INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC04 LOCMOS HE4000B Logic Family Specifications HEF, HEC
- The IC04 LOCMOS HE4000B Logic Package Outlines/Information HEF, HEC

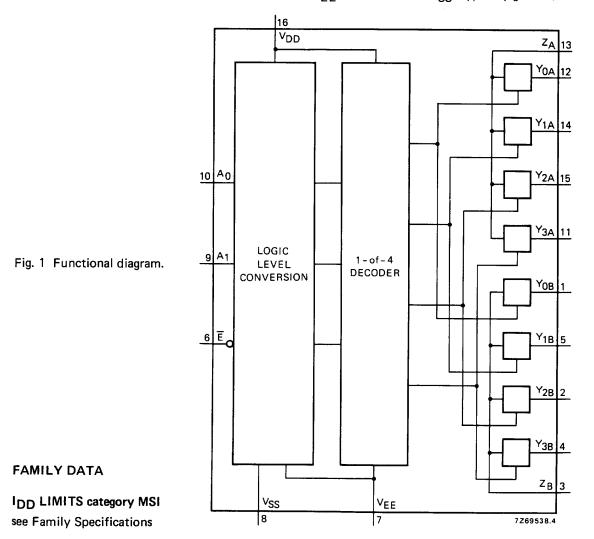
HEF4052B MSI

Dual 4-channel analogue multiplexer/demultiplexer

Product specification
File under Integrated Circuits, IC04

January 1995

DUAL 4-CHANNEL ANALOGUE MULTIPLEXER/DEMULTIPLEXER


The HEF4052B is a dual 4-channel analogue multiplexer/demultiplexer with common channel select logic. Each multiplexer/demultiplexer has four independent inputs/outputs (Y_0 to Y_3) and a common input/output (Z). The common channel select logic includes two address inputs (A_0 and A_1) and an active LOW enable input (\overline{E}).

Both multiplexers/demultiplexers contain four bidirectional analogue switches, each with one side connected to an independent input/output (Y₀ to Y₃) and the other side connected to a common input/output (Z).

With \overline{E} LOW, one of the four switches is selected (low impedance ON-state) by A_0 and A_1 . With \overline{E} HIGH, all switches are in the high impedance OFF-state, independent of A_0 and A_1 .

 V_{DD} and V_{SS} are the supply voltage connections for the digital control inputs (A₀, A₁ and \overline{E}). The V_{DD} to V_{SS} range is 3 to 15 V. The analogue inputs/outputs (Y₀ to Y₃, and Z) can swing between V_{DD} as a positive limit and V_{EE} as a negative limit. $V_{DD} - V_{EE}$ may not exceed 15 V.

For operation as a digital multiplexer/demultiplexer, VEE is connected to VSS (typically ground).

Dual 4-channel analogue multiplexer/demultiplexer

HEF4052B MSI

PINNING

independent inputs/outputs YOA to Y3A independent inputs/outputs YOB to Y3B

address inputs A₀, A₁

Ē enable input (active LOW) Z_A, Z_B common inputs/outputs

Fig. 2 Pinning diagram.

HEF4052BP(N): 16-lead DIL; plastic

(SOT38-1)

HEF4052BD(F): 16-lead DIL; ceramic (cerdip)

(SOT74)

