
������
�����
	����
�

AN463
I2C slave routines for the 87LPC76X

Author: Bill Houghton 2000 Jan 11

INTEGRATED CIRCUITS

ABSTRACT
Presents short and simple I2C software routines that support only
slave (rather than master or master & slave) operation and an ASM
demonstration program. The slave-only software in this app note
complements the master mode software presented in AN464, Using
the 87LPC76X microcontroller as an I2C bus master.

Philips Semiconductors Application note

AN463I2C slave routines for the 87LPC76X

Author: Bill Houghton

22000 Jan 11

The 87LPC76X Microcontroller combines in a small package the
benefits of a high-performance microcontroller with on-board
hardware supporting the Inter-Integrated Circuit (I2C) bus interface.

The 87LPC76X can be programmed both as an I2C bus master, a
slave, or both. An overview of the I2C bus and description of the bus
support hardware in the 87LPC76X microcontrollers appears in
application note AN464, Using the 87LPC76X Microcontroller as an
I2C Bus Master. That application note includes a programming
example, demonstrating a bus-master code. Here we show an
example of programming the microcontroller as an I2C slave.

The code listing demonstrates communications routines for the
87LPC76X as a slave on the I2C bus. It compliments the program in
AN464 which demonstrates the 87LPC76X as an I2C bus master.
One may demonstrate two 87LPC76X devices communicating with
each other on the I2C bus, using the AN464 code in one, and the
program presented here in the other. The examples presented here
and in AN464 allow the 87LPC76X to be either a master or a slave,
but not both. Switching between master and slave roles in a
multimaster environment is described in application note AN435.

The software for a slave on the bus is relatively simple, as the
processor plays a relatively passive role. It does not initiate bus
transfers on its own, but responds to a master initiating the
communications. This is true whether the slave receives or transmits
data—transmission takes place only as a response to a bus
master’s request. The slave does not have to worry about arbitration
or about devices which do not acknowledge their address. As the
slave is not supposed to take control of the bus, we do not demand
it to resolve bus exceptions or “hangups”. If the bus becomes
inactive the processor simply withdraws, not interfering with the
master (or masters) on the bus which should (hopefully) try to
resolve the situation.

The 87LPC76X has a single bit I2C hardware interface where the
registers may directly affect the levels on the bus, and the software
interacting with the hardware registers takes part in the protocol
implementation. The hardware and the low level routines dealing
with the registers are tightly coupled. We repeat here the warning
from the 87LPC76X bus-master application note: one should take
extra care if trying to modify these lower level routines.

The service routine for the I2C slave is interrupt driven per message.
This allows for master communication requests which are not
synchronized with the application program running on the slave. It is
possible to write simple slave application programs which will not be
interrupt driven, taking care not to lose master transmissions while
doing something else, but the user should be discouraged from
doing so. As the slave should respond to asynchronous requests of
masters on the bus, an interrupt driven service routine makes
sense—and, as the code demonstrates, is simple to implement.

DEMONSTRATION CODE
The main program operation, intended for demonstration only, is
simple. There are two data buffers, one for data reception and one
for data transmission. When new data has been received from the
I2C bus into the receive buffer, the program writes it into the transmit
buffer. The first byte of received data is copied to Port 1. When a
bus master requests to read data, Port 0 will be returned for the first
byte of requested data, while the remaining bytes will come from the
transmit buffer. This allows for simple testing of a master and slave
system by having the master compare data received to data sent.
This scheme also allows the 87LPC76X to be used as a one-byte
I2C I/O port.

The program begins at address 0, where the microprocessor begins
execution after a hardware reset. This location contains a jump
instruction to the main program, which starts at the label Reset
(towards the end of the listing). Upon reset, the program initializes
the stack pointer, the I2C address of the slave processor (MyAddr)
and clears the data buffers and software flags. In this program the
receive and transmit buffers are each eight bytes long—the
maximum number of bytes is defined by the label MaxBytes. One
may easily change the program to handle longer messages by
changing the value of MaxBytes and allocating more data memory
to the buffers.

The I2C interface is configured to operate as a slave by setting the
msb of register I2CFG. This is done simultaneously with loading the
appropriate value of CTVAL—bits CT0 and CT1, which are
determined by the frequency of the microprocessor’s crystal. The
interface hardware is explicitly instructed to get into the slave idle
mode by setting the appropriate bit in the I2CON register. Timer I,
which operates as a “watchdog” timer detecting bus hangups, is
activated and its interrupts are enabled.

