
Interfacing the H8/3644 to a Serial
E2PROM

How to use the SCI Interface to emulate an SPI interface

Revision 1.1
8/4/98
Hitachi Semiconductor (America) Inc.
Leonard Haile

Notice

When using this document, keep the following in mind:

1. This document may, wholly or partially, be subject to change without notice.

2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole
or part of this document without Hitachi’s permission.

3. Hitachi will not be held responsible for any damage to the user that may result from accidents
or any other reasons during operation of the user’s unit according to this document.

4. Circuitry and other examples described herein are meant merely to indicate the characteristics
and performance of Hitachi’s semiconductor products. Hitachi assumes no responsibility for
any intellectual property claims or other problems that may result from applications based on
the examples described herein.

5. No license is granted by implication or otherwise under any patents or other rights of any third
party or Hitachi, Ltd.

6. MEDICAL APPLICATIONS: Hitachi’s products are not authorized for use in MEDICAL
APPLICATIONS without the written consent of the appropriate officer of Hitachi’s sales
company. Such use includes, but is not limited to, use in life support systems. Buyers of
Hitachi’s products are requested to notify the relevant Hitachi sales offices when planning to
use the products in MEDICAL APPLICATIONS.

i

Contents

Summary 1

Section 1 Introduction..... 2
1.1 Serial E2PROM Overview...2
1.2 SPI Overview..2

Section 2 SPI Details.... 3
2.1 SPI Pin Descriptions..3
2.2 SPI Transfer Formats..3

Section 3 SPI E2PROM Details.... 5
3.1 The Commands ...5
3.2 The 25xx040 E2PROM...5
3.3 Protocol...6

3.3.1 Read Command Bus Timing...6
3.3.2 Write Command Bus Timing..6
3.3.3 Write Command Polling..7

Section 4 SCI1 Operation..... 8
4.1 Hardware Registers...8
4.2 Data Transfer Operations...9

Section 5 Test Hardware..... 10

Section 6 Software Details.... 11
6.1 Bit Reverse Function..11

6.1.1 Example Declaration...12
6.1.2 Design Tradeoffs..12

6.2 E2PROM Interface C Functions..14

Appendix A Code 16

Appendix B Header Files..... 21

1

Summary

This application note provides assistance and source code to ease the design process of interfacing a Hitachi H8/3644
microcontroller with a Serial Peripheral Interface (SPITM) compatible serial E2PROM. The Serial communication interface 1
(SCI1) hardware on the H8/3644 provides a simple three-wire connection to an SPI serial E2PROM. No external “glue”
hardware logic is required, but there are two design issues that the system designer must address.

1. SCI1 latches receive data at the rising edge of the serial clock. SCI1 outputs transmit data from one falling edge of the
serial clock until the next rising edge. To meet these timing requirements, a designer must specify a SPI serial E2PROM
that uses the clock polarity/clock phase settings for Mode 1,1.

2. SCI1 transmits and receives data starting from the least significant bit. SPI serial E2PROMs transmit and receive data
starting from the most significant bit. For proper operation the H8/3644 application firmware must provide a function to
reverse the data bits.

This application note addresses these two issues. First, background information on the SPI interface is provided to clarify the
hardware specifications and make choosing an SPI serial E2PROM straightforward . Secondly, an example hardware design with
software is provided to reduce the system designer’s learning curve.

SPITM is a trademark of Motorola Corporation.

2

Section 1 Introduction

1 . 1 Serial E2PROM Overview

Many microcontroller applications today need a small amount of non-volatile memory to store some data when the power is
off. Serial E2PROMs are a popular choice for this non-volatile storage because they have the following characteristics:

• low cost

• small size

• low I/O pin count

• High write/erase endurance

• byte level addressing

• low power consumption

Serial E2PROM devices are available in a variety of densities, operating voltages, and packaging options. E2PROM vendors
offer a full line of serial E2PROMs covering several industry standard serial communication protocols. When you look through
the data sheets, the various serial E2PROMs are listed as two-wire, three-wire, and SPI interface devices. A 2-wire interface
product conforms to the I2CTM bus hardware specification. A 3-wire product conforms to the MICROWIRETM specification.
An SPI interface product conforms to one the several modes possible under the SPI hardware specification.

I2CTM is a trademark of Phillips Corporation

MICROWIRETM is a trademark of National Semiconductor Corporation

1 . 2 SPI Overview

SPI is a general purpose synchronous serial interface. During an SPI transfer, transmit and receive data is simultaneously
shifted out serially and shifted in serially. A serial clock line synchronizes shifting and sampling of the information on two
serial data lines. Motorola created the SPI port in the mid 1980’s to use in their microcontroller product families. The SPI is
mainly used to allow a microcontrollers to communicate with peripheral devices such as E2PROMs, A/D converters, and
displays.

