

Proton Amicus18
BASIC Compiler

Language Overview

Proton Amicus18 Compiler

 1
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Language Overview..0

Identifiers ...7
Line Labels ..7
Variables ...8
Intuitive Variable Handling..8
RAM space required. ..9
Floating Point Math ..10

Floating Point Format ..10
Variables Used by the Floating Point Libraries. ...11
Floating Point Rounding...12

Aliases ..15
Finer points for variable handling..16

Constants..17
Numeric Representations..18
Quoted String of Characters..18
Ports and other Registers ...18
General Format..19
A Typical basic Program Layout...20
Inline Commands within Comparisons..21
Creating and using Arrays...22
Using Arrays in Expressions. ... 23
Arrays as Strings..23
Creating and using Strings..27

Loading a String Indirectly ...30
Slicing a String..31

Creating and using Virtual Strings with Cdata ...33
Creating and using Virtual Strings with Edata ...35
String Comparisons ..37
Relational Operators...40
Boolean Logic Operators...41
Math Operators..42
Add '+'..43
Subtract '-'. ...43
Multiply '*'...44
Multiply High '**'. ..45
Multiply Middle '*/'. ..45
Divide '/'. ..46
Modulus '//'. ..47
Logical and '&'. ..48
Logical or '|'. ...48
Logical xor '^'..49
BitWise Shift Left '<<'. ...49
BitWise Shift Right '>>'. ...50
BitWise Complement ‘~’ ...50
Abs...51
Acos ...52
Asin ..53
Atan ...54
Cos...55

Proton Amicus18 Compiler

 2
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Dcd...56
Dig (BASIC Stamp version)..56
Exp ...57
ISqr ..58
Log ...59
Log10..60
Max...61
Min ...61
Ncd ...61
Pow ..62
Rev ...63
Sin ..64
Sqr..65
Tan ...66
Div32 ..67

Commands and Directives ... 68

Adin ..72
Asm..EndAsm...74
Box ...75
Branch ..76
Break ..77
Bstart ..78
Bstop ..79
Brestart ...79
BusAck ..79
BusNack ..79
Busin...80
Busout ..83
Button...87
Call ...89
Cdata ..90
Cerase...94
Circle...95
Clear ...96
ClearBit ...97
Cls ..98
Config_Start – Config_End ..99
Counter ...105
Cread ..106
Cursor ...107
Cwrite ...108
Dec ...109

Proton Amicus18 Compiler

 3
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Declare ... 110

Misc Declares..110
Trigonometry Declares...113
Adin Declares..113
Busin - Busout Declares. ..114
Hbusin - Hbusout Declare. ...114
Hserin, Hserout, HRsin and HRsout Declares..115
Hpwm Declares...116
Alphanumeric (Hitachi) LCD Print Declares. ...116
Graphic LCD Declares. ...117
Samsung KS0108 Graphic LCD specific Declares. ...117
Toshiba T6963 Graphic LCD specific Declares. ...118
Keypad Declare...120
Rsin - Rsout Declares. ...120
Serin - Serout Declare. ..121
Shin - Shout Declare..122
Crystal Frequency Declare..123

DelayCs... 124
DelayMs .. 125
DelayUs .. 126
Dig ... 127
Dim .. 128
DTMFout ... 131
Edata.. 132
End... 137
Eread.. 138
Ewrite ... 139
For...Next...Step .. 140
FreqOut .. 142
GetBit ... 144
GoSub... 145

What is a Stack? ...147
Popping..148

GoTo .. 149
HbStart ... 150
HbStop ... 151
HbRestart.. 151
HbusAck.. 151
HbusNack.. 151
Hbusin .. 152
Hbusout .. 155
High ... 158
Hpwm... 159
HRsin.. 160
HRsout.. 165
Hserin... 169
Hserout... 174
I2Cin .. 178
I2Cout .. 180
If..Then..ElseIf..Else..EndIf ... 183
Include ... 185
Inc ... 187
Inkey .. 188

Proton Amicus18 Compiler

 4
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Input...189
LCDread ..190
LCDwrite ...192
Len ...194
Left$...195
Line ..197
LineTo...198
LoadBit..199
LookDown ...200
LookDownL..201
LookUp..202
LookUpL ..203
Low...204
Lread ..205
Lread8, Lread16, Lread32 ...207
Mid$..209
On GoTo..211
On GoSub..212
On_Hardware_Interrupt..213

Context Save .. 213
Context Restore .. 213
Managed Hardware Interrupts.. 215

On_Low_Interrupt ..217
Context Save .. 219
Context Restore .. 219
Managed Low-Priority Hardware Interrupts. .. 220

Output ..223
Org ...224
Oread..225
Owrite ...230
Pixel..232
Plot ...233
Pop ...235
Pot..237
Print..238

Using a Samsung KS0108 Graphic LCD ... 244
Using a Toshiba T6963 Graphic LCD ... 248

PulsIn..251
PulseOut..252
Push ...253
Pwm ...258
Random ..259
RC5in ..260
RCin..261
Repeat...Until...264
Return...265
Right$...267
Rsin ..269
Rsout ..274
Seed ...279
Select..Case..EndSelect...280

Proton Amicus18 Compiler

 5
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Serin... 282
Serout... 289
Servo.. 297
SetBit.. 299
Set ... 300
Shin.. 301
Shout.. 303
Snooze.. 305
Sleep .. 306
SonyIn.. 308
Sound... 309
Sound2 ... 310
Stop ... 311
Strn .. 312
Str$.. 313
Swap .. 315
Symbol ... 316
Toggle .. 317
ToLower.. 318
ToUpper.. 320
Toshiba_Command .. 322
Toshiba_UDG .. 326
UnPlot... 328
Val.. 329
VarPtr ... 331
While...Wend... 332
Xin.. 333
Xout ... 335

Using the Optimiser ...337

Using the Preprocessor..339
Preprocessor Directives .. 339
Definition File .. 345

Proton Amicus18 Compiler

 6
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Built in Peripheral Macros... 346
ADC macro introduction ..347

BusyADC .. 347
CloseADC ... 347
ConvertADC.. 347
OpenADC ... 348
ReadADC.. 349
SetChanADC... 350
SelChanConvADC .. 350
ADC_IntEnable ... 351
ADC_IntDisable... 351

Timer macros Introduction ..352
CloseTimer0 ... 352
CloseTimer1 ... 352
CloseTimer2 ... 352
CloseTimer3 ... 352
OpenTimer0 ... 353
OpenTimer1 ... 354
OpenTimer2 ... 355
OpenTimer3 ... 356
ReadTimer0.. 357
ReadTimer1.. 357
ReadTimer2.. 357
ReadTimer3.. 357
WriteTimer0 ... 358
WriteTimer1 ... 358
WriteTimer2 ... 358
WriteTimer3 ... 359
SetTmrCCPSrc .. 359
T3_OSC1EN_ON ... 360
T3_OSC1EN_OFF .. 360

SPI macros Introduction ...361
CloseSPI... 361
DataReadySPI... 361
OpenSPI... 362
ReadSPI ... 363
WriteSPI... 363

Analogue Comparator macro Introduction ..364
CloseComp1 ... 364
CloseComp2 ... 364
Comp1_IntEnable ... 364
Comp2_IntEnable ... 364
Comp1_IntDisable... 364
Comp2_IntDisable... 364
OpenComp1 ... 365
OpenComp2 ... 366

Hardware PWM macro Introduction ...367
CloseAnalog1.. 367
CloseAnalog2.. 367
OpenAnalog1.. 367
OpenAnalog2.. 368
WriteAnalog1.. 368
WriteAnalog2.. 370

Protected Compiler Words.. 372

Proton Amicus18 Compiler

 7
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Identifiers
An identifier is a technical term for a name. Identifiers are used for line labels, variable names, and con-
stant aliases. An identifier is any sequence of letters, digits, and underscores, although it must not start
with a digit. Identifiers are not case sensitive, therefore label, LABEL, and Label are all treated as
equivalent. And while labels might be any number of characters in length, only the first 32 are recog-
nised.

Line Labels
In order to mark statements that the program may wish to reference with the GoTo, Call, or GoSub
commands, the compiler uses line labels. Unlike many older BASICs, the compiler does not allow or re-
quire line numbers and doesn’t require that each line be labelled. Instead, any line may start with a line
label, which is simply an identifier followed by a colon ':'.

Label:
 Hrsout "Hello World"
 GoTo Label

Proton Amicus18 Compiler

 8
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Variables
Variables are where temporary data is stored in a BASIC program. They are created using the Dim
keyword. Choosing the correct size variable for a specific task is important. Variables may be Bits, Bytes,
Words, Dwords or Floats.

Space for each variable is automatically allocated in the microcontroller's RAM area. The format for cre-
ating a variable is as follows:

 Dim Label as Size

Label is any identifier, (excluding keywords). Size is Bit, Byte, Word, Dword or Float. Some examples of
creating variables are:

 Dim Dog as Byte ' Create an 8-bit unsigned variable (0 to 255)
 Dim Cat as Bit ' Create a single bit variable (0 or 1)
 Dim Rat as Word ' Create a 16-bit unsigned variable (0 to 65535)
 Dim Large_Rat as Dword ' Create a 32-bit signed variable (-2147483648 to
 ' +2147483647)
 Dim Pointy_Rat as Float ' Create a 32-bit floating point variable

The number of variables available depends on the amount of RAM on a particular device and the size of
the variables within the BASIC program. The compiler will create additional System variables for use
when calculating complex equations, or more complex command structures. Especially if floating point
calculations are carried out.

Intuitive Variable Handling.
The compiler handles its System variables intuitively, in that it only creates those that it requires. Each
of the compiler's built in library subroutines i.e. Print, Rsout etc, require a certain amount of System
RAM as internal variables.

Try the following program, and look at the RAM usage message on the bottom Status bar.

 Dim WordVar as Word ' Create a Word variable i.e. 16-bits
Loop:
 High PortB.0 ' Set bit 0 of PortB high
 For WordVar = 1 to 20000 : Next ' Create delay without using library call
 Low PortB.0 ' Set bit 0 of PortB high
 For WordVar = 1 to 20000 : Next ' Create delay without using library call
 GoTo Loop ' Do it forever

Only two bytes of RAM were used, and those were the ones declared in the program as variable Word-
Var1.

The compiler will increase it's System RAM requirements as programs get larger, or more complex struc-
tures are used, such as complex expressions, inline commands used in conditions, Boolean logic used
etc.

Proton Amicus18 Compiler

 9
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

There are certain reserved words that cannot be used as variable names, these are the system variables
used by the compiler.

The following reserved words should not be used as variable names, as the compiler will create these
names when required:

PP0, PP0H, PP1, PP1H, PP2, PP2H, PP3, PP3H, PP4, PP4H, PP5, PP5H, PP6, PP6H, PP7, PP7H, PP8,
PP9H, GEN, GENH, GEN2, GEN2H, GEN3, GEN3H, GEN4, GEN4H, GPR, BPF, BPFH.

RAM space required.
Each type of variable requires differing amounts of RAM memory for its allocation. The list below illus-
trates this.

 Float Requires 4 bytes of RAM.
 Dword Requires 4 bytes of RAM.
 Word Requires 2 bytes of RAM.
 Byte Requires 1 byte of RAM.
 Bit Requires 1 byte of RAM for every 8 Bit variables used.

Each type of variable may hold a different minimum and maximum value.

Float type variables may theoretically hold a value from -1e37 to +1e38, but because of the 32-bit ar-
chitecture of the compiler, a maximum and minimum value should be thought of as -2147483646.999 to
+2147483646.999 making this the most accurate of the variable family types. However, more so than
Dword types, this comes at a price as Float calculations and comparisons will use more code space
within the microcontroller. Use this type of variable sparingly, and only when strictly necessary. Smaller
floating point values offer more accuracy.

Dword type variables may hold a value from -2147483648 to +2147483647 making this the largest of
the variable family types. This comes at a price however, as Dword calculations and comparisons will
use more code space within the microcontroller. Use this type of variable sparingly, and only when nec-
essary.

Word type variables may hold a value from 0 to 65535, which is usually large enough for most applica-
tions. It still uses more memory, but not nearly as much as a Dword type.

Byte type variables may hold a value for 0 to 255, and are the usual work horses of most programs.
Code produced for Byte sized variables is very low compared to Word, Float, or Dword types, and
should be chosen if the program requires faster, or more efficient operation.

Bit type variables may hold a 0 or a 1. These are created 8 at a time, therefore declaring a single Bit
type variable in a program will not save RAM space, but it will save code space, as Bit type variables
produce the most efficient use of code for comparisons etc.

Dimensioning a variable with the text Symbol following it will ensure that the variable is created in the
Access RAM area of the microcontroller, making the variable bankless. However, this only occupies the
first 96 bytes of RAM so there is a limit to the amount of system variables that can be created. Bit type
variables cannot be declared as system types, nor can Byte or Word Arrays.

See also : Aliases, Arrays, Dim, Symbol, Floating Point Math.

Proton Amicus18 Compiler

 10
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Floating Point Math
The compiler can perform 32 x 32 bit IEEE 754 'Compliant' Floating Point calculations.

Declaring a variable as Float will enable floating point calculations on that variable.

 Dim FloatVar as Float

To create a floating point constant, add a decimal point. Especially if the value is a whole number.

 Symbol PI = 3.14 ' Create an obvious floating point constant

 Symbol FlNum = 5.0 ' Create a floating point value of a whole number

Please note.
Floating point arithmetic is not the utmost in accuracy, it is merely a means of compressing a complex
or large value into a small space (4 bytes in the compiler's case). Perfectly adequate results can usually
be obtained from correct scaling of integer variables, with an increase in speed and a saving of RAM and
code space. 32 bit floating point math is extremely microcontroller intensive since the microcontroller is
only an 8 bit processor. It also consumes large amounts of RAM, and code space for its operation,
therefore always use floating point sparingly, and only when strictly necessary.

Floating Point Format
The Proton Amicus18 compiler uses the Microchip variation of IEEE 754 floating point format. The dif-
ferences to standard IEEE 745 are minor, and well documented in Microchip application note AN575
(downloadable from www.microchip.com).

Floating point numbers are represented in a modified IEEE-754 format. This format allows the floating-
point routines to take advantage of the microcontroller’s architecture and reduce the amount of over-
head required in the calculations. The representation is shown below compared to the IEEE-754 format:
where s is the sign bit, y is the lsb of the exponent and x is a placeholder for the mantissa and exponent
bits. The compiler’s floating point is big-endian.

The two formats may be easily converted from one to the other by manipulation of the Exponent and
Mantissa 0 bytes. The following assembly code shows an example of this operation.

 Format Exponent Mantissa 0 Mantissa 1 Mantissa 2
 IEEE-754 sxxx xxxx yxxx xxxx xxxx xxxx xxxx xxxx
 Microchip xxxx xxxy sxxx xxxx xxxx xxxx xxxx xxxx

IEEE-754 to Microchip
 Rlf MANTISSA0,f
 Rlf EXPONENT,f
 Rrf MANTISSA0,f

Microchip to IEEE-754
 Rlf MANTISSA0,f
 Rrf EXPONENT,f
 Rrf MANTISSA0,f

Proton Amicus18 Compiler

 11
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The conversion process can be streamlined by using the preprocessor:

' Microchip 32-bit Floating Point to IEEE754 conversion
$define FloatToIEEE754(a) rol a.Byte1 : ror a.Byte0 : ror a.Byte1
' IEEE754 to Microchip 32-bit Floating Point conversion
$define IEEE754ToFloat(a) rol a.Byte1 : rol a.Byte0 : ror a.Byte1

To use the above defines place the variable requiring altering as the parameter. Note that the variable
itself will be altered:

' Convert Microchip 32-bit Floating Point to IEEE754
FloatToIEEE754(FloatVar)

Variables Used by the Floating Point Libraries.
Several 8-bit RAM registers are used by the floating point math routines to hold the operands and re-
sults of floating point operations. Since there may be two operands required for a floating point opera-
tion (such as multiplication or division), there are two sets of exponent and mantissa registers reserved
(A and B). For argument A, PP_AARGHHH holds the exponent and PP_AARGHH, PP_AARGH and
PP_AARG hold the mantissa. For argument B, PP_BARGHHH holds the exponent and PP_BARGHH,
PP_BARGH and PP_BARG hold the mantissa.

Floating Point Example Programs.

' Multiply two floating point values

 Dim FloatVar as Float
 Symbol FlNum = 1.234 ' Create a floating point constant value

 FloatVar = FlNum * 10
 HRsout Dec FloatVar, 13

' Add two floating point variables

 Dim FloatVar as Float
 Dim FloatVar1 as Float
 Dim FloatVar2 as Float

 FloatVar1 = 1.23
 FloatVar2 = 1000.1
 FloatVar = FloatVar1 + FloatVar2
 HRsout Dec FloatVar, 13

Proton Amicus18 Compiler

 12
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

' A digital voltmeter, using the on-board 10-bit ADC
 Include "ADC.inc" ' Load the AD macros into the program
 Dim Raw as Word
 Dim Volts as Float
 Symbol Quanta = 3.3 / 1023 ' Calculate the quantising value
' Open the ADC:
' Fosc to Fosc / 32
' Right justified for 10-bit operation
' Tad value of 2
' Vref+ at Vcc : Vref- at Gnd
' Make AN0 an analogue input
'

OpenADC(ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_2_TAD, ADC_REF_VDD_VSS, ADC_1ANA)
 While 1 = 1
 Raw = Adin 0
 Volts = Raw * Quanta
 HRsout Dec2 Volts, "V\r"
 DelayMs 400
 Wend

Notes.
Floating point expressions containing more than 3 operands are not supported.

Any expression that contains a floating point variable or value will be calculated as a floating point. Even
if the expression also contains a Byte, Word, or Dword value or variable. If the assignment variable is a
Byte, Word, or Dword variable, but the expression is of a floating point nature. Then the floating point
result will be converted into an integer.

 Dim DwordVar as Dword
 Dim FloatVar as Float
 Symbol PI = 3.14
 FloatVar = 10
 DwordVar = FloatVar + PI ' Calc will result 13.14,reduced to integer 13
 HRsout Dec DwordVar,13 ' Display the integer result 13
 Stop

For a more in-depth explanation of floating point, download the Microchip application notes AN575, and
AN660. These can be found at www.microchip.com.

Floating Point Rounding
Assigning a floating point variable to an integer type will be rounded to the nearest value by default. For
example:

FloatVar = 3.9
DwordVar = FloatVar

The variable DwordVar will hold the value of 4.

This behaviour can be altered by issuing the Float_Rounding = Off declare before the conversion takes
place. For example:

Declare Float_Rounding = Off ' Disable Floating Point Rounding
FloatVar = 3.9 ' Load FloatVar with the value of 3.9
DwordVar = FloatVar ' Truncate 3.9 into FloatVar

The variable DwordVar will hold the value of 3. i.e truncated

Proton Amicus18 Compiler

 13
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The Float_Rounding setting will be remembered, as none of the compiler’s floating point library routines
alter it. However, remember that Floating Point rounding will effect Addition, Subtraction, Division, and
Multiplication accuracy. It is therefore recommended to re-enable rounding after it has been disabled.

Declare Float_Rounding = Off ' Disable Floating Point Rounding
FloatVar = 3.9 ' Load FloatVar with the value of 3.9
DwordVar = FloatVar ' Truncate 3.9 into FloatVar
Declare Float_Rounding = On ' Enable Floating Point Rounding

Note that the Float_Rounding declare will not effect loading a floating point constant value into an inte-
ger. This will always be truncated. For example:

WordVar = 3.9

The variable WordVar will contain the value 3.

Floating Point Exception Flags
The floating point exception flags are accessible from within the BASIC program via the system variable
_FP_FLAGS. This must be brought into the BASIC program for the code to recognise it:

Dim _FP_FLAGS as Byte System

The exceptions are:

_FP_FLAGS.1 ' Floating point overflow
_FP_FLAGS.2 ' Floating point underflow
_FP_FLAGS.3 ' Floating point divide by zero
_FP_FLAGS.5 ' Domain error exception

The bit that enables/disables floating point rounding to the nearest value is also contained within the
_FP_FLAGS variable:

 _FP_FLAGS.6 ' Floating point rounding
 ' 0 = Truncation
 ' 1 = Unbiased Rounding to Nearest LSB

The exception bits can be aliased for more readability within the program:

Symbol FpOverflow = _FP_FLAGS.1 ' Floating point overflow
 Symbol FpUnderFlow = _FP_FLAGS.2 ' Floating point underflow
 Symbol FpDiv0 = _FP_FLAGS.3 ' Floating point divide by zero
 Symbol FpDomainError = _FP_FLAGS.5 ' Domain error exception
 Symbol FpRounding = _FP_FLAGS.6 ' Floating point rounding
' Setting FpRounding = 0: Truncation
' Setting FpRounding = 1: Unbiased rounding to nearest LSB

After an exception is detected and handled in the program, the exception bit should be cleared so that
new exceptions can be detected, however, exceptions can be ignored because new operations are not
affected by old exceptions.

Proton Amicus18 Compiler

 14
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

More Accurate Display or Conversion of Floating Point values.
By default, the compiler uses a relatively small routine for converting floating point values to decimal,
ready for Rsout, Print, Str$ etc. However, because of its size, it is only capable of converting relatively
small values. i.e. approx 6 digits of accuracy. In order to produce a more accurate result, the compiler
needs to use a larger routine. This is implemented by using a Declare:

Declare Float_Display_Type = Fast or Standard

Using the Fast model for the above declare will trigger the compiler into using the more accurate float-
ing point to decimal routine. Note that even though the routine is larger than the standard converter, it
operates much faster.

The compiler defaults to Standard if the Declare is not issued in the BASIC program.

See also : Dim, Symbol, Aliases, Arrays, Constants.

Proton Amicus18 Compiler

 15
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Aliases
The Symbol directive is the primary method of creating an alias, however Dim can also be used to cre-
ate an alias to a variable. This is extremely useful for accessing the separate parts of a variable.

 Dim Fido as Dog ' Fido is another name for Dog
 Dim Mouse as Rat.LowByte ' Mouse is the first byte (low byte) of word Rat
 Dim Tail as Rat.HighByte ' Tail is the second byte(high byte) of word Rat
 Dim Flea as Dog.0 ' Flea is bit-0 of Dog

There are modifiers that may also be used with variables. These are HighByte, LowByte, Byte0,
Byte1, Byte2, Byte3, Word0, and Word1.

Word0, Word1, Byte2, and Byte3 may only be used in conjunction with a 32-bit Dword type variable.

HighByte and Byte1 are one and the same thing, when used with a Word type variable, they refer to
the High byte of a Word type variable:

 Dim WordVar as Word ' Create a Word sized variable
 Dim WordVar_Hi as WordVar.HighByte
' WordVar_Hi now represents the High Byte of variable WordVar

Variable WordVar_Hi is now accessed as a Byte sized type, but any reference to it actually alters the
high byte of WordVar.

However, if Byte1 is used in conjunction with a Dword type variable, it will extract the second byte.
HighByte will still extract the high byte of the variable, as will Byte3.

The same is true of LowByte and Byte0, but they refer to the Low Byte of a Word type variable:

 Dim WordVar as Word ' Create a Word sized variable
 Dim WordVar_Lo as WordVar.LowByte
' WordVar_Lo now represents the Low Byte of variable WordVar

Variable WordVar_Lo is now accessed as a Byte sized type, but any reference to it actually alters the low
byte of WordVar.

The modifier Byte2 will extract the 3rd byte from a 32-bit Dword type variable, as an alias. Likewise
Byte3 will extract the high byte of a 32-bit variable.

 Dim DwordVar as Dword ' Create a 32-bit variable named DwordVar
 Dim Part1 as DwordVar.Byte0 ' Alias Part1 to the low byte of DwordVar
 Dim Part2 as DwordVar.Byte1 ' Alias Part2 to the 2nd byte of DwordVar
 Dim Part3 as DwordVar.Byte2 ' Alias Part3 to the 3rd byte of DwordVar
 Dim Part4 as DwordVar.Byte3 ' Alias Part3 to the high (4th) byte of DwordVar

The Word0 and Word1 modifiers extract the low word and high word of a Dword type variable, and is
used the same as the Byten modifiers.

 Dim DwordVar as Dword ' Create a 32-bit variable named DwordVar
 Dim Part1 as DwordVar.Word0 ' Alias Part1 to the low word of DwordVar
 Dim Part2 as DwordVar.Word1 ' Alias Part2 to the high word of DwordVar

Proton Amicus18 Compiler

 16
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

RAM space for variables is allocated within the microcontroller in the order that they are placed in the
BASIC code. For example:

 Dim Var1 as Byte
 Dim Var2 as Byte

Places Var1 first, then Var2:

 Var1 equ n
 Var2 equ n

This means that the first 95 variables will always be in BankA (Access RAM).

Finer points for variable handling.
The position of the variable within Banks is usually of little importance if BASIC code is used, however, if
assembler routines are being implemented, always assign any variables used within them first.

Problems may also arise if a Word, or Dword variable crosses a Bank boundary. If this happens, a warn-
ing message will be displayed in the error window. Most of the time, this will not cause any problems,
however, to err on the side of caution, try and ensure that Word, or Dword type variables are fully in-
side a Bank. This is easily accomplished by placing a dummy Byte variable before the offending Word, or
Dword type variable, or relocating the offending variable within the list of Dim statements.

Word type variables have a low byte and a high byte. The high byte may be accessed by simply adding
the letter H to the end of the variable's name. For example:

 Dim WordVar as Word

Will produce the assembler code:

 WordVar equ n
 WordVarH equ n

To access the high byte of variable WordVar, use:

 WordVarH = 1

This is especially useful when assembler routines are being implemented, such as:

 Movlw 1
 Movwf WordVarH ' Load the high byte of WordVar with 1

Dword type variables have a low, mid1, mid2, and hi byte. The high byte may be accessed by using
Byte0, Byte1, Byte2, or Byte3.. For example:

 Dim DwordVar as Dword

To access the high byte of variable DwordVar, use:

 DwordVar.Byte3 = 1

Proton Amicus18 Compiler

 17
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Constants
It can be more informative to use a constant name instead of a constant number. Once a constant is
declared, it cannot be changed later, hence the name ‘constant'.

The Symbol directive provides a method for aliasing variables and constants. Symbol cannot be used
to create a variable.

Constants declared using Symbol do not use any RAM within the Amicus18 Hardware.

 Symbol Cat = 123
 Symbol Tiger = Cat ' Tiger now holds the value of Cat
 Symbol Mouse = 1 ' Same as Dim Mouse as 1
 Symbol TigOuse = Tiger + Mouse ' Add Tiger to Mouse to make Tigouse

Floating point constants may also be created using Symbol by simply adding a decimal point to a value.

 Symbol PI = 3.14 ' Create a floating point constant named PI
 Symbol FlNum = 5.0 ' Create a floating point constant holding the value 5

Floating point constant can also be created using expressions.

' Create a floating point constant holding the result of the expression
 Symbol Quanta = 3.3 / 1024

If a variable or register's name is used in a constant expression then the variable's or register's address
will be substituted, not the value held in the variable or register:

 Symbol Con = (PORTA + 1) ' Con will hold the value 6 (5+1)

Symbol is also useful for aliasing Ports and Registers:

 Symbol LED = PORTA.1 ' LED now references bit-1 of PortA
 Symbol T0IF = INTCON.2 ' T0IF now references bit-2 of INTCON register

The equal sign between the Constant's name and the alias value is optional:

 Symbol LED PORTA.1 ' Same as Symbol LED = PortA.1

Proton Amicus18 Compiler

 18
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Numeric Representations
The compiler recognises several different numeric representations:

 Binary is prefixed by %. i.e. %0101
 Hexadecimal is prefixed by $ or 0x. i.e. $0A , 0x0A
 Character byte is surrounded by quotes. i.e. "a" represents a value of 97
 Decimal values need no prefix.
 Floating point is created by using a decimal point. i.e. 3.14

Quoted String of Characters
A Quoted String of Characters contains one or more characters (maximum 250) and is delimited by
double quotes. Such as "Hello World"

The compiler also supports a subset of C language type formatters within a quoted string of characters.
These are:

 \a Bell (alert) character $07
 \b Backspace character $08
 \f Form feed character $0C
 \n New line character $0A
 \r Carriage return character $0D
 \t Horizontal tab character $09
 \v Vertical tab character $0B
 \\ Backslash $5C
 \" Double quote character $22

Example:

Hrsout "HELLO WORLD\n\r"

Strings are usually treated as a list of individual character values, and are used by commands such as
Print, Rsout, Busout, Ewrite etc. And of course, String variables.

Null Terminated
Null is a term used in computer languages for zero. So a null terminated String is a collection of charac-
ters followed by a zero in order to signify the end of characters. For example, the string of characters
"HELLO", would be stored as:

"H" , "E" , "L" , "L" , "O" , 0

Notice that the terminating null is the value 0 not the character "0".

Ports and other Registers
All of the microcontroller registers, including the ports, can be accessed just like any other byte-sized
variable. This means that they can be read from, written to or used in equations directly.

 PORTA = %01010101 ' Write value to PortA

 Var1 = WordVar * PORTA ' Multiply WordVar with the contents of PortA

Proton Amicus18 Compiler

 19
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The compiler can also combine 16-bit registers such as TMR1L into a Word type variable. Which makes
loading and reading these registers simple:

' Combine TMR1L, and TMR1H into Word variable wTimer1
 Dim wTimer1 as TMR1L.Word

 wTimer1 = 12345 ' Load TMR1 with value 12345
or
 WordVar1 = wTimer1 ' Load WordVar1 with contents of TMR1

The .Word extension links registers TMR1L and TMR1H.

Any SFR that can hold a 16-bit result can be assigned as a Word type variable:

' Combine ADRESL, and ADRESH into Word variable wAD_Result
 Dim wAD_Result as ADRESL.Word
' Combine PRODL, and PRODH into Word variable wMulProd
 Dim wMulProd as PRODL.Word

General Format
The compiler is not case sensitive, except when processing string constants such as "hello".

Multiple instructions and labels can be combined on the same line by separating them with colons ':'.

The examples below show the same program as separate lines and as a single-line:

Multiple-line version:

 TRISB = %00000000 ' Make all pins on PortB outputs
 For Var1 = 0 to 100 ' Count from 0 to 100
 PORTB = Var1 ' Make PortB = count (Var1)
 Next ' Continue counting until 100 is reached

Single-line version:

 TRISB = %00000000 : For Var1 = 0 to 100 : PORTB = Var1 : Next

Do not try to cram as much as you can on a single line, as the compiler has a line limit of 255 chacar-
ters.

Line Continuation Character '_'
Lines that are too long to display, may be split using the continuation character '_'. This will direct the
continuation of a command to the next line. It's use is only permitted after a comma delimiter:

 Var1 = LookUp Var2,[1,2,3,_
 4,5,6,7,8]
or
 Print At 1,1,_
 "HELLO WORLD",_
 Dec Var1,_
 Hex Var2

Proton Amicus18 Compiler

 20
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

A Typical basic Program Layout
The compiler is very flexible, and will allow most types of constant, declaration, or variable to be placed
anywhere within the BASIC program. However, it may not produce the correct results, or an unexpected
syntax error may occur due to a variable being declared after it is supposed to be used.

The recommended layout for a program is shown below.

{
 Declares
}
{
 Includes
}
{

Constants and Variables
}

GoTo Main ' Jump over the subroutines (if any)

{
 Subroutines go here
}
{
 Main:
 Main Program code goes here
}

For example:

' Adjust the baud rate for Hrsout/Hrsin
 Declare Hserial_Baud = 9600
'---
' Load the ADC include file (if required)
 Include "ADC.inc"
'---
' Define Variables

Dim WordVar as Word ' Create a Word size variable
'---
' Define Constants and/or aliases

Symbol Value = 10 ' Create a constant
'---

GoTo Main ' Jump over the subroutine/s (if any)
'---
' Simple Subroutine
AddIt:

WordVar = WordVar + Value ' Add the constant to the variable
Return ' Return from the subroutine

'---
' Main Program Code
Main:
 WordVar = 10 ' Pre-load the variable

GoSub AddIt ' Call the subroutine
 Hrsout Dec WordVar, 13 ' Display the resault on the serial terminal

Of course, it depends on what is within the include file as to where it should be placed within the pro-
gram, but the above outline will usually suffice. Any include file that requires placing within a certain po-
sition within the code should be documented to state this fact.

Proton Amicus18 Compiler

 21
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Inline Commands within Comparisons
A very useful addition to the compiler is the ability to mix most inline commands into comparisons. For
example:

Adin, Busin, Counter, Dig, Eread, Hbusin, Inkey, LCDread, LookDown, LookDownL, LookUp,
LookUpL, Pixel, Pot, PulsIn, Random, Shin, Rcin, Rsin etc.

All these commands may be used in an If-Then, Select-Case, While-Wend, or Repeat-Until struc-
ture. For example, with the previous versions of the compiler, to read a key using the Inkey command
required a two stage process:

 Var1 = Inkey
 If Var1 = 12 Then { do something }

Now, the structure:

 If Inkey = 12 Then { do something }

is perfectly valid. And so is:

 If Adin 0 = 1020 Then { do something } ' Test the ADC from channel 0

The new structure of the in-line commands does not always save code space, however, it does make
the program easier to write, and a lot easier to understand, or debug if things go wrong.

The LookUp, LookUpL, LookDown, and LookDownL commands may also use another in-line com-
mand instead of a variable. For example, to read and re-arrange a key press from a keypad:

 KEY = LookUp Inkey, [1,2,3,15,4,5,6,14,7,8,9,13,10,0,11,12,255]

In-line command differences do not stop there. They may now also be used for display purposes in the
Rsout, Serout, HRsout, and Print commands:

Label:

Rsout LookUp Inkey, [1,2,3,15,4,5,6,14,7,8,9,13,10,0,11,12,255]
GoTo Label

How's that for a simple serial keypad program. Or:

 While 1 = 1 : Print Rsin : Wend

Believe it or not, the above single line of code is a simple serial LCD controller. Accepting serial data
through the Rsin command, and displaying the data with the Print command.

Note.
Inline commands cannot be nested too deeply because the compiler was not designed for such situa-
tions.

Proton Amicus18 Compiler

 22
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Creating and using Arrays
The Proton Amicus18 compiler supports multi part Byte, and Word variables named arrays. An array is a
group of variables of the same size (8-bits wide, or 16-bits wide), sharing a single name, but split into
numbered cells, called elements.

An array is defined using the following syntax:

 Dim Name[length] as Byte

 Dim Name[length] as Word

where Name is the variable's given name, and the new argument, [length], informs the compiler how
many elements you want the array to contain. For example:

 Dim MyArray[10] as Byte ' Create a 10 element byte array
 Dim MyArray[10] as Word ' Create a 10 element word array

The compiler will allow up to 256 elements within a Byte array, and 128 elements in a Word array.

Once an array is created, its elements may be accessed numerically. Numbering starts at 0 and ends at
n-1. For example:

 MyArray[3] = 57
 HRsout "MyArray[3] = ", Dec MyArray[3],13

The above example will access the fourth element in the Byte array and display "MyArray[3] = 57" on
the LCD. The true flexibility of arrays is that the index value itself may be a variable. For example:

 Dim MyArray[10] as Byte ' Create a 10-byte array
 Dim Index as Byte ' Create a normal Byte variable
 For Index = 0 to 9 ' Repeat with Index= 0,1,2...9
 MyArray[Index] = Index * 10 ' Write Index*10 to each element of array
 Next
 For Index = 0 to 9 ' Repeat with Index= 0,1,2...9
 HRsout Dec MyArray[Index],13 ' Show the contents of each element
 DelayMs 500 ' Wait long enough to view the values
 Next

If the above program is run, 10 values will be displayed, counting from 0 to 90 i.e. Index * 10.

A word of caution regarding arrays: If you're familiar with other languages and have used their arrays,
you may have run into the "subscript out of range" error. Subscript is simply another term for the index
value. It is considered 'out-of range' when it exceeds the maximum value for the size of the array.

For example, in the example above, MyArray is a 10-element array. Allowable index values are 0
through 9. If your program exceeds this range, the compiler will not respond with an error message.
Instead, it will access the next RAM location past the end of the array.

If you are not careful about this, it can cause all sorts of subtle anomalies, as previously loaded vari-
ables are overwritten. It's up to the programmer (you!) to help prevent this from happening.

Proton Amicus18 Compiler

 23
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Even more flexibility is allowed with arrays because the index value may also be an expression.

 Dim MyArray[10] as Byte ' Create a 10-byte array
 Dim Index as Byte ' Create a normal Byte variable
 For Index = 0 to 8 ' Repeat with Index= 0,1,2...8
 MyArray[Index + 1] = Index * 10 ' Write Index*10 to each element of array
 Next
 For Index = 0 to 8 ' Repeat with Index= 0,1,2...8
 HRsout Dec MyArray[Index + 1], 13 ' Show the contents of elements
 DelayMs 500 ' Wait long enough to view the values
 Next

The expression within the square braces should be kept simple, and arrays are not allowed as part of
the expression.

Using Arrays in Expressions.
Of course, arrays are allowed within expressions themselves. For example:

 Dim MyArray[10] as Byte ' Create a 10-byte array
 Dim Index as Byte ' Create a Byte variable
 Dim Var1 as Byte ' Create another Byte variable
 Dim Result as Byte ' Create a variable to hold result of expression
 Index = 5 ' And Index now holds the value 5
 Var1 = 10 ' Variable Var1 now holds the value 10
 MyArray[Index] = 20 ' Load the 6th element of MyArray with value 20
 Result = (Var1 * MyArray[Index]) / 20 ' Do a simple expression
 HRsout Dec Result, 13 ' Display result of expression

The previous example will display 10 on the serial terminal, because the expression reads as:

 (10 * 20) / 20

Var1 holds a value of 10, MyArray[Index] holds a value of 20, these two variables are multiplied to-
gether which will yield 200, then they're divided by the constant 20 to produce a result of 10.

Arrays as Strings
Arrays may also be used as simple strings in certain commands, because after all, a string is simply a
byte array used to store text.

For this, the Str modifier is used.

The commands that support the Str modifier are:

Busout – Busin
Hbusout – Hbusin
HRsout – Hrsin
Owrite – Oread
Rsout – Rsin
Serout – Serin
Shout – Shin
Print

Proton Amicus18 Compiler

 24
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The Str modifier works in two ways, it outputs data from a pre-declared array in commands that send
data i.e. Rsout, Print etc, and loads data into an array, in commands that input information i.e. Rsin,
Serin etc. The following examples illustrate the Str modifier in each compatible command.

Using Str with the Busin and Busout commands.

Refer to the sections explaining the Busin and Busout commands.

Using Str with the Hbusin and Hbusout commands.

Refer to the sections explaining the Hbusin and Hbusout commands.

Using Str with the Rsin command.

 Dim Array1[10] as Byte ' Create a 10-byte array named Array1
 Rsin Str Array1 ' Load 10 bytes of data directly into Array1

Using Str with the Rsout command.

 Dim Array1[10] as Byte ' Create a 10-byte array named Array1
 Rsout Str Array1 ' Send 10 bytes of data directly from Array1

Using Str with the HRsin and HRsout commands.

Refer to the sections explaining the HRsout and HRsin commands.

Using Str with the Shout command.

 Symbol DTA = PortA.0 ' Alias the two lines for the Shout command
 Symbol CLK = PortA.1
 Dim Array1[10] as Byte ' Create a 10-byte array named Array1
' Send 10 bytes of data from Array1
 Shout DTA, CLK, MSBFIRST, [Str Array1]

Using Str with the Shin command.

 Symbol DTA = PortA.0 ' Alias the two lines for the Shin command
 Symbol CLK = PortA.1
 Dim Array1[10] as Byte ' Create a 10-byte array named Array1
' Load 10 bytes of data directly into Array1
 Shin DTA, CLK, MSBPRE, [Str Array1]

Using Str with the Print command.

 Dim Array1[10] as Byte ' Create a 10-byte array named Array1
 Print Str Array1 ' Send 10 bytes of data directly from Array1

Using Str with the Serout and Serin commands.

Refer to the sections explaining the Serin and Serout commands.

Using Str with the Oread and Owrite commands.

Refer to the sections explaining the Oread and Owrite commands.

Proton Amicus18 Compiler

 25
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The Str modifier has two forms for variable-width and fixed-width data, shown below:

Str ByteArray ASCII string from ByteArray until byte = 0 (null terminated).

Or array length is reached.

Str ByteArray\n ASCII string consisting of n bytes from bytearray.

null terminated means that a zero (null) is placed at the end of the string of ASCII characters to signal
that the string has finished.

The example below is the variable-width form of the Str modifier:

 Dim MyArray[5] as Byte ' Create a 5 element array
 MyArray[0] = "A" ' Fill the array with ASCII
 MyArray[1] = "B"
 MyArray[2] = "C"
 MyArray[3] = "D"
 MyArray[4] = 0 ' Add the null Terminator
 HRsout Str MyArray ' Display the string

The code above displays "ABCD" on the serial terminal. In this form, the Str formatter displays each
character contained in the byte array until it finds a character that is equal to 0 (value 0, not ASCII "0").
Note: If the byte array does not end with 0 (null), the compiler will read and

output all RAM register contents until it cycles through all RAM locations for the declared length of the
byte array.

For example, the same code as before without a null terminator is:

 Dim MyArray[4] as Byte ' Create a 4 element array
 MyArray[0] = "A" ' Fill the array with ASCII
 MyArray[1] = "B"
 MyArray[2] = "C"
 MyArray[3] = "D"
 HRsout Str MyArray ' Display the string

The code above will display the whole of the array, because the array was declared with only four ele-
ments, and each element was filled with an ASCII character i.e. "ABCD".

To specify a fixed-width format for the Str modifier, use the form Str MyArray\n; where MyArray is the
byte array and n is the number of characters to display, or transmit. Changing the Print line in the ex-
amples above to:

 HRsout Str MyArray \ 2

would display "AB" on the serial terminal.

Str is not only used as a modifier, it is also a command, and is used for initially filling an array with
data. The above examples may be re-written as:

 Dim MyArray[5] as Byte ' Create a 5 element array
 Str MyArray = "ABCD", 0 ' Fill array with ASCII, and null terminate it
 HRsout Str MyArray ' Display the string

Proton Amicus18 Compiler

 26
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Strings may also be copied into other strings:

 Dim String1[5] as Byte ' Create a 5 element array
 Dim String2[5] as Byte ' Create another 5 element array
 Str String1 = "ABCD", 0 ' Fill array with ASCII, and null terminate it
 Str String2 = "EFGH", 0 ' Fill array with ASCII, null terminate it
 Str String1 = Str String2 ' Copy String2 into String1
 HRsout Str String1 ' Display the string

The above example will display "EFGH", because String1 has been overwritten by String2.

Using the Str command with Busout, Hbusout, Shout, and Owrite differs from using it with com-
mands Serout, Print, HRsout, and Rsout in that, the latter commands are used more for dealing with
text, or ASCII data, therefore these are null terminated.

The Hbusout, Busout, Shout, and Owrite commands are not commonly used for sending ASCII data,
and are more inclined to send standard 8-bit bytes. Thus, a null terminator would cut short a string of
byte data, if one of the values happened to be a 0. So these commands will output data until the length
of the array is reached, or a fixed length terminator is used i.e. MyArray\n.

Proton Amicus18 Compiler

 27
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Creating and using Strings

The syntax to create a string is :

 Dim String Name as String * String Length

String Name can be any valid variable name. See Dim .
String Length can be any value up to 255, allowing up to 255 characters to be stored.

The line of code below will create a String named ST that can hold 20 characters:

 Dim ST as String * 20

Two or more strings can be concatenated (linked together) by using the plus (+) operator:

' Create three strings capable of holding 20 characters
 Dim DestString as String * 20
 Dim SourceString1 as String * 20
 Dim SourceString2 as String * 20

 SourceString1 = "HELLO " ' Load String SourceString1 with the text HELLO
' Load String SourceString2 with the text WORLD
 SourceString2 = "WORLD"
' Add both Source Strings together. Place result into String DestString
 DestString = SourceString1 + SourceString2

The String DestString now contains the text "HELLO WORLD", and can be transmitted serially or dis-
played on an serial terminal:

 HRsout DestString

The Destination String itself can be added to if it is placed as one of the variables in the addition expres-
sion. For example, the above code could be written as:

' Create a String capable of holding 20 characters
 Dim DestString as String * 20
' Create another String capable of holding 20 characters
 Dim SourceString as String * 20

 DestString = "HELLO " ' Pre-load String DestString with the text HELLO
 SourceString = "WORLD" ' Load String SourceString with the text WORLD
' Concatenate DestString with SourceString
 DestString = DestString + SourceString
 HRsout DestString , 13 ' Display the result which is "HELLO WORLD"

Note that Strings cannot be subtracted, multiplied or divided, and cannot be used as part of a regular
expression otherwise a syntax error will be produced.

Proton Amicus18 Compiler

 28
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

It's not only other strings that can be added to a string, the functions Cstr, Estr, Mid$, Left$, Right$,
Str$, ToUpper, and ToLower can also be used as one of variables to concatenate.