After the initialization, the program gets to the label MainLoop. Most
of the time the program will “hang” in a wait loop at this label, simply
waiting for an I2C interrupt to occur. When there is an I2C bus
request there will be an interrupt, the service routine will be
executed and we shall return to the MainLoop label. If the service
routine receives new data, it sets a flag, DatFlag, signalling that data
has been updated. This flag will allow us to leave the MainLoop
label, and execute a short routine copying the updated input buffer
to the output (transmit) buffer.

If a new bus interrupt comes before overwriting of the old read buffer
data is completed, and an undesirable “mix” of old and new data
might occur. This type of situation is avoided by disabling the I2C
interrupts (clearing the IE2 bit in the Interrupt Enable 1 Register) just
before copying the data to the transmit buffer, and re-enabling the
interrupts when the copy operation is completed.

When the copy routine is completed the DatFlag is cleared and we
jump back to MainLoop, waiting for the next interrupt to occur. If the
interrupt is for data transmission the service routine will not set
DatFlag, and upon return we shall remain at the MainLoop label.

Philips Semiconductors Application note

AN463I2C slave routines for the 87LPC76X

2000 Jan 11 3

THE INTERRUPT SERVICE ROUTINE
The service routine is interrupt driven with respect to the start of
each I2C frame, but within each frame the interaction with the
hardware is based on polling. An occurrence of a Start on the bus
will cause an interrupt that will initiate the service routine which
starts at address 33H. After saving registers, all interrupts except
the I2C interrupt itself are enabled, as we want to allow response to
other interrupts during the routine. The philosophy behind this is that
the I2C may be a lower priority than some other operations in the
system. Since the I2C hardware will stretch the clock until the
program responds, an interrupt of reasonable duration will not have
a harmful effect on the data transfer.

Since we intend to react to the I2C hardware by polling the ATN flag
in wait loops, we do not want the expected changes on the bus to
take us again to the beginning of the routine. Therefore, the EI2 flag
is cleared, masking further I2C interrupts even when interrupts are
re-enabled (by the ACALL to a RETI instruction).

At the label Slave, the routine starts receiving the address on the
bus. Each new address bit is read after a software wait loop detects
that the ATN flag is set by the hardware. Note that with the single bit
implementation of the I2C port, the software must closely support
the hardware: for example, we need to explicitly clear the Start
status before we enter a wait loop for the next bit. If the software
does not clear the Start flag, the hardware will stretch the low period
of the clock (SCL line) on the bus—and the first address bit will
simply not occur. (Such a state will not go on forever—eventually the
processor will release the bus as a result of a Timer I timeout.)

Reception of the eight bits of Address + R/W is completed using part
of the receive byte subroutines. The address received is compared
to MyAddr, the address of this specific slave. If the address is
different the processor goes idle and leaves the service routine. If
the message is intended for this processor (received address
matches MyAddr) the Read/Write bit is tested, and the program
jumps to the appropriate labels. When the R/W bit is low the master
requests a Write—and this slave should receive the data written into
it. When the R/W bit is high the master is requesting a Read and this
slave should transmit the data (at code label Read).

For “Master Write” we send an acknowledge for the address byte
and proceed with receiving the data bytes, responding with an
acknowledge for each and transferring them into the receive buffer.
For long messages, when the buffer is full (we have received
MaxByte bytes) we read from the bus one additional byte and then
send a negative acknowledge, letting the master know it should stop
sending us data. Then we set DatFlag to signal the mainline
program that new data has been received, and jump to MsgEnd. At

the MsgEnd label we wait for the next Stop or Repeated Start. On a
Stop we resume the idle mode (GoIdle) and return from the service
routine. On a Restart the slave process starts again with reception
of the new address at the label Slave.

If the message is short enough so that the receive buffer is not filled
up, the RcvByte subroutine (called after WrtLoop) will return due to
the Stop condition, DRDY will not be set, and we shall exit the loop
via label WLEx—setting the DatFlag and proceeding to MsgEnd.