The SPI port is similar to the MICROWIRE interface created by National Semiconductor for their microcontrollers. Both
interfaces use similar command protocols, however, SPI devices clock data in and out differently from the MICROWIRE
devices. MICROWIRE devices clock data out and in on the same clock edge. SPI bus devices clock data in and out on opposite
edges of the clock.

3

Section 2 SPI Details

2 . 1 SPI Pin Descriptions

The SPI interface between a microcontroller and serial E2PROM has three lines that control data transfer and one general
purpose I/O pin to control the E2PROM’s chip select. The names used for the SPI hardware lines can vary from one
manufacturer’s data sheet t to the next. Motorola calls their data out line MOSI (Master Out Slave In) and calls their data in
line MISO (Master In Slave Out). Most of the data sheets from other manufacturers call these lines SO and SI. Table 2.1 is a
summary of the SPI pin names from several manufacturers.

Table 2.1 SPI Pin Names

Manufacturer Clock Data In Data Out

Motorola SCK MOSI MISO

Hitachi (H8/3644) SCK1 SI1 SO1

Microchip SCK SI SO

Xicor SCK SI SO

SGS-Thomson C D Q

Serial E2PROMs that have data lines labeled DI and D0 are MICROWIRE parts and are not compatible with the synchronous
serial port on the H8/3644.

2 . 2 SPI Transfer Formats

For general purpose SPI microcontroller hardware, software can select one of four combinations of serial clock phase and
polarity using two bits in a SPI control register. The clock polarity (CPOL) control bit selects an active high or active low
clock. The clock phase (CPHA) control bit selects when the data in line is sampled and when the data out line is updated. The
clock phase and the clock polarity must be the same for both the microcontroller and the specified SPI serial E2PROM.

Table 2.2 CPOL Options

CPOL Description

0 Clock line idles low

1 Clock line idles high

The synchronous serial port on the H8/3644 conforms to the CPOL = 1 setting because the SCK1 line idles high.

Table 2.3 CPHA Options

CPHA Description

1 SI data latched on rising edge of SCK SO data updated on falling edge of SCK

0 SI data latched on falling edge of SCK SO data updated on rising edge of SCK

The synchronous serial port on the H8/3644 conforms to the CPHA = 1 setting. The SI1 line is sampled on the rising edge of
SCK1, and the SO1 line is updated on the falling edge of SCK1.

4

The selection of register bits CPOL =1 and CPHA = 1 is called SPI mode 1,1. This is the SPI mode that the H8/3644 can
emulate. Mode 1,1 SPI serial E2PROMs can be read and written using the synchronous serial port SCI1 on the H8/3644

5

Section 3 SPI E2PROM Details

3 . 1 The Commands

A microcontroller/SPI serial E2PROM interface is command driven. For example, to read data from the memory:

1. the microcontroller asserts the chip select line low

2. sends a READ command

3. sends the address of the desired data

4. Uses the clock line to shift the data in

5. At the end of the transaction, the microcontroller raises the chip select line

For an E2PROM there are also commands to WRITE the memory array, read and write to a status register, and set and clear a
write enable latch. See Table 3.1 for a list of the commands for the 25xx040 E2PROM that is used as the example in this
application note.

Table 3.1 Instruction Set

Instruction Name Instruction Format Description

READ 0000 A8 011 Read data from memory array beginning at selected address

WRITE 0000 A8 010 Write data to memory array beginning at selected address

WRDI 0000 0100 Reset the write enable latch (disable write operations)

WREN 0000 0110 Set the write enable latch (enable write operations)

RDSR 0000 0101 Read status register

WRSR 0000 0001 Write status register

Note: A8 is the 9th address bit necessary to fully address 512 bytes.

3 . 2 The 25xx040 E2PROM

The Microchip 25xx040 is an example of a 4K bit (512 byte) Serial E2PROM that can interface directly with the SCI1 port on
the H8/3644 microcontroller. As a review, the bus signals required are a clock input (SCK), data in (SI) and data out (SO)
lines. Access to the device is controlled by a chip select (CS) input. The SCK is used to synchronize the communication
between the H8/3644 and the 25xx040. Instructions, addresses, or data present on the SI pin are latched on the rising edge of
the SCK input. Data is shifted out through the SO pin on the falling edge of the SCK.

The CS pin must be low and the HOLD pin must be high for the entire operation. The WP pin must be held high to allow
writing to the memory array.

Communication to the device can be paused via the hold pin (HOLD). While the device is paused, transitions on its inputs will
be ignored, with the exception of chip select, allowing the host to service higher priority interrupts. Also, write operations to
the device can be disabled via the write protect pin (WP).