A few examples of using these functions are shown below:

Cstr Example
' Use Cstr function to place a code memory string into a RAM String variable

 Dim DestString as String * 20 ' Create String of 20 characters
 Dim SourceString as String * 20 ' Create another String
 SourceString = "HELLO " ' Load the string with characters
 DestString = SourceString + Cstr CodeStr ' Concatenate the string
 HRsout DestString, 13 ' Display the result which is "HELLO WORLD"
 Stop
CodeStr:
 Cdata "WORLD" ,0

The above example is really only for demonstration because if a LABEL name is placed as one of the pa-
rameters in a string concatenation, an automatic (more efficient) Cstr operation will be carried out.
Therefore the above example should be written as:

More efficient Example of above code
' Place a code memory string into String variable more efficiently than Cstr

' Create a String capable of holding 20 characters
 Dim DestString as String * 20
 Dim SourceString as String * 20 ' Create another String
 SourceString = "HELLO " ' Load the string with characters
 DestString = SourceString + CodeStr ' Concatenate the string
 HRsout DestString, 13 ' Display the result which is "HELLO WORLD"
 Stop
CodeStr:
 Cdata "WORLD",0

A null terminated string of characters held in Data (on-board eeprom) memory can also be loaded or
concatenated to a string by using the Estr function:

Estr Example
' Use the Estr function in order to place a
' Data memory string into a String variable
' Remember to place Edata before the main code
' so it’s recognised as a constant value

 Dim DestString as String * 20 ' Create a String for 20 characters
 Dim SourceString as String * 20 ' Create another String

DataStr Edata "WORLD",0 ' Create a string in Data memory
 SourceString = "HELLO " ' Load the string with characters
 DestString = SourceString + Estr DataStr ' Concatenate the strings
 HRsout DestString, 13 ' Display the result which is "HELLO WORLD"

Proton Amicus18 Compiler

 29
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Converting an integer or floating point value into a string is accomplished by using the Str$ function:

Str$ Example
' Use the Str$ function in order to concatenate an integer value into a
' String variable

 Dim DestString as String * 30 ' Create a String capable for 30 chars
 Dim SourceString as String * 20 ' Create another String
 Dim WordVar1 as Word ' Create a Word variable

 WordVar1 = 1234 ' Load the Word variable with a value
 SourceString = "Value = " ' Load the string with characters
 DestString = SourceString + Str$(Dec WordVar1) ' Concatenate the string
 HRsout DestString, 13 ' Display the result which is "Value = 1234"

Left$ Example
' Copy 5 characters from the left of SourceString
' and add to a quoted character string

 Dim SourceString as String * 20 ' Create a String
 Dim DestString as String * 20 ' Create another String

 SourceString = "HELLO WORLD" ' Load the source string with characters
 DestString = Left$(SourceString, 5) + " WORLD"
 HRsout DestString, 13 ' Display the result which is "HELLO WORLD"

Right$ Example
' Copy 5 characters from the right of SourceString
' and add to a quoted character string

 Dim SourceString as String * 20 ' Create a String
 Dim DestString as String * 20 ' Create another String

 SourceString = "HELLO WORLD" ' Load the source string with characters
 DestString = "HELLO " + Right$(SourceString, 5)
 HRsout DestString, 13 ' Display the result which is "HELLO WORLD"

Mid$ Example
' Copy 5 characters from position 4 of SourceString
' and add to quoted character strings

 Dim SourceString as String * 20 ' Create a String
 Dim DestString as String * 20 ' Create another String

 SourceString = "HELLO WORLD" ' Load the source string with characters
 DestString = "HEL" + Mid$(SourceString, 4, 5) + "RLD"
 HRsout DestString, 13 ' Display the result which is "HELLO WORLD"

Proton Amicus18 Compiler

 30
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Converting a string into uppercase or lowercase is accomplished by the functions ToUpper and
ToLower:

ToUpper Example
' Convert the characters in SourceString to UPPER case

 Dim SourceString as String * 20 ' Create a String
 Dim DestString as String * 20 ' Create another String

 SourceString = "hello world" ' Load source with lowercase characters
 DestString = ToUpper SourceString
 HRsout DestString, 13 ' Display the result which is "HELLO WORLD"

ToLower Example
' Convert the characters in SourceString to lower case

 Dim SourceString as String * 20 ' Create a String
 Dim DestString as String * 20 ' Create another String

 SourceString = "HELLO WORLD" ' Load the string with uppercase characters
 DestString = ToLower SourceString
 HRsout DestString, 13 ' Display the result which is "hello world"

Loading a String Indirectly
If the Source String is a Byte, Word, Byte Array, Word Array or Float variable, the value contained within
the variable is used as a pointer to the start of the Source String's address in RAM.

Example
' Copy SourceString into DestString using a pointer to SourceString

 Dim SourceString as String * 20 ' Create a String
 Dim DestString as String * 20 ' Create another String
' Create a Word variable to hold the address of SourceString
 Dim StringAddr as Word

 SourceString = "HELLO WORLD" ' Load the source string with characters
' Locate the start address of SourceString in RAM
 StringAddr = VarPtr SourceString
 DestString = StringAddr ' Source string into the destination string
 HRsout DestString, 13 ' Display the result, which will be "HELLO"

Proton Amicus18 Compiler

 31
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Slicing a String
Each position within the string can be accessed the same as a Byte Array by using square braces:

 Dim SourceString as String * 20 ' Create a String

 SourceString[0] = "H" ' Place letter "H" as first character in the string
 SourceString[1] = "E" ' Place the letter "E" as the second character
 SourceString[2] = "L" ' Place the letter "L" as the third character
 SourceString[3] = "L" ' Place the letter "L" as the fourth character
 SourceString[4] = "O" ' Place the letter "O" as the fifth character
 SourceString[5] = 0 ' Add a null to terminate the string

 HRsout SourceString, 13 ' Display the string, which will be "HELLO"

The example above demonstrates the ability to place individual characters anywhere in the string. Of
course, you wouldn't use the code above in an actual BASIC program.

A string can also be read character by character by using the same method as shown above:

 Dim SourceString as String * 20 ' Create a String
 Dim Var1 as Byte

 SourceString = "HELLO" ' Load the source string with characters
' Copy character 1 from the source string and place it into Var1
 Var1 = SourceString[1]
 HRsout Var1, 13 ' Display character extracted from string ("E")

When using the above method of reading and writing to a string variable, the first character in the string
is referenced at 0 onwards, just like a Byte Array.

The example below shows a more practical String slicing demonstration.

' Display a string's text by examining each character individually
 Dim SourceString as String * 20 ' Create a String
 Dim Charpos as Byte ' Holds the position within the string

 SourceString = "HELLO WORLD" ' Load the source string with characters
 Charpos = 0 ' Start at position 0 within the string
 Repeat ' Create a loop
 HRsout SourceString[Charpos] ' Display character extracted from string
 Inc Charpos ' Move to next position within string
 Until Charpos = Len SourceString ' Keep looping until end of string found
 Hrsout, 13

Proton Amicus18 Compiler

 32
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Notes
A word of caution regarding Strings: If you're familiar with interpreted BASICs and have used their
String variables, you may have run into the "subscript out of range" error. This error occurs when the
amount of characters placed in the string exceeds its maximum size.

For example, in the examples above, most of the strings are capable of holding 20 characters. If your
program exceeds this range by trying to place 21 characters into a string only created for 20 characters,
the compiler will not respond with an error message. Instead, it will access the next RAM location past
the end of the String.

If you are not careful about this, it can cause all sorts of subtle anomalies, as previously loaded vari-
ables are overwritten. It's up to the programmer (you!) to help prevent this from happening by ensuring
that the String in question is large enough to accommodate all the characters required, but not too large
that it uses up too much precious RAM.

The compiler will help by giving a reminder message when appropriate, but this can be ignored if you
are confident that the String is large enough.

See also : Creating and using Virtual Strings with Cdata
 Creating and using Virtual Strings with Edata
 Cdata, Len, Left$, Mid$, Right$
 String Comparisons, Str$, ToLower, ToUpper, VarPtr.

Proton Amicus18 Compiler

 33
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Creating and using Virtual Strings with Cdata
Although writing to code memory too many times is unhealthy for the microcontroller, reading this
memory is both fast, and harmless. Which offers an excellent form of data storage and retrieval, the
Cdata command proves this, as it uses the mechanism of reading and storing in the microcontroller’s
flash memory.

Combining the unique features of the 'self modifying PICmicros ' with a string format, the compiler is
capable of reducing the overhead of printing, or transmitting large amounts of text data. The Cstr
modifier may be used in commands that deal with text processing i.e. Print, Serout, HRsout, and
Rsout .

The Cstr modifier is used in conjunction with the Cdata command. The Cdata command is used for
initially creating the string of characters:

String1: Cdata "HELLO WORLD", 0

The above line of code will create, in flash memory, the values that make up the ASCII text "HELLO
WORLD", at address String1. Note the null terminator after the ASCII text.

 null terminated means that a zero (null) is placed at the end of the string of ASCII characters to signal
that the string has finished.

To display, or transmit this string of characters, the following command structure could be used:

 HRsout Cstr String1

The label that declared the address where the list of Cdata values resided, now becomes the string's
name. In a large program with lots of text formatting, this type of structure can save quite literally hun-
dreds of bytes of valuable code space.

Try both these small programs, and you'll see that using Cstr saves a few bytes of code:

First the standard way of displaying text:

 HRsout "HELLO WORLD\r"
 HRsout "HOW ARE YOU?\r"
 HRsout "I AM FINE!\r"

Now using the Cstr modifier:

 HRsout Cstr TEXT1
 HRsout Cstr TEXT2
 HRsout Cstr TEXT3
 Stop

TEXT1: Cdata "HELLO WORLD\r", 0
TEXT2: Cdata "HOW ARE YOU?\r", 0
TEXT3: Cdata "I AM FINE!\r", 0

Proton Amicus18 Compiler

 34
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Again, note the null terminators after the ASCII text in the Cdata commands. Without these, the micro-
controller will continue to transmit data in an endless loop.

The term 'virtual string' relates to the fact that a string formed from the Cdata command cannot (rather
should not) be written too, but only read from.

Not only label names can be used with the Cstr modifier, constants, variables and expressions can also
be used that will hold the address of the Cdata 's label (a pointer). For example, the program below
uses a Word size variable to hold 2 pointers (address of a label, variable or array) to 2 individual null
terminated text strings formed by Cdata .

 Dim Address as Word ' Pointer variable

 Address = String1 ' Point address to string 1
 HRsout Cstr Address ' Display string 1
 Address = String2 ' Point Address to string 2
 HRsout Cstr Address, 13 ' Display string 2
 Stop

' Create the text to display
String1:
 Cdata "HELLO ", 0
String2:
 Cdata "WORLD", 0

Proton Amicus18 Compiler

 35
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Creating and using Virtual Strings with Edata

Combining the eeprom memory of the microcontroller with a string format, the compiler is capable of
reducing the overhead of printing, or transmitting large amounts of text data using a memory resource
that is very often left unused and ignored. The Estr modifier may be used in commands that deal with
text processing i.e. Print, Serout, HRsout, and Rsout and String handling etc.

The Estr modifier is used in conjunction with the Edata command, which is used to initially create the
string of characters:

String1 Edata "Hello World\r", 0

The above line of code will create, in eeprom memory, the values that make up the ASCII text "Hello
World", at address String1 in Data memory. Note the null terminator after the ASCII text.

To display, or transmit this string of characters, the following command structure could be used:

 HRsout Estr String1

The identifier that declared the address where the list of Edata values resided, now becomes the
string's name. In a large program with lots of text formatting, this type of structure can save many
bytes of valuable code space.

Try both these small programs, and you'll see that using Estr saves code space:

First the standard way of displaying text:

 HRsout "Hello World\r"
 HRsout "How are you?\r"
 HRsout "I am fine!\r"

Now using the Estr modifier:

Text1 Edata "Hello World\r", 0
Text2 Edata "How are you?\r", 0
Text3 Edata "I am fine!\r", 0

 HRsout Estr Text1
 HRsout Estr Text2
 HRsout Estr Text3

Again, note the null terminators after the ASCII text in the Edata commands. Without these, the micro-
controller will continue to transmit data in an endless loop.

Proton Amicus18 Compiler

 36
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The term 'virtual string' relates to the fact that a string formed from the Edata command cannot (rather
should not) be written to often, but can be read as many times as wished without causing harm to the
device.

Not only identifiers can be used with the Estr modifier, constants, variables and expressions can also be
used that will hold the address of the Edata's identifier (a pointer). For example, the program below
uses a Byte size variable to hold 2 pointers (address of a variable or array) to 2 individual null termi-
nated text strings formed by Edata .

 Dim Address as Word ' Pointer variable
' Create the text to display in eeprom memory
String1 Edata "Hello ", 0
String2 Edata "World", 0

 Address = String1 ' Point address to string 1
 HRsout Estr Address ' Display string 1
 Address = String2 ' Point Address to string 2
 HRsout Estr Address, 13 ' Display string 2

Notes
Note that the identifying text must be located on the same line as the Edata directive or a syntax error
will be produced. It must also not contain a postfix colon as does a line label or it will be treat as a line
label. Think of it as an alias name to a constant.

Any Edata directives must be placed at the head of the BASIC program as is done with Symbols, so
that the name is recognised by the rest of the program as it is parsed. There is no need to jump over
Edata directives as you have to with Cdata or Cdata, because they do not occupy code memory, but
reside in high Data memory.

Proton Amicus18 Compiler

 37
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

String Comparisons
Just like any other variable type, String variables can be used within comparisons such as If-Then, Re-
peat-Until, and While-Wend . In fact, it's an essential element of any programming language. How-
ever, there are a few rules to obey because of the microcontroller’s architecture.

Equal (=) or Not Equal (<>) comparisons are the only type that apply to Strings, because one String
can only ever be equal or not equal to another String. It would be unusual (unless your using the C lan-
guage) to compare if one String was greater or less than another.

So a valid comparison could look something like the lines of code below:

 If String1 = String2 Then HRsout "EQUAL\r" : Else : HRsout "NOT EQUAL\r"
or
 If String1 <> String2 Then HRsout "NOT EQUAL\r" : Else : HRsout "EQUAL\r"

But as you've found out if you read the Creating Strings section, there is more than one type of String in
a microcontroller. There is a String variable, a code memory string, and a quoted character string .

Note that pointers to String variables are not allowed in comparisons, and a syntax error will be pro-
duced if attempted.

Starting with the simplest of string comparisons, where one string variable is compared to another string
variable. The line of code would look similar to either of the two lines above.

Example 1
' Simple string variable comparison

' Create a String capable of holding 20 characters
 Dim String1 as String * 20
 Dim String2 as String * 20 ' Create another String

 String1 = "EGGS" ' Pre-load String String1 with the text EGGS
 String2 = "BACON" ' Load String String2 with the text BACON

 If String1 = String2 Then ' Is String1 equal to String2 ?
 HRsout "EQUAL\r" ' Yes. So display EQUAL on the serial terminal
 Else ' Otherwise…
 HRsout "NOT EQUAL\r" ' Display not EQUAL on the serial terminal
 EndIf

 String2 = "EGGS" ' Now make the strings the same as each other
 If String1 = String2 Then ' Is String1 equal to String2 ?
 HRsout "EQUAL\r" ' Yes. So display EQUAL on the serial terminal
 Else ' Otherwise…
 HRsout "NOT EQUAL\r" ' Display not EQUAL on the serial terminal
 EndIf

The example above will display not Equal on the serial terminal because String1 contains the text
"EGGS" while String2 contains the text "BACON", so they are clearly not equal.

Proton Amicus18 Compiler

 38
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The second line of the serial terminal will show Equal because String2 is then loaded with the text
"EGGS" which is the same as String1, therefore the comparison is equal.

A similar example to the previous one uses a quoted character string instead of one of the String vari-
ables.

Example 2
' String variable to Quoted character string comparison

 Dim String1 as String * 20 ' Create a String of 20 characters

 String1 = "EGGS" ' Pre-load String String1 with the text EGGS

 If String1 = "BACON" Then ' Is String1 equal to "BACON" ?
 HRsout "EQUAL\r" ' Yes. So display EQUAL on the serial terminal
 Else ' Otherwise…
 HRsout "NOT EQUAL\r" ' Display NOT EQUAL on the serial terminal
 EndIf

 If String1 = "EGGS" Then ' Is String1 equal to "EGGS" ?
 HRsout "EQUAL\r" ' Yes. So display EQUAL on the serial terminal
 Else ' Otherwise…
 HRsout "NOT EQUAL\r" ' Display NOT EQUAL on the serial terminal
 EndIf

The example above produces exactly the same results as example1 because the first comparison is
clearly not equal, while the second comparison is equal.

Example 3
' Use a string comparison in a Repeat-Until loop

 Dim SourceString as String * 20 ' Create a String
 Dim DestString as String * 20 ' Create another String
 Dim Charpos as Byte ' Character position within the strings

 Clear DestString ' Fill DestString with NULLs
 SourceString = "HELLO" ' Load String SourceString with the text HELLO

 Repeat ' Create a loop
 ' Copy SourceString into DestString one character at a time

DestString[Charpos] = SourceString[Charpos]
 Inc Charpos ' Move to the next character in the strings
 Until DestString = "HELLO" ' Stop when DestString equal to text "HELLO"
 HRsout DestString, 13 ' Display DestString

Proton Amicus18 Compiler

 39
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Example 4
' Compare a string variable to a string held in code memory

 Dim String1 as String * 20 ' Create a String capable of 20 characters

 String1 = "BACON" ' Pre-load String String1 with the text BACON
 If CodeString= "BACON" Then ' Is CodeString equal to "BACON" ?
 HRsout "EQUAL\r" ' Yes. So display EQUAL on the serial terminal
 Else ' Otherwise…
 HRsout "NOT EQUAL\r" ' Display NOT EQUAL on the serial terminal
 EndIf

 String1 = "EGGS" ' Pre-load String String1 with the text EGGS
 If String1 = CodeString Then ' Is String1 equal to CodeString ?
 HRsout "EQUAL\r" ' Yes. So display EQUAL on the serial terminal
 Else ' Otherwise…
 HRsout "NOT EQUAL\r" ' Display NOT EQUAL on the serial terminal
 EndIf
 Stop

CodeString:
Cdata "EGGS", 0

Example 5
' String comparisons using Select-Case

 Dim String1 as String * 20 ' Create a String capable of 20 characters

 String1 = "EGGS" ' Pre-load String String1 with the text EGGS
 Select String1 ' Start comparing the string
 Case "EGGS" ' Is String1 equal to EGGS?
 HRsout "FOUND EGGS\r"
 Case "BACON" ' Is String1 equal to BACON?
 HRsout "FOUND BACON\r"
 Case "COFFEE" ' Is String1 equal to COFFEE?
 HRsout "FOUND COFFEE\r"
 Case Else ' Default to...
 HRsout "NO MATCH\r" ' Displaying no match
 EndSelect
 Stop

See also : Creating and using Strings
 Creating and using Virtual Strings with Cdata
 Cdata, If-Then-Else-EndIf, Repeat-Until
 Select-Case, While-Wend.

Proton Amicus18 Compiler

 40
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Relational Operators
Relational operators are used to compare two values. The result can be used to make a decision regard-
ing program flow.

The list below shows the valid relational operators accepted by the compiler:

Operator Relation Expression Type
 = Equality X = Y
 == Equality X == Y (Same as above Equality)
 <> Inequality X <> Y
 != Inequality X != Y (Same as above Inequality)
 < Less than X < Y
 > Greater than X > Y
 <= Less than or Equal to X <= Y
 >= Greater than or Equal to X >= Y

See also : If-Then-Else-EndIf, Repeat-Until, Select-Case, While-Wend.

Proton Amicus18 Compiler

 41
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Boolean Logic Operators
The If-Then-Else-EndIf, While-Wend, and Repeat-Until conditions now support the logical opera-
tors not, and, or, and xor. The not operator inverts the outcome of a condition, changing false to true,
and true to false. The following two If-Then conditions are equivalent:

 If Var1 <> 100 Then NotEqual ' GoTo notEqual if Var1 is not 100
 If not Var1 = 100 Then NotEqual ' GoTo notEqual if Var1 is not 100

The operators and, or, and xor join the results of two conditions to produce a single true/false result.
and or work the same as they do in everyday speech. Run the example below once with and (as shown)
and again, substituting or for and:

 Dim Var1 as Byte
 Dim Var2 as Byte

 Var1 = 5
 Var2 = 9
 If Var1 = 5 and Var2 = 10 Then Res_True
 Stop
Res_True:
 HRsout "Result is True.\r"

The condition "Var1 = 5 and Var2 = 10" is not true. Although Var1 is 5, Var2 is not 10. and works just
as it does in plain English, both conditions must be true for the statement to be true. or also works in a
familiar way; if one or the other or both conditions are true, then the statement is true. xor (short for
exclusive-or) may not be familiar, but it does have an English counterpart: If one condition or the other
(but not both) is true, then the statement is true.

Parenthesis (or rather the lack of it!).
Every compiler has it's quirky rules, and the Proton Amicus18 compiler is no exception. One of its quirks
means that parenthesis is not supported in a Boolean condition, or indeed with any of the If-Then-
Else-EndIf, While-Wend, and Repeat-Until conditions. Parenthesis in an expression within a condi-
tion is allowed however. So, for example, the expression:

 If (Var1 + 3) = 10 Then do something. Is allowed.

but:

 If((Var1 + 3) = 10) Then do something. Is not allowed.

The Boolean operands do have a precedence in a condition. The and operand has the highest priority,
then the or, then the xor. This means that a condition such as:

 If Var1 = 2 and Var2 = 3 or Var3 = 4 Then do something

Will compare Var1 and Var2 to see if the and condition is true. It will then see if the or condition is true,
based on the result of the and condition.

Then operand always required.
The Proton Amicus18 compiler relies heavily on the Then part. Therefore, if the Then part of a condi-
tion is left out of the code listing, a Syntax Error will be produced.

Proton Amicus18 Compiler

 42
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Math Operators
The Proton Amicus18 compiler performs all math operations in full hierarchal order. Which means that
there is precedence to the operators. For example, multiplies and divides are performed before adds
and subtracts. To ensure the operations are carried out in the correct order use parenthesis to group
the operations:

 A = ((B - C) * (D + E)) / F

All math operations are signed or unsigned depending on the variable type used, and performed with
16, or 32-bit precision, again, depending on the variable types and constant values used in the expres-
sion.

The operators supported are:

 Addition '+' Adds variables and/or constants.
 Subtraction '-' Subtracts variables and/or constants.
 Multiply '*' Multiplies variables and/or constants.
 Multiply High '**' Returns the high 16 bits of the 16-bit multiply result.
 Multiply Middle '*/' Returns the middle 16 bits of the 16-bit multiply result.
 Divide '/' Divides variables and/or constants.
 Modulus '//' Returns the remainder after dividing one value by another.
 Bitwise and '&' Returns the logical AND of two values.
 Bitwise or '|' Returns the logical OR of two values.
 Bitwise xor '^' Returns the logical XOR of two values.
 Bitwise Shift Left '<<' Shifts the bits of a value left a specified number of places.
 Bitwise Shift Right '>>' Shifts the bits of a value right a specified number of places.
 Bitwise Complement '~' Reverses the bits in a variable.
 Abs Returns the absolute value of a number.
 Acos Returns the Arc Cosine of a value in Radians.
 Asin Returns the Arc Sine of a value in Radians.
 Atan Returns the Arc Tangent of a value in Radians.
 Cos Returns the Cosine of a value in Radians.
 Dcd 2 n -power decoder of a four-bit value.
 Dig Returns the specified decimal digit of a positive value.
 Exp Deduce the exponential function of a value.
 iSqr Returns the Integer Square Root of a Value
 Log Returns the Natural Log of a value.
 Log10 Returns the Log of a value.
 Max Returns the maximum of two numbers.
 Min Returns the minimum of two numbers.
 Ncd Priority encoder of a 16-bit value.
 Pow Computes a Variable to the power of another.
 Rev Reverses the order of the lowest bits in a value.
 Sin Returns the Sine of a value in radians.
 Sqr Returns the floating point Square Root of a value.
 Tan Returns the Tangent of a value in Radians.
 Div32 15-bit x 31 bit divide. (For PBP compatibility only)

Proton Amicus18 Compiler

 43
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Add '+'.

Syntax
Assignment Variable = Variable + Variable

Overview
Adds variables and/or constants, returning an 8, 16, 32-bit or floating point result.

Operators

 Assignment Variable can be any valid variable type.
 Variable can be a constant, variable or expression.

Addition works exactly as you would expect with signed and unsigned integers as well as floating point.

 Dim Value1 as Word
 Dim Value2 as Word
 Value1 = 1575
 Value2 = 976
 Value1 = Value1 + Value2 ' Add the numbers
 HRsout Dec Value1 ' Display the result

' 32-bit addition
 Dim Value1 as Word
 Dim Value2 as Dword
 Value1 = 1575
 Value2 = 9763647
 Value2 = Value2 + Value1 ' Add the numbers
 HRsout Dec Value1, 13 ' Display the result

Subtract '-'.

Syntax
Assignment Variable = Variable - Variable

Overview
Subtracts variables and/or constants, returning an 8, 16, 32-bit or floating point result.

Operators

 Assignment Variable can be any valid variable type.
 Variable can be a constant, variable or expression.

Subtract works exactly as you would expect with signed and unsigned integers as well as floating point.

 Dim Value1 as Word
 Dim Value2 as Word
 Value1 = 1000
 Value2 = 999
 Value1 = Value1 - Value2 ' Subtract the numbers
 HRsout Dec Value1, 13 ' Display the result

Proton Amicus18 Compiler

 44
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

' 32-bit subtraction
 Dim Value1 as Word
 Dim Value2 as Dword
 Value1 = 1575
 Value2 = 9763647
 Value2 = Value2 - Value1 ' Subtract the numbers
 HRsout Dec Value1 ' Display the result

' 32-bit signed subtraction
 Dim Value1 as Dword
 Dim Value2 as Dword
 Value1 = 1575
 Value2 = 9763647
 Value1 = Value1 - Value2 ' Subtract the numbers
 HRsout Sdec Value1, 13 ' Display the result

Multiply '*'.

Syntax
Assignment Variable = Variable * Variable

Overview
Multiplies variables and/or constants, returning an 8, 16, 32-bit or floating point result.

Operators

 Assignment Variable can be any valid variable type.
 Variable can be a constant, variable or expression.

Multiply works exactly as you would expect with signed or unsigned integers from -2147483648 to
+2147483647 as well as floating point. If the result of multiplication is larger than 2147483647 when
using 32-bit variables, the excess bit will be lost.

 Dim Value1 as Word
 Dim Value2 as Word
 Value1 = 1000
 Value2 = 19
 Value1 = Value1 * Value2 ' Multiply Value1 by Value2.
 HRsout Dec Value1, 13 ' Display the result

' 32-bit multiplication
 Dim Value1 as Word
 Dim Value2 as Dword
 Value1 = 100
 Value2 = 10000
 Value2 = Value2 * Value1 ' Multiply the numbers.
 HRsout Dec Value1, 13 ' Display the result

Proton Amicus18 Compiler

 45
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Multiply High '**'.

Syntax
Assignment Variable = Variable ** Variable

Overview
Multiplies 8 or 16-bit variables and/or constants, returning the high 16 bits of the result.

Operators

 Assignment Variable can be any valid variable type.
 Variable can be a constant, variable or expression.

When multiplying two 16-bit values, the result can be as large as 32 bits. Since the largest variable sup-
ported by the compiler is 16-bits, the highest 16 bits of a 32-bit multiplication result are normally lost.
The ** (double-star) operand produces these upper 16 bits.

For example, suppose 65000 ($FDE8) is multiplied by itself. The result is 4,225,000,000 or $FBD46240.
The * (star, or normal multiplication) instruction would return the lower 16 bits, $6240. The ** instruc-
tion returns $FBD4.

 Dim Value1 as Word
 Dim Value2 as Word
 Value1 = $FDE8
 Value2 = Value1 ** Value1 ' Multiply $FDE8 by itself, return high 16 bits
 HRsout Hex Value2, 13 ' Display the result.

Notes.
This operand enables compatibility with BASIC STAMP code, and melab's compiler code, but is rather
obsolete considering the 32-bit capabilities of the Proton Amicus18 compiler.

Multiply Middle '*/'.

Syntax
Assignment Variable = Variable */ Variable

Overview
Multiplies variables and/or constants, returning the middle 16 bits of the 32-bit result.

Operators

 Assignment Variable can be any valid variable type.
 Variable can be a constant, variable or expression.

The Multiply Middle operator (*/) has the effect of multiplying a value by a whole number and a frac-
tion. The whole number is the upper byte of the multiplier (0 to 255 whole units) and the fraction is the
lower byte of the multiplier (0 to 255 units of 1/256 each). The */ operand allows a workaround for the
compiler's integer-only math.

Suppose we are required to multiply a value by 1.5. The whole number, and therefore the upper byte of
the multiplier, would be 1, and the lower byte (fractional part) would be 128, since 128/256 = 0.5. It
may be clearer to express the */ multiplier in Hex as $0180, since hex keeps the contents of the upper
and lower bytes separate. Here's an example:

Proton Amicus18 Compiler

 46
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

 Dim Value1 as Word
 Value1 = 100
 Value1 = Value1 */ $0180 ' Multiply by 1.5 (1 + (128 / 256))
 HRsout Dec Value1, 13 ' Display result (150).

To calculate constants for use with the */ instruction, put the whole number portion in the upper byte,
then use the following formula for the value of the lower byte:

 int(fraction * 256)

For example, take PiI(3.14159). The upper byte would be $03 (the whole number), and the lower would
be int(0.14159 * 256) = 36 ($24). So the constant Pi for use with */ would be $0324. This isn't a per-
fect match for Pi, but the error is only about 0.1%.

Notes.
This operand enables compatibility with BASIC STAMP code, and melab's compiler code, but is rather
obsolete considering the 32-bit capabilities of the Proton Amicus18 compiler.

Divide '/'.

Syntax
Assignment Variable = Variable / Variable

Overview
Divides variables and/or constants, returning an 8, 16, 32-bit or floating point result.

Operators

 Assignment Variable can be any valid variable type.
 Variable can be a constant, variable or expression.

The Divide operator (/) works exactly as you would expect with signed or unsigned integers from -
2147483648 to +2147483647 as well as floating point.

 Dim Value1 as Word
 Dim Value2 as Word
 Value1 = 1000
 Value2 = 5
 Value1 = Value1 / Value2 ' Divide the numbers.
 HRsout Dec Value1, 13 ' Display the result (200).

' 32-bit division
 Dim Value1 as Word
 Dim Value2 as Dword
 Value1 = 100
 Value2 = 10000
 Value2 = Value2 / Value1 ' Divide the numbers.
 HRsout Dec Value1, 13 ' Display the result

Proton Amicus18 Compiler

 47
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Modulus '//'.

Syntax
Assignment Variable = Variable // Variable

Overview
Return the remainder left after dividing one value by another.

Operators

 Assignment Variable can be any valid variable type.
 Variable can be a constant, variable or expression.

Some division problems don't have a whole-number result; they return a whole number and a fraction.
For example, 1000/6 = 166.667. Integer math doesn't allow the fractional portion of the result, so
1000/6 = 166. However, 166 is an approximate answer, because 166*6 = 996. The division operation
left a remainder of 4. The // returns the remainder of a given division operation. Numbers that divide
evenly, such as 1000/5, produce a remainder of 0:

 Dim Value1 as Word
 Dim Value2 as Word
 Value1 = 1000
 Value2 = 6
 Value1 = Value1 // Value2 ' Get remainder of Value1 / Value2.
 HRsout Dec Value1, 13 ' Display the result (4).

' 32-bit modulus
 Dim Value1 as Word
 Dim Value2 as Dword
 Value1 = 100
 Value2 = 99999
 Value2 = Value2 // Value1 ' mod the numbers.
 HRsout Dec Value1, 13 ' Display the result

The modulus operator does not operate with floating point values or variables.

Proton Amicus18 Compiler

 48
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Logical and '&'.
The AND operator (&) returns the bitwise and of two values. Each bit of the values is subject to the fol-
lowing logic:

 0 and 0 = 0
 0 and 1 = 0
 1 and 0 = 0
 1 and 1 = 1

The result returned by & will contain 1s in only those bit positions in which both input values contain 1s:

 Dim Value1 as Byte
 Dim Value2 as Byte
 Dim Result as Byte
 Value1 = %00001111
 Value2 = %10101101
 Result = Value1 & Value2
 HRsout Bin Result, 13 ' Display and result (%00001101)

or

 HRsout Bin (%00001111 & %10101101), 13 ' Display and result (%00001101)

Bitwise operations are not permissible with floating point values or variables.

Logical or '|'.
The OR operator (|) returns the bitwise or of two values. Each bit of the values is subject to the follow-
ing logic:

 0 or 0 = 0
 0 or 1 = 1
 1 or 0 = 1
 1 or 1 = 1

The result returned by | will contain 1s in any bit positions in which one or the other (or both) input val-
ues contain 1s:

 Dim Value1 as Byte
 Dim Value2 as Byte
 Dim Result as Byte
 Value1 = %00001111
 Value2 = %10101001
 Result = Value1 | Value2
 HRsout Bin Result, 13 ' Display or result (%10101111)

or

 HRsout Bin (%00001111 | %10101001), 13 ' Display or result (%10101111)

Bitwise operations are not permissible with floating point values or variables.

Proton Amicus18 Compiler

 49
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Logical xor '^'.
The XOR operator (^) returns the bitwise xor of two values. Each bit of the values is subject to the fol-
lowing logic:

 0 xor 0 = 0
 0 xor 1 = 1
 1 xor 0 = 1
 1 xor 1 = 0

The result returned by ^ will contain 1s in any bit positions in which one or the other (but not both) in-
put values contain 1s:

 Dim Value1 as Byte
 Dim Value2 as Byte
 Dim Result as Byte
 Value1 = %00001111
 Value2 = %10101001
 Result = Value1 ^ Value2
 HRsout Bin Result, 13 ' Display xor result (%10100110)

or

 HRsout Bin (%00001111 ^ %10101001), 13 ' Display xor result (%10100110)

Bitwise operations are not permissible with floating point values or variables.

BitWise Shift Left '<<'.
Shifts the bits of a value to the left a specified number of places. Bits shifted off the left end of a num-
ber are lost; bits shifted into the right end of the number are 0s. Shifting the bits of a value left n num-
ber of times also has the effect of multiplying that number by two to the nth power.

For example 100 << 3 (shift the bits of the decimal number 100 left three places) is equivalent to 100 *
23.

 Dim Value1 as Word
 Dim Loop as Byte
 Value1 = %1111111111111111
 For Loop = 1 to 16 ' Repeat with b0 = 1 to 16.
 HRsout Bin Value1 << Loop ' Shift Value1 left Loop places.
 Next

Bitwise operations are not permissible with floating point values or variables.

Proton Amicus18 Compiler

 50
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

BitWise Shift Right '>>'.
Shifts the bits of a variable to the right a specified number of places. Bits shifted off the right end of a
number are lost; bits shifted into the left end of the number are 0s. Shifting the bits of a value right n
number of times also has the effect of dividing that number by two to the nth power.

For example 100 >> 3 (shift the bits of the decimal number 100 right three places) is equivalent to 100
/ 23.

 Dim Value1 as Word
 Dim Loop as Byte
 Value1 = %1111111111111111
 For Loop = 1 to 16 ' Repeat with b0 = 1 to 16.
 HRsout Bin Value1 >> Loop ' Shift Value1 right Loop places.
 Next

BitWise Complement ‘~’
The Complement operator (~) inverts the bits of a value. Each bit that contains a 1 is changed to 0 and
each bit containing 0 is changed to 1. This process is also known as a "bitwise not".

 Dim Value1 as Word
 Dim Value2 as Word
 Value2 = %1111000011110000
 Value1 = ~Value2 ' Complement Value2.
 HRsout Bin16 Value1, 13 ' Display the result

Complementing can be carried out with all variable types except Floats. Attempting to complement a
floating point variable will produce a syntax error.

Proton Amicus18 Compiler

 51
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Abs

Syntax
Assignment Variable = Abs Variable

Overview
Return the absolute value of a constant, variable or expression.

Operators

 Assignment Variable can be any valid variable type.
 Variable can be a constant, variable or expression.

32-bit Example
 Dim DwordVar1 as Dword ' Create a Dword variable
 Dim DwordVar2 as Dword ' Create a Dword variable

 DwordVar1 = -1234567 ' Load DwordVar1 with value -1234567
 DwordVar2 = Abs DwordVar1 ' Extract the absolute value from DwordVar1
 HRsout Dec DwordVar2, 13 ' Display the result, which is 1234567

Floating Point example
 Dim FloatVar1 as Float ' Create a Float variable
 Dim FloatVar2 as Float ' Create a Float variable

 FloatVar1 = -1234567 ' Load FloatVar1 with value -1234567.123
 FloatVar2 = Abs FloatVar 1 ' Extract the absolute value from Floatvar1
 HRsout Dec FloatVar2, 13 ' Display the result, which is 1234567.123

Proton Amicus18 Compiler

 52
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Acos

Syntax
Assignment Variable = Acos Variable

Overview
Deduce the Arc Cosine of a value

Operators

 Assignment Variable can be any valid variable type.
 Variable can be a constant, variable or expression that requires the Arc Cosine (Inverse Cosine)

extracted. The value expected and returned by the floating point Acos is in Radians. The value
must be in the range of -1 to +1

Example
 Dim Floatin as Float ' Holds the value to Acos
 Dim Floatout as Float ' Holds the result of the Acos
 Floatin = 0.8 ' Load the variable
 Floatout = Acos Floatin ' Extract the Acos of the value
 HRsout Dec Floatout, 13 ' Display the result

Notes
Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk of the
microcontroller is used with a single operator. This also means that floating point trigonometry is com-
paratively slow to operate.

Proton Amicus18 Compiler

 53
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Asin

Syntax
Assignment Variable = Asin Variable

Overview
Deduce the Arc Sine of a value

Operators

 Assignment Variable can be any valid variable type.
 Variable can be a constant, variable or expression that requires the Arc Sine (Inverse Sine) ex-

tracted. The value expected and returned by Asin is in Radians. The value must be in the range
of -1 to +1

Example
 Dim Floatin as Float ' Holds the value to Asin
 Dim Floatout as Float ' Holds the result of the Asin
 Floatin = 0.8 ' Load the variable
 Floatout = Asin Floatin ' Extract the Asin of the value
 HRsout Dec Floatout, 13 ' Display the result

Notes
Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk of the
microcontroller is used with a single operator. This also means that floating point trigonometry is com-
paratively slow to operate.

Proton Amicus18 Compiler

 54
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Atan

Syntax
Assignment Variable = Atan Variable

Overview
Deduce the Arc Tangent of a value

Operators

 Assignment Variable can be any valid variable type.
 Variable can be a constant, variable or expression that requires the Arc Tangent (Inverse Tan-

gent) extracted. The value expected and returned by the floating point Atan is in Radians.

Example
 Dim Floatin as Float ' Holds the value to Atan
 Dim Floatout as Float ' Holds the result of the Atan
 Floatin = 1 ' Load the variable
 Floatout = Atan Floatin ' Extract the Atan of the value
 HRsout Dec Floatout, 13 ' Display the result

Notes
Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk of the
microcontroller is used with a single operator. This also means that floating point trigonometry is com-
paratively slow to operate.

Proton Amicus18 Compiler

 55
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Cos

Syntax
Assignment Variable = Cos Variable

Overview
Deduce the Cosine of a value

Operators

 Assignment Variable can be any valid variable type.
 Variable can be a constant, variable or expression that requires the Cosine extracted. The value

expected and returned by Cos is in Radians.

Example
 Dim Floatin as Float ' Holds the value to Cos with
 Dim Floatout as Float ' Holds the result of the Cos
 Floatin = 123 ' Load the variable
 Floatout = Cos Floatin ' Extract the Cos of the value
 HRsout Dec Floatout, 13 ' Display the result

Notes
Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk of the
microcontroller is used with a single operator. This also means that floating point trigonometry is com-
paratively slow to operate.

Proton Amicus18 Compiler

 56
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Dcd
2 n -power decoder of a four-bit value. Dcd accepts a value from 0 to 15, and returns a 16-bit number
with that bit number set to 1. For example:

 WordVar1= Dcd 12 ' Set bit 12.
 HRsout Bin16 WordVar1, 13 ' Display result (%0001000000000000)

Dcd does not (as yet) support Dword, or Float type variables. Therefore the highest value obtainable is
65535.

Dig (BASIC Stamp version)
In this form, the Dig operator is compatible with the BASIC STAMP, and the melab's PicBASIC Pro com-
piler. Dig returns the specified decimal digit of a 16-bit positive value. Digits are numbered from 0 (the
rightmost digit) to 4 (the leftmost digit of a 16- bit number; 0 to 65535). Example:

 WordVar1= 9742
 HRsout WordVar1 Dig 2 ' Display digit 2 (7)
 For Loop = 0 to 4
 HRsout WordVar1 Dig Loop ' Display digits 0 through 4 of 9742.
 Next

Note
Dig does not support Float type variables.

Proton Amicus18 Compiler

 57
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Exp

Syntax
Assignment Variable = Exp Variable

Overview
Deduce the exponential function of a value. This is e to the power of value where e is the base of natu-
ral logarithms. Exp 1 is 2.7182818.

Operators

 Assignment Variable can be any valid variable type.
 Variable can be a constant, variable or expression.

Example
 Dim Floatin as Float ' Holds the value to Exp with
 Dim Floatout as Float ' Holds the result of the Exp
 Floatin = 1 ' Load the variable
 Floatout = Exp Floatin ' Extract the Exp of the value
 HRsout Dec Floatout, 13 ' Display the result

Notes
Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk of the
microcontroller is used with a single operator. This also means that floating point trigonometry is com-
paratively slow to operate.

Proton Amicus18 Compiler

 58
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

ISqr

Syntax
Assignment Variable = ISqr Variable

Overview
Deduce the Integer Square Root of a value.

Operators

 Assignment Variable can be any valid variable type.
 Variable can be a constant, variable or expression that requires the square root extracted.

Example
 Dim Wordin as Word ' Holds the value to Sqr
 Dim Wordout as Word ' Holds the result of the Sqr
 Wordin = 600 ' Load the variable
 Wordout = ISqr Wordin ' Extract the Sqr of the integer value
 HRsout Dec Wordout, 13 ' Display the result

See Sqr for a floating point version of ISqr.

Proton Amicus18 Compiler

 59
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Log

Syntax
Assignment Variable = Log Variable

Overview
Deduce the Natural Logarithm a value

Operators

 Assignment Variable can be any valid variable type.
 Variable can be a constant, variable or expression that requires the natural logarithm extracted.

Example
 Dim Floatin as Float ' Holds the value to Log with
 Dim Floatout as Float ' Holds the result of the Log
 Floatin = 1 ' Load the variable
 Floatout = Log Floatin ' Extract the Log of the value
 HRsout Dec Floatout, 13 ' Display the result

Notes
Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk of the
microcontroller is used with a single operator. This also means that floating point trigonometry is com-
paratively slow to operate.

Proton Amicus18 Compiler

 60
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Log10

Syntax
Assignment Variable = Log10 Variable

Overview
Deduce the Logarithm a value

Operators
Assignment Variable can be any valid variable type.
Variable can be a constant, variable or expression that requires the logarithm extracted.

Example
 Dim Floatin as Float ' Holds the value to Log10 with
 Dim Floatout as Float ' Holds the result of the Log10
 Floatin = 1 ' Load the variable
 Floatout = Log10 Floatin ' Extract the Log10 of the value
 HRsout Dec Floatout, 13 ' Display the result

Notes
Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk of the
microcontroller is used with a single operator. This also means that floating point trigonometry is com-
paratively slow to operate.

Proton Amicus18 Compiler

 61
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Max
Returns the maximum of two numbers. Its use is to limit numbers to a specific value. Its syntax is:

' Set Var2 to the larger of Var1 and 100 (Var2 will be between 100 and 255)
Var2 = Var1 Max 100

Max does not (as yet) support Dword, or Float type variables. Therefore the highest value obtainable is
65535.

Min
Returns the minimum of two numbers. Its use is to limit numbers to a specific value. Its syntax is:

' Set Var2 to the smaller of Var1 and 100 (Var2 cannot be greater than 100)
Var2 = Var1 Min 100

Min does not (as yet) support Dword, or Float type variables. Therefore the highest value obtainable is
65535.

Ncd
Priority encoder of a 16-bit value. Ncd takes a 16-bit value, finds the highest bit containing a 1 and re-
turns the bit position plus one (1 through 16). If no bit is set, the input value is 0. Ncd returns 0. Ncd is
a fast way to get an answer to the question "what is the largest power of two that this value is greater
than or equal to?" The answer that Ncd returns will be that power, plus one. Example:

 WordVar1= %00001101 ' Highest bit set is bit 3.
 Hrsout Dec Ncd WordVar1, 13 ' Display the Ncd of WordVar1(4).

Ncd does not (as yet) support Dword, or Float type variables.

