
H8/300

Using Serial EEPROM with the H8/300

Introduction

Serial EEPROM's provide a low cost, easy to use source of re-programmable, non-volatile memory with
minimum impact on system power requirements. Potential applications for serial EEPROMs are infinite
but low power, low voltage, commercial and industrial designs consume the greatest volume. SEEPROMs
are available from several suppliers, most notably ATMEL and National Semiconductor. Both
manufacturers sell 1K (128 bytes) to 4K (512 bytes) versions packaged in 8-pin DIP or SO ICs. ATMEL
offers low voltage options operating down to 1.8V with typical operating supplies of 0.2 to 0.4 mA.

Serial EEPROM Overview

Serial EEPROMs support 2, 3 and 4-wire interface protocols that vary primarily in the ease of
implementation and maximum bit clock rate. The 2-wire models use only a serial data line (SDA) and
clock (SCK). This transfer format follows the IIC bus protocol and therefore has a maximum bit clock rate
of 100 Khz.

The 4-wire handshake requires signal lines: data in (DI), data out (DO), ready/busy (RDY/BUSY*) and the
serial clock (CLK). A 5th line, chip select (CS), enables the EEPROM. The 4-wire handshake offers the
simplest interface by sending the ready/busy signal back to the controller at the end of a memory write or
erase cycle. This line can be polled to begin the next cycle. Like the 3-wire format, current 4-wire devices
support clock speeds up to 1 Mhz.

This application note will discuss the 3-wire (MICROWIRE) protocol SEEPROM from ATMEL and
provide an example interface to the H8/330 Evaluation Board. With minor modifications, this example
could also apply to a 4-wire interface. The information furnished herein is intended for example only. This
application note should not be used as a substitute for the SEEPROM manufacturer's product information.

3-Wire Format

The 3-wire format requires 4 signal lines summarized in table I below:

Using Serial EEPROM with the H8/300

2

Table I

Pin Name Abbr. Function

Chip Select CS SEEPROM enable

Data In DI serial data input

Data Out DO serial data output

Serial Clock SK serial bit clock

The controller initiates a data transfer by sending a synchronous instruction frame consisting of a start bit,
the appropriate command code (op code), the SEEPROM address and/or data as required. There are seven
operations:

• READ- Reads data stored at a specified address

• WRITE- Writes data to a specified address

• ERASE- Erases data at a specified address

• WRAL- Writes all locations with a specified data value

• ERAL- Erases all locations

• EWEN- Enables erase and write operations

• EWDS- Disables erase and write operations

The instruction set and frame format for each operation for the AT93C66 are shown below in Table II.

Table II

Address Data

Instruction SB Opcode x 8 x 16 x 8 x 16

READ 1 10 A8 -- A0 A7 -- A0

EWEN 1 00 11xxxxxxx 11xxxxxxx

ERASE 1 11 A8 -- A0 A7 -- A0

WRITE 1 01 A8 -- A0 A7 -- A0 D7 -- D0 D15 -- D0

ERAL 1 00 10xxxxxxx 10xxxxxxx

WRAL 1 00 01xxxxxxx 01xxxxxxx D7 -- D0 D15 -- D0

EWDS 1 00 00xxxxxxx 00xxxxxxx

Using Serial EEPROM with the H8/300

3

Operation

The READ Cycle

To initiate a read cycle a controller transmits a start bit and the READ command, b'10, concatenated with
the SEEPROM address. For example, to read data at address h'101 the MCU sends a 12-bit serial stream:

MSB LSB

1 1 0 1 0 0 0 0 0 0 0 1

s oc oc

A 512 byte (4K) serial EEPROM requires a 9-bit address in the command frame immediately following the
op code. Sending the byte stream containing the start bit and op code (h'06) immediately followed by a 2-
byte, word address (h'0101), results in an erroneous address request. For example, if R0l contains the
READ command and R1 contains the 16-bit address h'0101

MSB R0L LSB

0 0 0 0 0 1 1 0

s oc oc

MSB R1H LSB

0 0 0 0 0 0 0 1

A8

MSB R1L LSB

0 0 0 0 0 0 0 1

A0

Sequentially loading the Transmit Data Register with R0L, R1H, R1L results in the following 24-bit
stream:

MSB

0 0 0 0 0 1 1 0 0 0 0 0

s oc oc A8

LSB

0 0 0 1 0 0 0 0 0 0 0 1

A1 A0

The SEEPROM reads the address as h'002, ignoring the last 7 bits of the stream. To avoid this, we
concatenate the 9th address bit, A8, with the start bit and op-code held in R0L and send two bytes, R0L and
R1L.

Using Serial EEPROM with the H8/300

4

MSB R0L LSB

0 0 0 0 1 1 0 1

s oc oc A8

MSB R1L LSB

0 0 0 0 0 0 0 1

A0

SEEPROMs less than 4K have 8-bit addresses, A7 - A0, that fit into a single register. The extra step of
concatenating A8 with the command byte isn't required when working with < 4K.