For “Master Read” the transmit buffer is sent on the bus byte by byte
in the RdLoop, using the XmitByte subroutine. We exit the loop
when all the buffer is transmitted, or the Master does not respond
with an acknowledge. Note that lack of acknowledgement for slave
transmission does not necessarily indicate a problem or that the
receiving master is busy. This could very well be a normal operation
of the protocol, which defines that a receiving master signals the
transmitting slave to end its message by explicitly transmitting a
negative acknowledge as a response to the last byte the master is
interested in. The protocol does not include inherent means for
specifying in advance the length of a requested message.

SUBROUTINES
The lower level subroutines closely interact with the hardware and
the activity on the bus. The XmitByte subroutine transmits one byte
and receives the acknowledge bit that comes in response. The byte
receive routine, which one may use from different entry points,
receives a data or an address byte, and takes care of
acknowledgements. When a Start or Stop is detected the subroutine
returns immediately—the calling routine is expected to check the
flags to determine whether a whole byte has been received (DRDY
will be set), or a Start or a Stop condition has occurred.

Close inspection of RcvByte code shows that a total of nine bits are
being read off the bus. The first bit does not belong to the received
byte, but is the acknowledge this processor sent in response of the
former byte or address. Reading the Ack bit from the I2DAT register
clears the Transmit Active state and DRDY, thus releasing SCL and
allowing the bus activity to proceed to the next data bit. Upon return
the Ack bit is left in the Carry flag, and the actual data byte received
is returned in the Acc register.

Upon Timer I interrupt code execution commences at address 73H,
where there is a jump to the service routine TimerI. This interrupt is
caused by the watchdog timer, as a result of an I2C bus that is
“hanging” without activity in the middle of a transmission for too long
a period of time. The slave simply clears the bus interface, and
starts all over again at the label Reset.

Philips Semiconductors Application note

AN463I2C slave routines for the 87LPC76X

2000 Jan 11 4

;***

; I2C Slave Routines for the 87LPC764

; This program demonstrates I2C slave functions for the 87LCP764. It is a
; modified version of code published for the 8xC751/752 in AN430.

; The program uses separate transmit and receive data buffers that are each
; eight bytes deep. The sample main program copies received data to the
; transmit buffer such that transmitted data can be read back by a bus master.

; Buffer address 0 is mapped to port 1, such that an I2C write will affect
; the port outputs, except for the I2C pins P1.6 & P1.7. An I2C read will return
; port 0 pin data. The code will accept only eight data bytes in any one I2C
; transmission, additional bytes will not be acknowledged. Similarly, only eight
; data bytes may be read in any one I2C transmission. This program does not
; support subaddressing for buffer access.

;***

; Notes on 87LPC764 I2C differences:
; – I2C interrupt vector address.
; – Timer I interrupt vector address.
; – IEN0 SFR name (IE on 751) and addition of IEN1.
; – I2C interrupt enable location (now in IEN1 and a different bit).
; – I2C SFR addresses (altered by inclusion of the MOD764 file).

$mod764
$debug

;***

; Value definitions.

CTVAL equ 02h ; CT1, CT0 bit values for I2C.
MaxBytes equ 8 ; Max # of bytes to be sent or recvd.

SlvAdr equ 7Eh ; 7Eh is the keypad on I2C demo bd.
;SlvAdr equ 76h ; 76h is the LED display on I2C demo bd.

; Masks for I2CFG bits.

BTIR equ 10h ; Mask for TIRUN bit.
BSLAV equ 80h ; Mask for Slave Enable bit.

; Masks for I2CON bits.

BCXA equ 80h ; Mask for CXA bit.
BIDLE equ 40h ; Mask for IDLE bit.
BCDR equ 20h ; Mask for CDR bit.
BCARL equ 10h ; Mask for CARL bit.
BCSTR equ 08h ; Mask for CSTR bit.
BCSTP equ 04h ; Mask for CSTP bit.

; RAM locations used by I2C routines.

RcvDat data 10h ; I2C receive data buffer (8 bytes).
 ; addresses 10h through 17h.

XmtDat data 18h ; I2C transmit data buffer (8 bytes).
 ; addresses 18h through 1Fh.

Flags data 20h ; I2C software status flags.
NoAck bit Flags.7 ; Holds negative acknowledge flag.
DatFlag bit Flags.6 ; Tells whether an I2C write operation
 ; has occurred.