Proton Amicus18 Compiler

 62
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Pow

Syntax
Assignment Variable = Pow Variable, PowerOfVariable

Overview
Computes Variable to the power of PowerOfVariable.

Operators

 Assignment Variable can be any valid variable type.
 Variable can be a constant, variable or expression.
 PowerOfVariable can be a constant, variable or expression.

Example
 Dim PowOf as Float
 Dim Floatin as Float ' Holds the value to Pow with
 Dim Floatout as Float ' Holds the result of the Pow
 PowOf= 10
 Floatin = 2 ' Load the variable
 Floatout = Pow Floatin,PowOf ' Extract the Pow of the value
 HRsout Dec Floatout, 13 ' Display the result

Notes
Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk of the
microcontroller is used with a single operator. This also means that floating point trigonometry is com-
paratively slow to operate.

Proton Amicus18 Compiler

 63
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Rev

Reverses the order of the lowest bits in a value. The number of bits to be reversed is from 1 to 32. Its
syntax is:

 Var1 = %10101100 Rev 4 ' Sets Var1 to %10100011

or

Dim DwordVar as Dword
' Sets DwordVar to %10101010000000001111111110100011

DwordVar = %10101010000000001111111110101100 Rev 4

Proton Amicus18 Compiler

 64
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Sin

Syntax
Assignment Variable = Sin Variable

Overview
Deduce the Sine of a value

Operators

 Assignment Variable can be any valid variable type.
 Variable can be a constant, variable or expression that requires the sine extracted. The value

expected and returned by Sin is in Radians.

Example
 Dim Floatin as Float ' Holds the value to Sin
 Dim Floatout as Float ' Holds the result of the Sin
 Floatin = 123 ' Load the variable
 Floatout = Sin Floatin ' Extract the Sin of the value
 HRsout Dec Floatout, 13 ' Display the result

Notes
Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk of the
microcontroller is used with a single operator. This also means that floating point trigonometry is com-
paratively slow to operate.

Proton Amicus18 Compiler

 65
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Sqr

Syntax
Assignment Variable = Sqr Variable

Overview
Deduce the Square Root of a value. Computes using floating point.

Operators

 Assignment Variable can be any valid variable type.
 Variable can be a constant, variable or expression that requires the square root extracted.

Example
 Dim Floatin as Float ' Holds the value to Sqr
 Dim Floatout as Float ' Holds the result of the Sqr
 Floatin = 600 ' Load the variable
 Floatout = Sqr Floatin ' Extract the Sqr of the value
 HRsout Dec Floatout, 13 ' Display the result

Notes
Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk of the
microcontroller is used with a single operator. This also means that floating point trigonometry is com-
paratively slow to operate.

See Isqr for an integer version of Sqr.

Proton Amicus18 Compiler

 66
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Tan

Syntax
Assignment Variable = Tan Variable

Overview
Deduce the Tangent of a value

Operators

 Assignment Variable can be any valid variable type.
 Variable can be a constant, variable or expression that requires the tangent extracted. The

value expected and returned by the floating point Tan is in radians.

Example
 Dim Floatin as Float ' Holds the value to Tan
 Dim Floatout as Float ' Holds the result of the Tan
 Floatin = 1 ' Load the variable
 Floatout = Tan Floatin ' Extract the Tan of the value
 HRsout Dec Floatout, 13 ' Display the result

Notes
Floating point trigonometry is extremely memory hungry, so do not be surprised if a large chunk of the
microcontroller is used with a single operator. This also means that floating point trigonometry is com-
paratively slow to operate.

Proton Amicus18 Compiler

 67
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Div32
In order to make the Proton Amicus18 compiler more compatible with code produced for the melab's
PicBASIC Pro compiler, the Div32 operator has been added. The melab's compiler's multiply operand
operates as a 16-bit x 16-bit multiply, thus producing a 32-bit result. However, since the compiler only
supports a maximum variable size of 16 bits (Word), access to the result had to happen in 2 stages:

 Var = Var1 * Var2 ' Returns the lower 16 bits of the multiply

while…

 Var = Var1 ** Var2 ' Returns the upper 16 bits of the multiply

There was no way to access the 32-bit result as a valid single value.

In many cases it is desirable to be able to divide the entire 32-bit result of the multiply by a 16-bit num-
ber for averaging, or scaling. Div32 is actually limited to dividing a 31-bit unsigned integer (0 -
2147483647) by a 15-bit unsigned integer (0 - 32767). This ought to be sufficient in most situations.

Because the melab's PICBASIC Pro compiler only allowed a maximum variable size of 16 bits (0 -
65535), Div32 relies on the fact that a multiply was performed just prior to the Div32 command, and
that the internal compiler variables still contain the 32-bit result of the multiply. No other operation may
occur between the multiply and the Div32 or the internal variables may be altered, thus destroying the
32-bit multiplication result.

The following example demonstrates the operation of Div32:

 Dim WordVar1 as Word
 Dim WordVar2 as Word
 Dim WordVar3 as Word
 Dim Fake as Word ' Must be a Word type variable for result

 WordVar2 = 300
 WordVar3 = 1000

 Fake = WordVar2 * WordVar3 ' Operators ** or */ could also be used instead
 WordVar1= Div32 100
 Hrsout Dec WordVar1, 13

The above program assigns WordVar2 the value 300 and WordVar3 the value 1000. When multiplied
together, the result is 300000. However, this number exceeds the 16-bit word size of a variable
(65535). Therefore, the dummy variable, Fake, contains only the lower 16 bits of the result. Div32 uses
the compiler's internal (System) variables as the operands.

Notes.
This operand enables a certain compatibility with melab's compiler code, but is very much obsolete con-
sidering the 32-bit, and floating point capabilities of the Proton Amicus18 compiler.

Proton Amicus18 Compiler

 68
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Commands
and

Directives

Proton Amicus18 Compiler

 69
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Adin Read the on-board Analogue to Digital Converter (ADC).
Asm-EndAsm Insert assembly language code section.
Box Draw a square on a graphic LCD.
Branch Computed GoTo (equiv. to On..GoTo).
Break Exit a loop prematurely.
Bstart Send a Start condition to the I2C bus.
Bstop Send a Stop condition to the I2C bus.
Brestart Send a Restart condition to the I2C bus.
BusAck Send an Acknowledge condition to the I2C bus.
Busin Read bytes from an I2C device.
Busout Write bytes to an I2C device.
Button Detect and debounce a key press.
Call Call an assembly language subroutine.
Cdata Define initial contents in memory.
Circle Draw a circle on a graphic LCD.
Clear Place a variable or bit in a low state, or clear all RAM area.
ClearBit Clear a bit of a port or variable, using a variable index.
Cls Clear the LCD.
Config_Start Set or Reset programming fuse configurations.
Counter Count the number of pulses occurring on a pin.
Cread Read data from code memory.
Cursor Position the cursor on the LCD.
Cwrite Write data to code memory.
Dec Decrement a variable.
Declare Adjust library routine parameters.
DelayMs Delay (1 millisecond resolution).
DelayUs Delay (1 microsecond resolution).
Dig Return the value of a decimal digit.
Dim Create a variable.
Disable Disable software interrupts previously Enabled.
DTMFout Produce a DTMF Touch Tone note.
Edata Define initial contents of on-board eeprom.
Enable Enable software interrupts previously Disabled.
End Stop execution of the BASIC program (Same as Stop).
Eread Read a value from on-board eeprom.
Ewrite Write a value to on-board eeprom.
For…to…Next…Step Repeatedly execute statements.
FreqOut Generate one or two tones, of differing or the same frequencies.
GetBit Examine a bit of a port or variable, using a variable index.
GoSub Call a BASIC subroutine at a specified label.
GoTo Continue execution at a specified label.
HbStart Send a Start condition to the I2C bus using the MSSP peripheral.
HbStop Send a Stop condition to the I2C bus using the MSSP peripheral.
HbRestart Send a Restart condition to the I2C bus using the MSSP peripheral.
HbusAck Send an Ack condition to the I2C bus using the MSSP peripheral.
Hbusin Read from an I2C device using the MSSP peripheral.
Hbusout Write to an I2C device using the MSSP peripheral.
High Make a pin or port high.
Hpwm Generate a Pwm signal using the CCP peripheral.
HRsin Receive data from the serial port using the USART peripheral.
HRsout Transmit data from the serial port using the USART peripheral.
Hserin Receive data from the serial port using the USART peripheral.
Hserout Transmit data from the serial port using the USART peripheral.
I2Cin Read bytes from an I2C device with user definable SDA\SCL lines.

Proton Amicus18 Compiler

 70
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

I2Cout Write bytes to an I2C device with user definable SDA\SCL lines.
If..Then..ElseIf..Else..EndIf Conditionally execute statements.
Inc Increment a variable.
Include Load a BASIC file into the source code.
Inkey Scan a keypad.
Input Make pin an input.
LCDread Read a single byte from a Graphic LCD.
LCDwrite Write bytes to a Graphic LCD.
Left$ Extract n amount of characters the left of a String.
Cdata Place information into code memory. For access by Lread.
Line Draw a line in any direction on a graphic LCD.
LineTo Draw a straight line in any direction on a graphic LCD, starting from the

previous Line command's end position.
LoadBit Set or Clear a bit of a port or variable, using a variable index.
LookDown Search a constant lookdown table for a value.
LookDownL Search constant or variable lookdown table for a value.
LookUp Fetch a constant value from a lookup table.
LookUpL Fetch a constant or variable value from lookup table.
Low Make a pin or port low.
Lread Read a value from an Cdata table and place into Variable.
Lread8, Lread16, Lread32 Read a single or multi-byte value from a Cdata table with more efficiency
 than Lread.
Mid$ Extract n amount of characters from a String beginning at n characters from the left.
On Interrupt Execute a subroutine using a Software interrupt (Not Recommended).
On_Hardware_Interrupt Execute an Assembler subroutine on a Hardware interrupt.
On_Low_Interrupt Execute an Assembler subroutine when a Low Priority Hardware interrupt.
On GoSub Call a Subroutine based on an Index value.
On GoTo Jump to an address in code memory based on an Index value.
Output Make a pin an output.
Oread Receive data from a device using the Dallas 1-wire protocol.
Owrite Send data to a device using the Dallas 1-wire protocol.
Org Set Program Origin.
Pixel Read a single pixel from a Graphic LCD.
Plot Set a single pixel on a Graphic LCD.
Pop Pull a single variable or multiple variables from a software stack.
Pot Read a potentiometer on specified pin.
Print Display characters on an LCD.
PulsIn Measure the pulse width on a pin.
PulseOut Generate a pulse to a pin.
Push Place a single variable or multiple variables onto a software stack.
Pwm Output a pulse width modulated pulse train to pin.
Random Generate a pseudo-random number.
RC5in Receive and decode Philips Infrared RC5 packets.
RCin Measure a pulse width on a pin.
Repeat...Until Execute a block of instructions until a condition is true.
Resume Re-enable software interrupts and return.
Return Continue at the statement following the last GoSub.
Right$ Extract n amount of characters from the right of a String.
Rsin Asynchronous serial input from a fixed pin and baud rate.
Rsout Asynchronous serial output to a fixed pin and baud rate.
Seed Seed the random number generator, to obtain a more random result.
Select..Case..EndSelect Conditionally run blocks of code.
Serin Receive asynchronous serial data (i.e. RS232 data).
Serout Transmit asynchronous serial data (i.e. RS232 data).
Servo Control a servo motor.

Proton Amicus18 Compiler

 71
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Set Place a variable or bit in a high state.
SetBit Set a bit of a port or variable, using a variable index.
Shin Synchronous serial input.
Shout Synchronous serial output.
Sleep Power down the processor for a period of time.
Snooze Power down the processor for short period of time.
SonyIn Receive Sony SIRC (Sony Infrared Remote Control) data from a predetermined pin.
Sound Generate a tone or white-noise on a specified pin.
Sound2 Generate 2 tones from 2 separate pins.
Stop Stop program execution.
Str Load a Byte array with values.
Strn Create a null terminated Byte array.
Str$ Convert the contents of a variable to a null terminated String.
Swap Exchange the values of two variables.
Symbol Create an alias to a constant, port, pin, or register.
Toggle Reverse the state of a port's bit.
ToLower Convert the characters in a String to lower case.
ToUpper Convert the characters in a String to UPPER case.
Toshiba_Command Send a command to a Toshiba T6963 graphic LCD.
Toshiba_UDG Create User Defined Graphics for Toshiba T6963 graphic LCD.
UnPlot Clear a single pixel on a Graphic LCD.
Val Convert a null terminated String to an integer value.
VarPtr Locate the address of a variable.
While…Wend Execute statements while condition is true.
Xin Receive data using the X10 protocol.
Xout Transmit data using the X10 protocol.

Proton Amicus18 Compiler

 72
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Adin

Syntax
Variable = Adin channel number

Overview
Read the value from the on-board Analogue to Digital Converter.

Operators

 Variable is a user defined variable.
 Channel number can be a constant or a variable expression.

Example
' Read ADC from AN0 and display the value on the serial terminal.

 Declare Adin_Res = 10 ' 10-bit result required
 Declare Adin_Tad = FRC ' RC OSC chosen

Declare Adin_Stime = 50 ' Allow 50us sample time

Dim Var1 as Word

TRISA = %00000001 ' Configure AN0 (PortA.0) as an input
 ADCON1 = %10000000 ' Set analogue input on PortA.0
 While 1 = 1 ' Create an endless loop
 Var1 = Adin 0 ' Place the conversion into variable Var1
 Hrsout Dec Var1,13 ' Display the value on the serial terminal
 DelayMs 500 ' A delay between samples
 Wend ' Close the loop

Adin Declares
There are three Declare directives for use with Adin. These are:

Declare Adin_Res 8 or 10.
Sets the number of bits in the result.

If this Declare is not used, then the default is a resolution of 10-bits.
Using the above Declare allows an 8-bit result to be obtained.

Declare Adin_Tad 2_FOSC, 8_FOSC, 32_FOSC, 64_FOSC, or FRC.
Sets the ADC's clock source.

There are five options for the clock source used by the ADC. 2_FOSC, 8_FOSC, 32_FOSC, and 64_FOSC
are ratios of the external oscillator, while FRC is the internal RC oscillator. Instead of using the prede-
fined names for the clock source, values from 0 to 4 may be used.

Care must be used when issuing this Declare, as the wrong type of clock source may result in poor
resolution, or no conversion at all. If in doubt use FRC which will produce a slight reduction in resolution
and conversion speed, but is guaranteed to work first time, every time. FRC is the default setting if the
Declare is not issued in the BASIC listing.

Declare Adin_Stime 0 to 65535 microseconds (us).
Allows the internal capacitors to fully charge before a sample is taken. This may be a value from 0 to
65535 microseconds (us).

Proton Amicus18 Compiler

 73
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

A value too small may result in a reduction of resolution. While too large a value will result in poor con-
version speeds without any extra resolution being attained.

A typical value for Adin_Stime is 50 to 100. This allows adequate charge time without loosing too much
conversion speed. But experimentation will produce the right value for your particular requirement. The
default value if the Declare is not used in the BASIC listing is 50.

Notes
Before the Adin command may be used, the appropriate registers must be manipulated in order to con-
figure the ADC peripheral. The ADC macros can be used for setting up the device’s ADC. These are
loaded by using an include statement:

Include "ADC.inc" ' Load the ADC macros into the program
'
' Open the ADC :
' Fosc / 32
' Right justified for 10-bit operation
' Tad value of 2
' Vref+ at Vcc : Vref- at Gnd
' Make AN0 an analogue input
'

OpenADC(ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_2_TAD, ADC_REF_VDD_VSS, ADC_1ANA)

Further information concerning the ADC macros can be found at the back of this document.

If multiple conversions are being implemented, then a small delay should be used after the Adin com-
mand. This allows the ADC's internal capacitors to discharge fully:

Again:

Var1 = Adin 0 ' Place the conversion into variable Var1
 DelayUs 2 ' Wait for 2 microseconds
 GoTo Again ' Read the ADC forever

The layout below shows a typical setup for a simple ADC test using a potentiometer.

The inside pin of the
100KΩ potentiometer
is connected to Gnd,
the middle pin is con-
nected to AN0, and the
outside pin is con-
nected to 3V3. Use the
example from the pre-
vious page. Turning
the potentiometer
clockwise will increase
the voltage seen by the
ADC from 0 to 3.3
Volts. The value dis-
played will range from
0 to 1023 (10-bits).

See also : ADC macros, Rcin, Pot.

Proton Amicus18 Compiler

 74
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Asm..EndAsm

Syntax
 Asm
 assembler mnemonics
 EndAsm

 or

 @ assembler mnemonic

Overview
Incorporate in-line assembler in the BASIC code. The mnemonics are passed directly to the assembler
without the compiler interfering in any way. This allows a great deal of flexibility that cannot always be
achieved using BASIC commands alone.

When the Asm directive is found within the BASIC program, the RAM banks are Reset before the as-
sembler code is operated upon. The same happens when the EndAsm directive is found, in that the
RAM banks are Reset upon leaving the assembly code. However, this may not always be required and
can waste precious code memory. Placing a dash after Asm or EndAsm will remove the RAM Reset
mnemonics.

Asm-
EndAsm-

Only remove the RAM resets if you are confident enough to do so, as the microcontroller has frag-
mented RAM.

The compiler also allows assembler mnemonics to be used within the BASIC program without wrapping
them in Asm-EndAsm, however, the constants, labels, and variables used must be valid BASIC types.

Proton Amicus18 Compiler

 75
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Box

Syntax
Box Set_Clear, Xpos Start, Ypos Start, Size

Overview
Draw a square on a graphic LCD.

Operators

 Set_Clear may be a constant or variable that determines if the square will set or clear the pix-
els. A value of 1 will set the pixels and draw a square, while a value of 0 will clear any pixels and
erase a square.

 Xpos Start may be a constant or variable that holds the X position for the centre of the square.
Can be a value from 0 to 127.

 Ypos Start may be a constant or variable that holds the Y position for the centre of the square.
Can be a value from 0 to 63.

 Size may be a constant or variable that holds the Size of the square (in pixels). Can be a value
from 0 to 255.

Example
' Draw square at position 63,32 with size of 20 pixels on Samsung KS0108 LCD

 Dim Xpos as Byte
 Dim Ypos as Byte
 Dim Size as Byte
 Dim SetClr as Byte

 DelayMs 20 ' Wait for things to stabilise
 Cls ' Clear the LCD
 Xpos = 63
 Ypos = 32
 Size = 20
 SetClr = 1
 Box SetClr, Xpos, Ypos, Radius

Notes
Because of the aspect ratio of the pixels on the Samsung graphic LCD (approx 1.5 times higher than
wide) the square will appear elongated.

See Also : Circle, Line, LineTo, Plot, UnPlot.

Proton Amicus18 Compiler

 76
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Branch

Syntax
Branch Index, [Label1 {,...Labeln }]

Overview
Cause the program to jump to different locations based on a variable index. On a microcontroller device
with only one page of memory.

Operators

 Index is a constant, variable, or expression, that specifies the address to branch to.
 Label1,...Labeln are valid labels that specify where to branch to. A maximum of 256 labels may

be placed between the square brackets.

Example

Dim Index as Byte
Start:

Index = 2 ' Assign Index a value of 2
Branch Index,[Lab_0, Lab_1, Lab_2] ' Jump to Lab_2 because Index = 2

Lab_0:
Index = 2 ' Index now equals 2

 GoTo Start
Lab_1:

Index = 0 ' Index now equals 0
 GoTo Start
Lab_2:

Index = 1 ' Index now equals 1
 GoTo Start

The above example we first assign the index variable a value of 2, then we define our labels. Since the
first position is considered 0 and the variable index equals 2 the Branch command will cause the pro-
gram to jump to the third label in the brackets [Lab_2].

Notes
Branch operates the same as On x GoTo. It's useful when you want to organise a structure such as:

 If Var1 = 0 Then GoTo Lab_0 ' Var1 =0: go to label "Lab_0"
 If Var1 = 1 Then GoTo Lab_1 ' Var1 =1: go to label "Lab_1"
 If Var1 = 2 Then GoTo Lab_2 ' Var1 =2: go to label "Lab_2"

You can use Branch to organise this into a single statement:

 Branch Var1, [Lab_0, Lab_1, Lab_2]

This works exactly the same as the above If...Then example. If the value is not in range (in this case if
Var1 is greater than 2), Branch does nothing. The program continues with the next instruction..

See also : On GoTo

Proton Amicus18 Compiler

 77
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Break

Syntax
Break

Overview
Exit a For...Next, While...Wend or Repeat...Until loop prematurely.

Example 1
' Break out of a For-Next loop when the count reaches 10
 Dim Var1 as Byte
 For Var1 = 0 to 39 ' Create a loop of 40 revolutions
 HRsout Dec Var1,13 ' Display the revolutions on the serial terminal
 If Var1 = 10 Then Break ' Break out of the loop when Var1 = 10
 DelayMs 200 ' Delay so we can see what's happening
 Next ' Close the For-Next loop
 HRsout "Exited At ", Dec Var1, 13 ' Display value when loop was broke

Example 2
' Break out of a Repeat-Until loop when the count reaches 10
 Dim Var1 as Byte
 Var1 = 0
 Repeat ' Create a loop
 HRsout Dec Var1, 13 ' Display the revolutions on the serial terminal
 If Var1 = 10 Then Break ' Break out of the loop when Var1 = 10
 DelayMs 200 ' Delay so we can see what's happening
 Inc Var1
 Until Var1 > 39 ' Close the loop after 40 revolutions
 HRsout "Exited At ", Dec Var1, 13 ' Display value when loop was broke

Example 3
' Break out of a While-Wend loop when the count reaches 10
 Dim Var1 as Byte
 Var1 = 0
 While Var1 < 40 ' Create a loop of 40 revolutions
 HRsout Dec Var1, 13 ' Display the revolutions on the serial terminal
 If Var1 = 10 Then Break ' Break out of the loop when Var1 = 10
 DelayMs 200 ' Delay so we can see what's happening
 Inc Var1
 Wend ' Close the loop
 HRsout "Exited At ", Dec Var1, 13 ' Display value when loop was broke

Notes
The Break command is similar to a GoTo but operates internally. When the Break command is en-
countered, the compiler will force a jump to the loop's internal exit label.

If the Break command is used outside of a For-Next, Repeat-Until or While-Wend loop, an error
will be produced.

See also: For...Next, While...Wend, Repeat...Until.

Proton Amicus18 Compiler

 78
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Bstart

Syntax
Bstart

Overview
Send a Start condition to the I2C bus.

Notes
Because of the subtleties involved in interfacing to some I2C devices, the compiler's standard Busin,
and Busout commands were found lacking somewhat. Therefore, individual pieces of the I2C protocol
may be used in association with the new structure of Busin, and Busout. See relevant sections for
more information.

Example
' Interface to a 24LC256 serial eeprom
 Dim Loop as Byte
 Dim Array[10] as Byte
' Transmit bytes to the I2C bus
 Bstart ' Send a Start condition
 Busout %10100000 ' Target an eeprom, and send a WRITE command
 Busout 0 ' Send the High Byte of the address
 Busout 0 ' Send the Low Byte of the address
 For Loop = 48 to 57 ' Create a loop containing ASCII 0 to 9
 Busout Loop ' Send the value of Loop to the eeprom
 Next ' Close the loop
 Bstop ' Send a Stop condition
 DelayMs 10 ' Wait for the data to be entered into eeprom matrix
' Receive bytes from the I2C bus
 Bstart ' Send a Start condition
 Busout %10100000 ' Target an eeprom, and send a WRITE command
 Busout 0 ' Send the High Byte of the address
 Busout 0 ' Send the Low Byte of the address
 Brestart ' Send a Restart condition
 Busout %10100001 ' Target an eeprom, and send a Read command
 For Loop = 0 to 9 ' Create a loop
 Array[Loop] = Busin ' Load an array with bytes received
 If Loop = 9 Then Bstop : Else : BusAck ' ACK or Stop ?
 Next ' Close the loop
 HRsout Str Array, 13 ' Display the Array as a String

See also: Bstop, Brestart, BusAck, Busin, Busout, HbStart, HbRestart, HbusAck, Hbusin,

 Hbusout.

Proton Amicus18 Compiler

 79
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Bstop

Syntax
Bstop

Overview
Send a Stop condition to the I2C bus.

Brestart

Syntax
Brestart

Overview
Send a Restart condition to the I2C bus.

BusAck

Syntax
BusAck

Overview
Send an Acknowledge condition to the I2C bus.

BusNack

Syntax
BusNack

Overview
Send a Not Acknowledge condition to the I2C bus.

See also: Bstop, Bstart, Brestart, Busin, Busout, HbStart, HbRestart, HbusAck, HbusNack,

Hbusin, Hbusout.

Proton Amicus18 Compiler

 80
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Busin

Syntax
Variable = Busin Control, { Address }

or

Variable = Busin

or

Busin Control, { Address }, [Variable {, Variable…}]

or

Busin Variable

Overview
Receives a value from the I2C bus, and places it into variable/s. If versions two or four (see above) are
used, then No Acknowledge, or Stop is sent after the data. Versions one and three first send the control
and optional address out of the clock pin (SCL), and data pin (SDA).

Operators

 Variable is a user defined variable or constant.
 Control may be a constant value or a Byte sized variable expression.
 Address may be a constant value or a variable expression.

The four variations of the Busin command may be used within the same program. The second and
fourth types are useful for simply receiving a single byte from the bus, and must be used in conjunction
with one of the low level commands. i.e. Bstart, Brestart, BusAck, or Bstop. The first, and third
types may be used to receive several values and designate each to a separate variable, or variable type.

The Busin command operates as an I2C master, using the microcontroller’s MSSP module, and may be
used to interface with any device that complies with the 2-wire I2C protocol.

The most significant 7-bits of control byte contain the control code and the slave address of the device
being interfaced with. Bit-0 is the flag that indicates whether a read or write command is being imple-
mented.

For example, if we were interfacing to an external eeprom such as the 24LC256, the control code would
be %10100001 or $A1. The most significant 4-bits (1010) are the eeprom's unique slave address. Bits 1
to 3 reflect the three address pins of the eeprom. And bit-0 is set to signify that we wish to read from
the eeprom. Note that this bit is automatically set by the Busin command, regardless of its initial set-
ting.

Proton Amicus18 Compiler

 81
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Example
' Receive a byte from the I2C bus and place it into variable Var1.

 Dim Var1 as Byte ' We'll only read 8-bits
 Dim Address as Word ' 16-bit address required
 Symbol Control %10100001 ' Target an eeprom

Address = 20 ' Read the value at address 20
Var1 = Busin Control, Address ' Read the byte from the eeprom

or

Busin Control, Address, [Var1] ' Read the byte from the eeprom

Address, is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in this posi-
tion, the size of address is dictated by the size of the variable used (Byte or Word). In the case of the
previous eeprom interfacing, the 24LC256 eeprom requires a 16-bit address. While the smaller types
require an 8-bit address. Make sure you assign the right size address for the device interfaced with, or
you may not achieve the results you intended.

The value received from the bus depends on the size of the variables used, except for variation three,
which only receives a Byte (8-bits). For example:

 Dim WordVar as Word ' Create a Word size variable
 WordVar = Busin Control, Address

Will receive a 16-bit value from the bus. While:

 Dim Var1 as Byte ' Create a Byte size variable
 Var1 = Busin Control, Address

Will receive an 8-bit value from the bus.

Using the third variation of the Busin command allows differing variable assignments. For example:

 Dim Var1 as Byte
 Dim WordVar as Word
 Busin Control, Address, [Var1, WordVar]

Will receive two values from the bus, the first being an 8-bit value dictated by the size of variable Var1
which has been declared as a byte. And a 16-bit value, this time dictated by the size of the variable
WordVar which has been declared as a word. Of course, Bit type variables may also be used, but in
most cases these are not of any practical use as they still take up a byte within the eeprom.

The second and fourth variations allow all the subtleties of the I2C protocol to be exploited, as each op-
eration may be broken down into its constituent parts. It is advisable to refer to the datasheet of the
device being interfaced to fully understand its requirements. See section on Bstart, Brestart, BusAck,
or Bstop, for example code.

Declares
See Busout for declare explanations.

Notes
When the Busout command is used, the appropriate SDA and SCL Port and Pin are automatically setup
as inputs, and outputs.

Proton Amicus18 Compiler

 82
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Because the I2C protocol calls for an open-collector interface, pull-up resistors are required on both the
SDA and SCL lines. Values of 1KΩ to 4.7KΩ will suffice.

You may imagine that it's limiting having a fixed set of pins for the I2C interface, but you must remem-
ber that several different devices may be attached to a single bus, each having a unique slave address.
Which means there is usually no need to use up more than two pins on the microcontroller in order to
interface to many devices.

Str modifier with Busin
Using the Str modifier allows variations three and four of the Busin command to transfer the bytes re-
ceived from the I2C bus directly into a byte array. If the amount of received characters is not enough to
fill the entire array, then a formatter may be placed after the array's name, which will only receive char-
acters until the specified length is reached. An example of each is shown below:

 Dim Array[10] as Byte ' Define an array of 10 bytes
 Dim Address as Word ' Create a word sized variable

Address = 0
Busin %10100000, Address, [Str Array] ' Load data into all the array

' Load data into only the first 5 elements of the array
 Busin %10100000, Address, [Str Array\5]
 Bstart ' Send a Start condition
 Busout %10100000 ' Target an eeprom, and send a WRITE command
 Busout 0 ' Send the HighByte of the address
 Busout 0 ' Send the LowByte of the address
 Brestart ' Send a Restart condition
 Busout %10100001 ' Target an eeprom, and send a Read command
 Busin Str Array ' Load all the array with bytes received
 Bstop ' Send a Stop condition

An alternative ending to the above example is:

 Busin Str Array\5 ' Load data into only the first 5 elements of the array
 Bstop ' Send a Stop condition

See also : BusAck, BusNack, Bstart, Brestart, Bstop, Busout, HbStart, HbRestart, HbusAck,

HbusNack, Hbusin, Hbusout.

Proton Amicus18 Compiler

 83
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Busout

Syntax
Busout Control, { Address }, [Variable {, Variable…}]

or

Busout Variable

Overview
Transmit a value to the I2C bus, by first sending the control and optional address out of the clock pin
(SCL), and data pin (SDA). Or alternatively, if only one operator is included after the Busout command,
a single value will be transmitted, along with an ACK reception.

Operators

 Variable is a user defined variable or constant.
 Control may be a constant value or a Byte sized variable expression.
 Address may be a constant, variable, or expression.

The Busout command operates as an I2C master and may be used to interface with any device that
complies with the 2-wire I2C protocol.

The most significant 7-bits of control byte contain the control code and the slave address of the device
being interfaced with. Bit-0 is the flag that indicates whether a read or write command is being imple-
mented.

For example, if we were interfacing to an external eeprom such as the 24LC256, the control code would
be %10100000 or $A0. The most significant 4-bits (1010) are the eeprom's unique slave address. Bits 1
to 3 reflect the three address pins of the eeprom. And Bit-0 is clear to signify that we wish to write to
the eeprom. Note that this bit is automatically cleared by the Busout command, regardless of its initial
value.

Example
' Send a byte to the I2C bus
 Dim Var1 as Byte ' We'll only read 8-bits
 Dim Address as Word ' 16-bit address required
 Symbol Control = %10100000 ' Target an eeprom
 Address = 20 ' Write to address 20
 Var1 = 200 ' The value place into address 20
 Busout Control, Address, [Var1] ' Send the byte to the eeprom
 DelayMs 10 ' Allow time for allocation of byte

Address, is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in this posi-
tion, the size of address is dictated by the size of the variable used (Byte or Word). In the case of the
above eeprom interfacing, the 24LC256 eeprom requires a 16-bit address. While the smaller types re-
quire an 8-bit address. Make sure you assign the right size address for the device interfaced with, or you
may not achieve the results you intended.

Proton Amicus18 Compiler

 84
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The value sent to the bus depends on the size of the variables used. For example:

 Dim WordVar as Word ' Create a Word size variable
 Busout Control, Address, [WordVar]

Will send a 16-bit value to the bus. While:

 Dim Var1 as Byte ' Create a Byte size variable
 Busout Control, Address, [Var1]

Will send an 8-bit value to the bus.

Using more than one variable within the brackets allows differing variable sizes to be sent. For example:

 Dim ByteVar as Byte
 Dim WordVar as Word
 Busout Control, Address, [Var1, WordVar]

Will send two values to the bus, the first being an 8-bit value dictated by the size of variable ByteVar
which has been declared as a byte. And a 16-bit value, this time dictated by the size of the variable
WordVar which has been declared as a word. Of course, Bit type variables may also be used, but in
most cases these are not of any practical use as they still take up a byte within the eeprom.

A string of characters can also be transmitted, by enclosing them in quotes:

 Busout Control, Address, ["Hello World", ByteVar, WordVar]

Using the second variation of the Busout command, necessitates using the low level commands i.e.
Bstart, Brestart, BusAck, or Bstop.

Using the Busout command with only one value after it, sends a byte of data to the I2C bus, and re-
turns holding the Acknowledge reception. This acknowledge indicates whether the data has been re-
ceived by the slave device.

The ACK reception is returned in the microcontroller’s CARRY flag, which is STATUSbits_C, and also Sys-
tem variable PP4.0. A value of zero indicates that the data was received correctly, while a one indicates
that the data was not received, or that the slave device has sent a NACK return. You must read and un-
derstand the datasheet for the device being interfacing to, before the ACK return can be used success-
fully. An code snippet is shown below:

' Transmit a byte to a 24LC256 I2C eeprom
 Dim PP4 as Byte System ' Bring the system variable into the BASIC program

Bstart ' Send a Start condition
 Busout %10100000 ' Target an eeprom, and send a WRITE command
 Busout 0 ' Send the High Byte of the address
 Busout 0 ' Send the Low Byte of the address
 Busout "A" ' Send the value 65 to the bus
 If PP4.0 = 1 Then GoTo Not_Received ' Has ACK been received OK ?
 Bstop ' Send a Stop condition
 DelayMs 10 ' Wait for the data to be entered into eeprom
 Stop
Not_Received: ' Come here if the byte was not received correctly
 Hrsout "A"

Proton Amicus18 Compiler

 85
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Str modifier with Busout.
The Str modifier is used for transmitting a string of bytes from a byte array variable. A string is a set of
bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3 would be stored
in a string with the value 1 first, followed by 2 then followed by the value 3. A byte array is a similar
concept to a string; it contains data that is arranged in a certain order. Each of the elements in an array
is the same size. The string 1,2,3 would be stored in a byte array containing three bytes (elements).

Below is an example that sends four bytes from an array:

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 MyArray[0] = "A" ' Load the first 4 bytes of the array
 MyArray[1] = "B" ' With the data to send
 MyArray[2] = "C"
 MyArray[3] = "D"
 Busout %10100000, Address, [Str MyArray\4] ' Send 4-byte string.

Note that we use the optional \n argument of Str. If we didn't specify this, the program would try to
keep sending characters until all 10 bytes of the array were transmitted. Since we do not wish all 10
bytes to be transmitted, we chose to tell it explicitly to only send the first 4 bytes.

The above example may also be written as:

 Dim MyArray[10] as Byte ' Create a 10-byte array
 Str MyArray = "ABCD" ' Load the first 4 bytes of the array
 Bstart ' Send a Start condition
 Busout %10100000 ' Target an eeprom, and send a WRITE command
 Busout 0 ' Send the High Byte of the address
 Busout 0 ' Send the Low Byte of the address
 Busout Str MyArray\4 ' Send 4-byte string.
 Bstop ' Send a Stop condition

The above example, has exactly the same function as the previous one. The only differences are that
the string is now constructed using the Str as a command instead of a modifier, and the low-level HBUS
commands have been used.

Declares
There are three Declare directives for use with Busout.
These are:

Declare SDA_Pin Port . Pin
Declares the port and pin used for the data line (SDA). This may be any valid port on the microcontrol-
ler. If this declare is not issued in the BASIC program, then the default Port and Pin is PortA.0

Declare SCL_Pin Port . Pin
Declares the port and pin used for the clock line (SCL). This may be any valid port on the microcontrol-
ler. If this declare is not issued in the BASIC program, then the default Port and Pin is PortA.1

These declares, as is the case with all the Declares, may only be issued once in any single program, as
they setup the I2C library code at design time.

Proton Amicus18 Compiler

 86
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Declare Slow_Bus On - Off or 1 - 0
Slows the bus speed when using an oscillator higher than 4MHz.

The standard speed for the I2C bus is 100KHz. Some devices use a higher bus speed of 400KHz. If you
use an 8MHz or higher oscillator, the bus speed may exceed the devices specs, which will result in in-
termittent transactions, or in some cases, no transactions at all. Therefore, use this Declare if you are
not sure of the device's spec. The datasheet for the device used will inform you of its bus speed.

Notes
When the Busout command is used, the appropriate SDA and SCL Port and Pin are automatically setup
as inputs, and outputs.

Because the I2C protocol calls for an open-collector interface, pull-up resistors are required on both the
SDA and SCL lines. Values of 1KΩ to 4.7KΩ will suffice.

You may imagine that it's limiting having a fixed set of pins for the I2C interface, but you must remem-
ber that several different devices may be attached to a single bus, each having a unique slave address.
Which means there is usually no need to use up more than two pins on the microcontroller, in order to
interface to many devices.

A typical use for the I2C commands is for interfacing with serial
eeproms. Shown right are the connections to the I2C bus of a
24LC256 serial eeprom.

And here’s what it would look like built on the Amicus Companion shield:

See also : BusAck, BusNack, Bstart, Brestart, Bstop, Busin, HbStart, HbRestart, HbusAck,
HbusNack, Hbusin, Hbusout.

VCC
WP

SCL

A1
A2

VSS

24LC256

7

8

A0

SDA

1

2

3

4

6

5

3.3 Volts

R2
4.7kΩ

R1
4.7kΩ

RC4

RC3

Proton Amicus18 Compiler

 87
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Button

Syntax
Button Pin, DownState, Delay, Rate, Workspace, TargetState, Label

Overview
Debounce button input, perform auto-repeat, and branch to address if button is in target state.
Button circuits may be active-low or active-high.

Operators

 Pin is a Port.Bit, constant, or variable (0 - 15), that specifies the I/O pin to use. This pin will
automatically be set to input.

 DownState is a variable, constant, or expression (0 or 1) that specifies which logical state oc-
curs when the button is pressed.

 Delay is a variable, constant, or expression (0 - 255) that specifies how long the button must be
pressed before auto-repeat starts. The delay is measured in cycles of the Button routine. Delay
has two special settings: 0 and 255. If Delay is 0, Button performs no debounce or auto-repeat.
If Delay is 255, Button performs debounce, but no auto-repeat.

 Rate is a variable, constant, or expression (0 – 255) that specifies the number of cycles between
auto-repeats. The rate is expressed in cycles of the Button routine.

 Workspace is a byte variable used by Button for workspace. It must be cleared to 0 before be-
ing used by Button for the first time and should not be adjusted outside of the Button command.

 TargetState is a variable, constant, or expression (0 or 1) that specifies which state the button
should be in for a branch to occur. (0 = not pressed, 1 = pressed).

 Label is a label that specifies where to branch if the button is in the target state.

Example

Dim BtnVar as Byte ' Workspace for Button instruction.
Loop:
' Go to NoPress unless BtnVar = 0

Button 0, 0, 255, 250, BtnVar, 0, NoPress
HRsout "Button Pressed\r"

NoPress:
GoTo Loop

Notes
When a button is pressed, the contacts make or break a connection. A short (1 to 20ms) burst of noise
occurs as the contacts scrape and bounce against each other. Button’s debounce feature prevents this
noise from being interpreted as more than one switch action.

Button also reacts to a button press the way a computer keyboard does to a key press. When a key is
pressed, a character immediately appears on the screen. If the key is held down, there’s a delay, then a
rapid stream of characters appears on the screen. Button’s auto-repeat function can be set up to work
much the same way.

Button is designed for use inside a program loop. Each time through the loop, Button checks the state
of the specified pin. When it first matches DownState, the switch is debounced. Then, as dictated by
TargetState, it either branches to address (TargetState = 1) or doesn’t (TargetState = 0).

Proton Amicus18 Compiler

 88
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

If the switch stays in DownState, Button counts the number of program loops that execute. When this
count equals Delay, Button once again triggers the action specified by TargetState and address. There-
after, if the switch remains in DownState, Button waits Rate number of cycles between actions. The
Workspace variable is used by Button to keep track of how many cycles have occurred since the pin
switched to TargetState or since the last auto-repeat.

Button does not stop program execution. In order for its delay and auto repeat functions to work prop-
erly, Button must be executed from within a program loop.

A suitable layout for use with Button is shown below.

The suitable program to allow the layout above to operate is shown below:

Dim BtnVar as Byte ' Workspace for Button instruction.
Symbol LED = RB1 ' Alias name LED to RB0 (PortB.0)

 While 1 = 1 ' Create an endless loop
' Go to NoPress unless BtnVar = 0.

Button 0, 0, 255, 250, BtnVar, 0, NoPress
High LED ' Illuminate the LED
DelayMs 1000 ' Wait for 1 second

NoPress:
 Low LED ' Extinguish the LED if no button pressed

Wend ' Do it forever

When the button is pressed, the LED will illuminate for 1 second.

Don’t forget to move jumper Q3 to the Gnd position, so that the RB1 line becomes Ground.

Proton Amicus18 Compiler

 89
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Call

Syntax
Call Label

Overview
Execute the assembly language subroutine named label.

Operators

 Label must be a valid label name.

Example
' Call an assembler routine
 Call Asm_Sub

 Asm
 Asm_Sub
 {mnemonics}
 Return
 EndAsm

Notes
The GoSub command is usually used to execute a BASIC subroutine. However, if your subroutine hap-
pens to be written in assembler, the Call command should be used. The main difference between Go-
Sub and Call is that when Call is used, the label's existence is not checked until assembly time. Using
Call, a label in an assembly language section can be accessed that would otherwise be inaccessible to
GoSub. This also means that any errors produced will be assembler types.

The Call command adds Bank switching instructions prior to actually calling the subroutine, however, if
Call is used in an all assembler environment, the extra mnemonics preceding the command can inter-
fere with carefully sculptured code such as Bit tests etc. By wrapping the subroutine's name in paren-
thesis, the Bank instruction is suppressed, and the Call command becomes the Call mnemonic.

 Call (Subroutine_Name)

See also : GoSub, GoTo.

Proton Amicus18 Compiler

 90
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Cdata

Syntax
Cdata { alphanumeric data }

Overview
Place information directly into memory for access by Cread and Cwrite.

Operators

 alphanumeric data can be any value, alphabetic character, or string enclosed in quotes (") or
numeric data without quotes.

The Cread, Lread, Lread8, Lread16, Lread32 and Cwrite commands can use a label address as a
location variable. For example:

Example
 Dim Dbyte as Byte
 Dim Loop as Byte
 For Loop = 0 to 9 ' Create a loop of 10
 Dbyte = Cread CodeString + Loop ' Read memory location CodeString+ Loop
 HRsout Dbyte ' Display the value read
 Next
 HRsout 13 ' Terminate the line

For Loop = 0 to 9 ' Create a loop of 10
 Dbyte = Lread CodeString + Loop ' Read memory location CodeString + Loop
 HRsout Dbyte ' Display the value read
 Next
 Stop
CodeString:

Cdata "Hello World" ' Create a string of text in code memory

The program above reads and displays 10 values from the address located by the Label accompanying
the Cdata command. Resulting in "Hello Worl" being displayed.

Using the read8 command is even easier:

 Dim Dbyte as Byte
 Dim Loop as Byte
 For Loop = 0 to 9 ' Create a loop of 10
 Dbyte = Lread8 CodeString[Loop] ' Read memory location CodeString + Loop
 HRsout Dbyte ' Display the value read
 Next
 HRsout 13 ' Terminate the line
 Stop
CodeString:

Cdata "Hello World" ' Create a string of text in code memory

Proton Amicus18 Compiler

 91
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Formatting a Cdata table.
Sometimes it is necessary to create a data table with a known format for its values. For example all val-
ues will occupy 4 bytes of data space even though the value itself would only occupy 1 or 2 bytes.

 Cdata 100000, 10000, 1000, 100, 10, 1

The above line of code would produce an uneven code space usage, as each value requires a different
amount of code space to hold the values. 100000 would require 4 bytes of code space, 10000 and 1000
would require 2 bytes, but 100, 10, and 1 would only require 1 byte.

Reading these values using Cread or Lread would cause problems because there is no way of knowing
the amount of bytes to read in order to increment to the next valid value.

The answer is to use formatters to ensure that a value occupies a predetermined amount of bytes.
These are:

 Byte
 Word
 Dword
 Float

Placing one of these formatters before the value in question will force a given length.

Cdata Dword 100000, Dword 10000, Dword 1000 ,_
 Dword 100, Dword 10, Dword 1

Byte will force the value to occupy one byte of code space, regardless of it's value. Any values above
255 will be truncated to the least significant byte.

Word will force the value to occupy 2 bytes of code space, regardless of its value. Any values above
65535 will be truncated to the two least significant bytes. Any value below 255 will be padded to bring
the memory count to 2 bytes.

