

D25ÁÁÁ
ÁÁÁ

D24ÁÁÁ
ÁÁÁ

D23ÁÁÁ
ÁÁÁ

D22ÁÁÁ
ÁÁÁ

D21 ÁÁÁ
ÁÁÁ

D20..D18ÁÁÁ
ÁÁÁ

D17ÁÁÁ
ÁÁÁ

D16ÁÁÁÁÁ
ÁÁÁÁÁ

D15....................D0

.WORD 00800H,000AH ;RESET OP1 ;SECOND OP1 FALLING EDGE,ON COMPARE VALUE =
 ;000AH

401

Figure 6. PACT Timing Diagram

PACT RESOLUTION

CMD/DEF SCAN

DEFAULT TIMER

VIRTUAL TIMER

OP1

OP2

1�s

402

Pulse Width Modulation Routine #2

 .TEXT 7000H

 .global deb

;**

; START END ADDRESS DEFINITION

;**

STARTAD .EQU 01EFH

PACTPRI .EQU p04F ; Global function control register

CDSTART .EQU p041 ; Command/definition area start register

CDEND .EQU p042 ; Command/definition area end register

PACTSCR .EQU p040 ; Setup control register

ENDAD .EQU 01C8H

;**

; INIT PACT PERIPHERAL FRAME

;**

DEBUT

;...

 OR #003H,PACTPRI ;DISABLE WATCHDOG, MODE A

 MOV #(STARTAD-0100H-080H),CDSTART ;START AD, CMD/DEF INT DIS

 MOV #(ENDAD-0100H),CDEND ;END AD

 MOV #014H,PACTSCR ;SYSCLK DIVIDED BY 5 =>
 ;RESOL=1uS AT 20MHZ

;...

;**

; MAIN PGM

;**

MAIN

 OR #020H,PACTSCI ;ENABLE PACT CMD/DEF AREA

 JMP $;LOOP MAIN PGM

;**

; INIT PACT CMD/DEF AREA

;**

 .sect “CMDEF”,(ENDAD) ;CMD/DEF SECTION PROGRAM

 .WORD 00800H,000AH ;RESET OP1; SECOND OP1 FALLING EDGE,ON COMPARE
 ;VALUE = 000AH

 .WORD 00804H, 0009H ;RESET OP2; SECOND OP2 FALLING EDGE,ON COMPARE
 ;VALUE = 0009H

 .WORD 00824H,0007H ;SET OP2; SECOND OP2 RISING EDGE, ON COMPARE
 ;VALUE = 0007H

403

 .WORD 00820H,0006H ;SET OP1; SECOND OP1 RISING EDGE, ON COMPARE
 ;VALUE = 0006H

 .WORD 00804H,0005H ;RESET OP2; FIRST OP2 FALLING EDGE, ON COMPARE
 ;VALUE = 0005H

 .WORD 00800H,0004H ;RESET OP1; FIRST OP1 FALLING EDGE, ON COMPARE
 ;VALUE = 0004H

 .WORD 00820H,0002H ;SET OP1; FIRST OP1 RISING EDGE,ON COMPARE
 ;VALUE = 0002H

 .WORD 00824H,0001H ;SET OP2; FIRST OP2 RISING EDGE,ON COMPARE
 ;VALUE = 0001H

 .WORD 00054H,0000H ;MAX VALUE = 000Ah, D19 = 0

 .WORD 00001H,0000H ;NEXT IS A TIMER DEFINITION

;...

Synchronized Pulses On External Event

The PACT module provides the ability to synchronize output pulses on an external input event. On each
CP6 input pin event, an offset timer starts incrementing and continues until the next event. The programmer
can combine standard compare, conditional compare, and event compare commands to satisfy his
application requirements.

PWM Generation On Each Event

Figure 7. External Event, Event Delay, and Sync Pulses

T1

EXT EVENT

EVENT DELAY

SYNC PULSES

T1 = 1�S

To illustrate this example, we use OP2 as external event. So, it is necessary to connect OP2 and CP6
together.

NOTE: The term “event” refers to the actual external signal that causes a capture on CP1–CP6. The edge that causes
the interrupts associated with the CP1–CP6 pins are controlled in peripheral frame 4 through software.

PACT Configuration

PACT RESOLUTION = T1 = 1µS => SYSCLK / 5 -> 12 TS AVAILABLE

CMD/DEF CONFIG: 1 nextdef, 1 virt timer, 1 std compare, 1 offset timer, 2 std compare => 8 TS

404

BUFFER NOT USED (MIN), NO CAPTURE => MODE A => START ADDRESS = 01EFh

6 CMD/DEF => END ADDRESS = START ADDRESS - (4 x NB CMD/DEF) + 1 = 01D8h

MAX EVENT COUNTER VALUE = DON’T CARE (01h for example)

SET OP1 ON 0001h,RESET ON 0002h OF OFFSET TIMER

SET OP2 ON 0002h,RESET ON ZERO OF VIRTUAL TIMER

CONNECT OP2 TO CP6 TO GENERATE EXTERNAL EVENT

CP6 EVENT ONLY (NO CAPTURE). OFFSET TIMER RESET EACH EXTERNAL EVENT

PACT Command /Definition Initialization

CMD/DEF 1: DUMMY STANDARD COMPARE COMMAND ON DEFAULT TIMER (1 TS)

USE ONLY TO IDENTIFY NEXT ENTRY AS A TIMER DEFINITION

NO ACTION

ÁÁÁÁÁ
ÁÁÁÁÁReserved

ÁÁÁ
ÁÁÁEN
ÁÁ
ÁÁIR
ÁÁÁ
ÁÁÁRA
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁST
ÁÁÁ
ÁÁÁCA
ÁÁÁ
ÁÁÁ

Pin
Select
ÁÁÁ
ÁÁÁIC
ÁÁÁ
ÁÁÁNX
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare ValueÁÁ

ÁÁ0
ÁÁ
ÁÁ0
ÁÁ
ÁÁ0
ÁÁ
ÁÁ0

ÁÁÁ
ÁÁÁ0

ÁÁ
ÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0

ÁÁÁ
ÁÁÁ0

ÁÁÁ
ÁÁÁ0

ÁÁÁ
ÁÁÁ0

ÁÁ
ÁÁ0

Á
Á0
ÁÁ
ÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ1

ÁÁÁÁÁ
ÁÁÁÁÁ0000hÁÁÁÁÁ

ÁÁÁÁÁ
D31.........D28

ÁÁÁ
ÁÁÁ

D27
ÁÁ
ÁÁ

D26
ÁÁÁ
ÁÁÁ

D25
ÁÁÁ
ÁÁÁ

D24
ÁÁÁ
ÁÁÁ

D23
ÁÁÁ
ÁÁÁ

D22
ÁÁÁ
ÁÁÁ

D21
ÁÁÁ
ÁÁÁ

D20..D18
ÁÁÁ
ÁÁÁ

D17
ÁÁÁ
ÁÁÁ

D16
ÁÁÁÁÁ
ÁÁÁÁÁ

D15....................D0

.WORD 00001H,0000h ;NEXT IS A TIMER DEFINITION

CMD/DEF 2: VIRTUAL TIMER DEFINITION (2 TS)

MAX VALUE = 0008H

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Maximum Virtual Timer Value ÁÁÁ
ÁÁÁ

RNÁÁÁÁ
ÁÁÁÁ

EN ÁÁÁ
ÁÁÁ

INT ÁÁÁ
ÁÁÁ

“0” ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Virtual Timer value ÁÁÁ
ÁÁÁ

“0”

ÁÁÁÁÁÁÁÁÁÁÁ004 ÁÁÁ0ÁÁÁÁ1 ÁÁÁ0 ÁÁÁ“0” ÁÁÁÁÁÁÁ0000 ÁÁÁ“0”ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

D31..................................D23
ÁÁÁÁÁ
ÁÁÁÁÁ

D22...........D20
ÁÁÁ
ÁÁÁ

D19
ÁÁÁÁ
ÁÁÁÁ

D18
ÁÁÁ
ÁÁÁ

D17
ÁÁÁ
ÁÁÁ

D16
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

D15..................................D1
ÁÁÁ
ÁÁÁ

D0

.WORD 00044H,0000H ;MAX VALUE = 0008h, D19 = 0

CMD/DEF 3: STANDARD COMPARE COMMAND ON VIRTUAL TIMER (1 TS)

SET OP2 ON COMPARE VALUE = 0001H,RESET ON ZERO

NEXT IS A TIMER DEFINITION
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved

ÁÁÁ
ÁÁÁ
ÁÁÁ

EN

ÁÁ
ÁÁ
ÁÁ

IR

ÁÁÁ
ÁÁÁ
ÁÁÁ

RA

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

ST

ÁÁÁ
ÁÁÁ
ÁÁÁ

CA

ÁÁÁ
ÁÁÁ
ÁÁÁ

Pin
Select

ÁÁÁ
ÁÁÁ
ÁÁÁ

IC

ÁÁÁ
ÁÁÁ
ÁÁÁ

NX

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare Value

ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0 Á
Á

0ÁÁ
ÁÁ

1ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

0001h

ÁÁÁÁÁD31.........D28 ÁÁÁD27 ÁÁD26ÁÁÁD25ÁÁÁD24ÁÁÁD23ÁÁÁD22ÁÁÁD21 ÁÁÁD20..D18ÁÁÁD17ÁÁÁD16ÁÁÁÁÁD15....................D0

.WORD 00A25H,0001H ;SET OP2 ON COMPARE VALUE = 0001H,RST ON ZERO, NEXT IS A
 ;DEF

405

CMD/DEF 4: OFFSET TIMER DEFINITION (2 TS)

MAX EVENT COUNTER VALUE = 00H (DON’T CARE)

ENABLE TIMER, NO CAPTURE, NO INTERRUPT.
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Maximum Event
Counter Value

ÁÁÁ
ÁÁÁ
ÁÁÁ

IE

ÁÁÁ
ÁÁÁ
ÁÁÁ

DC

ÁÁÁ
ÁÁÁ
ÁÁÁ

VC

ÁÁÁ
ÁÁÁ
ÁÁÁ

RD

ÁÁÁ
ÁÁÁ
ÁÁÁ

HC

ÁÁÁ
ÁÁÁ
ÁÁÁ

EN

ÁÁÁ
ÁÁÁ
ÁÁÁ

IM

ÁÁ
ÁÁ
ÁÁ

ST

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Virtual Timer Offset
Value

ÁÁÁ
ÁÁÁ
ÁÁÁ

1

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

00h ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

1 ÁÁÁ
ÁÁÁ

0 ÁÁ
ÁÁ

0ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

0000h ÁÁÁ
ÁÁÁ

1

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

D31.........................D24 ÁÁÁ
ÁÁÁ

D23ÁÁÁ
ÁÁÁ

D22ÁÁÁ
ÁÁÁ

D21ÁÁÁ
ÁÁÁ

D20ÁÁÁ
ÁÁÁ

D19ÁÁÁ
ÁÁÁ

D18 ÁÁÁ
ÁÁÁ

D17 ÁÁ
ÁÁ

D16ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

D15......................D1ÁÁÁ
ÁÁÁ

D0

.WORD 00004H,0001H ;MAX EVENT COUNTER VALUE = 0000h, NO INTERRUPT, NO
 ;CAPTURE.

406

CMD/DEF 5: STANDARD COMPARE COMMAND ON OFFSET TIMER (1 TS)

SET OP1 ON COMPARE VALUE = 0001H
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved

ÁÁÁ
ÁÁÁ
ÁÁÁ

EN

ÁÁ
ÁÁ
ÁÁ

IR

ÁÁÁ
ÁÁÁ
ÁÁÁ

RA

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

ST

ÁÁÁ
ÁÁÁ
ÁÁÁ

CA

ÁÁÁ
ÁÁÁ
ÁÁÁ

Pin
Select

ÁÁÁ
ÁÁÁ
ÁÁÁ

IC

ÁÁÁ
ÁÁÁ
ÁÁÁ

NX

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare Value

ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0 Á
Á

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0001h

ÁÁÁÁÁD31.........D28 ÁÁÁD27 ÁÁD26ÁÁÁD25ÁÁÁD24ÁÁÁD23ÁÁÁD22ÁÁÁD21 ÁÁÁD20..D18ÁÁÁD17ÁÁÁD16ÁÁÁÁÁD15....................D0

.WORD 00820H,0001H ;SET OP1 ON COMPARE VALUE = 0001h

CMD/DEF 6: STANDARD COMPARE COMMAND ON OFFSET TIMER (1 TS)

RESET OP1 ON COMPARE VALUE = 0002H
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved

ÁÁÁ
ÁÁÁ
ÁÁÁ

EN

ÁÁ
ÁÁ
ÁÁ

IR

ÁÁÁ
ÁÁÁ
ÁÁÁ

RA

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

ST

ÁÁÁ
ÁÁÁ
ÁÁÁ

CA

ÁÁÁ
ÁÁÁ
ÁÁÁ

Pin
Select

ÁÁÁ
ÁÁÁ
ÁÁÁ

IC

ÁÁÁ
ÁÁÁ
ÁÁÁ

NX

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare Value

ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁ
ÁÁ

0 Á
Á

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0002h

ÁÁÁÁÁD31.........D28 ÁÁÁD27 ÁÁD26ÁÁÁD25ÁÁÁD24ÁÁÁD23ÁÁÁD22ÁÁÁD21 ÁÁÁD20..D18ÁÁÁD17ÁÁÁD16ÁÁÁÁÁD15....................D0

.WORD 00800H,0002H ;RESET OP1 ON COMPARE VALUE = 0002h

Figure 8. PACT Timing Diagram

P A C T R E S O L U T IO N

C M D /D E F S C A N

O F F S E T T IM E R

O P 1

IN T E R N A L E V T S Y N C

E X T E V E N T O N C P 6

1�s

NOTE: In this example the jitter is 1 resolution because of the external event synchronization (OP2 connected to CP6).
All timing delays (T1 to T5) have a 1 �s jitter.

407

Routine

;It is necessary to connect OP2 and CP6 together to perform this application.

 .text 7000h

 .global deb

;**

; START END ADDRESS DEFINITION

;**

STARTAD .EQU 01EFH

PACTPRI .EQU p04F ; Global function control register

CDSTART .EQU p041 ; Command/definition area start register

CPCTL3 .EQU P04C ; Set Up CP control register 3

CDEND .EQU p042 ; Command/definition area end register

PACTSCR .EQU p040 ; Setup control register

ENDAD .EQU 01D8H

;**

; INIT PACT PERIPHERAL FRAME

;**

DEBUT

 OR #003H,PACTPRI ;DISABLE WD, MODE A

 MOV #(STARTAD-0100H-080H),CDSTART ;START AD, CMD/DEF INT DIS

 MOV #(ENDAD-0100H),CDEND ;END AD
 MOV #014H,PACTSCR ;SYSCLK DIVIDED BY 5 =>
 ;RESOL=1uS AT 20MHZ
;**

; MAIN PGM

;**

MAIN

 OR #020H,PACTSCR ;ENABLE PACT CMD/DEF AREA

 MOV #020H,CPCTL3 ;EVENT CP6 ON RISING EDGE,NO INTERRUPT

 JMP $;LOOP MAIN PGM

;**

; INIT PACT CMD/DEF AREA

;**

 .sect “CMDEF”,(ENDAD) ;CMD/DEF SECTION PROGRAM

 .WORD 00800H,0002H ;RESET OP1 ON COMPARE VALUE = 0002h

 .WORD 00820H,0001H ;SET OP1 ON COMPARE VALUE = 0001h

 .WORD 00004H,0001H ;MAX EVT COUNTER VALUE = 0000h,NO INT, NO CAPTURE

 ;O CAPTURE.

 .WORD 00A25H,0002h ;SET OP2 ON VALUE 0002H,RST ON ZERO,NEXT IS A DEF

 .WORD 00044H,0000h ;DEF VIRTUAL TIMER

 .WORD 00001H,0000h ;NEXT IS A TIMER DEFINITION

408

PWM Generation On Selected Event

This example shows how conditional compare commands and event compare commands can generate a
pwm on selected event.

Figure 9. External Event and PWM

E X T E V E N T

En En+1 En+2 En+3 En+4 En+5

T1 T2 T4T3

P W M

T5 T6

T1 = 4�s, T2 = 1�s, T3 = 2�s or next event, T4 = 3�s, T5 = sync pulse on event

PACT Configuration

PACT RESOLUTION = 1mS => SYSCLK / 5 -> 12 TS AVAILABLE

CMD/DEF CONFIG: 1 NEXTDEF, 1 OFFSET TIMER, 4 COND COMPARE, 1 DBL EVT COMPARE
=> 4 TS NEEDED

BUFFER NOT USED (MIN), NO CAPTURE => MODE A => START ADDRESS = 01EFh

7 CMD/DEF => END ADDRESS = START ADDRESS - (4 x NB CMD/DEF) + 1 = 01D4h

MAX EVENT COUNTER VALUE = 05h

PACT Command/Definition Initialization

CMD/DEF 1: DUMMY STANDARD COMPARE COMMAND ON DEFAULT TIMER (1 TS)

USE ONLY TO IDENTIFY NEXT ENTRY AS A TIMER DEFINITION

NO ACTIONÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved

ÁÁÁ
ÁÁÁ
ÁÁÁ

EN

ÁÁ
ÁÁ
ÁÁ

IR

ÁÁÁ
ÁÁÁ
ÁÁÁ

RA

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

ST

ÁÁÁ
ÁÁÁ
ÁÁÁ

CA

ÁÁÁ
ÁÁÁ
ÁÁÁ

Pin
Select

ÁÁÁ
ÁÁÁ
ÁÁÁ

IC

ÁÁÁ
ÁÁÁ
ÁÁÁ

NX

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare Value

ÁÁ
ÁÁ

0
ÁÁ
ÁÁ

0
ÁÁ
ÁÁ

0
ÁÁ
ÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁ
ÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁ
ÁÁ

0
Á
Á

0
ÁÁ
ÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ

0000h

ÁÁÁÁÁ
ÁÁÁÁÁ

D31.........D28 ÁÁÁ
ÁÁÁ

D27 ÁÁ
ÁÁ

D26ÁÁÁ
ÁÁÁ

D25ÁÁÁ
ÁÁÁ

D24ÁÁÁ
ÁÁÁ

D23ÁÁÁ
ÁÁÁ

D22ÁÁÁ
ÁÁÁ

D21 ÁÁÁ
ÁÁÁ

D20..D18ÁÁÁ
ÁÁÁ

D17ÁÁÁ
ÁÁÁ

D16ÁÁÁÁÁ
ÁÁÁÁÁ

D15....................D0

.WORD 00001H,0000h ;NEXT IS A TIMER DEFINITION

409

CMD/DEF 2: VIRTUAL TIMER DEFINITION (2 TS)

MAX VALUE = 0008H
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Maximum Virtual Timer Value ÁÁÁ
ÁÁÁ

RNÁÁÁÁ
ÁÁÁÁ

EN ÁÁÁ
ÁÁÁ

INT ÁÁÁ
ÁÁÁ

“0” ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Virtual Timer value ÁÁÁ
ÁÁÁ

“0”

ÁÁÁÁÁÁÁÁÁÁÁ004 ÁÁÁ0ÁÁÁÁ1 ÁÁÁ0 ÁÁÁ“0” ÁÁÁÁÁÁÁ0000 ÁÁÁ“0”ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁD31..................................D23

ÁÁÁÁÁ
ÁÁÁÁÁD22...........D20

ÁÁÁ
ÁÁÁD19
ÁÁÁÁ
ÁÁÁÁD18

ÁÁÁ
ÁÁÁD17
ÁÁÁ
ÁÁÁD16
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁD15..................................D1

ÁÁÁ
ÁÁÁD0

.WORD 00044H,0000h ;MAX VALUE = 0008h, D19 = 0

CMD/DEF 3: STANDARD COMPARE COMMAND ON VIRTUAL TIMER (1 TS)

SET OP2 ON COMPARE VALUE = 0001H,RESET ON ZERO

NEXT IS A TIMER DEFINITION
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved

ÁÁÁ
ÁÁÁ
ÁÁÁ

EN

ÁÁ
ÁÁ
ÁÁ

IR

ÁÁÁ
ÁÁÁ
ÁÁÁ

RA

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

ST

ÁÁÁ
ÁÁÁ
ÁÁÁ

CA

ÁÁÁ
ÁÁÁ
ÁÁÁ

Pin
Select

ÁÁÁ
ÁÁÁ
ÁÁÁ

IC

ÁÁÁ
ÁÁÁ
ÁÁÁ

NX

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare Value

ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0 Á
Á

0ÁÁ
ÁÁ

1ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

0001h

ÁÁÁÁÁD31.........D28 ÁÁÁD27 ÁÁD26ÁÁÁD25ÁÁÁD24ÁÁÁD23ÁÁÁD22ÁÁÁD21 ÁÁÁD20..D18ÁÁÁD17ÁÁÁD16ÁÁÁÁÁD15....................D0

.WORD 00A25H,0001H ;SET OP2 ON COMPARE VALUE = 0001H,RST ON ZERO, NEXT
 ;IS A DEF

CMD/DEF 4: OFFSET TIMER DEFINITION (2 TS)

MAX EVENT COUNTER VALUE = 01H

ENABLE TIMER, NO CAPTURE, NO INTERRUPT.

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Maximum Event Counter
Value

ÁÁÁ
ÁÁÁIE
ÁÁÁ
ÁÁÁDC
ÁÁÁ
ÁÁÁVC
ÁÁÁ
ÁÁÁRD
ÁÁÁ
ÁÁÁHC
ÁÁÁ
ÁÁÁEN
ÁÁÁ
ÁÁÁIM
ÁÁ
ÁÁST
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Virtual Timer Offset
Value

ÁÁÁ
ÁÁÁ1ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ05h
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ1
ÁÁÁ
ÁÁÁ0
ÁÁ
ÁÁ0
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ0000h

ÁÁÁ
ÁÁÁ1ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
D31.........................D24

ÁÁÁ
ÁÁÁ

D23
ÁÁÁ
ÁÁÁ

D22
ÁÁÁ
ÁÁÁ

D21
ÁÁÁ
ÁÁÁ

D20
ÁÁÁ
ÁÁÁ

D19
ÁÁÁ
ÁÁÁ

D18
ÁÁÁ
ÁÁÁ

D17
ÁÁ
ÁÁ

D16
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

D15......................D1
ÁÁÁ
ÁÁÁ

D0

.WORD 00504H,0001H ;OFFSET TIMER DEFINITION, MAX EVENT COUNTER VALUE = 05

CMD/DEF 5: CONDITIONAL COMPARE COMMAND ON OFFSET TIMER (1 TS)

EVENT COMPARE VALUE = 01h

SET OP1 ON COMPARE VALUE = 0002H

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Event Compare ValueÁÁÁ
ÁÁÁ

1ÁÁÁ
ÁÁÁ

SAÁÁÁ
ÁÁÁ

CA ÁÁÁÁ
ÁÁÁÁ

Pin SelectÁÁÁ
ÁÁÁ

ICÁÁÁ
ÁÁÁ

NXÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Timer Compare Value

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

01h ÁÁÁ
ÁÁÁ

1ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ

000 ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0002h

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

D31.............................D24ÁÁÁ
ÁÁÁ

D23ÁÁÁ
ÁÁÁ

D22ÁÁÁ
ÁÁÁ

D21ÁÁÁÁ
ÁÁÁÁ

D20..........D18ÁÁÁ
ÁÁÁ

D17ÁÁÁ
ÁÁÁ

D16ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

D15..D0

.WORD 001A0H,0002H ;SET OP1 ON EVT CMP = 01h AND TIMER CMP = 0002h

CMD/DEF 6: CONDITIONAL COMPARE COMMAND ON OFFSET TIMER (1 TS)

EVENT COMPARE VALUE = 01h

RESET OP1 ON COMPARE VALUE = 0003HÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁEvent Compare Value

ÁÁÁ
ÁÁÁ1

ÁÁÁ
ÁÁÁSA

ÁÁÁ
ÁÁÁCA

ÁÁÁÁ
ÁÁÁÁPin Select

ÁÁÁ
ÁÁÁIC
ÁÁÁ
ÁÁÁNX

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁTimer Compare ValueÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ01h

ÁÁÁ
ÁÁÁ1

ÁÁÁ
ÁÁÁ0

ÁÁÁ
ÁÁÁ0

ÁÁÁÁ
ÁÁÁÁ000

ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ0003hÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
D31.............................D24

ÁÁÁ
ÁÁÁ

D23
ÁÁÁ
ÁÁÁ

D22
ÁÁÁ
ÁÁÁ

D21
ÁÁÁÁ
ÁÁÁÁ

D20..........D18
ÁÁÁ
ÁÁÁ

D17
ÁÁÁ
ÁÁÁ

D16
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

D15..D0

.WORD 00180H,0003H ;RESET OP1 ON EVT CMP = 01h AND TIMER CMP = 0003h

410

CMD/DEF 7: CONDITIONAL COMPARE COMMAND ON OFFSET TIMER (1 TS)

EVENT COMPARE VALUE = 01h

SET OP1 ON COMPARE VALUE = 0005H

SAME ACTION ON NEXT EVENT IF NECESSARY
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁEvent Compare Value

ÁÁÁ
ÁÁÁ1
ÁÁÁ
ÁÁÁSA
ÁÁÁ
ÁÁÁCA
ÁÁÁÁ
ÁÁÁÁPin Select

ÁÁÁ
ÁÁÁIC
ÁÁÁ
ÁÁÁNX
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁTimer Compare ValueÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ01h
ÁÁÁ
ÁÁÁ1
ÁÁÁ
ÁÁÁ1
ÁÁÁ
ÁÁÁ1
ÁÁÁÁ
ÁÁÁÁ000

ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ0005hÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
D31.............................D24

ÁÁÁ
ÁÁÁ

D23
ÁÁÁ
ÁÁÁ

D22
ÁÁÁ
ÁÁÁ

D21
ÁÁÁÁ
ÁÁÁÁ

D20..........D18
ÁÁÁ
ÁÁÁ

D17
ÁÁÁ
ÁÁÁ

D16
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

D15..D0

.WORD 001E0H,0005H ;SET OP1 ON EVT CMP = 01h, TIMER CMP = 0009h, SAME ACTION

CMD/DEF 8: CONDITIONAL COMPARE COMMAND ON OFFSET TIMER (1 TS)

EVENT COMPARE VALUE = 03h

RESET OP1 ON COMPARE VALUE = 0001H

SAME ACTION ON NEXT EVENT IF NECESSARY

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Event Compare ValueÁÁÁ
ÁÁÁ

1ÁÁÁ
ÁÁÁ

SAÁÁÁ
ÁÁÁ

CA ÁÁÁÁ
ÁÁÁÁ

Pin SelectÁÁÁ
ÁÁÁ

ICÁÁÁ
ÁÁÁ

NXÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Timer Compare Value

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

03h ÁÁÁ
ÁÁÁ

1ÁÁÁ
ÁÁÁ

1 ÁÁÁ
ÁÁÁ

0 ÁÁÁÁ
ÁÁÁÁ

000 ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

0001h

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

D31.............................D24ÁÁÁ
ÁÁÁ

D23ÁÁÁ
ÁÁÁ

D22ÁÁÁ
ÁÁÁ

D21ÁÁÁÁ
ÁÁÁÁ

D20..........D18ÁÁÁ
ÁÁÁ

D17ÁÁÁ
ÁÁÁ

D16ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

D15..D0

.WORD 003C0H,0001H ;RESET OP1 ON EVT CMP = 03h, TIMER CMP = 0003h, SAME
 ;ACTION

CMD/DEF 9: DOUBLE EVENT COMPARE COMMAND ON OFFSET TIMER (1 TS)

EVENT1 COMPARE VALUE = 04h, EVENT2 COMPARE VALUE = 05h

SET OP1 ON EVENT1 COMPARE, RESET OP1 ON EVENT2 COMPARE

ÁÁÁÁ
ÁÁÁÁ

0 ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁ
ÁÁ

1ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0ÁÁ
ÁÁ

1ÁÁÁÁ
ÁÁÁÁ

000 ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

05hÁÁÁÁ
ÁÁÁÁ

04h

ÁÁÁÁ
ÁÁÁÁ

D31 ÁÁ
ÁÁ

D30ÁÁ
ÁÁ

D29ÁÁÁ
ÁÁÁ

D28ÁÁ
ÁÁ

D27ÁÁ
ÁÁ

D26ÁÁÁ
ÁÁÁ

D25ÁÁ
ÁÁ

D24ÁÁÁ
ÁÁÁ

D23ÁÁ
ÁÁ

D22ÁÁ
ÁÁ

D21ÁÁÁÁ
ÁÁÁÁ

D20...D18ÁÁ
ÁÁ

D17ÁÁÁ
ÁÁÁ

D16ÁÁÁ
ÁÁÁ

D15.....D8ÁÁÁÁ
ÁÁÁÁ

D7.......D0

.WORD 00B20H.0504H ;SET OP1 ON EVT1 CMP = 04h, RESET OP1 ON EVENT2 CMP = 05h

411

Figure 10. PACT Timing Diagrams
Action On Event N+1

PACT RESOLUTION

CMD/DEF SCAN

OFFSET TIMER

OP1

INTERNAL EVT SYNC

EXT EVENT ON CP6

..

