

General Description

The MAX2104 low-cost direct-conversion tuner IC is designed for use in digital direct-broadcast satellite (DBS) television set-top box units. Its direct-conversion architecture reduces system cost compared to devices with IF-based architectures. The MAX2104 directly converts L-band signals to baseband signals using a broadband I/Q downconverter. The operating frequency range extends from 925MHz to 2175MHz.

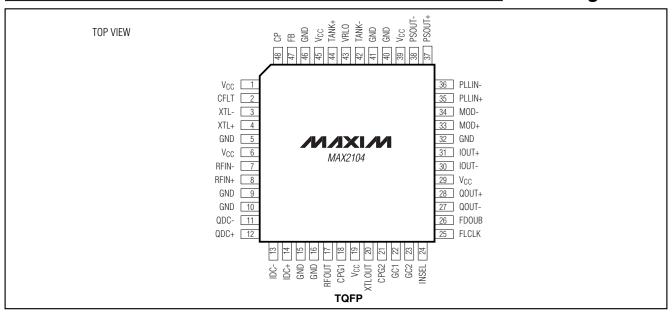
The IC includes an LNA gain control, I and Q downconverting mixers, lowpass filters with gain control and frequency control, a local oscillator (LO) buffer with a 90° quadrature network, and a charge-pump based PLL for frequency control. The MAX2104 also has an on-chip LO, requiring only an external varactor-tuned LC tank for operation. The output of the LO drives the internal quadrature generator and dual modulus prescaler. An on-chip crystal amplifier drives a reference divider as well as a buffer amplifier to drive off-chip circuitry. The MAX2104 is offered in a 48-pin TQFP-EP package.

Applications

DirecTV, PrimeStar, EchoStar DBS Tuners **DVB-Compliant DBS Tuners Broadband Systems LMDS**

Features

- **♦ Low-Cost Architecture**
- ♦ Operates from Single +5V Supply
- ♦ 925MHz to 2175MHz Input Frequency Range
- ♦ On-Chip Quadrature Generator, Dual-Modulus Prescaler (/32, /33)
- ♦ On-Chip Crystal Amplifier
- ◆ PLL Mixer with Gain-Controlled Charge Pump
- ♦ Input Levels: -25dBm to -65dBm per Carrier
- ♦ Over 40dB Gain Control Range
- ♦ Noise Figure = 11.5dB; IIP3 = +7dBm (at 1550MHz)
- **♦ Automatic Baseband Offset Correction**
- ♦ Loopthrough Replaces External Splitter
- ♦ Crystal Output Buffer


Ordering Information

PART	TEMP. RANGE	PIN-PACKAGE		
MAX2104CCM*	0°C to +70°C	48 TQFP-EP		

^{*}Contact factory for availability.

Functional Diagram appears at end of data sheet.

Pin Configuration

MIXIM

Maxim Integrated Products 1

ABSOLUTE MAXIMUM RATINGS

V _{CC} to GND	0.5V to +7V
All Other Pins to GND0.3	8V to (VCC + 0.3V)
RF1+ to RF1-, RF2+ to RF2-, TANK+ to TANK-	· ,
IDC+ to IDC-, QDC+ to QDC	±2V
IOUT_, QOUT_ to GND Short-Circuit Duration	10sec
PSOUT+, PSOUT- to GND Short-Circuit Durati	on10sec
Continuous Current (any pin)	20mA

Continuous Power Dissipation (T _A = +70°C)	
(derate 27mW/°C above +70°C)1.51	W
Operating Temperature Range0°C to +85°	Ò,
Junction Temperature+150°	Ċ
Storage Temperature Range65°C to +150°	
Lead Temperature (soldering, 10sec)+300°	C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