3 . 3 Protocol

For the 25xx040 device because you need 9 bits to address the 512 bytes of memory, the most significant address bit (A8) is
located in the instruction byte.

6

3 . 3 . 1 Read Command Bus Timing

See Figure 3.1 for an example of what the READ command looks like on a logic analyzer. The first byte transferred on the
MOSI (SO1) pin is the READ command. This is a command to read address 0x51 so A8 , the most significant bit in the
Address, is 0 in this case. So the first byte is 0x03. The second byte transferred on the MOSI pin contains the 8 low order
address bits which are 0x51. The E2PROM puts the last byte, 0x33, on the MISO (SI1) pin.

Command
0x03

Address
0x51

Data
0x33 Note: MSB First

Figure 3.1 Read Command Timing

3 . 3 . 2 Write Command Bus Timing

See Figure 3.2 for an example of what the timing looks like on a logic analyzer to write data to an SPI E2PROM. The first
byte transferred on the MOSI (SO1) pin is the write latch enable (WREN) command , 0x06. The next byte transferred on the
MOSI (SO1) pin is the WRITE command. This is a command to write to address 0x51 so A8 = 0. The second byte is 0x02.
The third byte transferred contains the 8 low order address bits which are 0x51. The last byte, 0xa3, is the data to be written
into address 0x51.

Command
0x02

Address
0x51

WREN
0x06

Data
0xA3

Note:MSB Fir s

Figure 3.2 Write Command Timing

7

3 . 3 . 3 Write Command Polling

See Figure 3.3 to get an idea of the relative time it takes to write one memory location, This logic analyzer trace shows that
total time from the WREN command until the read status register command (RDSR) says that the write is complete is 1.96
ms.

Figure 3.3 Write Command Timing (To Completion)

8

Section 4 SCI1 Operation

4.1 Hardware Registers

SCI1 on the H8/3644 operates only in the synchronous mode. Table 4.1 lists the hardware registers for SCI1.

Table 4.1 SCI1 Registers

Name Abbrev. R / W Initial Value Address

Serial control register 1 SCR1 R/W H'00 H'FFA0

Serial control status register 1 SCSR1 R/W H'9C H'FFA1

Serial data register U SDRU R/W Not fixed H'FFA2

Serial data register L SDRL R/W Not fixed H'FFA3

4 . 1 . 1 Serial Control Register Bits

Serial Control Register 1 (SCR1) is the only SCI1 register that needs to be setup to initialize the H8/3644 to interface to a
SPI E2PROM. Below are the settings for the bits in the SCR1register that are used in this application note.

SCR1: 0xFFA0

7 6 5 4 3 2 1 0

SNC1 SNC0 MRKON LTCH CKS3 CKS2 CKS1 CKS0

0 0 0 0 0 1 0 0

Note: CKS2 = 1,CKS1 = 0,CKS0 = 0 → 312.5 kHz SCK1 (F = 5MHz)

The SCI1 port can transmit 16-bit data or 8-bit data. SCI1 should be setup to send 8-bit data to read and write to an SPI
E2PROM. Set SNC1 = 0 and SNC2 = 0 for 8-bit data transfers.

SCR1 can control multiple ICs using the Synchronized Serial Bus (SSB) communication’s protocol. Make sure that MRKON
= 0 to disable the SSB communication’s protocol.

SCI1 can operate with an internal or external clock selected as the clock source. The H8/3644 should generate the clock from
the internal prescaler and output the clock signal on the SCK1 pin. Set the CKS3 = 0 to select the internal clock. Set CKS2-
CKS0 to select a prescaler division value that gives the correct bit rate.

Writing data to SCR1 when bit MRKON in SCR1 is cleared to 0 initializes the internal state of SCI1.

4 . 1 . 2 Port Mode Register 3

In addition, the I/O pins for SO1, SI1 and SCK1 have to be enable in Port Mode Register 3 (PMR3) for use as serial port pins.
See below.

9

PMR3: 0xFFFD

7 6 5 4 3 2 1 0

SO1 SI1 SCK1

0 0 0 0 0 1 1 1

4 . 2 Data Transfer Operations

The protocol for an H8/3644 to communicate with an SPI E2PROM requires the simultaneous transmission and reception of
data using SCI1.

A simultaneous transmit/receive operation is carried out as follows:

1. Write transmit data in SDRL.

2. Set the SCSR1 start flag (STF) bit to 1.

SCI1 starts operating.

Transmit data is output at pin SO1.

Receive data is input at pin SI1.