EVENT COUNTER

1�s

��s 1�s ��s

Action On Event N+3, N+4, N+5

PACT RESOLUTION

CMD/DEF SCAN

OFFSET TIME R

OP1

INTERNAL EVT SYNC

EXT EVENT ON CP6

..
EVENT COUNTE R

T4=3�s ACTION DELAY=3
RESOL=3�s

ACTION DELAY=3
RESOL=3�s

...

1�s

NOTE: In this example the jitter is 1 resolution because of the external event synchronization (OP2 connected to CP6).
All timing delays (T1 to T5) have a1 �s jitter.

412

PWM Generation on Selected Event Routine

;It is necessary to connect OP2 and CP6 together to perform this application.

 .TEXT 7000H

 .GLOBAL deb

;**

; START END ADDRESS DEFINITION

;**

STARTAD .EQU 01EFH

PACTPRI .EQU p04F ; Global function control register

CDSTART .EQU p041 ; Command/definition area start register

CDEND .EQU p042 ; Command/definition area end register

CPCTL3 .EQU P04C ; Set Up CP control register 3

PACTSCR .EQU p040 ; Setup control register

ENDAD .EQU 01ccH

;**

; INIT PACT PERIPHERAL FRAME

;**

 OR #003H,PACTPRI ;DISABLE WD, MODE A

 OR #006H,CPPRE ;RESET EVENT COUNTER,CP6 EVENT
 ;ONLY (NO CAPTURE)

 MOV #(STARTAD-0100H-080H),CDSTART ;START AD, CMD/DEF INT DIS

 MOV #(ENDAD-0100H),CDEND ;END AD

 MOV #014H,PACTSCR ;SYSCLK DIVIDED BY 5 =>
 ;RESOL=1 �S AT 20MHZ

 AND #0FDH,CPPRE ;DISABLE RESET EVENT COUNTER

;**

; MAIN PGM

;**

MAIN

 OR #020H,PACTSCR ;ENABLE PACT CMD/DEF AREA

 MOV #020H,CPCTL3 ;EVENT CP6 ON RISING EDGE

 JMP $;LOOP MAIN PGM

;**

; INIT PACT CMD/DEF AREA

;**

 .sect “CMDEF”,(ENDAD) ;CMD/DEF SECTION PROGRAM

 .WORD 00B20H,0504H ;SET OP1 ON EVT1 CMP=04h,RST OP1 ON EVENT2
 ;CMP = 05H = 05h

 .WORD 003C0H,0001H ;RST OP1 ON EVT CMP=03h,TIMER CMP=0003h,SAME
 ;ACTIONAME ACTION

413

 .WORD 001E0H,0005H ;SET OP1 ON EVT CMP=01h,TIMER CMP=0009h,SAME
 ;ACTION ACTION

 .WORD 00180H,0003H ;RST OP1 ON EVT CMP=01h,TIMER CMP=0003h

 .WORD 001A0H,0002H ;SET OP1 ON EVT CMP=01h,TIMER CMP=0002h

 .WORD 00504H,0001H ;OFFSET TIMER DEFINITION, MAX EVENT VALUE = 05H
 ; = 05

 .WORD 00A25H,0002h ;SET OP2 ON VALUE 0002H,RST ON ZERO,NEXT IS A DEF

 .WORD 00044H,0000h ;DEF VIRTUAL TIMER

 .WORD 00001H,0000h ;NEXT IS A TIMER DEFINITION

;...

Pulse Width Measurement

To perform a pulse width measurement, the PACT module allows a dedicated 32-bit capture register for
two or four input pins (depending on mode A or B initialization) and a programmable circular buffer in
which it is possible to store 32 or 16 capture bits. Each PACT input pin (CP1 to CP6) has its own interrupt
source, which can inform the CPU that a capture has occurred. The purpose of these examples is to show
how the PACT capture functions can be used.

Using Dedicated 32-Bit Capture Registers

This example shows how it can measure a delay between two events (one on CP1 the other on CP2).

Figure 11. CP1 and CP2 Events

...

...

...

...

...

...

 T
CP1

CP2

T = CP2 CAPTURE - CP1 CAPTURE

PACT Configuration

PACT RESOLUTION: Defines the PACT precision. External events faster than the PACT resolution will
not be captured. For our example, the PACT resolution is: SYSCLK / 5 = 1 ms AT 20 MHz

Generate a PWM on OP1 connected to CP1 and CP2 in order to perform CP1,CP2 events.

=> 3 CMD/DEF : 1 dummy next def , 1 virtual timer DEFINITION , 1 standard compare action on OP1.

BUFFER NOT USED, 2 DEDICATED CAPTURE (CP1, CP2) => MODE A

CP1 CAPTURE ON RISING EDGE OF OP1.

CP2 CAPTURE ON FALLING EDGE OF OP1.

414

PACT Command /Definition Initialization

CMD/DEF 1: DUMMY STANDARD COMPARE COMMAND ON DEFAULT TIMER (1 TS)

USE ONLY TO IDENTIFY NEXT ENTRY AS A TIMER DEFINITION

NO ACTION

ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved
ÁÁÁ
ÁÁÁ

EN
ÁÁ
ÁÁ

IR
ÁÁÁ
ÁÁÁ

RA
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

ST
ÁÁÁ
ÁÁÁ

CA
ÁÁÁ
ÁÁÁ

Pin
Select
ÁÁÁ
ÁÁÁ

IC
ÁÁÁ
ÁÁÁ

NX
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare Value

ÁÁ
ÁÁ

0
ÁÁ
ÁÁ

0
ÁÁ
ÁÁ

0
ÁÁ
ÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁ
ÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁ
ÁÁ

0
Á
Á

0
ÁÁ
ÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ

0000h
ÁÁÁÁÁ
ÁÁÁÁÁ

D31.........D28 ÁÁÁ
ÁÁÁ

D27 ÁÁ
ÁÁ

D26ÁÁÁ
ÁÁÁ

D25ÁÁÁ
ÁÁÁ

D24ÁÁÁ
ÁÁÁ

D23ÁÁÁ
ÁÁÁ

D22ÁÁÁ
ÁÁÁ

D21 ÁÁÁ
ÁÁÁ

D20..D18ÁÁÁ
ÁÁÁ

D17ÁÁÁ
ÁÁÁ

D16ÁÁÁÁÁ
ÁÁÁÁÁ

D15....................D0

.WORD 00001H,0000h ;NEXT IS A TIMER DEFINITION

CMD/DEF 2: VIRTUAL TIMER DEFINITION (2 TS)

MAX VALUE = 1000HÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Maximum Virtual Timer Value
ÁÁÁ
ÁÁÁ

RN
ÁÁÁÁ
ÁÁÁÁ

EN
ÁÁÁ
ÁÁÁ

INT
ÁÁÁ
ÁÁÁ

“0”
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Virtual Timer value
ÁÁÁ
ÁÁÁ

0
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

080 ÁÁÁ
ÁÁÁ

0ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

“0” ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0000 ÁÁÁ
ÁÁÁ

“0”

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

D31..................................D23ÁÁÁÁÁ
ÁÁÁÁÁ

D22...........D20ÁÁÁ
ÁÁÁ

D19 ÁÁÁÁ
ÁÁÁÁ

D18 ÁÁÁ
ÁÁÁ

D17 ÁÁÁ
ÁÁÁ

D16 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

D15..................................D1ÁÁÁ
ÁÁÁ

D0

.WORD 00804H,0000H ;MAX VALUE = 1000h, D19 = 0

CMD/DEF 3: STANDARD COMPARE COMMAND ON VIRTUAL TIMER (1 TS)

RESET OP1 ON COMPARE VALUE = 0010H,SET ON ZERO
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved

ÁÁÁ
ÁÁÁ
ÁÁÁ

EN

ÁÁ
ÁÁ
ÁÁ

IR

ÁÁÁ
ÁÁÁ
ÁÁÁ

RA

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

ST

ÁÁÁ
ÁÁÁ
ÁÁÁ

CA

ÁÁÁ
ÁÁÁ
ÁÁÁ

Pin
Select

ÁÁÁ
ÁÁÁ
ÁÁÁ

IC

ÁÁÁ
ÁÁÁ
ÁÁÁ

NX

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare Value

ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁ
ÁÁ

0 Á
Á

0ÁÁ
ÁÁ

1ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

0010h

ÁÁÁÁÁ
ÁÁÁÁÁ

D31.........D28 ÁÁÁ
ÁÁÁ

D27 ÁÁ
ÁÁ

D26ÁÁÁ
ÁÁÁ

D25ÁÁÁ
ÁÁÁ

D24ÁÁÁ
ÁÁÁ

D23ÁÁÁ
ÁÁÁ

D22ÁÁÁ
ÁÁÁ

D21 ÁÁÁ
ÁÁÁ

D20..D18ÁÁÁ
ÁÁÁ

D17ÁÁÁ
ÁÁÁ

D16ÁÁÁÁÁ
ÁÁÁÁÁ

D15....................D0

.WORD 00A00H,0010H ;RST OP2 ON COMPARE VALUE = 0010H,SET ON ZERO, NEXT IS A
 ;DEF

Pulse Width Measurement Routine

;It is necessary to connect OP1 , CP1 and CP2 together to perform this
;application.

 .TEXT 7000H

 .global deb

;**

STARTAD .EQU 01EFH

PACTPRI .EQU p04F ; Global function control register

CDSTART .EQU p041 ; Command/definition area start register

CDEND .EQU p042 ; Command/definition area end register

CPCTL1 .EQU P04A ; Set Up CP control register 3

CPPRE .EQU P04D ; CP input control register

PACTSCR .EQU p040 ; Setup control register

ENDAD .EQU 01E4H

;**

415

; INIT PACT PERIPHERAL FRAME

;**

 OR #003H,PACTPRI ;DISABLE WATCHDOG, MODE A

 MOV #010H,B

 LDSP

 MOV #000H,CPPRE ;INPUT CAPTURE PRESCALER DIVIDE
 ;BY 1

 MOV #(STARTAD-0100H-080H),CDSTART ;START AD, CMD/DEF INT DIS

 MOV #(ENDAD-0100H),CDEND ;END AD

 MOV #013H,PACTSCR ;SYSCLK DIVIDED BY 4 =>
 ;RESOL=800uS AT 20MHZ

;**

; MAIN PGM

;**

MAIN

 OR #020H,PACTSCR ;ENABLE PACT CMD/DEF AREA

 EINT ;ENABLE INTERRUPT

MN MOV #092H,CPCTL1 ;CAPTURE ON CP1 RISE AND CP2 FALL,INT CP2 ENABLE BLE

 JMP MN ;LOOP MAIN PGM

;**

; INTERRUPT CAPTURE CP2

;**

ITCP2

 MOV #000H,CPCTL1 ;DISABLE CP1/CP2 CAPTURE AND CLEAR ITCP2 FLAG

; STORE CP1 CAPTURE IN REGISTERS R0F9, R0FA, R0FB

 MOV &01F9H,A

 MOV A,R0F9

 MOV &01FAH,A

 MOV A,R0FA

 MOV &01FBH,A

 MOV A,R0FB

; STORE CP2 CAPTURE IN REGISTERS R0F5, R0F6, R0F7

 MOV &01F5H,A

 MOV A,R0F5

 MOV &01F6H,A

 MOV A,R0F6

 MOV &01F7H,A

 MOV A,R0F7

;CP2 PERIOD MEASUREMENT (T2)

 SUB R0FB,R0F7

416

 SBB R0FA,R0F6

 SBB R0F9,R0F5

; RESULT STORED IN REGISTERS R0E5, R0E6, R0E7

 MOV R0F7,R0E7

 MOV R0F6,R0E6

 MOV R0F5,R0E5

;RETURN TO MAIN PGM

 RTI

;**

; CP2 INTERRUPT VECTORS

;**

 .sect “VECT”,07FBAH ;PACT INTERRUPT VECTOR

 .WORD ITCP2 ;CP2 IT VECTOR

;**

; INIT PACT CMD/DEF AREA

;**

 .sect “CMDEF”,(ENDAD) ;CMD/DEF SECTION PROGRAM

 .WORD 0A00h,0010h ;RST OP1 ON 0010H VIRT1,SET ON ZERO

 .WORD 8004h,0000h ;VIRT1 MAX VALUE = 8000H

 .WORD 0001h,0000h ;NEXT IS A DEF

NOTES:

• In this example, the jitter is 1 resolution because of the external event synchronization (OP1
connected to CP1 and CP2). All timing delays (T1 to T5) have 1 ms jitter. The jitter average is
1/2 resolution in case of asynchronous external events.

• The measurement value is stored in registers R0E5,R0E6,R0E7 (LSB). It is always equal to the
CMD/DEF 3 compare value (if OP1 connected to CP1 and CP2).

• By changing CMD/DEF 3 compare value, you change the OP1 falling edge and so increase or
decrease CP1/CP2 delay.

417

Using The Circular Buffer Registers

The circular buffer is used to capture CP3, CP4, CP5, or CP6. It is very useful in case of fast event
occurrences when the CPU does not enough time to treat all events and discharges them from data storage
manipulation. The circular buffer has a buffer pointer register in the PACT peripheral frame (P043) which
points to the next 32-bit buffer register address (see TMS370 Family User’s Guide). An interrupt buffer is
generated if the buffer is half or completely full. One capture is generated if two events (CP5 and CP6)
arrive at the same time.

In this example, the input capture, CP6, is stored in the circular buffer and a period measurement is made
on each event.

Figure 12. CP6 PWM

CP6

T

EVTn EVTn+1 EVTn+2

...

T = EVENT PERIOD ON CP6

PACT Configuration

PACT RESOLUTION: Defines the PACT precision. External events faster than the PACT resolution will
not be captured. For our example, the PACT resolution is: SYSCLK / 5 = 1ms AT 20 MHz

We generate a PWM on OP1 connected to CP6 in order to perform CP6 events.

=> 3 CMD/DEF : 1 dummy next def , 1 virtual timer DEFINITION , 1 standard compare action on OP1.

BUFFER USED TO CAPTURE CP6 EVENTS. SIZE = 4 x 32 BITS REGISTERS IN MODE A, INT
BUFF

CP6 CAPTURE ON RISING EDGE.

PACT Command/Definition Initialization

CMD/DEF 1: DUMMY STANDARD COMPARE COMMAND ON DEFAULT TIMER (1 TS)

USE ONLY TO IDENTIFY NEXT ENTRY AS A TIMER DEFINITION

NO ACTION
ÁÁÁÁÁ
ÁÁÁÁÁReserved

ÁÁÁ
ÁÁÁEN
ÁÁ
ÁÁIR
ÁÁÁ
ÁÁÁRA
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁST
ÁÁÁ
ÁÁÁCA
ÁÁÁ
ÁÁÁ

Pin
Select
ÁÁÁ
ÁÁÁIC
ÁÁÁ
ÁÁÁNX
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare ValueÁÁ

ÁÁ0
ÁÁ
ÁÁ0
ÁÁ
ÁÁ0
ÁÁ
ÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁ
ÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁ
ÁÁ0
Á
Á0
ÁÁ
ÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ1
ÁÁÁÁÁ
ÁÁÁÁÁ0000hÁÁÁÁÁ

ÁÁÁÁÁ
D31.........D28

ÁÁÁ
ÁÁÁ

D27
ÁÁ
ÁÁ

D26
ÁÁÁ
ÁÁÁ

D25
ÁÁÁ
ÁÁÁ

D24
ÁÁÁ
ÁÁÁ

D23
ÁÁÁ
ÁÁÁ

D22
ÁÁÁ
ÁÁÁ

D21
ÁÁÁ
ÁÁÁ

D20..D18
ÁÁÁ
ÁÁÁ

D17
ÁÁÁ
ÁÁÁ

D16
ÁÁÁÁÁ
ÁÁÁÁÁ

D15....................D0

.WORD 00001H,0000h ;NEXT IS A TIMER DEFINITION

418

CMD/DEF 2: VIRTUAL TIMER DEFINITION (2 TS)

MAX VALUE = 0008H
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Maximum Virtual Timer Value ÁÁÁ
ÁÁÁ

RNÁÁÁÁ
ÁÁÁÁ

EN ÁÁÁ
ÁÁÁ

INT ÁÁÁ
ÁÁÁ

0 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Virtual Timer value ÁÁÁ
ÁÁÁ

0

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

004 ÁÁÁ
ÁÁÁ

0ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

“0” ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0000 ÁÁÁ
ÁÁÁ

“0”

ÁÁÁÁÁÁÁD31..................................D23ÁÁÁÁÁD22...........D20ÁÁÁD19ÁÁÁÁD18 ÁÁÁD17 ÁÁÁD16ÁÁÁÁÁÁÁD15..................................D1ÁÁÁD0

.WORD 00044H,0000H ;MAX VALUE = 0008h, D19 = 0

CMD/DEF 3: STANDARD COMPARE COMMAND ON VIRTUAL TIMER (1 TS)
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved

ÁÁÁ
ÁÁÁ
ÁÁÁ

EN

ÁÁ
ÁÁ
ÁÁ

IR

ÁÁÁ
ÁÁÁ
ÁÁÁ

RA

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

ST

ÁÁÁ
ÁÁÁ
ÁÁÁ

CA

ÁÁÁ
ÁÁÁ
ÁÁÁ

Pin
Select

ÁÁÁ
ÁÁÁ
ÁÁÁ

IC

ÁÁÁ
ÁÁÁ
ÁÁÁ

NX

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare Value

ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁ
ÁÁ

0 Á
Á

0ÁÁ
ÁÁ

1ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

0001h

ÁÁÁÁÁD31.........D28 ÁÁÁD27 ÁÁD26ÁÁÁD25ÁÁÁD24ÁÁÁD23ÁÁÁD22ÁÁÁD21 ÁÁÁD20..D18ÁÁÁD17ÁÁÁD16ÁÁÁÁÁD15....................D0

 .WORD 00A00H,000H1 ;RST OP1 ON COMPARE VALUE = 0001H,SET ON ZERO, NEXT
 ;IS A DEF

419

Using the Circular Buffer Registers Routine

;It is necessary to connect OP1 and CP6 together to perform this application.

 .TEXT 7000H

 .global deb

;**

STARTAD .EQU 01E3H ;size buffer = 4 registers

PACTPRI .EQU p04F ; Global function control register

CDSTART .EQU p041 ; Command/definition area start register

CDEND .EQU p042 ; Command/definition area end register

BUFPTR .EQU p043 ; Buffer pointer control register

CPCTL3 .EQU P04C ; Set Up CP control register 3

CPPRE .EQU P04D ; CP input control register

PACTSCR .EQU p040 ; Setup control register

ENDAD .EQU 01d8H

;**

; INIT PACT PERIPHERAL FRAME

;**

 OR #003H,PACTPRI ;DISABLE WATCHDOG, MODE A

 MOV #010H,B

 LDSP

 MOV #002H,CPPRE ;RST EVENT COUNTER,NO CAPTURE
 ;PRESCALER

 MOV #(STARTAD-0100H-080H),CDSTART ;START AD, CMD/DEF INT DIS

 MOV #(ENDAD-0100H),CDEND ;END AD

 MOV #013H,PACTSCR ;SYSCLK DIVIDED BY 4 =>
 ;RESOL=800nS AT 20MHz

 MOV #0F2H,P043 ;INIT BUFFER TO THE TOP

 MOV #080H,CPPRE ; BUFFER INTERRUPT ENABLE,ENABLE
 ;EVENT COUNTER

;**

; MAIN PGM

;**

 OR #020H,PACTSCR ;ENABLE PACT CMD/DEF AREA

 EINT ;ENABLE INTERRUPT

MN MOV #020H,CPCTL3 ;CAPTURE ON RISING EDGE CP6, NO INTERRUPT

 JMP MN ;LOOP MAIN PGM

;**

; INTERRUPT BUFFER

420

;**

ITBUFF

 MOV #000H,CPCTL3 ;DISABLE BUFFER CAPTURE AND CLEAR ITBUFF FLAG

 AND #0BFH,CPPRE ;CLEAR ITBUF FLAG

 MOV BUFPTR,A ;TEST IF BUFFER FULL

 CMP #0F2H,A

 JZ BFULL

BHALF

 MOV #0F3H,B ;B = STORAGE POINTER

 CALL STORE

;CP6 PERIOD MEASUREMENT

 SUB R0F3,R0EF

 SBB R0F2,R0EE

 SBB R0F1,R0ED

;RESULT STORED IN REGISTER R0ED, R0EE, R0EF

;RETURN TO MAIN PGM

 RTI

BFULL

 MOV #0EBH,B ;B = STORAGE POINTER

 CALL STORE

;CP6 PERIOD MEASUREMENT

 SUB R0EB,R0E7

 SBB R0EA,R0E6

 SBB R0E9,R0E5

;RESULT STORED IN REGISTER R0E5, R0E6, R0E7

;RETURN TO MAIN PGM

 RTI

;**

; SUBROUTINE STORE

;**

STORE

; STORE BUFFER CAPTURE 1 IN REGISTERS R0F0,R0F1, R0F2, R0F3

 MOV B,R090 ;R090 = END STORAGE POINTER

 SUB #009H,R090

LOOP

 MOV *0100H[B],A

 MOV A,*0[B]

 DEC B

421

 CMP R090,B

 JNZ LOOP

 RTS

;**

; BUFFER INTERRUPT VECTOR

;**

 .sect “VECTBUFF”,07FB0H ;BUFFER INTERRUPT VECTOR

 .WORD ITBUFF ;BUFF IT VECTOR

;**

; INIT PACT CMD/DEF AREA

;**

 .sect “CMDEF”,(ENDAD) ;CMD/DEF SECTION PROGRAM

 .WORD 0A00h,0001h ;RST OP1 ON 0001H VIRT1,SET ON ZERO

 .WORD 0044h,0000h ;VIRT1 MAX VALUE = 0008H

 .WORD 0001h,0000h ;NEXT IS A DEF

;...

NOTES:

• In this example the jitter equals one resolution because of the external event synchronization
(OP1 connected to CP6). All timing delays (T) have a 1 ms jitter. The jitter average is half
resolution in case of asynchronous external events.

• The measurement value is stored in registers R0E5,R0E6,R0E7 (LSB) or R0ED, R0EE, R0EF
(LSB).

• By changing CMD/DEF 2 virtual timer maximum values, the OP1 period changes, and increases
or decreases the CP6 event delay.

422

Using PACT Step Mode

The step mode is useful for applications that require more time slots than normally allowed for a specific
resolution. To illustrate, look at the square wave PWM. This example is done with a resolution of 1�s for
20MHz. It shows a PWM activity on OP1 at maximum speed (2�s square period). All the time slots
available are used to generate OP1 and OP2 PWM. It is possible to improve significantly the PWM speed
by changing the resolution and using the STEP mode in this example.