Dword will force the value to occupy 4 bytes of code space, regardless of its value. Any value below
65535 will be padded to bring the memory count to 4 bytes. The line of code shown above uses the
Dword formatter to ensure all the values in the Cdata table occupy 4 bytes of code space.

Float will force a value to its floating point equivalent, which always takes up 4 bytes of code space.

Proton Amicus18 Compiler

 92
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

If all the values in an Cdata table are required to occupy the same amount of bytes, then a single for-
matter will ensure that this happens.

 Cdata as Dword 100000, 10000, 1000, 100, 10, 1

The above line has the same effect as the formatter previous example using separate Dword formatters,
in that all values will occupy 4 bytes, regardless of their value. All four formatters can be used with the
as keyword.

The example below illustrates the formatters in use.

' Convert a Dword value into a string array using only BASIC commands
' Similar principle to the Str$ command

 Dim P10 as Dword ' Power of 10 variable
 Dim Cnt as Byte
 Dim J as Byte
 Dim Value as Dword ' Value to convert
 Dim String1 as String * 11 ' Holds the converted value
 Dim Ptr as Byte ' Pointer within the Byte array

 Clear ' Clear all RAM before we start
 Value = 1234576 ' Value to convert
 GoSub DwordToStr ' Convert Value to string
 HRsout String1, 13 ' Display the result
 Stop
' Convert a Dword value into a string array
' Value to convert is placed in 'Value'
' Byte array 'String1' is built up with the ASCII equivalent
DwordToStr:
 Ptr = 0
 J = 0
 Repeat
 P10 = Cread DwordTbl + (J * 4)
 Cnt = 0
 While Value >= P10
 Value = Value - P10
 Inc Cnt
 Wend
 If Cnt <> 0 Then
 String1[Ptr] = Cnt + "0"
 Inc Ptr
 EndIf
 Inc J
 Until J > 8

 String1[Ptr] = Value + "0"
 Inc Ptr
 String1[Ptr] = 0 ' Add the null to terminate the string
 Return

' Cdata table is formatted for all 32 bit values.
' Which means each value will require 4 bytes of code space
DwordTbl:

Cdata as Dword 1000000000, 100000000, 10000000, 1000000, 100000,_
 10000, 1000, 100, 10

Proton Amicus18 Compiler

 93
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Label names as pointers.
If a label's name is used in the list of values in a Cdata table, the labels address will be used. This is
useful for accessing other tables of data using their address from a lookup table. See example below.

' Display text from two Cdata tables
' Based on their address located in a separate table

 Dim Address as Word

Dim Loop as Word
Dim DataByte as Byte

Address = Cread AddrTable ' Locate the address of the first string
While 1 = 1 ' Create an infinite loop

DataByte = Cread Address ' Read each character from the Cdata string
If DataByte = 0 Then Break ' Exit if null found
HRsout DataByte ' Display the character
Inc Address ' Next character

Wend ' Close the loop
Hrsout 13 ' Move to line 2 of the serial terminal

Address = Cread AddrTable + 2 ' Locate the address of the second string
While 1 = 1 ' Create an infinite loop

DataByte = Cread Address ' Read each character from the Cdata string
If DataByte = 0 Then Break ' Exit if null found
Print DataByte ' Display the character
Inc Address ' Next character

Wend ' Close the loop
Stop

AddrTable: ' Table of address's

Cdata Word String1, Word String2
String1:

Cdata "HELLO", 0
String2:

Cdata "WORLD", 0

See also : Cread, Cwrite, Cdata, Lread, Lread8, Lread16, Lread32.

Proton Amicus18 Compiler

 94
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Cerase

Syntax
Cerase Address

Overview
Erase code memory in blocks of 64 bytes.

Operators

 Address is a constant, variable, label, or expression that represents a valid location within the
microcontroller’s code (flash) memory.

Example
' Write to a code memory location within the microcontroller

 Dim Var1 as Byte
 Dim WordVar as Word
 Var1 = 234
 WordVar = 1043
'
' Erase a 64 byte block of code memory
'

Cerase WriteHere
'
' Write to code memory, as a block of 32 bytes
'
 Cwrite WriteHere, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,_

 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,_
 21, 22, 23, 24, 25, 26, 27, 28, 29, Var1, WordVar]

Stop
'
' This is where the data will be written too
' It must be placed on a 64 byte boundary
'
 Org $0200 ' Place the label WriteHere at address $0200 (512)
 ' Make sure this will not overwrite your existing code
WriteHere:

Notes
Code memory must be erased using the Cerase command before writing to it. Code memory can only
be erased in blocks of 64 bytes and on a 64 byte boundary.

Code memory can only be written in blocks of 32 bytes. Any less will not be written.

See section 6.0 of the PIC18F25K20 data sheet for more details concerning code (flash) memory read-
ing, writing and erasing.

See also : Cdata, Cread, Cwrite, Lread, Lread8, Lread16, Lread32.

Proton Amicus18 Compiler

 95
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Circle

Syntax
Circle Set_Clear, Xpos, Ypos, Radius

Overview
Draw a circle on a graphic LCD.

Operators

 Set_Clear may be a constant or variable that determines if the circle will set or clear the pixels.
A value of 1 will set the pixels and draw a circle, while a value of 0 will clear any pixels and erase
a circle.

 Xpos may be a constant or variable that holds the X position for the centre of the circle. Can be
a value from 0 to the X resolution of the display.

 Ypos may be a constant or variable that holds the Y position for the centre of the circle. Can be
a value from 0 to the Y resolution of the display.

 Radius may be a constant or variable that holds the Radius of the circle. Can be a value from 0
to 255.

Example
' Draw circle at pos63,32 with a radius of 20 pixels on a Samsung KS0108 LCD

 Dim Xpos as Byte
 Dim Ypos as Byte
 Dim Radius as Byte
 Dim SetClr as Byte

 DelayMs 200 ' Wait for things to stabilise
 Cls ' Clear the LCD
 Xpos = 63
 Ypos = 32
 Radius = 20
 SetClr = 1
 Circle SetClr, Xpos, Ypos, Radius

Notes
Because of the aspect ratio of the pixels on the samsung graphic LCD (approx 1.5 times higher than
wide) the circle will appear elongated.

See Also : Box, Line, Pixel, Plot, UnPlot.

Proton Amicus18 Compiler

 96
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Clear

Syntax
Clear Variable or Variable.Bit

or

Clear

Overview
Place a variable or bit in a low state. For a variable, this means filling it with 0's. For a bit this means
setting it to 0.

Clear has another purpose. If no variable is present after the command, all RAM area on the microcon-
troller is cleared.

Operators

 Variable can be any variable or register.
 Variable.Bit can be any variable and bit combination.

Example
 Clear ' Clear ALL RAM area
 Clear Var1.3 ' Clear bit 3 of Var1
 Clear Var1 ' Load Var1 with the value of 0
 Clear STATUS.0 ' Clear the carry flag
 Clear Array ' Clear all of an Array variable. i.e. Reset to zero’s
 Clear String1 ' Clear all of a String variable. i.e. Reset to zero’s

Notes
There is a major difference between the Clear and Low commands. Clear does not alter the Tris regis-
ter if a Port is targeted.

See Also : Set, Low, High

Proton Amicus18 Compiler

 97
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

ClearBit

Syntax
ClearBit Variable, Index

Overview
Clear a bit of a variable or register using a variable index to the bit of interest.

Operators

 Variable is a user defined variable, of type Byte, Word, or Dword.
 Index is a constant, variable, or expression that points to the bit within Variable that requires

clearing.

Example
' Clear then Set each bit of variable ExVar
 Dim ExVar as Byte
 Dim Index as Byte
 ExVar = %11111111
 For Index = 0 to 7 ' Create a loop for 8 bits
 ClearBit ExVar,Index ' Clear each bit of ExVar
 HRsout Bin8 ExVar,13 ' Display the binary result
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 HRsout 13
 For Index = 7 to 0 Step -1 ' Create a loop for 8 bits
 SetBit ExVar,Index ' Set each bit of ExVar
 HRsout Bin8 ExVar, 13 ' Display the binary result
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 Hrsout 13

Notes
There are many ways to clear a bit within a variable, however, each method requires a certain amount
of manipulation, either with rotates, or alternatively, the use of indirect addressing using the FSRx, and
INDFx registers. Each method has its merits, but requires a certain amount of knowledge to accomplish
the task correctly. The ClearBit command makes this task extremely simple using a register rotate
method, however, this is not necessarily the quickest method, or the smallest, but it is the easiest. For
speed and size optimisation, there is no shortcut to experience.

To Clear a known constant bit of a variable or register, then access the bit directly using Port.n.

PortA.1 = 0
or

Var1.4 = 0

If a Port is targeted by ClearBit, the Tris register is not affected.

See also : GetBit, LoadBit, SetBit.

Proton Amicus18 Compiler

 98
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Cls

Syntax
Cls

Or if using a Toshiba T6963 graphic LCD

Cls Text
Cls Graphic

Overview
Clears the alphanumeric or graphic LCD and places the cursor at the home position i.e. line 1, position 1
(line 0, position 0 for graphic LCDs).

Toshiba graphic LCDs based upon the T6963 chipset have separate RAM for text and graphics. Issuing
the word Text after the Cls command will only clear the Text RAM, while issuing the word Graphic after
the Cls command will only clear the Graphic RAM. Issuing the Cls command on its own will clear both
areas of RAM.

Example 1
' Clear an alphanumeric or Samsung KS0108 graphic LCD
 Cls ' Clear the LCD
 Print "HELLO" ' Display the word "HELLO" on the LCD
 Cursor 2, 1 ' Move the cursor to line 2, position 1
 Print "WORLD" ' Display the word "WORLD" on the LCD
 Stop

In the above example, the LCD is cleared using the Cls command, which also places the cursor at the
home position i.e. line 1, position 1. Next, the word HELLO is displayed in the top left corner. The cursor
is then moved to line 2 position 1, and the word WORLD is displayed.

Example 2
' Clear a Toshiba T6963 graphic LCD.
 Cls ' Clear all RAM within the LCD
 Print "HELLO" ' Display the word “HELLO” on the LCD
 Line 1,0,0,63,63 ' Draw a line on the LCD
 DelayMs 1000 ' Wait for 1 second
 Cls Text ' Clear only the text RAM, leaving the line displayed
 DelayMs 1000 ' Wait for 1 second
 Cls Graphic ' Now clear the line from the display
 Stop

Notes
The Cls command will also initialise any of the above LCDs. (set the ports to inputs/outputs etc), how-
ever, this is most important to Toshiba graphic LCDs, and the Cls command should always be placed at
the head of the BASIC program, prior to issuing any command that interfaces with the LCD. i.e. Print,
Plot etc.

See also : Cursor, Print, Toshiba_Command.

Proton Amicus18 Compiler

 99
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Config_Start – Config_End

Syntax
Config_Start
{ configuration fuse settings }
Config_End

Overview
Enable or Disable particular fuse settings on the microcontroller.

Operators
Refer to the PIC18F25K20 data sheet (section 23) for details concerning fuse settings.

Example
' Disable Watchdog timer and specify an HS oscillator etc
Config_Start
 DEBUG = Off ' Background debugger disabled; RB6/RB7 configured as I/O
 XINST = Off ' Instruction set extension mode disabled
 STVREN = Off ' Reset on stack overflow/underflow disabled
 WDTEN = Off ' WatchDog Timer disabled (control is placed on SWDTEN bit)
 FCMEN = Off ' Fail-Safe Clock Monitor disabled
 FOSC = HSPLL ' HS oscillator, PLL enabled and under software control
 IESO = Off ' Two-Speed Start-up disabled
 WDTPS = 128 ' Watchdog oscillator prescaler 1:128
 BOREN = Off ' Brown-out Reset disabled in hardware and software
 BORV = 18 ' VBOR set to 1.8 V nominal
 MCLRE = On ' MCLR pin enabled, RE3 input pin disabled
 HFOFST = Off ' The clock is held off until the HF-INTOSC is stable.
 LPT1OSC = On ' Timer1 operates in standard power mode
 PBADEN = Off ' PORTB<4:0> pins are configured as digital I/O on Reset
 CCP2MX = PORTC ' CCP2 input/output is multiplexed with RC1
 LVP = Off ' Single-Supply ICSP disabled
 CP0 = Off ' Block 0 (000800-001FFFh) not code-protected
 CP1 = Off ' Block 1 (002000-003FFFh) not code-protected
 CPB = Off ' Boot block (000000-0007FFh) not code-protected
 CPD = Off ' Data EEPROM not code-protected
 WRT0 = Off ' Block 0 (000800-001FFFh) not write-protected
 WRT1 = Off ' Block 1 (002000-003FFFh) not write-protected
 WRTB = Off ' Boot block (000000-0007FFh) not write-protected
 WRTC = Off ' Config registers (300000-3000FFh) not write-protected
 WRTD = Off ' Data EEPROM not write-protected
 EBTR0 = Off ' Block 0 (000800-001FFFh) not protected from table reads
 ' executed in other blocks
 EBTR1 = Off ' Block 1 (002000-003FFFh) not protected from table reads

' executed in other blocks
 EBTRB = Off ' Boot block (000000-0007FFh) not protected from reads

' executed in other blocks
Config_End

The configs shown are the defaults used within the Amicus18 microcontroller.

Any errors in the fuse setting texts will result in Assembler errors being produced.

Notes
Always apply all the fuse settings, even if they are being disabled.

It’s important to remember that custom fuse configurations will not take effect when using the boot-
loader, as this defaults to the above settings. In order to use custom fuse settings, a device programmer
such as the PICkit2 will be required.

Proton Amicus18 Compiler

 100
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Below are all the fuse setting that are allowed within the Config_Start and Config_End block.

Oscillator Selection bits:
FOSC = LP LP oscillator

FOSC = XT XT oscillator

FOSC = HS HS oscillator

FOSC = RC External RC oscillator, CLKOUT function on RA6

FOSC = EC EC oscillator, CLKOUT function on RA6

FOSC = ECIO6 EC oscillator, port function on RA6

FOSC = HSPLL HS oscillator, PLL enabled (Clock Frequency = 4 x FOSC1)

FOSC = RCIO6 External RC oscillator, port function on RA6

FOSC = INTIO67 Internal oscillator block, port function on RA6 and RA7

FOSC = INTIO7 Internal oscillator block, CLKOUT function on RA6, port function on RA7

Fail-Safe Clock Monitor Enable bit:
FCMEN = OFF Fail-Safe Clock Monitor disabled

FCMEN = ON Fail-Safe Clock Monitor enabled

Internal/External Oscillator Switchover bit:
IESO = OFF Oscillator Switchover mode disabled

IESO = ON Oscillator Switchover mode enabled

Power-up Timer Enable bit:
PWRT = ON PWRT enabled

PWRT = OFF PWRT disabled

Brown-out Reset Enable bits:
BOREN = OFF Brown-out Reset disabled in hardware and software

BOREN = ON Brown-out Reset enabled and controlled by software (SBOREN is enabled)

BOREN = NOSLP Brown-out Reset enabled in hardware only and disabled in Sleep mode (SBOREN is disabled)

BOREN = SBORDIS Brown-out Reset enabled in hardware only (SBOREN is disabled)

Brown Out Voltage:
BORV = 30 VBOR set to 3.0 V nominal

BORV = 27 VBOR set to 2.7 V nominal

BORV = 22 VBOR set to 2.2 V nominal

BORV = 18 VBOR set to 1.8 V nominal

Proton Amicus18 Compiler

 101
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Watchdog Timer Enable bit:
WDTEN = OFF WDT is controlled by SWDTEN bit of the WDTCON register

WDTEN = ON WDT is always enabled. SWDTEN bit has no effect.

Watchdog Timer Postscale Select bits:
WDTPS = 1 1:1

WDTPS = 2 1:2

WDTPS = 4 1:4

WDTPS = 8 1:8

WDTPS = 16 1:16

WDTPS = 32 1:32

WDTPS = 64 1:64

WDTPS = 128 1:128

WDTPS = 256 1:256

WDTPS = 512 1:512

WDTPS = 1024 1:1024

WDTPS = 2048 1:2048

WDTPS = 4096 1:4096

WDTPS = 8192 1:8192

WDTPS = 16384 1:16384

WDTPS = 32768 1:32768

MCLR Pin Enable bit:
MCLRE = OFF RE3 input pin enabled; MCLR disabled

MCLRE = ON MCLR pin enabled, RE3 input pin disabled

HF-INTOSC Fast Startup:
HFOFST = OFF The system clock is held off until the HF-INTOSC is stable.

HFOFST = ON HF-INTOSC starts clocking the CPU without waiting for the oscillator to stablize.

Low-Power Timer1 Oscillator Enable bit:
LPT1OSC = OFF Disabled, T1 operates in standard power mode.

LPT1OSC = ON Timer1 configured for low-power operation

PORTB A/D Enable bit:
PBADEN = OFF PORTB<4:0> pins are configured as digital I/O on Reset

PBADEN = ON PORTB<4:0> pins are configured as analog input channels on Reset

Proton Amicus18 Compiler

 102
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

CCP2 Mux bit:
CCP2MX = PORTBE CCP2 input/output is multiplexed with RB3

CCP2MX = PORTC CCP2 input/output is multiplexed with RC1

Stack Full/Underflow Reset Enable bit:
STVREN = OFF Stack full/underflow will not cause Reset

STVREN = ON Stack full/underflow will cause Reset

Single-Supply ICSP Enable bit:
LVP = OFF Single-Supply ICSP disabled

LVP = ON Single-Supply ICSP enabled

Extended Instruction Set Enable bit:
XINST = OFF Instruction set extension and Indexed Addressing mode disabled (Legacy mode)

XINST = ON Instruction set extension and Indexed Addressing mode enabled

Background Debugger Enable bit:
DEBUG = ON Background debugger enabled, RB6 and RB7 are dedicated to In-Circuit Debug

DEBUG = OFF Background debugger disabled, RB6 and RB7 configured as general purpose I/O pins

Code Protection Block 0:
CP0 = ON Block 0 (000800-001FFFh) code-protected

CP0 = OFF Block 0 (000800-001FFFh) not code-protected

Code Protection Block 1:
CP1 = ON Block 1 (002000-003FFFh) code-protected

CP1 = OFF Block 1 (002000-003FFFh) not code-protected

Code Protection Block 2:
CP2 = ON Block 2 (004000-005FFFh) code-protected

CP2 = OFF Block 2 (004000-005FFFh) not code-protected

Code Protection Block 3:
CP3 = ON Block 3 (006000-007FFFh) code-protected

CP3 = OFF Block 3 (006000-007FFFh) not code-protected

Boot Block Code Protection bit:
CPB = ON Boot block (000000-0007FFh) code-protected

CPB = OFF Boot block (000000-0007FFh) not code-protected

Proton Amicus18 Compiler

 103
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Data EEPROM Code Protection bit:
CPD = ON Data EEPROM code-protected

CPD = OFF Data EEPROM not code-protected

Write Protection Block 0:
WRT0 = ON Block 0 (000800-001FFFh) write-protected

WRT0 = OFF Block 0 (000800-001FFFh) not write-protected

Write Protection Block 1:
WRT1 = ON Block 1 (002000-003FFFh) write-protected

WRT1 = OFF Block 1 (002000-003FFFh) not write-protected

Write Protection Block 2:
WRT2 = ON Block 2 (004000-005FFFh) write-protected

WRT2 = OFF Block 2 (004000-005FFFh) not write-protected

Write Protection Block 3:
WRT3 = ON Block 3 (006000-007FFFh) write-protected

WRT3 = OFF Block 3 (006000-007FFFh) not write-protected

Boot Block Write Protection bit:
WRTB = ON Boot block (000000-0007FFh) write-protected

WRTB = OFF Boot block (000000-0007FFh) not write-protected

Configuration Register Write Protection bit:
WRTC = ON Configuration registers (300000-3000FFh) write-protected

WRTC = OFF Configuration registers (300000-3000FFh) not write-protected

Data EEPROM Write Protection bit:
WRTD = ON Data EEPROM write-protected

WRTD = OFF Data EEPROM not write-protected

Table Read Protection Block 0:
EBTR0 = ON Block 0 (000800-001FFFh) protected from table reads executed in other blocks

EBTR0 = OFF Block 0 (000800-001FFFh) not protected from table reads executed in other blocks

Table Read Protection Block 1:
EBTR1 = ON Block 1 (002000-003FFFh) protected from table reads executed in other blocks

EBTR1 = OFF Block 1 (002000-003FFFh) not protected from table reads executed in other blocks

Proton Amicus18 Compiler

 104
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Table Read Protection Block 2:
EBTR2 = ON Block 2 (004000-005FFFh) protected from table reads executed in other blocks

EBTR2 = OFF Block 2 (004000-005FFFh) not protected from table reads executed in other blocks

Table Read Protection Block 3:
EBTR3 = ON Block 3 (006000-007FFFh) protected from table reads executed in other blocks

EBTR3 = OFF Block 3 (006000-007FFFh) not protected from table reads executed in other blocks

Boot Block Table Read Protection bit:
EBTRB = ON Boot block (000000-0007FFh) protected from table reads executed in other blocks

EBTRB = OFF Boot block (000000-0007FFh) not protected from table reads executed in other blocks

Proton Amicus18 Compiler

 105
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Counter

Syntax
Variable = Counter Pin, Period

Overview
Count the number of pulses that appear on pin during period, and store the result in variable.

Operators

 Variable is a user-defined variable.
 Pin is a Port.Pin constant declaration i.e. PortA.0.
 Period may be a constant, variable, or expression.

Example
' Count the pulses that occur on PortA.0 within a 100ms period
' and displays the results.

 Dim WordVar as Word ' Create a word size variable
 Symbol Pin = PA0 ' Assign the input pin to bit-0 of PortA
Loop:
 WordVar = Counter Pin, 100 ' Variable WordVar now contains the Count
 HRsout Dec WordVar,13 ' Display decimal result on serial terminal
 DelayMs 300
 GoTo Loop ' Do it forever

Notes
The resolution of period is in milliseconds (ms). It obtains its scaling from the oscillator declaration, De-
clare Xtal.

Counter checks the state of the pin in a concise loop, and counts the rising edge of a transition (low to
high).

With a 4MHz oscillator, the pin is checked every 20us, and every 1.28us with a 64MHz oscillator. From
this we can determine that the highest frequency of pulses that may be counted is:

 25KHz using a 4MHz oscillator.
 1.28MHz using the default 64MHz oscillator.

See also : PulsIn, Rcin.

Proton Amicus18 Compiler

 106
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Cread

Syntax
Variable = Cread Address

Overview
Read data from anywhere in code memory.

Operators

 Variable is a user defined variable, of type Byte, Word, Dword, or Float.
 Address is a constant, variable, label, or expression that represents any valid address within the

Amicus18 microcontroller.

Example
' Read code memory locations within the Amicus18 microcontroller

 Dim Var1 as Byte
 Dim WordVar as Word
 Dim Address as Word
 Address = 1000 ' Address now holds the base address
 Var1 = Cread 1000 ' Read 8-bit data at address 1000 into Var1
 WordVar = Cread Address + 10 ' Read 16-bit data at address 1000 + 10

WordVar = Cread Label + 10 ' Read 16-bit data at Label + 10
Stop

Label: Cdata "Hello World"

Note. Cread and Lread are interchangeable.

See also : Cdata, Cwrite, Cdata, Lread, Lread8, Lread16, Lread32.

Proton Amicus18 Compiler

 107
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Cursor

Syntax
Cursor Line, Position

Overview
Move the cursor position on an Alphanumeric or Graphic LCD to a specified line (ypos) and position
(xpos).

Operators

 Line is a constant, variable, or expression that corresponds to the line (Ypos) number from 1 to
maximum lines (0 to maximum lines if using a graphic LCD).

 Position is a constant, variable, or expression that moves the position within the position (Xpos)
chosen, from 1 to maximum position (0 to maximum position if using a graphic LCD).

Example 1
 Dim bLine as Byte
 Dim bXpos as Byte
 bLine = 2
 bXpos = 1
 Cls ' Clear the LCD
 Print "HELLO" ' Display the word "HELLO" on the LCD
 Cursor bLine, bXpos ' Move the cursor to line 2, position 1
 Print "WORLD" ' Display the word "WORLD" on the LCD

In the above example, the LCD is cleared using the Cls command, which also places the cursor at the
home position i.e. line 1, position 1. Next, the word HELLO is displayed in the top left corner. The cursor
is then moved to line 2 position 1, and the word WORLD is displayed.

Example 2
 Dim Xpos as Byte
 Dim Ypos as Byte
Again:
 Ypos = 1 ' Start on line 1
 For Xpos = 1 to 16 ' Create a loop of 16
 Cls ' Clear the LCD
 Cursor Ypos, Xpos ' Move the cursor to position Ypos,Xpos
 Print "*" ' Display the character
 DelayMs 100
 Next
 Ypos = 2 ' Move to line 2
 For Xpos = 16 to 1 Step -1 ' Create another loop, this time reverse
 Cls ' Clear the LCD
 Cursor Ypos, Xpos ' Move the cursor to position Ypos,Xpos
 Print "*" ' Display the character
 DelayMs 100
 Next
 GoTo Again ' Repeat forever

Example 2 displays an asterisk character moving around the perimeter of a 2-line by 16 character LCD.

See also : Cls, Print

Proton Amicus18 Compiler

 108
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Cwrite

Syntax
Cwrite Address, [Variable {, Variable…}]

Overview
Write data to code (flash) memory.

Operators

 Variable can be 32 constants, variables, or expressions.
 Address is a constant, variable, label, or expression that represents any valid location within the

microcontroller’s code (flash) memory.

Example
' Write to a code memory location within the microcontroller

 Dim Var1 as Byte
 Dim WordVar as Word
 Var1 = 234
 WordVar = 1043
'
' Erase a 64 byte block of code (flash) memory
'

Cerase WriteHere
'
' Write to code memory, as a block of 32 bytes
'
 Cwrite WriteHere, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10,_

 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,_
 21, 22, 23, 24, 25, 26, 27, 28, 29, Var1, WordVar]

Stop
'
' This is where the data will be written too
' It must be placed on a 64 byte boundary
'
 Org $0200 ' Place the label WriteHere at address $0200 (512)
 ' Make sure this will not overwrite your existing code
WriteHere:

Notes
Code memory can only be written in blocks of 32 bytes. Any less will not be written to memory.

Code memory must be erased using the Cerase command before writing to it. Code memory can only
be erased in blocks of 64 and on a 64 byte boundary.

See section 6.0 of the PIC18F25K20 data sheet for more details concerning code (flash) memory read-
ing, writing and erasing.

See also : Cerase, Cdata, Cread, Lread, Lread8, Lread16, Lread32.

Proton Amicus18 Compiler

 109
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Dec

Syntax
Dec Variable

Overview
Decrement a variable i.e. Var1 = Var1 - 1

Operators

 Variable is a user defined variable

Example
 Dim Var1 as Byte

Var1 = 11

 Repeat
 Dec Var1
 Hrsout Dec Var1, 13
 DelayMs 200
 Until Var1 = 0

The above example shows the equivalent to the For-Next loop:

 For Var1 = 10 to 0 Step -1 : Next

See also : Inc.

Proton Amicus18 Compiler

 110
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Declare

Syntax
[Declare] code modifying directive = modifying value

Overview
Adjust certain aspects of the produced code, i.e. Crystal frequency, LCD port and pins, serial baud rate
etc.

Operators

 code modifying directive is a set of pre-defined words. See list below.
modifying value is the value that corresponds to the command. See list below.

The Declare directive is an indispensable part of the compiler. It moulds the library subroutines, and
passes essential user information to them.

Misc Declares.

Declare WatchDog = On or Off, or True or False, or 1, 0
The WatchDog Declare directive enables or disables the watchdog timer. It also sets the microcontrol-
ler’s Config fuses for no watchdog. In addition, it removes any ClrWdt mnemonics from the assembled
code, thus producing slightly smaller programs. The default for the compiler is WatchDog Off, therefore,
if the watchdog timer is required, then this Declare will need to be invoked.

The WatchDog Declare can be issued multiple times within the BASIC code, enabling and disabling the
watchdog timer as and when required.

Declare FSR_Context_Save = On or Off, or True or False, or 1, 0
When using Hardware interrupts, it is not always necessary to save the FSR0 register. So in order to
save code space and time spent within the interrupt handler, the FSR_Context_Save Declare can en-
able or disable the auto Context saving and restoring of the FSR register.

If String variables are used in the BASIC program, the FSR1L/H register pair will also be saved/restored.
And FSR2L/H registers will be saved/restored if a stack is implemented.

Declare PLL_Req = On or Off, or True or False, or 1, 0
The Amicus18 microcontroller has a built in PLL (Phase Locked Loop) that can multiply the oscillator by
a factor of 4. This is set by the fuses at programming time, and the PLL_Req Declare enables or dis-
ables the PLL fuse. Using the PLL fuse allows a 1:1 ratio of instructions to clock cycles instead of the
normal 4:1 ratio. It can be used with Xtal settings from 4 to 20MHz. Note that the compiler will auto-
matically set it's frequency to a multiple of 4 if the PLL_Req Declare is used to enable the PLL fuse. For
example, if a 16MHz Xtal setting is declared, and the PLL_Req Declare is used in the BASIC program,
the compiler will automatically set itself up as using a 64MHz oscillator. i.e. 4 * 16. Thus keeping the
timings for library functions correct.

Declare Warnings = On or Off, or True or False, or 1, 0
The Warnings Declare directive enables or disables the compiler's warning messages. This can have
disastrous results if a warning is missed or ignored, so use this directive sparingly, and at your own
peril.

The Warnings Declare can be issued multiple times within the BASIC code, enabling and disabling the
warning messages at key points in the code as and when required.

Proton Amicus18 Compiler

 111
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Declare Reminders = On or Off, or True or False, or 1, 0
The Reminders Declare directive enables or disables the compiler's reminder messages. The compiler
issues a reminder for a reason, so use this directive sparingly, and at your own peril.

The Reminders Declare can be issued multiple times within the BASIC code, enabling and disabling the
warning messages at key points in the code as and when required.

Declare Label_Bank_Resets = On or Off, or True or False, or 1, 0
The compiler has very intuitive RAM bank handling, however, if you think that an anomaly is occurring
due to misplaced or mishandled RAM bank settings, you can issue this Declare and it will Reset the
RAM bank on every BASIC label, which will force the compiler to re-calculate its bank settings. If nothing
else, it will reassure you that bank handling is not the cause of the problem, and you can get on with
finding the cause of the programming problem.

Using this Declare will increase the size of the code produced, as it will place BCF mnemonics MOVLB
mnemonics within the ASM code produced.

The Label_Bank_Resets Declare can be issued multiple times within the BASIC code, enabling and dis-
abling the bank resets at key points in the code as and when required. See Line LABELS for more in-
formation.

Declare Float_Display_Type = Fast or Standard
By default, the compiler uses a relatively small routine for converting floating point values to decimal,
ready for Rsout, Print, Str$ etc. However, because of its size, it is only capable of converting relatively
small values. i.e. approx 6 digits of accuracy. In order to produce a more accurate result, the compiler
needs to use a larger routine. This is implemented by using the above Declare.

Using the Fast model for the above Declare will trigger the compiler into using the more accurate float-
ing point to decimal routine. Note that even though the routine is larger than the standard converter, it
actually operates much faster.

The compiler defaults to Standard if the Declare is not issued in the BASIC program.

Declare Create_Coff = On or Off, or True or False or 1, 0
When the Create_Coff Declare is set to On, the compiler produces a cof file (Common Object File). This
is used for simulating the BASIC code within the MPLABtm IDE environment or the ISIS simulator.

Declare ICD_Req = On or Off, or True or False, or 1, 0
When the ICD_Req Declare is set to On, the compiler configures itself so that the Microchip ICD2tm In-
Circuit-Debugger, or PICkit2tm can be used. The ICD2tm and PICkit2tm are very invasive to the program,
in so much that they require certain RAM areas for itself.

Whenever ICD2tm or PICkit2tm compatibility is enabled, the compiler will automatically deduct the re-
served RAM from the available RAM within the Amicus18 microcontroller, therefore you must take this
into account when declaring variables. Remember, there aren't as many variables available with the ICD
enabled.

If the ICD is enabled along with hardware interrupts, the compiler will also reserve the RAM required for
context saving and restoring. This also will be reflected in the amount of RAM available within the
Amicus18 microcontroller.

Proton Amicus18 Compiler

 112
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Declare Amicus18_Start_Address = Start Address
If using a bootloader that resides in low code memory, as opposed to the Amicus18’s bootloader which
resides in high code memory, the microcontroller’s interrupt vectors require redirecting, as well as the
compiler’s library subroutines require moving up. This can be accomplished using the
Amicus18_Start_Address Declare.

Start Address is the location where the bootloader ends, or it’s length. For example:

Declare Amicus18_Start_Address = $0800

Proton Amicus18 Compiler

 113
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Trigonometry Declares.

The compiler defaults to using floating point trigonometry functions Sin and Cos, as well as Sqr . How-
ever, if only the BASIC Stamp compatible integer functions are required, they can be enabled by the fol-
lowing three declares. Note that by enabling the integer type function, the floating point function will be
disabled permanently within the BASIC code. As with most of the declares, only one of any type is rec-
ognised per program.

Declare Stamp_Compatible_Cos = On or Off, or True or False, or 1, 0
Enable/Disable floating point Cos function in favour of the BASIC Stamp compatible integer Cos func-
tion.

Declare Stamp_Compatible_Sin = On or Off, or True or False, or 1, 0
Enable/Disable floating point Sin function in favour of the BASIC Stamp compatible integer Sin function.

Declare Stamp_Compatible_Sqr = On or Off, or True or False, or 1, 0
Enable/Disable floating point Sqr (square root) function in favour of the BASIC Stamp compatible inte-
ger Sqr function.

Adin Declares.

Declare Adin_Res 8, 10.
Sets the number of bits in the result.

If this Declare is not used, then the default is 10 bits. Using the above Declare allows an 8-bit result
to be obtained from the 10-bit Amicus18 microcontroller.

Declare Adin_Tad 2_FOSC, 8_FOSC, 32_FOSC, 64_FOSC , or FRC.
Sets the ADC's clock source.

The Amicus18’s microcontroller has five options for the clock source used by the ADC; 2_FOSC, 8_FOSC,
32_FOSC, and 64_FOSC, are ratios of the external oscillator, while FRC is the internal RC oscillator.

Care must be used when issuing this Declare, as the wrong type of clock source may result in poor
resolution, or no conversion at all. If in doubt use FRC which will produce a slight reduction in resolution
and conversion speed, but is guaranteed to work first time, every time. FRC is the default setting if the
Declare is not issued in the BASIC listing.

Declare Adin_Stime 0 to 65535 microseconds (us).
Allows the internal capacitors to fully charge before a sample is taken. This may be a value from 0 to
65535 microseconds (us).

A value too small may result in a reduction of resolution. While too large a value will result in poor con-
version speeds without any extra resolution being attained.

A typical value for Adin_Stime is 50 to 100. This allows adequate charge time without loosing too much
conversion speed.

But experimentation will produce the right value for your particular requirement. The default value if the
Declare is not used in the BASIC listing is 50.

Proton Amicus18 Compiler

 114
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Busin - Busout Declares.

Declare SDA_Pin Port . Pin
Declares the port and pin used for the data line (SDA). This may be any valid port on the Amicus18 mi-
crocontroller. If this declare is not issued in the BASIC program, then the default Port and Pin is RA0
(PortA.0)

Declare SCL_Pin Port . Pin
Declares the port and pin used for the clock line (SCL). This may be any valid port on the Amicus18 mi-
crocontroller. If this declare is not issued in the BASIC program, then the default Port and Pin is RA1
(PortA.1)

Declare Slow_Bus On - Off or 1 - 0
Slows the bus speed when using an oscillator higher than 4MHz.

The standard speed for the I2C bus is 100KHz. Some devices use a higher bus speed of 400KHz. If you
use an 8MHz or higher oscillator, the bus speed may exceed the devices specs, which will result in in-
termittent writes or reads, or in some cases, none at all. Therefore, use this Declare if you are not sure
of the device's spec. The datasheet for the device used will inform you of its bus speed.

Declare Bus_SCL On - Off, 1 - 0 or True - False
Eliminates the necessity for a pull-up resistor on the SCL line.

The I2C protocol dictates that a pull-up resistor is required on both the SCL and SDA lines, however, this
is not always possible due to circuit restrictions etc, so once the Bus_SCL On Declare is issued at the
top of the program, the resistor on the SCL line can be omitted from the circuit. The default for the
compiler if the Bus_SCL Declare is not issued, is that a pull-up resistor is required.

Hbusin - Hbusout Declare.

Declare Hbus_Bitrate Constant 100, 400, 1000 etc.
The standard speed for the I2C bus is 100KHz. Some devices use a higher bus speed of 400KHz. The
above Declare allows the I2C bus speed to be increased or decreased. Use this Declare with caution,
as too high a bit rate may exceed the device's specs, which will result in intermittent transactions, or in
some cases, no transactions at all. The datasheet for the device used will inform you of its bus speed.
The default bit rate is the standard 100KHz.

Proton Amicus18 Compiler

 115
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Hserin, Hserout, HRsin and HRsout Declares.

Declare Hserial_Baud Constant value
Sets the BAUD rate that will be used to receive a value serially. The baud rate is calculated using the
Xtal frequency declared in the program. The default baud rate if the Declare is not included in the pro-
gram listing is 2400 baud.

Declare Hserial_RCSTA Constant value (0 to 255)
Hserial_RCSTA, sets the respective hardware register RCSTA, to the value in the Declare. See the
PIC18F25K20 data sheet for the device used for more information regarding this register.

Declare Hserial_TXSTA Constant value (0 to 255)
Hserial_TXSTA, sets the respective hardware register, TXSTA, to the value in the Declare. See the
PIC18F25K20 data sheet for the device used for more information regarding this register. The TXSTA
register BRGH bit (bit 2) controls the high speed mode for the baud rate generator. Certain baud rates
at certain oscillator speeds require this bit to be set to operate properly. To do this, set Hserial_TXSTA
to a value of $24 instead of the default $20. Refer to the PIC18F25K20 data sheet for the hardware se-
rial port baud rate tables and additional information.

Declare Hserial_Parity Odd or Even
Enables/Disables parity on the serial port. For HRsin, HRsout, Hserin and Hserout. The default serial
data format is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop bit) or
7O1 (7data bits, odd parity, 1 stop bit) may be enabled using the Hserial_Parity declare.

 Declare Hserial_Parity = Even ' Use if even parity desired
 Declare Hserial_Parity = Odd ' Use if odd parity desired

Declare Hserial_Clear On or Off
Clear the overflow error bit before commencing a read.

Because the hardware serial port only has a 2-byte input buffer, it can easily overflow is characters are
not read from it often enough. When this occurs, the USART stops accepting any new characters, and
requires resetting. This overflow error can be Reset by strobing the CREN bit within the RCSTA register.
Example:

 RCSTA.4 = 0
 RCSTA.4 = 1
or
 Clear RCSTA.4
 Set RCSTA.4

Alternatively, the Hserial_Clear declare can be used to automatically clear this error, even if no error oc-
curred. However, the program will not know if an error occurred while reading, therefore some charac-
ters may be lost.

 Declare Hserial_Clear = On

Proton Amicus18 Compiler

 116
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Hpwm Declares.

The Amicus18 microcontroller has an alternate pin for CCP2, as used by Hpwm. The following Declare
allows the use of different pin:

Declare CCP2_Pin PortB.3 ' Select Hpwm port and bit for CCP2 module (ch 2)

Alphanumeric (Hitachi) LCD Print Declares.

Declare LCD_DTPin Port . Pin
Assigns the Port and Pins that the LCD's DT lines will attach to.

The LCD may be connected to the Amicus18 using either a 4-bit bus or an 8-bit bus. If an 8-bit bus is
used, all 8 bits must be on one port. If a 4-bit bus is used, it must be connected to either the bottom 4
or top 4 bits of one port. For example:

 Declare LCD_DTPin PortB.4 ' Used for 4-line interface.
 Declare LCD_DTPin PortB.0 ' Used for 8-line interface.

In the above examples, PortB is only a personal preference. The LCD's DT lines can be attached to any
valid port on the Amicus18 hardware. If the Declare is not used in the program, then the default Port
and Pin is RB4 (PortB.4), which assumes a 4-line interface.

Declare LCD_ENPin Port . Pin
Assigns the Port and Pin that the LCD's EN line will attach to. This also assigns the graphic LCD's EN pin,
however, the default value remains the same as for the alphanumeric type, so this will require changing.

If the Declare is not used in the program, then the default Port and Pin is RB3 (PortB.3).

Declare LCD_RSPin Port . Pin
Assigns the Port and Pins that the LCD's RS line will attach to. This also assigns the graphic LCD's RS
pin, however, the default value remains the same as for the alphanumeric type, so this will require
changing.

If the Declare is not used in the program, then the default Port and Pin is RB2 (PortB.2).

Declare LCD_Interface 4 or 8
Inform the compiler as to whether a 4-line or 8-line interface is required by the LCD.

If the Declare is not used in the program, then the default interface is a 4-line type.

Declare LCD_Lines 1, 2, or 4
Inform the compiler as to how many lines the LCD has.

LCD's come in a range of sizes, the most popular being the 2 line by 16 character types. However, there
are 4-line types as well. Simply place the number of lines that the particular LCD has into the declare.

If the Declare is not used in the program, then the default number of lines is 2.

Declare LCD_CommandUS 1 to 65535
Time to wait (in microseconds) between commands sent to the LCD.

If the Declare is not used in the program, then the default delay is 2000us (2ms).

Proton Amicus18 Compiler

 117
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Declare LCD_DataUs 1 to 255
Time to wait (in microseconds) between data sent to the LCD.

If the Declare is not used in the program, then the default delay is 50us.

Graphic LCD Declares.

Declare LCD_Type 0 or 1 or 2, Alpha or Graphic or Samsung or Toshiba
Inform the compiler as to the type of LCD that the Print command will output to. If Graphic, Samsung
or 1 is chosen then any output by the Print command will be directed to a graphic LCD based on the
Samsung KS0108 chipset. A value of 2, or the text Toshiba, will direct the output to a graphic LCD
based on the Toshiba T6963 chipset. A value of 0 or Alpha, or if the Declare is not issued, will target
the standard Hitachi alphanumeric LCD type

Targeting the graphic LCD will also enable commands such as Plot, UnPlot, LCDread, LCDwrite,
Pixel, Box, Circle and Line.

Samsung KS0108 Graphic LCD specific Declares.

Declare LCD_DTPort Port
Assign the port that will output the 8-bit data to the graphic LCD.

If the Declare is not used, then the default port is PortB.

Declare LCD_RWPin Port . Pin
Assigns the Port and Pin that the graphic LCD's RW line will attach to.

If the Declare is not used in the program, then the default Port and Pin is RC0 (PortC.0).

Declare LCD_CS1Pin Port . Pin
Assigns the Port and Pin that the graphic LCD's CS1 line will attach to.

If the Declare is not used in the program, then the default Port and Pin is RC1 (PortC.1).

Declare LCD_CS2Pin Port . Pin
Assigns the Port and Pin that the graphic LCD's CS2 line will attach to.

If the Declare is not used in the program, then the default Port and Pin is RC2 (PortC.2).

Declare Internal_Font On - Off, 1 or 0
The graphic LCD's that are compatible with Proton Amicus18 are non-intelligent types, therefore, a
separate character set is required. This may be in one of two places, either externally, in an I2C eeprom,
or internally in a Cdata table.

If an external font is chosen, the I2C eeprom must be connected to the specified SDA and SCL pins (as
dictated by Declare SDA_Pin and Declare SCL_Pin).

The Cdata table that contains the font must have a label, named Font: preceding it. For example:

Font: Cdata $7E, $11, $11, $11, $7E, $0 ' Chr "A"
 Cdata $7F, $49, $49, $49, $36, $0 ' Chr "B"
 { rest of font table }

Proton Amicus18 Compiler

 118
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The font table may be anywhere in memory, however, it is best placed after the main program code.

If the Declare is omitted from the program, then an external font is the default setting.

Declare Font_Addr 0 to 7
Set the slave address for the I2C eeprom that contains the font.

When an external source for the font is chosen, it may be on any one of 8 eeproms attached to the I2C
bus. So as not to interfere with any other eeproms attached, the slave address of the eeprom carrying
the font code may be chosen.

If the Declare is omitted from the program, then address 0 is the default slave address of the font
eeprom.

Declare GLCD_CS_Invert On - Off, 1 or 0
Some graphic LCD types have inverters on their CS lines. Which means that the LCD displays left hand
data on the right side, and vice-versa. The GLCD_CS_Invert Declare, adjusts the library LCD handling
library subroutines to take this into account.

Declare GLCD_Strobe_Delay 0 to 65535 us (microseconds).
Create a delay of n microseconds between strobing the EN line of the graphic LCD. This can help noisy,
or badly decoupled circuits overcome random bits appearing on the LCD. The default if the Declare is
not used in the BASIC program is a delay of 0.

Toshiba T6963 Graphic LCD specific Declares.