3. After data transmission and reception are complete, bit IRRS1 in IRR2 is set to 1.

4. Read the received data from SDRL

4 . 2 . 1 Serial Control/Status Register Bits

SCSR1: 0xFFA1

7 6 5 4 3 2 1 0

SOL ORER MTRF STF

1 0 0 1 1 1 0 0

Note: Initial values

4 . 2 . 2 Interrupt Request Register 2

IRR2: 0xFFF8

7 6 5 4 3 2 1 0

IRRDT IRRAD IRRS1 MTRF STF

0 0 0 0 0 0 0 0

Note: Initial values

IRRS1 is set to 1 when an SCI1 interrupt is requested. The flag is not cleared automatically when an interrupt is accepted. It is
necessary to write 0 to clear the flag.

After data transmission is complete, the serial clock is not output until the next time the start flag is set to 1. During this
time, pin SO1 continues to output the value of the last bit transmitted.

10

Section 5 Test Hardware

Figure 5.1 is the schematic showing the basic components for a representative circuit that can connect a Hitachi H8/3644
microcontroller to a 25xx040 E2PROM. A DS1233 low cost power supply monitor/reset IC improves the reliability of the
E2PROM data. If the power supply voltage drops below the minimum value for Vcc, then the H8/3644 will be reset. before it
can execute random code that might write erroneous data to the E2PROM.

VCC

Vcc

VCC

Y1
10.000 MHz

C2

12 pf

C1

12 pf

H8/3644

U1

P90 11

P73
34

P91
12

P60
17

P92
13

P74/TMRIV
35

P93
14

P50/INT0
25

P94
15

P75/TMCIV
36

P61
18

P76/TMOV
37

P32/SO1
50

P7738

P62
19

P51/INT126

P63
20 P31/SI1

51

P64
21

P52/INT2
27

P65
22

P30/SCK1
52

P6623

P53/INT3
28

P67
24

P54/INT4
29

P20/SCK3
47

P55/INT5/ADTRG
30

P56/INT6/TMIB
31

TEST4

P57/INT7
32

P80/FTCI
39

P21/RXD 48

OSC1
8

P22/TXD
49

OSC2
9

P81/FTOA
40

P82/FTOB
41

RES
10

X1
6 X25

P83/FTIA
42

P10/TMOW
53

AVCC
58

P84/FTIB 43

AVSS
3

PB7/AN7 59

P85/FTIC
44

P14/PWM
54

P86/FTID
45

PB6/AN6
60

P87
46

P15/IRQ1
55

PB5/AN5
61

P16/IRQ2
56

PB4/AN4
62

P17/IRQ3/TRGV
57

PB3/AN3
63PB2/AN2
64PB1/AN1
1PB0/AN0 2

IRQ0
16

U2

DS1233

Vcc

3

reset
2

gnd

1 U3

25LC040

SO
2

SI
5

SCK
6

CS
1

HOLD
7

WP
3

Figure 5.1 Hardware Block Diagram

In this design, I/O port 8 pin 7 is configured as an output and is used as the chip select for the 25LC040 E2PROM. The HOLD
and WP functions of the E2PROM are not used in this example, and the control pins for those functions are tied to their
inactive voltage state, Vcc.

11

Section 6 Software Details

6 . 1 Bit Reverse Function

The SPI serial E2PROM communications protocol specifies that data will be transmitted starting with the most significant bit
first. In synchronous mode the SCI interfaces on H8 microcontrollers shift data in and out starting with the least significant bit
first. The application software can rotate the data bits to adjust for the difference in the two specifications. The example code in
6.1.1 below shows two ways to implement a bit-reversal function in assembly language that you can call from your C code.
6.1.4 shows a bit-reverse function in C code.

6 . 1 . 1 Bit-Reversal Source Code in Assembler

.section P,CODE,ALIGN=2

.export _mirror

.export _reverse

_mirror:

rotxr.b r0l

rotxl.b r0h

rotxr.b r0l

rotxl.b r0h

rotxr.b r0l

rotxl.b r0h

rotxr.b r0l

rotxl.b r0h

rotxr.b r0l

rotxl.b r0h

rotxr.b r0l

rotxl.b r0h

rotxr.b r0l

rotxl.b r0h

rotxr.b r0l

rotxl.b r0h

mov r0h,r0l

12

rts

_reverse:

mov.b #8,r1l

loop:

rotxr.b r0l

rotxl.b r0h

dec r1l

bne loop

mov r0h,r0l

rts

.END

6 . 1 . 2 Example Declaration

Using the function mirror() as an example, the bit-reversal function is declared in you C code as:

extern unsigned char mirror(unsigned char);

6 . 1 . 3 Design Tradeoffs

The function, mirror(), is optimized for speed of execution. The function, reverse(), is optimized for code size. The C function
mirror2() was added to make the bit-reversal function more portable. Table 6.1 highlights the differences between the three
example functions.