Following the command frame the MCU should begin to read data from the DO line. The SEEPROM
changes data on the rising edge of the serial clock. On the rising edge of the clock at which it detects A0,
the SEEPROM responds to the read request by sending a low 'dummy bit' followed by the 8-bit data stored
at address h'101. The timing diagram for a READ cycle is shown below in figure 1.

A0A8

00 1 1

CS

SK

DI

tcs

0

D0D7

DO

Figure 1 AT93Cx6 Read Cycle

The Write Cycle

A WRITE cycle begins in the same manner as a READ cycle but includes data as a third byte in the
command frame. The first data bit, D7, must immediately follow the last address bit, A0. A typical 3 byte
WRITE command frame to a 4K SEEPROM should look like this:

Using Serial EEPROM with the H8/300

5

MSB 1st byte LSB

0 0 0 0 1 0 1 1

s oc oc A8

MSB 2nd byte LSB

0 0 0 0 0 0 0 1

A0

MSB 3rd byte LSB

1 0 1 0 1 0 1 0

D7 D0

This command frame sends a start bit, the WRITE op code, address h'101 and 8-bit data, h'AA. The result
writes the value h'AA at SEEPROM address h'101. According to manufacturers' specifications, a write
cycle can take up to 10 ms to complete after the SEEPROM receives D0. If the MCU toggles CS after
transmitting D0, the SEEPROM responds by pulling the DO line low for the duration of the write cycle.
DO thereby provides an end of cycle signal. Timing of CS low following A0 is not critical as long as the
line toggles after the last data bit transfers out of the TSR. SEEPROM WRITE cycle timing is shown in
figure 2.

A0A8

01

CS

DI

tcs

D0D7

SK

High Impedance
twpDO

1

Figure 2 A T93Cx6 Write Cycle

The Erase Cycle

The single address ERASE cycle operates much like a write cycle but does not include the third data byte.
The controller sends a 2-byte command frame consisting of a start bit, op code and the address to be erased.
A typical frame is shown below:

Using Serial EEPROM with the H8/300

6

MSB 1st byte LSB

0 0 0 0 1 1 1 1

s oc oc A8

MSB 2nd byte LSB

0 0 0 0 0 0 0 1

A0

This command sequence erases data stored at SEEPROM address h'101 by programming the address to all
1's. The ERASE cycle can take up to 10 ms to complete. Therefore, as with the WRITE cycle, if the
controller toggles the CS line after the A0 clock, the EEPROM responds by pulling DO low for the
duration of the ERASE cycle. ERASE timing is shown in figure 3.

A0A8

1

CS

DI

tcs

twp

SK

High Impedance
DO

11

Figure 3 AT93Cx6 Erase Cycle

H8/330 - Serial EEPROM Design

The remainder of this document describes the hardware and software required to interface a serial
EEPROM add-on board to the H8/330/338 evaluation board. The add-on board consists of a 3-wire, 4K
serial EEPROM from ATMEL, indicator LED's and a CMOS inverting Schmidt trigger. The schematic is
given at the end.

A serial communication link was established between the H8/330 SCI port and the SEEPROM by tying
RxD, TxD and SCK lines to DO, DI and SK respectively. The serial port was set for synchronous
operation at 100K using an internal clock source. I/O port pin 8.0 provided a CS line.

The SEEPROM transmits data on the rising edge of the clock and guarantees valid data 250 ns after the
clock edge. The H8/33x, however, expects to receive data on the same rising clock edge. Therefore, to
guarantee operation, the serial clock output to the SEEPROM was inverted via the Schmidt trigger to
reverse the polarity.

Three LEDs on the connector board signaled READ, WRITE and ERASE cycles.

Using Serial EEPROM with the H8/300

7

Preparing Command Frames

The SCI port sends and receives 8-bit data LSB first. Unfortunately the SEEPROM sends and expects to
receives 8-bit information MSB first. Therefore, software must transpose the first byte of the command
frame, MSB to LSB, for the SEEPROM to correctly interpret the start bit and op-code. Addresses are also
scrambled by transmission but the actual storage location is invisible to the user and all locations are
accessible. Data bytes, inverted during transmission, will be re-inverted by the H8/330 during reception. If
other devices will access the SEEPROM and those devices follow the MSB first protocol, address and data
bytes should also be transposed for correct operation. The routine "ROTATE" performs the MSB to LSB
inversion operation with minimal CPU overhead. In this software example command, address and data
bytes are all transposed MSB to LSB before sending.

The routine "FORMAT" concatenates address bit A8 with the LSB of the command byte and transposes the
data as described above. The final command frame resides at the address held in R5.