DC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +4.75V \text{ to } +5.25V, V_{FB} = +2.4V, C_{IOUT} = C_{QOUT} = 10pF, f_{FLCLK} = 2MHz, RFIN_ = floating, R_{IOUT} = R_{QOUT} = 10k\Omega, V_{FDOUB} = V_{INSEL} = V_{CPG1} = V_{CPG2} = +2.4V, V_{PLLIN_+} = V_{MOD_+} = +1.3V, V_{PLLIN_-} = V_{MOD_-} = +1.1V, T_A = 0^{\circ}C \text{ to } +70^{\circ}C, unless \text{ otherwise noted.}$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Operating Supply Voltage	Vcc		4.75		5.25	V
Operating Supply Current	Icc			190	275	mA
STANDARD DIGITAL INPUTS (FDOUB, INS	SEL, CPG1, CPG2)				
Digital Input Voltage High	VIH		2.4			V
Digital Input Voltage Low	VIL				0.5	V
Digital Input Current	I _{IN}		-15		+10	μΑ
SLEW-RATE-LIMITED DIGITAL	INPUTS					
FLCLK Input Voltage High			1.85			V
FLCLK Input Voltage Low					1.45	V
FLCLK Input Current (Note 1)		RSOURCE = 50kΩ, V _{FLCLK} = 1.65V	-1		+1	μΑ
DIFFERENTIAL DIGITAL INPU	TS (MOD+, N	MOD-, PLLIN+, PLLIN-)				
Common-Mode Input Voltage	Vсмі		1.08	1.2	1.32	V
Input Voltage Low (Note 2)		Referenced to V _{CMI}			-100	mV
Input Voltage High (Note 2)		Referenced to V _{CMI}	100			mV
Input Current (Note 1)			-5		5	μΑ
DIFFERENTIAL DIGITAL OUTF	UTS (PSOU	T+, PSOUT-)				
Common-Mode Output Voltage	V _{CMO}		2.16	2.4	2.64	V
Output Voltage Low (Note 3)		Referenced to VCMO		-215		mV
Output Voltage High (Note 3)		Referenced to V _{CMO}		215		mV
FREQUENCY SYNTHESIZER	•					
Prescaler Ratio		(VMOD+ - VMOD-) = 200mV	32		32	
Trescaler Hallo		$(V_{MOD+} - V_{MOD-}) = -200 \text{mV}$	33		33	
Reference Divider Ratio			8		8	
		V _{CPG1} = V _{CPG2} = 0.5V	0.08	0.1	0.12	
Charge-Pump Output High		V _{CPG1} = 0.5V, V _{CPG2} = 2.4V	0.24	0.3	0.36	mA
Measured at FB		V _{CPG1} = 2.4V, V _{CPG2} = 0.5V	0.48	0.6	0.72	
		VCPG1 = VCPG2 = 2.4V	1.44	1.8	2.16	

DC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +4.75 V \ to \ +5.25 V, \ V_{FB} = +2.4 V, \ C_{IOUT} = C_{QOUT} = 10 pF, \ f_{FLCLK} = 2 MHz, \ RFIN_ = floating, \ R_{IOUT} = R_{QOUT} = 10 k\Omega, \ V_{FDOUB} = V_{INSEL} = V_{CPG1} = V_{CPG2} = +2.4 V, \ V_{PLLIN_+} = V_{MOD_+} = +1.3 V, \ V_{PLLIN_-} = V_{MOD_-} = +1.1 V, \ T_A = 0 °C \ to \ +70 °C, \ unless \ otherwise \ noted.)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
		VcPG1 = VcPG2 = 0.5V	-0.12	-0.1	-0.08	
Charge-Pump Output Low		V _{CPG1} = 0.5V, V _{CPG2} = 2.4V	-0.36	-0.3	-0.24	mA
Measured at FB		V _{CPG1} = 2.4V, V _{CPG2} = 0.5V	-0.72	-0.6	-0.48	IIIA
		VCPG1 = VCPG2 = 2.4V	-2.16	-1.8	-1.44	
Charge-Pump Output Current Matching Positive to Negative		Measured at FB	-5		5	%
Charge-Pump Output Leakage		Measured at FB	-25		25	nA
Charge-Pump Output Current Drive (Note 1)		Measured at CP	100			μΑ
ANALOG CONTROL INPUTS (G	C_)					
Analog Control Input Current	IGC_	V _{GC} __ = 1V to 4V	-50		+50	μΑ
BASEBAND OUTPUTS (IOUT+,	IOUT-, QOL	JT+, QOUT-)	1			
Differential Output Voltage Swing		$R_L = 2k\Omega$ differential	1			Vp-p
Common-Mode Output Voltage (Note 1)			0.65		0.85	V
Offset Voltage (Note 1)			-50		+50	mV