Table 6.1 Bit-Reversal Function Tradeoffs

Function Size (bytes) 1
Execution Speed (µsec) 2

(F = 5 MHz)

mirror 44 11.2

reverse 22 21.2

mirror23 42 38.8

Notes 1,2,3: Includes the overhead to call the function
Note 3: C code optimized for speed with register optimization on

Note: See Figure 6.1 for an example of how to fill-in the HiVIEW dialog box to generate C code that is optimized for speed
with register optimization turned on.

This application note uses the function mirror() to reverse the bits. The bus timing examples show in Section 3 reflect the
11.2 µseconds of overhead required to reverse the bits before they are written to the SCI1 data register in the H8/3466.

Figure 6.1 shows that the 11.2 µseconds includes the overhead to call the function in C as well as the time it takes to execute
the assembly language code in the functions themselves.

13

stop timer

start timer

Figure 6.1 Bit Reverse Function Timing Details

6 . 1 . 4 Bit-Reversal Function in C

unsigned char mirror2(unsigned char value)

{

unsigned char inMask,outMask,i,reversed;

inMask = 0x01;

outMask = 0x80;

reversed = 0;

for(i=8;i>0 ;i--)

{

if(inMask & value)

reversed |= outMask;

inMask <<= 1;

outMask >>= 1;

}

return(reversed);

}

14

Figure 6.1 C Code Optimized for Speed

6.2 E2PROM Interface C Functions

After eepromInit() is called, the rest of the software for this application note is a just a collection of C functions that
simultaneously transmit and receive 8 bit data using SCI1 on the H8/3644. The software functions are mostly just wrappers
around the 25xx040 command set that is shown in Table 3.1. These basic example functions do not do error checking and do
not return status codes.

Table 6.2 provides a summary for the C functions that interface the H8/3644 to the Microchip 25xx040 E2PROM in this
application note.

15

Table 6.2 E2PROM Interface Functions Summary

Function Description

void eepromInit(void); Must be called first

Initialize H8/3644 SCI1 for 8 bit synchronous operation

Initialize I/O pin used for E2PROM chip select

Initialize E2PROM by toggling the chip select to enter active state

BYTE Read(WORD address); Uses the READ command to return the byte at an E2PROM address

void Write(WORD address, BYTE value); Uses the WRITE command to write a byte to an E2PROM address

The function does not return until the write operation has completed.

Void WriteEnable(void); Enables WRITE commands

Normally only called by the function Write()

The WREN command must be sent to the E2PROM before the E2PROM will execute
a WRITE command

void WriteDisable(void); Uses the WRDI command to disable WRITE commands

Normally does not need to be called by the user

After executing a WRITE command, the E2PROM automatically disables further
WRITE commands.

BYTE ReadStatus(); Uses the RDSR command to read the status register

The function Write() calls ReadStatus() repeatedly to poll the write in progress bit
until the write operation completes

void WriteProtect(PROTECTION value); Uses the WRSR command to write to the bits in the status register that write
protect sections of the E2PROM’s memory array.

The example hardware/software design in this application note includes just the basics on how to use the H8/3644 SCI1
interface to read and write data using a SPI E2PROM. If you feel you need additional write protection security, you can use
software to control an I/O pin that is connected the WP pin on the 25xx040.

The source code for the E2PROM interface functions can be found in Appendix A of this application note. The header file can
be found in Appendix B.

16

Appendix A Code

#include "ee3644.h"

extern unsigned char mirror(unsigned char);

typedef unsigned char BYTE;
typedef unsigned int WORD;

typedef enum protectionn_tag
{

NONE = 0, /* none */
QUARTER = 1, /* 0x180 - 0x1ff */
HALF = 2, /* 0x100 - 0x1ff */
ALL = 3 /* 0x000 - 0x1ff */

}PROTECTION;

typedef enum Instruction_tag
{

READ = 3,
WRITE = 2,
WRDI = 4,
WREN = 6,
RDSR = 5,
WRSR = 1

}INSTRUCTION;

typedef union header_tag
{

unsigned char byte;
struct {

unsigned int Space : 4;
unsigned int AB8 : 1;
unsigned int Opcode : 3;

}fields;

}HEADER;

typedef union status_tag
{

unsigned char byte;
struct {

unsigned char wk :4;
unsigned char BP :2;
unsigned char WEL :1;
unsigned char WIP :1;

}bits;
}STATUS;