The WRITE Operation

The write operation routine provided, ("WRITE"), executes a write cycle in three phases:

1. The H8/330 initiates a write cycle by sending the 3 byte WRITE command frame containing: the
command byte plus A8, the write address byte and the data byte. After sending the data byte, the CPU
polls the TDRE bit (bit 7, SCI_SSR register). When TDRE goes high, the data byte has transferred to
the Transmit Shift Register (TSR). The CPU then writes a dummy byte to the TDR, clears TDRE and
polls TDRE again. A second high at TDRE indicates the dummy byte has moved into the TSR and the
last bit of the data byte (D0) has transferred out of the TSR. At this point, software can disable the
transmitter without losing valid data.

2. The CPU toggles the CS line (P8.0) by executing two sequential BNOT instructions, turns off the
transmitter and starts Timer 1. Timer 1 counts down a 940 us delay (see note) to allow the SEEPROM
time to complete the write cycle. During this period the CPU can either enter a sleep state or return to a
main routine until timer 1 interrupts the CPU.

Note: Although ATMEL and National Semiconductor specify the write and erase cycle time (twp) as 10
ms maximum, the delay experienced in this example was actually < 950 µs.

3. At the end of the delay period the timer interrupts the CPU to start the receiver. The receiver continues
to read data on the DO (RxD) line until it detects a value > 0. This indicates the SEEPROM has
completed the write cycle and released DO high. The CPU repeats the write sequence until the byte
count held in R4 is exhausted.

Timing for this sequence is shown below in figure 4:

Using Serial EEPROM with the H8/300

8

s

oc

oc

A8

A0

D7

D3

D0

RE= 1

Received byte > 0

SK

CS

DI

DO

The H8/330 writes the value H'AA to address H'101

Figure 4 H8/330 to SEEPROM WRITE Cycle

The READ Operation

The read cycle requires a two byte command frame containing the command byte and lower address byte.
Immediately after the last valid byte moves into the TSR, the CPU starts a timer to count a 7.5 bit delay.
The CPU then starts the receiver to capture the data sent by the SEEPROM.

Note: When enabling the receiver while the transmitter is active, the TDRE bit must be = 1 when RE is
set. If TDRE= 0 when RE is set to 1, the receiver will not start.

Timing for this last step is fairly critical. The receiver must start in time to capture the first data bit, D0, but
still avoid erroneous data on the front end.

The SEEPROM precedes each data byte with a half clock low pulse. In this example timer 1 counts a 7.5
bit clock delay before starting the receiver. This allows the last valid address byte to shift out of the TSR
and the SEEPROM to respond with the first erroneous low pulse before the receiver begins to read data.

The actual amount of delay time depends upon the bit transfer rate as well as the CPU instruction execution
time. A 100K bit clock produces a 10 µs bit period. A 75 µs clock should provide the necessary delay,
however, the time required for the CPU to recognize the timer 1 time-out condition and respond could
cause the receiver to miss D0. In this example a logic analyzer was used to pinpoint the correct delay
period. Figure 5 gives the timing diagram for this cycle.

Using Serial EEPROM with the H8/300

9

s

oc

oc

A8

A0

SK

CS

DI

D7

D3

D0

DO

null bit

The H8/330 reads the value H'AA at address H'101

receiver started

Figure 5 H8/330 to SEEPROM READ Cycle

The ERASE Operation

The erase cycle proceeds in much the same manner as the write cycle but without the data byte The erase
command frame contains two bytes, the command byte and the address to erase. As with the write cycle,
after the last valid data byte the CPU toggles CS to initiate a BUSY response from the SEEPROM and
starts timer 1 for an interrupt controlled delay.

The ERASE cycle requires the serial clock to remain active for the duration of the cycle. In this example,
software holds the serial clock active by continuing to load h'00 into the TDR. At the end of the delay
period the interrupt routine starts the receiver to begin looking for a high state on DO. When DO is
detected high both the transmitter and receiver are disabled. The SEEPROM ERASE cycle is shown in
figure 6.

Using Serial EEPROM with the H8/300

10

s

oc

oc

A8

A0

RE= 1

Received byte > 0

SK

CS

DI

DO

The H8/330 erases address H'101

Figure 6 H8/330 to SEEPROM ERASE Cycle

SEEPROM Enable and Disable Commands

Software must execute the global command, EWEN, to enable write or erase cycles after power-up. In the
same manner as a standard command, the transmitter sends a serial bit stream containing the EWEN
sequence (there is no address or data byte). The routine "EWEN" executes this sequence.

Likewise, the SEEPROM can be disabled by executing the EWDS sequence. The routine "EWDS" will
disable write and erase operations to protect memory contents from accidental corruption.

Additional Commands

Most SEEPROMs support global commands to access all address locations for ERASE or WRITE
operations. These commands are generally used either during start-up procedures or during a test sequence.
Routines "ERAL" and "WRAL" erase and write all locations respectively. The command procedure is
basically the same as for a single access cycle. Please refer to the manufacturer's literature for more details.

Selection of 2, 3 or 4-wire Interface

Serial EEPROM's supporting 2, 3 or 4-wire handshakes are available from ATMEL and 2 or 3-wire devices
are available from National Semiconductor. Protocol selection depends upon the user's system
requirements, required transfer speed and the level of CPU overhead that can be tolerated.