Declare LCD_DTPort Port
Assign the port that will output the 8-bit data to the graphic LCD.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_WRPin Port . Pin
Assigns the Port and Pin that the graphic LCD's WR line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_RDPin Port . Pin
Assigns the Port and Pin that the graphic LCD's RD line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_CEPin Port . Pin
Assigns the Port and Pin that the graphic LCD's CE line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_CDPin Port . Pin
Assigns the Port and Pin that the graphic LCD's CD line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Proton Amicus18 Compiler

 119
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Declare LCD_RSTPin Port . Pin
Assigns the Port and Pin that the graphic LCD's RST line will attach to.

The LCD’s RST (Reset) Declare is optional and if omitted from the BASIC code the compiler will not
manipulate it. However, if not used as part of the interface, you must set the LCD’s RST pin high for
normal operation.

Declare LCD_X_Res 0 to 255
LCD displays using the T6963 chipset come in varied screen sizes (resolutions). The compiler must know
how many horizontal pixels the display consists of before it can build its library subroutines.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_Y_Res 0 to 255
LCD displays using the T6963 chipset come in varied screen sizes (resolutions). The compiler must know
how many vertical pixels the display consists of before it can build its library subroutines.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_Font_Width 6 or 8
The Toshiba T6963 graphic LCDs have two internal font sizes, 6 pixels wide by eight high, or 8 pixels
wide by 8 high. The particular font size is chosen by the LCD’s FS pin. Leaving the FS pin floating or
bringing it high will choose the 6 pixel font, while pulling the FS pin low will choose the 8 pixel font. The
compiler must know what size font is required so that it can calculate screen and RAM boundaries.

Note that the compiler does not control the FS pin and it is down to the circuit layout whether or not it
is pulled high or low. There is no default setting for this Declare and it must be used within the BASIC
program.

Declare LCD_RAM_Size 1024 to 65535
Toshiba graphic LCDs contain internal RAM used for Text, Graphic or Character Generation. The amount
of RAM is usually dictated by the display’s resolution. The larger the display, the more RAM is normally
present. Standard displays with a resolution of 128x64 typically contain 4096 bytes of RAM, while larger
types such as 240x64 or 190x128 typically contain 8192 bytes or RAM. The display’s datasheet will in-
form you of the amount of RAM present.

If this Declare is not issued within the BASIC program, the default setting is 8192 bytes.

Declare LCD_Text_Pages 1 to n
As mentioned above, Toshiba graphic LCDs contain RAM that is set aside for text, graphics or characters
generation. In normal use, only one page of text is all that is required, however, the compiler can re-
arrange its library subroutines to allow several pages of text that is continuous. The amount of pages
obtainable is directly proportional to the RAM available within the LCD itself. Larger displays require
more RAM per page, therefore always limit the amount of pages to only the amount actually required or
unexpected results may be observed as text, graphic and character generator RAM areas merge.

This Declare is purely optional and is usually not required. The default is 3 text pages if this Declare is
not issued within the BASIC program.

Proton Amicus18 Compiler

 120
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Declare LCD_Graphic_Pages 1 to n
Just as with text, the Toshiba graphic LCDs contain RAM that is set aside for graphics. In normal use,
only one page of graphics is all that is required, however, the compiler can re-arrange its library subrou-
tines to allow several pages of graphics that is continuous. The amount of pages obtainable is directly
proportional to the RAM available within the LCD itself. Larger displays require more RAM per page,
therefore always limit the amount of pages to only the amount actually required or unexpected results
may be observed as text, graphic and character generator RAM areas merge.

This Declare is purely optional and is usually not required. The default is 1 graphics page if this De-
clare is not issued within the BASIC program.

Declare LCD_Text_Home_Address 0 to n
The RAM within a Toshiba graphic LCD is split into three distinct uses, text, graphics and character gen-
eration. Each area of RAM must not overlap or corruption will appear on the display as one uses the
other’s assigned space. The compiler’s library subroutines calculate each area of RAM based upon where
the text RAM starts. Normally the text RAM starts at address 0, however, there may be occasions when
it needs to be set a little higher in RAM. The order of RAM is; Text, Graphic, then Character Generation.

This Declare is purely optional and is usually not required. The default is the text RAM staring at ad-
dress 0 if this Declare is not issued within the BASIC program.

Keypad Declare.

Declare Keypad_Port Port
Assigns the Port that the keypad is attached to.

The keypad routine requires pull-up resistors, therefore, the best Port for this device is PortB which
comes equipped with internal pull-ups. If the Declare is not used in the program, then PortB is the de-
fault Port.

Rsin - Rsout Declares.

Declare Rsout_Pin Port . Pin
Assigns the Port and Pin that will be used to output serial data from the Rsout command. This may be
any valid port on the microcontroller.

If the Declare is not used in the program, then the default Port and Pin is RC6 (PortC.6).

Declare Rsin_Pin Port . Pin
Assigns the Port and Pin that will be used to input serial data by the Rsin command. This may be any
valid port on the microcontroller.

If the Declare is not used in the program, then the default Port and Pin is RC7 (PortC.7).

Declare Rsout_Mode Inverted, True or 1, 0
Sets the serial mode for the data transmitted by Rsout. This may be inverted or true. Alternatively, a
value of 1 may be substituted to represent inverted, and 0 for true.

If the Declare is not used in the program, then the default mode is true.

Proton Amicus18 Compiler

 121
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Declare Rsin_Mode Inverted, True or 1, 0
Sets the serial mode for the data received by Rsin. This may be inverted or true. Alternatively, a value
of 1 may be substituted to represent inverted, and 0 for true.

If the Declare is not used in the program, then the default mode is true.

Declare Serial_Baud 0 to 65535 bps (baud)
Informs the Rsin and Rsout routines as to what baud rate to receive and transmit data.

Virtually any baud rate may be transmitted and received (within reason), but there are standard bauds,
namely:

300, 600, 1200, 2400, 4800, 9600, and 19200.

When using a 4MHz crystal, the highest baud rate that is reliably achievable is 9600. However, an in-
crease in the oscillator speed allows higher baud rates to be achieved, including 38400 baud.

If the Declare is not used in the program, then the default baud is 9600.

Declare Rsout_Pace 0 to 65535 microseconds (us)
Implements a delay between characters transmitted by the Rsout command.

On occasion, the characters transmitted serially are in a stream that is too fast for the receiver to catch,
this results in missed characters. To alleviate this, a delay may be implemented between each individual
character transmitted by Rsout.

If the Declare is not used in the program, then the default is no delay between characters.

Declare Rsin_Timeout 0 to 65535 milliseconds (ms)
Sets the time, in ms, that Rsin will wait for a start bit to occur.

Rsin waits in a tight loop for the presence of a start bit. If no timeout parameter is issued, then it will
wait forever.

The Rsin command has the option of jumping out of the loop if no start bit is detected within the time
allocated by timeout.

If the Declare is not used in the program, then the default timeout value is 10000ms which is 10 sec-
onds.

Serin - Serout Declare.

If communications are with existing software or hardware, its speed and mode will determine the choice
of baud rate and mode. In general, 7-bit/even-parity (7E) mode is used for text, and 8-bit/no-parity
(8N) for byte-oriented data. Note: the most common mode is 8-bit/no-parity, even when the data
transmitted is just text. Most devices that use a 7-bit data mode do so in order to take advantage of the
parity feature. Parity can detect some communication errors, but to use it you lose one data bit. This
means that incoming data bytes transferred in 7E (even-parity) mode can only represent values from 0
to 127, rather than the 0 to 255 of 8N (no-parity) mode.

The compiler's serial commands Serin and Serout have the option of still using a parity bit with 4 to 8
data bits. This is through the use of a Declare:

Proton Amicus18 Compiler

 122
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

With parity disabled (the default setting):

 Declare Serial_Data 4 ' Set Serin and Serout data bits to 4
 Declare Serial_Data 5 ' Set Serin and Serout data bits to 5
 Declare Serial_Data 6 ' Set Serin and Serout data bits to 6
 Declare Serial_Data 7 ' Set Serin and Serout data bits to 7
 Declare Serial_Data 8 ' Set Serin and Serout data bits to 8 (default)

With parity enabled:

 Declare Serial_Data 5 ' Set Serin and Serout data bits to 4
 Declare Serial_Data 6 ' Set Serin and Serout data bits to 5

 Declare Serial_Data 7 ' Set Serin and Serout data bits to 6
 Declare Serial_Data 8 ' Set Serin and Serout data bits to 7 (default)
 Declare Serial_Data 9 ' Set Serin and Serout data bits to 8

Serial_Data data bits may range from 4 bits to 8 (the default if no Declare is issued). Enabling parity
uses one of the number of bits specified.

Declaring Serial_Data as 9 allows 8 bits to be read and written along with a 9th parity bit.

Parity is a simple error-checking feature. When a serial sender is set for even parity (the mode the com-
piler supports) it counts the number of 1s in an outgoing byte and uses the parity bit to make that num-
ber even. For example, if it is sending the 7-bit value: %0011010, it sets the parity bit to 1 in order to
make an even number of 1s (four).

The receiver also counts the data bits to calculate what the parity bit should be. If it matches the parity
bit received, the serial receiver assumes that the data was received correctly. Of course, this is not nec-
essarily true, since two incorrectly received bits could make parity seem correct when the data was
wrong, or the parity bit itself could be bad when the rest of the data was correct.

Many systems that work exclusively with text use 7-bit/ even-parity mode. For example, to receive one
data byte through bit-0 of PortA at 9600 baud, 7E, inverted:

Shin - Shout Declare.

Declare Shift_DelayUs 0 - 65535 microseconds (us)
Extend the active state of the shift clock.

The clock used by Shin and Shout runs at approximately 45KHz dependent on the oscillator. The active
state is held for a minimum of 2 microseconds. By placing this declare in the program, the active state
of the clock is extended by an additional number of microseconds up to 65535 (65.535 milliseconds) to
slow down the clock rate.

If the Declare is not used in the program, then the default is no clock delay.

Proton Amicus18 Compiler

 123
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Crystal Frequency Declare.

Declare Xtal 3, 4, 7, 8, 10, 12, 14, 16, 19, 20, 22, 24, 25, 29, 32, 33, 40, 48, 64, 80, 96

Inform the compiler as to what frequency crystal is being used. Oscillator values 80 and 96 are over-
clocking modes produced by crystal frequencies of 20MHz and 24MHz.

Some commands are very dependant on the oscillator frequency, Rsin, Rsout, DelayMs, and Dela-
yUs being just a few. In order for the compiler to adjust the correct timing for these commands, it must
know what frequency crystal is being used.

The Xtal frequencies 3, 7, 14, 19 and 22 are for 3.58MHz, 7.2MHz, 14.32MHz, 19.66MHz, 22.1184MHz
and 29.2MHz respectively.

If the Declare is not used in the program, then the default frequency is 64MHz.

Proton Amicus18 Compiler

 124
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

DelayCs

Syntax
DelayCs Length

Overview
Delay execution for an amount of instruction cycles.

Operators

 Length can only be a constant with a value from 1 to 1000.

Example
 DelayCs 100 ' Delay for 100 cycles

Notes
DelayCs is oscillator independent, as long as you inform the compiler of the crystal frequency to use,
using the Declare directive.

The length of a given instruction cycle is determined by the oscillator frequency. For example, running
the microcontroller at it’s defualt speed of 64MHz will result in an instruction cycle of 62.5ns (nano sec-
onds).

See also : DelayUs, DelayMs, Sleep, Snooze.

Proton Amicus18 Compiler

 125
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

DelayMs

Syntax
DelayMs Length

Overview
Delay execution for length x milliseconds (ms). Delays may be up to 65535ms (65.535 seconds) long.

Operators

 Length can be a constant, variable, or expression.

Example
 Dim ByteVar as Byte
 Dim WordVar as Word
 ByteVar = 50
 WordVa1= 1000
 DelayMs 100 ' Delay for 100ms
 DelayMs ByteVar ' Delay for 50ms
 DelayMs WordVa1 ' Delay for 1000ms
 DelayMs WordVar + 10 ' Delay for 1010ms

Notes
DelayMs is oscillator independent, as long as you inform the compiler of the crystal frequency to use,
using the Declare directive.

See also : DelayUs, DelayCs, Sleep, Snooze.

Proton Amicus18 Compiler

 126
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

DelayUs

Syntax
DelayUs Length

Overview
Delay execution for length x microseconds (us). Delays may be up to 65535us (65.535 milliseconds)
long.

Operators

 Length can be a constant, variable, or expression.

Example
 Dim ByteVar as Byte
 Dim WordVar as Word
 ByteVar = 50
 WordVar1= 1000
 DelayUs 1 ' Delay for 1us
 DelayUs 100 ' Delay for 100us
 DelayUs ByteVar ' Delay for 50us
 DelayUs WordVar ' Delay for 1000us
 DelayUs WordVar + 10 ' Delay for 1010us

Notes
DelayUs is oscillator independent, as long as you inform the compiler of the crystal frequency to use,
using the Xtal declare.

If a constant is used as length, then delays down to 1us can be achieved, however, if a variable is used
as length, then there's a minimum delay time depending on the frequency of the crystal used:

 Crystal Freq Minimum Delay
 4MHz 24us
 8MHz 12us
 10MHz 8us
 16MHz 5us
 20MHz 2us
 24MHz 2us
 25MHz 2us
 32MHz 2us
 33MHz 2us
 40MHz 2us
 48MHz 2us

64MHz onwards 2us

See also : Declare, DelayMs, DelayCs, Sleep, Snooze

Proton Amicus18 Compiler

 127
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Dig

Syntax
Variable = Dig Value, Digit number

Overview
Returns the value of a decimal digit.

Operators

 Value is a constant, 8-bit, 16-bit, 32-bit variable or expression, from which the digit number is
to be extracted.

 Digit number is a constant, variable, or expression, that represents the digit to extract from
value. (0 - 4 with 0 being the rightmost digit).

Example
 Dim Var1 as Byte
 Dim Var2 as Byte
 Var1 = 124
 Var2 = Dig Var1, 1 ' Extract the second digit's value
 Hrsout Dec Var2, 13 ' Display the value, which is 2

Proton Amicus18 Compiler

 128
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Dim

Syntax
Dim Variable as Size

Overview
All user-defined variables must be declared using the Dim statement.

Operators

 Variable can be any alphanumeric character or string.
 Size is the physical size of the variable, it may be Bit, Byte, Word, Dword, Float, or String.

Example
' Create different sized variables
 Dim ByteVar as Byte ' Create an 8-bit Byte sized variable
 Dim WordVar as Word ' Create a 16-bit Word sized variable
 Dim DWordVar as Dword ' Create a signed 32-bit Dword sized variable
 Dim BitVar as Bit ' Create a 1-bit Bit sized variable
 Dim FloatVar as Float ' Create a 32-bit floating point variable
 Dim StringVar as String * 20 ' Create a 20 character string variable

Notes
Any variable that is declared without the 'as' text after it, will assume an 8-bit Byte type.

Dim should be placed near the beginning of the program. Any references to variables not declared or
before they are declared may, in some cases, produce errors.

Variable names, as in the case or labels, may freely mix numeric content and underscores.

 Dim MyVar as Byte
or
 Dim MY_Var as Word
or
 Dim My_Var2 as Bit

Variable names may start with an underscore, but must not start with a number. They can be no more
than 32 characters long. Any characters after this limit will be ignored.

 Dim 2MyVar is not allowed.

Variable names are case insensitive, which means that the variable:

 Dim myvar as Byte

Is the same as…

 Dim MYVar as Byte

Dim can also be used to create Alias’s to other variables:

 Dim Var1 as Byte ' Create a Byte sized variable
 Dim Var_Bit as Var1.1 ' Var_Bit now represents Bit-1 of Var1

Alias’s, as in the case of constants, do not require any RAM space, because they point to a variable, or
part of a variable that has already been declared.

Proton Amicus18 Compiler

 129
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

RAM space required.
Each type of variable requires differing amounts of RAM memory for its allocation. The list below illus-
trates this.

 String Requires the specified length of characters + 1.
 Float Requires 4 bytes of RAM.
 Dword Requires 4 bytes of RAM.
 Word Requires 2 bytes of RAM.
 Byte Requires 1 byte of RAM.
 Bit Requires 1 byte of RAM for every 8 Bit variables used.

Each type of variable may hold a different minimum and maximum value.

String type variables can hold a maximum of 255 characters.

Float type variables may theoretically hold a value from -1e37 to +1e38, but because of the 32-bit ar-
chitecture of the compiler, a maximum and minimum value should be thought of as -2147483646.999 to
+2147483646.999 making this the most accurate of the variable family types. However, more so than
Dword types, this comes at a price as Float calculations and comparisons will use more code space
within the microcontroller. Use this type of variable sparingly, and only when strictly necessary. Smaller
floating point values offer more accuracy.

Dword type variables may hold a value from -2147483648 to +2147483647 making this one of the
largest of the variable family types. This comes at a price however, as Dword calculations and compari-
sons will use more code space within the microcontroller. Use this type of variable sparingly, and only
when necessary.

Word type variables may hold a value from 0 to 65535, which is usually large enough for most applica-
tions. It still uses more memory, but not nearly as much as a Dword type.

Byte type variables may hold a value for 0 to 255, and are the usual work horses of most programs.
Code produced for Byte sized variables is very low compared to Word, or Dword types, and should be
chosen if the program requires faster, or more efficient operation.

Bit type variables may hold a 0 or a 1. These are created 8 at a time, therefore declaring a single Bit
type variable in a program will not save RAM space, but it will save code space, as Bit type variables
produce the most efficient use of code for comparisons etc.

There are modifiers that may also be used with variables. These are HighByte, LowByte, Byte0,
Byte1, Byte2, and Byte3.

Byte2, and Byte3 may only be used in conjunction with a 32-bit Dword type variable.

HighByte and Byte1 are one and the same thing, when used with a Word type variable, they refer to
the High byte of a Word type variable:

 Dim WordVar as Word ' Create a Word sized variable
 Dim WordVar_Hi as WordVar.HighByte
' WordVar_Hi now represents the High Byte of variable WordVar

Variable WordVar_Hi is now accessed as a Byte sized type, but any reference to it actually alters the
high byte of WordVar.

However, if Byte1 is used in conjunction with a Dword type variable, it will extract the second byte.
HighByte will still extract the high byte of the variable, as will Byte3.

Proton Amicus18 Compiler

 130
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The same is true of LowByte and Byte0, but they refer to the Low Byte of a Word type variable:

 Dim WordVar as Word ' Create a Word sized variable
 Dim WordVar_Lo as WordVar.LowByte
' WordVar_Lo now represents the Low Byte of variable WordVar

Variable WordVar_Lo is now accessed as a Byte sized type, but any reference to it actually alters the low
byte of WordVar.

The modifier Byte2 will extract the 3rd byte from a 32-bit Dword type variable, as an alias. Likewise
Byte3 will extract the high byte of a 32-bit variable.

RAM space for variables is allocated within the Amicus18 microcontroller in the order that they are
placed in the BASIC code. For example:

 Dim Var1 as Byte
 Dim Var2 as Byte

Places Var1 first, then Var2:

 Var1 equ n
 Var2 equ n

The position of the variable within is usually of little importance if BASIC code is used, however, if as-
sembler routines are being implemented, always assign any variables used within them first.

Problems may also arise if a Word, or Dword variable crosses a Bank boundary. If this happens, a warn-
ing message will be displayed in the error window. Most of the time, this will not cause any problems,
however, to err on the side of caution, try and ensure that Word, or Dword type variables are fully in-
side a Bank. This is easily accomplished by placing a dummy Byte variable before the offending Word, or
Dword type variable, or relocating the offending variable within the list of Dim statements.

See Also : Aliases, Declaring Arrays, Constants, Floating Point Math, Symbol,

Creating and using Strings .

Proton Amicus18 Compiler

 131
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

DTMFout

Syntax
DTMFout Pin, { OnTime }, { OffTime, } [Tone {, Tone…}]

Overview
Produce a DTMF Touch Tone sequence on Pin.

Operators

 Pin is a Port.Bit constant that specifies the I/O pin to use. This pin will be set to output during
generation of tones and set to input after the command is finished.

 OnTime is an optional variable, constant, or expression (0 - 65535) specifying the duration, in
ms, of the tone. If the OnTime parameter is not used, then the default time is 200ms

 OffTime is an optional variable, constant, or expression (0 - 65535) specifying the length of si-
lent delay, in ms, after a tone (or between tones, if multiple tones are specified). If the OffTime
parameter is not used, then the default time is 50ms

 Tone may be a variable, constant, or expression (0 - 15) specifying the DTMF tone to generate.
Tones 0 through 11 correspond to the standard layout of the telephone keypad, while 12
through 15 are the fourth-column tones used by phone test equipment and in some radio appli-
cations.

Example

DTMFout PortA.0, [7, 4, 9, 9, 9, 0] ' Call Crownhill.

If the microcontroller was connected to the phone line correctly, the above command would dial 749-
990. If you wanted to slow down the dialling in order to break through a noisy phone line or radio link,
you could use the optional OnTime and OffTime values:

' Set the OnTime to 500ms and OffTime to 100ms

DTMFout PortA.0, 500, 100, [7, 4, 9, 9, 9, 0] ' Call Crownhill Slowly.

Notes
DTMF tones are used to dial a telephone, or remotely control
pieces of radio equipment. The Amicus18 microcontroller can
generate these tones digitally using the DTMFout command.
The circuits illustrate how to connect a speaker or audio ampli-
fier to hear the tones produced.

The microcontroller is a digital device, however, DTMF tones are
analogue waveforms, consisting of a mixture of two sine waves
at different audio frequencies. So how can a digital device gen-
erate an analogue output? The microcontroller creates and mixes
two sine waves mathematically, then uses the resulting stream
of numbers to control the duty cycle of an extremely fast pulse-
width modulation (Pwm) routine. Therefore, what’s actually be-
ing produced from the I/O pin is a rapid stream of pulses. The purpose of the filtering arrangements il-
lustrated above is to smooth out the high-frequency Pwm, leaving behind only the lower frequency au-
dio. You should keep this in mind if you wish to interface the microcontroller’s DTMF output to radios
and other equipment that could be adversely affected by the presence of high-frequency noise on the
input. Make sure to filter the DTMF output scrupulously. The circuits above are only a foundation; you
may want to use an active low-pass filter with a cut-off frequency of approximately 2KHz.

C2
0.1uF

R2
1k

To Audio
Amplifier

R1
1k

C1
0.1uF

From PIC
I/O pin

From PIC
I/O pin

Speaker
C1

10uF

C2
10uF

Proton Amicus18 Compiler

 132
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Edata

Syntax
Edata Constant1 { ,...Constantn etc }

Overview
Places constants or strings directly into the on-board eeprom memory of the Amicus18 microcontroller

Operators

 Constant1,Constantn are values that will be stored in the on-board eeprom. When using an
Edata statement, all the values specified will be placed in the eeprom starting at location 0. The
Edata statement does not allow you to specify an eeprom address other than the beginning lo-
cation at 0. To specify a location to write or read data from the eeprom other than 0 refer to the
Eread, Ewrite commands.

Example
' Stores the values 1000,20,255,15, and the ASCII values for
' H','e','l','l','o' in the eeprom starting at memory position 0.

 Edata 1000, 20, $FF, %00001111, "Hello"

Notes
16-bit, 32-bit and floating point values may also be placed into eeprom memory. These are placed LSB
first (lowest significant byte). For example, if 1000 is placed into an Edata statement, then the order is:

 Edata 1000

In eeprom it looks like 232, 03

Alias's to constants may also be used in an Edata statement:

 Symbol Alias = 200

 Edata Alias, 120, 254, "Hello World"

Addressing an Edata table.
Eeprom data starts at address 0 and works up towards the maximum amount that the microcontroller
will allow. However, it is rarely the case that the information stored in eeprom memory is one continu-
ous piece of data. Eeprom memory is normally used for storage of several values or strings of text, so a
method of accessing each piece of data is essential. Consider the following piece of code:

 Edata "HELLO"
 Edata "WORLD"

Now we know that eeprom memory starts at 0, so the text "HELLO" must be located at address 0, and
we also know that the text "HELLO" is built from 5 characters with each character occupying a byte of
eeprom memory, so the text "WORLD" must start at address 5 and also contains 5 characters, so the
next available piece of eeprom memory is located at address 10. To access the two separate text strings
we would need to keep a record of the start and end address's of each character placed in the tables.

Proton Amicus18 Compiler

 133
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Counting the amount of eeprom memory used by each piece of data is acceptable if only a few Edata
tables are used in the program, but it can become tedious if multiple values and strings are needing to
be stored, and can lead to program glitches if the count is wrong.

Placing an identifying name before the Edata table will allow the compiler to do the byte counting for
you. The compiler will store the eeprom address associated with the table in the identifying name as a
constant value. For example:

Hello_Text Edata "HELLO"
World_Text Edata "WORLD"

The name Hello_Text is now recognised as a constant with the value of 0, referring to address 0 that
the text string "HELLO" starts at. The World_Text is a constant holding the value 5, which refers to the
address that the text string "WORLD" starts at.

Note that the identifying text must be located on the same line as the Edata directive or a syntax error
will be produced. It must also not contain a postfix colon as does a line label or it will be treat as a line
label. Think of it as an alias name to a constant.

Any Edata directives must be placed at the head of the BASIC program as is done with Symbols, so
that the name is recognised by the rest of the program as it is parsed. There is no need to jump over
Edata directives as you have to with Cdata or Cdata, because they do not occupy code memory, but
reside in high Data memory.

The example program below illustrates the use of eeprom addressing.

' Display two text strings held in eeprom memory

Dim Char as Byte ' Holds the character read from eeprom
Dim Charpos as Byte ' Holds the address within eeprom memory

' Create a string of text in eeprom memory. null terminated
HELLO Edata "HELLO ",0
' Create another string of text in eeprom memory. null terminated
WORLD Edata "WORLD",0

 Charpos = HELLO ' Point Charpos to the start of text "HELLO"
 GoSub DisplayText ' Display the text "HELLO"
 Charpos = WORLD ' Point Charpos to the start of text "WORLD"
 GoSub DisplayText ' Display the text "WORLD"
 Stop ' We're all done

' Subroutine to read and display the text held at the address in Charpos
DisplayText:
 While 1 = 1 ' Create an infinite loop
 Char = Eread Charpos ' Read the eeprom data
 If Char = 0 Then Break ' Exit when null found
 HRsout Char ' Display the character
 Inc Charpos ' Move up to the next address
 Wend ' Close the loop
 Hrsout 13 ' New Line
 Return ' Exit the subroutine

Proton Amicus18 Compiler

 134
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Formatting an Edata table.
Sometimes it is necessary to create a data table with a known format for its values. For example all val-
ues will occupy 4 bytes of data space even though the value itself would only occupy 1 or 2 bytes.

 Edata 100000, 10000, 1000, 100, 10, 1

The above line of code would produce an uneven data space usage, as each value requires a different
amount of data space to hold the values. 100000 would require 4 bytes of eeprom space, 10000 and
1000 would require 2 bytes, but 100, 10, and 1 would only require 1 byte.

Reading these values using Eread would cause problems because there is no way of knowing the
amount of bytes to read in order to increment to the next valid value.

The answer is to use formatters to ensure that a value occupies a predetermined amount of bytes.

These are:

 Byte
 Word
 Dword
 Float

Placing one of these formatters before the value in question will force a given length.

Edata Dword 100000, Dword 10000 , Dword 1000, Dword 100, Dword 10, Dword 1

Byte will force the value to occupy one byte of eeprom space, regardless of it's value. Any values above
255 will be truncated to the least significant byte.

Word will force the value to occupy 2 bytes of eeprom space, regardless of its value. Any values above
65535 will be truncated to the two least significant bytes. Any value below 255 will be padded to bring
the memory count to 2 bytes.

Dword will force the value to occupy 4 bytes of eeprom space, regardless of its value. Any value below
65535 will be padded to bring the memory count to 4 bytes. The line of code shown above uses the
Dword formatter to ensure all the values in the Edata table occupy 4 bytes of eeprom space.

Float will force a value to its floating point equivalent, which always takes up 4 bytes of eeprom space.

If all the values in an Edata table are required to occupy the same amount of bytes, then a single for-
matter will ensure that this happens.

 Edata as Dword 100000, 10000, 1000, 100, 10, 1

The above line has the same effect as the formatter previous example using separate Dword formatters,
in that all values will occupy 4 bytes, regardless of their value. All four formatters can be used with the
as keyword.

Proton Amicus18 Compiler

 135
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The example below illustrates the formatters in use.

' Convert a Dword value into a string
' Using only BASIC commands
' Similar principle to the Str$ command

 Dim P10 as Dword ' Power of 10 variable
 Dim Cnt as Byte
 Dim J as Byte

 Dim Value as Dword ' Value to convert
 Dim StringVar as String * 11 ' Holds the converted value
 Dim Ptr as Byte ' Pointer within the Byte array

 Clear ' Clear all RAM before we start
 Value = 1234576 ' Value to convert
 GoSub DwordToStr ' Convert Value to string
 HRsout StringVar ' Display the result
 Stop
'
' Convert a Dword value into a string
' Value to convert is placed in 'Value'
' String StringVar is built up with the ASCII equivalent
'
DwordToStr:
 Ptr = 0
 J = 0
 Repeat
 P10 = Eread J * 4
 Cnt = 0
 While Value >= P10
 Value = Value - P10
 Inc Cnt
 Wend
 If Cnt <> 0 Then
 StringVar[Ptr] = Cnt + "0"
 Inc Ptr
 EndIf
 Inc J
 Until J > 8
 StringVar[Ptr] = Value + "0"
 Inc Ptr
 StringVar[Ptr] = 0 ' Add the null to terminate the string
 Return

' Edata table is formatted for all 32 bit values.
' Which means each value will require 4 bytes of eeprom space
Edata as Dword 1000000000, 100000000, 10000000, 1000000,_

100000, 10000, 1000, 100, 10

Proton Amicus18 Compiler

 136
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Label names as pointers in an Edata table.
If a label's name is used in the list of values in an Edata table, the labels address will be used. This is
useful for accessing other tables of data using their address from a lookup table. See example below.

' Display text from two Cdata tables Based on their address
' located in a separate table

Dim Address as Word
Dim DataByte as Byte

Address = Eread 0 ' Locate the address of the first string
While 1 = 1 ' Create an infinite loop

DataByte = Cread Address ' Read each character from the Cdata string
If DataByte = 0 Then Break ' Exit if null found
HRsout DataByte ' Display the character
Inc Address ' Next character

Wend ' Close the loop
HRsout 13 ' Next line of the serial terminal
Address = Eread 2 ' Locate the address of the second string
While 1 = 1 ' Create an infinite loop

DataByte = Cread Address ' Read each character from the Cdata string
If DataByte = 0 Then Break ' Exit if null found
HRsout DataByte ' Display the character
Inc Address ' Next character

Wend ' Close the loop
HRsout 13 ' Next line of the serial terminal
Stop

' Table of address's located in eeprom memory

Edata as Word String1, String2
String1:

Cdata "HELLO",0
String2:

Cdata "WORLD",0

See also : Eread, Ewrite.

Proton Amicus18 Compiler

 137
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

End

Syntax
End

Overview
End stops the microcontroller process by placing it into a continuous loop. The port pins remain the
same and the device is placed in low power mode.

See also : Stop, Sleep, Snooze.

Proton Amicus18 Compiler

 138
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Eread

Syntax
Variable = Eread Address

Overview
Read information from the on-board eeprom of the Amicus18 microcontroller.

Operators

 Variable is a user defined variable.
 Address is a constant, variable, or expression, that contains the address of interest within

eeprom memory.

Example
 Dim Var1 as Byte
 Dim WordVar1 as Word
 Dim DWordVar1 as Dword

 Edata 10, 354, 123456789 ' Place some data into the eeprom
 Var1 = Eread 0 ' Read the 8-bit value from address 0
 WordVar1= Eread 1 ' Read the 16-bit value from address 1
 DWordVar1 = Eread 3 ' Read the 32-bit value from address 3

Notes
If a Float, or Dword type variable is used as the assignment variable, then 4-bytes will be read from the
eeprom. Similarly, if a Word type variable is used as the assignment variable, then a 16-bit value (2-
bytes)will be read from eeprom, and if a Byte type variable is used, then 8-bits will be read. To read an
8-bit value while using a Word sized variable, use the LowByte modifier:

 WordVar1.LowByte = Eread 0 ' Read an 8-bit value
 WordVar1.HighByte = 0 ' Clear the high byte of WordVar

If a 16-bit (Word) size value is read from the eeprom, the address must be incremented by two for the
next read. Also, if a Float or Dword type variable is read, then the address must be incremented by 4.

The Amicus18 microcontroller has 256 bytes of eeprom data.

Eeprom memory is non-volatile, and is an excellent place for storage of long-term information, or tables
of values.

Reading data with the Eread command is almost instantaneous, but writing data to the eeprom can
take a few milliseconds per byte.

See also : Edata, Ewrite

Proton Amicus18 Compiler

 139
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Ewrite

Syntax
Ewrite Address, [Variable {, Variable…etc }]

Overview
Write information to the on-board eeprom of the Amicus18 microcontroller.

Operators

 Address is a constant, variable, or expression, that contains the address of interest within
eeprom memory.

 Variable is a user defined variable.

Example
 Dim Var1 as Byte
 Dim WordVar1 as Word
 Dim Address as Byte
 Var1 = 200
 WordVar1= 2456
 Address = 0 ' Point to address 0 within the eeprom
 Ewrite Address, [WordVar, Var1] ' Write a 16-bit then an 8-bit value

Notes
If a Dword type variable is used, then a 32-bit value (4-bytes) will be written to the eeprom. Similarly, if
a Word type variable is used, then a 16-bit value (2-bytes) will be written to eeprom, and if a Byte type
variable is used, then 8-bits will be written. To write an 8-bit value while using a Word sized variable,
use the LowByte modifier:

 Ewrite Address, [WordVar.LowByte, Var1]

If a 16-bit (Word) size value is written to the eeprom, the address must be incremented by two before
the next write:

 For Address = 0 to 64 Step 2
 Ewrite Address, [WordVar]
 Next

The Amicus18 microcontroller has 256 bytes of eeprom data.

Eeprom memory is non-volatile, and is an excellent place for storage of long-term information, or tables
of values.

Writing data with the Ewrite command can take a few milliseconds per byte, but reading data from the
eeprom is almost instantaneous,.

See also : Edata, Eread

Proton Amicus18 Compiler

 140
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

For...Next...Step

Syntax
For Variable = StartCount to EndCount [Step { StepVal }]
{code body}
Next

Overview
The For…Next loop is used to execute a statement, or series of statements a predetermined amount of
times.

Operators

 Variable refers to an index variable used for the sake of the loop. This index variable can itself
be used in the code body but beware of altering its value within the loop as this can cause many
problems.

 StartCount is the start number of the loop, which will initially be assigned to the variable. This
does not have to be an actual number - it could be the contents of another variable.

 EndCount is the number on which the loop will finish. This does not have to be an actual num-
ber, it could be the contents of another variable, or an expression.

 StepVal is an optional constant or variable by which the variable increases or decreases with
each trip through the For-Next loop. If startcount is larger than endcount, then a minus sign
must precede stepval.

Example 1
' Display in decimal, all the values of WordVar within an upward loop
 Dim WordVar as Word
 For WordVar = 0 to 2000 Step 2 ' Perform an upward loop
 HRsout Dec WordVar, 13 ' Display the value of WordVar
 Next ' Close the loop

Example 2
' Display in decimal, all the values of WordVar within a downward loop
 Dim WordVar as Word
 For WordVar = 2000 to 0 Step -2 ' Perform a downward loop
 HRsout Dec WordVar, 13 ' Display the value of WordVar
 Next ' Close the loop

Example 3
' Display in decimal, all the values of DWordVar within a downward loop
 Dim DWordVar as Dword
 For DWordVar = 200000 to 0 Step -200 ' Perform a downward loop
 HRsout Dec DwordVar, 13 ' Display the value of DWordVar
 Next ' Close the loop

Example 4
' Display all WordVar1 using a expressions as parts of the For-Next construct
 Dim WordVar1 as Word
 Dim WordVar2 as Word
 WordVar2 = 1000
 For WordVar1= WordVar2 + 10 to WordVar2 + 1000 ' Perform a loop
 HRsout Dec WordVar1, 13 ' Display the value of WordVar1
 Next ' Close the loop

Notes
You may have noticed from the above examples, that no variable is present after the Next command. A
variable after Next is purely optional.

Proton Amicus18 Compiler

 141
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

For-Next loops may be nested as deeply as the memory on the Amicus18 microcontroller will allow. To
break out of a loop you may use the GoTo command without any ill effects, but it recommended that
the Break command is used instead:

 For Var1 = 0 to 20 ' Create a loop of 21
 If Var1 = 10 Then GoTo BreakOut ' Break out of loop when Var1 is 10
 Next ' Close the loop
BreakOut:
 Stop

See also : While...Wend, Repeat...Until.

Proton Amicus18 Compiler

 142
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

FreqOut

Syntax
FreqOut Pin, Period, Freq1 {, Freq2}

Overview
Generate one or two sine-wave tones, of differing or the same frequencies, for a specified period.

Operators

 Pin is a Port-Bit combination that specifies which I/O pin to use.
 Period may be a variable, constant, or expression (0 - 65535) specifying the amount of time to

generate the tone(s).
 Freq1 may be a variable, constant, or expression (0 - 32767) specifying frequency of the first

tone.
 Freq2 may be a variable, constant, or expression (0 - 32767) specifying frequency of the second

tone. When specified, two frequencies will be mixed together on the same I/O pin.

Example
' Generate a 2500Hz (2.5KHz) tone for 1 second (1000 ms) on bit 0 of PortA.
 FreqOut PortA.0, 1000, 2500

' Play two tones at once for 1000ms. One at 2.5KHz, the other at 3KHz.
 FreqOut PortA.0, 1000, 2500, 3000

Notes
FreqOut generates one or two sine waves using a pulse-width modulation algorithm. FreqOut will
work with a 4MHz crystal, however, it is best used with higher frequency crystals, and operates best
with a frequency of 20MHz or above. The raw output from FreqOut requires filtering, to eliminate most
of the switching noise. The circuits shown below will filter the signal in order to play the tones through a
speaker or audio amplifier.

The two circuits shown above, work by filtering out the high-frequency Pwm used to generate the sine
waves. FreqOut works over a very wide range of frequencies (0 to 32767KHz) so at the upper end of
its range, the Pwm filters will also filter out most of the desired frequency. You may need to reduce the
values of the parallel capacitors shown in the circuit, or to create an active filter for your application.

C2
0.1uF

R2
1k

To Audio
Amplifier

R1
1k

C1
0.1uF

From PIC
I/O pin

From PIC
I/O pin

Speaker
C1

10uF

C2
10uF

Proton Amicus18 Compiler

 143
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Example 2
' Play a tune using FreqOut to generate the notes

 Dim Loop as Byte ' Counter for notes.
 Dim Freq1 as Word ' Frequency1.
 Dim Freq2 as Word ' Frequency2
 Symbol C = 2092 ' C note
 Symbol D = 2348 ' D note
 Symbol E = 2636 ' E note
 Symbol G = 3136 ' G note
 Symbol R = 0 ' Silent pause.
 Symbol Pin = PortA.0 ' Sound output pin
 All_Digital= True ' Set all ports to digital mode
 Loop = 0
 Repeat ' Create a loop for 29 notes within the LookUpL table.

Freq1 = LookUpL Loop,[E,D,C,D,E,E,E,R,D,D,D,R,_
 E,G,G,R,E,D,C,D,E,E,E,E,D,D,E,D,C]

 If Freq1 = 0 Then
 Freq2 = 0

Else
Freq2 = Freq1 – 8

 EndIf
 FreqOut Pin, 225, Freq1, Freq2
 Inc Loop
 Until Loop > 28
 Stop

See also : DTMFout, Sound, Sound2.

Proton Amicus18 Compiler

 144
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

GetBit

Syntax
Variable = GetBit Variable, Index

Overview
Examine a bit of a variable, or register.

Operators

 Variable is a user defined variable, of type Byte, Word, or Dword.
 Index is a constant, variable, or expression that points to the bit within Variable that requires

examining.

Example
' Examine and display each bit of variable ExVar
 Dim ExVar as Byte
 Dim Index as Byte
 Dim Var1 as Byte

 ExVar = %10110111
Again:
 HRsout Bin8 ExVar, 13 ' Display the original variable
 For Index = 7 to 0 Step -1 ' Create a loop for 8 bits
 Var1 = GetBit ExVar,Index ' Examine each bit of ExVar
 HRsout Dec1 Var1 ' Display the binary result
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 Hrsout 13
 GoTo Again ' Do it forever

See also : ClearBit, LoadBit, SetBit.

Proton Amicus18 Compiler

 145
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

GoSub

Syntax
GoSub Label

or

GoSub Label [Variable, {Variable, Variable... etc}], Receipt Variable

Overview
GoSub jumps the program to a defined label and continues execution from there. Once the program
hits a Return command the program returns to the instruction following the GoSub that called it and
continues execution from that point.

Parameters can be pushed onto a software stack before the call is made, and a variable can be popped
from the stack before continuing execution of the next commands.

Operators

 Label is a user-defined label placed at the beginning of a line which must have a colon ':' di-
rectly after it.

 Variable is a user defined variable of type Bit, Byte, Byte Array, Word, Word Array, Dword,
Float, or String, or Constant value, that will be pushed onto the stack before the call to a subrou-
tine is performed.

 Receipt Variable is a user defined variable of type Bit, Byte, Byte Array, Word, Word Array,
Dword, Float, or String, that will hold a value popped from the stack after the subroutine has re-
turned.

Example 1
' Implement a standard subroutine call
 GoTo Start ' Jump over the subroutines
SubA:

subroutine A code

 ……
 ……

 Return

SubB:

subroutine B code

 ……
 ……

 Return

' Actual start of the main program
Start:

GoSub SubA
 GoSub SubB
 Stop

Proton Amicus18 Compiler

 146
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Example 2
' Call a subroutine with parameters
 Declare Stack_Size = 20 ' Create a stack capable of holding 20 bytes

 Dim WordVar1 as Word ' Create a Word variable
 Dim WordVar2 as Word ' Create another Word variable
 Dim Receipt as Word ' Create a variable to hold result

 WordVar1 = 1234 ' Load the Word variable with a value
 WordVar2 = 567 ' Load the other Word variable with a value
' Call the subroutine and return a value
 GoSub AddThem [WordVar1, WordVar2], Receipt
 HRsout Dec Receipt,13 ' Display the result as decimal
 Stop

' Subroutine starts here. Add two parameters passed and return the result
AddThem:
 Dim AddWordVar1 as Word ' Create two uniquely named variables
 Dim AddWordVar2 as Word

 Pop AddWordVar2 ' Pop the last variable pushed
 Pop AddWordVar1 ' Pop the first variable pushed
 AddWordVar1 = AddWordVar1 + AddWordVar2 ' Add the values together
 Return AddWordVar1 ' Return the result of the addition

In reality, what's happening with the GoSub in the above program is simple, if we break it into its con-
stituent events:

 Push WordVar1
 Push WordVar2
 GoSub AddThem
 Pop Receipt

Notes
Only one parameter can be returned from the subroutine, any others will be ignored.

If a parameter is to be returned from a subroutine but no parameters passed to the subroutine, simply
issue a pair of empty square braces:

 GoSub LABEL [], Receipt

The same rules apply for the parameters as they do for Push, which is after all, what is happening.

Proton Amicus18 compiler allows any amount of Gosubs in a program, but the Amicus18 microcontroller
only has a 28-level return address stack which allows up to 28 consecutive Gosubs to occur.

A subroutine must always end with a Return command.

Proton Amicus18 Compiler

 147
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

What is a Stack?
All microprocessors and most microcontrollers have access to a Stack, which is an area of RAM allocated
for temporary data storage. But this is sadly lacking on a microcontroller device. However, the Amicus18
microcontroller has low-level mnemonics that allow a Stack to be created and used very efficiently.

A stack is first created in high memory by issuing the Stack_Size Declare.

 Declare Stack_Size = 40

The above line of code will reserve 40 bytes at the top of RAM that cannot be touched by any BASIC
command, other than Push and Pop. This means that it is a safe place for temporary variable storage.

Taking the above line of code as an example, we can examine what happens when a variable is pushed
on to the 40 byte stack, and then popped off again.

First the RAM is allocated. The Amicus18 microcontroller (PIC18F25K20) has 1536 bytes of RAM that
stretches linearly from address 0 to 1535. Reserving a stack of 40 bytes will reduce the top of memory
so that the compiler will only see 1495 bytes (1535 - 40). This will ensure that it will not inadvertently
try and use it for normal variable storage.

Pushing.
When a Word variable is pushed onto the stack, the memory map would look like the diagram below:

 Top of Memory |..............Empty RAM.............. | Address 1535
 ~ ~
 ~ ~
 |..............Empty RAM.............. | Address 1502
 |..............Empty RAM.............. | Address 1501
 | Low Byte address of Word variable | Address 1496
 Start of Stack | High Byte address of Word variable | Address 1495

The high byte of the variable is first pushed on to the stack, then the low byte. And as you can see, the
stack grows in an upward direction whenever a Push is implemented, which means it shrinks back
down whenever a Pop is implemented.