Figure 13. Step Mode PWM

OP1

OP2

resol=600nS

T=1.2 �s

PACT Configuration

PACT RESOLUTION = 600nS => SYSCLK / 3 -> 5 x 2 TS AVAILABLE in STEP MODE = 10 TS

CMD/DEF CONFIG: 1 STEP 1 NEXTDEF, 2 VIRT TIMER, 4 STANDARD COMPARE => 10 TS

BUFFER NOT USED (MIN), NO CAPTURE => MODE A => START ADDRESS = 01EFh

8 CMD/DEF => END ADDRESS = START ADDRESS - (4 x NB CMD/DEF) + 1 + 1 (STEP MODE) =
01D4h

423

PACT Command /Definition Initialization

CMD/DEF 1: DUMMY STANDARD COMPARE COMMAND ON DEFAULT TIMER (1 TS)

USE ONLY TO ENABLE STEP MODE, NO ACTION
ÁÁÁÁÁ
ÁÁÁÁÁReserved

ÁÁÁ
ÁÁÁEN

ÁÁ
ÁÁIR
ÁÁÁ
ÁÁÁRA

ÁÁÁ
ÁÁÁ0

ÁÁÁ
ÁÁÁ0

ÁÁÁ
ÁÁÁST

ÁÁÁ
ÁÁÁCA

ÁÁÁ
ÁÁÁ

Pin
Select

ÁÁÁ
ÁÁÁIC

ÁÁÁ
ÁÁÁNX

ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare ValueÁÁ

ÁÁ
ÁÁ

0

ÁÁ
ÁÁ
ÁÁ

0

ÁÁ
ÁÁ
ÁÁ

0

ÁÁ
ÁÁ
ÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁ
ÁÁ
ÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

1

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁ
ÁÁ
ÁÁ

0

Á
Á
Á

0

ÁÁ
ÁÁ
ÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

0000hÁÁÁÁÁ
ÁÁÁÁÁD31.........D28

ÁÁÁ
ÁÁÁD27
ÁÁ
ÁÁD26
ÁÁÁ
ÁÁÁD25
ÁÁÁ
ÁÁÁD24
ÁÁÁ
ÁÁÁD23
ÁÁÁ
ÁÁÁD22
ÁÁÁ
ÁÁÁD21
ÁÁÁ
ÁÁÁD20..D18
ÁÁÁ
ÁÁÁD17
ÁÁÁ
ÁÁÁD16
ÁÁÁÁÁ
ÁÁÁÁÁD15....................D0

.WORD 0040h,0000h ;STEP ENABLE

CMD/DEF 2:DUMMY STANDARD COMPARE COMMAND ON DEFAULT TIMER (1 TS)

USE ONLY TO IDENTIFY NEXT COMMAND AS A TIMER DEFINITION
ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved
ÁÁÁ
ÁÁÁ

EN
ÁÁ
ÁÁ

IR
ÁÁÁ
ÁÁÁ

RA
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

ST
ÁÁÁ
ÁÁÁ

CA
ÁÁÁ
ÁÁÁ

Pin
Select
ÁÁÁ
ÁÁÁ

IC
ÁÁÁ
ÁÁÁ

NX
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare Value

ÁÁ
ÁÁ

0
ÁÁ
ÁÁ

0
ÁÁ
ÁÁ

0
ÁÁ
ÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁ
ÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁ
ÁÁ

0
Á
Á

0
ÁÁ
ÁÁ

0
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

1
ÁÁÁÁÁ
ÁÁÁÁÁ

0000h
ÁÁÁÁÁ
ÁÁÁÁÁ

D31.........D28 ÁÁÁ
ÁÁÁ

D27 ÁÁ
ÁÁ

D26ÁÁÁ
ÁÁÁ

D25ÁÁÁ
ÁÁÁ

D24ÁÁÁ
ÁÁÁ

D23ÁÁÁ
ÁÁÁ

D22ÁÁÁ
ÁÁÁ

D21 ÁÁÁ
ÁÁÁ

D20..D18ÁÁÁ
ÁÁÁ

D17ÁÁÁ
ÁÁÁ

D16ÁÁÁÁÁ
ÁÁÁÁÁ

D15....................D0

.WORD 00001H,00000H ;NEXT IS A TIMER DEFINITION

CMD/DEF 3: VIRTUAL TIMER 1 DEFINITION (2 TS)

MAX VALUE = 0000H

ÁÁÁÁÁÁÁÁÁÁÁMaximum Virtual Timer Value ÁÁÁRNÁÁÁÁEN ÁÁÁINT ÁÁÁ0 ÁÁÁÁÁÁÁVirtual Timer value ÁÁÁ“0”ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

000
ÁÁÁ
ÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁ
ÁÁÁ

0
ÁÁÁ
ÁÁÁ

“0”
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0000
ÁÁÁ
ÁÁÁ

“0”

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

D31..................................D23ÁÁÁÁÁ
ÁÁÁÁÁ

D22...........D20ÁÁÁ
ÁÁÁ

D19ÁÁÁÁ
ÁÁÁÁ

D18 ÁÁÁ
ÁÁÁ

D17 ÁÁÁ
ÁÁÁ

D16ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

D15..................................D1ÁÁÁ
ÁÁÁ

D0

.WORD 0004h,0000h ;VIRT1 MAX VALUE = 0000H

CMD/DEF 4: VIRTUAL TIMER 2 DEFINITION (2 TS)

MAX VALUE = 0000HÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Maximum Virtual Timer Value
ÁÁÁ
ÁÁÁ

RN
ÁÁÁÁ
ÁÁÁÁ

EN
ÁÁÁ
ÁÁÁ

INT
ÁÁÁ
ÁÁÁ

0
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Virtual Timer value
ÁÁÁ
ÁÁÁ

“0”
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

000 ÁÁÁ
ÁÁÁ

0ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

“0” ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0000 ÁÁÁ
ÁÁÁ

“0”

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

D31..................................D23ÁÁÁÁÁ
ÁÁÁÁÁ

D22...........D20ÁÁÁ
ÁÁÁ

D19ÁÁÁÁ
ÁÁÁÁ

D18 ÁÁÁ
ÁÁÁ

D17 ÁÁÁ
ÁÁÁ

D16ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

D15..................................D1ÁÁÁ
ÁÁÁ

D0

.WORD 0004h,0000h ;VIRT2 MAX VALUE = 0000H

CMD/DEF 5: STANDARD COMPARE COMMAND ON VIRTUAL TIMER 1 (1 TS)

RESET OP1 ON VIRTUAL TIMER 1 VALUE = 0001H

INVERTED ACTION (SET OP1) ON ZERO VIRT1

ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved ÁÁÁ
ÁÁÁ

EN ÁÁ
ÁÁ

IRÁÁÁ
ÁÁÁ

RAÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

ST ÁÁÁ
ÁÁÁ

CA ÁÁÁ
ÁÁÁ

Pin
SelectÁÁÁ
ÁÁÁ

ICÁÁÁ
ÁÁÁ

NX ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare Value

ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁ
ÁÁ

0 Á
Á

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0001h

ÁÁÁÁÁ
ÁÁÁÁÁ

D31.........D28 ÁÁÁ
ÁÁÁ

D27 ÁÁ
ÁÁ

D26ÁÁÁ
ÁÁÁ

D25ÁÁÁ
ÁÁÁ

D24ÁÁÁ
ÁÁÁ

D23ÁÁÁ
ÁÁÁ

D22ÁÁÁ
ÁÁÁ

D21 ÁÁÁ
ÁÁÁ

D20..D18ÁÁÁ
ÁÁÁ

D17ÁÁÁ
ÁÁÁ

D16ÁÁÁÁÁ
ÁÁÁÁÁ

D15....................D0

.WORD 0A00h,0001h ;RESET OP1 ON 0001H VIRT1,INV ACTION ON ZERO VIRT1

424

CMD/DEF 6: STANDARD COMPARE COMMAND ON VIRTUAL TIMER 2 (1 TS)

RESET OP1 ON VIRTUAL TIMER 2 VALUE = 0001H

INVERTED ACTION (SET OP1) ON ZERO VIRT2
ÁÁÁÁÁ
ÁÁÁÁÁReserved

ÁÁÁ
ÁÁÁEN
ÁÁ
ÁÁIR
ÁÁÁ
ÁÁÁRA
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁST
ÁÁÁ
ÁÁÁCA
ÁÁÁ
ÁÁÁ

Pin
Select
ÁÁÁ
ÁÁÁIC
ÁÁÁ
ÁÁÁNX
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare ValueÁÁ

ÁÁ0
ÁÁ
ÁÁ0
ÁÁ
ÁÁ0
ÁÁ
ÁÁ0
ÁÁÁ
ÁÁÁ1
ÁÁ
ÁÁ0
ÁÁÁ
ÁÁÁ1
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁ
ÁÁ0
Á
Á0
ÁÁ
ÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁÁÁ
ÁÁÁÁÁ0001hÁÁÁÁÁ

ÁÁÁÁÁ
D31.........D28

ÁÁÁ
ÁÁÁ

D27
ÁÁ
ÁÁ

D26
ÁÁÁ
ÁÁÁ

D25
ÁÁÁ
ÁÁÁ

D24
ÁÁÁ
ÁÁÁ

D23
ÁÁÁ
ÁÁÁ

D22
ÁÁÁ
ÁÁÁ

D21
ÁÁÁ
ÁÁÁ

D20..D18
ÁÁÁ
ÁÁÁ

D17
ÁÁÁ
ÁÁÁ

D16
ÁÁÁÁÁ
ÁÁÁÁÁ

D15....................D0

.WORD 0A00h,0001h ;RESET OP1 ON 0001H VIRT2,INV ACTION ON ZERO VIRT2

CMD/DEF 7: STANDARD COMPARE COMMAND ON VIRTUAL TIMER 1 (1 TS)

SET OP2 ON VIRTUAL TIMER 1 VALUE = 0001H

ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved ÁÁÁ
ÁÁÁ

EN ÁÁ
ÁÁ

IRÁÁÁ
ÁÁÁ

RAÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

ST ÁÁÁ
ÁÁÁ

CA ÁÁÁ
ÁÁÁ

Pin
SelectÁÁÁ
ÁÁÁ

ICÁÁÁ
ÁÁÁ

NX ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare Value

ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0 Á
Á

0ÁÁ
ÁÁ

1ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

0001h

ÁÁÁÁÁ
ÁÁÁÁÁ

D31.........D28 ÁÁÁ
ÁÁÁ

D27 ÁÁ
ÁÁ

D26ÁÁÁ
ÁÁÁ

D25ÁÁÁ
ÁÁÁ

D24ÁÁÁ
ÁÁÁ

D23ÁÁÁ
ÁÁÁ

D22ÁÁÁ
ÁÁÁ

D21 ÁÁÁ
ÁÁÁ

D20..D18ÁÁÁ
ÁÁÁ

D17ÁÁÁ
ÁÁÁ

D16ÁÁÁÁÁ
ÁÁÁÁÁ

D15....................D0

.WORD 0824h,0001h ;SET OP2 ON 0001H VIRT1

CMD/DEF 8: STANDARD COMPARE COMMAND ON VIRTUAL TIMER 1 (1 TS)

RESET OP2 ON VIRTUAL TIMER 1 VALUE = 0000H
ÁÁÁÁÁ
ÁÁÁÁÁReserved

ÁÁÁ
ÁÁÁEN
ÁÁ
ÁÁIR
ÁÁÁ
ÁÁÁRA
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁST
ÁÁÁ
ÁÁÁCA
ÁÁÁ
ÁÁÁ

Pin
Select
ÁÁÁ
ÁÁÁIC
ÁÁÁ
ÁÁÁNX
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare ValueÁÁ

ÁÁ0
ÁÁ
ÁÁ0
ÁÁ
ÁÁ0
ÁÁ
ÁÁ0
ÁÁÁ
ÁÁÁ1
ÁÁ
ÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁ
ÁÁ0
Á
Á0
ÁÁ
ÁÁ1
ÁÁÁ
ÁÁÁ0
ÁÁÁ
ÁÁÁ0
ÁÁÁÁÁ
ÁÁÁÁÁ0000hÁÁÁÁÁ

ÁÁÁÁÁ
D31.........D28

ÁÁÁ
ÁÁÁ

D27
ÁÁ
ÁÁ

D26
ÁÁÁ
ÁÁÁ

D25
ÁÁÁ
ÁÁÁ

D24
ÁÁÁ
ÁÁÁ

D23
ÁÁÁ
ÁÁÁ

D22
ÁÁÁ
ÁÁÁ

D21
ÁÁÁ
ÁÁÁ

D20..D18
ÁÁÁ
ÁÁÁ

D17
ÁÁÁ
ÁÁÁ

D16
ÁÁÁÁÁ
ÁÁÁÁÁ

D15....................D0

.WORD 0804h,0000h ;RST OP2 ON 0000H VIRT2

The step mode sequence is as follows: dummy command 1 -> dummy command 2 -> virtual timer 1 -> std
comp 11 -> std comp 12 -> virtual timer 2 -> std comp21 -> std comp 22 -> dummy command 1 ...

Specify (in the peripheral file frame) the address of the first command to be executed in the start address
register (P041) and the address of the last command to be executed in the end address register (P042).

In step mode, each scan takes four resolutions. The precision is still equal to the resolution, but the timers
are incremented differently (see timing diagram below).

Figure 14. PACT Timing Diagram

PACT RESOLUTION

CMD/DEF SCAN

VIRTUAL TIMER1

VIRTUAL TIMER2

OP1

OP2

425

Using the PACT Step Node Routine

;**

; START END ADDRESS DEFINITION

;**

STARTAD .EQU 01EFH

PACTPRI .EQU P04F ; Global function control register

CDSTART .EQU P041 ; Command/definition area start register

CDEND .EQU P042 ; Command/definition area end register

CPCTL3 .EQU P04C ; Set Up CP control register 3

ENDAD .EQU 01D0H

CPPRE .EQU P04D ; CP input control register

;**

; INIT PACT PERIPHERAL FRAME

;**

DEBUT

 OR #003H,PACTPRI ;DISABLE WATCHDOG, MODE A

 MOV #(STARTAD-0100H-080H),CDSTART ;START AD, CMD/DEF INT DIS

 MOV #(ENDAD-0100H+04H),CDEND ;END AD
 MOV #012H,PACTSCR ;SYSCLK DIVIDED BY 3 =>
 ;RESOL=600ns AT 20MHz

;**

; MAIN PGM

;**

MAIN

 OR #020H,PACTSCR ;ENABLE PACT CMD/DEF AREA

 JMP $;LOOP MAIN PGM

;**

; INIT PACT CMD/DEF AREA

;**

 .sect “CMDEF”,(ENDAD) ;CMD/DEF SECTION PROGRAM

 .WORD 0804h,0000h ;RST OP2 ON 0000H VIRT2

 .WORD 0824h,0000h ;SET OP2 ON 0000H VIRT1

 .WORD 0A00h,0001h ;SET OP1 ON 0001H,INV ON ZERO VIRT2

 .WORD 0A00h,0001h ;SET OP1 ON 0001H,INV ON ZERO VIRT1

 .WORD 0004h,0000h ;VIRT2 MAX VALUE = 0002H

 .WORD 0004h,0000h ;VIRT1 MAX VALUE = 0002H

 .WORD 0001h,0000h ;NEXT IS A DEF

 .WORD 0040h,0000h ;STEP ENABLE

426

Programming The PACT SCI
Programming the PACT SCI is very simple. First, define a special SCI timer definition in the CMD/DEF
area in order to set the appropriate baud rate for receive and/or transmit mode. In this example, we are using
the same baud rate for receive and transmit.

PWM Application Requirements

• Transmission and reception of 055h at 9600 baud

• Txd and rxd are connected together

PACT Configuration

PACT RESOLUTION = 1�s => SYSCLK / 5

CMD/DEF CONFIG: 1 dummy next def , 1 sci timer def , 1 sdt cmp on op1

SCI TIMER MAX VALUE=ERROR!

=> for baud rate = 9600 with resolution = 1 �s the SCI timer max value = 24 (18h).

The standard compare cmd sets OP1 on ERROR! and reset on zero to show the timer activity.

BUFFER NOT USED (MIN), NO CAPTURE => MODE A => START ADDRESS = 01EFh

3 CMD/DEF => END ADDRESS = START ADDRESS - (4 x NB CMD/DEF) + 1 = 01E4h

PACT Command/Definition Initialization

CMD/DEF 1:DUMMY STANDARD COMPARE COMMAND ON DEFAULT TIMER (1 TS)

USE ONLY TO IDENTIFY NEXT COMMAND AS A TIMER DEFINITION
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved

ÁÁÁ
ÁÁÁ
ÁÁÁ

EN

ÁÁ
ÁÁ
ÁÁ

IR

ÁÁÁ
ÁÁÁ
ÁÁÁ

RA

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

ST

ÁÁÁ
ÁÁÁ
ÁÁÁ

CA

ÁÁÁ
ÁÁÁ
ÁÁÁ

Pin
Select

ÁÁÁ
ÁÁÁ
ÁÁÁ

IC

ÁÁÁ
ÁÁÁ
ÁÁÁ

NX

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare Value

ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁ
ÁÁ

0 Á
Á

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

1 ÁÁÁÁÁ
ÁÁÁÁÁ

0000h

ÁÁÁÁÁD31.........D28 ÁÁÁD27 ÁÁD26ÁÁÁD25ÁÁÁD24ÁÁÁD23ÁÁÁD22ÁÁÁD21 ÁÁÁD20..D18ÁÁÁD17ÁÁÁD16ÁÁÁÁÁD15....................D0

.WORD 00001H,00000H ;NEXT IS A TIMER DEFINITION

CMD/DEF 3: SCI BAUD RATE TIMER DEFINITION (2 TS)

MAX VALUE = 0018H , D19 = 0

ÁÁÁÁÁÁÁÁÁÁÁMaximum Virtual Timer Value ÁÁÁRNÁÁÁÁRX ÁÁÁTX ÁÁÁ“1” ÁÁÁÁÁÁÁVirtual Timer value ÁÁÁ0ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

00c
ÁÁÁ
ÁÁÁ

0
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁ
ÁÁÁ

1
ÁÁÁ
ÁÁÁ

“1”
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0000
ÁÁÁ
ÁÁÁ

“0”
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

D31..................................D23ÁÁÁÁÁ
ÁÁÁÁÁ

D22...........D20ÁÁÁ
ÁÁÁ

D19 ÁÁÁÁ
ÁÁÁÁ

D18 ÁÁÁ
ÁÁÁ

D17 ÁÁÁ
ÁÁÁ

D16 ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

D15..................................D1ÁÁÁ
ÁÁÁ

D0

.WORD 00c7h,0000h ;VIRT1 MAX VALUE = 000cH

CMD/DEF 4: STANDARD COMPARE COMMAND ON VIRTUAL TIMER (1 TS)

SET OP1 ON VIRTUAL TIMER VALUE = 000cH (24/2=12)

INVERTED ACTION (RESET OP1) ON ZERO VIRT
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved

ÁÁÁ
ÁÁÁ
ÁÁÁ

EN

ÁÁ
ÁÁ
ÁÁ

IR

ÁÁÁ
ÁÁÁ
ÁÁÁ

RA

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

0

ÁÁÁ
ÁÁÁ
ÁÁÁ

ST

ÁÁÁ
ÁÁÁ
ÁÁÁ

CA

ÁÁÁ
ÁÁÁ
ÁÁÁ

Pin
Select

ÁÁÁ
ÁÁÁ
ÁÁÁ

IC

ÁÁÁ
ÁÁÁ
ÁÁÁ

NX

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

Timer
Compare Value

ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

1ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

1 ÁÁ
ÁÁ

0 Á
Á

0ÁÁ
ÁÁ

0ÁÁÁ
ÁÁÁ

0ÁÁÁ
ÁÁÁ

0 ÁÁÁÁÁ
ÁÁÁÁÁ

000Ch

ÁÁÁÁÁD31.........D28 ÁÁÁD27 ÁÁD26ÁÁÁD25ÁÁÁD24ÁÁÁD23ÁÁÁD22ÁÁÁD21 ÁÁÁD20..D18ÁÁÁD17ÁÁÁD16ÁÁÁÁÁD15....................D0

.WORD 0A20h,000Ch ;SET OP1 ON 000CH VIRT,INV ACTION ON ZERO VIRT

427

Programming the PACT SCI Routine

;It is necessary to connect TXD and RXD together to perform this application.

 .TEXT 7000H

 .global deb

;**

; START END ADDRESS DEFINITION

;**

STARTAD .EQU 01EFH

PACTPRI .EQU P04F ; Global function control register

CDSTART .EQU P041 ; Command/definition area start register

CDEND .EQU P042 ; Command/definition area end register

PACTSCR .EQU P040 ; Setup control register

ENDAD .EQU 01E4H

SCICTLP .EQU P045 ; PACT/SCI control register

RXBUFP .EQU P046 ; PACT/SCI RX data register

TXBUFP .EQU P047 ; PACT/SCI TX data register

;**

; INIT PACT PERIPHERAL FRAME

;**

DEBUT

;...

 OR #003H,PACTPRI ;DISABLE WATCHDOG, MODE A

 MOV #010H,B ;INIT STACK POINTER

 LDSP

 MOV #(STARTAD-0100H-080H),CDSTART ;START AD, CMD/DEF INT DIS

 MOV #(ENDAD-0100H),CDEND ;END AD

 MOV #014H,PACTSCR ;SYSCLK DIVIDED BY 5 =>
 ;RESOL=1us AT 20MHz

 MOV #00CH,SCICTLP ;ENABLE SCI RECEIVE AND TRANSMIT
 ;INT T

;...

;**

; MAIN PGM

;**

MAIN

 OR #020H,PACTSCR ;ENABLE PACT CMD/DEF AREA

 EINT ;ENABLE INTERRUPT TO START SCI TRANSMISSION

 ;ON

428

 JMP $;LOOP MAIN PGM

;**

; INTERRUPT SCI TRANSIT

;**

ITTXD

 MOV #055H,TXBUFP ;LOAD DATA TRANSMIT = 055H IN TRANSMIT BUFFER

 RTI

;**

; INTERRUPT SCI RECEIVE

;**

ITRXD

 MOV RXBUFP,A ;READ SCI RECEIVE BUFFER

 CMP #055H,A ;TEST IF RECEPTION OK

 JNZ ERROR

 RTI

ERROR

 DINT ;DISABLE INT TO STOP TRANSMISSION IN CASE OF ERROR.

 JMP $

;**

; SCI INTERRUPT VECTOR

;**

 .sect “VECTSC8I”,07F9CH ;SCI INTERRUPT VECTORS

 .WORD ITTXD ;SCI TRANSMIT VECTOR

 .WORD ITRXD ;SCI RECEIVE VECTOR

;**

; INIT PACT CMD/DEF AREA

;**

 .sect “CMDEF”,(ENDAD) ;CMD/DEF SECTION PROGRAM

 .WORD 0A20h,000Ch ;SET OP1 ON 000CH VIRT,INV ACTION ON ZERO VIRT

 .WORD 00C7h,0000h ;VIRT1 MAX VALUE = 000cH

 .WORD 0001h,0000h ;NEXT IS A DEF

429

Appendix

Figure 15. PACT Timing Diagram

Time Slot

Resolution

1 2 4 6 N3 5 7

Actions from those
commands within 1 to N

with EVEN compare values

Start Scan

Scan

8

1 2 3 4 5 6 7 8 N

Time Base (default timer)

Commands Reads

Internal Actions

n n+1

Actions

from

those

commands within 1 to N
with ODD compare values

PACT Prescaled Clock

CPU System Clock

PACT Output Pins Actions

Figure 16. PACT Dual Port Ram Mapping

Mode A Mode B

0180h

Cmd
End

01F4h

01F8h

01FCh

General Purpose RAM

Command/Definition Area

Circular Buffer

Event Cnt

Event Cnt

Event Image

Capture by CP2

Capture by CP1

20 Bit Timer Image

01F3h

01F7h

01F8h

01FFh

Cmd
Start

0180h

Cmd
End

General Purpose RAM

Command/Definition Area

Circular Buffer

Cmd
Start

Event Cnt

Event Cnt

Event Image

Capture by CP2

Capture by CP1

20 Bit Timer Image

Event Cnt

Event Cnt

Capture by CP4

Capture by CP3

01F4h

01F8h

01FCh

01F3h

01F7h

01F8h

01FFh

01ECh

01F0h

01EBh

01EFh

430

PACT Input Capture Structure

Figure 17. Organization of the Capture Registers and the
Circular Buffer in Dual Port RAM

Dedicated Capture Register 1
Dedicated Capture Register 2
Dedicated Capture Register 3
Dedicated Capture Register 4

Circular Buffer
(32 Bit Captures)

8 Bit Event Counter

20 Bit Timer / Counter

CP1
CP2

CP3

CP4

CP5

CP6

Mode

Event Only

3
B

it
P

re
sc

al
e

PACT Prescaled Clock

431

Command And Definition Area

Virtual Timer Definition

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Maximum Virtual Timer Value ÁÁÁ
ÁÁÁ

RNÁÁÁÁ
ÁÁÁÁ

EN ÁÁÁ
ÁÁÁ

INT ÁÁÁ
ÁÁÁ

“0” ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Virtual Timer Value ÁÁÁ
ÁÁÁ

“0”

ÁÁÁÁÁÁÁD31..................................D23ÁÁÁÁÁD22...........D20ÁÁÁD19ÁÁÁÁD18 ÁÁÁD17 ÁÁÁD16ÁÁÁÁÁÁÁD15..................................D1ÁÁÁD0

Requires two time slots.

D0 = 0
01F3h D0 must be written as 0 to get a valid timer definition.

D1–15 Virtual timer value
Provides the most significant 15 bits of a 16-bit virtual timer. The LSB D0 is invisible
at this location but available for any command acting on this timer.

D16 = 0
D16 must be written as 0 to get a valid timer definition.

D17 Interrupt on 0 (INT)
Active = 1. Interrupt when the virtual timer (D1–15) is reset to zero or compare valid.

D18 Enable bit (EN)
Active = 1. Enables the timer update. Used to stop and start the timer.

D19 Range bit (RN)
used in conjunction with D20–22 to define the maximum value.

D20–22 Define a further three bits of the maximum count for the virtual timer.
Either D13, 14, or 15 of the virtual timer if the range bit = 1, or D1, 2, or 3 if the precision
bit = 0. The undefined bits of the maximum count for the virtual timer are set to 1 if the
range bit =1, or set to 0 if the range bit = 0.

D23–31 Sets the radical of the maximum count of the virtual timer.
Used with D20–22 to specify the maximum count of the virtual timer: when the virtual
timer reaches the defined count, it will be cleared two prescaler clock cycle later.

Virtual Timer Timeout = (Maximum Value Defined + 2) x Resolution

Maximum Value Format with Range Bit D19 = 0

ÁÁÁ0 ÁÁÁ0 ÁÁ0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁD31.................................D23 = 9 Bit Radical ÁÁÁD22ÁÁÁD21ÁÁÁD20ÁÁÁ0

Maximum Value Format with Range Bit D19 = 1

ÁÁÁ
ÁÁÁ

D22ÁÁÁ
ÁÁÁ

D21 ÁÁ
ÁÁ

D20ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

D31.................................D23 = 9 Bit Radical ÁÁÁ
ÁÁÁ

1ÁÁÁ
ÁÁÁ

1 ÁÁÁ
ÁÁÁ

1 ÁÁÁ
ÁÁÁ

0

432

SCI Baud Rate Timer Definition

ÁÁÁÁÁÁÁÁÁÁÁMaximum Virtual Timer Value ÁÁÁRNÁÁÁRX ÁÁÁTX ÁÁ1ÁÁÁÁÁÁÁÁVirtual Timer value ÁÁÁ0ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

D31................................D23
ÁÁÁÁÁ
ÁÁÁÁÁ

D22..........D20
ÁÁÁ
ÁÁÁ

D19
ÁÁÁ
ÁÁÁ

D18
ÁÁÁ
ÁÁÁ

D17
ÁÁ
ÁÁ

D16
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

D15................................D1
ÁÁÁ
ÁÁÁ

D0

Requires two time slots.

D0 = 0 D0 must be written as 0 to get a valid timer definition

D1–15 Baud rate timer
Provides the most significant 15 bits of a 16-bit virtual timer used as the baud rate
generator.

D16 = 1
D16 must be written as 1 to get a valid timer definition.

D17 Transmit select (TX)
Active = 1. Selects this timer definition to be used for the transmit baud rate generator.

D18 Receive select (RX)
Active = 1. Selects this timer definition to be used for the receive baud rate generator.

D19 Range bit (RN)
Used in conjunction with D20–22.

D20–22 Define a further three bits of the maximum count of the virtual timer.
Either D13, 14, or 15 of the virtual timer if the range bit = 1, or D1, 2, or 3 if the range
bit = 0. The undefined bits of the maximum count for the virtual timer are set to 1 if range
bit =1, or to set to 0 if the range bit = 0.

D23–31 Sets the radical of the maximum count of the virtual timer.
Used with D20–22 to specify the maximum count of the virtual timer - When the virtual
timer reaches the defined count, it will be cleared two prescaler clock cycles later.

Maximum Virtual Timer Value =
1

4 x Baud Rate x Resolution
– 2

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Maximum Value Format with Range Bit D19 = 0
ÁÁÁ
ÁÁÁ

0 ÁÁÁ
ÁÁÁ

0 ÁÁ
ÁÁ

0ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

D31.................................D23 = 9 Bit Radical ÁÁ
ÁÁ

D22ÁÁÁ
ÁÁÁ

D21ÁÁÁ
ÁÁÁ

D20ÁÁÁ
ÁÁÁ

0

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Maximum Value Format with Range Bit D19 = 1

ÁÁÁ
ÁÁÁ

D22ÁÁÁ
ÁÁÁ

D21 ÁÁ
ÁÁ

D20ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

D31.................................D23 = 9 Bit Radical ÁÁ
ÁÁ

1ÁÁÁ
ÁÁÁ

1ÁÁÁ
ÁÁÁ

1ÁÁÁ
ÁÁÁ

0

433

Offset Timer Definition - Time From Last Event

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Maximum Event
Counter Value

ÁÁÁ
ÁÁÁIE
ÁÁÁ
ÁÁÁDC
ÁÁÁ
ÁÁÁVC
ÁÁÁ
ÁÁÁRD
ÁÁÁ
ÁÁÁHC
ÁÁÁ
ÁÁÁEN
ÁÁÁ
ÁÁÁIM
ÁÁ
ÁÁST
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Virtual Timer Offset
Value

ÁÁÁ
ÁÁÁ“1”ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
D31.........................D24

ÁÁÁ
ÁÁÁ

D23
ÁÁÁ
ÁÁÁ

D22
ÁÁÁ
ÁÁÁ

D21
ÁÁÁ
ÁÁÁ

D20
ÁÁÁ
ÁÁÁ

D19
ÁÁÁ
ÁÁÁ

D18
ÁÁÁ
ÁÁÁ

D17
ÁÁ
ÁÁ

D16
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

D15......................D1
ÁÁÁ
ÁÁÁ

D0

Requires two time slots if bit D21=0. Requires three time slots if bit D21=1.