The interface between a 2-wire SEEPROM and the H8/33x must be handled by software control of two I/O
port lines. Therefore the maximum data transfer rate is limited by the rate at which the CPU can interpret
the required port state and write to the port data register. This time will vary by the user's program and
code location (on-chip versus off-chip memory), however, it has been shown that the maximum rate of
100K is achievable with certain restrictions. The 2-wire protocol requires the greatest CPU overhead and
only operates to 100K, however, the interface only needs two I/O ports and access to a timer.

Using Serial EEPROM with the H8/300

11

The 3-wire interface offers a significant improvement over the 2-wire by allowing use of the on-chip serial
port. When the serial port is idle the CPU can return to a main routine or move into the low power sleep
mode.

In the example shown, the on-chip baud rate generator supplied the transmit and receive clock.
Unfortunately this means the CPU must continue to feed data to the TDR to hold the serial clock active for
the duration of the ERASE cycle. As an alternative, timer 0 or one of the PWMs could be used as an
external clock source for the SCI and SEEPROM. This technique avoids the additional CPU overhead
needed to maintain the clock but requires use of another peripheral.

The third generally available interface, the 4-wire handshake, is almost identical to the 3-wire interface but
separates the RDY and DO signals. The addition of a 4th line, RDY/BUSY*, makes this the easiest format
to use with the H8/33x. Rather than forcing the receiver to act as a pseudo port line to detect the end of a
write or erase cycle, the CPU can poll the RDY/BUSY* line.

Flowcharts

The following flow charts diagram software routines presented in the next section.

Using Serial EEPROM with the H8/300

12

Set timer 1

TCORA/B

 Initialization & Demo

Set SCI for
8-bits, synch

mode

Set SCI clock
for 100K baud

JSR EWEN
to enable

SEEPROM

JSR WRITE
to write 80 bytes

to SEEPROM

JSR READ
to read 80 bytes

SEEPROM

JSR UN_ROTATE

to transpose data
read from
SEEPROM

Sleep

80 bytes of data are written
to the SEEPROM then read
back and stored beginning at
address H'FDD0 (read_data)

JSR
ERASE

JSR READ
to read 80 bytes

SEEPROM

Sleep

After viewing data, the SEEPROM is
erased by executing the ERASE routine.
The erase is verified by reading back the
memory contents and saving the results
again beginning at H'FDD).

Using Serial EEPROM with the H8/300

13

R0l=
EWEN

command H'4C

R3h= 3 bytes
per frame

JSR
Send_Command

JSR Last_Byte

JSR End_Trans

rts

Erase \ Write Enable (EWEN)

This routine enables erase and write operations to the SEEPROM

Using Serial EEPROM with the H8/300

14

fetch WRITE
command and #

bytes per WRITE
frame

JSR Format

 initialize data source
pointer & # of WRITE

frames (cycles)

JSR
Send_Frame

JSR Last_Byte

JSR End_Trans

JSR
Rtn_to_Main

dec frame
count

3 bytes per frame

Frame count

= 0 ?

This routine writes 1 to 255 bytes to 4K Serial EEPROM
(for demo purpose this value is set to 80 bytes)

rts

yes
no

WRITE Cycle

Using Serial EEPROM with the H8/300

15

Fetch READ
command and

bytes per
frame

JSR Format

Initialize
destination

pointer & # of
READ frames

(cycles)

2 bytes per
frame

JSR
Send_Frame

TDRE = 1 ?

Yes

start timer 1
for 7.5 bit

delay

TCNT =
Match value

?

clear TDRE

start the
receiver

RDRF= 1 ?

fetch &
store data

clear flags &
disable receiver

turn off
timer

set next SEEPROM
address & increment
destination pointer

frame count =
0 ?

rts

Set CS = 0

Wait for last frame
byte into TSR

C

C

look for
data received

Yes

No, send the next
READ frame

disable the
SEEPROM

disable the
transmitter

no

READ Cycle

This routine reads 1 to 255 bytes of data from a 4K Serial EEPROM
(for demo purpose this value is set to 80 bytes)

Using Serial EEPROM with the H8/300

16

JSR Last_Byte

JSR Cont_Trans

Set CS= 0

dec frame count

frame count =

0 ?