AC ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +4.75 \text{V to } +5.25 \text{V}, \text{V}_{IOUT} = \text{V}_{QOUT} = 0.59 \text{Vp-p}, \text{C}_{IOUT} = \text{C}_{QOUT} = 10 \text{pF}, \text{fFLCLK} = 2 \text{MHz}, \text{R}_{IOUT} = \text{R}_{QOUT} = 10 \text{k}\Omega, \text{V}_{PDOUB} = \text{V}_{INSEL} = \text{V}_{CPG1} = \text{V}_{CPG2} = +2.4 \text{V}, \text{V}_{PLLIN_{+}} = \text{V}_{MOD_{+}} = +1.3 \text{V}, \text{V}_{PLLIN_{-}} = \text{V}_{MOD_{-}} = +1.1 \text{V}, \text{T}_{A} = 0 ^{\circ}\text{C} \text{ to } +70 ^{\circ}\text{C}, \text{unless otherwise noted.}$ wise noted. Typical values are at VCC = +5.0 V and TA = +25 ^{\circ}\text{C}, unless otherwise noted.)

SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
'							
f _{RFIN}				925		2175	MHz
	Single	V _{GC1} = \	/ _{GC2} = +4V (min gain)	-25			dBm
	carrier	V _{GC1} = \	/ _{GC2} = +1V (max gain)			-65	dBm
	Doen -	05dPm	$f_{LO} = 2175MHz$		3		
IP3 _{RFIN} _	_	2300111	$f_{LO} = 1550MHz$		7		dBm
	per tone		$f_{LO} = 950MHz$		8		
IP2 _{RFIN} _	P _{RFIN} = -25dBm per tone, f _{LO} = 951MHz				15.5		dBm
P1 _{dBOUT}	P _{RFIN} = -40dBm, signals within filter bandwidth				2		dBV
NF	PRFIN_ = -65dBm, fRFIN_ = 1550MHz, VGC1 = 1V, VGC2 adjusted 0.59Vp-p baseband level				11.5		dB
	frFIN_ = 9	25MHz			+10		٩D
	frein_ = 2175MHz			+10			- dB
	Average level of VIOUT_, VQOUT_			27			dBC
	Average level of VIOUT_, VQOUT_			25			dBC
	Measured at RFIN_			-66		dBm	
	fRFIN IP3RFIN_ IP2RFIN_ P1dBOUT	fRFIN Single carrier IP3RFIN_ PRFIN_ = - per tone IP2RFIN_ FLO = 951I P1dBOUT PRFIN_ = - signals wire PRFIN_ = - VGC1 = 1V baseband fRFIN_ = 9 fRFIN_ = 2 Average le	FRFIN Single carrier VGC1 = V VGC1 = V VGC1 = V FRFIN_ = -25dBm per tone FRFIN_ = -25dBm per tone PRFIN_ = -40dBm, signals within filter ber tone PRFIN_ = -65dBm, from the vGC1 = 1V, VGC2 and baseband level FRFIN_ = 925MHz FRFIN_ = 2175MHz Average level of VICE Average level of VICE	$ \begin{array}{ c c c c } \hline fRFIN & Single \\ carrier & VGC1 = VGC2 = +4V (min gain) \\ \hline VGC1 = VGC2 = +1V (max gain) \\ \hline VGC1 = VGC2 = +1V (max gain) \\ \hline VGC1 = VGC2 = +1V (max gain) \\ \hline IP2RFIN_ & PRFIN_ = -25dBm & fLO = 2175MHz \\ \hline fLO = 1550MHz \\ \hline fLO = 950MHz \\ \hline PRFIN_ = -25dBm per tone, \\ fLO = 951MHz \\ \hline PRFIN_ = -40dBm, \\ signals within filter bandwidth \\ \hline PRFIN_ = -65dBm, fRFIN_ = 1550MHz, \\ VGC1 = 1V, VGC2 adjusted 0.59Vp-p \\ baseband level \\ \hline fRFIN_ = 925MHz \\ \hline fRFIN_ = 2175MHz \\ Average level of VIOUT_, VQOUT_ \\ \hline Average level of VIOUT_, VQOUT_ \\ \hline \end{array} $	Single VGC1 = VGC2 = +4V (min gain) -25 Carrier VGC1 = VGC2 = +1V (max gain) PRFIN_	$ \begin{array}{ c c c c c }\hline fRFIN & 925 \\ Single carrier & V_{GC1} = V_{GC2} = +4V \ (min \ gain) & -25 \\ \hline & V_{GC1} = V_{GC2} = +1V \ (max \ gain) & -25 \\ \hline & V_{GC1} = V_{GC2} = +1V \ (max \ gain) & -25 \\ \hline & IP3RFIN_ & P_{RFIN} = -25dBm & fLO = 2175MHz & 3 \\ \hline & f_{LO} = 1550MHz & 7 \\ \hline & f_{LO} = 950MHz & 8 \\ \hline & P_{RFIN} = -25dBm \ per \ tone, & 15.5 \\ \hline & P_{1}_{0} = 951MHz & 15.5 \\ \hline & P_{1}_{0} = -40dBm, & 15.5 \\ \hline & P_{1}_{0} = -40dBm, & 2 \\ \hline & V_{1}_{0} = -40dBm, & 2 \\ \hline & V_{2}_{0} = -40dBm, & 2 \\ \hline & V_{3}_{0} = -40dBm, & 2 \\ \hline & V$	FRFIN