D0 = 1
D0 must be written as 1 to get a valid timer definition.

D1–15 Virtual timer offset value
Provides the most significant 15 bits of a 16-bit virtual timer offset. This timer can be
automatically reset to zero on every event on pin CP6 if inhibit clear = 0 (see caution on
this page).

D16 Step (ST)
Active = 1. Allows lower resolution on following commands .

D17 Interrupt on maximum event (IM)
Active = 1. Interrupt when event counter reaches the maximum value (D24–31)

D18 Enable (EN)
Active = 1. Enables the timer update. Used to stop and start the timer.

D19 Inhibit clear (HC)
Active = 1. When this bit is set, the virtual offset timer defined will not be reset to zero
when an event (CP6) occurs. If this bit is cleared, the virtual offset timer will be
automatically reset to zero on every event on CP6.

D20 Reset default timer (RD)
Active = 1. Clear default timer when event counter reaches the maximum value
(D24–31).

D21 Virtual capture (VC)
Active = 1. Stores every CP6 event in the circular buffer of the 16-bit virtual offset timer
(defined above) before clearing the virtual offset timer.

D22 Default capture (DC)
Active = 1. Captures 32-bit data in the circular buffer when the event counter reaches the
maximum value (D24–31).

D23 Interrupt on event (IE)
Active =1. Sets the interrupt flag when an event occurs on pin CP6.

D24–31 Event counter maximum value
Specifies a maximum for the event counter. On reaching this value the event counter will
be reset to zero by the next event on CP6.

CAUTION: If a virtual timer value (field D1.......D15) has to be loaded by the CPU, the timer
must be stopped first with enable bit D18 = 0 and then restarted with D18 = 1. Trying to load
a virtual timer value by the CPU while the timer is running may fail.

434

Standard Compare Command

ÁÁÁÁÁ
ÁÁÁÁÁ

Reserved
ÁÁ
ÁÁ

EN
ÁÁÁ
ÁÁÁ

IR
ÁÁÁ
ÁÁÁ

RA
ÁÁÁ
ÁÁÁ

”0”
ÁÁÁ
ÁÁÁ

”0”
ÁÁÁ
ÁÁÁ

ST
ÁÁÁ
ÁÁÁ

CA
ÁÁÁ
ÁÁÁ

Pin
Select
ÁÁÁ
ÁÁÁ

IC
ÁÁ
ÁÁ

NX
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Timer
Compare Value

ÁÁÁÁÁ
ÁÁÁÁÁ

D31.........D28 ÁÁ
ÁÁ

D27ÁÁÁ
ÁÁÁ

D26ÁÁÁ
ÁÁÁ

D25ÁÁÁ
ÁÁÁ

D24ÁÁÁ
ÁÁÁ

D23ÁÁÁ
ÁÁÁ

D22 ÁÁÁ
ÁÁÁ

D21 ÁÁÁ
ÁÁÁ

D20..D18ÁÁÁ
ÁÁÁ

D17ÁÁ
ÁÁ

D16ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

D15....................D0

Requires one time slot.

D0–15 Timer compare value
Provides a 16-bit timer compare value. This timer value is either the last virtual timer
defined above this command in the command/definition area or, if no virtual timer has
been defined, the default timer (reference timer).

D16 Next command is a definition (NX)
Active = 1. Indicates that the entry in the command/definition area is a definition.

D17 Interrupt on compare (IC)
Active = 1. Interrupt when the compare value (D0...D15) is matched by the reference
timer.

D18–20 Pin selection
Selects the output pin that will be modified when the compare value is matched. The pin
number is the binary value of the bits D31, D20, D19, or D18 plus 1.

D21 Compare action (CA)
Sets or resets the pin defined by pin selection/pin offset when the compare value is
matched by the reference timer (set = 1, clear = 0).

D22 Step (ST)
Active = 1. Allows lower resolution on following commands.

D23–24 = 0
These bits must be written as 0 to get a valid command.

D25 Reset action (RA)
Sets or resets the selected output pin as defined by pin selection, when the reference timer
is reset to zero.

1 = When the reference timer is zero, execute the opposite action.
0 = No action when the reference timer is zero.

D26 Interrupt on reset (IR)
Active = 1. Causes an interrupt when the reference timer is reset to zero.

D27 Enable pin (EN)
Active = 1. Enables output pin actions on this command.

D28–31 Reserved.

435

Conditional Compare Command

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Event Counter
Compare Value

ÁÁÁ
ÁÁÁ

”1”
ÁÁÁ
ÁÁÁ

SA
ÁÁÁ
ÁÁÁ

CA
ÁÁÁÁ
ÁÁÁÁ

Pin Select
ÁÁÁ
ÁÁÁ

IC
ÁÁÁ
ÁÁÁ

NX
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Timer
Compare Value

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

D31.............................D24ÁÁÁ
ÁÁÁ

D23ÁÁÁ
ÁÁÁ

D22ÁÁÁ
ÁÁÁ

D21ÁÁÁÁ
ÁÁÁÁ

D20..........D18ÁÁÁ
ÁÁÁ

D17ÁÁÁ
ÁÁÁ

D16ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

D15..D0

Requires one time slot.

D0–15 Timer compare value
Provides a 16-bit timer compare value. This timer value is compared to either the last
virtual timer defined above this command in the command/definition area or, if no virtual
timer has been defined, the default timer (reference timer). The value written by the user
must be greater than 1.

D16 Next command is a definition (NX)
Active = 1. Indicates that the next entry in the command/definition area is a definition.

D17 Interrupt on compare (IC)
Active = 1. Interrupts when the timer compare value (D0–15) is matched by the reference
timer value and the event compare value (D24–31) is matched by the event counter or
(if D22 = 1) the event counter reaches the event compare value (D24–31) plus 1.

D18–20 Pin selection
Selects an output pin whose state is modified when the compare value is matched. The
pin number is the binary value of D20–18 plus 1, except the binary value 111, which
disables any pin action. Therefore, OP8 is not available for this command.

D21 Compare action (CA)
Sets or resets the pin defined by pin selection when both compare values are matched
by the reference timer and the event counter. These actions occur with a delay of two
resolutions (set = 1, clear = 0).

D22 Same action (SA)
Active = 1. Same action as compare action, when the event counter reaches the event
compare value plus 1. This allows action on the next event if the timer and event never
match.

If same action = 0, there will be no action on event compare plus one.

D23 = 1
D23 must be written as 1 to get a valid command

D24–31 Event compare value
Sets an 8-bit value which is compared with the 8-bit event counter. The actions selected
by this command will occur under either of the following conditions:

• The event compare value matches the value of the event counter, and the timer
compare value matches the reference timer value.

• The same action active bit is set, and the event counter matches the event compare
value plus 1.

436

Double Event Compare Command
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Reserved

ÁÁ
ÁÁ
ÁÁ

2C

ÁÁ
ÁÁ
ÁÁ

1C

ÁÁÁ
ÁÁÁ
ÁÁÁ

2R

ÁÁ
ÁÁ
ÁÁ

EP

ÁÁ
ÁÁ
ÁÁ

I2

ÁÁÁ
ÁÁÁ
ÁÁÁ

A2

ÁÁ
ÁÁ
ÁÁ

”0”

ÁÁÁ
ÁÁÁ
ÁÁÁ

”1”

ÁÁ
ÁÁ
ÁÁ

ST

ÁÁ
ÁÁ
ÁÁ

A1

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Pin
Select

ÁÁ
ÁÁ
ÁÁ

I1

ÁÁÁ
ÁÁÁ
ÁÁÁ

NX

ÁÁÁ
ÁÁÁ
ÁÁÁ

Event 2
Comp.
Value

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

Event 1
Comp.
Value

ÁÁÁÁ
ÁÁÁÁ

D31 ÁÁ
ÁÁ

D30ÁÁ
ÁÁ

D29ÁÁÁ
ÁÁÁ

D28ÁÁ
ÁÁ

D27ÁÁ
ÁÁ

D26ÁÁÁ
ÁÁÁ

D25ÁÁ
ÁÁ

D24ÁÁÁ
ÁÁÁ

D23ÁÁ
ÁÁ

D22ÁÁ
ÁÁ

D21ÁÁÁÁ
ÁÁÁÁ

D20...D18ÁÁ
ÁÁ

D17ÁÁÁ
ÁÁÁ

D16ÁÁÁ
ÁÁÁ

D15.....D8ÁÁÁÁ
ÁÁÁÁ

D7.......D0

Requires one time slot.
D0–D7 Event 1

Sets an 8-bit value which, when matched by the 8-bit event counter, causes the action
defined by D17, D21, and D29.

D8–15 Event 2
Sets an 8-bit value which, when matched by the 8-bit event counter, causes the associated
action defined by D25, D26, D28 and D30.

D16 Next command is a definition (NX)
Active = 1. Indicates that the next entry in the command/definition area will be a
definition.

D17 Interrupt on compare 1 (I1)
Active = 1. Interrupt when the event 1 compare value is matched by the event counter.

D18–20 Pin selection
Selects the output pin where state will be modified when the compare value is matched.
The pin number is the binary value of the bits D20 to 18 + 1 (20 = LSB, 18 = MSB)

D21 Compare action 1 (A1)
Sets or resets the output pin defined by pin selection/pin offset when the event 1 compare
value (D0–D7) is matched by the event counter. These actions occur with a delay of three
resolutions (set = 1, clear = 0).

D22 Step (ST)
Active = 1 Allows lower resolution on the following commands:

D23 = 0
D23 must be written as 0 to get a valid command.

D24 = 1
D24 must be written as 1 to get a valid command.

D25 Compare action 2 (A2)
No action = 0. Inverted action = 1. Sets or resets the pin defined by pin selection/pin
offset when the event 2 compare value (D8–D15) is matched by the event counter.

D26 Interrupt on compare 2 (I2)
Active = 1. Causes an interrupt when event 2 occurs.

D27 Enable pin (EP)
Active = 1. Enables output pin actions for this command.

D28 Event 2 default timer reset (2R)
Active = 1. Resets the default timer when event 2 occurs.

D29 Event 1 default timer capture (1C)
Active = 1. Stores 32-bit data in the circular buffer when event 1 occurs.

D30 Event 2 default timer capture (2C)
Active = 1. Stores 32-bit data in the circular buffer when event 2 occurs.

D31 Reserved.

437

PACT Control Registers
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁBit 7

ÁÁÁÁ
ÁÁÁÁBit 6

ÁÁÁÁ
ÁÁÁÁBit 5

ÁÁÁÁ
ÁÁÁÁBit 4

ÁÁÁÁ
ÁÁÁÁBit 3

ÁÁÁÁ
ÁÁÁÁBit 2

ÁÁÁÁ
ÁÁÁÁBit 1

ÁÁÁÁÁ
ÁÁÁÁÁBit 0

Á
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

PACTSCR
P040

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

DEFTIM
OVRFL

INT ENA

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

DEFTIM
OVRFL

INT FLAG

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CMD/DEF
AREA
ENA

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

FAST
MODE

SELECT

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
PRESCALE
SELECT3

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
PRESCALE
SELECT2

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
PRESCALE
SELECT1

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

PACT
PRESCALE
SELECT0

Á
Á
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CDSTART
P041

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CMD/DEF
AREA

INT ENA

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

-

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CMD/DEF
AREA
START
BIT 5

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CMD/DEF
AREA
START
BIT 4

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CMD/DEF
AREA
START
BIT 3

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CMD/DEF
AREA
START
BIT 2

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

-

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

-

Á
Á
Á
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CDEND
P042

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

-
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CMD/DEF
AREA
END
BIT 6

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CMD/DEF
AREA
END
BIT 5

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CMD/DEF
AREA
END
BIT 4

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CMD/DEF
AREA
END
BIT 3

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CMD/DEF
AREA
END
BIT 2

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

-
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

-
Á
Á
Á
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

BUFPTR
P043 ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

1 ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

BUFFER
POINTER

BIT 5

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

BUFFER
POINTER

BIT 4

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

BUFFER
POINTER

BIT 3

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

BUFFER
POINTER

BIT 2

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

BUFFER
POINTER

BIT 1

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

- Á
Á
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

SCICTLP
P045
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
SCI

RXRDY

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
SCI

TXRDY

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
SCI

PARITY

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
SCI
FE

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
SCI RX
INT ENA

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
SCI TX

INT ENA

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

- ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

PACT
SCI SW
RESET

Á
Á
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

RXBUFP
P046
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
SCI

RXDT7

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
SCI

RXDT6

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
SCI

RXDT5

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
SCI

RXDT4

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
SCI

RXDT3

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
SCI

RXDT2

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
SCI

RXDT1

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

PACT
SCI

RXDT0

Á
Á
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

TXBUFP
P047
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
SCI

TXDT7

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
SCI

TXDT6

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
SCI

TXDT5

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
SCI

TXDT4

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
SCI

TXDT3

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
SCI

TXDT2

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
SCI

TXDT1

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

PACT
SCI

TXDT0

Á
Á
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

OPSTATE
P048
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
OP8

STATE

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
OP7

STATE

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
OP6

STATE

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
OP5

STATE

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
OP4

STATE

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
OP3

STATE

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
OP2

STATE

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

PACT
OP1

STATE

Á
Á
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

CDFLAGS
P049
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CMD/DEF
INT 7
FLAG

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CMD/DEF
INT 6
FLAG

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CMD/DEF
INT 5
FLAG

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CMD/DEF
INT 4
FLAG

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CMD/DEF
INT 3
FLAG

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CMD/DEF
INT 2
FLAG

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CMD/DEF
INT 1
FLAG

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

CMD/DEF
INT 0
FLAG

Á
Á
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

CPCTL1
P04A

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CP2
INT ENA

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CP2
INT FLAG

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CP2
CAPT

RISING
EDGE

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CP2
CAPT

FALLING
EDGE

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CP1
INT ENA

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CP1
INT FLAG

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CP1
CAPT

RISING
EDGE

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

CP1
CAPT

FALLING
EDGE

Á
Á
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CPCTL2
P04B

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CP4
INT ENA

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CP4
INT FLAG

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CP4
CAPT

RISING
EDGE

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CP4
CAPT

FALLING
EDGE

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CP3
INT ENA

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CP3
INT FLAG

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CP3
CAPT

RISING
EDGE

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

CP3
CAPT

FALLING
EDGE

Á
Á
Á
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CPCTL3
P04C

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CP6
INT ENA

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CP6
INT FLAG

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CP6
CAPT

RISING
EDGE

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CP6
CAPT

FALLING
EDGE

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CP5
INT ENA

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CP5
INT FLAG

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CP5
CAPT

RISING
EDGE

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

CP5
CAPT

FALLING
EDGE

Á
Á
Á
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

CPPRE
P04D

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

BUFFER
HALF/
FULL

INT ENA

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

BUFFER
HALF/
FULL

INT FLAG

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

INPUT
CAPT

PRESCALE
SELECT 3

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

INPUT
CAPT

PRESCALE
SELECT 2

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

INPUT
CAPT

PRESCALE
SELECT 1

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

CP6
EVENT
ONLY

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

EVENT
COUNTER

SW
RESET

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

OP/
SET/CLR
SELECT

Á
Á
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

WDRST
P04E

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
WD KEY

BIT 7

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
WD KEY

BIT 7

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
WD KEY

BIT 7

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
WD KEY

BIT 7

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
WD KEY

BIT 7

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
WD KEY

BIT 7

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
WD KEY

BIT 7

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

PACT
WD KEY

BIT 7

Á
Á
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

PACTPRI
P04F

PACT
STEST

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

PACT
SUSPEND

PACT
GROUP 1
PRIORITY

PACT
GROUP 2
PRIORITY

PACT
GROUP 3
PRIORITY

PACT
MODE

SELECT

PACT WD
PRESCALE
SELECT 1

PACT WD
PRESCALE
SELECT 0

Á
Á
ÁÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

Á
Á

438

Interrupt Vector Sources

ÁÁÁÁ
ÁÁÁÁ

MODULEÁÁÁÁÁ
ÁÁÁÁÁ

VECTOR
ADDRESS

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

INTERRUPT
SOURCE

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

INTERRUPT
FLAG

ÁÁÁÁÁ
ÁÁÁÁÁ

SYSTEM
INTERRUPT

ÁÁÁÁ
ÁÁÁÁ

PRIORITY
IN GROUPÁÁÁÁ

ÁÁÁÁ
PACT
ÁÁÁÁÁ
ÁÁÁÁÁ

7FB0h,7FB1h
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

PACT Circular Buffer
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

BUFF INT FLAG
ÁÁÁÁÁ
ÁÁÁÁÁ

BUFINT
ÁÁÁÁ
ÁÁÁÁ

1
ÁÁÁÁ
ÁÁÁÁ

(Group 1)
ÁÁÁÁÁ
ÁÁÁÁÁ

7FB2h,7FB3h
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

PACT CP6 Edge
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CP6 INT FLAG
ÁÁÁÁÁ
ÁÁÁÁÁ

CP6INT
ÁÁÁÁ
ÁÁÁÁ

2
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

7FB4h,7FB5hÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

PACT CP5 Edge ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CP5 INT FLAGÁÁÁÁÁ
ÁÁÁÁÁ

CP5INT ÁÁÁÁ
ÁÁÁÁ

3

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

7FB6h,7FB7hÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

PACT CP4 Edge ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CP4 INT FLAGÁÁÁÁÁ
ÁÁÁÁÁ

CP4INT ÁÁÁÁ
ÁÁÁÁ

4

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

7FB8h,7FB9hÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

PACT CP3 Edge ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CP3 INT FLAGÁÁÁÁÁ
ÁÁÁÁÁ

CP3INT ÁÁÁÁ
ÁÁÁÁ

5

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

7FBAh,7FBBhÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

PACT CP2 Edge ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CP2 INT FLAGÁÁÁÁÁ
ÁÁÁÁÁ

CP2INT ÁÁÁÁ
ÁÁÁÁ

6

ÁÁÁÁÁÁÁÁÁ7FBCh,7FBDhÁÁÁÁÁÁÁPACT CP1 Edge ÁÁÁÁÁÁCP1 INT FLAGÁÁÁÁÁCP1INT ÁÁÁÁ7ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

7FBEh,7FBFh
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Default Timer
Overflow

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

DEFTIM OVRFL
INT FLAG

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

POVRFL
INT

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

8

ÁÁÁÁ
ÁÁÁÁ

PACT ÁÁÁÁÁ
ÁÁÁÁÁ

7F9Ch,7F9DhÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

PACT SCI TX INTÁÁÁÁÁÁ
ÁÁÁÁÁÁ

PACT TX RDYÁÁÁÁÁ
ÁÁÁÁÁ

PTXINT ÁÁÁÁ
ÁÁÁÁ

2

ÁÁÁÁ
ÁÁÁÁ

(Group 2)ÁÁÁÁÁ
ÁÁÁÁÁ

7F9Eh,7F9FhÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

PACT SCI RX INTÁÁÁÁÁÁ
ÁÁÁÁÁÁ

PACT RXRDYÁÁÁÁÁ
ÁÁÁÁÁ

PRXINT ÁÁÁÁ
ÁÁÁÁ

1

ÁÁÁÁ
ÁÁÁÁ

PACT
(Group 3)

ÁÁÁÁÁ
ÁÁÁÁÁ

7FA0h,7FA1hÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

PACT CMD/DEF
Entry 0

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMD/DEF INT 0
FLAG

ÁÁÁÁÁ
ÁÁÁÁÁ

CDINT 0 ÁÁÁÁ
ÁÁÁÁ

1

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

7FA2h,7FA3h
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

PACT CMD/DEF
Entry 1

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMD/DEF INT 1
FLAG

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

CDINT 1
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

2

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

7FA4h,7FA5hÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

PACT CMD/DEF
Entry 2

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMD/DEF INT 2
FLAG

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

CDINT 2 ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

3

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

7FA6h,7FA7hÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

PACT CMD/DEF
Entry 3

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMD/DEF INT 3
FLAG

ÁÁÁÁÁ
ÁÁÁÁÁ

CDINT 3 ÁÁÁÁ
ÁÁÁÁ

4

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

7FA8h,7FA9hÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

PACT CMD/DEF
Entry 4

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMD/DEF INT 4
FLAG

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

CDINT 4 ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

5

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

7FAAh,7FABhÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

PACT CMD/DEF
Entry 5

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMD/DEF INT 5
FLAG

ÁÁÁÁÁ
ÁÁÁÁÁ

CDINT 5 ÁÁÁÁ
ÁÁÁÁ

6

ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

7FACh,7FADh
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

PACT CMD/DEF
Entry 6

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMD/DEF INT 6
FLAG

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

CDINT 6
ÁÁÁÁ
ÁÁÁÁ
ÁÁÁÁ

7

ÁÁÁÁ
ÁÁÁÁ

ÁÁÁÁÁ
ÁÁÁÁÁ

7FAEh,7FAFhÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

PACT CMD/DEF
Entry 7

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMD/DEF INT 7
FLAG 7

ÁÁÁÁÁ
ÁÁÁÁÁ

CDINT 7 ÁÁÁÁ
ÁÁÁÁ

8

439

Part III
Module Specific

Application Design Aids

Part III contains six sections:

 RESET Operations 99.

 SPI and SCI Modules 105.

 Timer and Watchdog Modules 199.

 Analog to Digital Modules 309.

 PACT Module 375.

 I/O Pins 439.

440

441

Proper Termination of Unused I/O
Pins

Michael S. Stewart
Microcontroller Products — Semiconductor Group

Texas Instruments

442

443

Introduction

Occasionally, embedded microcontroller systems applications do not require the use of all the I/O pins
available on the chosen microcontroller. In this case, the design engineer must properly terminate all
unused I/O pins to ensure proper device operation. The main area of concern regarding proper pin
termination is power consumption in low-power modes (standby or halt). However, proper termination
techniques should be followed for applications that do not use low-power modes.

When a CMOS microcontroller enters a low-power mode, the internal nodes connected to the external pins
need to be biased in the logical high (VIH) or logical low (VIL) condition. When the internal nodes are biased
identically, there is little to no internal stray power consumption. An obvious solution to this requirement
is to configure the unused bidirectional I/O pins as outputs driving either a high (VOH) or low (VOL) value.
In this situation, no external circuitry is necessary.

However, if the external pins are not bidirectional but input only, they must be pulled high or low externally.
If any input pin is not externally biased but allowed to float, the internal nodes connected to this pin circuitry
will then be self-biased to either a logical high or low state. In this condition, current paths will be generated
allowing unwanted power consumption. This condition is normally called the ’floating nodes’ problem,
and the symptom that is most commonly seen when the device does not have any unused input pins
connected to VCC or VSS is that the low-power current will initially fall to the specified range but will
slowly climb into the multiple mA range. This condition is not destructive, but in a battery operated system
that is assuming a halt mode current drain of 30 µA or less, a multiple mA current consumption could
discharge the battery much sooner than expected.

NOTE:
When terminating unused I/O pins, good layout practices must be
implemented to reduce EMI emissions. Loop areas must be kept to a
minimum. Any components used for terminations must be kept as close to the
device as possible.

What to Do: Best Solution

The TMS370 family of microcontrollers have various types of pins. Some are input only some are
general-purpose bidirectional, and others are multiplexed module function and I/O pins. Without going into
a great degree of detail, the best overall solution for terminating unused I/O pins (bidirectional) is to
individually pull each pin low through a resistor (typically 10 kΩ or greater) as shown in Figure 1.

444

Figure 1. Best Solution for Terminating Unused I/O Pins:
Pull Low Through a Resistor

TMS370
Microcontroller
Unused pin

Note†

VSSD

10 kΩ
minimum

Note†: To reduce EMI emissions, keep the loop area as small as possible.

NOTE:
The above solution is the best recommendation for unused I/O
pins. Alternative solutions are presented in later sections,
however, potential problems outlined for each alternative
solution outweigh the potential cost savings of using one resistor.

Another system application that will generate the need to terminate an unused pin will be when an external
clock signal is driven in on the XTAL2/CLKIN pin. The associated XTAL1 pin should be connected as
illustrated in Figure 2.

445

Figure 2. Recommended Termination for the XTAL1 Pin When
Used in the Externally Driven Clock Mode.

TMS370
Microcontroller

XTAL1 pin

VSSD

50 pF
typical

Note†

Note†: To reduce EMI emissions, keep the loop area as small as possible.

What to Do: Alternative Solutions

Alternative solutions exist for terminating unused I/O pins. These consist of the following:

• Initialize bidirectional pins as output high (VOH) or output low (VOL).

• Tie all unused pins to ground via a common resistor.

One alternative solution is to initialize all unused bidirectional I/O pins as outputs. This option is not
available for input only pins. The main advantage of this solution is the zero added system cost. This
solution is ideal for applications that do not use low-power mode. It can be a problem, however, when
microcontrollers are subjected to harsh environments that contain violent electrical noise spikes. VCC and
VSS swings can cause the program counter of the microcontroller to be corrupted. For example, if this
condition occurs, pin initialization can be altered and code can be executed to cause the device to enter a
low-power mode. This can cause pins that were initialized as outputs to be changed to inputs, and the device
could enter a low-power mode. If the pins do not have any external biasing circuitry attached, a
‘floating-node’ condition could be created.

446

Figure 3. Alternate Solution for Terminating Unused I/O pins: Open Circuit.

TMS370
Microcontroller

Unused pinNo Connect

Another solution is to initialize all unused input and bidirectional I/O pins as inputs and tie all these pins
low via one external resistor (10 kΩ or greater). The main advantage of this solution is its minimal
additional system cost. As long as all unused pins are initialized as inputs, this solution is acceptable.
Disadvantages of this solution are similar to those described on the previous page. External electrical
conditions could corrupt the program counter to cause I/O pins to change their initialization. For example
if two I/O pins were tied together and pulled low via a common resistor (see Figure 4), inappropriate
software execution could alter these pins. If one pin was altered to be an output high (VOH) and the other
was altered to be an output low (VOL), a rather serious drive conflict could occur. Another consideration
would be EMC issues of routing multiple PC traces from potentially different areas of the device.

447

Figure 4. Alternate Solution for Terminating Unused I/O Pins:
Shared Pull-Down Resistor.

TMS370
Microcontroller

Unused pin 1

VSSD

10 kΩ
minimum

Unused pin 2

Unused pin n

Note†

Note†: To reduce EMI emissions, keep the loop area as small as possible.

Summary

The best overall solution for terminating unused I/O pins (input only or bidirectional) is to tie each unused
pin individually low through a resistor. This situation is acceptable for any condition the pin can be
initialized in. If the pin is initialized as an input, only leakage current can occur. If the pin is initialized as
an output low, then the current depends on the voltage drop from the VOL level and VSS across the external
resistor. If the pin is initialized as an output high, the current depends on the voltage drop from the VOH
level and VSS across the external resistor. The larger the resistor value used, the less the current drain.

One additional suggestion is to continually reinitialize your configuration values in any main routine loop
you implement. Also, when changing the value of an output from an output high to low (or low to high),
reinitialize the direction control for the bit.

448

449

Part IV
EEPROM Programming

Part IV contains two sections:

 EEPROM Self Programming 449.

 Bootstrap Programs 457.

450

451

EEPROM Self Programming
With the TMS370

Microcontroller Products—Semiconductor Group
Texas Instruments

452

453

Programming With the TMS370 Family

The following example demonstrates the self-programming ability of the TMS370 family. This feature can
program any byte of the onboard data EEPROM by passing the appropriate data and address to this routine.

The program consists of two major sections: the procedure that determines the bits that need to be changed
(PROGRAM), and the procedure that changes these bits (EEPROG).