Fetch ERASE
command and #

bytes per ERASE
frame

JSR Format

 initialize data source

pointer & # of ERASE
frames (cycles)

JSR
Send_Frame

3 bytes per frame

ERASE Cyc le

This routine erases 1 to 255 addresses of 4K Serial EEPROM
(for demo purpose this value is set to 80 bytes)

rts

yes

no

Using Serial EEPROM with the H8/300

17

TDRE = 1
?

clear
TDRE

TDRE = 1
?

wait for last frame byte
shifted into TSR

load dummy
byte into TDR

toggle
CS

rts

wait for last frame byte
shifted out of TSR

Last_Byte

clear timer
counter
(TCNT)

start timer

JSR_Busy_DO

CMFB = 1
?

wait for TCNT =
compare match
value, 950 µs delay

Rtn_to_Main

Using Serial EEPROM with the H8/300

18

Cont_Trans

clear timer
counter
(TCNT)

start timer

JSR_Busy_DO

CMFB = 1
?

wait for TCNT =
compare match
value, 950 µs delay

TDRE = 1
?

clear TDRE

load dummy
byte into TDR

yes

no

yes

no

Using Serial EEPROM with the H8/300

19

disable the
timer

set RE= 1 to
start

receiver

RDRF = 1
?

fetch the
data

data = 0
?

disable receiver &
transmitter

disable receiver &
transmitter

clear
flags

rts

yes

yes

no

no

Busy_DO

Using Serial EEPROM with the H8/300

20

enable
transmitter

get frame
byte

TDRE = 1
?

load frame
byte into

TDR

clear
TDRE

dec frame
byte count

last byte in frame
?

Send _Frame

rts

yes

no

yes

no

set CS

Using Serial EEPROM with the H8/300

21

Form at
This routine formats the command byte, SEEPROM address
and data into a sequential serial frame. Each frame is stored

at the location pointed to by R5.

initialize serial
stack pointer
(shift_stack),

R5

initiaialize
frame count
(_count), R4

initialize SEEPROM
address

(SEEPROM_addr),
R1

R0= Command
R1= SEEPROM address
R2= Data
R3= # bytes per frame

save # bytes
per frame in

R3h

load A8
(#0, r1h)
into C bit

rotate R0l to
move C (A8)

bit into R0l
LSB

JSR Rotate
 (repeats 2x to
transpose R0l & R1l.
Stores result @R5 &
increments R5)

R3l= 0
?

decrement
#bytes per
frame (R3l)

JSR Rotate
(transpose data byte
in R2l Stores result
@R5 & increments
R5))

decrement
frame count

(R4)

R4l = 0
?

rts

increment
SEEPROM
address (R1)

get data
stored @ R6
& incremnet
pointer R6

yes

no

no

yes

Using Serial EEPROM with the H8/300

22

Source Listing

;**

;

;H8/330 to SEEPROM Driver/ Demo Routines

;

;The following routines rely upon availability of all CPU registers. Before calling
these as subroutines the user may want ;to store all register values.

;

.include "c:\demos\H8330.inc"

command .equ h'ff10 ;RAM storage for command

_count .equ H'50 ;number of addresses/data

read_data .equ h'fdd0 ;RAM destination for READ

;cycle data, fdd0 - fd20

ram_data .equ h'fd80 ;RAM source, for WRITE

;cycle data, fd80 - fdd0

SEEPROM_addr .equ h'80 ;SEEPROM starting address

shift_stack .equ h'fe20 ;storage for serial frames
;240 locations, h'fe20 - h'ff10

READ_led .equ h'02 ;READ LED

ERASE_led .equ h'03 ;ERASE LED

WRITE_led .equ h'04 ;WRITE LED

Read_cmd .equ h'0006

Write_cmd .equ h'0005

Erase_cmd .equ h'0007

.org h'8000

start:

mov.w #top_ram,r7;

;

;***

;

; - All routines require heavy use of the CPU registers.

;

; - NOP instructions are placed at the end of each routine only to differentiate

;code sections. The NOP's have no effect on code operation.

;

;***

;Load sample data into memory for demo

 mov.w #_count, r4

mov.w #ram_data,r2 ;addr/data stack

Using Serial EEPROM with the H8/300

23

set: mov.b #h'AA,r0h

line: mov.w #1000,r1

data: mov.b r0h,@r2

 dec r4l

beq timer1

inc r2l

inc r1l

 cmp r1h,r1l

bne data

 add.b #h'11,r0h

 cmp #h'10,r0h

bne line

bra set

nop

nop

nop

nop

;***

;set-up timer1 Match B for write cycle delay & Match A for read cycle delay

timer1:

mov.b #h'85,r0l

mov.b r0l,@tmr1_tcorb ;set match b= 85,

mov.b #h'53,r0l

mov.b r0l,@tmr1_tcora ;set match a=

nop

nop

nop

nop

;***

;Set Up SCI Port & port 8

mov.b #h'80,r0l

mov.b r0l,@sci0_smr ;sync mode 8 bits system clock

mov.b #h'80,r0l

mov.b r0l,@sci0_ssr

mov.b #h'18,r0l

mov.b r0l,@sci0_brr

mov.b #h'1f,r0l

mov.b r0l,@p8_ddr

mov.b #h'00,r0l

Using Serial EEPROM with the H8/300

24

mov.b r0l,@p8_dr ;pull CS & LEDs low

;***

;Begin Demo:

;

;This demo writes a block of data, initially stored at location

;RAM_data (H'FB80), to SEEPROM starting at address H'80. The Data is

;read back, transposed and stored at location Read_data (H'FC80). The trans-

;position step actually occurs before sending to SEEPROM and after reading

;SEEPROM. This step can be eliminated if the SEEPROM will only be accessed

;by the H8/300.