Philips Semiconductors Application note

AN463I2C slave routines for the 87LPC76X

2000 Jan 11 5

BitCnt data 21h ; I2C bit counter.
ByteCnt data 22h ; Send/receive byte counter.
MyAddr data 24h ; Holds address of THIS slave.

AdrRcvd data 25h ; Holds received slave address + R/W.
RWFlag bit AdrRcvd.0 ; Slave read/write flag.

;***
; Begin Code
;***

; Reset and interrupt vectors.

 ajmp Reset ; Reset vector at address 0.

; I2C interrupt is used to detect a start while the slave is idle.

 org 33h ; I2C interrupt.
 push psw ; Save status.
 push acc ; Save accumulator.
 clr ei2 ; Disable I2C interrupt.
 acall ClrInt ; Re–enable other interrupts.
 ajmp Slave

; Timer I timeout interrupt service routine.

 org 0073h ; Timer I interrupt address.
TimerI: setb CLRTI ; Clear timer I interrupt.
 mov I2CFC,#0 ; Turn off I2C.
 mov I2CON,#BCXA+BCDR+BCARL+BCSTR+BCSTP ; Reset I2C flags.
 clr TIRUN
 acall ClrInt ; Clear interrupt pending.
 ajmp Reset ; Re–start.
ClrInt: reti
 org 0100h

;***
; Main Transmit and Receive Routines
;***

Slave: mov I2CON,#BCARL+BCSTP+BCSTR+BCXA ; Clear start status.
 jnb ATN,$; Wait for next data bit.
 mov BitCnt,#7 ; Set bit count.

 acall RcvB2 ; Get remainder of slave address.
 mov AdrRcvd,A ; Save received address + R/W bit.
 clr acc.0
 cjne A,MyAddr,GoIdle ; Enter idle mode if not our address.

 jb RWFlag,Read ; Read or Write?
 mov R0,#RcvDat ; Set up receive buffer pointer.
 mov ByteCnt,#MaxBytes ; Max 4 bytes can be received.

WrtLoop:
 acall SendAck ; Send acknowledge.
 acall RcvByte ; Get data byte from master.
 jnb DRDY,WLEx ; Must be end of frame?
 mov @R0,A ; Save data.
 inc R0 ; Advance buffer pointer.
 djnz ByteCnt,WrtLoop ; Back to receive if buffer not full.
 acall SendAck ; Send acknowledge.
 acall RcvByte ; Get, but do not store add’l data.
 mov I2DAT,#80h ; Send negative acknowledge.
 jnb ATN,$; Wait for acknowledge sent.
WLEx: setb DatFlag ; Flag main that data has been received.
 sjmp MsgEnd ; Buffer full, enter idle mode.

Philips Semiconductors Application note

AN463I2C slave routines for the 87LPC76X

2000 Jan 11 6

Read: mov R0,#XmtDat ; Set up transmit buffer pointer.
 mov ByteCnt,#MaxBytes ; Max bytes to be sent.
 acall SendAck ; Send address acknowledge.

RdLoop: mov A,@R0 ; Get data byte from buffer.
 cjne R0,#XmtDat,RdL1 ; Return port 1 value instead of buffer
 mov A,P0 ; data if this is buffer address 0.

RdL1: inc R0, ; Advance buffer pointer.
 acall XmitByte ; Send data byte.
 jb NoAck,RLEx ; Exit if NAK.
 djnz ByteCnt,RdLoop ; Back if more data requested & avail.
 MOV A,P3 ; data if this is buffer address 1.
RLEx: sjmp MsgEnd ; Done, enter idle mode.

MsgEnd: jnb ATN,$; Wait for stop or repeated start.
 JB STR,Slave ; If repeated start, go to slave mode,
 ; else enter idle mode.

GoIdle: mov I2CON,#BCSTP+BCXA+BCDR+BCARL+BIDLE ; Enter slave idle mode.
 pop ACC ; Restore accumulator.
 pop PSW ; Restore status.
 setb EI2 ; Re–enable I2C interrupts.
 ret

;***
; Subroutines
;***

; Byte transmit routine.
; Enter with data in ACC.