• PROGRAM attempts to save programming time by checking which portions of the two-step
programming procedure must occur. If the data already in the array is the same as the new data,
then no programming is necessary. By omitting a write ones or a write zeros operation, 10 ms
is removed from the total 20-ms programming time; every programming step that this routine
omits saves 10 ms.

The address and data to program are passed to this routine in the register pair ADDR1–1:ADDR1
and in register A, respectively.

• EEPROG is the routine that initiates, times, and then stops the actual EEPROM programming.
During this section of code, disable the interrupts to prevent data corruption. Corruption can
occur when an interrupt routine accesses any EEPROM location, interrupting the EEPROG
routine between writing to the EEPROM location and setting the EXE bit (DEECTL.0).

You can program unprotected data EEPROM using only the VCC power supply. Enter the write protection
override (WPO) mode by placing 12 V on the MC pin when programming protected data EEPROM.

The following program is used to write to any location in the data EEPROM.

Parameters used:

ADDR1–1:ADDR1 = EEPROM address to program
 A = data to write to EEPROM address

Write Data EEPROM Routine
TEMP1 .EQU R3 ;General-purpose temporary register
TEMP2 .EQU R4 ;General-purpose temporary register
ADDR1 .EQU R6 ;Contains address for program

;operation.
ECOM .EQU R7 ;Command for DEECTL
DEECTL .EQU P01A ;Address for data EEPROM control reg.
;

PROGRAM Routine
PROGRAM MOV A,TEMP2 ;Save data.

MOV @ADDR1,A ;Read current data.
XOR TEMP2,A ;Different bits = 1
JZ EXITW ;If byte is already equal then exit.
INV A ;Different bits = 0
OR TEMP2,A ;Bits that change from 1 to 0 = 0
BTJZ #0FFh,A,WRITE0 ;Program 0s if any 0s
JMP ONES ;If all 1s then go to WRITE1 part.

WRITE0 MOV #1,ECOM ;Program to write 0s (DEECTL = 1).
MOV TEMP2,A
CALL EEPROG ;Programming EEPROM

ONES MOV @ADDR1,A ;Get the current data.
XOR TEMP2,A ;Bits that change = 1
AND TEMP2,A ;Bits that change from 0 to 1 = 1

454

JZ LASTCHK ;Are there any 1s to program?
WRITE1 MOV #3,ECOM ;DEECTL value=3 (program 1s)

MOV TEMP2,A
CALL EEPROG ;Program 0s

;Verify the programming operation.
LASTCHK MOV @ADDR1,A ;Check new memory against wanted

;memory.
CMP TEMP2,A ;If equal then exit.
JEQ EXITW

;
; Error–handling routine here
;
EXITW RTS
;

EEPROG Routine
EEPROG DINT ;Disable interrupts.

MOV A,@ADDR1 ;Move data to address.
MOV ECOM,DEECTL ;Load DEECTL register.
EINT ;Enable interrupts.
MOVW #2778,TEMP1 ;Wait 10 ms for EEPROM write

;(at 5 MHz).
WAIT10 INCW #–1,TEMP1

JC WAIT10
MOV #0,DEECTL ;Clear EXE bit.
RTS ;Exit from internal RAM program.

The following portion of code is the same as the PROGRAM routine above but provides actual values for
each step. The values shown are the low nibble of a byte expressed in binary; these values are shown
because they provide all possible bit combinations.

In this example, the memory address contains x1100, and x1010 is programmed to that address. Before
calling the EEPROG routine, the program writes new data to the EEPROM address located in register
ADDR1–1:ADDR1 and then passes data to register A that specifies either a write ones or a write zeros
operation. The program provides actual values at each step.

PROGRAM Routine
A @(ADDR1–1:ADDR1)

; x1010 x1100
PROGRAM MOV A,TEMP2 ; Save data.

MOV *ADDR1,A ; x1100 Read current data.
XOR TEMP2,A ; x0110 Different bits = 1
JZ EXITW ; If byte is already equal then

exit.
INV A ; x1001 Different bits = 0
OR TEMP2,A ; x1011 Bits that change from 1 to 0 =

0
BTJZ #0FFH,A,WRITE0 ; Program 0s if any 0s.
JMP ONES ; If all 1s then go to WRITE1

part.
WRITE0 MOV #1,ECOM ; Program to write 0s (DEECTL =

1).
MOV TEMP2,A ; x1010
CALL EEPROG ; x1000 Programming EEPROM.

ONES MOV *ADDR1,A ; x1000 Get the current data.
XOR TEMP2,A ; x0010 Bits that change = 1.
AND TEMP2,A ; x0010 Bits that change from 0

; to 1 = 1.
JZ LASTCHK ; Are there any 1s to

; program?

455

WRITE1 MOV #3,ECOM ; DEECTL value=3 (program 1s)
MOV TEMP2,A ; x1010
CALL EEPROG ; x1010 Program 0s.

; Verify the programming
; operation.

LASTCHK MOV *ADDR1,A ; x1010 Check new memory against
; wanted memory.

CMP TEMP2,A ; If equal then exit.
JEQ EXITW ;

;
; Error–handling routine here
;
EXITW RTS

456

457

Part IV
EEPROM Programming

Part IV contains two sections:

 EEPROM Self Programming 449.

 Bootstrap Programs 457.

458

459

Bootstrap Program for the TMS370

Microcontroller Products—Semiconductor Group
Texas Instruments

460

461

Bootstrap Program
This is a bootstrap program for TMS370. This program is resident in master. It is transmitted to slave mode
in RAM memory. After transmission, the control is passed on to the beginning of this program in slave
mode at 20h. This programs data EEPROM. It checks the first word for the EEPROM command and the
number of bytes to be programmed. The second and third bytes indicate the destination address. If the first
byte in the command word (the first word) is zero, it indicates the end of EEPROM programming.

Routine
;
;Define the registers
;
SPICCR .EQU P030 ;SPI communications control register
SPICTL .EQU P031 ;SPI control register
SPIBUF .EQU P037 ;SPI receive data buffer register
SPIDAT .EQU P039 ;SPI serial data register
SPIPC1 .EQU P03D ;SPI port control register 1
SPIPC2 .EQU P03E ;SPI port control register 2
SPIPRI .EQU P03F ;SPI priority
DEECTL .EQU P01A ;EEPROM control register
BEGIN .EQU 20H ;RAM program starting address
DATAL .EQU R04 ;Data length
TEMP .EQU R07 ;Temporary register
TEMP1 .EQU R14 ;Temporary register 1
TEMP2 .EQU R12 ;Temporary register 2
;
;program
;

.TEXT 7300H
MOV #0A0H,B ;Initialize stack
LDSP

LAST MOV #0FFH,SPICCR ;Initialize SPI.
MOV #047H,SPICCR ;Program SPI for 8 bit data.
MOV #03,SPICTL ;Program SPI for slave and enable inter.
MOV #02,SPIPC1 ;Enable SPICLk pin.
MOV #020H,SPIPC2 ;Enable SPISIMO and SPISOMI pin.

START1X CLR B ;Reset the index
LOOPX BTJZ #40H,SPICTL,LOOPX ;Check if character received.

MOV SPIBUF,A ;Read command word.
AGAIN MOV A,*DATAL(B) ;Save in register for further processing

INC B ;Increment till two byte address is read
CMP #3,B ;Check if three bytes are read.
JNE LOOPX ;If not, read again.

;
MOV DATAL,TEMP ;Copy command value in temporary reg.
AND #3FH,TEMP ;Obtain No. of bytes of data/prog.
CLR B ;Set offset for data EEPROM
BTJO #40H,DATAL+1,LOOP1X ;Check addr. whether data or prog. EEPRO
MOV #2,B ;Offset for data EEPROM.

;
LOOP1X BTJZ #40H,SPICTL,LOOP1X ;Check if character received.

MOV SPIBUF,A ;Read received character.
DINT
MOV A,TEMP2 ;Save it in to TEMP2.
MOV A,*DATAL+2 ;Move data to the array location.
MOV #1,A ;Program DEECTL=1 (program 0s).
CALLR PROG ;Do the write operation.

462

DINT
MOV #3,A ;Program DEECTL=0 (program 1s).
CALLR PROG ;Do the write operation.
CALLR LASTCHK ;Check the programmed byte with desired.
INCW #1,DATAL+2 ;Go to next location.
DJNZ TEMP,LOOP1X ;Do until all bytes done.

LOOP2X BTJZ #40H,SPICTL,LOOP2X ;Check if character received.
MOV SPIBUF,A ;Read received character.
JNZ $1 ;If not zero, go again.
JMP EXIT ;Go to end.

$1 CLR B ;Clear index.
JMP AGAIN ;Get more data.

;
;PROGRAM TO WRITE 0s AND 1s TO DATA OR PROGRAM EEPROM
;
PROG MOV A,*EECTL(B) ;Load DEECTL.

EINT
MOVW #2778,TEMP1 ;Wait for 10 ms for EEPROM write.

WAIT10 INCW #–1,TEMP1
JC WAIT10
CLR A ;Reset execution bit in DEECTL.
MOV A,*EECTL(B) ;

EXITPROG RTS
;
;ROUTINE TO COMPARE THE CONTENT OF PROGRAMMED BYTE WITH DESIRED VALUE
;
LASTCHK MOV *DATAL+2,A ;Load the EEPROM content.

CMP TEMP2,A ;Compare with desired value.
JNE ERROR ;If not same go to error routine.
RTS ;Go back to calling routine.

;
;PUT YOUR ERROR ROUTINE HERE
;
ERROR RTS
EXIT .END ;END

463

Bootstrap Program for the
 SPI in Slave Mode

Microcontroller Products—Semiconductor Group
Texas Instruments

464

465

Bootstrap Program for the SPI in Slave Mode

This program executes on a serial peripheral interface (SPI) operating in the slave mode. The SPI is first
initialized by the INIT routine (see code below), then control transfers to the main program at 7000h. When
the SPI interrupt occurs, it sets the number of bootstrap-program bytes into register B, then loads in the
program starting at address 0020h, checking the SPI INT FLAG (bit 6 of the SPICTL register) to know
when each byte is received. When all bytes are loaded, execution transfers to the beginning of the bootstrap
program at address 0020h. It is assumed that the SPI interrupt is not used by the application in slave;
however, if used, you can use any other unused interrupt to invoke bootstrapping. The INIT routine and
the bootstrap load program (BOOTS) require 36 bytes of memory.

Routine

;
;Define the registers
;
SPICCR .EQU P030 ; SPI communications control register
SPICTL .EQU P031 ; SPI control register
SPIBUF .EQU P037 ; SPI receive data buffer register
SPIDAT .EQU P039 ; SPI serial data register
SPIPC1 .EQU P03D ; SPI port control register 1
SPIPC2 .EQU P03E ; SPI port control register 2
SPIPRI .EQU P03F ; SPI priority
DEECTL .EQU P01A ; Data EEPROM control register
;
;
;
;Program the SPI in Slave Mode
;

.TEXT 7F9CH
INIT MOV #0F7H,SPICCR ; Initialize SPI.

MOV #047H,SPICCR ; Program SPI for 8-bit data.
MOV #03,SPICTL ; Program SPI for slave and enable inter
MOV #02,SPIPC1 ; Enable SPICLK function pin.
MOV #020H,SPIPC2 ; Enable SPISIMO function pin.
EINT ; Enable interrupts.
BR 7000H ; Start executing main program at 7000H.

;
;
;
;Actual bootstrap program mapped into SPI interrupt routine
;
BOOTS MOV #0E0H,B ; Load the number of program bytes.
LOOP BTJZ #40H,SPICTL,LOOP ; Check if character received.
SPIRD MOV SPIBUF,A ; Read received character(command word).

MOV A,*20H–1[B] ; Save the program starting at M.A. 020h
DJNZ B,LOOP ; Continue until program is transferred.
BR 20H ; Go to program just loaded into RAM.

;
.SECT ”VECTORS”,7FFEH ; Load the INIT program beginning
.WORD INIT ; at the address in the RESET vector.

;
.SECT ”BOOT”,7FF6H ; Load the bootstrap program beginning
.WORD BOOTS ; at the address in SPI Interrupt vector

466

467

Bootstrap Program for the TMS370
in Master

Microcontroller Products—Semiconductor Group
Texas Instruments

468

469

Introduction
This program is a master program and is resident in master MCU. It transmits another program from master
to slave MCU. It is mainly for programming data EEPROMs in slave mode. It is assumed that the slave
MCU has a bootstrap program for receiving the data from the SPI.

Routine
;
;Define the registers
;
SPICCR .EQUP030 ;SPI communications control register
SPICTL .EQUP031 ;SPI control register
SPIBUF .EQUP037 ;SPI receive data buffer register
SPIDAT .EQUP039 ;SPI serial data register
SPIPC1 .EQUP03D ;SPI port control register 1
SPIPC2 .EQUP03E ;SPI port control register 2
SPIPRI .EQUP03F ;SPI priority
EECTL .EQU101AH ;EEPROM control register
LAST .EQU7300H ;RAM program BEGIN ADDR.
INDEX .EQUR05 ;Index register
TEMP1 .EQUR06 ;Temporary register
TEMP2 .EQUR07 ;Temporary register
TEMP3 .EQUR18 ;Temporary register
REALST .EQUR10 ;R09:R10 has the address of data in master.
STRT .EQUR12 ;R11:R12 has the address of data in slave to be

;programmed.
LENGTH .EQUR14 ;R13:R14 has the length of data to be programmed.
MAX .EQUR15 ;R15 has the maximum No. of bytes that can be

;transmitted.
COMMAND .EQUR16 ;R16 has the command word.
MASK .EQU80H ;Mask for EEPROM programming condition
;
;Program to transmit program
;Remember that the last byte of program has to be sent first. The last byte
;sent must be first byte of program. In the beginning, dummy bits may have to
;be sent, depending on the program length.
;

.TEXT 7000H
MOV #0A0H,B ;Initialize the stack.
LDSP

START MOV #0FFH,SPICCR ;Initialize SPI.
MOV #07FH,SPICCR ;Program SPI for 8-bit data.
MOV #07,SPICTL ;Program SPI for master and enable int.
MOV #02,SPIPC1 ;Enable SPICLk pin.
MOV #030H,SPIPC2 ;enable SPISIMO and SPISOMI pin.
MOV #0E0H,B ;Maximum No. of bytes to be transferred.

START0 MOV *LAST–1[B],A ;Start transmitting from last byte.
MOV A,SPIDAT ;Put the byte to be transmitted in

;buffer.
LOOP1 BTJZ #40H,SPICTL,LOOP1 ;Check if transmitted.

MOV SPIBUF,A ;Read to clear interrupt flag.
DJNZ B,START0 ;Continue until complete

;
;Program to transmit data
;First, set up the digital I/O reg. to set up for expanded microcomputer
;mode.

MOV #0FFH,P021 ;Set up port A for data bus.
MOV #0FFH,P025 ;Set up port B for low address bus.
MOV #0FFH,P029 ;Set up port C for high address bus.
MOV #0,P02C ;Set up port D for function A
MOV #0FFH,P02D ;in expansion mode.

;

470

;Initialize the registers for program EEPROM programming.
;

MOVW #7000H,REALST ;Load beginning of real data to be
;transmitted.

MOVW #7000H,STRT ;Starting address of data in slave.
MOVW #0400H,LENGTH ;Length of data.
CALL MAINPROG ;Go to main program.

;
;Initialize registers for data EEPROM programming.
;

MOVW #2000H,REALST ;Load beginning of real data to be
;transmitted.

MOVW #1F00H,STRT ;Starting address of data in slave.
MOVW #0FFH,LENGTH ;Length of data.
CALL MAINPROG ;Go to main program.
JMP RESET

;End of main program
;
;Subroutine MAINPROG
;
MAINPROG MOV #3FH,MAX ;Maximum No. of bytes.

MOVW LENGTH,R01 ;Load length in A:B.
DIV MAX,A ;Divide total # of bytes with maximum

;No. of bytes in a packet.
MOV B,TEMP2 ;Save remainder.
MOV A,TEMP1 ;Save quotient.
JZ NEXT ;If less than 3F bytes go to PROG2.
CALL PROG1 ;Program to send bytes in packets of 3F.

NEXT CALL PROG2 ;Program to send bytes < 3F.
RTS ;Return to calling program.

;
;Program to reset flag in slave
;
RESET CLR A ;A=0 for eeprogramming completion.

MOV A,SPIDAT ;Transmit it
LOOP10 BTJZ #40H,SPICTL,LOOP10 ;Wait until transmitted.

MOV SPIBUF,A ;Read to clear interrupt flag.
JMP EXIT ;Return to main program.

;
;Subroutine PROG1 creates a command word and transmit the bytes in the
;packets of 3F hex.
;
PROG1 CLR INDEX ;Initialize index
PROG11 MOV MAX,COMMAND ;Load maximum number of bytes.

CALL TRANSMIT ;Go to transmit prog.
CLR B ;Initialize index.

START1 CALL SPISE ;Transmit 3F bytes.
CMP #03FH,B ;Check if max. no. of bytes.
JNE START1 ;If not, go again.
INCW #3FH,STRT ;Increment address of first byte in next

;packet.
INC INDEX ;Increment index.
CMP INDEX,TEMP1 ;All packets of 3F bytes transmitted?
JNE PROG11 ;If not go again.
RTS ;Return to main program.

;
;Subroutine WAIT20 is a delay timer for 20ns.
;
WAIT20 MOVW #5556,TEMP3 ;Wait for 20 ms for EEPROM to write 0s
WAIT INCW #–1,TEMP3 ;& write 1s in slave.

JC WAIT
RTS

;

471

;Subroutine PROG2 creates a command word and transmits the bytes when total
;number of bytes in a packet is less than 3F hex.
;
PROG2 MOV TEMP2,COMMAND ;Load number of bytes to be transmitted.

CALL TRANSMIT ;Go to transmit program.
CLR B ;Initialize index.

START2 CALL SPISE ;Transmit all bytes.
CMP TEMP2,B ;Check if maximum number of bytes.
JNE START2 ;If not, go again.
RTS ;Return to main program.

;
;Subroutine TRANSMIT transmits command word and the destination address
;to slave.
;
TRANSMIT OR #MASK,COMMAND ;Load proper mask bits to make a command

MOV COMMAND,A ;Get command word.
MOV A,SPIDAT ;Transmit it.

LOOP4 BTJZ #40H,SPICTL,LOOP4 ;Wait till transmitted.
MOV SPIBUF,A ;Read to clear interrupt flag.
MOV STRT–1,A ;Load high byte of destination address.
MOV A,SPIDAT ;Transmit it.

LOOP5 BTJZ #40H,SPICTL,LOOP5 ;Wait intil transmitted.
MOV SPIBUF,A ;Read to clear interrupt flag.
MOV STRT,A ;Load low byte of destination address.
MOV A,SPIDAT ;Transmit it.

LOOP6 BTJZ #40H,SPICTL,LOOP6 ;Wait until transmitted.
MOV SPIBUF,A ;Read to clear interrupt flag.
RTS

;
;Subroutine SPISE sends actual data to slave SPI.
;
SPISE MOV *
REALST,A ;Get byte to be transmitted.

INC B ;Increment index.
INCW #1,REALST ;Increment pointer
MOV A,SPIDAT ;Put the byte to be transmitted in

;buffer.
LOOP2 BTJZ #40H,SPICTL,LOOP2 ;Check if transmitted.

MOV SPIBUF,A ;Read to clear interrupt flag.
CALL WAIT20 ;Wait 20 ms for EEPROM write.
CALL WAIT20 ;Wait 20 ms for EEPROM write.
RTS

EXIT NOP
.END

472

473

Part V
External Memory

Expansion Examples

474

475

Using Memory Expansion in
Microcomputer Mode With Internal

Memory Disabled

Microcontroller Products—Semiconductor Group
Texas Instruments

476

477

Introduction

This report describes special features of the digital I/O port control registers (address range 1020h to
102Fh), not fully documented in the TMS370 Family User’s Guide.

These features should be taken into account when memory expansion is used in microcomputer mode to
prevent any uncontrolled effect.

Special Features

In microcomputer mode, with bus expansion (function A or B) and internal program memory disabled,
the internal program memory locations and 1020h to 102Fh are decoded as external addresses.

Memory accesses to the locations 1020h to 102Fh have following effect:

• Writes are executed externally as expected, but also internally (not expected). In other words,
the internal I/O configuration register using the same address is also modified. This may corrupt
the port pins initially set as alternate function A or B, if port control registers (XPORT2 and/or
DPORT1) have changed. It may also affect those port pins which were originally configured as
general purpose I/Os.

• Reads are only performed from the external data bus as expected.

To prevent corrupting the bus expansion mode:

• The addresses of XPORT2 and DPORT1 should not be used as external.

• Addresses used to control general purpose I/Os should not be used as external addresses.

• Use of read-modify instructions at 102Xh locations is not available since it would read external
data and write or modify the internal I/O configuration registers located at the same addresses.

The table below summarizes read and write functions at the locations 1020h to 102Fh in all the operating
modes.

Table 1. Read and Write Functions

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Microcomputer
Mode

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Microprocessor
Mode

Á
Á
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
Internal Memory

Enabled
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Internal Write & Read ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Internal Write & Read
(Internal Write has no effect on I/O’s)

Á
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Internal Memory
Disabled

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

External Write & Read

Internal Write
(Internal write may affect I/O’s)

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

External Write & Read

Internal Write
(Internal write has no effect on I/O’s)

Á
Á
Á
ÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Á
Á

478

479

Interfacing and Accessing
External Memory

Microcontroller Products—Semiconductor Group
Texas Instruments

480

481

Microcomputer Interface Example

The following exercise is one method of interfacing the TMS370 family with common memory. The goals
of this example include the following:

• Interfacing with the maximum amount of memory

• Using the least expensive logic elements

• Using a minimum amount of parts

• Maintaining sufficient system speed

The example shown in Figure 1 illustrates a balance of these goals. In this case, the TMS370C050 is used
with the following:

• Three TMS27C256s, each providing 32K bytes of EPROM (ROM1, ROM2, and ROM3 at U2
to U4) for a total of 96K bytes

• Two HM626LP-15s, each providing 8K bytes of RAM (RAM1 and RAM2 at U6 and U7) for
a total of 16K bytes

• A peripheral device (U5) needing up to 64 bytes of memory address space that interfaces to the
memory-select process

This uses a total memory of 116K bytes: 112K bytes of external memory and 4K bytes of memory internal
to the microcomputer. The current timings for the EPROM and RAM memory devices are given. Since
specifications change from time to time, always check the latest data sheets for the devices used.

482

Figure 1. Microcomputer Interface Example

VCC

Address 0–14

Data 0–7
MC

15
8

VSS

U1

E

VSS

G

A Q

U2

A Q

U3

E

G

VSS

A Q

U4

E

G

A D

U5

E

A I/O

U6

CS1

VSS

A I/O

U7

CS1

WE WE

OE OE

CS2 CS2
VCC

10 kΩ
(All)

U1 = TMS370Cx5x 8-Bit Microcontroller
U2, U3, U4 = TMS27C256 32K x 8 EPROM
U5 = Unspecified 64-Byte Peripheral
U6, U7 = 8K x 8 Static RAM

R/W
CSE2
CSE1
CSPF
CSH3
CSH2
CSH1

ROM1 ROM2 ROM3 RAM1 RAM2

The devices used in the TMS370 interface example circuit are:

TMS370C050: 8-bit CMOS microcontroller
TMS27C256: 32K x 8 EPROM
HM626LP: Hitachi 8K x 8 RAM

Table 1. Timing Specifications for the TMS27C256-25 EEPROM Devices

Symbol Description Min Max

ta(A) Access time from address — 250 ns

ta(E) Access time from enable — 250 ns

tdis Output disable time 0 ns 60 ns

tv(A) Output data valid after address change 0 ns —

Reference: 1993 TI MOS Memory Data Book

483

Table 2. Timing Specifications for the HM6264P-15 RAM Device

Symbol Description Min Max

tAA Address access time — 150 ns

tOHZ Out disable to output in high Z 0

tC01 Chip selection to output — 150 ns

tHZ1 Chip deselection to output in high Z 0 ns 50 ns

tCW Chip select to end of write 100 ns —

tWP Write pulse width 90 ns —

tDW Data to write time overlap 60 ns —

tDH Data hold from write time 0 ns —

Reference: #M10 Hitachi Memory Data Book

The TMS370 family is designed to use a SYSCLK speed of 5 MHz, so slower peripheral devices may not
be able to react quickly enough to operate properly. The TMS370 family of devices has the ability to insert
wait states to slow the memory accesses in three different ways.

• Use the AUTOWAIT DISABLE bit at SCCR1.4 to add one wait state to all external accesses.

• Use the PF AUTOWAIT bit at SCCR0.5 to add two wait states to the external peripheral file
access.

• Allow the external device to pull the WAIT pin low and add as many wait states as required.

Table 3 shows the various combinations.

Table 3. Wait-State Control Bits

Wait-State Control Bits Number of Clock Cycles per Access

PF AUTOWAIT
AUTOWAIT
DISABLE Peripheral File External Memory

0 0 3 3

0 1 2 2

1 0 4 3

1 1 4 2

The following subsections discuss the signal timings that must be considered for interfacing the TMS370
with external memory. With each system design, there are usually trade-offs due to speed and/or budget
constraints. The timings given in Table 4 reflect worst-case specifications, and typical values have been
avoided where possible.

484

Table 4. Memory Interface Timing

Symbol Description Min Max Unit

tc† CLKOUT (system clock) cycle time 200 2000 ns

tw(COL) CLKOUT low pulse duration 0.5 tc – 25 0.5 tc ns

tw(COH) CLKOUT high pulse duration 0.5 tc 0.5tc + 20 ns

td(COL–A) Delay time, CLKOUT low to address R/W, and OCF valid 0.25tc + 75 ns

tv(A) Address valid to EDS, CSE1, CSE2, CSH1, CSH2, CSH3, and
CSPF low

0.5 tc – 90 ns

tsu(D) Write data set-up time to EDS high 0.75 tc – 80‡ ns

th(EH–A) Address, R/W, and OCF hold time from EDS, CSE1, CSE2,
CSH1, CSH2, SH3, and CSPF high

0.5 tc – 60 ns

th(Eh–D)W Write data hold time from EDS high 0.75 tc + 15 ns

td(DZ–EL) Delay time, data bus high impedance to EDS low (read cycle) 0.25 tc – 35 ns

td(EH–D) Delay time, EDS high to data bus enable (read cycle) 1.25 tc – 40 ns

td(EL–DV) Delay time, EDS low to read data valid tc – 95‡ ns

th(EH–D)R Read data hold time from EDS high 0 ns

tsu(WT–COH) WAIT set-up time to CLKOUT high 0.25 tc + 70§ ns

th(COH–WT) WAIT hold time from CLKOUT high 0 ns

td(ED–WTV) Delay time, EDS low to WAIT valid 0.5 tc – 60 ns

tw Pulse duration, EDS, CSE1, CSE2, CSH1, CSH2, CSH3, and
CSPF low

tc – 80‡ tc + 40‡ ns

td(AV–DV)R Delay time, address valid to read data valid 1.5 tc – 115‡ ns

td(AV–WTV) Delay time, address valid to WAIT valid tc – 115 ns

td(AV–EH) Delay time, address valid to EDS high (end of write) 1.5 tc – 85‡ ns

† tc = system clock cycle time = 4/CLKIN.
‡ If wait states, PFWait, or the autowait feature is used, add tc to this value for each wait state invoked.
§ If the autowait feature is enabled, the WAIT input may assume a “don’t care” condition until the third cycle of the access.

The WAIT signal must be synchronized with the high pulse of the CLKOUT signal while still conforming to the minimum
set-up time.