17

/*******************************\
* Function Prototypes *
*******************************/
void eepromInit(void);
void WriteEnable(void);
void WriteDisable(void);
BYTE Read(WORD address);
void Write(WORD address, BYTE value);
BYTE ReadStatus();
void WriteProtect(PROTECTION value);
unsigned char mirror2(unsigned char value);

/***********************\
* Global Variables *
***********************/

BYTE value;
INSTRUCTION instruction;
WORD address;
BYTE data;
PROTECTION segment;

int main (void)
{

eepromInit();

while (1)
{

address = 0x51;
data = 0x96;
instruction = READ;
value = 0xa5;
segment = NONE;

switch(instruction)
{

case READ:
data = Read(address);
break;

case WRITE:
Write(address,value);
break;

case WRDI:
WriteDisable();
break;

case WREN:
WriteEnable();
break;

18

case RDSR:
data = ReadStatus();
break;

case WRSR:
WriteProtect(segment);
break;

};

}
return (0);

}

void eepromInit(void)
{

P8.PCR8.BIT.PCR87 = 1; /* P8.7 is CS for eeprom */

PMR3.PMR.BIT.SO1 = 1; /* turn on S0 */
PMR3.PMR.BIT.SCK1 = 1; /* turn on SCK */
PMR3.PMR.BIT.SI1 = 1; /* turn on SI */

SCI1.SCR1.BIT.SNC = 0; /* 8-bit synchronous transfer mode */
SCI1.SCR1.BIT.CKS3 = 0; /* clock source is prescaler */
SCI1.SCR1.BIT.CKS = 4; /* phi/16 clock */

P8.PDR8.BIT.P87 = 0; /* toggle CS after power-up */
P8.PDR8.BIT.P87 = 1;

}

void WriteEnable(void)
{

P8.PDR8.BIT.P87 = 0; /* chip select */

SCI1.SDRL = mirror(WREN);
SCI1.SCSR1.BIT.STF = 1; /* start transfer */
while(!ICR.IRR2.BIT.IRRS1) ; /* wait for bits to be sent */
ICR.IRR2.BIT.IRRS1 = 0;

P8.PDR8.BIT.P87 = 1;

}

void WriteDisable(void)
{

P8.PDR8.BIT.P87 = 0;

SCI1.SDRL = mirror(WRDI);
SCI1.SCSR1.BIT.STF = 1; /* start transfer */
while(!ICR.IRR2.BIT.IRRS1) ; /* wait for bits to be sent */
ICR.IRR2.BIT.IRRS1 = 0;

P8.PDR8.BIT.P87 = 1;

19

}

BYTE Read(WORD address)
{

HEADER eeFrame;

eeFrame.byte = 0;
eeFrame.fields.AB8 = (address > 0xff);
eeFrame.fields.Opcode = READ;

P8.PDR8.BIT.P87 = 0;

SCI1.SDRL = mirror(eeFrame.byte);
SCI1.SCSR1.BIT.STF = 1; /* start transfer */
while(!ICR.IRR2.BIT.IRRS1) ; /* wait for bits to be sent */
ICR.IRR2.BIT.IRRS1 = 0;
SCI1.SDRL = mirror((address & 0xff)); /* low order address bits */
SCI1.SCSR1.BIT.STF = 1; /* start transfer */
while(!ICR.IRR2.BIT.IRRS1) ; /* wait for bits to be sent */
ICR.IRR2.BIT.IRRS1 = 0;
SCI1.SDRL = 0; /* clock in data */
SCI1.SCSR1.BIT.STF = 1; /* start transfer */
while(!ICR.IRR2.BIT.IRRS1) ; /* wait for bits to be sent */
ICR.IRR2.BIT.IRRS1 = 0;

P8.PDR8.BIT.P87 = 1;

return(mirror(SCI1.SDRL));

}

BYTE ReadStatus()
{

HEADER eeFrame;

eeFrame.byte = 0;
eeFrame.fields.Opcode = RDSR;

P8.PDR8.BIT.P87 = 0;

SCI1.SDRL = mirror(eeFrame.byte);
SCI1.SCSR1.BIT.STF = 1; /* start transfer */
while(!ICR.IRR2.BIT.IRRS1) ; /* wait for bits to be sent */
ICR.IRR2.BIT.IRRS1 = 0;
SCI1.SDRL = 0; /* clock in data */
SCI1.SCSR1.BIT.STF = 1; /* start transfer */
while(!ICR.IRR2.BIT.IRRS1) ; /* wait for bits to be sent */
ICR.IRR2.BIT.IRRS1 = 0;

P8.PDR8.BIT.P87 = 1;

return(mirror(SCI1.SDRL));