;After viewing memory contents, the SEEPROM is erased and verified by executing

;code located at H'8080

jsr @EWEN ;Enable the SEEPROM

jsr @WRITE ;Write data from RAM_data to SEEPROM

jsr @READ ;Read data and store at H'FC80

jsr @UN_ROTATE ;Reverse data bytes LSB to MSB

sleep ;end of demo, push NMI to return EVB to monitor

;control and view data

nop

nop

nop

nop

;***

.org h'8080

 jsr @erase ;erase data written in 1st half of demo

 jsr @read ;view results of erase cycle.

 sleep ;end of second half of demo. push NMI to return

;EVB to monitor control and view data

nop

nop

nop

nop

;***

;***

EWEN:

mov.b #h'32,r0l ;load ewen (b'0100 1100) command into r0l,

;MSB into LSB (b' 0011 0010)

mov.b #h'03,r3h ;3 bytes for ewen

S_ewen:

jsr @send_command

Using Serial EEPROM with the H8/300

25

jsr @last_byte

jsr @end_trans

rts

nop

nop

nop

nop

;***

;***

READ:

mov.w #read_cmd,r0 ;read command @command

mov.w r0,@command

mov.b #h'02,r3h ;2 bytes per read frame

jsr @Format ;format the command frames and

;store @R5

mov.w #READ_data,r6 ;RAM destination pointer

mov.w #shift_stack,r5 ;re-initialize shift stack

mov.w #_count, r4 ;re-initialize frame count

bset #READ_led,@p8_dr ;set the read LED

rd_frame:

mov.b #h'02,r3h ;2 bytes per read frame

jsr @send_frame ;send command frame

mov.b #0,r0l

tdre0: btst #7,@sci0_ssr ;wait for TDRE= 1 to ensure

;2nd byte into TSR

beq tdre0

mov.b r0l,@sci0_tdr

;start timer 1 for delay

 mov.b r0l,@tmr1_tcnt ;clear the timer

bclr #6,@tmr1_tcsr ;clear match A

mov.b #h'09,r0h

mov.b r0h,@tmr1_tcr ;start timer 1 for a polled delay

 T1A: btst #h'6,@tmr1_tcsr ;wait for match A

beq T1A

bset #4,@sci0_scr ;start the receiver @ 100K

Using Serial EEPROM with the H8/300

26

rdrfa: btst #6,@sci0_ssr ;look for RDRF = 1

beq rdrfa

mov.b @sci0_rdr, r3l ;get the data

mov.b r3l,@r6

adds.w #1,r6 ;increment destination pointer

bclr #4,@sci0_scr ;turn receiver off

bclr #5,@sci0_ssr ;clear the overflow bit

bclr #6,@sci0_ssr ;clear the RDRE bit

mov.b r0l,@tmr1_tcr ;turn off the timer

bclr #6,@tmr1_tcsr ;clear the match flag

jsr @end_trans ;turn off transmitter

bclr #0,@p8_dr ;CS= low

adds.w #1,r1 ;set up next SEEPROM address

dec r4l ;decrement r4, frame count

bne rd_frame ;send the next frame

bclr #READ_led,@p8_dr ;clear the read LED

rts

nop

nop

nop

nop

;***

;***

;This routine writes an block of 80 bytes to the SEEPROM.

;

WRITE:

mov.w #write_cmd,r0

mov.w r0,@command ;write command @command

mov.b #h'03,r3h ;3 bytes for write command frame

mov.w #RAM_data,r6 ;load data location in RAM

jsr @Format

mov.w #shift_stack,r5 ;re-initialize shift stack

mov.w #_count, r4 ;re-initialize frame count

Using Serial EEPROM with the H8/300

27

ldc #0,ccr ;enable interrupts

bset #WRITE_led,@p8_dr ;turn on WRITE LED

nxt_wr:

mov.b #h'03,r3h ;3 bytes per write frame

jsr @send_frame

jsr @last_byte

jsr @end_trans

jsr @rtn_to_main

dec r4l ;decrement frame count

bne nxt_wr ;write the next byte

bclr #WRITE_led,@p8_dr ;turn off the write LED

rts

nop

nop

nop

nop

;***

;This routine erases a block of 80 bytes starting as SEEPROM address h'80

;

ERASE:

mov.w #erase_cmd,r0 ;erase command in r0

mov.w r0,@command

mov.b #h'02,r3h ;2 bytes for erase command frame

jsr @Format

mov.w #shift_stack,r5 ;re-initialize shift stack

mov.w #_count, r4 ;re-initialize frame count

ldc #0,ccr ;enable interrupts

bset #ERASE_led,@p8_dr ;turn on ERASE LED

nxt_er:

mov.b #h'02,r3h ;2 bytes per erase frame

jsr @send_frame ;send address to erase

jsr @last_byte ;wait for last byte & toggle CS

jsr @cont_trans ;start timer 1 and continue serial clock

bclr #0,@p8_dr ;clear CS

;the serial clock continues to operate until timer 1 reaches the match B value and