AC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +4.75 \text{V to } +5.25 \text{V}, \text{V}_{IOUT} = \text{V}_{QOUT} = 0.59 \text{Vp-p}, \text{C}_{IOUT} = \text{C}_{QOUT} = 10 \text{pF}, \text{f}_{FLCLK} = 2 \text{MHz}, \text{R}_{IOUT} = \text{R}_{QOUT} = 10 \text{k}\Omega, \text{V}_{FDOUB} = \text{V}_{INSEL} = \text{V}_{CPG1} = \text{V}_{CPG2} = +2.4 \text{V}, \text{V}_{PLLIN+} = \text{V}_{MOD+} = +1.3 \text{V}, \text{V}_{PLLIN-} = \text{V}_{MOD-} = +1.1 \text{V}, \text{T}_{A} = 0^{\circ}\text{C} \text{ to } +70^{\circ}\text{C}, \text{unless otherwise noted.}$

PARAMETER	SYMBOL	COND	MIN	TYP	MAX	UNITS			
RFOUT PORT (LOOPTHROUGH)				1.					
		f = 925MHz			0.5				
RFIN_ to RFOUT Gain (Note 11)		f = 1550MHz f = 2175MHz			1.8		dB		
					2.5				
		f = 925MHz			9				
RFOUT Output Third-Order Intercept Point (Note 11)		f = 1550MHz			7		dBm		
microoper onit (Note 11)		f = 2175MHz			4				
		f = 925MHz			15				
RFOUT Noise Figure (Note 11)		f = 1550MHz			12		dB		
		f = 2175MHz			11.5				
RFOUT Return Loss (Notes 1, 11)		925MHz < f < 2175M	Hz			8	dB		
BASEBAND CIRCUITS	•								
Output Real Impedance (Note 1)		IOUT_, QOUT_				50	Ω		
Baseband Highpass Frequency (Note 1)		CIDC_ = CQDC_ = 0.23	2µF			750	Hz		
LPF -3dB Cutoff-Frequency Range (Note 1)		Controlled by FLCLK	signal	8		33	MHz		
Baseband Frequency Response (Note 1)		Deviation from ideal 7 up to 0.7 • f _C	th order, Butterworth,	-0.5		0.5	dB		
1.55 0.15 0 . 15 5	$f_{FLCLK} = 0.5MHz, f_{C} = 8MHz$		= 8MHz	-5.5		5.5			
LPF -3dB Cutoff-Frequency Accuracy (Note 1)		fFLCLK = 1.25MHz, fC	= 19.3MHz	-10		10	%		
Accuracy (Note 1)		fFLCLK = 2.0625MHz,	$f_C = 31.4MHz$	10		10	1		
Ratio of In-Filter-Band to Out-of- Filter-Band Noise		f _{IN_BAND} = 100Hz to 22.5MHz, f _{OUT_BAND} = 67.5MHz to 112.5MHz					19		dB
		Includes effects from	$T_A = 0$ °C to +70°C			1.2			
Quadrature Gain Error		baseband filters, measured at 125kHz baseband	T _A = 0°C to +85°C (Note 1)			1.2	dB		
		Includes effects from	$T_A = 0$ °C to +70°C			4			
Quadrature Phase Error		baseband filters, measured at 125kHz baseband	T _A = 0°C to +85°C (Note 1)			5	degrees		