HEF4052BT(D): 16-lead SO; plastic

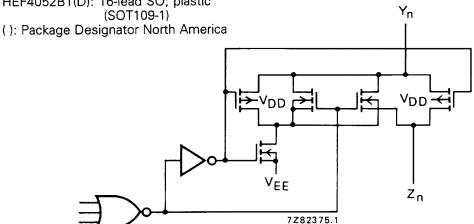


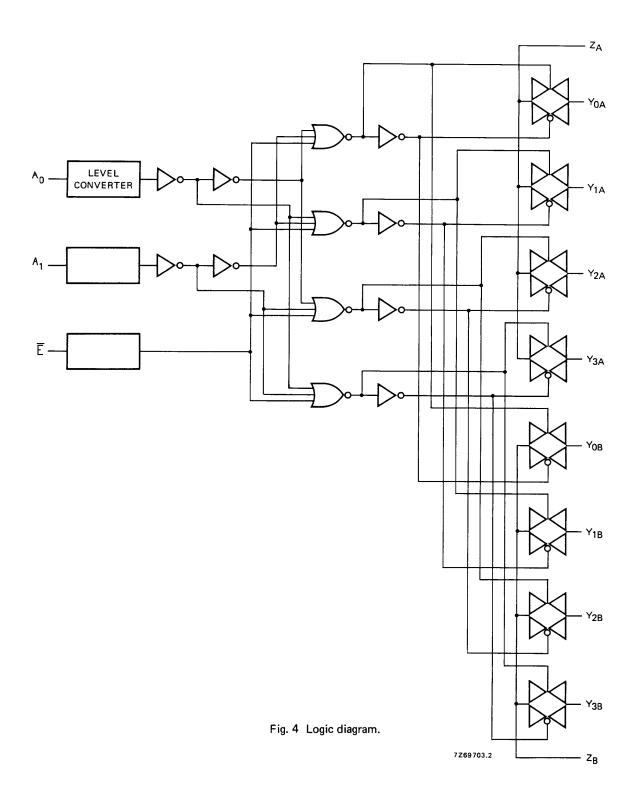
Fig. 3 Schematic diagram (one switch).

FUNCTION TABLE

inputs			channel		
Ē	Α1	A ₀	ON		
L L L	L H H X	L H L H X	Y _{0A} -Z _A ; Y _{0B} -Z _B Y _{1A} -Z _A ; Y _{1B} -Z _B Y _{2A} -Z _A ; Y _{2B} -Z _B Y _{3A} -Z _A ; Y _{3B} -Z _B none		

H = HIGH state (the more positive voltage)

L = LOW state (the less positive voltage)


X = state is immaterial

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134) V_{EE} -18 to + 0,5 V Supply voltage (with reference to VDD)

NOTE

To avoid drawing VDD current out of terminal Z, when switch current flows into terminals Y, the voltage drop across the bidirectional switch must not exceed 0,4 V. If the switch current flows into terminal Z, no VDD current will flow out of terminals Y, in this case there is no limit for the voltage drop across the switch, but the voltages at Y and Z may not exceed VDD or VEE.

D.C. CHARACTERISTICS

 $T_{amb} = 25 \, {}^{o}C$

	V _{DD} -V _{EE}	symbol	typ.	max.		conditions
ON resistance	5 10 15	R _{ON}	350 80 60	2500 245 175	Ω	V _{is} = 0 to V _{DD} -V _{EE} see Fig. 6
ON resistance	5 10 15	R _{ON}	115 50 40	340 160 115	Ω Ω	V _{is} = 0 see Fig. 6
ON resistance	5 10 15	R _{ON}	120 65 50	365 200 155	Ω Ω	V _{is} = V _{DD} -V _{EE} see Fig. 6
'Δ' ON resistance between any two channels	5 10 15	ΔR _{ON}	25 10 5	- - -	Ω	V _{is} = 0 to V _{DD} -V _{EE} see Fig. 6
OFF-state leakage current, all channels OFF	5 10 15	lozz	_ _ _	_ _ 1000	nA nA nA	} Ē at V _{DD}
OFF-state leakage current, any channel	5 10 15	lozy	_ _ _	_ _ 200	nA nA nA	} Ē at V _{SS}

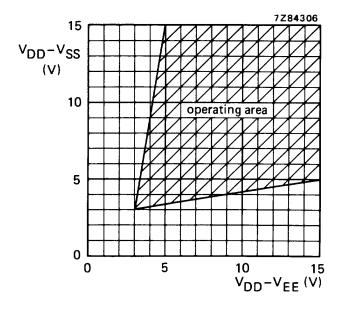


Fig. 5 Operating area as a function of the supply voltages.