Read Cycle Timing

Interfacing the TMS370 with external memory devices requires a minimum amount of address-to-data
access time, depending on the CPU clock speed and the number of wait states used. If the requirements are
not met, incorrect data may be read. The requirements in this section are based on a 20-MHz clock
frequency.

Valid Address-to-Data Read Time Requirement

The external device must meet the basic read cycle requirement: the valid address to data read time. This
is the period from the instant the TMS370 outputs a valid address until the TMS370 requires data on the
data memory pins. You can vary this requirement by using wait states to delay the moment the TMS370
reads data.

485

Figure 2. Valid Address-to-Data Read Timing

td(AV-DV)R

ta
Valid Address

on Bus
(From TMS370)

Data
on Bus

(From Memory)

Data Required
by TMS370

(From Memory)

Table 5. Address-to-Data Timing Specifications

Symbol Description Formula Time

td(AV–DV)R TMS370 (0 wait) requires data 1.5 tc – 115 185 ns (too fast)

td(AV–DV)R TMS370 (1 wait) requires data 2.5 tc – 115 385 ns (ok)

td(AV–DV)R TMS370 (PF wait) requires data 3.5 tc – 115 585 ns (ok)

ta(A) TMS27C256-25 provides data 250 ns (ok)

tAA HM6264-15 provides data 150 ns (ok)

As indicated above, the EPROM (TMS27C256) cannot provide the data quickly enough when the TMS370
device runs at full speed (zero wait states). Therefore, the TMS370 device should use the autowait feature
(SCCR1.4) to add a wait state (one clock cycle) to the timing in order to slow the bus accesses. The wait
state extends the access time (data required by TMS370) to 385 ns; then, the EPROM is ready with the data.
The autowait feature makes it possible to use the TMS370 in low-cost applications with cheaper, slower
memory devices.

The HM6264-15 RAM can extend the TMS370’s minimum address-to-data set-up time with no wait states.
When you access external RAM comparable to that of the Hitachi device, you can turn off the autowait
feature to speed up the system.

A peripheral device can have up to 585 ns to respond to the TMS370 if the peripheral frame (PF) wait states
are enabled. If the extra wait states are not needed, the TMS370 treats the peripheral device like other
memory.

Chip-Select Low-to-Data Read Requirements

This parameter states the amount of delay from the time the chip-select signal goes low to the time the
TMS370 expects valid data on the bus. The chip-select signal (CSxx or EDS) must be used with external
memory to validate the memory cycle. Connecting the chip-select pin (CSxx) of the TMS370 to the
EPROM’s enable pin (E) enables the EPROM to enter the low-power standby mode when not providing
data. This significantly lowers the power requirements for the system because only one EPROM operates
in the full-power operation mode at any one time. The HM6264 also enters a low-power standby mode
whenever the CS1 pin is pulled high.

486

Figure 3. Chip-Select Low-to-Data Read Timing

td(EL-DV)

ta(E)
or

tC01
EDS/CSxx

(From TMS370)

Data
on Bus

(From Memory)

Data Required
by TMS370

(From Memory)

Table 6. Chip-Select Low-to-Data Read Timing Specifications

Name Description Formula Time

td(EL–DV) TMS370 (0 wait) requires data tc – 95 105 ns (too fast)

td(EL–DV) TMS370 (1 wait) requires data 2 tc – 95 305 ns (ok)

td(EL–DV) TMS370 (pf wait) requires data 3 tc – 95 505 ns (ok)

ta(E) TMS27C256-25 provides data 250 ns (ok)

tC01 HM6264-15 provides data 150 ns (ok)

Chip-Select High-to-Next Data Bus Drive Requirements

The TMS370 and the memory device should not drive the memory at the same time. This can lead to
increased stress and noise spiking on the VCC and VSS lines and reduce the reliability of the device. Memory
devices often continue to drive the memory for a short time after the chip-select signal goes high. This
normally doesn’t present a problem unless the chip-select signal is delayed by interface circuitry and the
data is not delayed. If the chip-select high transition is delayed long enough (and the data is not), the
TMS370 will initiate a write cycle while the memory is still providing data.

Figure 4. Chip-Select High-to-Next Data Bus Drive Timing

td(EH-D)
tdis

EDS/CSxx
(From TMS370)

Data
On Bus

(From Memory)

Data
On Bus

(From TMS370)

487

Table 7. Chip-Select High-to-Next Data Bus Drive Timing Specifications

Name Description Formula Time

td(EH–D) TMS370 (all) drives memory 1.2 5tc – 40 210 ns

tdis TMS27C256-25 releases memory 60 ns

tOHZ HM6264-15 releases memory 50 ns

Read Data Hold After Chip Select High Requirements

The high transition of the chip-select signal (CHxx) indicates the end of a data transfer (in this case, a read)
cycle. The memory device must provide data up to this point, or incorrect data may be read. Most memories
will continue to hold (or drive) the data memory for a short time after they are deselected, although the data
may or may not be valid. After that period, the memories put their data outputs into the high-impedance
state.

Figure 5. Read Data Hold After Chip-Select High Timing

tv(A)
td(EH-D)R

EDS/CSxx
(From TMS370)

Data
Required

by TMS370

Data
on Bus

(From Memory)

Table 8. Read Data Hold After Chip-Select High Timing Specifications

Name Description Formula Time

td(EH–D)R TMS370 (all) needs data — 0 ns

tV(A) TMS27C256-25 data — 0 ns

tHZ1 HM6264-15 holds data — 0 ns

488

Write Cycle Timing

The write cycle timing is defined primarily by the characteristics of the RAM interfacing with the TMS370.
The Hitachi HM6264 used in this example offers two types of write cycles. This application uses a write
cycle in which the output enable pin (OE) is always fixed low. With the CS2 pin tied to VCC, the CS1 and
R/W signals determine the read and write cycle boundaries. You can use a separate address decoder instead
of the chip-select functions, but you must use the EDS to validate the memory cycle. The EDS signal has
the same timing as the chip-select signals. Figure 6 shows the write cycle parameters that must be met; they
are discussed in the paragraphs that follow.

Table 9. Write Cycle Timing Specifications

Name Description Formula Time

tW TMS370 (no wait) pulse width provided tc – 80 120 ns

tW TMS370 (PF wait) pulse width provided 3 tc – 80 520 ns

tCW HM6264-15 pulse width required 100 ns

Write Data Set-Up Time Requirements

The write data set-up time is the period the RAM needs to receive data before the chip select signal goes
high (inactive).

Table 10. Write Data Set-Up Timing Specifications

Name Description Formula Time

tSU(D) TMS370 (no wait) provides data 0.75 tc–80 70 ns

tSU(D) TMS370 (PF wait) provides data 2.75 tc–80 470 ns

tDW HM6264-15 requires data 60 ns

Figure 6. Write Data Set-Up Timing

tsu(D)

th(EH-D)W

tdh

tdw
or
tcw

R/W
(From TMS370)

EDS/CSxx
(From TMS370)

Data Required
by RAM

(From TMS370)

Data on Bus
(From TMS370)

In the interface example, the TMS370 satisfies the HM6264-15 RAM’s set-up requirement, even with no
wait state. However, in a system design with added memory transceivers, set-up timing becomes more
important.

489

Data Hold After Chip-Select High
The TMS370 must hold valid data on the bus until the RAM no longer needs it; otherwise, incorrect data
may be written into the RAM. Most RAMs do not need data present on the pins following the chip-select’s
high transition. The TMS370 generally holds data much longer than required by most RAMs.

Figure 7. Write Data Hold After Chip-Select High

th(EH-D)W
tdh

EDS/CSxx
(From TMS370)

Data Required
by RAM

(From TMS370)

Data on Bus
(From TMS370)

Table 11. Write Data Hold After Chip-Select High

Name Description Formula Time

th(EH–D)W TMS370 (all) provides data 0.75 tc+15 165 ns

tDH HM6264-15 requires data 0 ns

Design Options

The interface example illustrated in Figure 1 on page 482 shows a compromise of system speed and cost.
This section suggests ways to establish design goals that will optimize your system performance.

Lower Cost
If system cost is important, use slower memories that are less expensive. The slowest TMS27C256-25
EPROM has an access time of 250 ns.

• Access time from address to valid data (@ 5 MHz, tc = 200)

TMS370 (1 wait) requires data tD(AV-DV)R 2.5 tc – 115 385 ns

TMS27C256-25 provides data tA(A) 250 ns (ok)

• Access time from enable low to valid data (@ 5 MHz, tc=200)

TMS370 (1 wait) requires td(EL–DV) 2 tc – 95 305 ns

TMS27C256-25 provides data tA(E) E pin 250 ns(ok)

TMS27C256-25 provides data tEN(G) G pin 100 ns(ok)

Faster Speed
If the main objective is system speed, then you should use the slowest EPROM that will work with the
TMS370 running without wait states. The TMS370 at 5 MHz SYSCLK has a read access time requirement
of 185 ns. Therefore, use the TMS27C256-17 EPROM that provides data in 170 ns.

As in the low-cost suggestions above, the EPROM’s E pin is not fast enough to use the chip-select strobe;
use the EPROM’s G pin instead. To get a low-power standby mode with the EPROMs, use general-purpose

490

output lines from the TMS370 to the EPROM’s E pin. The pins should be software enabled before the
EPROM’s program is entered.

• Access time from address to valid data:

TMS370 (no wait) requires data tD(AV–DV)R 1.5 tc – 115 185 ns

TMS27C256-17 provides data tA(A) 170 ns (ok)

• Access time from enable low to valid data:

TMS370 (no wait) requires tD(EL–DV) tc – 95 105 ns

TMS27C256-17 provides data tA(E) E pin 170 ns (not ok)

TMS27C256-17 provides data tEN(G) G pin 75 ns (ok)

Bank Switching Examples

The programs in this section show how memory bank switching can be used by the circuit in Figure 1 (page
482). Memory bank switching allows two or more memory devices to share the same addresses. The
programmable chip-select signals (CSHx, CSEx, and CSPF) enable the memory devices or banks one at
a time during a read or write cycle. Figure 8 and Table 12 define the registers and their addresses used in
these examples.

In the interface example in Figure 1 (page 482), the three EPROM devices (ROM1 – ROM3) each use
addresses 8000h though FFFFh. Only one EPROM device (or bank), selected by CSH1, CSH2, or CSH3,
can be allowed to read data at a single time. The two RAM devices are each mapped at addresses 2000h
through 3FFFh. The write and read cycles affect one RAM device at a time, as determined by the chip-select
signals CSE1 and CSE2. The CSPF signal controls the peripheral memory device, which, in our example,
is unspecified but defined to contain 64 bytes of memory. This device is mapped at addresses 10C0h
through 10FFh.

To use external memory, devices with memory expansion must be configured for the microcomputer mode
so that the chip-select signals are available. The external memory devices must have 3-state outputs
because these devices share the data bus.

491

Figure 8. Peripheral File Frame 2: Digital Port Control Registers

Designation ADDR PF Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

APORT1 1020h P020 Reserved

APORT2 1021h P021 Port A Control Register 2

ADATA 1022h P022 Port A Data

ADIR 1023h P023 Port A Direction

BPORT1 1024h P024 Reserved

BPORT2 1025h P025 Port B Control Register 2

BDATA 1026h P026 Port B Data

BDIR 1027h P027 Port B Direction

CPORT1 1028h P028 Reserved

CPORT2 1029h P029 Port C Control Register 2

CDATA 102Ah P02A Port C Data

CDIR 102Bh P02B Port C Direction

DPORT1 102Ch P02C Port D Control Register 1

DPORT2 102Dh P02D Port D Control Register 2

DDATA 102Eh P02E Port D Data

DDIR 102Fh P02F Port D Direction

Equates for Examples

The following equates apply to the code examples herein:

SCCR0 .EQU P010 ; System control & config. register 0
SCCR1 .EQU P011 ; System Control & config. register 1
APORT2 .EQU P021 ; Port A control register 2
BPORT2 .EQU P025 ; Port B control register 2
CPORT2 .EQU P029 ; Port C control register 2
CDATA .EQU P02A ; Port C data register
CDIR .EQU P02B ; Port C direction register
DPORT1 .EQU P02C ; Port D control register 1
DPORT2 .EQU P02D ; Port D control register 2
DDATA .EQU P02E ; Port D data register
DDIR .EQU P02F ; Port D direction register

492

Table 12. Port Configuration Registers Set-Up

MC Pin Low When RESET Goes High

MC Pin High
When RESET

Goes High

#

General-Purpose I/O Use † Microcomputer Mode †

#

DPORT1 =0
xPORT2 = 0
xDATA = Data In
xDIR = 0 = Input

DPORT1 =0
xPORT2 = 0
xDATA = Data Out
xDIR = 1 =Output

DPORT1 =0
xPORT2 = 1
xDATA (not used)
xDIR (not used)

DPORT1 =1
xPORT2 = 1
xDATA (not used)
xDIR (not used)

Micro-
processor

Mode

Port # Pin Data In Mode Data Out Mode Function A Function B Function B

A 0–7 Data In = y Data Out = q DATA BUS DATA BUS DATA BUS

B 0–7 Data In = y Data Out = q LOW ADDR LOW ADDR LOW ADDR

C 0–7 Data In = y Data Out = q HI ADDR HI ADDR HI ADDR

D
D
D
D
D
D
D
D

0
1
2
3
4
5
6
7

Data In = y
Data In = y
Data In = y
Data In = y
Data In = y
Data In = y
Data In = y
Data In = y

Data Out = q
Data Out = q
Data Out = q
Data Out = q
Data Out = q
Data Out = q
Data Out = q
Data Out = q

CSE2
CSH3
CSH2

CLKOUT
R/W

CSPF
CSH1
CSE1

OCF
§
§

CLKOUT
R/W

§

EDS
WAIT

OCF
¶
¶

CLKOUT
R/W

¶
EDS
WAIT

G 0–7 Data In = y Data Out = q § § ¶

H 0 Data In = y Data Out = q § § ¶
† Registers DPORT1 and xPORT2 determine whether the port is configured as an I/O, data bus, address bus, or control

signal. If DPORT1 = 1 and xPORT2 = 0, the function is not valid. The variable x represents port letters A, B, C, D, G,
and H.

‡ xPORT1 exists for DPORT only.
§ These pins can be configured only as general-purpose I/O.
¶ Pins D1, D2, D5, G0–G7, and H0 are not available in microprocessor mode.
Ports vary for each device. See the applicable device pin descriptions in the TMS370 User’s Guide for ports available

on each device.

Coding

Initializing to EPROM/RAM Bank 1 Routine

This program initializes the ports to use bank 1 of the EPROM and the RAM. The TMS370 must be in the
microcomputer mode because the chip selects are not available in the microprocessor mode. After an
external reset, the TMS370 executes from the internal memory.

PORTI OR #020h,SCCR0 ;Enable peripheral file
;autowait cycles

AND #0EFh,SCCR1 ;Enable general memory wait
;cycles (default condition
;after reset)

MOV #0FFh,APORT2 ;Set port A up as a data memory
MOV #0FFh,BPORT2 ;Set port B up as the low

;address memory
MOV #07Fh,CPORT2 ;Set port C 0–6 up as the High

;address memory
MOV #000h,CDIR ;C7 is not needed for address

;so make it a
;general-purpose input.

MOV #000h,DPORT1 ;

493

MOV #0E7h,P02E ;Set all CSxx to 1 when CSxx
;are outputs

MOV #0D0h,DPORT2 ;Enable CSH1, CSE1, and
;R/W functions.

MOV #0E7h,P02F ;Turn all chip selects to outputs.
;Pull-up resistors are important
;for power-up since CSxx are high-
;impedance floating inputs.

Changing to EPROM Bank 2 Routine

This program illustrates how to change the EPROM bank without affecting the RAM banks. In this
example, the program runs out of internal memory, disables all EPROM banks, and then enables EPROM
bank 2. For this reason, the program must not reside in an EPROM. In order to verify that EPROM bank
2 exists within the system, the program could test various EPROM bank 2 memory locations before
executing the branch instruction.

AND #0B9h,DPORT2 ;Disable all EPROM banks (cannot
;be done while executing from EPROM
banks.)

OR #004h,DPORT2 ;Enable EPROM bank 2. When turned off,
;pin outputs a 1 because of the

BR ROM2 ;initial set–up above, could be done
;in 1 instruction if conditions of
;other chip selects were known.

Changing to EPROM Bank 3 and RAM Bank 2 Routine

This routine provides switching from one EPROM bank to another while operating from an EPROM bank.
Only one instruction in EPROM bank 2 is needed. The code within the EPROM banks must be
synchronized, and the instruction at the address after the move instruction must be a valid instruction within
the new EPROM bank.

GOROM3 MOV #003h,DPORT2 ;Enable ROM bank 3 and RAM bank 2.
ROM3 ;This address must be the same

;as the beginning routine address
;in bank 3 if executing from EPROM.

Changing RAM Banks Routine

This method demonstrates how to change RAM banks without affecting the execution from the current
EPROM bank. The RAM banks are selected and deselected in the same manner as the EPROM banks.
When you change RAM or EPROM banks, the software must ensure that only one bank is selected at a time.
This example disables the CSE1 and CSE2 signals and enables the CSE2 signal.

AND #07Eh,DPORT2 ;Turn off all RAM banks (execute
;from EPROM or on chip)

OR #001h,DPORT2 ;Turn on RAM bank 2. When turned off,
;pin outputs a 1 because of the
;initial set-up above.

494

495

Read/Write Serial EEPROM Data on
the TMS370

Microcontroller Products—Semiconductor Group
Texas Instruments

496

497

Introduction

This routine reads and writes to the EEPROM, computes the checksum on the first seven bytes of data and
places the checksum in the eighth byte. These are conditions for the read/write serial EEPROM data
routine:

1. The delay timing is based on a 5 MHz SYSCLK.

2. This routine works with National or XICOR 64 × 4 devices.

3. Data is arranged as seven 8-bit bytes, plus an 8-bit checksum (last byte).

4. The last byte contains the checksum.

5. I/O port assignments:

• D0 is the clock output

• D1 is the select output

• D2 is the read data input

• D3 is the write data output

498

Read/Write Serial EEPROM Data Routine
;REGISTER FILE EQUATES
;
EEPROM .EQU R010 ;8 BYTES OF EEPROM DATA
EEPFLG .EQU R018 ;EEPROM FLAGS
;
; PERIPHERAL FILE EQUATES
;
DPORT .EQU P02E ;I/O PORT
DDR .EQU P02F ;DATA DIRECTION REGISTER
;––
;READ EEPROM
;
RDEEP CALL SELEEP ;STROBE OUT 0s TO EEPROM

MOV #64,B ;64 MORE THAN ENOUGH
RDEEP5 CALL CLKZRO

DJNZ B,RDEEP5
CALL DESEEP
MOV #10001010b,A ;STROBE OUT A COMBINATION.
CALL NATINS ;XICOR RECALL, NATIONAL READ COMMAND
CLR EEPFLG
BTJZ #00000100b,DPORT,RDEEP1 ;BRANCH IF NATIONAL PART.
OR #00000001b,EEPFLG ;XICOR PART
CALL DESEEP ;DESELECT EEPROM.
MOV #10000110b,A ;READ RAM 0.
CALL RDXIC
MOV #10001110b,A ;READ RAM 1.
CALL RDXIC
MOV #10010110b,A ;READ RAM 2.
CALL RDXIC
MOV #10011110b,A ;READ RAM 3.
CALL RDXIC
MOV #10000010b,A ;ENTER SLEEP MODE.
CALL XICINS
CALL DESEEP ;DESELECT EEPROM.
JMP RDEEP2 ;DO COMMON EEPROM PROCESSING.

RDEEP1 CALL DESEEP
MOV #10000000b,A ;READ RAM 0.
CALL RDNAT
MOV #10000001b,A ;READ RAM 1.
CALL RDNAT
MOV #10000010b,A ;READ RAM 2.
CALL RDNAT
MOV #10000011b,A ;READ RAM 3.
CALL RDNAT

RDEEP2 CALL CMPCHK ;COMPUTE CHECKSUM.
CMP EEPROM+7,A ;= EEPROM CHECKSUM?
JNZ RDEEP3 ;NO
OR #00000010b,EEPFLG ;YES, SET EEPROM VALID FLAG.
RTS

RDEEP3 AND #11111101b,EEPFLG ;CLEAR EEPROM VALID FLAG.
RTS

;
;CLOCK NATIONAL READ INSTUCTION, THEN READ IN DATA
;
RDNAT CALL NATINS

CALL CLKZRO
JMP RDDAT

;
;CLOCK XICOR READ INSTRUCTION, THEN READ IN DATA
;
;READ 16 BITS
;

499

RDXIC CALL XICINS
RDDAT MOV #16,B
RDDAT1 BTJZ #00000100b,DPORT,RDDAT2

SETC
RDDAT2 CALL SHFTNV

CALL CLKZRO
DJNZ B,RDDAT1
BR DESEEP ;DESELECT EEPROM & RETURN.

;
;WRITE EEPROM
;
;THIS ROUTINE COMPUTES THE CHECKSUM ON THE FIRST 7 BYTES OF
;EEPROM AND PLACES THAT IN THE 8TH BYTE. THE 8 BYTES ARE THEN
;WRITTEN TO EEPROM LOCATIONS 0–3.
;
WTEEP CALL CMPCHK ;COMPUTE THE CHECKSUM.

MOV A,EEPROM+7 ;PLACE IN EEPROM.
BTJZ #00000001b,EEPFLG,WTEEP1 ;BRANCH IF NATIONAL.
MOV #10000101b,A ;XICOR, RECALL.
CALL XICINS
CALL DESEEP
MOV #10000100b,A ;SET WRITE ENABLE LATCH.
CALL XICINS
CALL DESEEP
MOV #10000011b,A ;WRITE RAM 0.
CALL WTXIC
MOV #10001011b,A ;WRITE RAM 1.
CALL WTXIC
MOV #10010011b,A ;WRITE RAM 2.
CALL WTXIC
MOV #10011011b,A ;WRITE RAM 3.
CALL WTXIC
MOV #10000001b,A ;STORE RAM DATA INTO E2PROM.
CALL XICINS
CALL DL10MS ;WAIT 10 MILLISECONDS.
JMP WTEEP2

WTEEP1 MOV #00110000b,A ;ERASE/WRITE ENABLE.
CALL NATINS
CALL DESEEP
MOV #00100000b,A ;ERASE E2PROM.
CALL NATINS
CALL DESEEP
CALL DL30MS ;DESELECT FOR 30 MILLISECONDS.
MOV #01000000b,A ;WRITE RAM 0.
CALL WTNAT
MOV #01000001b,A ;WRITE RAM 1.
CALL WTNAT
MOV #01000010b,A ;WRITE RAM 2.
CALL WTNAT
MOV #01000011b,A ;WRITE RAM 3.
CALL WTNAT
MOV #00000000b,A ;ERASE/WRITE DISABLE.
CALL NATINS

WTEEP2 JMP DESEEP
;
;COMPUTE CHECKSUM ON FIRST 7 BYTES OF EEPROM
;
CMPCHK MOV EEPROM,A ;COMPUTE EEPROM CHKSUM.

ADD EEPROM+1,A
ADD EEPROM+2,A
ADD EEPROM+3,A
ADD EEPROM+4,A
ADD EEPROM+5,A

500

ADD EEPROM+6,A
RTS

;
;WRITE INSTUCTION TO NATIONAL PART, THEN SEND DATA, DELAY
;
WTNAT CALL NATINS

CALL WTDAT
CALL DESEEP
CALL DL30MS ;DESELECT FOR 30 MILLISECONDS.
CALL SELEEP
JMP DESEEP

;
DL30MS CALL DL10MS ;30 MILLISECOND DELAY

CALL DL10MS
DL10MS MOV #2,A ;10 MILLISECOND DELAY

CLR B
DL10M1 DJNZ B,DL10M1

DJNZ A,DL10M1
RTS

;
;WRITE INSTRUCTION TO XICOR PART, THEN SEND DATA
;
WTXIC CALL XICINS

CALL WTDAT
JMP DESEEP

;
;SEND 16 BITS OF DATA TO EEPROM
;
WTDAT MOV #16,B
WTDAT1 CALL SHFTNV

JC WTDAT2
CALL CLKZRO
JMP WTDAT3

;
WTDAT2 CALL CLKONE
WTDAT3 DJNZ B,WTDAT1

JMP DESEEP
;
;SEND INSTRUCTION TO EEPROM FROM ’A’
;
;NATINS FOR NATIONAL, XICINS FOR XICOR
;
NATINS CALL SELEEP

CALL CLKONE
JMP INS1

;
XICINS CALL SELEEP
INS1 MOV #8,B
INS2 RLC A

JC INS3
CALL CLKZRO
JMP INS4

;
INS3 CALL CLKONE
INS4 DJNZ B,INS2 ;NEXT BIT OF INSTRUCTION

RTS
;
;CLOCK A ONE BIT TO EEPROM
;
CLKONE OR #00000001b,DPORT

JMP CLKEEP
;
;SELECT EEPROM

501

;
SELEEP OR #00000010b,DPORT

JMP CLKZRO
;
;DESELECT EEPROM
;
DESEEP AND #11111101b,DPORT
;
;CLOCK A ZERO BIT TO EEPROM
;
CLKZRO AND #11111110b,DPORT
CLKEEP OR #00001000b,DPORT

AND #11110111b,DPORT
RTS

;
;SHIFT EEPROM DATA LEFT 1 BIT
;
;LEAVES BIT SHIFTED OUT IN CARRY, SHIFTS CARRY VALUE ON CALL INTO
;LAST BIT OF EEPROM
;
SHFTNV .EQU $

RLC EEPROM+7
RLC EEPROM+6
RLC EEPROM+5
RLC EEPROM+4
RLC EEPROM+3
RLC EEPROM+2
RLC EEPROM+1
RLC EEPROM
RTS
.END

502

503

Part VI
Specific System

Application Design Aids
Part VI contains two sections:

 EMI Reduction 503.

 Cost Effective Input Protection Circuitry
 for the Texas Instruments TMS370
 Family of Microcontrollers 525.

504

505

PCB Design Guidelines for
Reduced EMI

Robert DeMoor
Microcontroller Products—Semiconductor Group

Texas Instruments

506

507

Overview

Electromagnetic interference (EMI) often seems like a mysterious phenomenon. EMI can be difficult to
control, and even the results of EMI testing can vary from day to day and from test facility to test facility.
The act of controlling EMI has been called black magic or voodoo. However, EMI has been researched for
many years, and guidelines have been established that can improve the electromagnetic compatibility
(EMC) of systems to which they are applied.

Designing for low EMI from the start of a project results in much easier and less expensive solutions than
attempting to fix EMI problems after a design has reached the testing phase of development. Consequently,
following a few guidelines for printed circuit board (PCB) design at the beginning of a project can help to
minimize the system’s EMI while adding little or no cost to the system.

Background and Theory

Knowledge and understanding of a few fundamental concepts can be exercised toward the design of an
electronic system in order to improve electromagnetic compatibility (EMC) performance.

EMI Sources, Paths, and Receivers

EMI requires a source, a path, and a receiver. In today’s electronics, clocked CMOS integrated circuits often
supply the source. The printed circuit board (PCB) and its associated cabling and wire harness, acts as the
conductive and radiating part of the path, otherwise called the antenna.

508

Figure 1. EMI Sources, Paths, and Receivers

EMI

Oscillators

Switching

Resonant

ESD

Radiated

Conducted

Cellular Phones

Antennas

(Screen room)

Sources Paths Receivers

ICs, Circuit Boards

Radio Tuners

Components

Regulators

Digital ICs

The receiver can be a sensitive electronic module, such as a radio, or it can be an antenna specifically
designed to receive electromagnetic emissions in a test environment. Depending on its design and layout,
a PCB can either amplify or suppress the emissions of an IC.