XmitByte: mov BitCnt,#8 ; Set 8 bits of data count.
XmBit: mov I2DAT,A ; Send this bit.
 rl A ; Get next bit.
 jnb ATN,$; Wait for bit sent.
 djnz BitCnt,XmBit ; Repeat until all bits sent.
 mov I2CON,#BCDR+BCXA ; Switch to receive mode.
 jnb ATN,$; Wait for acknowledge bit.
 mov Flags,I2DAT ; Save acknowledge bit.
 ret

; Byte receive routines.
; SendAck : sends an I2C acknowledge.
; RcvByte : receives a byte of data.
; RcvB2 : receives a partial byte of I2C data, used to allow reception of
; 7 bits of slave address information.
; Data is returned in the ACC.

SendAck: mov I2DAT,#0 ; Send receive acknowledge.
 jnb ATN,$; Wait for acknowledge sent.
 ret

RcvByte: mov BitCnt,#8 ; Set bit count.
RcvB2: clr A ; Init received byte to 0.
RBit: orl A,I2DAT ; Get bit, clear ATN.
 rl A ; Shift data.
 jnb ATN,$; Wait for next bit.
 jnb DRDY,RBEx ; Exit if not a data bit.
 djnz BitCnt,RBit ; Repeat until 7 bits are in.
 mov C,RDAT ; Get last bit, don’t clear ATN.
 rlc A ; Form full data byte.
RBEx: ret

Philips Semiconductors Application note

AN463I2C slave routines for the 87LPC76X

2000 Jan 11 7

;***
; Main Program
;***

Reset: mov SP,#2Fh ; Set stack location.
 mov R0,#RcvDat ; Set up pointer to data area.
 mov R1,#2*MaxBytes ; Set up buffer length counter.
RLoop: mov @R0,#0 ; Clear buffer memory.
 inc R0 ; Advance to next buffer position.
 djnz R1,RLoop ; Repeat until done.

 mov AdrRcvd,#0
 mov MyAddr,#SlvAdr ; Set our slave address.
 mov Flags,#0 ; Clear system flags.
 setb EI2 ; Enable I2C interrupt.
 setb ETI ; Enable Timer I interrupt.
 setb EA ; Enable interrupt system.
 mov I2CFG,#BSLAV+CTVAL ; Enable slave functions.
 mov I2CON,#BCSTR+BCSTP+BXCA+BCDR+BCARL_BIDLE ; Put slave into idle mode.
 setb TIRUN ; Turn on timer I.

; This sample mainline program copies the first received bytes to Port 0
; whenever there is an I2C write operation. It Also copies the rest of
; the input buffer to the output buffer at the same time, acting like a
; small memory device.

MainLoop: jnb DatFlag,$; Wait for data sent from I2C.

; *** mov pcon,#01h ; Enter Idle Mode.

 clr EA ; Turn off interrupts during data move.

 mov A,RcvDat+1 ; Get first data byte (second buffer location).
 orl a,#0Ch ; Mask off I2C pins to prevent disaster.
 mov P1,A ; Store data to port 1.

 mov R0,#RcvDat ; Set input buffer start pointer.
 mov R1,#XmtDat ; Set output buffer start pointer.
 mov R2,#MaxBytes ; Set buffer length counter.
ML2: mov A,@R0 ; Get data from input buffer.
 mov @R1,A ; Store data in output buffer.
 inc R1 ; Increment input buffer pointer.
 inc R0 ; Increment output buffer pointer.
 djnz R2,ML2 ; Repeat until entire buffer is updated.
 clr DatFlag ; Clear I2C transmission flag.

 setb EA ; Data move done, re–enable interrupts.
 sjmp MainLoop ; Wait for next I2C transmission.

 org 0fd00h ; EPROM Configuration Byte (UCFG1)
 db 038h ; WDT off, RST enabled, port RST high,
 ; BO=2.5V, CLK / 1, osc = high freq.

 end

Philips Semiconductors Application note

AN463I2C slave routines for the 87LPC76X

yyyy mmm dd 8

Definitions
Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For
detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or
at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended
periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips
Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or
modification.

Disclaimers
Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications
do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard
cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless
otherwise specified.

Philips Semiconductors
811 East Arques Avenue
P.O. Box 3409
Sunnyvale, California 94088–3409
Telephone 800-234-7381

 Copyright Philips Electronics North America Corporation 2000
All rights reserved. Printed in U.S.A.

Date of release: 01-00

Document order number: 9397 750 06848

������
�����
	����
�

