Push-Pull Four Channel Driver

FEATURES

- Output Current 1A Per Channel (600mA for L293D)
- Peak Output Current 2A Per Channel (1.2A for L293D)
- Inhibit Facility
- High Noise Immunity
- Separate Logic Supply
- Over-Temperature Protection

DESCRIPTION

The L293 and L293D are quad push-pull drivers capable of delivering output currents to 1A or 600mA per channel respectively. Each channel is controlled by a TTL-compatible logic input and each pair of drivers (a full bridge) is equipped with an inhibit input which turns off all four transistors. A separate supply input is provided for the logic so that it may be run off a lower voltage to reduce dissipation.

Additionally the L293D includes the output clamping diodes within the IC for complete interfacing with inductive loads.

Both devices are available in 16-pin Batwing DIP packages. They are also available in Power S0IC and Hermetic DIL packages.

TRUTH TABLE

Vı	VINH*	Vo		
(each channel)				
Н	Н	Η		
L	Н	L		
Н	L	X**		
L	L	X**		

^{*}Relative to the considered channel **High output impedence

ABSOLUTE MAXIMUM RATINGS

Collector Supply Voltage, Vc
Inhibit Voltage, VINH
at Tground-pins = 80°C, N Batwing pkg, (Note) 5W Storage and Junction Temperature, Tstg, TJ40 to +150°C Note:Consult packaging section of Databook for thermal limitations and considerations of packages.

BLOCK DIAGRAM

Note: Output diodes are internal in L293D.

CONNECTION DIAGRAMS

ELECTRICAL CHARACTISTICS: (For each channel, Vc = 24V, Vss = 5V, TAMB = 25°C, unless otherwise specified; TA = TJ)

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNITS
Collector Supply Voltage	Vc				36	V
Logic Supply Voltage	Vss		4.5		36	V
Collector Supply Current	Ic	VI = L, $IO = 0$, $VINH = H$		2	6	mA
		VI = H, $IO = 0$, $VINH = H$		16	24	mA
		VINH = L			4	mA
Total Quiescent Logic Supply Current	Iss	VI = L, IO = 0, VINH = H		44	60	mA
		VI = H, $IO = 0$, $VINH = H$		16	22	mA
		VINH = L		16	24	mA
Input Low Voltage	VIL		-0.3		1.5	V
Input High Voltage	VIH	Vss ≤ 7V	2.3		Vss	V
		Vss ≥ 7V	2.3		7	V
Low Voltage Input Current	lıL	VI = 0V			-10	μΑ
High Voltage Input Current	Іін	VI = 4.5V		30	100	μΑ
Inhibit Low Voltage	VINH, L		-0.3		1.5	V
Inhibit High Voltage	Vinh, h	Vss ≤ 7V	2.3		Vss	V
		Vss >7V	2.3		7	V
Low Voltage Inhibit Current	VINH, L			-30	-100	μΑ
High Voltage Inhibit Current	Vinh, h				10	μΑ
Source Output Saturation Voltage	VCEsatH	Io = -1A (-0.6A for L293D)		1.4	1.8	V
Sink Output Saturation Voltage	VCEsatL	Io = 1A (0.6A for L293D)		1.2	1.8	V
Clamp Diode Forward Voltage (L293D only)	VF	IF = 0.6A		1.3		V
Rise Time	TR	0.1 to 0.9 Vo (See Figure 1)		100		ns
Fall Time	TF	0.9 to 0.1 Vo (See Figure 1)		350		ns
Turn-on Delay	Ton	0. 5 VI to 0.5 Vo (See Figure 1)		750		ns
Turn-off Delay	Toff	0. 5 VI to 0.5 Vo (See Figure 1)		200		ns

SCHEMATIC DIAGRAM

APPLICATION INFORMATION

Figure 1: Switching Times

Figure 2: Quiescent Logic Supply Current vs Logic Supply Voltage

Figure 3: Output Voltage vs Input Voltage

Figure 4: L293 Saturation vs Output Currrent

Figure 5: L293 Source Saturation vs Ambient Temperature

Figure 6: L293 Sink Saturation Voltage vs Ambient Temperature

NOTE: For L293D curves, multiply output current by 0.6.

APPLICATION INFORMATION (Cont.)

Figure 7: DC Motor Controls (with Connection to Ground and to Supply Voltage)

VINH	Α	M 1	В	M2
Н	Н	Fast Motor Stop	Τ	Run
Н	L	Run	L	Fast Motor Stop
L	X	Free Running Motor Stop	X	Free Running Motor Stop

$$L = Low$$
 $H = High$ $X = Don't$ Care

Figure 8: Bidirectional DC Motor Control

INPUTS		FUNCTION	
	C = H; D = L	Turn Right	
VINH = H	C = L; D = H	Turn Left	
	C = D	Fast Motor Stop	
VINILL	C V.D V	Free Running Motor	
VINH = L	C = X; D = X	Stop	

L = Low H = High X = Don't Care

Figure 9: Bipolar Stepping Motor Control

MOUNTING INSTRUCTIONS

The Rthj-amp of the L293 can be reduced by soldering the GND pins to a suitable copper area of the printed circuit board or to an external heatsink.

The diagram of Figure 13 shows the maximum package power Ptot and the θJA as a function of the side "I" of two equal square copper areas having a thickness of 35μ (see

Figure 10). In addition, it is possible to use an external heatsink (see Figure 11).

During soldering the pins' temperature must not exceed 260°C and the soldering time must not be longer than 12 seconds.

The external heatsink or printed circuit copper area must be connected to electrical ground.

Figure 10: Example of P.C. Board Copper Area which is used as Heatsink

Figure 11: External Heatsink Mounting Example (θJA = 25°C/W)

Figure 12: Maximum Package Power and Junction to Ambient Thermal Resistance

Figure 13: Maximum Allowable Power Dissipation vs Ambient Temperature