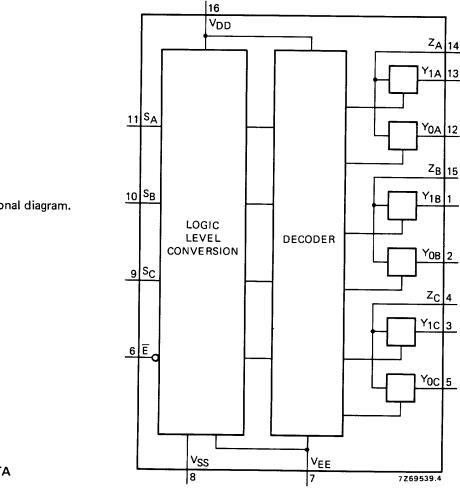

INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC04 January 1995


TRIPLE 2-CHANNEL ANALOGUE MULTIPLEXER/DEMULTIPLEXER

The HEF4053B is a triple 2-channel analogue multiplexer/demultiplexer with a common enable input (\overline{E}) . Each multiplexer/demultiplexer has two independent inputs/outputs (Y₀ and Y₁), a common input/output (Z), and select inputs (Sn). Each also contains two-bidirectional analogue switches, each with one side connected to an independent input/output (Y0 and Y1) and the other side connected to a common input/output (Z).

With \overline{E} LOW, one of the two switches is selected (low impedance ON-state) by S_n. With \overline{E} HIGH, all switches are in the high impedance OFF-state, independent of S_A to S_C .

 V_{DD} and V_{SS} are the supply voltage connections for the digital control inputs (S_A to S_C and \overline{E}). The V_{DD} to V_{SS} range is 3 to 15 V. The analogue inputs/outputs (Y₀, Y₁ and Z) can swing between V_{DD} as a positive limit and V_{EE} as a negative limit. $V_{DD}-V_{EE}$ may not exceed 15 V.

For operation as a digital multiplexer/demultiplexer, VEE is connected to VSS (typically ground).

Fig. 1 Functional diagram,

FAMILY DATA

IDD LIMITS category MSI see Family Specifications

HEF4053B MSI

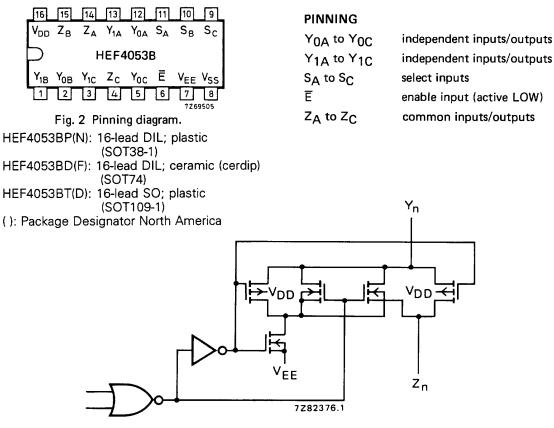
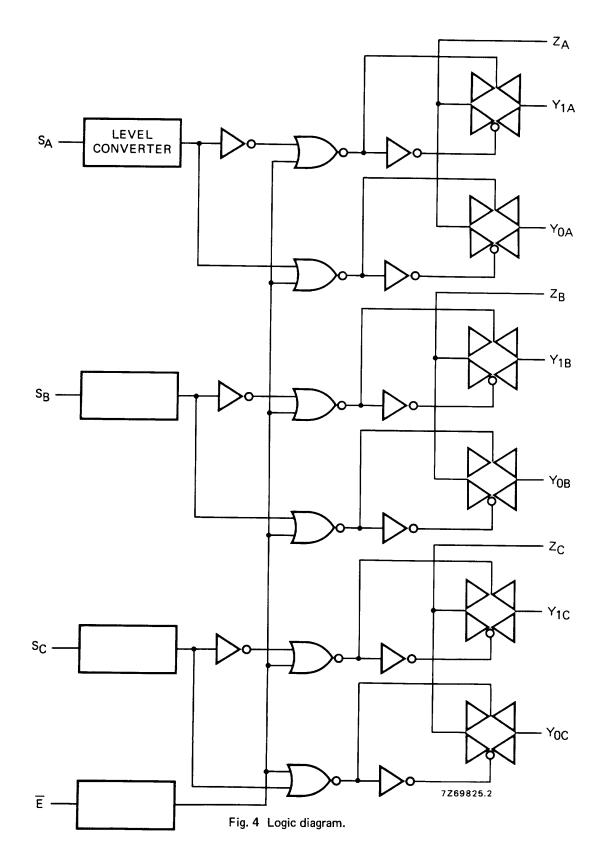