AC ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +4.75 V \ to \ +5.25 V, \ V_{IOUT} = V_{QOUT} = 0.59 Vp-p, \ C_{IOUT} = C_{QOUT} = 10 pF, \ f_{FLCLK} = 2 MHz, \ R_{IOUT} = R_{QOUT} = 10 k\Omega, \ V_{FDOUB} = V_{INSEL} = V_{CPG1} = V_{CPG2} = +2.4 V, \ V_{PLLIN} = V_{MOD} = +1.3 V, \ V_{PLLIN} = V_{MOD} = +1.1 V, \ T_{A} = 0^{\circ}C \ to \ +70^{\circ}C, \ unless \ otherwise \ noted.$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
SYNTHESIZER			1			'
XTLOUT Output Voltage Swing		Load = 10pF II 10k Ω , fxtLout = 6MHz	0.8	1	1.3	Vp-p
XTLOUT Output Voltage DC				2		V
Crystal Frequency Range (Note 1)			4		7.26	MHz
MOD+, MOD- Setup Time (Note 1)	tsum	Figure 1	7			ns
MOD+, MOD- Hold Time (Note 1)	tHM	Figure 1	0			ns
LOCAL OSCILLATOR			1			•
LO Tuning Range (Note 1)			590		1180	MHz
		At 1kHz offset, f _{LO} = 2175MHz		-55		
LO Phase Noise (Notes 7, 12)		At 10kHz offset, f _{LO} = 2175MHz		-75		dBc/Hz
		At 100kHz offset, f _{LO} = 2175MHz		-95		1
RFIN_ to LO Input Isolation (Note 10)		f _{RFIN} _ = 2150MHz		57		dB

- Note 1: Minimum and maximum values are guaranteed by design and characterization over temperature and supply voltage.
- **Note 2:** With external 100Ω termination resistor.
- Note 3: Driving differential load of 10k ll 15pF.
- Note 4: Two signals are applied to RFIN_ at fLO 100MHz and fLO 199MHz. VGC2 = 1V, VGC1 is set such that the baseband outputs are at 590mVp-p. IM products are measured at baseband outputs but are referred to RF inputs.
- Note 5: Two signals are applied to RFIN_ at 1200MHz and 2150MHz. V_{GC2} = 1V, V_{GC1} is set such that the baseband outputs are at 590mVp-p. IM products are measured at baseband outputs but are referred to RF inputs.
- **Note 6:** P_{RFIN} = -40dBm so that front end IM contributions are minimized.
- Note 7: Using L64733/L64734 demo board from LSI Logic.
- Note 8: Downconverted level, in dBc, of carrier present at f_{LO} ⋅ 2, f_{LO} = 1180MHz, f_{VCO} = 590MHz, V_{FDOUB} = 2.4V.
- Note 9: Downconverted level, in dBc, of carrier present at fo / 2, fLO = 2175MHz, fyco = 1087.5MHz, VFDOUB = 2.4V.
- Note 10: Leakage is dominated by board parasitics.
- **Note 11:** $V_{CPG1} = V_{CPG2} = V_{FDOUB} = V_{INSEL} = 0.5V$, $f_{FLCLK} = 0.5MHz$.
- **Note 12:** Measured at tuned frequency with PLL locked. All phase noise measurements assume tank components have a Q > 50.