If we were to Push a Dword variable on to the stack as well as the Word variable, the stack memory
would look like:

 Top of Memory |...........Empty RAM..................|

Address 1535 ~ ~
 ~ ~
 |............Empty RAM.................|

Address 1502 |............Empty RAM.................| Address 1501
 | Low Byte address of Dword variable | Address 1500
 | Mid1 Byte address of Dword variable | Address 1499
 | Mid2 Byte address of Dword variable | Address 1498
 | High Byte address of Dword variable | Address 1497
 | Low Byte address of Word variable | Address 1496

Start of Stack | High Byte address of Word variable | Address 1495

Proton Amicus18 Compiler

 148
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Popping.
When using the Pop command, the same variable type that was pushed last must be popped first, or
the stack will become out of phase and any variables that are subsequently popped will contain invalid
data. For example, using the above analogy, we need to Pop a Dword variable first. The Dword variable
will be popped Low Byte first, then Mid1 Byte, then Mid2 Byte, then lastly the High Byte. This will ensure
that the same value pushed will be reconstructed correctly when placed into its recipient variable. After
the Pop, the stack memory map will look like:

 Top of Memory |..............Empty RAM.............. | Address 1535
 ~ ~
 ~ ~
 |..............Empty RAM.............. | Address 1502
 |..............Empty RAM.............. | Address 1501
 | Low Byte address of Word variable | Address 1496
 Start of Stack | High Byte address of Word variable | Address 1495

If a Word variable was then popped, the stack will be empty, however, what if we popped a Byte vari-
able instead? the stack would contain the remnants of the Word variable previously pushed. Now what if
we popped a Dword variable instead of the required Word variable? the stack would underflow by two
bytes and corrupt any variables using those address's . The compiler cannot warn you of this occurring,
so it is up to you, the programmer, to ensure that proper stack management is carried out. The same is
true if the stack overflows. i.e. goes beyond the top of RAM. The compiler cannot give a warning.

Technical Details of Stack implementation.
The stack implemented by the compiler is known as an Incrementing Last-In First-Out Stack. Increment-
ing because it grows upwards in memory. Last-In First-Out because the last variable pushed, will be the
first variable popped.

The stack is not circular in operation, so that a stack overflow will rollover into the microcontroller’s
hardware register, and an underflow will simply overwrite RAM immediately below the Start of Stack
memory. If a circular operating stack is required, it will need to be coded in the main BASIC program, by
examination and manipulation of the stack pointer (see below).

Indirect register pair FSR2L and FSR2H are used as a 16-bit stack pointer, and are incremented for
every Byte pushed, and decremented for every Byte popped. Therefore checking the FSR2 registers in
the BASIC program will give an indication of the stack's condition if required. This also means that the
BASIC program cannot use the FSR2 register pair as part of its code, unless for manipulating the stack.
Note that none of the compiler's commands, other than Push and Pop, use FSR2.

Whenever a variable is popped from the stack, the stack's memory is not actually cleared, only the stack
pointer is moved. Therefore, the above diagrams are not quite true when they show empty RAM, but
unless you have use of the remnants of the variable, it should be considered as empty, and will be
overwritten by the next Push command.

See also : Call, GoTo, Push, Pop.

Proton Amicus18 Compiler

 149
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

GoTo

Syntax
GoTo Label

Overview
Jump to a defined label and continue execution from there.

Operators

 Label is a user-defined label placed at the beginning of a line which must have a colon ':' di-
rectly after it.

Example
 If Var1 = 3 Then GoTo Jumpover

 code here executed only if Var1<>3
 ……
 ……

JumpOver:
 {continue code execution}

In this example, if Var1=3 then the program jumps over all the code below it until it reaches the label
JumpOver where program execution continues as normal.

See also : Call, GoSub.

Proton Amicus18 Compiler

 150
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

HbStart

Syntax
HbStart

Overview
Send a Start condition to the I2C bus using the microcontroller’s MSSP module.

Notes
Because of the subtleties involved in interfacing to some I2C devices, the compiler's standard Hbusin,
and Hbusout commands were found lacking. Therefore, individual pieces of the I2C protocol may be
used in association with the new structure of Hbusin, and Hbusout. See relevant sections for more
information.

Example
' Interface to a 24LC256 serial eeprom
 Dim Loop as Byte
 Dim Array[10] as Byte
' Transmit bytes to the I2C bus
 HbStart ' Send a Start condition
 Hbusout %10100000 ' Target an eeprom, and send a WRITE command
 Hbusout 0 ' Send the High Byte of the address
 Hbusout 0 ' Send the Low Byte of the address
 For Loop = 48 to 57 ' Create a loop containing ASCII 0 to 9
 Hbusout Loop ' Send the value of Loop to the eeprom
 Next ' Close the loop
 HbStop ' Send a Stop condition
 DelayMs 10 ' Wait for data to be entered into eeprom matrix
' Receive bytes from the I2C bus
 HbStart ' Send a Start condition
 Hbusout %10100000 ' Target an eeprom, and send a WRITE command
 Hbusout 0 ' Send the High Byte of the address
 Hbusout 0 ' Send the Low Byte of the address
 HbRestart ' Send a Restart condition
 Hbusout %10100001 ' Target an eeprom, and send a Read command
 For Loop = 0 to 9 ' Create a loop
 Array[Loop] = Hbusin ' Load an array with bytes received
 If Loop = 9 Then HbStop : Else : HbusAck ' ACK or Stop ?
 Next ' Close the loop
 HRsout Str Array, 13 ' Display the Array as a String

See also : HbusAck, HbRestart, HbStop, Hbusin, Hbusout.

Proton Amicus18 Compiler

 151
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

HbStop

Syntax
HbStop

Overview
Send a Stop condition to the I2C bus using the microcontroller’s MSSP module.

HbRestart

Syntax
HbRestart

Overview
Send a Restart condition to the I2C bus using the microcontroller’s MSSP module.

HbusAck

Syntax
HbusAck

Overview
Send an Acknowledge condition to the I2C bus using the microcontroller’s MSSP module.

HbusNack

Syntax
HbusNack

Overview
Send a Not Acknowledge condition to the I2C bus using the microcontroller’s MSSP module.

See also : HbStart, HbRestart, HbStop, Hbusin, Hbusout.

Proton Amicus18 Compiler

 152
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Hbusin

Syntax
Variable = Hbusin Control, { Address }

or

Variable = Hbusin

or

Hbusin Control, { Address }, [Variable {, Variable…}]

or

Hbusin Variable

Overview
Receives a value from the I2C bus using the MSSP module, and places it into variable/s. If structures
two or four (see above) are used, then no Acknowledge, or Stop is sent after the data. Structures one
and three first send the control and optional address out of the clock pin (SCL), and data pin (SDA).

Operators

 Variable is a user defined variable or constant.
 Control may be a constant value or a Byte sized variable expression.
 Address may be a constant value or a variable expression.

The four variations of the Hbusin command may be used in the same BASIC program. The second and
fourth types are useful for simply receiving a single byte from the bus, and must be used in conjunction
with one of the low level commands. i.e. HbStart, HbRestart, HbusAck, or HbStop. The first, and
third types may be used to receive several values and designate each to a separate variable, or variable
type.

The Hbusin command operates as an I2C master, using the microcontroller’s MSSP module, and may be
used to interface with any device that complies with the 2-wire I2C protocol.

The most significant 7-bits of control byte contain the control code and the slave address of the device
being interfaced with. Bit-0 is the flag that indicates whether a read or write command is being imple-
mented.

For example, if we were interfacing to an external eeprom such as the 24LC256, the control code would
be %10100001 or $A1. The most significant 4-bits (1010) are the eeprom's unique slave address. Bits 2
to 3 reflect the three address pins of the eeprom. And bit-0 is set to signify that we wish to read from
the eeprom. Note that this bit is automatically set by the Hbusin command, regardless of its initial set-
ting.

Proton Amicus18 Compiler

 153
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Example
' Receive a byte from the I2C bus and place it into variable Var1.

 Dim Var1 as Byte ' We'll only read 8-bits
 Dim Address as Word ' 16-bit address required
 Symbol Control %10100001 ' Target an eeprom
 Address = 20 ' Read the value at address 20
 Var1 = Hbusin Control, Address ' Read the byte from the eeprom

or

 Hbusin Control, Address, [Var1] ' Read the byte from the eeprom

Address, is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in this posi-
tion, the size of address is dictated by the size of the variable used (Byte or Word). In the case of the
previous eeprom interfacing, the 24LC256 eeprom requires a 16-bit address. While the smaller types
require an 8-bit address. Make sure you assign the right size address for the device interfaced with, or
you may not achieve the results you intended.

The value received from the bus depends on the size of the variables used, except for variation three,
which only receives a Byte (8-bits). For example:

 Dim WordVar as Word ' Create a Word size variable
 WordVar = Hbusin Control, Address

Will receive a 16-bit value from the bus. While:

 Dim Var1 as Byte ' Create a Byte size variable
 Var1 = Hbusin Control, Address

Will receive an 8-bit value from the bus.

Using the third variation of the Hbusin command allows differing variable assignments. For example:

 Dim Var1 as Byte
 Dim WordVar as Word
 Hbusin Control, Address, [Var1, WordVar]

Will receive two values from the bus, the first being an 8-bit value dictated by the size of variable Var1
which has been declared as a byte. And a 16-bit value, this time dictated by the size of the variable
WordVar which has been declared as a word. Of course, Bit type variables may also be used, but in
most cases these are not of any practical use as they still take up a byte within the eeprom.

The second and fourth variations allow all the subtleties of the I2C protocol to be exploited, as each op-
eration may be broken down into its constituent parts. It is advisable to refer to the datasheet of the
device being interfaced to fully understand its requirements. See section on HbStart, HbRestart,
HbusAck, or HbStop, for example code.

Proton Amicus18 Compiler

 154
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Hbusin Declare

Declare Hbus_Bitrate Constant 100, 400, 1000

The standard speed for the I2C bus is 100KHz. Some devices use a higher bus speed of 400KHz. The
above Declare allows the I2C bus speed to be increased or decreased. Use this Declare with caution,
as too high a bit rate may exceed the device's specs, which will result in intermittent transactions, or in
some cases, no transactions at all. The datasheet for the device used will inform you of its bus speed.
The default bit rate is the standard 100KHz.

Notes
When the Hbusin command is used, the appropriate SDA and SCL Port and Pin are automatically setup
as inputs. The SDA, and SCL lines are predetermined as hardware pins on the microcontroller, where
the SCL pin is PortC.3, and SDA is PortC.4. Therefore, there is no need to pre-declare these.

Because the I2C protocol calls for an open-collector interface, pull-up resistors are required on both the
SDA and SCL lines. Values of 1KΩ to 4.7KΩ will suffice.

Str modifier with Hbusin
Using the Str modifier allows variations three and four of the Hbusin command to transfer the bytes
received from the I2C bus directly into a byte array. If the amount of received characters is not enough
to fill the entire array, then a formatter may be placed after the array's name, which will only receive
characters until the specified length is reached. An example of each is shown below:

 Dim Array[10] as Byte ' Define an array of 10 bytes
 Dim Address as Byte ' Create a word sized variable

 Hbusin %10100000, Address, [Str Array] ' Load data into all the array
' Load data into only the first 5 elements of the array
 Hbusin %10100000, Address, [Str Array\5]
 HbStart ' Send a Start condition
 Hbusout %10100000 ' Target an eeprom, and send a WRITE command
 Hbusout 0 ' Send the HighByte of the address
 Hbusout 0 ' Send the LowByte of the address
 HbRestart ' Send a Restart condition
 Hbusout %10100001 ' Target an eeprom, and send a Read command
 Hbusin Str Array ' Load all the array with bytes received
 HbStop ' Send a Stop condition

An alternative ending to the above example is:

 Hbusin Str Array\5 ' Load data into the first 5 elements of the array
 HbStop ' Send a Stop condition

See also : HbusAck, HbusNack, HbRestart, HbStop, HbStart, Hbusout.

Proton Amicus18 Compiler

 155
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Hbusout

Syntax
Hbusout Control, { Address }, [Variable {, Variable…}]

or

Hbusout Variable

Overview
Transmit a value to the I2C bus using the microcontroller’s MSSP module, by first sending the control
and optional address out of the clock pin (SCL), and data pin (SDA). Or alternatively, if only one opera-
tor is included after the Hbusout command, a single value will be transmitted, along with an ACK re-
ception.

Operators

 Variable is a user defined variable or constant.
 Control may be a constant value or a Byte sized variable expression.
 Address may be a constant, variable, or expression.

The Hbusout command operates as an I2C master and may be used to interface with any device that
complies with the 2-wire I2C protocol.

The most significant 7-bits of control byte contain the control code and the slave address of the device
being interfaced with. Bit-0 is the flag that indicates whether a read or write command is being imple-
mented.

For example, if we were interfacing to an external eeprom such as the 24LC256, the control code would
be %10100000 or $A0. The most significant 4-bits (1010) are the eeprom's unique slave address. Bits 2
to 3 reflect the three address pins of the eeprom. And Bit-0 is clear to signify that we wish to write to
the eeprom. Note that this bit is automatically cleared by the Hbusout command, regardless of its ini-
tial value.

Example
' Send a byte to the I2C bus.

 Dim Var1 as Byte ' We'll only read 8-bits
 Dim Address as Word ' 16-bit address required
 Symbol Control = %10100000 ' Target an eeprom
 Address = 20 ' Write to address 20
 Var1 = 200 ' The value place into address 20
 Hbusout Control, Address, [Var1] ' Send the byte to the eeprom
 DelayMs 10 ' Allow time for allocation of byte

Address, is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in this posi-
tion, the size of address is dictated by the size of the variable used (Byte or Word). In the case of the
above eeprom interfacing, the 24LC256 eeprom requires a 16-bit address. While the smaller types re-
quire an 8-bit address. Make sure you assign the right size address for the device interfaced with, or you
may not achieve the results you intended.

Proton Amicus18 Compiler

 156
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The value sent to the bus depends on the size of the variables used. For example:

 Dim WordVar as Word ' Create a Word size variable
 Hbusout Control, Address, [WordVar]

Will send a 16-bit value to the bus. While:

 Dim Var1 as Byte ' Create a Byte size variable
 Hbusout Control, Address, [Var1]

Will send an 8-bit value to the bus.

Using more than one variable within the brackets allows differing variable sizes to be sent. For example:

 Dim Var1 as Byte
 Dim WordVar as Word
 Hbusout Control, Address, [Var1, WordVar]

Will send two values to the bus, the first being an 8-bit value dictated by the size of variable Var1 which
has been declared as a byte. And a 16-bit value, this time dictated by the size of the variable WordVar
which has been declared as a word. Of course, Bit type variables may also be used, but in most cases
these are not of any practical use as they still take up a byte within the eeprom.

A string of characters can also be transmitted, by enclosing them in quotes:

 Hbusout Control, Address, ["Hello World", Var1, WordVar]

Using the second variation of the Hbusout command, necessitates using the low level commands i.e.
HbStart, HbRestart, HbusAck, HbusNack, or HbStop.

Using the Hbusout command with only one value after it, sends a byte of data to the I2C bus, and re-
turns holding the Acknowledge reception. This acknowledge indicates whether the data has been re-
ceived by the slave device.

The ACK reception is returned in the microcontroller’s CARRY flag, which is STATUS.0, and also System
variable PP4.0. A value of zero indicates that the data was received correctly, while a one indicates that
the data was not received, or that the slave device has sent a NACK return. You must read and under-
stand the datasheet for the device being interfacing to, before the ACK return can be used successfully.
An code snippet is shown below:

' Transmit a byte to a 24LC256 serial eeprom
 HbStart ' Send a Start condition
 Hbusout %10100000 ' Target an eeprom, and send a WRITE command
 Hbusout 0 ' Send the HighByte of the address
 Hbusout 0 ' Send the LowByte of the address
 Hbusout "A" ' Send the value 65 to the bus
 If STATUSbits_C = 1 Then GoTo Not_Received ' Has ACK been received OK ?
 HbStop ' Send a Stop condition
 DelayMs 10 ' Wait for the data to be entered into eeprom matrix

Proton Amicus18 Compiler

 157
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Str modifier with Hbusout.
The Str modifier is used for transmitting a string of bytes from a byte array variable. A string is a set of
bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3 would be stored
in a string with the value 1 first, followed by 2 then followed by the value 3. A byte array is a similar
concept to a string; it contains data that is arranged in a certain order. Each of the elements in an array
is the same size. The string 1,2,3 would be stored in a byte array containing three bytes (elements).

Below is an example that sends four bytes from an array:

 Dim MyArray[10] as Byte ' Create a 10-byte array
 MyArray[0] = "A" ' Load the first 4 bytes of the array
 MyArray[1] = "B" ' With the data to send
 MyArray[2] = "C"
 MyArray[3] = "D"
 Hbusout %10100000, Address, [Str MyArray \4] ' Send 4-byte string.

Note that we use the optional \n argument of Str. If we didn't specify this, the program would try to
keep sending characters until all 10 bytes of the array were transmitted. Since we do not wish all 10
bytes to be transmitted, we chose to tell it explicitly to only send the first 4 bytes.

The above example may also be written as:

 Dim MyArray[10] as Byte ' Create a 10-byte array
 Str MyArray = "ABCD" ' Load the first 4 bytes of the array
 HbStart ' Send a Start condition
 Hbusout %10100000 ' Target an eeprom, and send a WRITE command
 Hbusout 0 ' Send the High Byte of the address
 Hbusout 0 ' Send the Low Byte of the address
 Hbusout Str MyArray\4 ' Send 4-byte string.
 HbStop ' Send a Stop condition

The above example, has exactly the same function as the previous one. The only differences are that
the string is now constructed using the Str as a command instead of a modifier, and the low-level Hbus
commands have been used.

Notes
When the Hbusout command is used, the appropriate SDA and SCL Port and Pin are automatically
setup as inputs. The SDA, and SCL lines are predetermined as hardware pins on the microcontroller,
where the SCL pin is RC3 (PortC.3), and SDA is RC4 (PortC.4). Therefore, there is no need to pre-
declare these.

See also : HbusAck, HbusNack, HbRestart, HbStop, Hbusin, HbStart.

Proton Amicus18 Compiler

 158
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

High

Syntax
High Port or Port.Bit

Overview
Place a Port or bit in a high state. For a Port, this means filling it with 1's. For a bit this means setting it
to 1.

Operators

 Port can be any valid port.
 Port.Bit can be any valid port and bit combination, i.e. RA1, RB4, PortA.1 etc…

Example
 Symbol LED = RB0
 While 1 = 1 ' Create an infinite loop

High LED ' Bring the LED pin high
DelayMs 500 ' Wait 500ms
Low LED ' Pull the LED pin low
DelayMs 500 ' Wait 500ms

 Wend ' Close the loop

See also : Clear, Dim, Low, Set, Symbol.

Proton Amicus18 Compiler

 159
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Hpwm

Syntax
Hpwm Channel, Dutycycle, Frequency

Overview
Output a pulse width modulated pulse train using the CCP module’s PWM hardware. The PWM pulses
produced can run continuously in the background while the program is executing other instructions.

Operators

 Channel is a constant value that specifies which hardware Pwm channel to use. The Amicus18
microcotroller has 2 statndard PWM channels, but the Frequency must be the same on both
channels. The microcontroller has fixed pins for PWM, Channel 1 is CCP1 which is pin RC2
(PortC.2). Channel 2 is CCP2 which is pin RC1 (PortC.1).

 Dutycycle is a variable, constant (0-255), or expression that specifies the on/off (high/low) ratio
of the signal. It ranges from 0 to 255, where 0 is off (low all the time) and 255 is on (high) all
the time. A value of 127 gives a 50% duty cycle (square wave).

 Frequency is a variable, constant (0-32767), or expression that specifies the desired frequency
of the Pwm signal. Not all frequencies are available at all oscillator settings. The highest fre-
quency at any oscillator speed is 32767Hz. The lowest usable Hpwm Frequency at each oscilla-
tor setting is shown in the table below:

 Xtal frequency Lowest useable Pwm frequency
 4MHz 244Hz
 8MHz 488Hz
 10MHz 610Hz
 12MHz 732Hz
 16MHz 976Hz
 20MHz 1221Hz
 24MHz 1465Hz
 33MHz 2015Hz
 40MHz 2442Hz
 48MHz 2930Hz
 64MHz (default) 3906Hz

Example
 Hpwm 1,127,1000 ' Send a 50% duty cycle Pwm signal at 1KHz
 DelayMs 500
 Hpwm 1,64,2000 ' Send a 25% duty cycle Pwm signal at 2KHz

See also : Pwm, PulseOut, Servo.

Proton Amicus18 Compiler

 160
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

HRsin

Syntax
Variable = HRsin, { Timeout, Timeout Label }

or

HRsin { Timeout, Timeout Label }, { Parity Error Label }, Modifiers, Variable {, Variable... }

Overview
Receive one or more values from the microcontroller’s USART.

Operators

 Timeout is an optional value for the length of time the HRsin command will wait before jump-
ing to label Timeout Label. Timeout is specified in 1 millisecond units.

 Timeout Label is an optional valid BASIC label where HRsin will jump to in the event that a
character has not been received within the time specified by Timeout.

 Parity Error Label is an optional valid BASIC label where HRsin will jump to in the event that a
Parity error is received. Parity is set using Declares. Parity Error detecting is not supported in the
inline version of HRsin (first syntax example above).

 Modifier is one of the many formatting modifiers, explained below.
 Variable is a variable, that will be loaded by HRsin.

Example
' Receive values serially and timeout if no reception after 1 second

 Declare Hserial_Baud = 115200 ' Set baud rate to 115200
 Dim Var1 as Byte

Loop:

Var1 = HRsin, {1000, Timeout} ' Receive a byte serially into Var1
 HRsout Dec Var1 ' Display the byte received
 GoTo Loop ' Loop forever
Timeout:
 HRsout "Timed Out",13 ' Display an error if HRsin timed out
 Stop

HRsin Modifiers.
As we already know, HRsin will wait for and receive a single byte of data, and store it in a variable . If
the Amicus18 board was connected to a PC running a terminal program and the user pressed the "A"
key on the keyboard, after the HRsin command executed, the variable would contain 65, which is the
ASCII code for the letter "A"

What would happen if the user pressed the "1" key? The result would be that the variable would contain
the value 49 (the ASCII code for the character "1"). This is an important point to remember: every time
you press a character on the keyboard, the computer receives the ASCII value of that character. It is up
to the receiving side to interpret the values as necessary.

Proton Amicus18 Compiler

 161
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

In this case, perhaps we actually wanted the variable to end up with the value 1, rather than the ASCII
code 49.

The HRsin command provides a modifier, called the decimal modifier, which will interpret this for us.
Look at the following code:

 Dim SerData as Byte
 HRsin Dec SerData

Notice the decimal modifier in the HRsin command that appears just to the left of the SerData variable.
This tells HRsin to convert incoming text representing decimal numbers into true decimal form and
store the result in SerData. If the user running the terminal software pressed the "1", "2" and then "3"
keys followed by a space or other non-numeric text, the value 123 will be stored in the variable SerData,
allowing the rest of the program to perform any numeric operation on the variable.

Without the decimal modifier, however, you would have been forced to receive each character ("1", "2"
and "3") separately, and then would still have to do some manual conversion to arrive at the number
123 (one hundred twenty three) before you can do the desired calculations on it.

The decimal modifier is designed to seek out text that represents decimal numbers. The characters that
represent decimal numbers are the characters "0" through "9". Once the HRsin command is asked to
use the decimal modifier for a particular variable, it monitors the incoming serial data, looking for the
first decimal character. Once it finds the first decimal character, it will continue looking for more (accu-
mulating the entire multi-digit number) until is finds a non-decimal numeric character. Remember that it
will not finish until it finds at least one decimal character followed by at least one non-decimal character.

To illustrate this further, examine the following examples (assuming we're using the same code example
as above):

Serial input: "ABC"
Result: The program halts at the HRsin command, continuously waiting for decimal text.

Serial input: "123" (with no characters following it)
Result: The program halts at the HRsin command. It recognises the characters "1", "2" and "3" as the
number one hundred twenty three, but since no characters follow the "3", it waits continuously, since
there's no way to tell whether 123 is the entire number or not.

Serial input: "123" (followed by a space character)
Result: Similar to the above example, except once the space character is received, the program knows
the entire number is 123, and stores this value in SerData. The HRsin command then ends, allowing
the next line of code to run.

Serial input: "123A"
Result: Same as the example above. The "A" character, just like the space character, is the first non-
decimal text after the number 123, indicating to the program that it has received the entire number.

Proton Amicus18 Compiler

 162
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Serial input: "ABCD123EFGH"
Result: Similar to examples 3 and 4 above. The characters "ABCD" are ignored (since they're not deci-
mal text), the characters "123" are evaluated to be the number 123 and the following character, "E",
indicates to the program that it has received the entire number.

The final result of the Dec modifier is limited to 16 bits (up to the value 65535). If a value larger than
this is received by the decimal modifier, the end result will be incorrect because the result rolled-over
the maximum 16-bit value. Therefore, HRsin modifiers may not (at this time) be used to load Dword
(32-bit) variables.

The decimal modifier is only one of a family of conversion modifiers available with HRsin See below for
a list of available conversion modifiers. All of the conversion modifiers work similar to the decimal modi-
fier (as described above). The modifiers receive bytes of data, waiting for the first byte that falls within
the range of characters they accept (e.g., "0" or "1" for binary, "0" to "9" for decimal, "0" to "9" and "A"
to "F" for hex. Once they receive a numeric character, they keep accepting input until a non-numeric
character arrives, or in the case of the fixed length modifiers, the maximum specified number of digits
arrives.

While very effective at filtering and converting input text, the modifiers aren't completely foolproof. As
mentioned before, many conversion modifiers will keep accepting text until the first non-numeric text
arrives, even if the resulting value exceeds the size of the variable. After HRsin, a Byte variable will
contain the lowest 8 bits of the value entered and a Word (16-bits) would contain the lowest 16 bits.
You can control this to some degree by using a modifier that specifies the number of digits, such as
Dec2, which would accept values only in the range of 0 to 99.

 Conversion Modifier Type of Number Numeric Characters Accepted
 Dec{1..10} Decimal, optionally limited 0 through 9
 to 1 - 10 digits
 Hex{1..8} Hexadecimal, optionally limited 0 through 9,
 to 1 - 8 digits A through F
 Bin{1..32} Binary, optionally limited 0, 1
 to 1 - 32 digits

A variable preceded by Bin will receive the ASCII representation of its binary value.
For example, if Bin Var1 is specified and "1000" is received, Var1 will be set to 8.

A variable preceded by Dec will receive the ASCII representation of its decimal value.
For example, if Dec Var1 is specified and "123" is received, Var1 will be set to 123.

A variable preceded by Hex will receive the ASCII representation of its hexadecimal value.
For example, if Hex Var1 is specified and "FE" is received, Var1 will be set to 254.

SKIP followed by a count will skip that many characters in the input stream.
For example, SKIP 4 will skip 4 characters.

The HRsin command can be configured to wait for a specified sequence of characters before it retrieves
any additional input. For example, suppose a device attached to the microcontroller is known to send
many different sequences of data, but the only data you wish to observe happens to appear right after
the unique characters, "XYZ". A modifier named Wait can be used for this purpose:

 HRsin Wait("XYZ"), SerData

Proton Amicus18 Compiler

 163
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The above code waits for the characters "X", "Y" and "Z" to be received, in that order, then it receives
the next data byte and places it into variable SerData.

Str modifier.
The HRsin command also has a modifier for handling a string of characters, named Str.

The Str modifier is used for receiving a string of characters into a byte array variable.

A string is a set of characters that are arranged or accessed in a certain order. The characters "ABC"
would be stored in a string with the "A" first, followed by the "B" then followed by the "C". A byte array
is a similar concept to a string; it contains data that is arranged in a certain order. Each of the elements
in an array is the same size. The string "ABC" would be stored in a byte array containing three bytes
(elements).

Below is an example that receives ten bytes and stores them in the 10-byte array, SerString:

 Dim SerString[10] as Byte ' Create a 10-byte array.
 HRsin Str SerString ' Fill the array with received data.

HRsout 13, Str SerString ' Display the string.

If the amount of received characters is not enough to fill the entire array, then a formatter may be
placed after the array's name, which will only receive characters until the specified length is reached.
For example:

 Dim SerString[10] as Byte ' Create a 10-byte array.
 HRsin Str SerString\5 ' Fill the first 5-bytes of the array
 HRsout 13, Str SerString\5 ' Display the 5-character string.

The example above illustrates how to fill only the first n bytes of an array, and then how to display only
the first n bytes of the array. n refers to the value placed after the backslash.

Because of its complexity, serial communication can be rather difficult to work with at times. Using the
guidelines below when developing a project using the HRsin and HRsout commands may help to
eliminate some obvious errors:

Always build your project in steps.
Start with small, manageable pieces of code, (that deal with serial communication) and test them, one
individually.
Add more and more small pieces, testing them each time, as you go.
Never write a large portion of code that works with serial communication without testing its smallest
workable pieces first.

Pay attention to timing.
Be careful to calculate and overestimate the amount of time, operations should take within the micro-
controller for a given oscillator frequency. Misunderstanding the timing constraints is the source of most
problems with code that communicate serially. If the serial communication in your project is bi-
directional, the above statement is even more critical.

Pay attention to wiring.
Take extra time to study and verify serial communication wiring diagrams. A mistake in wiring can cause
strange problems in communication, or no communication at all. Make sure to connect the ground pins
(Vss) between the devices that are communicating serially.

Proton Amicus18 Compiler

 164
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Because of additional overheads in the microcontroller, and the fact that the HRsin command only of-
fers a 2 level receive buffer for serial communication, received data may sometimes be missed or gar-
bled. If this occurs, try lowering the baud rate, or increasing the crystal frequency. Using simple vari-
ables (not arrays) will also increase the chance that the microcontroller will receive the data properly.

Declares
There are five Declare directives for use with HRsin. These are:

Declare Hserial_Baud Constant value
Sets the BAUD rate that will be used to receive a value serially. The baud rate is calculated using the
Xtal frequency declared in the program. The default baud rate if the Declare is not included in the pro-
gram listing is 9600 baud.

Declare Hserial_Parity Odd or Even
Enables/Disables parity on the serial port. For both HRsin and HRsout The default serial data format is
8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop bit) or 7O1 (7data
bits, odd parity, 1 stop bit) may be enabled using the Hserial_Parity declare.

Declare Hserial_Parity = Even ' Use if even parity desired
Declare Hserial_Parity = Odd ' Use if odd parity desired

Declare Hserial_Clear On or Off
Clear the overflow error bit before commencing a read.

Because the hardware serial port only has a 2-byte input buffer, it can easily overflow is characters are
not read from it often enough. When this occurs, the USART stops accepting any new characters, and
requires resetting. This overflow error can be Reset by strobing the CREN bit within the RCSTA register.
Example:

 RCSTA.4 = 0
 RCSTA.4 = 1
or
 Clear RCSTA.4
 Set RCSTA.4

Alternatively, the Hserial_Clear declare can be used to automatically clear this error, even if no error oc-
curred. However, the program will not know if an error occurred while reading, therefore some charac-
ters may be lost.

 Declare Hserial_Clear = On

See also : Declare, Rsin, Rsout, Serin, Serout, HRsout, Hserin, Hserout.

Proton Amicus18 Compiler

 165
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

HRsout

Syntax
HRsout Item {, Item... }

Overview
Transmit one or more Items from the microcontroller’s USART.

Operators

 Item may be a constant, variable, expression, or string.

There are no operators as such, instead there are modifiers. For example, if the text Dec precedes an
Item, the ASCII representation for each digit is transmitted.

The modifiers are listed below:

Modifier Operation
At ypos,xpos Position the cursor on a serial LCD
Cls Clear a serial LCD (also creates a 30ms delay)

Bin{1..32} Send binary digits
Dec{1..10} Send decimal digits
Hex{1..8} Send hexadecimal digits
Sbin{1..32} Send signed binary digits
Sdec{1..10} Send signed decimal digits
Shex{1..8} Send signed hexadecimal digits
Ibin{1..32} Send binary digits with a preceding '%' identifier
Idec{1..10} Send decimal digits with a preceding '#' identifier
Ihex{1..8} Send hexadecimal digits with a preceding '$' identifier
ISbin{1..32} Send signed binary digits with a preceding '%' identifier
ISdec{1..10} Send signed decimal digits with a preceding '#' identifier
IShex{1..8} Send signed hexadecimal digits with a preceding '$' identifier

Rep c\n Send character c repeated n times
Str array\n Send all or part of an array
Cstr cdata Send string data defined in a Cdata statement.

The numbers after the Bin, Dec, and Hex modifiers are optional. If they are omitted, then the default
is all the digits that make up the value will be displayed.

If a floating point variable is to be displayed, then the digits after the Dec modifier determine how many
remainder digits are send. i.e. numbers after the decimal point.

 Dim FloatVar as Float
 FloatVar = 3.145
 HRsout Dec2 FloatVar, 13 ' Send 2 values after the decimal point

The above program will send 3.14

If the digit after the Dec modifier is omitted, then 3 values will be displayed after the decimal point.

Proton Amicus18 Compiler

 166
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

 Dim FloatVar as Float
 FloatVar = 3.1456
 HRsout Dec FloatVar, 13 ' Send 3 values after the decimal point

The above program will send 3.145

There is no need to use the Sdec modifier for signed floating point values, as the compiler's Dec modi-
fier will automatically display a minus result:

 Dim FloatVar as Float
 FloatVar = -3.1456
 HRsout Dec FloatVar, 13 ' Send 3 values after the decimal point

The above program will send -3.145

Hex or Bin modifiers cannot be used with floating point values or variables.

Example 1
 Dim Var1 as Byte
 Dim WordVar as Word
 Dim DwordVar as Dword

 HRsout "Hello World", 13 ' Display the text "Hello World"
 HRsout "Var1= ", Dec Var1, 13 ' Display the decimal value of Var1
 HRsout "Var1= ", Hex Var1, 13 ' Display the hexadecimal value of Var1
 HRsout "Var1= ", Bin Var1, 13 ' Display the binary value of Var1
 HRsout "DwordVar= ", Hex6 DwordVar, 13 ' Display 6 hex chars of Dword

Example 2
' Display a negative value on the serial LCD.
 Symbol Negative = -200
 HRsout At 1, 1, Sdec Negative

Combining code memory reading with a string format, the compiler is capable of reducing the overhead
of printing, or transmitting large amounts of text data.

The Cstr modifier may be used in commands that deal with text processing i.e. Serout, Hserout, and
Print etc.

The Cstr modifier is used in conjunction with the Cdata command. The Cdata command is used for
initially creating the string of characters:

String1: Cdata "Hello World", 0

Proton Amicus18 Compiler

 167
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The previous line of code will create, in flash memory, the values that make up the ASCII text "HELLO
WORLD", at address String1. Note the null terminator after the ASCII text.

null terminated means that a zero (null) is placed at the end of the string of ASCII characters to signal
that the string has finished.

To display, or transmit this string of characters, the following command structure could be used:

 HRsout Cstr String1

The label that declared the address where the list of Cdata values resided, now becomes the string's
name. In a large program with lots of text formatting, this type of structure can save quite literally hun-
dreds of bytes of valuable code space.

Try both these small programs, and you'll see that using Cstr saves a few bytes of code:

First the standard way of displaying text:

 HRsout "Hello World",13
 HRsout "How are you?",13
 HRsout "I am fine!",13

Now using the Cstr modifier:

 HRsout Cstr Text1
 HRsout Cstr Text2
 HRsout Cstr Tetx3

Text1: Cdata "Hello World", 13, 0
Text 2: Cdata "How are you?", 13, 0
Text 3: Cdata "I am fine!", 13, 0

Again, note the null terminators after the ASCII text in the Cdata commands. Without these, the micro-
controller will continue to transmit data in an endless loop.

The term 'virtual string' relates to the fact that a string formed from the Cdata command cannot be
written too, but only read from.

The Str modifier is used for sending a string of bytes from a byte array variable. A string is a set of
bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3 would be stored
in a string with the value 1 first, followed by 2 then followed by the value 3. A byte array is a similar
concept to a string; it contains data that is arranged in a certain order. Each of the elements in an array
is the same size. The string 1,2,3 would be stored in a byte array containing three bytes (elements).

Below is an example that displays four bytes (from a byte array):

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 MyArray[0] = "H" ' Load the first 5 bytes of the array
 MyArray[1] = "E" ' With the data to send
 MyArray[2] = "L"
 MyArray[3] = "L"
 MyArray[4] = "O"
 HRsout Str MyArray\5, 13 ' Display a 5-byte string.

Proton Amicus18 Compiler

 168
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Note that we use the optional \n argument of Str. If we didn't specify this, the microcontroller would try
to keep sending characters until all 10 bytes of the array were transmitted. Since we do not wish all 10
bytes to be transmitted, we chose to tell it explicitly to only send the first 5 bytes.

The previous example may also be written as:

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 Str MyArray = "Hello" ' Load the first 5 bytes of the array
 HRsout Str MyArray\5, 13 ' Send 5-byte string.

The above example, has exactly the same function as the previous one. The only difference is that the
string is now constructed using Str as a command instead of a modifier.

Declares
There are four Declare directives for use with HRsout. These are:

Declare Hserial_Baud Constant value
Sets the BAUD rate that will be used to transmit a value serially. The baud rate is calculated using the
Xtal frequency declared in the program. The default baud rate if the Declare is not included in the pro-
gram listing is 9600 baud.

Declare Hserial_Parity Odd or Even
Enables/Disables parity on the serial port. For both HRsout and HRsin The default serial data format is
8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop bit) or 7O1 (7data
bits, odd parity, 1 stop bit) may be enabled using the Hserial_Parity declare.

 Declare Hserial_Parity = Even ' Use if even parity desired
 Declare Hserial_Parity = Odd ' Use if odd parity desired

See also : Declare, Rsin, Rsout, Serin, Serout, HRsin, Hserin, Hserout.

Proton Amicus18 Compiler

 169
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Hserin

Syntax
Hserin Timeout, Timeout Label, Parity Error Label, [Modifiers, Variable {, Variable... }]

Overview
Receive one or more values from the microcontroller’s USART. (For Compatibility with the melabs com-
piler)

Operators

 Timeout is an optional value for the length of time the Hserin command will wait before jump-
ing to label Timeout Label. Timeout is specified in 1 millisecond units.

 Timeout Label is an optional valid BASIC label where Hserin will jump to in the event that a
character has not been received within the time specified by Timeout.

 Parity Error Label is an optional valid BASIC label where Hserin will jump to in the event that
a Parity error is received. Parity is set using Declares. Parity Error detecting is not supported in
the inline version of Hserin (first syntax example above).

 Modifier is one of the many formatting modifiers, explained below.
 Variable is a variable, that will be loaded by Hserin.

Example
' Receive values serially and timeout if no reception after 1 second
 Declare Hserial_Baud = 115200 ' Set baud rate to 115200
 Declare Hserial_Clear = On ' Clear the buffer before receiving
 Dim Var1 as Byte

Loop:

Hserin 1000, Timeout, [Var1] ' Receive a byte serially into Var1
 HRsout Dec Var1, 13 ' Display the byte received
 GoTo Loop ' Loop forever
Timeout:
 HRsout "\rTimed Out\r" ' Display an error if Hserin timed out
 Stop

Hserin Modifiers.
As we already know, Hserin will wait for and receive a single byte of data, and store it in a variable . If
the Amicus18 board was connected to a PC running a terminal program and the user pressed the "A"
key on the keyboard, after the Hserin command executed, the variable would contain 65, which is the
ASCII code for the letter "A"

What would happen if the user pressed the "1" key? The result would be that the variable would contain
the value 49 (the ASCII code for the character "1"). This is an important point to remember: every time
you press a character on the keyboard, the computer receives the ASCII value of that character. It is up
to the receiving side to interpret the values as necessary. In this case, perhaps we actually wanted the
variable to end up with the value 1, rather than the ASCII code 49.

The Hserin command provides a modifier, called the decimal modifier, which will interpret this for us.
Look at the following code:

 Dim SerData as Byte
 Hserin [Dec SerData]

Notice the decimal modifier in the Hserin command that appears just to the left of the SerData vari-
able. This tells Hserin to convert incoming text representing decimal numbers into true decimal form

Proton Amicus18 Compiler

 170
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

and store the result in SerData. If the user running the terminal software pressed the "1", "2" and then
"3" keys followed by a space or other non-numeric text, the value 123 will be stored in the variable Ser-
Data, allowing the rest of the program to perform any numeric operation on the variable.

Without the decimal modifier, however, you would have been forced to receive each character ("1", "2"
and "3") separately, and then would still have to do some manual conversion to arrive at the number
123 (one hundred twenty three) before you can do the desired calculations on it.

The decimal modifier is designed to seek out text that represents decimal numbers. The characters that
represent decimal numbers are the characters "0" through "9". Once the Hserin command is asked to
use the decimal modifier for a particular variable, it monitors the incoming serial data, looking for the
first decimal character. Once it finds the first decimal character, it will continue looking for more (accu-
mulating the entire multi-digit number) until is finds a non-decimal numeric character. Remember that it
will not finish until it finds at least one decimal character followed by at least one non-decimal character.

To illustrate this further, examine the following examples (assuming we're using the same code example
as above):

Serial input: "ABC"
Result: The program halts at the Hserin command, continuously waiting for decimal text.

Serial input: "123" (with no characters following it)
Result: The program halts at the Hserin command. It recognises the characters "1", "2" and "3" as the
number one hundred twenty three, but since no characters follow the "3", it waits continuously, since
there's no way to tell whether 123 is the entire number or not.

Serial input: "123" (followed by a space character)
Result: Similar to the above example, except once the space character is received, the program knows
the entire number is 123, and stores this value in SerData. The Hserin command then ends, allowing
the next line of code to run.

Serial input: "123A"
Result: Same as the example above. The "A" character, just like the space character, is the first non-
decimal text after the number 123, indicating to the program that it has received the entire number.

Serial input: "ABCD123EFGH"
Result: Similar to examples 3 and 4 above. The characters "ABCD" are ignored (since they're not deci-
mal text), the characters "123" are evaluated to be the number 123 and the following character, "E",
indicates to the program that it has received the entire number.

The final result of the Dec modifier is limited to 16 bits (up to the value 65535). If a value larger than
this is received by the decimal modifier, the end result will be incorrect because the result rolled-over
the maximum 16-bit value. Therefore, Hserin modifiers may not (at this time) be used to load Dword
(32-bit) variables.

The decimal modifier is only one of a family of conversion modifiers available with Hserin See below for
a list of available conversion modifiers. All of the conversion modifiers work similar to the decimal modi-
fier (as described above). The modifiers receive bytes of data, waiting for the first byte that falls within
the range of characters they accept (e.g., "0" or "1" for binary, "0" to "9" for decimal, "0" to "9" and "A"
to "F" for hex. Once they receive a numeric character, they keep accepting input until a non-numeric
character arrives, or in the case of the fixed length modifiers, the maximum specified number of digits
arrives.

Proton Amicus18 Compiler

 171
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

While very effective at filtering and converting input text, the modifiers aren't completely foolproof. As
mentioned before, many conversion modifiers will keep accepting text until the first non-numeric text
arrives, even if the resulting value exceeds the size of the variable. After Hserin, a Byte variable will
contain the lowest 8 bits of the value entered and a Word (16-bits) would contain the lowest 16 bits.
You can control this to some degree by using a modifier that specifies the number of digits, such as
Dec2, which would accept values only in the range of 0 to 99.

 Conversion Modifier Type of Number Numeric Characters Accepted
 Dec{1..10} Decimal, optionally limited 0 through 9
 to 1 - 10 digits
 Hex{1..8} Hexadecimal, optionally limited 0 through 9,
 to 1 - 8 digits A through F
 Bin{1..32} Binary, optionally limited 0, 1
 to 1 - 32 digits

A variable preceded by Bin will receive the ASCII representation of its binary value.
For example, if Bin Var1 is specified and "1000" is received, Var1 will be set to 8.

A variable preceded by Dec will receive the ASCII representation of its decimal value.
For example, if Dec Var1 is specified and "123" is received, Var1 will be set to 123.

A variable preceded by Hex will receive the ASCII representation of its hexadecimal value.
For example, if Hex Var1 is specified and "FE" is received, Var1 will be set to 254.

SKIP followed by a count will skip that many characters in the input stream.
For example, SKIP 4 will skip 4 characters.

The Hserin command can be configured to wait for a specified sequence of characters before it re-
trieves any additional input. For example, suppose a device attached to the Amicus18 board is known to
send many different sequences of data, but the only data you wish to observe happens to appear right
after the unique characters, "XYZ". A modifier named Wait can be used for this purpose:

 Hserin [Wait("XYZ"), SerData]

The above code waits for the characters "X", "Y" and "Z" to be received, in that order, then it receives
the next data byte and places it into variable SerData.

Str modifier.
The Hserin command also has a modifier for handling a string of characters, named Str.