Fig. 3 Schematic diagram (one switch).

FUNCTION TABLE

inputs		channel ON
Ē	s _n	UN
L L H	L H X	Y _{0n} −Z _n Y _{1n} −Z _n none

H = HIGH state (the more positive voltage) L = LOW state (the less positive voltage) X = state is immaterial


RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) Supply voltage (with reference to V_{DD}) V_{EE} -18 to + 0,5 V

NOTE

To avoid drawing V_{DD} current out of terminal Z, when switch current flows into terminals Y, the voltage drop across the bidirectional switch must not exceed 0,4 V. If the switch current flows into terminal Z, no V_{DD} current will flow out of terminals Y, in this case there is no limit for the voltage drop across the switch, but the voltages at Y and Z may not exceed V_{DD} or V_{EE}.

HEF4053B MSI

D.C. CHARACTERISTICS

T_{amb} = 25 °C

	V _{DD} -V _{EE} V	symbol	typ.	max.		conditions
ON resistance	5 10 15	R _{ON}	350 80 60	2500 245 175	Ω Ω Ω	$\begin{cases} V_{is} = 0 \text{ to } V_{DD} - V_{EE} \\ \text{see Fig. 6} \end{cases}$
ON resistance	5 10 15	RON	115 50 40	340 160 115	Ω Ω Ω	$\begin{cases} V_{is} = 0 \\ see Fig. 6 \end{cases}$
ON resistance	5 10 15	RON	120 65 50	365 200 155	Ω Ω Ω	$\begin{cases} V_{is} = V_{DD} - V_{EE} \\ see Fig. 6 \end{cases}$
'Δ' ON resistance between any two channels	5 10 15	ΔR _{ON}	25 10 5	_ _ _	Ω Ω Ω	$ \begin{cases} V_{is} = 0 \text{ to } V_{DD} - V_{EE} \\ \text{see Fig. 6} \end{cases} $
OFF-state leakage current, all channels OFF	5 10 15	lozz		 1000	nA nA nA	$\left. \right\} \overline{E} at V_{DD}$
OFF-state leakage current, any channel	5 10 15	IOZY	_ _ _	 200	nA nA nA	$ ight\} \overline{E}$ at V _{SS}

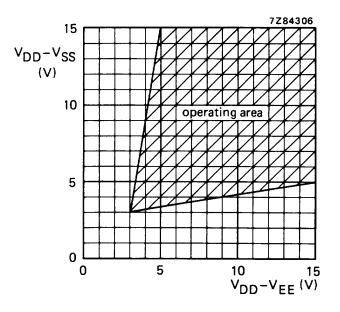
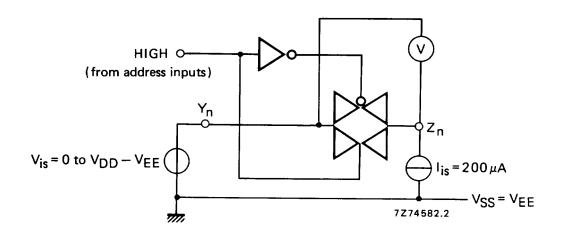
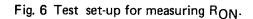




Fig. 5 Operating area as a function of the supply voltages.