Pin Description

PIN	NAME	FUNCTION			
1, 6, 19, 29, 39, 45	Vcc	VCC Power-Supply Input. Connect each pin to a $\pm 5V \pm 5\%$ low-noise supply. Bypass each VCC pin to the nearest GND with a ceramic chip capacitor.			
2	CFLT	External Bypass for Internal Bias. Bypass this pin with a 0.1µF ceramic chip capacitor to GND.			
3	XTL-	Inverting Input to Crystal Oscillator. Consult crystal manufacturer for circuit loading requirements.			
4	XTL+	Noninverting Input to Crystal Oscillator. Consult crystal manufacturer for circuit loading requirements.			
5, 9, 10, 15, 16, 32, 40, 41, 46	32, GND Ground. Connect each of these pins to a solid ground plane. Use multiple vias to reduce inducta				
7	RFIN-	RF Inverting Input. Bypass RFIN- with 47pF capacitor in series with a 75 Ω resistor to GND.			
8	RFIN+	RF Noninverting Input. Connect to 75Ω source with a 47pF ceramic chip capacitor.			
11	QDC-	Baseband Offset Correction. Connect a 0.22µF ceramic chip capacitor from QDC- to QDC+ (pin 12).			
12	QDC+	Baseband Offset Correction. Connect a 0.22µF ceramic chip capacitor from QDC+ to QDC- (pin 11).			
13	IDC-	Baseband Offset Correction. Connect a 0.22µF ceramic chip capacitor from IDC- to IDC+ (pin 14).			
14	IDC+	Baseband Offset Correction. Connect a 0.22µF ceramic chip capacitor from IDC+ to IDC- (pin 13).			
17	RFOUT	Buffered RF Output. Enabled when INSEL is low.			
18	CPG1	Charge-Pump Gain Select. High-impedance digital input. Sets the charge-pump output scaling. Refer to DC Electrical Characteristics for available gain settings.			
20	XTLOUT	Buffered Crystal Oscillator Output			
21	CPG2	Charge-Pump Gain Select. High-impedance digital input. Sets the charge-pump output scaling. Refer to DC Electrical Characteristics for available gain settings.			
22	GC1	Gain Control Input for RF Front End. High-impedance analog input, with an input range of +1V to +4V. Refer to AC Electrical Characteristics for transfer function.			
23	GC2	Gain Control Input for Baseband Signals. High-impedance analog input, with an input range of +1V to +4V. Refer to AC Electrical Characteristics for transfer function.			
24	INSEL	Loopthrough Mode Enable. High-impedance digital input. Drive low to enable the RFOUT buffer and disable the internal downconverters. Connect to VCC for normal tuner operation.			
25	FLCLK	Baseband Filter Cutoff Adjust. Connect to a slew-rate-limited clock source. Refer to AC Electrical Characteristics for transfer function.			
26	FDOUB	LO Frequency Doubler. High-impedance digital input. Drive high to enable the LO frequency doubler. Drive low to disable the doubling function.			
27	QOUT-	Baseband Quadrature Output. Connect to inverting input of high-speed ADC.			
28	QOUT+	Baseband Quadrature Output. Connect to noninverting input of high-speed ADC.			
30	IOUT-	Baseband In-Phase Output. Connect to inverting input of high-speed ADC.			
31	IOUT+	Baseband In-Phase Output. Connect to noninverting input of high-speed ADC.			
33	MOD+	PECL Modulus Control. A PECL high on MOD+ sets the dual-modulus prescaler to divide by 32. A PECL logic low sets the divide ratio to 33. Drive with a differential PECL signal in conjunction with MOD- (pin 34).			