Loops and Antennas

The amount of radiation produced by an electronic system is to a large extent proportional to the efficiency
of its radiating antennas. Antennas on a PCB include all traces, components, component leads, connectors,
and wiring harnesses. In other words, any conductive element on or connected to a PCB can act as an
antenna. The challenge is to reduce the efficiency of these antennas. If a radio station has a source
broadcasting power of 100 megawatts but has no antenna to broadcast from, nobody will hear it. In much
the same way, a well-designed PCB can minimize the amount of radiation that is transmitted from its
sources.

Loop Areas

Loop areas can be the most serious EMI threat. A loop can transmit as well as receive electromagnetic
energy. Thus, the loop areas associated with a PCB directly affect the emissions and immunity of the
system. A PCB can have many loops, and each loop contributes to the radiated emissions from the system.
As the size of a loop increases (up to 1/4 wavelength of the signal), so does the efficiency of the loop as
a radiator. Thus, to minimize radiated EMI, loops must be made as small as possible.

509

The Loop: Current Flow Path
Current must flow in a loop. If the loop is broken, the same current will no longer flow. Current flowing
through a loop generates electric and magnetic fields, with field strength proportional to loop size and to
the square of the frequency for loops that are smaller than 1/4 of the wavelength of the frequency of interest
[3]. Loops also receive emissions from other devices, and thus allow an increased susceptibility of the
circuit to disturbances.

Current must return to the point from which it originated via the path of least impedance. The path of least
impedance, however, is usually not the path of least resistance at high frequencies. In Figure 2, paths A
and B represent two different possible current return paths, either within a ground plane or on a ground grid
network. Path A is the lowest resistance current return path for the output signal from the MCU, since its
path is the shortest. However, at frequencies over about 10 kHz, the inductive reactance of a wire is larger
than the resistance of the wire. Therefore, any signal faster than about 10 kHz will return through path B,
since this path is less inductive than path A. On a PCB, the return current may not have any other options.
If path B were removed, a very large signal/return loop would be created. This would undesirably provide
a more efficient radiating (and receiving) antenna for high-frequency EMI than if path B were there. Loops
of this nature should be avoided.

Figure 2. Paths of Least Impedance vs. Paths of Least Resistance

GND

OUTPUT

GND

INPUT

A

Loop Area # 1

GND

OUTPUT

GND

INPUT

B

Loop Area # 2

A

Signal Signal

µC µC

A = Low-frequency signal-return
path

 Loop Area #1 = Loop of least resistance

B = High-frequency signal-return
path

 Loop Area #2 = Loop of least impedance at
high frequency (assumes
conductor B is present)

Harmonics from a microcontroller’s system clocks tend to couple onto the device’s inputs and outputs.
Then, the coupled high-frequency EMI uses the antennas provided by the routing of the I/O and its return
path in order to radiate. Since system clocks usually operate faster than 1 MHz, system clock noise and
harmonics will take the path of least impedance (path B).

Every signal has a signal return path associated with it. Most often, this signal return path is called ground.
The term ground, however, is a misnomer. A true ground is a node at a constant potential through which
no current flows under normal conditions, like the safety connection on a computer chassis. If current flows
through the ground, then two points on the ground will not be at the same potential due to the resistance
of the conductor. If the ground is no longer at a constant voltage, then it is more accurately called a current

510

return path. Thus, the loop area associated with a signal and its return is the loop between the signal and
its lowest-impedance ground path. This area must be carefully controlled.

PCB traces carrying high frequencies, large voltage swings, or large amounts of current are the most serious
EMI offenders. In microcontrollers with a divide-by-4 clock option, the oscillator supplies the highest
frequency content of the device. Nevertheless, every pin on a MCU is a high frequency source if SYSCLK
is greater than 1 MHz. The SYSCLK fundamental and its harmonics are coupled to the I/Os and can radiate
throughout the PCB. Consequently, care must be used to minimize the loop areas associated with all signals
and returns. The most attention should be paid to power, clocks, connectors, and fast switching signals.

Since system clock harmonics are difficult to control, it is desirable to run a microcontroller as slowly as
possible while still maintaining sufficient throughput for all of the required system operations. Harmonics
of a 1 MHz system clock are less severe than harmonics of a 5 MHz system clock.

Differential Mode and Common Mode Radiation

Differential mode and common mode noise provide the means for radiation to spread throughout a PCB,
onto connecting cables, and out into the environment.

Differential-Mode Noise

Differential-mode noise is created by a signal traveling to a load and the return current traveling back to
the source. The currents in the signal and the return are traveling in opposite directions.

Figure 3. Differential-mode Radiation

Signal

Return

Source
Load

RADIATION

Loop Area

Differential-mode noise increases with increasing loop area of the signal path. Thus, controlling loop areas
significantly helps to control differential mode emissions.

Common-Mode Noise

Common mode noise is the result of unwanted voltage drops within a circuit which are usually the result
of ground noise. Typically, the predominant source of common-mode noise is the cabling attached to a

511

PCB. These cables look like monopole antennas in the EMI world. The cables radiate electric fields and
are driven by the noise on the PCB’s ground system.

Figure 4. Common-mode Radiation

I /O

VN

I /O Cable

ICM

Common mode noise can be controlled by lowering the source potential, which usually is that of the ground
system. Thus, gridding the ground is also an effective measure against common mode noise. Additional
measures include placing common-mode impedance (ferrites/chokes) in series with cabling attached to the
PCB and shunting the noise current to ground with bypass capacitors.

Coupling

Coupling provides the path for a source to radiate to a receptor. Both differential-mode noise and
common-mode noise are forms of coupling. Another concern, however, is the occurrence of hidden
coupling effects. One signal can couple noise onto another signal, which may be routed over a long
distance. Power, oscillator, and clock signals carry particularly potent supplies of radiation that can be
coupled into nearby I/Os. These I/Os can then carry the noise throughout the circuit, as illustrated in the
following figure. Once this happens, the loop area associated with the coupled noise can grow enormously.
In the following figure, the coupling effect capacitor is not part of the design schematic, but represents an
actual path of high-frequency noise between the OSCOUT signal and the I/O. The capacitive coupling
represented in the figure is caused by the close proximity of the OSCOUT and I/O PCB trace routes.

Figure 5. Oscillator Coupling Onto I/O Signal

Load

XTAL

I/O

Heavy lines indicate path (and loop area) of noise coupled onto I/O.

Coupling effect

VSSD

OSCOUT
OSCIN

The oscillator contains the highest frequency of the MCU and can be the worst EMI threat of coupling noise
onto nearby I/Os. Additionally, if the CLKOUT pin is used to supply ECLK or SYSCLK to other circuitry,
that signal can supply potent radiation and coupling to other signals. The solution, however, is relatively
simple: keep oscillator, power, and clock signal loops small, and avoid running I/Os next to those noisy
sources, especially for long distances.

512

High-Frequency Characteristics of Passive Devices

A misconception about PCB design is that the location of components does not matter as long as they are
connected according to the schematic. Unfortunately, circuit elements are not always what they seem to
be. For instance, at high frequencies, a capacitor becomes more inductive than capacitive due to the
inductance of the leads and the PCB trace. The high-frequency schematic of a capacitor and a PCB trace
is an RLC circuit. When noise is introduced into that circuit, it can resonate. In fact, a capacitor intended
to decouple noise can actually become self-resonant and radiate noise if it is not placed close to the noise
source. The absence of a low-impedance ground (signal return) path will cause the same effect. A
low-impedance ground path means a path with minimal loop area between itself and the signal since trace
inductance dominates trace resistance at high frequencies. The following figure illustrates the
high-frequency characteristics of some common passive circuit elements.

Figure 6. Hidden Schematic Effects of Common Passive Circuit Elements [1]

Resistor

Capacitor

Inductor

Wire (PCB
trace)

Z
F

Z
F

Z
F

Z
F

Characteristics

Ideal

Real

or

or

Low-Frequency High-Frequency
Impedence vs. Frequency

The pitfalls of the high-frequency schematic can be avoided with careful attention to the placement of
passive circuit elements.

Reciprocity of Emissions and Susceptibility

Generally, PCB design guidelines which reduce EMI emissions also reduce susceptibility to outside
sources of EMI. If the antennas (that is, PCB traces and wiring harnesses) of a system are reduced in
radiating efficiency, they are also less efficient at receiving interference from other sources.

However, this reciprocity applies only to the antennas and not to the source and sink capabilities of the pins
connected to the antennas. Consequently, the signals that are the worst emitters are usually not the most
susceptible signals. For instance, clock output signals and high-frequency oscillators are some of the worst
EMI producers. However, reset and control signals can cause great damage when corrupted by interference.
These signals should get high priority for EMC when routed on a PCB.

513

PCB Design Implementation

The implementation of PCB design guidelines to circuit board layout is critical for achieving
electromagnetic compatibility (EMC). Furthermore, it is most cost-effective to design a PCB for EMC at
the beginning of the design cycle since later changes to improve EMC become more difficult and costly.
However, there is little or no cost involved with implementing PCB design guidelines for reduced EMI at
the beginning of the design cycle.

The three most important aspects of PCB design are floor-planning, grounding, and bypassing, as will be
discussed in the following sections.

Floor-Plan PCB First

Floor-planning a PCB is the first step toward designing for EMC. Floor-planning consists of creating zones
on the PCB for analog, digital, and noisy components and providing proper space for grounding. Also,
devices should be arranged to minimize routing distances of EMI-critical signals, such as clocks, power,
cabling, and control signals.

Board Zoning

Board zoning allows the grounding structures to be optimized for different types of circuitry. For instance,
digital circuits should be grouped together, and analog circuits should be grouped in another location. This
configuration will reduce coupling of digital noise onto sensitive analog circuitry. Noisy components, like
relays, motors, and high-current-consumption devices, should be separated from both digital and analog
circuitry.

514

Figure 7. PCB Zoning

Analog Noisy

Digital

µC

Space for Ground Structures

An important aspect of board zoning is to allow space for proper grounding. Space for grounding should
be provided before the placement of IC’s and components is finalized. Grounding is an extremely important
facet of PCB design, but its importance is sometimes overlooked.

Minimize Routing Distances

The placement locations of IC’s on the PCB should minimize routing distances between IC’s and other
components.

Short Routes for High-Frequency Signals

IC’s and components producing and/or receiving fast signals (that is, CLKOUT or an SPICLK of greater
than 50 kHz) should be placed near each other to minimize routing distances associated with these signals,
which tend to generate EMI. Also, a low-impedance (minimal loop area) signal return (ground) should be
provided for fast signals. Moreover, routing ground on both sides of a high-frequency signal serves to
provide some shielding for other nearby signals.

Grounding

Along with board zoning and IC placement, proper grounding is of fundamental importance to achieving
electromagnetic compatibility. Since a ground is really a current return path in most cases, the goal of
grounding is to provide the lowest impedance current return path possible without generating additional
noise. A ground plane will accomplish this task for all high-frequency noise and signals since the return

515

current for the high frequencies will follow a path directly under the signal and back to the source. While
a ground plane is ideal for minimizing loop area and impedance, it will not always solve capacitive or
inductive coupling problems.

A ground grid for digital circuitry can provide low-impedance signal return paths for high-frequency noise
on a two-layer board and does not require the additional cost of a ground plane, which usually requires at
least a four-layer PCB. For analog circuitry, a single-point grounding scheme is often better in order to
avoid the presence of ground loops. Single-point grounding is also preferred for noisy or high-power
circuitry.

To protect sensitive analog circuitry from digital noise and to protect both analog and digital circuitry from
even noisier components such as relays and motors, the analog, digital, and noisy parts of a system should
be separated from each other and connected only at a low-impedance ground node.

In a mixed-signal environment, the divisions between analog and digital ground may seem unclear.
However, the analog sections of a mixed-signal IC (that is, ADC) should be provided with an analog
grounding scheme, and digital sections of the same IC (that is, CMOS digital I/O), including its signals and
routing, should be provided with a digital grounding scheme.

Digital: Grid the Ground

Ideally, each signal should be routed next to a ground (signal return). Since this is not usually possible on
a two-layer board, gridding the ground is the next best alternative. A four-layer PCB often includes a
ground plane which provides a low-impedance signal return path for each signal. On a two-layer board,
a ground grid provides a low-impedance signal return path that resembles that of a four-layer board. Thus,
digital ground should be in the form of a grid on a two layer board in order to keep loop areas small and
thus to minimize the impedance of the ground structure. Following is an example of what a ground grid
on a two-layer PCB can look like.

516

Figure 8. Ground Grid
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î
Î

ÎÎ

Top-Side Copper

Bottom-Side Copper

Via

A ground grid can be created by running ground lines horizontally on one side of the PCB and vertically
on the other side. Where the lines cross, they should be tied together with vias (feed-through connections)
to form a grid. The size of the grid should be kept small, preferably no larger than 1 square inch, and smaller
grids are better. Signals can then be routed between the ground lines, horizontally on one side and vertically
on the other side through a via. It is usually more effective to lay down the ground grid before routing
signals. Otherwise, space for a ground grid rarely is provided.

With this technique, signals can still be routed to any area on the board, and each signal is never more than
one half inch from a current return path.

Additionally, a localized VSSD (digital ground) plane should be placed under the microcontroller to
provide shielding. This micro-ground consists of a ground area on the bottom layer of the PCB underneath
the microcontroller that extends about a quarter of an inch outside of the package outline. It should be tied
to the microcontroller’s ground pins, and the VCC bypass capacitor, as well as all other signal bypassing
capacitors, should be tied to this micro-ground. Similarly, the oscillator leads and tank capacitors should
be enclosed by the micro-ground.

517

Figure 9. Micro-ground

Ferrite
Bypass Capacitor

11

BottomTop

Oscillator Capacitors

In this example, the topside layer of the PCB is on the left, and the bottom side is on the right. The topside
traces are shown in dotted line form on the bottom side diagram for alignment purposes. Notice how the
oscillator capacitors are located on the inside of the resonator in order to reduce loop area. The ferrite chip
and bypass capacitor are also located in positions for minimum loop areas, and the main power lead runs
almost directly under the microcontroller’s lead finger for the ground (on pin 9 for ’x5x devices).

The significance of a ground grid should not be under-emphasized. The ground system is critical for
achieving low EMI.

• “The ground system is the foundation of a digital logic printed wiring board. Therefore all digital
printed wiring boards must have either a ground plane or a ground grid” [3].

• “It is important to put the ground grid on the board first, before locating the signal paths” [3].

• “Critical traces need a return path less than 0.1” away” [5].

• “With regard to noise control, the single most important consideration in the layout of a digital
logic system is the minimization of the ground inductance. Ground inductance in digital systems
can be minimize by using a ground plane or ground grid” [3].

• “An effective and well-designed ground grid is one of the most important aspects in the ability
of the product to meet the regulatory limits and avoid functional problems” [2].

• “...there are data that indicate a correlation between reduced ground drop on a PCB
(high-frequency voltage differences between two points on the ground conductor) and a
reduction in the radiated emissions of that PCB” [2].

518

• “The design of an effective ground grid on a PCB is a critical aspect to the regulatory compliance
of the PCB and its host system” [2].

Analog Ground

It is important to distinguish between analog and digital grounds. Digital grounds should be designed to
return high frequencies through a low impedance path, and analog grounds should be designed to return
low frequency current or dc to its origin through a low-resistance path.

Parallel or series ground connections provide the cleanest current return paths for analog signals. Parallel
ground connections are best, but this scheme is cumbersome to design on a PCB. Series ground connections
are less desirable, but easier to design. Thus, a parallel connection scheme should be used for the most
sensitive analog signals, and series grounds can be used for less sensitive analog circuitry. The following
figure illustrates series and parallel ground schemes.

Figure 10. Series and Parallel Ground Connection Schemes [3]

Series Connection Scheme Parallel Connection Scheme

R1 R2 R3

R1 R2 R3

A A

VSSA

µC µC

VSSA

VSSA VSSA

The shortcoming of series ground connections is that more current flows through the ground closest to the
beginning of the chain than through the ground toward the end of the chain. Thus, according to Ohm’s law,
the series resistance of the ground trace causes the analog circuitry at one end of the series ground
connections to be at a different ground potential than the analog circuitry at the other end of the series
ground connections.

Noisy Ground

“Noisy” grounds support circuitry that generates a significant amount of ground bounce, such as relays and
motors. This ground should be isolated from the digital and analog grounds in order to keep high levels
of ground noise away from analog and digital circuitry, which may be susceptible to such noise.

Low Impedance Ground Node

The digital, analog, and noisy grounds should be connected together at a low impedance ground point. This
is often the point at which ground enters a circuit board and where the bulk decoupling capacitor is located.

Ground Width

Ground traces should be as wide as possible in order to provide the lowest impedance path for current.
However, in cases where wide ground traces are unacceptable, thin ground traces are better than no ground

519

traces at all. Thin ground traces can still reduce loop areas, whereas an absence of ground traces can result
in large loops. One approach for designing a two-layer board is to lay down a thin-traced ground grid,
making routes wider along high-current paths, and to increase the width of the traces, where possible, after
routing all of the other signals.

Connector Grounds

Improper grounding between IC’s and connectors (to off-board wiring or cable harnesses) can result in
serious common-mode radiation and can even cause bypass capacitors to resonate. Thus, grounding
between digital components and connectors is of paramount importance for keeping noise off of a wiring
harness.

There should be a low-impedance ground between a microcontroller and a connector so that bypass
capacitors, located at the connector, can return noise to its source without allowing the noise to travel onto
the wiring harness.

Power Routing

Power should be routed over (under) or next to ground whenever possible. The power lines typically
contain the most high-frequency noise in a digital system. Therefore, their routing on a PCB should receive
special attention. Routing power directly over the ground results in a path with low inductance and
minimized radiating loop area. Routing power and ground next to each other is the next best alternative.

Additionally, series filters, such as ferrites or inductors, often prove helpful for reducing noise on power
supply routes. A π configuration can be used on each of the VCC pins An example of a π filter appears in
the figure below.

Figure 11. π Filter Configuration

µC

Ferrite / Inductor

VSS

VCC

VSS

VCC

The importance of choosing the right ferrite or inductor should not be underemphasized. For example, the
element should exhibit a high impedance at frequencies near 100 MHz, if that is the part of the spectrum
of most importance for the application. An inductor with a high impedance at 10 MHz may do nothing to
filter noise at 100 MHz.

Also, the ferrite should be located very close to the pin of the MCU in order to obtain the greatest benefit
of suppressing noise at the MCU and keeping the noise off of the PCB trace.

Clock Lines

Clock lines can contain high frequencies with 5 V rail-to-rail switching. This optimizes their ability to
radiate EMI. Fast signals, such as an SPI with a 50 k+ baud rate also provide ample energy for radiating.
Thus, special precaution should be taken for fast signals. Clock lines and fast signals should be routed over
or next to the digital ground in order to minimize differential-mode radiation from these sources. If fact,

520

routing a ground on each side of these fast signals provides a good signal return while also providing some
shielding for the nearby signals. Additionally, routing fast signals to connectors (and wiring harnesses), or
routine adjacent to other signals that are routed to connectors should be avoided. The fast signal lines should
also be properly bypassed, as discussed later.

Multi-Layer Boards
Multi-layer boards can provide many EMC benefits over two-layer boards. Sometimes, providing adequate
grounding for EMC on a two-layer board is extremely difficult due to space, routing, and component
placement constraints. If this is the case, then a multi-layer board can improve the system EMC
performance with less time required for finding EMC fixes.

Multi-layer boards can provide several weapons against radiated EMI. First, multi-layer boards provide
low-impedance return paths for all signals. Since the high-frequency component of every signal will return
to its source via the path of least impedance, every signal will be returned on the ground plane directly under
the path of the signal. For this reason, the ground plane is sometimes called an image plane. Consequently,
the loop area associated with each signal corresponds to the length of the trace and the thickness of the PCB
between the signal layer and the ground layer. On a board without a ground plane, the loop area corresponds
to the area between the signal and the return trace (usually ground), and this can be quite large.

Multi-layer boards can take advantage of the shielding capabilities of a ground plane if the plane is on the
outside of the board. In fact, imbedding the signal layers in the center of the board, with ground planes on
the outsides of the board, provides shielding for much of the system. This configuration is very good for
EMC; however, it may add difficulty for circuit debug since all of the signals will be covered over.
Nevertheless, a generous number of test points and vias as well as a copy of the board layout should provide
an engineer with the necessary tools for circuit debug for a board with buried signals.

Sometimes only one layer of ground plane is available. If that is the case, it usually should be on the outside
of the board (on the side with the fewest components) in order to provide the best shielding effectiveness.
If the ground plane is buried between two signal layers, its potential shielding effectiveness is reduced. If
the only ground plane is located on the side of the board with the most components, the space required for
the components (especially surface mount) tends to create many holes or gaps in the ground plane, thus
reducing its shielding effectiveness and its image plane effect. Therefore, if locating a ground plane on the
outer layer of a multilayer PCB results in a chopped up ground plane, it should probably be implemented
on an inner layer instead. Regardless of where the ground plane is located, the image plane effect usually
provides a reduction of common-mode and differential-mode emissions.

Even when designing a PCB with a ground plane, good two-layer board design practices should still be
followed. Ground planes do not cure EMI, they just help to reduce it. Following are a few points that are
often overlooked when designing multi-layer PCBs:

• Avoid routing clock lines or other high-speed signals near connectors or wiring harnesses. Also
avoid routing these high-speed signals near other signals that are routed to connectors or wiring
harnesses. Noise may couple from one signal to another which may be routed to a connector and
wiring harness, providing several feet of antenna for the radiated noise to propagate from.

• If clocks or high-frequency signals are exposed on the outer layer of the PCB, GND should be
routed on each side of the signal to couple noise back to the source and to provide some shielding
for other nearby signals.

• Components, such as resistors and small capacitors, which filter emissions from the IC should
be kept as near to the pins as possible in order to suppress the noise within a minimal area. These
components should not be confused with circuitry designed to keep voltage spikes from entering

521

the PCB (that is, diodes, MOVs, and large capacitors), which usually should be located near the
power and/or signal connectors on the PCB.

• Avoid chopping up (making gaps) in the ground plane by placing signal traces on it. When the
return current (GND current) cannot follow the path of least impedance (the same path as the
associated signal), radiating loops are created. The following figure illustrates how a slot in a
ground plane creates a less direct path for ground current and creates a larger signal-to-return
loop area.

Figure 12. Slot in a Ground Plane

ÎÎ

ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ
ÎÎ

Bottom-Side Copper
Slot in GND Plane
Top-Side Route
Bottom-Side Route
Return Path On GND Plane
Via

Slot in
Bottom-Side
GND Plane

Return Path
On GND
Plane

Signal

IC
(Top
Side)

(Top
Side)

• Sometimes, the placement of connectors, DIP devices, or multiple vias (feed-through holes)
inadvertently chops up a ground plane when copper is not allowed to flow between the holes.
Avoid these gaps, since they deteriorate the benefits of a ground plane.

• Signal layer connections to ground planes (that is, a route from the GND side of a capacitor to
a via connecting it to GND) should be kept as short as possible in order to take advantage of the
low-impedance properties of the ground plane.

• Isolated, or private-line, VSS3 (analog ground) traces can be routed on a signal layer in order to
assure clean analog ground and to avoid ground loops, which may detrimentally affect analog
circuitry. This may or may not be necessary, depending on the desired accuracy of the analog
circuitry and also the levels of noise on the ground planes.

Bypassing

Bypass capacitors serve several functions for digital logic. When used on power pins, they supply current
for digital switching. When used on I/O pins, bypass capacitors provide current return paths for
high-frequency noise. They also help to round the edges of a digital signal and thus reduce the harmonic
content of the signal.

Power Bypassing: V CC/VSS, VCC3/VSS3
Inside TMS370 devices, VCC is not connected internally to VCC3. Likewise, VSS is not directly connected
internally to VSS3.

522

VCC should be bypassed to VSS. Similarly, the analog supply (VCC3) should be bypassed only to analog
ground (VSS3).

Since VCC and VSS supply the current to the digital logic, they contain the most high-frequency elec-
tromagnetic energy of any pins on a device. Thus, the loops created by VCC and VSS should receive the
most attention with regard to placement of the capacitors and the loops created by their connections.
Therefore, the VCC bypass capacitor (0.1 µF) should always be attached as close as possible to the de-
vice’s VCC and VSS pins, and should provide minimal loop areas for the high-frequency currents.

The locations and routing of the bypass and load capacitors for the analog circuitry (VCCA/VSSA)
(VCC3/VSS3) should take next priority after the digital supply capacitors.

Signal Bypassing

Ideally, every I/O on the device should have an RC filter attached close to the pin. This provides both
wave-shaping for the signal and smaller return paths for high-frequency noise. However, this is usually
not necessary or practical.

On the other hand, some pins that have high-frequency signals should have at least a small bypass ca-
pacitor connected to the digital ground. SPI pins with greater than 50 k baud rates and the CLKOUT
pin, if SYSCLK is active on the pin, are good candidates for bypass capacitors of 50 pF or less to VSS
and series resistors. The value of the series resistor depends on the loading and current drive capability
of the output; however, 100 Ω is a good value to start with.

Any filter components attached to a device pin should be located as close as possible in order to keep any
noise close to the microcontoller and off of the rest of the circuit board. Moreover, a proper return path for
a bypass capacitor, from the capacitor’s ground to the microcontroller’s ground, is essential for returning
high-frequency noise to its source while providing minimal radiating loop area.

Connector Bypassing

Signals which are routed to a connector should also be bypassed at the connector with a small capacitor.
This helps to keep high frequencies off of the cables and/or wiring harness by providing a high-frequency
path for any noise to get back to its source before entering the wiring harness. Proper grounding must be
supplied between the microcontroller and the connector in order to keep the bypass capacitors from
radiating rather than filtering noise.

523

Summary

By understanding and applying a few fundamental PCB design guidelines, a designer can reduce the
radiated EMI of a system inexpensively at the beginning of the design cycle. Following is a summary of
PCB design guidelines for reduced EMI:

1. Floor-plan the PCB first.
a. Analog, digital, and noisy components should be located on the PCB by category.
b. Allow space for grounding.
c. Minimize routing distances.
d. ICs that have high-frequency signals (that is CLKOUT or SPICLK of greater than 50 kHz)

should be placed near each other to minimize routing distances for clocks and fast signals.
2. Grounding

a. Digital: Grid the ground.
b. Analog: Use a parallel grounding scheme for sensitive analog circuitry, and use series

grounding scheme for less sensitive analog circuitry.
c. Noisy: Isolate from analog and digital grounds.
d. Low impedance ground node: Connect digital, analog, and noisy grounds together at the

lowest impedance ground node on the PCB.
e. Connectors: Provide a low-impedance ground between IC’s and connectors.
f. Fast signals: Run a digital ground next to fast signals (or over if possible).

3. Bypassing
a. Power: Capacitors should be located as near as possible to VCC and VSS pins.
b. Signal: Capacitors should be located as near as possible to the associated pins.
c. Connector: Proper grounding between the microcontroller and a connector is necessary for

the bypass capacitors at the connector to keep noise off of the wiring harness.

Priority of Guidelines

1. Locate devices on the PCB for EMC optimization of: 1) grounds, 2) power, and 3) routing
(especially clocks and high-speed signals).

2. Provide a ground grid for a two-layer board or a ground plane(s) for a multi-layer board.
3. Route the power and place the filter components.
4. Route the clocks and high-speed signals and place the filter components.
5. Route other noise-making or noise-susceptible signals. Also give attention to the reset and

control signals.
6. Route all other circuitry.

524

References

1. Gerke, Daryl and Bill Kimmel, EDN: The Designer’s Guide to Electromagnetic Compatibility,
Cahners Publishing Company, 1994.