HEF4053B MSI

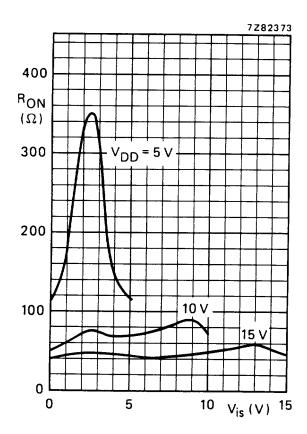


Fig. 7 Typical $\ensuremath{\mathsf{R}_{ON}}$ as a function of input voltage.

 $I_{is} = 200 \ \mu A$ $V_{SS} = V_{EE} = 0 \ V$

A.C. CHARACTERISTICS

 $V_{\mbox{\scriptsize EE}}$ = V_{\mbox{\scriptsize SS}} = 0 V; $T_{\mbox{\scriptsize amb}}$ = 25 °C; input transition times \leqslant 20 ns

	V _{DD} V	typical formula for P (μ W)	where f _i = input freq. (MHz)
Dynamic power dissipation per package (P)	5 10 15	$\begin{array}{c} 2\ 500\ f_{i}+\Sigma(f_{0}C_{L})\times V_{DD}^{2}\\ 11\ 500\ f_{i}+\Sigma(f_{0}C_{L})\times V_{DD}^{2}\\ 29\ 000\ f_{i}+\Sigma(f_{0}C_{L})\times V_{DD}^{2} \end{array}$	f_0 = output freq. (MHz) C_L = load capacitance (pF) $\Sigma(f_0C_L)$ = sum of outputs V_{DD} = supply voltage (V)

A.C. CHARACTERISTICS

 V_{EE} = V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD} V	symbol	typ.	max.		
Propagation delays V _{is} — V _{OS} HIGH to LOW	5 10 15	^t PHL	10 5 5	20 10 10	ns ns ns	} note 1
LOW to HIGH	5 10 15	^t PLH	15 5 5	30 10 10	ns ns ns	} note 1
S _n → V _{os} HIGH to LOW	5 10 15	^t PHL	200 85 65	400 170 130	ns ns ns	} note 2
LOW to HIGH	5 10 15	^t PLH	275 100 65	555 200 130	ns ns ns	} note 2
Output disable times Ē ─► V _{os} HIGH	5 10 15	^t PHZ	200 115 110	400 230 220	ns ns ns	} note 3
LOW	5 10 15	^t PLZ	200 120 110	400 245 215	ns ns ns	} note 3
Output enable times Ē ─► V _{os} HIGH	5 10 15	^t PZH	260 95 65	525 190 130	ns ns ns	} note 3
LOW	5 10 15	^t PZL	280 105 70	565 205 140	ns ns ns	} note 3

A.C. CHARACTERISTICS

 $V_{EE} = V_{SS} = 0 V$; $T_{amb} = 25 °C$; input transition times $\leq 20 ns$

	V _{DD} V	symbol	typ.	max.	
Distortion, sine-wave response	5 10 15		0,25 0,04 0,04	% % %	<pre>} note 4</pre>
Crosstalk between any two channels	5 10 15		- 1 -	MH: MH: MH:	z note 5
Crosstalk; enable or address input to output	5 10 15		_ 50 _	mV mV mV	} note 6
OFF-state feed-through	5 10 15		- 1 -	MH: MH: MH:	z hote 7
ON-state frequency response	5 10 15		13 40 70	MH: MH: MH:	z } note 8

NOTES

 V_{is} is the input voltage at a Y or Z terminal, whichever is assigned as input.

Vos is the output voltage at a Y or Z terminal, whichever is assigned as output.