Using Serial EEPROM with the H8/300

28

;issues an interrupt. The interrupt routine, BUSY_D0, starts the receiver to look
;for rising edge or high on the D0 line indicating the erase cycle is complete.

dec r4l ;decrement frame count

bne nxt_er ;erase the next byte

bclr #ERASE_led,@p8_dr ;turn off the erase LED

rts

nop

nop

nop

nop

;***

;***

WRAL:

;This routine writes a fixed data value to all addresses. The data value is stored
;in r1l, r0l contains the WRAL command. In this example the value written is 'AA'

mov.w #h'0022,r0 ;load 5-bit command (b' 010001) into r0l loading

;MSB into r0l LSB (re-align the command)

mov.b #h'aa,r1l

mov.b #h'03,r3h ;3 bytes per frame

S_wral:

jsr @send_frame

jsr @end_trans

jsr @stop

nop

nop

nop

nop

;***

ERAL:

mov.b #h'12,r0l ;load eral (b'01001000) command into r0l, MSB into
;LSB (b' 00010010)

mov.b #h'02, r3h ;2 bytes for eral

S_eral:

jsr @send_command

jsr @cont_trans

jsr @end_trans

jsr @stop

nop

Using Serial EEPROM with the H8/300

29

nop

nop

nop

;***

;***

EWDS:

mov.b #h'02,r0l ;load ewen (b' 01000000) command into r0l,

;MSB into LSB (b' 00000010)

S_ewds:

mov.b #h'03,r3h ;3 bytes for ewen

jsr @send_command

jsr @end_trans

jsr @stop

nop

nop

nop

nop

;***

;***

send_frame:

bset #0,@p8_dr ;set SE2PROM CS signal

bset #5,@sci0_scr ;set the TE bit to enable transmission

nxt_byte:

mov.b @r5+,r0l

tdref: btst #7,@sci0_ssr ;wait for TDRE= 1

beq tdref

mov.b r0l,@sci0_tdr

bclr #7,@sci0_ssr

dec r3h

bne nxt_byte

rts

nop

nop

nop

nop

;***

send_command:

Using Serial EEPROM with the H8/300

30

bset #0,@p8_dr ;set SEEPROM CS signal

bset #5,@sci0_scr ;set the TE bit to enable transmission

tdrec: btst #7,@sci0_ssr ;wait for TDRE= 1

beq tdrec

mov.b r0l,@sci0_tdr

bclr #7,@sci0_ssr

dec r3h

bne tdrec

rts

nop

nop

nop

nop

;***

last_byte:

btst #7,@sci0_ssr ;test tdre bit

beq last_byte ;look for last data byte into TSR

mov.b r0l,@sci0_tdr

tdre_end:

bclr #7,@sci0_ssr

btst #7,@sci0_ssr ;look for dummy byte into TSR,

;indicating last

beq tdre_end ;data byte done

bnot #0,@p8_dr ;toggle CS

bnot #0,@p8_dr ;toggle CS

rts

nop

nop

nop

nop

;***

;***

end_trans:

bclr #5,@sci0_scr ;clear the TE bit to disable the transmitter

rts

nop

nop

Using Serial EEPROM with the H8/300

31

nop

nop

;***

;***

;After each write frame, end transmission, toggle CS, and start timer 1 for a 950 us
;delay to allow the cycle to complete and D0 to go high again. The timer 1 match B
;interrupt routine starts the receiver to look for a high level on RxD (data >
;than 0).

rtn_to_main:

 mov.b #0,r0h

 mov.b r0h,@tmr1_tcnt

mov.b #h'13,r0h

mov.b r0h,@tmr1_tcr ;start timer 1

 mtchb1:

btst #7,@tmr1_tcsr

 bne mtchb1

jsr @Busy_D0

 rts

nop

nop

nop

;***

;This routine continues to send dummy bytes on TxD to keep the serial clock active

;during the ERASE cycle.

;

cont_trans:

mov.b #0,r2h ;dummy byte

mov.b #h'13,r4h

 mov.b r2h,@tmr1_tcnt ;clear the timer

 bclr #7,@tmr1_tcsr ;clear the match b bit

mov.b r4h,@tmr1_tcr ;start timer 1

tdrey: btst #7,@sci0_ssr ;look for TDRE= 1

beq tdrey

mov.b r2h,@sci0_tdr ;re-load dummy byte

bclr #7,@sci0_ssr

btst #7,@tmr1_tcsr ;timer 1 = match b value ?

beq tdrey

 jsr @Busy_D0

rts

nop

Using Serial EEPROM with the H8/300

32

nop

nop

nop

;***

;***

;THIS SECTION OF CODE PREPARES DATA FOR TRANSMISSION

;This routine formats the start bit, opcode, address and data to produce a command

;frame. Each byte is transposed to invert MSB to LSB. The routine can format single

;frames to access one address or multiple frames for block operations. The
;formatted data is stored as command, address, data (if any) beginning at the
;address stored in R5. The calling routine must load the start bit & opcode in r0l,
;the data pointer in R6 and the number of bytes per frame in r3h.