Pin Description (continued)

PIN	NAME	FUNCTION
34	MOD-	PECL Modulus Control. A PECL low on MOD- sets the dual-modulus prescaler to divide by 32. A PECL logic high sets the divide ratio to 33. Drive with a differential PECL signal in conjunction with MOD+ (pin 33).
35	PLLIN+	PECL Phase-Locked Loop Input. Drive with a differential PECL signal in conjunction with PLLIN- (pin 36).
36	PLLIN-	PECL Phase-Locked Loop Input. Drive with a differential PECL signal in conjunction with PLLIN+ (pin 35).
37	PSOUT+	PECL Prescaler Output. Differential output of the dual-modulus prescaler. Used in conjunction with PSOUT- (pin 38). Requires PECL-compatible termination.
38	PSOUT-	PECL Prescaler Output. Differential output of the dual-modulus prescaler. Used in conjunction with PSOUT+ (pin 37). Requires PECL-compatible termination.
42	TANK-	LO Tank Oscillator Input. Connect to an external LC tank with varactor tuning.
43	VRLO	LO Internal Regulator. Bypass with a 100pF ceramic chip capacitor to GND.
44	TANK+	LO Tank Oscillator Input. Connect to an external LC tank with varactor tuning.
47	FB	Feedback Output. Control of external charge-pump transistor.
48	CP	Voltage Drive Output. Control of external charge-pump transistor.

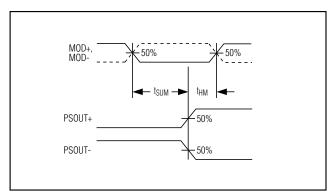
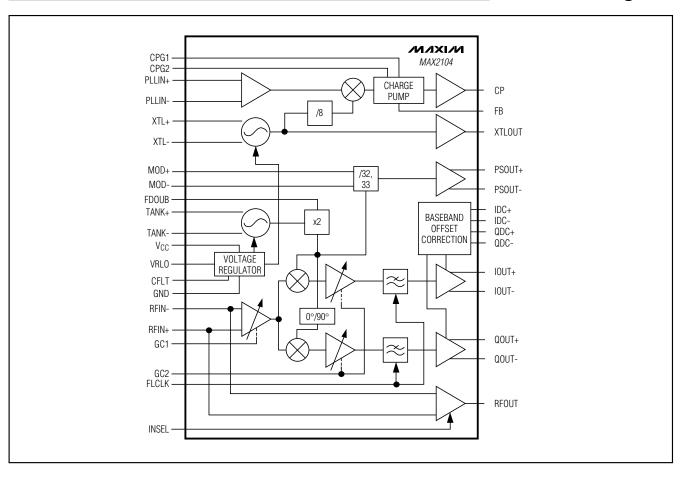
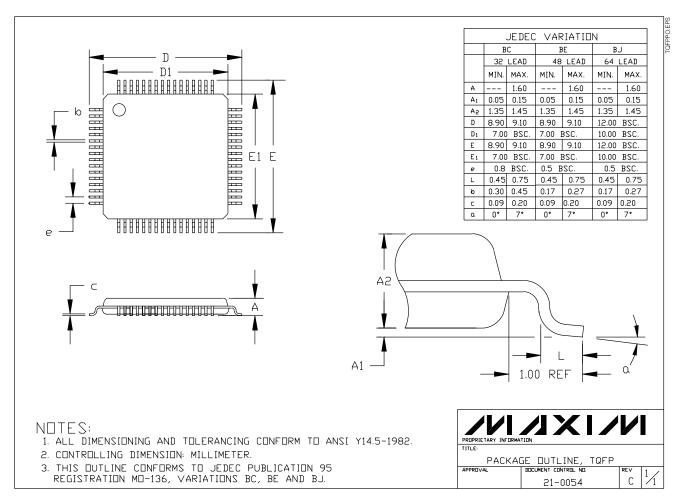




Figure 1. Timing Diagram

Functional Diagram

Package Information

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.