The Str modifier is used for receiving a string of characters into a byte array variable.

A string is a set of characters that are arranged or accessed in a certain order. The characters "ABC"
would be stored in a string with the "A" first, followed by the "B" then followed by the "C". A byte array
is a similar concept to a string; it contains data that is arranged in a certain order. Each of the elements
in an array is the same size. The string "ABC" would be stored in a byte array containing three bytes
(elements).

Below is an example that receives ten bytes and stores them in the 10-byte array, SerString:

 Dim SerString[10] as Byte ' Create a 10-byte array.
 Hserin [Str SerString] ' Fill the array with received data.
 Print Str SerString ' Display the string.

Proton Amicus18 Compiler

 172
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

If the amount of received characters is not enough to fill the entire array, then a formatter may be
placed after the array's name, which will only receive characters until the specified length is reached.
For example:

 Dim SerString[10] as Byte ' Create a 10-byte array.
 Hserin [Str SerString\5] ' Fill the first 5-bytes of the array
 Print Str SerString\5 ' Display the 5-character string.

The example above illustrates how to fill only the first n bytes of an array, and then how to display only
the first n bytes of the array. n refers to the value placed after the backslash.

Because of its complexity, serial communication can be rather difficult to work with at times. Using the
guidelines below when developing a project using the Hserin and Hserout commands may help to
eliminate some obvious errors:

Always build your project in steps.
Start with small, manageable pieces of code, (that deal with serial communication) and test them, one
individually.

Add more and more small pieces, testing them each time, as you go.

Never write a large portion of code that works with serial communication without testing its smallest
workable pieces first.

Pay attention to timing.
Be careful to calculate and overestimate the amount of time, operations should take within the micro-
controller for a given oscillator frequency. Misunderstanding the timing constraints is the source of most
problems with code that communicate serially. If the serial communication in your project is bi-
directional, the above statement is even more critical.

Pay attention to wiring.
Take extra time to study and verify serial communication wiring diagrams. A mistake in wiring can cause
strange problems in communication, or no communication at all. Make sure to connect the ground pins
(Vss) between the devices that are communicating serially.

Verify port setting on the PC and in the Hserin / Hserout commands.
Unmatched settings on the sender and receiver side will cause garbled data transfers or no data trans-
fers. This is never more critical than when a line transceiver is used(i.e. MAX232). Always remember
that a line transceiver inverts the serial polarity.
If the serial data received is unreadable, it is most likely caused by a baud rate setting error, or a polar-
ity error.

If receiving data from another device that is not a microcontroller, try to use baud rates of 9600 and
below, or alternatively, use a higher frequency crystal.

Because of additional overheads in the microcontroller, and the fact that the Hserin command offers a
2 level hardware receive buffer for serial communication, received data may sometimes be missed or
garbled. If this occurs, try lowering the baud rate.

Proton Amicus18 Compiler

 173
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Declares
There are five Declare directives for use with Hserin . These are:

Declare Hserial_Baud Constant value
Sets the BAUD rate that will be used to receive a value serially. The baud rate is calculated using the
Xtal frequency declared in the program. The default baud rate if the Declare is not included in the pro-
gram listing is 9600 baud.

Declare Hserial_Parity Odd or Even
Enables/Disables parity on the serial port. For both Hserin and HRsout The default serial data format
is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop bit) or 7O1 (7data
bits, odd parity, 1 stop bit) may be enabled using the Hserial_Parity declare.

Declare Hserial_Parity = Even ' Use if even parity desired
Declare Hserial_Parity = Odd ' Use if odd parity desired

Declare Hserial_Clear On or Off
Clear the overflow error bit before commencing a read.

Because the hardware serial port only has a 2-byte input buffer, it can easily overflow is characters are
not read from it often enough. When this occurs, the USART stops accepting any new characters, and
requires resetting. This overflow error can be Reset by strobing the CREN bit within the RCSTA register.

Example:
 RCSTA.4 = 0
 RCSTA.4 = 1

or

 Clear RCSTA.4
 Set RCSTA.4

Alternatively, the Hserial_Clear declare can be used to automatically clear this error, even if no error oc-
curred. However, the program will not know if an error occurred while reading, therefore some charac-
ters may be lost.

 Declare Hserial_Clear = On

See also : Declare, Hserout, HRsin, HRsout, Rsin, Rsout, Serin, Serout.

Proton Amicus18 Compiler

 174
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Hserout

Syntax
Hserout [Item {, Item... }]

Overview
Transmit one or more Items from the microcontroller’s USART

Operators

 Item may be a constant, variable, expression, or string.

There are no operators as such, instead there are modifiers. For example, if the text Dec precedes an
item, the ASCII representation for each digit is transmitted.

The modifiers are listed below:

Modifier Operation
At ypos,xpos Position the cursor on a serial LCD
Cls Clear a serial LCD (also creates a 30ms delay)

Bin{1..32} Send binary digits
Dec{1..10} Send decimal digits
Hex{1..8} Send hexadecimal digits
Sbin{1..32} Send signed binary digits
Sdec{1..10} Send signed decimal digits
Shex{1..8} Send signed hexadecimal digits
Ibin{1..32} Send binary digits with a preceding '%' identifier
Idec{1..10} Send decimal digits with a preceding '#' identifier
Ihex{1..8} Send hexadecimal digits with a preceding '$' identifier
ISbin{1..32} Send signed binary digits with a preceding '%' identifier
ISdec{1..10} Send signed decimal digits with a preceding '#' identifier
IShex{1..8} Send signed hexadecimal digits with a preceding '$' identifier

Rep c\n Send character c repeated n times
Str array\n Send all or part of an array
Cstr cdata Send string data defined in a Cdata statement.

The numbers after the Bin, Dec, and Hex modifiers are optional. If they are omitted, then the default
is all the digits that make up the value will be displayed.

If a floating point variable is to be displayed, then the digits after the Dec modifier determine how many
remainder digits are send. i.e. numbers after the decimal point.

 Dim FloatVar as Float
 FloatVar = 3.145
 Hserout [Dec2 FloatVar,13] ' Send 2 values after the decimal point

The above program will transmit the ASCII text 3.14

Proton Amicus18 Compiler

 175
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

If the digit after the Dec modifier is omitted, then 3 values will be displayed after the decimal point.

 Dim FloatVar as Float
 FloatVar = 3.1456
 Hserout [Dec FloatVar,13] ' Send 3 values after the decimal point

The above program will send 3.145

There is no need to use the Sdec modifier for signed floating point values, as the compiler's Dec modi-
fier will automatically display a minus result:

 Dim FloatVar as Float
 FloatVar = -3.1456
 Hserout [Dec FloatVar, 13] ' Send 3 values after the decimal point

The above program will send -3.145

Hex or Bin modifiers cannot be used with floating point values or variables.

The Xpos and Ypos values in the At modifier both start at 1. For example, to place the text "HELLO
WORLD" on line 1, position 1, the code would be:

 Hserout [At 1, 1, "HELLO WORLD"]

Example 1
 Dim Var1 as Byte
 Dim WordVar as Word
 Dim DwordVar as Dword

 Hserout ["Hello World", 13] ' Display the text "Hello World"
 Hserout ["Var1= ", Dec Var1, 13] ' Display the decimal value of Var1
 Hserout ["Var1= ", Hex Var1, 13] ' Display the hexadecimal value of Var1
 Hserout ["Var1= ", Bin Var1, 13] ' Display the binary value of Var1
 ' Display 6 hex characters of a Dword type variable
 Hserout ["DwordVar= ", Hex6 DwordVar, 13]

Example 2
' Display a negative value on the serial terminal.
 Symbol Negative = -200
 Hserout [At 1, 1, Sdec Negative]

Example 3
' Display a negative value on a serial terminal with a preceding identifier.
 Hserout [At 1, 1, IShex -$1234]

Example 3 will produce the text "$-1234" on the serial terminal.

Combining the code memory reading capabilities of the microcontroller with a string format, the com-
piler is capable of reducing the overhead of printing, or transmitting large amounts of text data. The
Cstr modifier may be used in commands that deal with text processing i.e. Serout, HRsout, and Print
etc.

Proton Amicus18 Compiler

 176
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The Cstr modifier is used in conjunction with the Cdata command. The Cdata command is used for
initially creating the string of characters:

String1: Cdata "HELLO WORLD", 0

The above line of case will create, in flash memory, the values that make up the ASCII text "HELLO
WORLD", at address String1. Note the null terminator after the ASCII text.

null terminated means that a zero (null) is placed at the end of the string of ASCII characters to signal
that the string has finished.

To display, or transmit this string of characters, the following command structure could be used:

 Hserout [Cstr String1]

The label that declared the address where the list of Cdata values resided, now becomes the string's
name. In a large program with lots of text formatting, this type of structure can save quite literally hun-
dreds of bytes of valuable code space.

Try both these small programs, and you'll see that using Cstr saves a few bytes of code:

First the standard way of displaying text:

 Hserout ["HELLO WORLD",13]
 Hserout ["HOW ARE YOU?",13]
 Hserout ["I AM FINE!",13]

Now using the Cstr modifier:

 Hserout [Cstr TEXT1]
 Hserout [Cstr TEXT2]
 Hserout [Cstr TEXT3]
 Stop

TEXT1: Cdata "HELLO WORLD", 13, 0
TEXT2: Cdata "HOW ARE YOU?", 13, 0
TEXT3: Cdata "I AM FINE!", 13, 0

Again, note the null terminators after the ASCII text in the Cdata commands. Without these, the micro-
controller will continue to transmit data in an endless loop.

The term 'virtual string' relates to the fact that a string formed from the Cdata command cannot be
written too, but only read from.

The Str modifier is used for sending a string of bytes from a byte array variable. A string is a set of
bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3 would be stored
in a string with the value 1 first, followed by 2 then followed by the value 3. A byte array is a similar
concept to a string; it contains data that is arranged in a certain order. Each of the elements in an array
is the same size. The string 1,2,3 would be stored in a byte array containing three bytes (elements).

Proton Amicus18 Compiler

 177
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Below is an example that displays four bytes (from a byte array):

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 MyArray[0] = "H" ' Load the first 5 bytes of the array
 MyArray[1] = "E" ' With the data to send
 MyArray[2] = "L"
 MyArray[3] = "L"
 MyArray[4] = "O"
 Hserout [Str MyArray\5] ' Display a 5-byte string.

Note that we use the optional \n argument of Str. If we didn't specify this, the microcontroller would try
to keep sending characters until all 10 bytes of the array were transmitted. Since we do not wish all 10
bytes to be transmitted, we chose to tell it explicitly to only send the first 5 bytes.

The above example may also be written as:

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 Str MyArray = "HELLO" ' Load the first 5 bytes of the array
 Hserout [Str MyArray\5] ' Send 5-byte string.

The above example, has exactly the same function as the previous one. The only difference is that the
string is now constructed using Str as a command instead of a modifier.

Declares
There are four Declare directives for use with Hserout. These are:

Declare Hserial_Baud Constant value
Sets the BAUD rate that will be used to transmit a value serially. The baud rate is calculated using the
Xtal frequency declared in the program. The default baud rate if the Declare is not included in the pro-
gram listing is 9600 baud.

Declare Hserial_Parity Odd or Even
Enables/Disables parity on the serial port. For both Hserout and Hserin The default serial data format
is 8N1, 8 data bits, no parity bit and 1 stop bit. 7E1 (7 data bits, even parity, 1 stop bit) or 7O1 (7data
bits, odd parity, 1 stop bit) may be enabled using the Hserial_Parity declare.

 Declare Hserial_Parity = Even ' Use if even parity desired
 Declare Hserial_Parity = Odd ' Use if odd parity desired

See also : Declare, Rsin, Rsout, Serin, Serout, Hserin.

Proton Amicus18 Compiler

 178
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

I2Cin

Syntax
I2Cin Dpin, Cpin, Control, { Address }, [Variable {, Variable…}]

Overview
Receives a value from the I2C bus, and places it into variable/s.

Operators

 Dpin is a Port.Pin constant that specifies the I/O pin that will be connected to the I2C device's
data line (SDA). This pin's I/O direction will be changed to input and will remain in that state af-
ter the instruction is completed.

 Cpin is a Port.Pin constant that specifies the I/O pin that will be connected to the I2C device's
clock line (SCL). This pin's I/O direction will be changed to output.

 Variable is a user defined variable of type bit, byte, byte array, word, word array, dword, or
float.

 Control is a constant value or a byte sized variable expression.
 Address is an optional constant value or a variable expression.

The I2Cin command operates as an I2C master, and may be used to interface with any device that
complies with the 2-wire I2C protocol. The most significant 7-bits of control byte contain the control
code and the slave address of the device being interfaced with. Bit-0 is the flag that indicates whether a
read or write command is being implemented.

For example, if we were interfacing to an external eeprom such as the 24LC256, the control code would
be %10100001 or $A1. The most significant 4-bits (1010) are the eeprom's unique slave address. Bits 1
to 3 reflect the three address pins of the eeprom. And bit-0 is set to signify that we wish to read from
the eeprom. Note that this bit is automatically set by the I2Cin command, regardless of its initial set-
ting.

Example
' Receive a byte from the I2C bus and place it into variable Var1.
 Dim Var1 as Byte ' We'll only read 8-bits
 Dim Address as Word ' 16-bit address required
 Symbol Control %10100001 ' Target an eeprom
 Symbol SDA = PortC.3 ' Alias the SDA (Data) line
 Symbol SCL = PortC.4 ' Alias the SSL (Clock) line
 Address = 20 ' Read the value at address 20
 I2Cin SDA, SCL, Control, Address, [Var1] ' Read the byte from the eeprom

Address is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in this posi-
tion, the size of address is dictated by the size of the variable used (byte or word). In the case of the
previous eeprom interfacing, the 24LC256 eeprom requires a 16-bit address. While the smaller types
require an 8-bit address. Make sure you assign the right size address for the device interfaced with, or
you may not achieve the results you intended.

Proton Amicus18 Compiler

 179
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The I2Cin command allows differing variable assignments. For example:

 Dim Var1 as Byte
 Dim WordVar as Word
 I2Cin SDA, SCL, Control, Address, [Var1, WordVar]

The above example will receive two values from the bus, the first being an 8-bit value dictated by the
size of variable Var1 which has been declared as a byte. And a 16-bit value, this time dictated by the
size of the variable WordVar which has been declared as a word. Of course, bit type variables may also
be used, but in most cases these are not of any practical use as they still take up a byte within the
eeprom.

Declares
See I2Cout for declare explanations.

Notes
When the I2Cin command is used, the appropriate SDA and SCL Port and Pin are automatically setup
as inputs, and outputs. Because the I2C protocol calls for an open-collector interface, pull-up resistors
are required on both the SDA and SCL lines. Values of 4.7KΩ to 10KΩ will suffice.

Str modifier with I2Cin
Using the Str modifier allows the I2Cin command to transfer the bytes received from the I2C bus di-
rectly into a byte array. If the amount of received characters is not enough to fill the entire array, then a
formatter may be placed after the array's name, which will only receive characters until the specified
length is reached. An example of each is shown below:

 Dim Array[10] as Byte ' Define an array of 10 bytes
 Dim Address as Byte ' Create a word sized variable
' Load data into all the array
 I2Cin SDA, SCL, %10100000, Address, [Str Array]
' Load data into only the first 5 elements of the array
 I2Cin SDA, SCL, %10100000, Address, [Str Array\5]

See Also: BusAck, Bstart, Brestart, Bstop, Busout, HbStart, HbRestart, HbusAck, Hbusin,
Hbusout, I2Cout

Proton Amicus18 Compiler

 180
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

I2Cout

Syntax
I2Cout Control, { Address }, [OutputData]

Overview
Transmit a value to the I2C bus, by first sending the control and optional address out of the clock pin
(SCL), and data pin (SDA).

Operators

 Dpin is a Port.Pin constant that specifies the I/O pin that will be connected to the I2C device's
data line (SDA). This pin's I/O direction will be changed to input and will remain in that state af-
ter the instruction is completed.

 Cpin is a Port.Pin constant that specifies the I/O pin that will be connected to the I2C device's
clock line (SCL). This pin's I/O direction will be changed to output.

 Control is a constant value or a byte sized variable expression.
 Address is an optional constant, variable, or expression.
 OutputData is a list of variables, constants, expressions and modifiers that informs I2Cout

how to format outgoing data. I2Cout can transmit individual or repeating bytes, convert values
into decimal, hex or binary text representations, or transmit strings of bytes from variable arrays.

These actions can be combined in any order in the OutputData list.

The I2Cout command operates as an I2C master and may be used to interface with any device that
complies with the 2-wire I2C protocol. The most significant 7-bits of control byte contain the control
code and the slave address of the device being interfaced with. Bit-0 is the flag that indicates whether a
read or write command is being implemented.

For example, if we were interfacing to an external eeprom such as the 24LC256, the control code would
be %10100000 or $A0. The most significant 4-bits (1010) are the eeprom's unique slave address. Bits 1
to 3 reflect the three address pins of the eeprom. And Bit-0 is clear to signify that we wish to write to
the eeprom. Note that this bit is automatically cleared by the I2Cout command, regardless of its initial
value.

Example
' Send a byte to the I2C bus.
 Dim Var1 as Byte ' We'll only read 8-bits
 Dim Address as Word ' 16-bit address required
 Symbol Control = %10100000 ' Target an eeprom
 Symbol SDA = PortC.3 ' Alias the SDA (Data) line
 Symbol SCL = PortC.4 ' Alias the SSL (Clock) line
 Address = 20 ' Write to address 20
 Var1 = 200 ' The value place into address 20
 I2Cout SDA, SCL, Control, Address, [Var1] ' Send the byte to the eeprom
 DelayMs 5 ' Allow time for allocation of byte

Address is an optional parameter that may be an 8-bit or 16-bit value. If a variable is used in this posi-
tion, the size of address is dictated by the size of the variable used (byte or word). In the case of the
above eeprom interfacing, the 24LC256 eeprom requires a 16-bit address. While the smaller types re-
quire an 8-bit address. Make sure you assign the right size address for the device interfaced with, or you
may not achieve the results you intended.

Proton Amicus18 Compiler

 181
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The value sent to the bus depends on the size of the variables used. For example:

Dim WordVar as Word ' Create a Word size variable
I2Cout SDA, SCL, Control, Address, [WordVar]

Will send a 16-bit value to the bus. While:

Dim Var1 as Byte ' Create a Byte size variable
I2Cout SDA, SCL, Control, Address, [Var1]

Will send an 8-bit value to the bus. Using more than one variable within the brackets allows differing
variable sizes to be sent. For example:

Dim Var1 as Byte
Dim WordVar as Word
I2Cout SDA, SCL, Control, Address, [Var1, WordVar]

Will send two values to the bus, the first being an 8-bit value dictated by the size of variable Var1 which
has been declared as a byte. And a 16-bit value, this time dictated by the size of the variable WordVar
which has been declared as a word. Of course, bit type variables may also be used, but in most cases
these are not of any practical use as they still take up a byte within the eeprom.

A string of characters can also be transmitted, by enclosing them in quotes:

 I2Cout SDA, SCL, Control, Address, ["Hello World", Var1, WordVar]

Str modifier with I2Cout
The Str modifier is used for transmitting a string of bytes from a byte array variable. A string is a set of
bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3 would be stored
in a string with the value 1 first, followed by 2 then followed by the value 3. A byte array is a similar
concept to a string; it contains data that is arranged in a certain order. Each of the elements in an array
is the same size. The string 1,2,3 would be stored in a byte array containing three bytes (elements). Be-
low is an example that sends four bytes from an array:

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 MyArray[0] = "A" ' Load the first 4 bytes of the array
 MyArray[1] = "B" ' With the data to send
 MyArray[2] = "C"
 MyArray[3] = "D"
' Send a 4-byte string
 I2Cout SDA, SCL, %10100000, Address, [Str MyArray\4]

Note that we use the optional \n argument of Str. If we didn't specify this, the program would try to
keep sending characters until all 10 bytes of the array were transmitted. Since we do not wish all 10
bytes to be transmitted, we chose to tell it explicitly to only send the first 4 bytes.

Proton Amicus18 Compiler

 182
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Declares
There are two Declare directives for use with I2Cout. These are:

Declare I2C_Slow_Bus On - Off or 1 – 0
Slows the bus speed when using an oscillator higher than 4MHz. The standard speed for the I2C bus is
100KHz. Some devices use a higher bus speed of 400KHz. If you use an 8MHz or higher oscillator, the
bus speed may exceed the devices specs, which will result in intermittent transactions, or in some cases,
no transactions at all. Therefore, use this Declare if you are not sure of the device's spec. The data-
sheet for the device used will inform you of its bus speed.

Declare I2C_Bus_SCL On - Off, 1 - 0 or True – False
Eliminates the necessity for a pull-up resistor on the SCL line.

The I2C protocol dictates that a pull-up resistor is required on both the SCL and SDA lines, however, this
is not always possible due to circuit restrictions etc, so once the I2C_Bus_SCL On Declare is issued at
the top of the program, the resistor on the SCL line can be omitted from the circuit. The default for the
compiler if the I2C_Bus_SCL Declare is not issued, is that a pull-up resistor is required.

Notes
When the I2Cout command is used, the appropriate SDA and SCL Port and Pin are automatically setup
as inputs, and outputs. Because the I2C protocol calls for an open-collector interface, pull-up resistors
are required on both the SDA and SCL lines. Values of 4.7KΩ to 10KΩ will suffice.

You may imagine that it's limiting having a fixed set of pins for the I2C interface, but you must remem-
ber that several different devices may be attached to a single bus, each having a unique slave address.
Which means there is usually no need to use up more than two pins on the microcontroller in order to
interface to many devices.

See Also: BusAck, Bstart, Brestart, Bstop, Busin, HbStart, HbRestart, HbusAck, Hbusin,
Hbusout, I2Cin

Proton Amicus18 Compiler

 183
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

If..Then..ElseIf..Else..EndIf

Syntax
If Comparison Then Instruction : { Instruction }

Or, you can use the single line form syntax:

If Comparison Then Instruction : { Instruction } : ElseIf Comparison Then Instruction : Else Instruc-
tion

Or, you can use the block form syntax:

If Comparison Then
Instruction(s)…

ElseIf Comparison Then
Instruction(s)…

ElseIf Comparison Then
Instruction(s)…

Else
Instruction(s)…

EndIf

The curly braces signify optional conditions.

Overview
Evaluates the comparison and, if it fulfils the criteria, executes expression. If comparison is not fulfilled
the instruction is ignored, unless an Else directive is used, in which case the code after it is imple-
mented until the EndIf is found.

When all the instruction are on the same line as the If-Then statement, all the instructions on the line
are carried out if the condition is fulfilled.

Operators

 Comparison is composed of variables, numbers and comparators.
 Instruction is the statement to be executed should the comparison fulfil the If criteria

Example 1
 Symbol LED = RB4
 Var1 = 3
 Low LED
 If Var1 > 4 Then High LED : DelayMs 500 : Low LED

In the above example, Var1 is not greater than 4 so the If criteria isn't fulfilled. Consequently, the High
LED statement is never executed leaving the state of port pin PortB.4 low. However, if we change the
value of variable Var1 to 5, then the LED will turn on for 500ms then off, because Var1 is now greater
than 4, so fulfils the comparison criteria.

A second form of If, evaluates the expression and if it is true then the first block of instructions is exe-
cuted. If it is false then the second block (after the Else) is executed.

Proton Amicus18 Compiler

 184
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The program continues after the EndIf instruction.

The Else is optional. If it is missed out then if the expression is false the program continues after the
EndIf line.

Example 2
 If X & 1 = 0 Then
 A = 0
 B = 1
 Else
 A = 1
 EndIf
 If Z = 1 Then
 A = 0
 B = 0
 EndIf

Example 3
 If X = 10 Then
 High LED1
 ElseIf X = 20 Then
 High LED2
 Else
 High LED3
 EndIf

A forth form of If, allows the Else or ElseIf to be placed on the same line as the If:

 If X = 10 Then High LED1 : ElseIf X = 20 Then High LED2 : Else : High LED3

Notice that there is no EndIf instruction. The comparison is automatically terminated by the end of line
condition. So in the above example, if X is equal to 10 then LED1 will illuminate, if X equals 20 then LED
will illuminate, otherwise, LED3 will illuminate.

The If statement allows any type of variable, register or constant to be compared. A common use for
this is checking a Port bit:

 If RA0 = 1 Then High LED : Else : Low LED

Any commands on the same line after Then will only be executed if the comparison if fulfilled:

 If Var1 = 1 Then High LED : DelayMs 500 : Low LED

Notes
A GoTo command is optional after the Then:

 If RB0 = 1 Then LABEL

Then operand always required.
The compiler relies heavily on the Then part. Therefore, if the Then part of a construct is left out of the
code listing, a Syntax Error will be produced.

See also : Boolean Logic Operators, Select..Case..EndSelect.

Proton Amicus18 Compiler

 185
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Include

Syntax
Include "Filename"

Overview
Include another file at the current point in the compilation. All the lines in the new file are compiled as if
they were in the current file at the point of the Include directive.

A Common use for the include command is shown in the example below. Here a small master document
is used to include a number of smaller library files which are all compiled together to make the overall
program.

Operators

 Filename is any valid Proton Amicus18 file.

Example
' Main Program Includes sub files
 Include "StartCode.bas"
 Include "MainCode.bas"
 Include "EndCode.bas"

Notes
The file to be included into the BASIC listing may be in one of three places on the hard drive if a specific
path is not chosen.

 1… Within the BASIC program's directory.
 2… Within the compiler's current directory.
 3… Within the compiler’s Includes folder of the compiler's current directory.

 The list above also shows the order in which they are searched for.

Using Include files to tidy up your code.
Placing the include file at the beginning of the program allows all of the variables used by the routines
held within it to be pre-declared. This makes for a tidier program, as a long list of variables is not pre-
sent in the main program.

There are some considerations that must be taken into account when writing code for an include file,
these are:

 1). Always jump over the subroutines.

When the include file is placed at the top of the program this is the first place that the compiler starts,
therefore, it will run the subroutine/s first and the Return command will be pointing to a random place
within the code. To overcome this, place a GoTo statement just before the subroutine starts.

For example:

 GoTo OverThisSubroutine ' Jump over the subroutine

' The subroutine is placed here

OverThisSubroutine: ' Jump to here first

Proton Amicus18 Compiler

 186
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

 2). Variable and Label names should be as meaningful as possible.

For example. Instead of naming a variable Loop, change it to Isub_Loop. This will help eliminate any
possible duplication errors, caused by the main program trying to use the same variable or label name.
However, try not to make them too obscure as your code will be harder to read and understand, it
might make sense at the time of writing, but come back to it after a few weeks and it will be meaning-
less.

 3). Comment, Comment, and Comment some more.

This cannot be emphasised enough. Always place a plethora of remarks and comments. The purpose of
the subroutine/s within the include file should be clearly explained at the top of the program, also, add
comments after virtually every command line, and clearly explain the purpose of all variables and con-
stants used. This will allow the subroutine to be used many weeks or months after its conception. A rule
of thumb that I use is that I can understand what is going on within the code by reading only the com-
ments to the right of the command lines.

 4).Change the file extension

In order not to get an include file confused with the main code file, it is advisable to give the include file
the extension of “.inc”. For example “MyIncludeFile.inc”

Proton Amicus18 Compiler

 187
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Inc

Syntax
Inc Variable

Overview
Increment a variable i.e. Var1 = Var1 + 1

Operators

 Variable is a user defined variable

Example
 Var1 = 1
 Repeat
 HRsout Dec Var1, 13
 DelayMs 200
 Inc Var1
 Until Var1 > 10

The above example shows the equivalent to the For-Next loop:

 For Var1 = 1 to 10
 HRsout Dec Var1, 13
 DelayMs 200
 Next

See also : Dec.

Proton Amicus18 Compiler

 188
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Inkey

Syntax
Variable = Inkey

Overview
Scan a keypad and place the returned value into variable

Operators

 Variable is a user defined variable

Example
 Dim Var1 as Byte
 While 1 = 1 ' Create an infinite loop

Var1 = Inkey ' Scan the keypad
 DelayMs 50 ' Debounce by waiting 50ms
 HRsout "Key ", Dec Var1, 13 ' Display result on the serial terminal
 DelayMs 500 ' Wait for half a second

Wend ' Close the loop

Notes
Inkey will return a value between 0 and 16. If no key is pressed, the value returned is 16.

Using a LookUp command, the returned values can be re-arranged to correspond with the legends
printed on the keypad:

 Var1 = Inkey
 Key = LookUp Var1, [255,1,4,7,"*",2,5,8,0,3,6,9,"#",0,0,0]

The above example is only a demonstration, the values inside the LookUp command will need to be re-
arranged for the type of keypad used, and it's connection configuration.

Declare
Declare Keypad_Port Port
Assigns the Port that the keypad is attached to.

The keypad routine requires pull-up resistors, therefore, the best Port for this device is PortB, which
comes equipped with internal pull-ups. If the Declare is not used in the program, then PortB is the de-
fault Port.

 The circuit illustrates a typical connec-
tion of a 16-button keypad to the
Amicus18 board.

S1
100Ω

S5

S9

S13 S14

S10

S6

S2 S3

S7

S11

S15 S16

S12

S8

S4

100Ω

100Ω

100Ω

RB3

RB2

RB1

RB0

RB4

RB5

RB6

RB7

Proton Amicus18 Compiler

 189
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Input

Syntax
Input Port . Pin

Overview
Makes the specified Port or Pin an input.

Operators

 Port.Pin must be a Port, or Port.Pin constant declaration.

Example
 Input RA0 ' Make bit-0 of PortA an input
 Input PORTA ' Make all of PortA an input

Notes
An Alternative method for making a particular pin an input is by directly modifying the Tris register:

 TRISB.0 = 1 ' Set PortB, bit-0 to an input

All of the pins on a port may be set to inputs by setting the whole Tris register at once:

 TRISB = %11111111 ' Set all of PortB to inputs

In the above examples, setting a Tris bit to 1 makes the pin an input, and conversely, setting the bit to
0 makes the pin an output.

Example2
' Light an LED when a button is pressed
 Input RB2 ' Make bit-2 of PortB an input

PortB_Pullups = On ' Enable the internal pullup resistors on PortB
While 1 = 1 ' Create an infinite loop

 If RB2 = 0 Then ' Is the button pressed ?
 DelayMs 50 ' Yes. So debounce it
 High RB0 ' Illuminate the LED
 Else ' Otherwise…
 Low RB0 ' Extinguish the LED

EndIf
 Wend ' Do it forever

See also : Output.

Proton Amicus18 Compiler

 190
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

LCDread

Syntax
Variable = LCDread Ypos, Xpos

Or

Variable = LCDread Text Ypos, Xpos

Overview
Read a byte from a graphic LCD. Can also read Text RAM from a Toshiba T6963 LCD.

Operators

 Variable is a user defined variable.
 Ypos :

 With a Samsung KS0108 graphic LCD this may be a constant, variable or expression within the
 range of 0 to 7 This corresponds to the line number of the LCD, with 0 being the top row.

With a Toshiba T6963 graphic LCD this may be a constant, variable or expression within the
range of 0 to the Y resolution of the display. With 0 being the top line.

 Xpos:
With a Samsung KS0108 graphic LCD this may be a constant, variable or expression with a value
of 0 to 127. This corresponds to the X position of the LCD, with 0 being the far left column.

With a Toshiba graphic LCD this may be a constant, variable or expression with a value of 0 to
the X resolution of the display divided by the font width (LCD_X_Res / LCD_Font_Width).
This corresponds to the X position of the LCD, with 0 being the far left column.

Example
' Read and display the top row of the Samsung KS0108 graphic LCD
 Declare LCD_Type = Samsung ' Target a Samsung graphic LCD

 Dim Var1 as Byte
 Dim Xpos as Byte
 Cls ' Clear the LCD
 Print "Testing 1 2 3"
 For Xpos = 0 to 127 ' Create a loop of 128
 Var1 = LCDread 0, Xpos ' Read the LCD's top line
 Print At 1, 0, "Chr= ", Dec Var1," "
 DelayMs 100
 Next
 Stop

Notes
The graphic LCDs that are compatible with compiler are the Samsung KS0108, and the Toshiba T6963.
The Samsung display has a pixel resolution of 64 x 128. The 64 being the Y axis, made up of 8 lines
each having 8-bits. The 128 being the X axis, made up of 128 positions. The Toshiba LCDs are available
with differing resolutions.

As with LCDwrite, the graphic LCD must be targeted using the LCD_Type Declare directive before
this command may be used.

Proton Amicus18 Compiler

 191
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The Toshiba T6963 graphic LCDs split their graphic and text information within internal RAM. This
means that the LCDread command can also be used to read the textual information as well as the
graphical information present on the LCD. Placing the word TEXT after the LCDread command will di-
rect the reading process to Text RAM.

Example
' Read text from a Toshiba graphic LCD
 Declare LCD_Type = Toshiba ' Use a Toshiba T6963 graphic LCD
'
' LCD interface pin assignments
'

Declare LCD_DTPort = PortB ' LCD’s Data port
 Declare LCD_WRPin = PortA.2 ' LCD’s WR line
 Declare LCD_RDPin = PortA.1 ' LCD’s RD line
 Declare LCD_CEPin = PortA.0 ' LCD’s CE line
 Declare LCD_CDPin = PortA.3 ' LCD’s CD line
 Declare LCD_RSTPin = PortA.4 ' LCD’s Reset line (Optional)
'
' LCD characteristics
'
 Declare LCD_X_Res = 128 ' LCD’s X Resolution
 Declare LCD_Y_Res = 64 ' LCD’s Y Resolution
 Declare LCD_Font_Width = 8 ' The width of the LCD’s font

 Dim Charpos as Byte ' The X position of the read
 Dim Char as Byte ' The byte read from the LCD

 DelayMs 200 ' Wait for the LCD to stabilise

Cls ' Clear the LCD
Print At 0,0," This is for Copying" ' Display text on top line of LCD

 For Charpos = 0 to 20 ' Create a loop of 21 cycles
 Char = LCDread TEXT 0,Charpos ' Read the top line of the LCD
 Print At 1,Charpos,Char ' Print the byte read on the second line
 DelayMs 100 ' A small delay so we can see things happen
 Next ' Close the loop
 Stop

See also : LCDwrite for a description of the screen formats, Pixel, Plot, Toshiba_Command
 Toshiba_UDG, UnPlot, see Print for LCD connections.

Proton Amicus18 Compiler

 192
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

LCDwrite

Syntax
LCDwrite Ypos, Xpos, [Value ,{ Value etc…}]

Overview
Write a byte to a graphic LCD.

Operators

 Ypos :
 With a Samsung KS0108 graphic LCD this may be a constant, variable or expression within the
 range of 0 to 7 This corresponds to the line number of the LCD, with 0 being the top row.

 With a Toshiba T6963 graphic LCD this may be a constant, variable or expression within the
 range of 0 to the Y resolution of the display. With 0 being the top line.

 Xpos:
With a Samsung KS0108 graphic LCD this may be a constant, variable or expression with a value
of 0 to 127. This corresponds to the X position of the LCD, with 0 being the far left column.
With a Toshiba graphic LCD this may be a constant, variable or expression with a value of 0 to
the X resolution of the display divided by the font width (LCD_X_Res / LCD_Font_Width). This
corresponds to the X position of the LCD, with 0 being the far left column.

 Value may be a constant, variable, or expression, within the range of 0 to 255 (byte).

Example 1
' Display a line on the top row of a Samsung KS0108 graphic LCD
 Declare LCD_Type = Samsung ' Target a Samsung graphic LCD
 Dim Xpos as Byte
 Cls ' Clear the LCD
 For Xpos = 0 to 127 ' Create a loop of 128
 LCDwrite 0, Xpos, [%11111111] ' Write to the LCD's top line
 DelayMs 100
 Next
 Stop

Example 2
' Display a line on the top row of a Toshiba 128x64 graphic LCD
 Declare LCD_Type = Toshiba ' Target a Toshiba graphic LCD
 Dim Xpos as Byte
 Cls ' Clear the LCD
 For Xpos = 0 to 20 ' Create a loop of 21
 LCDwrite 0, Xpos, [%00111111] ' Write to the LCD's top line
 DelayMs 100
 Next
 Stop

Notes
The graphic LCDs that are compatible with Proton Amicus18 are the Samsung KS0108, and the Toshiba
T6963. The Samsung display has a pixel resolution of 64 x 128. The 64 being the Y axis, made up of 8
lines each having 8-bits. The 128 being the X axis, made up of 128 positions. The Toshiba LCDs are
available with differing resolutions.

Proton Amicus18 Compiler

 193
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

There are important differences between the Samsung and Toshiba screen formats. The diagrams below
show these in more detail:

The diagram below illustrates the position of one byte at position 0,0 on a Samsung KS0108 LCD screen.
The least significant bit is located at the top. The byte displayed has a value of 149 (10010101).

The diagram below illustrates the position of one byte at position 0,0 on a Toshiba T6963 LCD screen in
8-bit font mode. The least significant bit is located at the right of the screen byte. The byte displayed
has a value of 149 (10010101).

The diagram below illustrates the position of one byte at position 0,0 on a Toshiba T6963 LCD screen in
6-bit font mode. The least significant bit is located at the right of the screen byte. The byte displayed
still has a value of 149 (10010101), however, only the first 6 bits are displayed (010101) and the other
two are discarded.

See also : LCDread, Plot, Toshiba_Command, Toshiba_UDG, UnPlot.

See Print for LCD connections.

Xpos 0 - n

Ypos 0 - n

msb

Line 0

Line 1

Line 2

lsb

Toshiba T6963 LCD. (8-bit Font mode)

Xpos 0 - n

Ypos 0 - n

msb

Line 0

Line 1

Line 2

lsb

Toshiba T6963 LCD. (6-bit Font mode)

Xpos 0 - 127

Ypos 0 - 63

lsb

Line 0

Line 1

Line 2

msb

Samsung KS0108 graphic LCD

Proton Amicus18 Compiler

 194
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Len

Syntax
Variable = Len (Source String)

Overview
Find the length of a String. (not including the null terminator) .

Operators

 Variable is a user defined variable of type Bit, Byte, Byte Array, Word, Word Array, Dword, or
Float.

 Source String can be a String variable, or a Quoted String of Characters. The Source String can
also be a Byte, Word, Byte Array, Word Array or Float variable, in which case the value contained
within the variable is used as a pointer to the start of the Source String's address in RAM. A third
possibility for Source String is a Label name, in which case a null terminated Quoted String of
Characters is read from a Cdata table.

Example 1
' Display the length of SourceString
 Dim SourceString as String * 20 ' Create a String capable of 20 characters
 Dim Length as Byte
 SourceString = "HELLO WORLD" ' Load the source string with characters
 Length = Len SourceString ' Find the length
 HRsout Dec Length , 13 ' Display the result, which will be 11

Example 2
' Display the length of a Quoted Character String
 Dim Length as Byte
 Length = Len "HELLO WORLD" ' Find the length
 HRsout Dec Length , 13 ' Display the result, which will be 11

Example 3
' Display the length of SourceString using a pointer to SourceString
 Dim SourceString as String * 20 ' Create String capable of 20 characters
 Dim Length as Byte
' Create a Word variable to hold the address of SourceString
 Dim StringAddr as Word
 SourceString = "HELLO WORLD" ' Load the source string with characters
 StringAddr = VarPtr SourceString ' Locate start address of SourceString
 Length = Len StringAddr ' Find the length
 HRsout Dec Length, 13 ' Display the result, which will be 11
 Stop

Example 4
' Display the length of a Cdata string
 Dim Length as Byte
 Length = Len Source ' Find the length
 HRsout Dec Length ' Display the result, which will be 11
 Stop
' Create a null terminated string of characters in code memory
Source:
 Cdata "HELLO WORLD", 0

See also : Creating and using Strings, Creating and using Virtual Strings with Cdata, Cdata,

Left$, Mid$, Right$, Str$, ToLower, ToUpper, VarPtr.

Proton Amicus18 Compiler

 195
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Left$

Syntax
Destination String = Left$ (Source String, Amount of characters)

Overview
Extract n amount of characters from the left of a source string and copy them into a destination string.

Operators

 Destination String can only be a String variable, and should be large enough to hold the cor-
rect amount of characters extracted from the Source String.

 Source String can be a String variable, or a Quoted String of Characters. See below for more
variable types that can be used for Source String.

 Amount of characters can be any valid variable type, expression or constant value, that signi-
fies the amount of characters to extract from the left of the Source String. Values start at 1 for
the leftmost part of the string and should not exceed 255 which is the maximum allowable
length of a String variable.

Example 1.
' Copy 5 characters from the left of SourceString into DestString
 Dim SourceString as String * 20 ' Create a String capable of 20 characters
 Dim DestString as String * 20 ' Create another String for 20 characters

 SourceString = "HELLO WORLD" ' Load the source string with characters
' Copy 5 characters from the source string into the destination string
 DestString = Left$ (SourceString, 5)
 HRsout DestString, 13 ' Display the result, which will be "HELLO"

Example 2.
' Copy 5 chars from the left of a Quoted Character String into DestString
 Dim DestString as String * 20 ' Create a String capable of 20 characters

' Copy 5 characters from the quoted string into the destination string
 DestString = Left$ ("HELLO WORLD", 5)
 HRsout DestString, 13 ' Display the result, which will be "HELLO"

The Source String can also be a Byte, Word, Byte Array, Word Array or Float variable, in which case the
value contained within the variable is used as a pointer to the start of the Source String's address in
RAM.

Example 3.
' Copy 5 chars from left SourceString into DestString pointer to SourceString

 Dim SourceString as String * 20 ' Create a String capable of 20 characters
 Dim DestString as String * 20 ' Create another String for 20 characters
' Create a Word variable to hold the address of SourceString
 Dim StringAddr as Word

 SourceString = "HELLO WORLD" ' Load the source string with characters
' Locate the start address of SourceString in RAM
 StringAddr = VarPtr (SourceString)
' Copy 5 characters from the source string into the destination string
 DestString = Left$ (StringAddr, 5)
 HRsout DestString , 13 ' Display the result, which will be "HELLO"

Proton Amicus18 Compiler

 196
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

A third possibility for Source String is a Label name, in which case a null terminated Quoted String of
Characters is read from a Cdata table.

Example 4.
' Copy 5 characters from the left of a Cdata table into DestString

 Dim DestString as String * 20 ' Create a String capable of 20 characters

' Copy 5 characters from label Source into the destination string
 DestString = Left$ (Source, 5)
 HRsout DestString , 13 ' Display the result, which will be "HELLO"
 Stop

' Create a null terminated string of characters in code memory
Source:
 Cdata "HELLO WORLD", 0

See also : Creating and using Strings, Creating and using Virtual Strings with Cdata, Cdata,

Len, Mid$, Right$, Str$, ToLower, ToUpper , VarPtr.

Proton Amicus18 Compiler

 197
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Line

Syntax
Line Set_Clear, Xpos Start, Ypos Start, Xpos End, Ypos End

Overview
Draw a straight line in any direction on a graphic LCD.

Operators

 Set_Clear may be a constant or variable that determines if the line will set or clear the pixels. A
value of 1 will set the pixels and draw a line, while a value of 0 will clear any pixels and erase a
line.

 Xpos Start may be a constant or variable that holds the X position for the start of the line. Can
be a value from 0 to 255.

 Ypos Start may be a constant or variable that holds the Y position for the start of the line. Can
be a value from 0 to 255.

 Xpos End may be a constant or variable that holds the X position for the end of the line. Can be
a value from 0 to 255.

 Ypos End may be a constant or variable that holds the Y position for the end of the line. Can be
a value from 0 to 255.

Example
' Draw a line from 0,0 to 120,34

 Dim Xpos_Start as Byte
 Dim Xpos_End as Byte
 Dim Ypos_Start as Byte
 Dim Ypos_End as Byte
 Dim SetClr as Byte

 DelayMs 200 ' Wait for things to stabilise
 Cls ' Clear the LCD
 Xpos_Start = 0
 Ypos_Start = 0
 Xpos_End = 120
 Ypos_End = 34
 SetClr = 1
 Line SetClr, Xpos_Start, Ypos_Start, Xpos_End, Ypos_End
 Stop

See Also : Box, Circle.

Proton Amicus18 Compiler

 198
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

LineTo

Syntax
LineTo Set_Clear, Xpos End, Ypos End

Overview
Draw a straight line in any direction on a graphic LCD, starting from the previous Line command's end
position.

Operators

 Set_Clear may be a constant or variable that determines if the line will set or clear the pixels. A
value of 1 will set the pixels and draw a line, while a value of 0 will clear any pixels and erase a
line.

 Xpos End may be a constant or variable that holds the X position for the end of the line. Can be
a value from 0 to 255.

 Ypos End may be a constant or variable that holds the Y position for the end of the line. Can be
a value from 0 to 255.