2. Paul, Clayton R., Introduction to Electromagnetic Compatibility, John Wiley & Sons, Inc., 1992.

3. Ott, Henry W., Noise Reduction Techniques In Electronic Systems, second edition, John Wiley
& Sons, New York, 1988.

4. Schneider, John, Automotove PCB Design Guidelines for Reduced EMI, Texas Instruments,
1992

5. Van Doren, Tom, Grounding and Shielding Electronic Systems, T. Van Doren, 1993.

525

Part VI
Specific System

Application Design Aids
Part VI contains two sections:

 EMI Reduction 503.

 Cost Effective Input Protection Circuitry
 for the Texas Instruments TMS370
 Family of Microcontrollers 525.

526

527

Cost Effective Input Protection
Circuitry for the Texas Instruments
TMS370 Family of Microcontrollers

David T. Maples
Michael S. Stewart

Microcontroller Products—Semiconductor Group
Texas Instruments

528

529

Introduction

The Texas Instruments TMS370 microcontroller family has been designed to reduce the system cost of
external input protection circuitry. Features of the TMS370 family that allow this cost advantage include:

• TTL specified I/O levels

• Internal diode protection circuitry

Today’s microcontroller based systems are subjected to electrically harsh environments that require the
existence of input protection circuitry. Depending on the embedded system environment and the design of
the microcontroller, this external protection circuitry can add substantial system costs. Microcontroller
based systems typically have a significant number of inputs and outputs (I/O). The I/O will be exposed to
an environment that requires the use of discrete circuitry to condition input signals and to protect the
microcontroller from high voltage transients. An opportunity for cost savings exists if the input circuitry
of the microcontroller is designed with these challenges in mind.

The purpose of this application report is to outline the cost advantages resident with the TI TMS370
microcontroller family when used in an automotive system with a 12 V dc battery and potentially damaging
transient noise spikes. The principles developed in this report are applicable to other electrically harsh
environments such as industrial, motor control, etc.

Advantages of TTL Specified Input Pins

Input levels of the microcontroller, commonly referred to as VIL and VIH, are the voltages required to
guarantee that the microcontroller interprets the voltages at the device input pin as a logic one or logic zero.
Table 1 illustrates the input thresholds of industry standard microcontrollers.

Table 1. Industry Standard Microcontroller Input Thresholds :

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

Device ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

VIH ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

VIL

ÁÁÁÁÁÁÁÁÁÁÁTMS370 ÁÁÁÁÁÁÁÁ2.0 V ÁÁÁÁÁÁÁ0.8 VÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁHC11

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ0.7 Vcc

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ0.2 VccÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁ
HC05

ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

0.7 Vcc
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0.2 VccÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

80C51
ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

0.2 Vcc + 0.9 V
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0.2 Vcc – 0.1 V
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

COP888 ÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁ

0.7 Vcc
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0.2 Vcc

As illustrated above, TI’s input thresholds are specified at TTL levels while most competitors’ devices are
typically specified at CMOS voltage levels. The key difference in specification is that CMOS voltage levels
have a wider indeterminate region than the TTL levels illustrated in Figure 1. This is vitally important when
designing cost effective input conditioning circuitry.

530

Figure 1. Indeterminate Range for TTL and CMOS Input Thresholds (V CC = 5 V)

0

1

2

3

4

5

0 4 8 12 16 20 24 26

0

1

2

3

5

4

0 4 8 12 16 20 24 26

Battery Voltage Battery Voltage

-1

-2
-8 -4

-1

-2
-8 -4

Indeterminate Range

Indeterminate Range

TTL Input Threshholds (V CC = 5.0 V) CMOS Input Threshholds (V CC = 5.0 V)

C
 In

pu
t V

ol
ta

ge

µC Input Voltage

µC
 In

pu
t V

ol
ta

ge
µ

VIH = 2.0 V

VIH = 3.5 V

VIL = 0.8 V
VIL = 1.0 V

The goal of the automotive system designer is to translate vehicle voltages to a voltage range that the
microcontroller can recognize as a logic 1 or logic 0, outside of the indeterminate range, and not exceeding
the maximum or minimum input voltage specification of the device. The following two typical conditions
should be considered for the automotive environment:

• Switching to battery voltage (Vbat) as illustrated by Figure 2

• Switching to battery ground as illustrated by Figure 3

One of the greatest difficulties in designing external input circuitry in both conditions is created by the wide
fluctuations in the vehicle battery voltage. The battery may range from 9 to 18 V during normal vehicle
run conditions (26 V during double battery conditions). The vehicle ground may range from
–2 V to +2 V due to vehicle ground offsets.

Figure 2. Switching to Vehicle Battery (V bat)

Input
Conditioning

Vehicle Battery (V bat)

µC Input

531

Figure 3. Switching to Vehicle Ground

Input
Conditioning µC Input

The voltage divider circuit is probably the simplest and most cost effective place to start the design of the
input conditioning circuitry. Figure 4 illustrates the function of a simple voltage divider circuit with the
TMS370 I/O buffer circuitry.

532

Figure 4. TMS370 Microcontroller Buffer Circuitry With External
Voltage Divider Circuitry

R2

R1 R3 C1

External Conditioning
Circuitry

R2
R1

R3 C1

External Conditioning
Circuitry

Vehicle Battery (V bat)

VCCD VCCD

IPIN

µC Input

VCC VCCVCC

µC Input

IPIN

Switch to V BAT

Switch to ground

In these figures, resistor R1 holds the input voltage at a known level in an open switch condition. Resistors
R2 and R3 make up the resistor divider with the following familiar equation:

Input Voltage� R3
R2� R3

� VBAT

Capacitor C1 and resistor R2 make up a single pole low pass filter to minimize noise detected by the
software and to assist in transient suppression.

533

Designing With Competitors CMOS Specified Level Inputs

Consider the CMOS input levels of most standard microcontrollers. Table 2 illustrates the conditions that
the input conditioning circuitry will be exposed to and the requirements it must satisfy.

Table 2. Typical CMOS Parameters and System Conditions

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Parameter ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Value

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁNormal battery range (switch to Vbat condition) ÁÁÁÁÁÁÁÁÁ 9.0 V � VIN � 18 VÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁGround range (switch to gnd condition)

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ–2.0 V � VIN � 2.0 VÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
Vcc

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

 0.5 V+/–10%ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Microcontroller VIH
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

 0.7 VccÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Microcontroller VIL
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

 0.2 Vcc
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Microcontroller absolute maximum input voltage range ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

 7.0 V

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Microcontroller absolute minimum input voltage range ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

–0.6 V

Once the system and microcontroller specifications have been determined, an attempt can be made to find
the resistor ratios necessary for the simple voltage divider circuitry that will operate over the entire Vbat
range. Figure 5 plots the voltages seen at the microcontroller pin versus the battery voltage fluctuations.

Figure 5. CMOS Input Levels Over Variations in V bat

9

8

7

6

5

4

3

2

1

0

0 2 4 6 8 10 12 14 16 18 20 22 24 26

1/3 ratio

1/4 ratio

1/5 ratio

Clamp
Diodes
Conducting

Logic 1

Indeterminate
Region

Logic 0

Clamp
Diodes
Conducting

Switch to Ground

-1

-2

-3
-8 -6 -4 -2

Switch to Battery

VIN Max

CMOS VIH

CMOS VIL

VIN Min.

Vbat

C
 In

pu
t V

ol
ta

ge
µ

NOTE:
The specifications for maximum and minimum VIN values is device and
vendor dependent. These limits are primarily determined by the overvoltage
protection circuitry. Each vendor has different protection circuitry and thus
different absolute maximum and recommended operating range
specifications.

The range between VIH and VIL is the digital indeterminate range. The microcontroller cannot be
guaranteed to distinguish a logic 1 from a logic 0 across manufacturing process variations, voltage
fluctuations, temperature ranges, etc. The other regions are the voltages that the microcontroller is

534

guaranteed to recognize as a logic 1 or logic 0. Therefore, for all valid voltages that the input conditioning
is exposed to (such as 9 V to 18 V for an automotive switch to battery condition), the resistor curves must
fall within the logic 1 or logic 0 range to satisfy the design constraints.

A review of Figure 5 shows that all the design considerations cannot be met for CMOS inputs with a simple
resistor divider. The switch to battery condition is shown between the two arrows on the right of the figure.
Take the 1/4 ratio as an example. Battery voltages between 9 and 14 V violate VIH. The 1/3 ratio has better
performance with respect to VIH but battery voltages greater than 17 V and less than 10.5 V still do not meet
the required VIH specification. Some type of active circuitry must be designed to satisfy all the design
constraints, adding to the total system cost. The switch to ground condition is shown between the two
arrows on the left hand side of the figure. The design conditions can be met for a switch to ground with
CMOS input levels for all three resistor ratios since VIN falls within VIL and the minimum input voltage
of the device.

Designing With TI’s TTL Level CMOS Inputs

The advantages of designing with TI’s TTL level CMOS inputs are considered next. Table 3 shows the
conditions that the input conditioning circuitry are exposed to and the requirements it must satisfy. The
design requirements are identical to the previous example, except for the change in VIH and VIL.

Table 3. Typical TTL Parameters and System Conditions

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Parameter ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Value

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Battery Range (switch to Vbat condition) ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

 9.0 V ≤ VIN ≤ 18 V

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Ground Range (switch to ground condition) ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

 –2.0 V ≤ VIN ≤ 2.0 V

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Vcc ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

 5.0 V ±10%

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Microcontroller VIH ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

2.0 V

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ

Microcontroller VIL ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

0.8 V

ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁMicrocontroller absolute maximum input voltage range ÁÁÁÁÁÁÁ7.0 VÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁÁMicrocontroller absolute minimum input voltage range

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ–0.6 V

Figure 6 plots the voltages seen at the microcontroller versus the battery voltage fluctuations with TTL
voltage levels. Again, several resistor ratios are plotted and the input voltage ranges of interest are noted
to the right of the plot. A review of the figure shows that all the design considerations can be met with a
1/4 ratio for TTL input levels and a simple resistor divider. The switch to battery condition is shown
between the two arrows on the right hand side of the figure. The microcontroller input voltage is always
greater than VIH and less than the maximum input voltage specification for normal battery voltages
between 9 and 18 V.

The switch to ground condition is shown between the two arrows on the left of the figure. Again, the design
conditions can be met for a switch to ground with TTL input levels. The microcontroller input voltage for
all three resistor ratios fall with in VIL and the minimum input voltage of the device. A component reduction
is recognized over the CMOS voltage levels by using a simple resistor divider instead of active circuitry.

535

Figure 6. TTL Input Levels Over Variations in Normal V bat

9

8

7

6

5

4

3

2

1

0

0 2 4 6 8 10 12 14 16 18 20 22 24 26

Switch to
Ground Switch to Battery

1/3 ratio

1/4 ratio

1/5 ratio

Clamp
Diodes
Conducting

Logic 1

Indeterminate
Region

Logic 0

Clamp
Diodes
Conducting

-1

-2

-3
-8 -6 -4 -2

VIN Max

TTL VIH

VIN Min.

TTL VIL

C
 In

pu
t V

ol
ta

ge
µ

Vbat

Advantages of Internal Diode Protection Circuitry

The TMS370 family of microcontrollers has been designed with internal diode protection circuitry on all
I/O pins. These diode protection circuits coupled with an external current limiting resistor can be used to
successfully protect the microcontroller from excessive external high voltage spikes.

Typically, embedded microcontroller systems applications require the use of expensive external protective
circuitry due to high voltage noise spikes present in the system. These high voltage spikes can easily exceed
the absolute maximum specifications of CMOS microcontrollers. To protect the input pins from these high
voltage signals, external suppression circuitry must be implemented. Figure 7 illustrates several common
suppression circuitry methods, including the addition of external clamp diodes, zener diodes, buffer
circuitry, and others.

536

Figure 7. External Electrical Noise Suppression Circuitry

R2
R1

R3 C1

R2
R1

R3
C1

R2

R1

R3
C1

Battery

5.1 V

µC Input

µC Input

µC Input

Diode-protected

VCC VCC

VCC

The external noise suppression circuits illustrated in Figure 7 are necessary for over voltage protection.
However, the TMS370 microcontroller family has been designed with internal diode protection circuitry.
A simple calculation can provide the necessary value for an external current limiting resistor that, coupled
with the internal diode protection circuitry, can adequately protect the TMS370 microcontroller from
external high voltage spikes. Figure 8 illustrates the alternative low-cost circuitry required to protect
TMS370-based microcontroller designs.

537

Figure 8. TMS370 Based External Noise Suppression Circuitry

R2

R1 R3 C1

External Conditioning
Circuitry

Vehicle Battery (V bat)

µC Input

VCCD VCCD

IPIN

The system cost advantages of designing with the TMS370 family of microcontrollers becomes quite
evident when compared to competitive microcontrollers that do not contain internal diode protection
circuitry or TTL input levels.

Designing Input Protection Circuitry for TMS370 Microcontrollers

The next step in the cost reduction process is to design the input protection circuitry to meet the criteria
for transient suppression and the TTL input thresholds. This section provides an example for selecting the
two external resistors (R2 and R3) required for a simple voltage divider protection circuit.

Using the external current limiting resistor (R2), you can limit the voltage and current seen on the I/O pins
such that external protection diodes are not needed. There are two absolute maximum specifications that
must be considered. These are:

• Input and output clamp current: This specification is equal to �20 mA when VIN (or VOUT)
is less than VSS2 or greater than VCCD2.

• Input voltage range: This specification is equal to a minimum of – 0.6V or a maximum of 7V
on all pins except INT1. For INT1, the minimum is – 0.6 V and the maximum is 14 V.

Continuous power dissipation should also be considered when selecting the external circuitry. Continuous
power dissipation is dependent on package type and the maximum ambient temperature requirement. The
real requirement is that the maximum power consumption of the package not be violated during the
transient.

NOTE:
Remember that transient suppression is designed to protect the
microcontroller from overvoltage conditions and not for normal operation.

The TMS370 family has gone through several silicon shrinks. These are redesigns that use smaller silicon
geometries. The TMS370 has gone through two shrinks commonly referred to as the 80% silicon and the

538

60% silicon. The original TMS370 was a 2-micron process (100%). The 80% shrink is a redesign for a 1.6
micron process. Likewise, the 60% shrink is a redesign for a 1.2 micron process. The 1.2 micron silicon
is typically provided for new applications. The internal diode protection circuitry is identical for both 1.2
and 1.6 micron devices. However, the 1.2 micron devices have replaced most fast I/O buffers from the 1.6
micron devices with slow I/O buffers to help reduce EMI emissions.

Device symbolization for the 1.2 micron silicon will either have an A or B at the end of the device name.
For example, the device name TMS370C056A indicates a 1.2 micron silicon design. Device symbolization
for the 1.6 micron silicon will not have either letter. For example, the device name TMS370C056 would
indicate a 1.6 micron silicon design. Table 4 illustrates the different types of I/O pin buffer circuits used
on TMS370 microcontrollers.

Table 4. TMS370 Microcontroller I/O Pin Buffer Types

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

I/O Pin Type ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

TMS370 Pins

(1.2 Micron Design)

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

TMS370 Pins

(1.6 Micron Design)

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Fast Input ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

INT1 ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

INT1

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Analog Input ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁ

AN0 – AN14 ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁ

AN0 – AN14

ÁÁÁÁÁÁÁSlow I/O ÁÁÁÁÁÁÁÁÁÁÁAll Others ÁÁÁÁÁÁÁÁÁÁÁÁRESET , D3, D6ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁFast I/O

ÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁD3/CLKOUT

ÁÁÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁÁÁAll others

Figure 9 illustrates the effective equivalent I/O pin buffer circuitry for both 1.2 micron and 1.6 micron
silicon.

539

Figure 9. TMS370 Simplified 1.2 Micron and 1.6 Micron Silicon Buffer Circuitry

Slow I/O

Pin Data

Output
Enable InputFast

Pin Data

Output
EnableFast I/O Analog Input

300 Ω

30 Ω

20 Ω

400 Ω

30 Ω

20 Ω

8 kΩ

20 Ω

2 kΩ

20 Ω

VCCVCC

VCC VCC

The current limiting resistance is not simply a matter of selecting a value that limits the clamp current to
±20 mA. The external current limiting values need to be selected while keeping in mind the resistive
characteristics of the internal protection circuitry. The goal is to limit the absolute maximum clamp current
to less than ±20 mA, and at the same time limit the absolute maximum voltage to 7 V (14 V for INT1). With
this in mind, the following example illustrates how to calculate the external current limiting resistor (R2)
value necessary to adequately protect the TMS370 microcontroller family. Let’s look at an example.

Calculation of External Current Limiting Resistor Value Example

Question: What minimum external resistance value (R2) is needed on the AN0 pin to prevent dam-
age to the TMS370 device during transient voltage spikes of ±150 V?

Conditions: Limit the absolute maximum voltage on AN0 to between – 0.6 V and 7 V and the abso-
lute maximum input clamp current to ±20 mA. (Both conditions must be taken into ac-
count) Also, note that the resistance characteristics of the negative voltage protection
diode circuitry is much smaller than the positive voltage protection diode circuitry. In
this case, the example illustrates solving for both the positive and negative absolute max-
imum conditions.

I/O pin resistive characteristic value: The AN0 pin (analog input) has a resistive characteristic value of
2,000 Ω.

540

Solving for R2 to protect against a positive (+ 150 V) voltage spike:

GIVEN: VIN = + 150 V
VCCD = 5.5 V (Worst case for this example. A value of 4.5 V would allow a

larger voltage drop across the internal resistance)
VPAD = 7.0 V (Absolute maximum value)

Solve for VRINT: VRINT = VPAD – VCCD
= 7.0 V – 5.5 V
= 1.5 V

Solve for IRINT: IRINT = VRINT / RINT
= 1.5 V / 2,000 Ω
= 750 µA

Solve for R2: R2 = VIN – VPAD / IRINT
= 150 V – 7 V / 750 µA
= 143 V / 750 µA
= 190.667 KΩ minimum

Solving for R2 to protect against a negative (–150 V) voltage spike:

GIVEN: VIN = – 150 V
VSSD2 = 0 V
VPAD = – 0.6 V (Absolute Maximum value)

Solve for VRINT: VRINT = VSSD –VPAD
= 0 V – (–0.6 V)
= 0.6 V

Solve for IRINT: IRINT = VRINT / RINT
= 0.6 V / 20 Ω
= 30 mA max.

Since 30 mA exceeds the absolute maximum clamp current of 20 mA, the following equation will substitute
the lower value of 20 mA.

Solve for R2: R2 = VPAD – VIN/ IRINT
= (–0.6 V) – (–150 V)/ 20 mA
= 149.4 V / 20 mA
= 7.47 kΩ minimum

Since the minimum external resistance (R2) is larger for the positive external voltage spike, select a value
of ~191 k or greater for R2.

Now that R2 has been determined, calculate a value for R3. The first section of this document described
the TTL inputs and the necessity that the resistor ratio between R2 and R3 be 1/4. Use this relationship to
calculate R3.

541

1

4
=

R3

(R3 + R2)

R3 =

 3

 R2

R3 =

R3 = ~

Ω

Ω

/

64 k

191 k

The TMS370 can withstand voltage transients and interpret vehicle battery variations as logic 1s or logic
0s using a simple voltage divider. The series current limiting resistor (R2) limits the voltage and current
seen on the I/O pins such that the internal diode protection circuitry can withstand the defined system
transients. The addition of one additional pull down resistor (R3) creates a divider circuit with R2 and
additional circuitry is not required to convert the vehicle battery levels to voltage levels recognizable by
the microcontroller inputs.

Table 5 provides a quick reference for the types of I/O pins that are available on both the 1.2-micron and
1.6-micron devices as well as a matrix to help select the minimum external resistance (R2) necessary
assuming an external �150 V transient condition.

Table 5. Typical Values of R2 Required for 1.2 and 1.6 Micron Silicon Assuming an
External ±150V Spike

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

I/O Pin Type ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

TMS370 Pins
(1.2 Micron Design)

ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

TMS370 Pins
(1.6 Micron Design)

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Minimum R2
(Theoretical)ÁÁÁÁÁÁ

ÁÁÁÁÁÁ
Fast Input

ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

INT1
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

INT1
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

128 kΩ†
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Analog Input
ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

AN0 – AN14
ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

AN0 – AN14
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

191 kΩ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Slow I/O ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

All Others ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

Reset, D3, D6 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

29 kΩ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

Fast I/O ÁÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁÁ

D3/CLKOUT ÁÁÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁÁÁ

All others ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

39 kΩ

† The absolute maximum VIN value for the INT1 pin is 14 V.

542

Figure 10. External Resistance (R2) Values
for Various External Transient Voltage Conditions

E
xt

er
na

l R
es

is
ta

nc
e

(R
2)

 in
 K

 o
hm

1000.00

100.00

10.00

1.00
20 40 60 80 100 120 140 160 180 200 240 260 280 300220

Maximum Voltage (V IN) –Transient Condition

Fast Input

Fast I/O

Slow I/O

Analog

The values for R2 above coupled with the calculated value for R3 (1/4 ratio) satisfy the protection
requirements for the TMS370 microcontroller input. They limit voltage and current seen on the
microcontroller I/O pins and ensure that TTL voltages thresholds are not violated across all normal
operating voltages. A much more detailed analysis can be done for a specific transient specification. Since
most transients are ac in nature, the low-pass filter can be designed to ensure that a voltage transient with
some frequency content will be attenuated.

The values calculated for R2 and R3 should be considered minimum values. Increasing the value of R2 and
R3 yields the following benefits:

• Power consumption of the microcontroller is reduced during a transient event. The quiescent
current of the system is reduced.

• A greater R2 enables a lower value of C1 for an equivalent low pass filter. Typically, lower
capacitance values are less expensive.

NOTE:
The value of R2 has a direct effect on the A/D converter when used to limit
current on analog input pins. There is a minimum sample time of
1 µs per 1 kΩ of source impedance. The system designer has to determine the
appropriate value to meet system requirements.

Cost Analysis

This report establishes that Texas Instruments TMS370 microcontroller family devices input circuitry is
more robust than competitors’ input circuitry, and allows system designers to simplify their external

543

conditioning circuitry. The ultimate goal and the reason for this analysis is to minimize cost at the system
level. The following section establishes the substantial system level cost savings associated with robust
input circuitry.

Several typical input conditioning circuits are shown in Figure 11. This is by no means an exhaustive list,
but it provides a basis for cost comparison between different types of input circuits. Figure 11 illustrates
the simple resistor divider input conditioning circuit for Texas Instruments TMS370 family TTL inputs,
as well as other external protection circuits such as external diodes, external zener, transistor level shifter,
and a buffered hex-inverter used as a level shifter.

544

Figure 11. Examples of External Protection Circuitry

R2

R1 R3 C1

TI’s TTL Input

R1 R3

R2

C1

R1 R3

R2

C1

Without Internal
Clamp Diodes

Without Internal
Clamp Diodes

R1
R3

R2

C1

CMOS Input
With Transistor
Buffer

R1 R3

R2

With TTL Buffer
C1

CMOS Input

1/6 74ACT11004

Vehicle Battery (V bat)

Vehicle Battery (V bat)

Vehicle Battery (V bat)

Vehicle Battery (V bat)

Vehicle Battery (V bat)

5.1 V

TTL Input

TTL Input

VCC

VCC

VCC

545

Table 6 is a cost comparison among the five implementations shown in figure 11. The following component
cost assumptions in the table below are used for comparison purposes only.

• Resistor $.01

• Capacitor $.02

• Signal diode $.04
(assume dual SOT23)

• Zener diode $.05

• Small signal transistor $.05

• Hex inverter (74ACT11004) $.05
(assume 1/6 total cost of device and decoupling caps)

Table 6. Cost Comparison

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Component ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

TI’s
TTL input

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

TTL Input
Diode

Protection

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

TTL Input
Zener Protection

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

CMOS
Transistor

Buffer

ÁÁÁÁÁ
ÁÁÁÁÁ
ÁÁÁÁÁ

CMOS
TTL Buffer

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

R1 ÁÁÁÁÁ
ÁÁÁÁÁ

.01 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

.01 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

.01 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

.01 ÁÁÁÁÁ
ÁÁÁÁÁ

.01

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

R2 ÁÁÁÁÁ
ÁÁÁÁÁ

.01 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

.01 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

.01 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

.01 ÁÁÁÁÁ
ÁÁÁÁÁ

.01

ÁÁÁÁÁÁÁR3 ÁÁÁÁÁ.01 ÁÁÁÁÁÁ.01 ÁÁÁÁÁÁ.01 ÁÁÁÁÁÁ.01 ÁÁÁÁÁ.01ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁC1

ÁÁÁÁÁ
ÁÁÁÁÁ.03

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ.03

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ.03

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ.03

ÁÁÁÁÁ
ÁÁÁÁÁ.03ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁD1
ÁÁÁÁÁ
ÁÁÁÁÁN/A

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ.04

ÁÁÁÁÁÁ
ÁÁÁÁÁÁN/A

ÁÁÁÁÁÁ
ÁÁÁÁÁÁ.04

ÁÁÁÁÁ
ÁÁÁÁÁ.04ÁÁÁÁÁÁÁ

ÁÁÁÁÁÁÁ
Zener

ÁÁÁÁÁ
ÁÁÁÁÁ

N/A
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

N/A
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

.05
ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

N/A
ÁÁÁÁÁ
ÁÁÁÁÁ

N/A
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Q1 ÁÁÁÁÁ
ÁÁÁÁÁ

N/A ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

N/A ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

N/A ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

.05 ÁÁÁÁÁ
ÁÁÁÁÁ

N/A
ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

1/6 74ACT11004 ÁÁÁÁÁ
ÁÁÁÁÁ

N/A ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

N/A ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

N/A ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

N/A ÁÁÁÁÁ
ÁÁÁÁÁ

.05

ÁÁÁÁÁÁÁ
ÁÁÁÁÁÁÁ

Totals ÁÁÁÁÁ
ÁÁÁÁÁ

$.06 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

$.10 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

$.11 ÁÁÁÁÁÁ
ÁÁÁÁÁÁ

$.15 ÁÁÁÁÁ
ÁÁÁÁÁ

$.15

The totals shown at the bottom of Table 6 indicate that the simple resistor divider circuit used to condition
Texas Instruments TTL inputs is the least expensive. Texas Instruments input only requires four
components while the other conditioning circuitry requires between five and six components. There are
extra costs with more components, such as manufacturing cost (costs to insert extra parts), inventory costs,
board space, test time, etc. These costs are not reflected in the example above.

Conclusion

TTL input thresholds simplify the external circuitry required to ensure that the microcontroller recognizes
logic 1 and 0 input voltages across all valid vehicle voltages. There is a cost savings over the CMOS voltage
levels by using a simple resistor divider instead of active circuitry. Likewise, Texas Instruments TMS370
family of microcontrollers allows system designers to use the internal diode protection circuits to withstand
voltage transients with a simple resistor divider. The ability to use the internal diode protection circuits
instead of active components automatically reduces part count, perhaps board layout, complexity, and
ultimately, cost.

546

References

1. Texas Instruments,TMS370 Family Data Manual, pg. 16–18, 1993

2. Motorola Corp., MC68HC11E9 Data Sheet, Appendix A, pg. 2, April 1992

3. Motorola Corp., 80C51 Data Sheet, pg. 13–3, March 1992

4. Phillips Semiconductor Corp., 80C51 Data Sheet, pg. 142, Jan 26, 1993

5. National Semiconductor Corp., COP888CF Data Manual, pg. 7, May, 1992

6. TI, Advanced CMOS Logic, 1988

7. TI, High Speed CMOS Logic, 1989

