DESIGN SHOWCASE

Load-Disconnect Switch Consumes Only 8µA

Deep discharge can damage a rechargeable battery. The **Figure 1** circuit, by disconnecting the battery from its load, halts battery discharge at a predetermined level of declining terminal voltage. Transistor Q_1 acts as the switch. The overall circuit draws about $500\mu A$ when the switch is closed and about $8\mu A$ when the switch is open.

Choosing the upper and lower voltage thresholds V_U and V_L lets you set values for R_1 , R_2 , and R_3 :

$$R_1 = R_2*[(V_L/1.15) - 1],$$

 $R_3 = 1.15*R_1/(V_U - V_L).$

To start the circuit, battery voltage (V+) must exceed V_U . The micropower voltage detector IC_1 then powers IC_2 , but only while V+ remains above V_L . Otherwise, the loss of power to IC_2 removes gate drive from Q_1 , turning it off. As shown, the circuit disconnects a 3-cell nickel-cadmium battery from its load when V+ reaches a V_L of 3.1V. An approximate 0.5V hysteresis prevents the switch from turning on immediately when the load is removed; V+ must first return to V_U (3.6V).

IC₂ is a dual charge-pump inverter that normally converts 5V to 10V. The capacitors C_2 , C_3 , and two diodes on the chip's positive-voltage side form a voltage tripler that generates an approximate 2(V+) gate drive for the high-side, floating-source MOS-FET switch Q_1 .

Gate drive declines with battery voltage, causing the on-resistance of Q_1 to reach a maximum of $\approx 0.1\Omega$

just before V+ reaches its 3.1V threshold. A 300mA load current at that time will cause a 30mV drop at the disconnect switch; the drop will be 2 to 3mV less for higher battery voltages. Resistor R₄ assures turn-off for Q₁ by providing a discharge path for C₃.

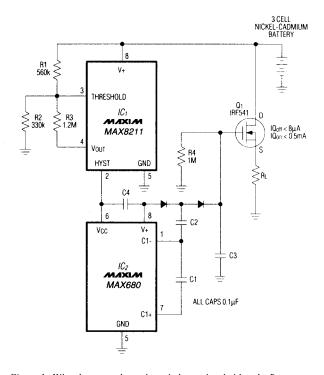


Figure 1. When battery voltage drops below a threshold set by R₁ and R₂, the voltage-detector chip (IC₁) removes power from the charge pump IC₂, which turns off the high-side switch Q₁ by removing its gate drive.

(Circle 3)