20

}

void WriteProtect(PROTECTION value)
{

HEADER eeFrame;
STATUS eeStatus;

eeFrame.byte = 0;
eeFrame.fields.AB8 = (address > 0xff);
eeFrame.fields.Opcode = WRSR;

eeStatus.byte = 0;
eeStatus.bits.BP = value;

WriteEnable();

P8.PDR8.BIT.P87 = 0;

SCI1.SDRL = mirror(eeFrame.byte);
SCI1.SCSR1.BIT.STF = 1; /* start transfer */
while(!ICR.IRR2.BIT.IRRS1) ; /* wait for bits to be sent */
ICR.IRR2.BIT.IRRS1 = 0;
SCI1.SDRL = mirror(eeStatus.byte); /* low order addrress bits */
SCI1.SCSR1.BIT.STF = 1; /* start transfer */
while(!ICR.IRR2.BIT.IRRS1) ; /* wait for bits to be sent */
ICR.IRR2.BIT.IRRS1 = 0;

P8.PDR8.BIT.P87 = 1;

while(ReadStatus() & 0x01) ; /* wait for programming */
}

void Write(WORD address, BYTE value)
{

HEADER eeFrame;

eeFrame.byte = 0;
eeFrame.fields.AB8 = (address > 0xff);
eeFrame.fields.Opcode = WRITE;

WriteEnable();

P8.PDR8.BIT.P87 = 0;

SCI1.SDRL = mirror(eeFrame.byte);
SCI1.SCSR1.BIT.STF = 1; /* start transfer */
while(!ICR.IRR2.BIT.IRRS1) ; /* wait for bits to be sent */
ICR.IRR2.BIT.IRRS1 = 0;
SCI1.SDRL = mirror(address & 0xff); /* low order addrress bits */
SCI1.SCSR1.BIT.STF = 1; /* start transfer */
while(!ICR.IRR2.BIT.IRRS1) ; /* wait for bits to be sent */
ICR.IRR2.BIT.IRRS1 = 0;
SCI1.SDRL = mirror(value); /* clock out data */

21

SCI1.SCSR1.BIT.STF = 1; /* start transfer */
while(!ICR.IRR2.BIT.IRRS1) ; /* wait for bits to be sent */
ICR.IRR2.BIT.IRRS1 = 0;

P8.PDR8.BIT.P87 = 1;

while(ReadStatus() & 0x01) ; /* wait for programming */
}

unsigned char mirror2(unsigned char value)
{

unsigned char inMask,outMask,i,reversed;

inMask = 0x01;
outMask = 0x80;
reversed = 0;
for(i=8;i>0 ;i--)
{

if(inMask & value)
reversed |= outMask;

inMask <<= 1;

outMask >>= 1;
}
return(reversed);

}

22

Appendix B Header Files

#ifndef __evb3644__
#define __evb3644__

struct st_icr {

union { /* IEGR1 */
unsigned char BYTE; /* Byte Access */
struct { /* Bit Access */

unsigned char wk :4;
unsigned char IEG3 :1;
unsigned char IEG2 :1;
unsigned char IEG1 :1;
unsigned char IEG0 :1;

} BIT;
} IEGR1;

union { /* IEGR2 */
unsigned char BYTE; /* Byte Access */
struct { /* Bit Access */

unsigned char INTEG7 :1;
unsigned char INTEG6 :1;
unsigned char INTEG5 :1;
unsigned char INTEG4 :1;
unsigned char INTEG3 :1;
unsigned char INTEG2 :1;
unsigned char INTEG1 :1;
unsigned char INTEG0 :1;

} BIT;
} IEGR2;

union { /* IENR1 */
unsigned char BYTE; /* Byte Access */
struct { /* Bit Access */

unsigned char IENTB1 :1;
unsigned char IENTA :1;
unsigned char wk0 :2;
unsigned char IEN3 :1;
unsigned char IEN2 :1;
unsigned char IEN1 :1;
unsigned char IEN0 :1;

} BIT;
} IENR1;

union { /* IENR2 */
unsigned char BYTE; /* Byte Access */
struct { /* Bit Access */

unsigned char IENDT :1;
unsigned char IENAD :1;
unsigned char wk1 :1;
unsigned char IENS1 :1;

23

unsigned char wk2 :4;
} BIT;

} IENR2;

union { /* IENR3 */
unsigned char BYTE; /* Byte Access */
struct { /* Bit Access */

unsigned char INTEN7 :1;
unsigned char INTEN6 :1;
unsigned char INTEN5 :1;
unsigned char INTEN4 :1;
unsigned char INTEN3 :1;
unsigned char INTEN2 :1;
unsigned char INTEN1 :1;
unsigned char INTEN0 :1;

} BIT;
} IENR3;

union { /* IRR1 */
unsigned char BYTE; /* Byte Access */
struct { /* Bit Access */

unsigned char IRRTB1 :1;
unsigned char IRRTA :1;
unsigned char wk3 :2;
unsigned char IRRI3 :1;
unsigned char IRRI2 :1;
unsigned char IRRI1 :1;
unsigned char IRRI0 :1;

} BIT;
} IRR1;

union { /* IRR2 */
unsigned char BYTE; /* Byte Access */
struct { /* Bit Access */

unsigned char IRRDT :1;
unsigned char IRRAD :1;
unsigned char wk4 :1;
unsigned char IRRS1 :1;
unsigned char wk5 :4;

} BIT;
} IRR2;

union { /* IRR3 */
unsigned char BYTE; /* Byte Access */
struct { /* Bit Access */

unsigned char INTF7 :1;
unsigned char INTF6 :1;
unsigned char INTF5 :1;
unsigned char INTF4 :1;
unsigned char INTF3 :1;
unsigned char INTF2 :1;
unsigned char INTF1 :1;
unsigned char INTF0 :1;

24

} BIT;
} IRR3;

};

struct st_sci1 {

union { /* SCR1 */
unsigned char BYTE; /* Byte Access */
struct { /* Bit Access */

unsigned char SNC :2;
unsigned char MRKON :1;
unsigned char LTCH :1;
unsigned char CKS3 :1;
unsigned char CKS :3;

} BIT;
} SCR1;

union /* SCSR1 */
unsigned char BYTE; /* Byte Access */
struct { /* Bit Access */

unsigned char wk :1;
unsigned char SOL :1;
unsigned char ORER :1;
unsigned char wk1 :3;
unsigned char MTRF :1;
unsigned char STF :1;

} BIT
} SCSR1

unsigned char SDRU;
unsigned char SDRL

};

struct st_pm3 {
union { /* PMR */

unsigned char BYTE; /* Byte Access */
struct { /* Bit Access */

unsigned char wk :5;
unsigned char SO1 :1;
unsigned char SI1 :1;
unsigned char SCK1:1;

}BIT;
} PMR;

};

struct st_p8 {
union { /* PDR8 */

unsigned char BYTE; /* Byte Access */
struct { /* Bit Access */

unsigned char P87:1;
unsigned char P86:1;
unsigned char P85:1;
unsigned char P84:1;

25

unsigned char P83:1;
unsigned char P82:1;
unsigned char P81:1;
unsigned char P80:1;

} BIT;
} PDR8 ;

char wk3[15];

union { /* PCR8 */
unsigned char BYTE; /* Byte Access */
struct { /* Bit Access */

unsigned char PCR87:1;
unsigned char PCR86:1;
unsigned char PCR85:1;
unsigned char PCR84:1;
unsigned char PCR83:1;
unsigned char PCR82:1;
unsigned char PCR81:1;
unsigned char PCR80:1;

} BIT;
} PCR8 ;

};

#define SCI1 (*(volatile struct st_sci1 *)0xFFA0) /* SCI1 Addr A0 */
#define PMR3 (*(volatile struct st_pm3 *)0xFFFD) /* PMR3 Address*/
#define ICR (*(volatile struct st_icr *)0xFFF2) /* ICR Address */
#define P8 (*(volatile struct st_p8 *)0xFFDB) /* P8 Addr DB */

#endif

	Summary
	Section 1 Introduction
	1 . 1 Serial E 2 PROM Overview
	1 . 2 SPI Overview

	Section 2 SPI Details
	2 . 1 SPI Pin Descriptions
	2 . 2 SPI Transfer Formats

	Section 3 SPI E 2 PROM Details
	3 . 1 The Commands
	3 . 2 The 25xx040 E 2 PROM
	3. 3 Protocol
	3 .3 .1 Read Command Bus Timing
	3 .3 .2 Write Command Bus Timing
	3 .3 .3 Write Command Polling

	Section 4 SCI1 Operation
	4.1 Hardware Registers
	4 .1 .1 Serial Control Register Bits
	4 .1 .2 Port Mode Register 3

	4 . 2 Data Transfer Operations
	4 .2 .1 Serial Control/Status Register Bits
	4 .2 .2 Interrupt Request Register 2

	Section 5 Test Hardware
	Section 6 Software Details
	6 . 1 Bit Reverse Function
	6 .1 .1 Bit-Reversal Source Code in Assembler
	6 .1 .2 Example Declaration
	6 .1 .3 Design Tradeoffs
	6 .1 .4 Bit-Reversal Function in C

	6.2 E 2 PROM Interface C Functions

	Appendix A Code
	Appendix B Header Files