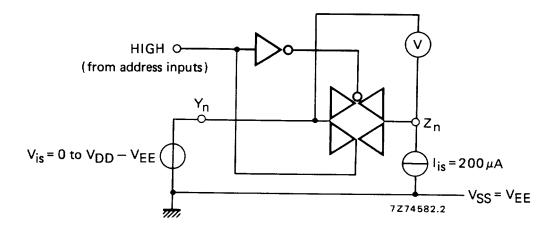


Fig. 6 Test set-up for measuring RON.

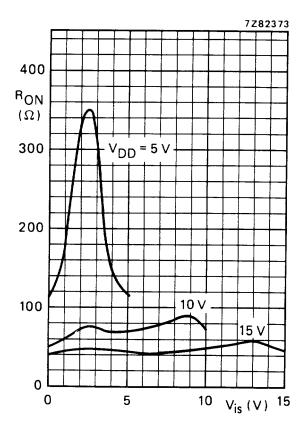


Fig. 7 Typical R_{ON} as a function of input voltage. I_{is} = 200 μ A V_{SS} = V_{EE} = 0 V

Dual 4-channel analogue multiplexer/demultiplexer

HEF4052B MSI

A.C. CHARACTERISTICS

 V_{EE} = V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD}	typical formula for P (μW)	where f _i = input freq. (MHz)
Dynamic power	5	1 300 $f_i + \Sigma (f_0C_L) \times V_{DD}^2$	f_O = output freq. (MHz) C_L = load capacitance (pF) $\Sigma(f_OC_L)$ = sum of outputs V_{DD} = supply voltage (V)
dissipation per	10	6 100 $f_i + \Sigma (f_0C_L) \times V_{DD}^2$	
package (P)	15	15 600 $f_i + \Sigma (f_0C_L) \times V_{DD}^2$	

A.C. CHARACTERISTICS

 V_{EE} = V_{SS} = 0 V; T_{amb} = 25 °C; input transition times \leq 20 ns

	V _{DD} V	symbol	typ.	max.		
Propagation delays V _{is} → V _{os} HIGH to LOW	5 10 15	^t PHL	10 5 5	20 10 10	ns ns ns	} note 1
LOW to HIGH	5 10 15	tPLH	10 5 5	20 10 10	ns ns ns	} note 1
A _n → V _{os} HIGH to LOW	5 10 15	^t PHL	150 65 50	305 135 100	ns ns ns	note 2
LOW to HIGH	5 10 15	^t PLH	150 75 50	300 150 100	ns ns ns	} note 2
Output disable times E Vos HIGH	5 10 15	^t PHZ	95 90 90	1 90 180 180	ns ns ns	} note 3
LOW	5 10 15	^t PLZ	100 90 90	205 180 180	ns ns ns	note 3
Output enable times E Vos HIGH	5 10 15	^t PZH	130 55 45	260 115 85	ns ns ns	note 3
LOW	5 10 15	^t PZL	120 50 35	240 100 75	ns ns ns	note 3

Dual 4-channel analogue multiplexer/demultiplexer

HEF4052B MSI

A.C. CHARACTERISTICS

 $V_{EE} = V_{SS} = 0 \text{ V}$; $T_{amb} = 25 \text{ °C}$; input transition times $\leq 20 \text{ ns}$

	V _{DD} V	symbol	typ.	max.	
Distortion, sine-wave response	5 10 15		0,25 0,04 0,04	% % %	note 4
Crosstalk between any two channels	5 10 15		- 1 -	MHz MHz MHz	note 5
Crosstalk; enable or address input to output	5 10 15		_ 50 _	mV mV mV	note 6
OFF-state feed-through	5 10 15		1 -	MHz MHz MHz	note 7
ON-state frequency response	5 10 15		13 40 70	MHz MHz MHz	note 8

NOTES

Vis is the input voltage at a Y or Z terminal, whichever is assigned as input.

 V_{OS} is the output voltage at a Y or Z terminal, whichever is assigned as output.