;

Format:

mov.w #shift_stack, r5 ;serial stack pointer

mov.b #_count, r4l ;number of frames to form

mov.w #SEEPROM_addr,r1 ;SEEPROM starting address

;r0l = command r1h = A8 r1l = A7-A0 r2l =D7 - D0

step1:

mov.b r3h,r3l ;number of bytes per frame

mov.w @command,r0

bld #0,r1h ;mov A8 into C bit

rotxl r0l ;rotate r0l & concatenate A8 with r0l

;r0l now contains start bit + op code + A8

;concatenate r0l, r1l and r2l to form a continuous frame

 mov.b @r6+,r2l ;get data byte (if any)

;transpose the bits and store result @R5

step3:

mov.b r0l,r0h

jsr @rotate ;re-align the command byte

mov.b r1l,r0h ;re-align lower address byte

jsr @rotate

 mov.b r0h,r1l ;re-store SEEPROM lower address

adds.w #1,r1 ;next SEEPROM address

Using Serial EEPROM with the H8/300

33

dec r3l

dec r3l ;subtract 2 from frame byte count

beq nxt

mov.b r2l,r0h ;re-align data byte (if any)

jsr @rotate

nxt: dec r4l

bne step1

rts

nop

nop

nop

nop

;***

BUSY_D0:

;

mov.b #0,r0h

mov.b r0h,@tmr1_tcr ;disable the timer

bset #4,@sci0_scr ;start the receiver

rdrf: btst #6,@sci0_ssr ;look for RDRF = 1

beq rdrf

bclr #6,@sci0_ssr ;clear the rdre bit

mov.b @sci0_rdr, r3l ;get the data

cmp.b #00,r3l ;compare the data to 0

beq rdrf ;if the data is not = 0 then D0 has gone high

bclr #4,@sci0_scr ;turn receiver off

bclr #5,@sci0_ssr ;clear the overflow bit

bclr #5,@sci0_scr ;turn the transmitter off for erase cycle

bclr #7,@tmr1_tcsr ;clear timer 1 match b flag

bclr #7,@sci0_ssr

bnot #0,@p8_dr

bnot #0,@p8_dr

rts

nop

nop

;***

;***

UN_ROTATE:

mov.w #_count,r4 ;load byte count

Using Serial EEPROM with the H8/300

34

mov.w #Read_data,r5 ;load data address pointer

un_rvs:mov.b @r5,r0h ;reverse data

jsr @rotate

dec r4l

bne un_rvs ;

rts

;***

;***

rotate:

bld #7,r0h

bst #0,r0l

bld #6,r0h

bst #1,r0l

bld #5,r0h

bst #2,r0l

bld #4,r0h

bst #3,r0l

bld #3,r0h

bst #4,r0l

bld #2,r0h

bst #5,r0l

bld #1,r0h

bst #6,r0l

bld #0,r0h

bst #7,r0l

mov.b r0l,@r5

adds.w #1,r5

rts

.end

;***

Using Serial EEPROM with the H8/300

35

J1

Vss 1

Vss

Vss

Vss

3
5
7
9
11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41

47
49

43
45

P4.0
P4.1
P4.2
P4.3
P4.4
P4.5
P4.6
P4.7

P8.0
P8.1
P8.2
P8.3
P8.4
P8.5
P8.6

STBY
RESET
NMI

MD0
MD1

NC 1

2

3

4

8

7

6

5

74HCTLS14
+5V

N/C

1

2

3

4

5

6

7

14 5V+

CSDO

DI

SK

To RxD0

To SCK0

To P8.0

To TxD0

P8.2

P8.3

P8.4

AT93C

5v+

AT93C4xx uses an 8-pin DIP socket

5v+

5v+

H8/330 Serial EEPROM Add-on Board

TxD0
RxD0
SCK0

P9.0
P9.1
P9.2
P9.3
P9.4
P9.5
P9.6
P9.7

Vss

Vss

Vss

Vss

50
48
46
44
42
40
38
36
34
32
30
28
26
24
22
20
18
16
14
12

8
10

6
4
2

+5v

Vss

P5.0
P5.1
P5.2

P2.0
P2.1
P2.2
P2.3
P2.4
P2.5
P2.6
P2.7

J2

C. Jacobson

May '93

The information contained in this document has been carefully checked, however the contents of this
document may be changed and modified without notice. Hitachi America, Ltd. shall assume no
responsibility for inaccuracies, or any problem involving patent infringement caused when applying the
descriptions in this document. This material is protected by copyright laws. Hitachi America, Ltd. reserves
all rights.