- 1. $R_L = 10 \text{ k}\Omega$ to V_{EE} ; $C_L = 50 \text{ pF to } V_{EE}$; $\overline{E} = V_{SS}$; $V_{is} = V_{DD}$ (square-wave); see Fig. 8.
- 2. $R_L = 10 k\Omega$; $C_L = 50 pF$ to V_{EE} ; $\overline{E} = V_{SS}$; $S_n = V_{DD}$ (square-wave); $V_{is} = V_{DD}$ and R_L to V_{EE} for tPLH; $V_{is} = V_{EE}$ and R_L to V_{DD} for tPHL; see Fig. 8.
- 3. $R_L = 10 \text{ k}\Omega$; $C_L = 50 \text{ pF to } V_{EE}$; $\overline{E} = V_{DD}$ (square-wave);
 - $V_{is} = V_{DD}$ and R_{L} to V_{EE} for t_{PHZ} and t_{PZH} ;
- $V_{is} = V_{EE}$ and R_{L} to V_{DD} for t_{PLZ} and t_{PZL} ; see Fig. 8. 4. $R_{L} = 10 k\Omega$; $C_{L} = 15 pF$; channel ON; $V_{is} = \frac{1}{2} V_{DD}(p-p)$ (sine-wave, symmetrical about $\frac{1}{2} V_{DD}$); $f_{is} = 1 \text{ kHz}$; see Fig. 9.
- 5. $R_{L} = 1 k\Omega$; $V_{is} = \frac{1}{2} V_{DD(D-D)}$ (sine-wave, symmetrical about $\frac{1}{2} V_{DD}$); Vne

$$20 \log \frac{03}{V_{is}} = -50 \text{ dB}; \text{ see Fig. 10.}$$

- 6. $R_L = 10 k\Omega$ to V_{EE} ; $C_L = 15 \text{ pF}$ to V_{EE} ; \overline{E} or $S_n = V_{DD}$ (square-wave); crosstalk is $|V_{os}|$ (peak value); see Fig. 8.
- 7. $R_L = 1 k\Omega$; $C_L = 5 pF$; channel OFF; $V_{is} = \frac{1}{2} V_{DD(p-p)}$ (sine-wave, symmetrical about $\frac{1}{2} V_{DD}$); $20 \log \frac{V_{os}}{V_{is}} = -50 \text{ dB}; \text{ see Fig. 9.}$
- 8. $R_L = 1 k\Omega$; $C_L = 5 pF$; channel ON; $V_{is} = \frac{1}{2} V_{DD(p-p)}$ (sine-wave, symmetrical about $\frac{1}{2} V_{DD}$); $20 \log \frac{V_{os}}{V_{is}} = -3 \text{ dB}; \text{ see Fig. 9}.$

Vos

 v_{EE}

7Z74584

CL

Triple 2-channel analogue multiplexer/demultiplexer

HEF4053B MSI

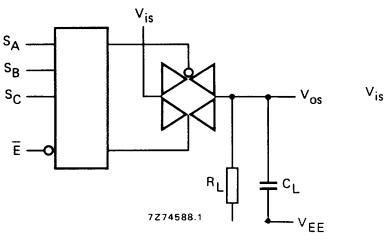


Fig. 9.

RL

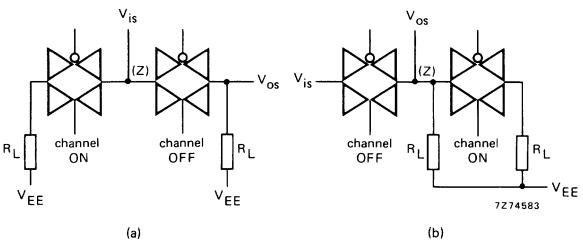


Fig. 10.

APPLICATION INFORMATION

Some examples of applications for the HEF4053B are:

- Analogue multiplexing and demultiplexing.
- Digital multiplexing and demultiplexing.
- Signal gating.

NOTE

If break before make is needed, then it is necessary to use the enable input.