- 1. $R_L = 10 \text{ k}\Omega$ to V_{EE} ; $C_L = 50 \text{ pF}$ to V_{EE} ; $\overline{E} = V_{SS}$; $V_{is} = V_{DD}$ (square-wave); see Fig. 8.
- 2. $R_L = 10 \text{ k}\Omega$; $C_L = 50 \text{ pF}$ to V_{EE} ; $E = V_{SS}$; $A_n = V_{DD}$ (square-wave); $V_{is} = V_{DD}$ and R_L to V_{EE} for t_{PLH} ; $V_{is} = V_{EE}$ and R_L to V_{DD} for t_{PHL} ; see Fig. 8. 3. $R_L = 10 \text{ k}\Omega$; $C_L = 50 \text{ pF}$ to V_{EE} ; $\overline{E} = V_{DD}$ (square-wave);
- - $V_{is} = V_{DD}$ and R_L to V_{EE} for tpHZ and tpZH;
- $V_{is} = V_{EE}$ and R_L to V_{DD} for tpLZ and tpZL; see Fig. 8. 4. $R_L = 10 \text{ k}\Omega$; $C_L = 15 \text{ pF}$; channel ON; $V_{is} = \frac{1}{2} V_{DD}(p-p)$ (sine-wave, symmetrical about $\frac{1}{2} V_{DD}$); $f_{is} = 1 \text{ kHz}$; see Fig. 9.
- 5. $R_L = 1 \text{ k}\Omega$; $V_{is} = \frac{1}{2} \text{ V}_{DD(p-p)}$ (sine-wave, symmetrical about $\frac{1}{2} \text{ V}_{DD}$);

$$20 \log \frac{V_{os}}{V_{is}} = -50 \text{ dB}$$
; see Fig. 10.

- 6. R_L = 10 k Ω to V_{EE}; C_L = 15 pF to V_{EE}; \overline{E} or A_n = V_{DD} (square-wave); crosstalk is $|V_{os}|$ (peak value); see Fig. 8.
- 7. $R_1 = 1 \text{ k}\Omega$; $C_1 = 5 \text{ pF}$; channel OFF; $V_{is} = \frac{1}{2} \text{ V}_{DD(p-p)}$ (sine-wave, symmetrical about $\frac{1}{2} \text{ V}_{DD}$);
 - $20 \log \frac{V_{os}}{V_{is}} = -50 \text{ dB}$; see Fig. 9.
- 8. $R_L = 1 \text{ k}\Omega$; $C_L = 5 \text{ pF}$; channel ON; $V_{is} = \frac{1}{2} \text{ V}_{DD(p-p)}$ (sine-wave, symmetrical about $\frac{1}{2} \text{ V}_{DD}$);
 - $20 \log \frac{v_{os}}{V_{is}} = -3 \text{ dB}$; see Fig. 9.

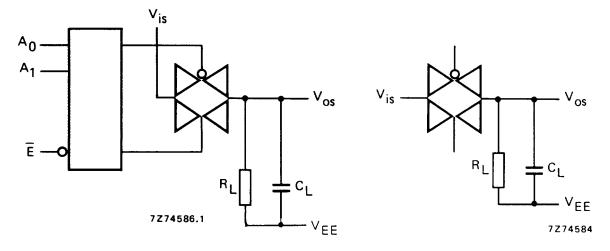


Fig. 8. Fig. 9.

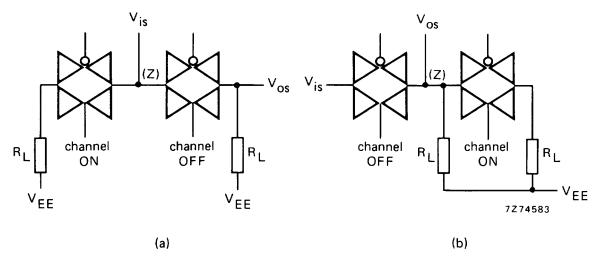


Fig. 10.

APPLICATION INFORMATION

Some examples of applications for the HEF4052B are:

- Analogue multiplexing and demultiplexing.
- Digital multiplexing and demultiplexing.
- Signal gating.

NOTE

If break before make is needed, then it is necessary to use the enable input.