Example
' Draw a line from 0,0 to 120,34. Then from 120,34 to 0,63

 Dim Xpos_Start as Byte
 Dim Xpos_End as Byte
 Dim Ypos_Start as Byte
 Dim Ypos_End as Byte
 Dim SetClr as Byte

 DelayMs 200 ' Wait for things to stabilise
 Cls ' Clear the LCD
 Xpos_Start = 0
 Ypos_Start = 0
 Xpos_End = 120
 Ypos_End = 34
 SetClr = 1
 Line SetClr, Xpos_Start, Ypos_Start, Xpos_End, Ypos_End
 Xpos_End = 0
 Ypos_End = 63
 LineTo SetClr, Xpos_End, Ypos_End
 Stop

Notes
The LineTo command uses the compiler's internal system variables to obtain the end position of a pre-
vious Line command. These X and Y coordinates are then used as the starting X and Y coordinates of
the LineTo command.

See Also : Line, Box, Circle.

Proton Amicus18 Compiler

 199
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

LoadBit

Syntax
LoadBit Variable, Index, Value

Overview
Clear, or Set a bit of a variable or register using a variable index to point to the bit of interest.

Operators

 Variable is a user defined variable, of type Byte, Word, or Dword.
 Index is a constant, variable, or expression that points to the bit within Variable that requires

accessing.
 Value is a constant, variable, or expression that will be placed into the bit of interest. Values

greater than 1 will set the bit.

Example
' Copy variable ExVar bit by bit into variable PT_Var
 Dim ExVar as Word
 Dim Index as Byte
 Dim Value as Byte
 Dim PT_Var as Word
Again:
 PT_Var = %0000000000000000
 ExVar = %1011011000110111
 HRsout Bin16 ExVar, 13 ' Display the original variable

For Index = 0 to 15 ' Create a loop for 16 bits
 Value = GetBit ExVar, Index ' Examine each bit of variable ExVar
 LoadBit PT_Var, Index, Value ' Set or Clear each bit of PT_Var
 HRsout Bin16 PT_Var, 13 ' Display the copied variable
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 Hrsout 13

GoTo Again ' Do it forever

Notes
There are many ways to clear or set a bit within a variable, however, each method requires a certain
amount of manipulation, either with rotates, or alternatively, the use of indirect addressing using the
FSR, and INDF registers. Each method has its merits, but requires a certain amount of knowledge to ac-
complish the task correctly. The LoadBit command makes this task extremely simple by taking advan-
tage of the indirect method using FSR0, and INDF0, however, this is not necessarily the quickest
method, or the smallest, but it is the safest. For speed and size optimisation, there is no shortcut to ex-
perience.

To Clear a known constant bit of a variable or register, then access the bit directly using Port.n. i.e.

RA1 = 0

To Set a known constant bit of a variable or register, then access the bit directly using Port.n. i.e.

RA1 = 1

If a Port is targeted by LoadBit, it’s Tris register is not affected.

See also : ClearBit, GetBit, SetBit.

Proton Amicus18 Compiler

 200
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

LookDown

Syntax
Variable = LookDown Index, [Constant {, Constant…etc }]

Overview
Search constants(s) for index value. If index matches one of the constants, then store the matching
constant's position (0-N) in variable. If no match is found, then the variable is unaffected.

Operators

 Variable is a user define variable that holds the result of the search.
 Index is the variable/constant being sought.
 Constant(s),... is a list of values. A maximum of 256 values may be placed between the square

brackets.

Example
 Dim Value as Byte
 Dim Result as Byte
 Value = 177 ' The value to look for in the list
 Result = 255 ' Default to value 255
 Result = LookDown Value, [75,177,35,1,8,29,245]
 HRsout "Value matches ", Dec Result, " in list\r"

In the above example, HRsout displays, "Value matches 1 in list" because Value (177) matches item 1
of [75,177,35,1,8,29,245]. Note that index numbers count up from 0, not 1; that is in the list
[75,177,35,1,8,29,245], 75 is item 0.

If the value is not in the list, then Result is unchanged.

Notes
LookDown is similar to the index of a book. You search for a topic and the index gives you the page
number. Lookdown searches for a value in a list, and stores the item number of the first match in a
variable.

LookDown also supports text phrases, which are basically lists of byte values, so they are also eligible
for Lookdown searches:

 Dim Value as Byte
 Dim Result as Byte
 Value = "e" ' The value to look for in the list
 Result = 255 ' Default to value 255
 Result = LookDown Value, ["Hello World"]
 Hrsout Result, 13 ' Display the result

In the above example, Result will hold a value of 1, which is the position of character 'e'

See also : Cdata, Cread, Edata, Eread, Cdata, LookDownL, LookUp, LookUpL, Lread.

Proton Amicus18 Compiler

 201
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

LookDownL

Syntax
Variable = LookDownL Index, {Operator} [Value {, Value…etc }]

Overview
A comparison is made between index and value; if the result is true 0 is written into Variable. If that
comparison was false, another comparison is made between Value and Value1; if the result is true, 1
is written into Variable. This process continues until a true is yielded, at which time the index is written
into Variable, or until all entries are exhausted, in which case Variable returns unchanged.

Operators

 Variable is a user define variable that holds the result of the search.
 Index is the variable or constant being sought.
 Value(s) can be a mixture of constants, quoted character strings, and variables. Expressions

may not be used in the Value list, although they may be used as the index value. A maximum of
256 values may be placed between the square brackets.

 Operator is an optional comparison operator and may be one of the following:

 = equal
 <> not equal
 > greater than
 < less than
 >= greater than or equal to
 <= less than or equal to

The optional operator can be used to perform a test for other than equal to ("=") while searching the
list. For example, the list could be searched for the first Value greater than the index parameter by
using ">" as the operator. If operator is left out, "=" is assumed.

Example
' LookdownL Demo

Dim ByteVar As Byte
Dim LookVar As Byte
Dim Index As Word

'
' Display the contents of the lookup table
'

HRSOut "10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22 ", 13
'
' Scan the LookdownL table
'

LookVar = 14
Index = LookDownL LookVar, < [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]
HRSOut "Index: ", Dec Index, 13 ' Display the index value

'
' Find the value based upon a copy of the LookdownL table, but now in a Lookup table
'

ByteVar = LookUp Index, [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22]
HRSOut "Result: ", Dec ByteVar, 13 ' Display the value found

Notes
Because LookDownL is more versatile than the standard LookDown command, it generates larger
code. Therefore, if the search list is made up only of 8-bit constants and strings, use LookDown.

See also : Cdata, Cread, Edata, Eread, Cdata, LookDown, LookUp, LookUpL, Lread, Lread8,

Lread16, Lread32.

Proton Amicus18 Compiler

 202
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

LookUp

Syntax
Variable = LookUp Index, [Constant {, Constant…etc }]

Overview
Look up the value specified by the index and store it in variable. If the index exceeds the highest index
value of the items in the list, then variable remains unchanged.

Operators

 Variable may be a constant, variable, or expression. This is where the retrieved value will be
stored.

 Index may be a constant of variable. This is the item number of the value to be retrieved from
the list.

 Constant(s) may be any 8-bit constant value (0-255). A maximum of 256 values may be placed
between the square brackets.

Example
' Create an animation of a spinning line on an alphanumeric LCD.
 Dim Index as Byte
 Dim Frame as Byte
 DelayMs 100 ' Wait for the LCD to stabilise

Cls ' Clear the LCD
Rotate:
 For Index = 0 to 3 ' Create a loop of 4
 Frame = LookUp Index, ["|\-/"] ' Table of animation characters
 Print At 1, 1, Frame ' Display the character
 DelayMs 200 ' So we can see the animation
 Next ' Close the loop
 GoTo Rotate ' Repeat forever

Notes
Index starts at value 0. For example, in the LookUp command below. If the first value (10) is re-
quired, then Index should be loaded with 0, and 1 for the second value (20) etc.

 Var1 = LookUp Index, [10, 20, 30]

See also : Cread, Edata, Eread, Cdata, LookDown, LookDownL, LookUpL, Lread, Lread8,

Lread16, Lread32.

Proton Amicus18 Compiler

 203
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

LookUpL

Syntax
Variable = LookUpL Index, [Value {, Value…etc }]

Overview
Look up the value specified by the index and store it in variable. If the index exceeds the highest index
value of the items in the list, then variable remains unchanged. Works exactly the same as LookUp, but
allows variable types or constants in the list of values.

Operators

 Variable may be a constant, variable, or expression. This is where the retrieved value will be
stored.

 Index may be a constant of variable. This is the item number of the value to be retrieved from
the list.

 Value(s) can be a mixture of constants, quoted character strings, and variables. A maximum of
256 values may be placed between the square brackets.

Example
 Dim Var1 as Byte
 Dim WordVar as Word
 Dim Index as Byte
 Dim Assign as Word
 Var1 = 10
 WordVar = 1234
 Index = 0 ' Point to the first value in the list (WordVar)
 Assign = LookUpL Index, [WordVar, Var1, 12345]

Notes
Expressions may not be used in the Value list, although they may be used as the Index value.

Because LookUpL is capable of processing any variable and constant type, the code produced is a lot
larger than that of LookUp. Therefore, if only 8-bit constants are required in the list, use LookUp in-
stead.

See also : Cread, Edata, Eread, Cdata, LookDown, LookDownL, LookUp, Lread, Lread8,

Lread16, Lread32.

Proton Amicus18 Compiler

 204
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Low

Syntax
Low Port or Port.Bit

Overview
Place a Port or bit in a low state. For a port, this means filling it with 0's. For a bit this means setting it
to 0.

Operators

 Port can be any valid port.
 Port.Bit can be any valid port and bit combination, i.e. PortB.0

Example
 Symbol LED = RB4
 Low LED ' Make output and Pull down bit-4 of PortB
 Low RB0 ' Make output and Pull down bit-0 of PortB
 Low PORTBB ' Make output and Pull down all of PortB

See also : High, Symbol.

Proton Amicus18 Compiler

 205
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Lread

Syntax
Variable = Lread Label

Overview
Read a value from a Cdata table and place into Variable

Operators

 Variable is a user defined variable.
 Label is a label name preceding the Cdata statement, or expression containing the Label name.

Example
 Dim Char as Byte
 Dim Loop as Byte
 Cls
 For Loop = 0 to 9 ' Create a loop of 10
 Char = Lread LABEL + Loop ' Read memory location LABEL + Loop
 Hrsout Char ' Display the value read
 Next
 Hrsout 13

Stop

LABEL: Cdata "HELLO WORLD" ' Create a string of text in code memory

The program above reads and displays 10 values from the address located by the LABEL accompanying
the Cdata command. Resulting in "HELLO WORL" being displayed.

Cdata is not simply used for character storage, it may also hold 8, 16, 32 bit, or floating point values.
The example below illustrates this:

 Dim ByteVar as Byte
 Dim WordVar as Word
 Dim DwordVar as Dword
 Dim FloatVar as Float
 ByteVar = Lread Bit8_Val ' Read the 8-bit value
 Hrsout Dec ByteVar, 13
 WordVar= Lread Bit16_Val ' Read the 16-bit value
 Hrsout Dec WordVar, 13
 DwordVar = Lread Bit32_Val ' Read the 32-bit value
 Hrsout Dec DwordVar, 13
 Flt1 = Lread Flt_Val ' Read the floating point value
 Hrsout Dec FloatVar, 13
 Stop

Bit8_Val: Cdata 123
Bit16_Val: Cdata 1234
Bit32_Val: Cdata 123456
Flt_Val: Cdata 123.456

Proton Amicus18 Compiler

 206
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Floating point example.
' Read floating point data from a table and display the results
 Dim FloatVar as Float ' Create a Floating point variable
 Dim Fcount as Byte
 Cls ' Clear the LCD
 Fcount = 0 ' Clear the table counter
 Repeat ' Create a loop
 FloatVar = Lread FlTable + Fcount ' Read the data from the Cdata table
 Print At 1,1, Dec3 Flt ' Display the data read
 Fcount = Fcount + 2 ' Point to next value, by adding 2 to counter
 DelayMs 1000 ' Slow things down
 Until FloatVar = 0.005 ' Stop when 0.005 is read
 Stop
FlTable:
 Cdata as Float 3.14, 65535.123, 1234.5678, -1243.456, -3.14, 998999.12,_
 0.005

Notes
Cdata tables should be placed at the end of the BASIC program. If an Cdata table is placed at the be-
ginning of the program, then a GoTo command must jump over the tables, to the main body of code.

 GoTo OverDataTable
 Cdata 1,2,3,4,5,6
OverDataTable:

 { rest of code here}

See also : Cdata, Cread, Cdata.

Proton Amicus18 Compiler

 207
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Lread8, Lread16, Lread32

Syntax
Variable = Lread8 Label [Offset Variable]

or

Variable = Lread16 Label [Offset Variable]

or

Variable = Lread32 Label [Offset Variable]

Overview
Read an 8, 16, or 32-bit value from an Cdata table using an offset of Offset Variable and place into
Variable, with more efficiency than using Lread.

Lread8 will access 8-bit values from an Cdata table.
Lread16 will access 16-bit values from an Cdata table.
Lread32 will access 32-bit values from an Cdata table, this also includes floating point values.

Operators

 Variable is a user defined variable of type Bit, Byte, Byte Array, Word, Word Array, Dword, or
Float.

 Label is a label name preceding the Cdata statement of which values will be read from.
 Offset Variable can be a constant value, variable, or expression that points to the location of in-

terest within the Cdata table.

Lread8 Example
' Extract the second value from within an 8-bit Cdata table
 Dim Offset as Byte ' Create a Byte size variable for the offset
 Dim Result as Byte ' Create a Byte size variable to hold the result

 Offset = 1 ' Point to the second value in the Cdata table
' Read the 8-bit value pointed to by Offset
 Result = Lread8 ByteTable[Offset]
 HRsout Dec Result , 13 ' Display the decimal result on the serial terminal
 Stop

' Create a table containing only 8-bit values
ByteTable: Cdata as Byte 100, 200

Lread16 Example
' Extract the second value from within a 16-bit Cdata table
 Dim Offset as Byte ' Create a Byte size variable for the offset
 Dim Result as Word ' Create a Word size variable to hold the result

 Offset = 1 ' Point to the second value in the Cdata table
' Read the 16-bit value pointed to by Offset
 Result = Lread16 WordTable[Offset]
 HRsout Dec Result , 13 ' Display the decimal result on the serial terminal
 Stop

' Create a table containing only 16-bit values
WordTable: Cdata as Word 1234, 5678

Proton Amicus18 Compiler

 208
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Lread32 Example
' Extract the second value from within a 32-bit Cdata table
 Dim Offset as Byte ' Create a Byte size variable for the offset
 Dim Result as Dword ' Create a Dword size variable to hold the result

 Offset = 1 ' Point to the second value in the Cdata table
' Read the 32-bit value pointed to by Offset
 Result = Lread32 DwordTable[Offset]
 HRsout Dec Result, 13 ' Display the decimal result on the serial terminal
 Stop

' Create a table containing only 32-bit values
DwordTable: Cdata as Dword 12340, 56780

Notes
Data storage in any program is of paramount importance, and although the standard Lread command
can access multi-byte values from an Cdata table, it was not originally intended as such, and is more
suited to accessing character data or single 8-bit values. However, the Lread8, Lread16, and Lread32
commands are specifically written in order to efficiently read data from an Cdata table, and use the
least amount of code space in doing so, thus increasing the speed of operation. Which means that
wherever possible, Lread should be replaced by Lread8, Lread16, or Lread32.

See also : Cdata, Cread, Cdata, Lread.

Proton Amicus18 Compiler

 209
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Mid$

Syntax
Destination String = Mid$ (Source String, Position within String, Amount of characters)

Overview
Extract n amount of characters from a source string beginning at n characters from the left, and copy
them into a destination string.

Operators

 Destination String can only be a String variable, and should be large enough to hold the cor-
rect amount of characters extracted from the Source String.

 Source String can be a String variable, or a Quoted String of Characters. See below for more
variable types that can be used for Source String.

 Position within String can be any valid variable type, expression or constant value, that signi-
fies the position within the Source String from which to start extracting characters. Values start
at 1 for the leftmost part of the string and should not exceed 255 which is the maximum allow-
able length of a String variable.

 Amount of characters can be any valid variable type, expression or constant value, that signi-
fies the amount of characters to extract from the left of the Source String. Values start at 1 and
should not exceed 255 which is the maximum allowable length of a String variable.

Example 1
' Copy 5 characters from position 4 of SourceString into DestString

 Dim SourceString as String * 20 ' Create a String of 20 characters
 Dim DestString as String * 20 ' Create another String

 SourceString = "HELLO WORLD" ' Load the source string with characters
' Copy 5 characters from the source string into the destination string
 DestString = Mid$ (SourceString, 4, 5)
 HRsout DestString, 13 ' Display the result, which will be "LO WO"
 Stop

Example 2
' Copy 5 chars from position 4 of a Quoted Character String into DestString

 Dim DestString as String * 20 ' Create a String of 20 characters

' Copy 5 characters from the quoted string into the destination string
 DestString = Mid$ ("HELLO WORLD", 4, 5)
 HRsout DestString, 13 ' Display the result, which will be "LO WO"
 Stop

The Source String can also be a Byte, Word, Byte Array, Word Array or Float variable, in which case the
value contained within the variable is used as a pointer to the start of the Source String's address in
RAM.

Proton Amicus18 Compiler

 210
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Example 3
' Copy 5 chars from position 4 of SourceString to DestString with a pointer
' to SourceString

 Dim SourceString as String * 20 ' Create a String of 20 characters
 Dim DestString as String * 20 ' Create another String
' Create a Word variable to hold the address of SourceString
 Dim StringAddr as Word

 SourceString = "HELLO WORLD" ' Load the source string with characters
' Locate the start address of SourceString in RAM
 StringAddr = VarPtr (SourceString)
' Copy 5 characters from the source string into the destination string
 DestString = Mid$ (StringAddr, 4, 5)
 HRsout DestString , 13 ' Display the result, which will be "LO WO"
 Stop

A third possibility for Source String is a label name, in which case a null terminated Quoted String of
Characters is read from a Cdata table.

Example 4
' Copy 5 characters from position 4 of a Cdata table into DestString

 Dim DestString as String * 20 ' Create a String of 20 characters

' Copy 5 characters from label Source into the destination string
 DestString = Mid$ (Source, 4, 5)
 HRsout DestString, 13 ' Display the result, which will be "LO WO"
 Stop

' Create a null terminated string of characters in code memory
Source:
 Cdata "HELLO WORLD", 0

See also : Creating and using Strings, Creating and using Virtual Strings with Cdata, Cdata,

Len, Left$, Right$, Str$, ToLower, ToUpper, VarPtr.

Proton Amicus18 Compiler

 211
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

On GoTo

Syntax
On Index Variable GoTo Label1 {,...Labeln }

Overview
Cause the program to jump to different locations based on a variable index. Exactly the same functional-
ity as Branch.

Operators

 Index Variable is a constant, variable, or expression, that specifies the label to jump to.
 Label1...Labeln are valid labels that specify where to branch to. A maximum of 256 labels may

be placed after the GoTo.

Example

Dim Index as Byte
Index = 2 ' Assign Index a value of 2

Start: ' Jump to label 2 (LABEL_2) because Index = 2
On Index GoTo LABEL_0, LABEL_1, LABEL_2

LABEL_0:
Index = 2 ' Index now equals 2
HRsout "LABEL 0", 13 ' Display the LABEL name on the serial terminal
DelayMs 500 ' Wait 500ms
GoTo Start ' Jump back to Start

LABEL_1:
Index = 0 ' Index now equals 0
HRsout "LABEL 1", 13 ' Display the LABEL name on the serial terminal
DelayMs 500 ' Wait 500ms
GoTo Start ' Jump back to Start

LABEL_2:
Index = 1 ' Index now equals 1
HRsout "LABEL 2", 13 ' Display the LABEL name on the serial terminal
DelayMs 500 ' Wait 500ms
GoTo Start ' Jump back to Start

The above example we first assign the index variable a value of 2, then we define our labels. Since the
first position is considered 0 and the variable Index equals 2 the On GoTo command will cause the pro-
gram to jump to the third label in the list, which is LABEL_2.

Notes
On GoTo is useful when you want to organise a structure such as:

 If Var1 = 0 Then GoTo LABEL_0 ' Var1 = 0: go to label "LABEL_0"
 If Var1 = 1 Then GoTo LABEL_1 ' Var1 = 1: go to label "LABEL_1"
 If Var1 = 2 Then GoTo LABEL_2 ' Var1 = 2: go to label "LABEL_2"

You can use On GoTo to organise this into a single statement:

 On Var1 GoTo LABEL_0, LABEL_1, LABEL_2

This works exactly the same as the above If...Then example. If the value is not in range (in this case if
Var1 is greater than 2), On GoTo does nothing. The program continues with the next instruction.

See also : Branch, On GoSub.

Proton Amicus18 Compiler

 212
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

On GoSub

Syntax
On Index Variable GoSub Label1 {,...Labeln }

Overview
Cause the program to Call a subroutine based on an index value. A subsequent Return will continue
the program immediately following the On GoSub command.

Operators

 Index Variable is a constant, variable, or expression, that specifies the label to call.
 Label1...Labeln are valid labels that specify where to call. A maximum of 256 labels may be

placed after the GoSub.

Example
 Dim Index as Byte

 While 1 = 1 ' Create an infinite loop
 For Index = 0 to 2 ' Create a loop to call all the labels
' Call the label depending on the value of Index
 On Index GoSub LABEL_0, LABEL_1, LABEL_2
 DelayMs 500 ' Wait 500ms after the subroutine has returned
 Next
 Wend ' Do it forever
LABEL_0:
 HRsout "LABEL 0\r" ' Display the LABEL name on the serial terminal
 Return
LABEL_1:
 HRsout "LABEL 1\r" ' Display the LABEL name on the serial terminal
 Return
LABEL_2:
 HRsout "LABEL 2\r" ' Display the LABEL name on the serial terminal
 Return

The above example, a loop is formed that will load the variable Index with values 0 to 2. The On Go-
Sub command will then use that value to call each subroutine in turn. Each subroutine will Return to
the DelayMs command, ready for the next scan of the loop.

Notes
On GoSub is useful when you want to organise a structure such as:

 If Var1 = 0 Then GoSub LABEL_0 ' Var1 = 0: call label "LABEL_0"
 If Var1 = 1 Then GoSub LABEL_1 ' Var1 = 1: call label "LABEL_1"
 If Var1 = 2 Then GoSub LABEL_2 ' Var1 = 2: call label "LABEL_2"

You can use On GoSub to organise this into a single statement:

 On Var1 GoSub LABEL_0, LABEL_1, LABEL_2

This works exactly the same as the above If...Then example. If the value is not in range (in this case if
Var1 is greater than 2), On GoSub does nothing. The program continues with the next instruction..

See also : Branch, On GoTo.

Proton Amicus18 Compiler

 213
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

On_Hardware_Interrupt

Syntax
On_Hardware_Interrupt Label

Overview
Jump to a subroutine when a Hardware interrupt occurs

Operators

 Label is a valid identifier

Typical format of the interrupt handler.
The interrupt handler subroutine must follow a fixed pattern. First, the contents of the STATUS, BSR and
WREG registers must be saved. Note that this is done automatically when using high priority interrupts.

Upon exiting the interrupt, a simple Retfie fast (Return From Interrupt Fast) mnemonic can be used, or
the contexts of FSR0L, FSR0H, FSR1L, FSR1H, FSR2L, and FSR2H can be saved by issuing the Context
Save and Context Restore commands.

The code within the interrupt handler should be as quick and efficient as possible because, while it's
processing the code the main program is halted. When using assembler interrupts, care should be taken
to ensure that the watchdog timer does not time-out. Placing a ClrWdt instruction at regular intervals
within the code will prevent this from happening. An alternative approach would be to disable the
watchdog timer altogether at programming time. Note that this is the default state of the Amicus18’s
microcontroller.

An interrupt, by it’s very nature, may happen at any time during the operation of the foreground pro-
gram, therefore it is important that the interrupt subroutine has as little impact on the program as pos-
sible.

Context Save
Issuing the Context Save directive will save the WREG, BSR, STATUS registers, as well as the FSR0L,
FSR0H, FSR1L, and FSR1H register pairs. If strings or a stack are used within the program, the FSR2L,
and FSR2H register pair will also be saved.

The Context Save directive should be placed at the very start of the interrupt subroutine, before any
other command.

Context Restore
Issuing the Context Restore directive will restore the WREG, BSR, STATUS registers, as well as the
FSR0L, FSR0H, FSR1L, and FSR1H register pairs. If strings or a stack are used within the program, the
FSR2L, and FSR2H register pair will also be restored. The interrupt will then be terminated with the
Retfie mnemonic

The Context Restore directive should be placed at the very end of the interrupt subroutine, after any
other command.

Proton Amicus18 Compiler

 214
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

A typical example of a hardware interrupt is shown below

' Flash an LED with a Timer0 overflow interrupt
' While flashing another LED in the foreground
'

Include "Timers.inc" ' Load the Timer macros into the program

Symbol LED1 = RB0 ' LED attachement pin
Symbol LED2 = RB2 ' LED attachement pin

On_Hardware_Interrupt GoTo InterruptHandler ' Point to interrupt handler

GoTo MainProgram ' Jump over the interrupt handler and any subroutines

'
'--
' Timer 0 overflow Interrupt Handler
' Flash an LED on PortB.0
InterruptHandler:
 Context Save
' Was it a Timer0 overflow that triggered the interrupt ?

If INTCONbits_T0IF = 1 Then
Toggle LED1 ' Yes. So. Toggle the LED
Clear INTCONbits_T0IF ' Clear the Timer0 overflow flag

EndIf
Context Restore ' Exit the interrupt, restoring registers

'---
' Main Program loop
MainProgram:

Low LED1 ' \ Extinguish both LEDs
Low LED2 ' /

'
' Configure Timer0 for:
' Clear TMR0L and TMR0H registers
' Interrupt on Timer0
' 16-bit operation
' Internal clock source
' 1:128 Prescaler
'

OpenTimer0(TIMER_INT_ON & T0_16BIT & T0_SOURCE_INT & T0_PS_1_128)

INTCONbits_GIE = 1 ' Enable global interrupts
'
' Flash an LED attached to PortB.2 slowly in the foreground
' Display the current value of Timer0 on the serial terminal
'

While 1 = 1 ' Create an infinite loop
Hrsout "Timer1 = " , Dec ReadTimer0(),13 ' Display Timer0 value
High LED2 ' Illuminate the LED
DelayMS 500 ' Wait for 500 milliseconds

 Low LED2 ' Extinguish the LED
DelayMS 500 ' Wait for 500 milliseconds

Wend ' Do it forever

Proton Amicus18 Compiler

 215
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Managed Hardware Interrupts
Because an interrupt can occur at any time in the program, the code within the interrupt handler must
be carefully crafted in order not to alter the contents of critical SFRs (Special Function Registers) and
the compiler’s System variables.

However, this process can be handled automatically, to a certain extent, by the compiler by wrapping
the interrupt handler with the directives: High_Int_Sub_Start and High_Int_Sub_End.

When the compiler sees these directives it automatically saves the context of the compiler’s system
variables used within the interrupt and also saves the SFRs:

WREG, STATUS, BSR, FSR0L/FSR0H, FSR1L/FSR1H, FSR2L/FSR2H, PRODL/PRODH, TBLPTRL/TBLPTRH,
and TABLAT.

The context variables and registers are saved in a section reserved at the top of RAM. This does come
at a price of code and RAM size as well as a little speed loss when the interrupt is entered and exited,
but the benefits can outway the penalties.

This method allows high level commands to be placed within the interrupt handler. As an example, the
below program counts and displays 2 values on the serial terminal. One count is in the interrupt and one
in the main program.

' Demonstrate the use of context saving of the compiler's System variables
' while inside an interrupt subroutine
'
' Creates a high priority interrupt that increments on Timer0
' Within the interrupt a value is displayed and incremented
' While in the foreground another value is displayed and incremented
'
' Note: It is not recommended to use large (slow) routines in an interrupt,
' but this program serves to demonstrate
' the use of the directives High_Int_Sub_Start and High_Int_Sub_End

Include "Timers.inc" ' Load the Timer macros into the program

' Point the High interrupt handler to the subroutine

On_Hardware_Interrupt GoTo HighInterruptSub
'
' Create some variables
'

Dim HighCounter as Dword ' Counter for the interrupt routine
Dim ForeGroundCounter as Dword ' Counter for the foreground routine

GoTo Main ' Jump over the interrupt handler

Proton Amicus18 Compiler

 216
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

' High Priority Hardware Interrupt Handler
' Interrupt's on a Timer0 Overflow Display on the serial terminal
' and increment a value
'
' Indicate to context save the System Variables for High Priority interrupt

High_Int_Sub_Start
HighInterruptSub:
'
' Save the compiler's system variables used in the interrupt routine only
' Also save some SFR's PRODL\H, FSR0L\H, FSR1L\H, FSR2L\H, TBLPTRL\H, TABLAT
' SFR's WREG, STATUS, and BSR automatically saved by shadow registers

Context Save
' Display the value on the serial terminal

Hrsout "Interrupt ", Dec HighCounter, 13
Inc HighCounter ' Increment the value
INTCONbits_T0IF = 0 ' Clear the Timer0 Overflow flag

'
' Restore compiler's system variables used within the interrupt routine only
' and exit the interrupt with "Retfie 1"
' Restore the SFR's PRODL\H, FSR0L\H, FSR1L\H, FSR2L\H, TBLPTRL\H, TABLAT
' SFR's WREG, STATUS, and BSR are automatically restored by shadow registers

Context Restore
' Indicate that the High Priority Interrupt block has ended

High_Int_Sub_End
'--
' Main Program Loop
' Display a value in foreground while interrupt works in the background
'
Main:

HighCounter = 0
ForeGroundCounter = 0

'
' Configure Timer0 for:
' Clear TMR0L and TMR0H registers
' Interrupt on Timer0 overflow
' 16-bit operation
' Internal clock source
' 1:128 Prescaler
'

OpenTimer0(TIMER_INT_ON & T0_16BIT & T0_SOURCE_INT & T0_PS_1_128)

INTCONbits_GIE = 1 ' Enable global interrupts

While 1 = 1 ' Create an infinite loop
 INTCONbits_T0IE = 0 ' Disable the interrupt while transmitting
 ' Display the value on the serial terminal
 Hrsout "ForeGround ", Dec ForeGroundCounter, 13
 INTCONbits_T0IE = 1 ' Re-Enable the interrupt
 Inc ForeGroundCounter ' Increment the value
 DelayMs 200

Wend ' Close the loop. i.e. do it forever

See also : On_Low_Interrupt, Software Interrupts in BASIC.

Proton Amicus18 Compiler

 217
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

On_Low_Interrupt

Syntax
On_Low_Interrupt Label

Overview
Jump to a subroutine when a Low Priority Hardware interrupt occurs.

Operators

 Label is a valid identifier

Example
' Use Timer1 and Timer3 to demonstrate the use of interrupt priority.
' Timer1 is configured for high-priority interrupts
' Timer3 is configured for low-priority interrupts.
' By writing to the PortB LEDS, it is shown that a high-priority interrupts
' override low-priority interrupts.
'
' Connect three LEDs to PortB pins 0, 2, and 3
' LEDs 0 and 3 flash in the background using interrupts,
' while the LED connected to PortB.1 flashes slowly in the foreground

Include "Timers.inc" ' Load the Timer macros into the program

' Create a Word variable from two hardware registers

Dim wTimer1 As TMR1L.Word
' Create a Word variable from two hardware registers

Dim wTimer3 As TMR3L.Word

' Declare interrupt Vectors
' Point to the High priority interrupt subroutine
 On_Hardware_Interrupt GoTo Timer1_ISR
' Point to the Low priority interrupt subroutine
 On_Low_Interrupt GoTo Timer3_ISR

 GoTo Main ' Jump over the interrupt subroutines

'---
' High Priority Interrupt on Timer1 overflow
Timer1_ISR:

Clear PIR1bits_TMR1IF ' Clear the Timer1 interrupt flag
' Turn off PortB.0 indicating high priority ISR has overridden low priority

Clear PortB.0
Set PortB.2 ' Turn on PortB.2 indicating high priority interrupt

' Poll Timer1 interrupt flag to wait for another Timer1 overflow
While PIR1bits_TMR1IF = 0 : Wend
Clear PIR1bits_TMR1IF ' Clear the Timer1 interrupt flag again
Clear PortB.2 ' Turn off PortB.2 indicating high-priority ISR is over

 Retfie fast ' Exit interrupt, restoreing WREG, STATUS, and BSR
'---
' Low Priority Interrupt on Timer3 overflow
Timer3_ISR:

Context Save ' Save the contents of WREG, STATUS, and BSR
Clear PIR2bits_TMR3IF ' Clear the Timer3 interrupt flag
wTimer3 = $F000 ' Load Timer3 with the value $F000
Set PortB.0 ' Turn on PortB.0 indicating low priority ISR is occurring

Proton Amicus18 Compiler

 218
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

' Poll Timer3 interrupt flag to wait for another Timer3 overflow

While PIR2bits_TMR3IF = 0 : Wend
wTimer3 = $F000 ' Load Timer3 with the value $F000 again
Clear PIR2bits_TMR3IF ' Clear the Timer3 interrupt flag again
Clear PortB.0 ' Turn off PortB.0. indicating low-priority ISR is over

' Restore the contents of WREG, STATUS, and BSR, then exit interrupt
Context Restore

'---
' Main Program Starts Here
Main:

Low PortB ' Setup PortB for outputs
'
' Configure Timer1 for:
' Clear TMR1L and TMR1H registers
' Interrupt on Timer1 overflow
' 16-bit read/write mode
' Internal clock source
' 1:8 Prescaler
'

OpenTimer1(TIMER_INT_ON & T1_16BIT_RW & T1_SOURCE_INT & T1_PS_1_8)
'
' Configure Timer3 for:
' Clear TMR3L and TMR3H registers
' Interrupt on Timer3 overflow
' 16-bit read/write mode
' Internal clock source
' 1:8 Prescaler
'

OpenTimer3(TIMER_INT_ON & T3_16BIT_RW & T3_SOURCE_INT & T3_PS_1_8)

wTimer3 = $F000 ' Write $F000 to Timer3
'
' Set up priority interrupts.
'

RCONbits_IPEN = 1 ' Enable priority interrupts
IPR1bits_TMR1IP = 1 ' Set Timer1 as a high priority interrupt
IPR2bits_TMR3IP = 0 ' Set Timer3 as a low priority interrupt

INTCONbits_PEIE = 1 ' Enable peripheral interrupts
INTCONbits_GIE = 1 ' Enable global interrupts

While 1 = 1 ' Flash the LED on PortB.3

High PortB.3
DelayMS 300
Low PortB.3
DelayMS 300

Wend

Typical format of the interrupt handler.
The interrupt handler subroutine must follow a fixed pattern. First, the contents of the STATUS, BSR and
WREG registers must be saved. Note that this is NOT done automatically when using low priority inter-
rupts.

Upon exiting the interrupt, a simple Retfie (Return From Interrupt) mnemonic can be used, or the con-
texts of FSR0L, FSR0H, FSR1L, FSR1H, FSR2L, and FSR2H can be saved by issuing the Context Save
and Context Restore commands.

Proton Amicus18 Compiler

 219
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The code within the interrupt handler should be as quick and efficient as possible because, while it's
processing the code the main program is halted. When using assembler interrupts, care should be taken
to ensure that the watchdog timer does not time-out. Placing a ClrWdt instruction at regular intervals
within the code will prevent this from happening. An alternative approach would be to disable the
watchdog timer altogether at programming time. Note that this is the default state of the Amicus18’s
microcontroller.

An interrupt, by it’s very nature, may happen at any time during the operation of the foreground pro-
gram, therefore it is important that the interrupt subroutine has as little impact on the program as pos-
sible.

Context Save
Issuing the Context Save directive will save the WREG, BSR, STATUS registers, as well as the FSR0L,
FSR0H, FSR1L, and FSR1H register pairs. If strings or a stack are used within the program, the FSR2L,
and FSR2H register pair will also be saved.

The Context Save directive should be placed at the very start of the interrupt subroutine, before any
other command.

Context Restore
Issuing the Context Restore directive will restore the WREG, BSR, STATUS registers, as well as the
FSR0L, FSR0H, FSR1L, and FSR1H register pairs. If strings or a stack are used within the program, the
FSR2L, and FSR2H register pair will also be restored. The interrupt will then be terminated with the
Retfie mnemonic

The Context Restore directive should be placed at the very end of the interrupt subroutine, after any
other command.

Note that Context Save and Context Restore cannot be used in both high and low priority interrupt
routines together.

Proton Amicus18 Compiler

 220
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Managed Low-Priority Hardware Interrupts.
Because an interrupt can occur at any time in the program, the code within the interrupt handler must
be carefully crafted in order not to alter the contents of critical SFRs (Special Function Registers) and
the compiler’s System variables.

However, this process can be handled automatically, to a certain extent, by the compiler by wrapping
the interrupt handler with the directives: Low_Int_Sub_Start and Low_Int_Sub_End.

When the compiler sees these directives it automatically saves the context of the compiler’s system
variables used within the interrupt and also saves the SFRs:

WREG, STATUS, BSR, FSR0L\FSR0H, FSR1L\FSR1H, FSR2L\ FSR2H, PRODL\PRODH, TBLPTRL\TBLPTRH,
and TABLAT.

The context variables and registers are saved in a section reserved at the top of RAM. This does come
at a price of code and RAM size as well as a little speed loss when the interrupt is entered and exited,
but the benefits can outway the penalties.

This method allows high level commands to be placed within the interrupt handler. As an example, the
below program counts and displays 2 values on an alphanumeric LCD. One count is in the interrupt and
one in the main program.

' Demonstrate the use of context saving of the compiler's System variables
' While inside low and high priority interrupt subroutines
'
' Creates low and high priority interrupts incrementing on TIMER0 and TIMER1
' Within the interrupts a value is displayed and incremented
' In the foreground another value is incremented and displayed serially
'
' Note: It is not recommended to use large (slow) routines in an interrupt,
' but this program serves to demonstrate
' the use of the directives Low_Int_Sub_Start and Low_Int_Sub_End

Include "Timers.inc" ' Load the Timer macros into the program

' Point the High Priority interrupt handler to the subroutine

On_Hardware_Interrupt GoTo HighInterruptsub
' Point the Low Priority interrupt handler to the subroutine

On_Low_Interrupt GoTo LowInterruptsub
'
' Create some variables
'

Dim PortB_HighSave as Byte ' Space for PortB save in the high interrupt
Dim PortB_LowSave as Byte ' Space for PortB save in the low interrupt
Dim HighCounter as Dword ' Counter for the high interrupt routine
Dim LowCounter as Dword ' Counter for the low interrupt routine
Dim ForeGroundCounter as Dword ' Counter for the Foreground routine

 GoTo Main ' Jump over the interrupt handler subroutines

Proton Amicus18 Compiler

 221
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

'---
' High Priority Hardware Interrupt Handler
' Interrupt's on a Timer1 Overflow Display on the LCD and increment a value
' Indicate to context save the System Variables for High Priority interrupt

High_Int_Sub_Start
HighInterruptsub:
' Save the compiler's system variables used in the interrupt routine only
' Also save some SFR's PRODL\H, FSR0L\H, FSR1L\H, FSR2L\H, TBLPTRL\H, TABLAT
' SFR's WREG, STATUS, and BSR are automatically saved by shadow registers

Context Save
' Save the condition of PortB register. Because the Print command uses it

PortB_HighSave = PortB
' Display the value on line 1 of the LCD

Print at 1,1, "High Int ", Dec HighCounter
Inc HighCounter ' Increment the value

' Restore the condition of PortB before exiting the interrupt
PortB = PortB_HighSave
PIR1bits_TMR1IF = 0 ' Clear the Timer1 Overflow flag

' Restore compiler's system variables used within the interrupt routine only
' and exit the interrupt with "Retfie 1"
' Also restore SFR's PRODL\H, FSR0L\H, FSR1L\H, FSR2L\H, TBLPTRL\H, TABLAT
' SFR's WREG, STATUS, and BSR are automatically restored by shadow registers

Context Restore
' Indicate that the High Priority Interrupt block has ended

High_Int_Sub_End
'---
' Low Priority Hardware Interrupt Handler
' Interrupt's on a TIMER0 Overflow
' Display on the LCD and increment a floating point value
' Indicate to context save the System Variables for a Low Priority interrupt

Low_Int_Sub_Start
LowInterruptsub:
' Save the compiler's system variables used in the interrupt routine only
' Also save some important SFR's. i.e. WREG, STATUS, BSR, PRODL\H, FSR0L\H,
' FSR1L\H, FSR2L\H, TBLPTRL\H, TABLAT
'

Context Save
' Disable the Timer 1 High priority interrupt while we use the LCD

PIE1bits_TMR1IE = 0
' Save the condition of PortB register. Because the Print command uses it

PortB_LowSave = PortB
' Display the value on line 2 of the LCD

Print at 2, 1, "Low Int " , Dec LowCounter, " "
Inc LowCounter ' Increment the value

' Restore the condition of PortB before exiting the interrupt
PortB = PortB_LowSave
PIE1bits_TMR1IE = 1 ' Re-Enable the Timer 1 High priority interrupt
INTCONbits_TMR0IF = 0 ' Clear the TIMER0 Overflow flag

'
' Restore the compiler's system variables used in the interrupt routine only
' and exit the interrupt ' with "Retfie"
' Also restore the important SFR's. i.e. WREG, STATUS, BSR, PRODL\H,
' FSR0L\H, FSR1L\H, FSR2L\H, TBLPTRL\H, TABLAT

Context Restore
Low_Int_Sub_End ' Indicate Low Priority Interrupt block has ended

Proton Amicus18 Compiler

 222
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

'---
' The Main Program Loop Starts Here
'
Main:

DelayMs 100 ' Wait for things to stabilise
Low PortB ' Set PortB to Output Low
HighCounter = 0
LowCounter = 0
ForeGroundCounter = 0
Cls ' Clear the LCD

'
' Configure Timer0 for:
' Clear TMR0L and TMR0H registers
' Interrupt on Timer0 overflow
' 16-bit operation
' Internal clock source
' 1:128 Prescaler
'

OpenTimer0(TIMER_INT_ON & T0_16BIT & T0_SOURCE_INT & T0_PS_1_128)
'
' Configure Timer1 for:
' Clear TMR1L and TMR1H registers
' Interrupt on Timer1 overflow
' 16-bit read/write mode
' Internal clock source
' 1:8 Prescaler
'

OpenTimer1(TIMER_INT_ON & T1_16BIT_RW & T1_SOURCE_INT & T1_PS_1_8)
'
' Setup the High and Low priorities for the interrupts
'

INTCON2bits_TMR0IP = 0 ' Timer0 Interrupt to Low priority
IPR1bits_TMR1IP = 1 ' Timer1 Interrupt to High priority
RCONbits_IPEN = 1 ' Enable priority levels on interrupts
INTCONbits_GIEL = 1 ' Enable low priority peripheral interrupts
INTCONbits_GIE = 1 ' Enable global interrupts

'
' Display value in forground while interrupts do their thing in background
'

While 1 = 1 ' Create an infinite loop
 ' Display the value on serial terminal
 HRsout "Foreground ", Dec ForeGroundCounter, 13
 Inc ForeGroundCounter ' Increment the value
 DelayMs 200

Wend ' Close the loop. i.e. do it forever

See also : On_Hardware_Interrupt, Software Interrupts in BASIC.

Proton Amicus18 Compiler

 223
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Output

Syntax
Output Port or Port . Pin

Overview
Makes the specified Port or Port.Pin an output.

Operator

 Port or Port.Pin must be a Port or Port.Pin constant declaration.

Example
 Output PortA.0 ' Make bit-0 of PortA an output
 Output RB ' Make all of PortB an output

Notes
An Alternative method for making a particular pin an output is by directly modifying the Tris:

 TrisB.0 = 0 ' Set PortB, bit-0 to an output

All of the pins on a port may be set to output by setting the whole Tris register at once:

 TrisB = %00000000 ' Set all of PortB to outputs

In the above examples, setting a Tris bit to 0 makes the pin an output, and conversely, setting the bit to
1 makes the pin an input.

The example below will flash an LED connected to RB0 (PortB.0) every second:

' Flash an LED every second
 Output RB0 ' Make pin RB0 (PortB.0) an output

While 1 = 1 ' Create an infinite loop
 Set RB0 ' Bring RB0 high
 DelayMS 500 ' Wait 500ms
 Clear RB0 ' Pull RB0 low
 DelayMS 500 ' Wait 500ms
 Wend ' Close the loop

See also Input, Clear, High, Low, Set.

Proton Amicus18 Compiler

 224
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Org

Syntax
Org Value

Overview
Set the program origin for subsequent code at the address defined in Value

Operator

 Value can be any constant value within the range of the particular microcontroller’s memory.

Example
 Org 2000 ' Set the origin to address 2000
 Cdata 120, 243, "Hello" ' Place data starting at address 2000

or

 Symbol Address = 2000

 Org Address + 1 ' Set the origin to address 2001
 Cdata 120, 243, "Hello" ' Place data starting at address 2001

Proton Amicus18 Compiler

 225
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Oread

Syntax
Oread Pin, Mode, [Inputdata]

Overview
Receive data from a device using the Dallas Semiconductor 1-wire protocol. The 1-wire protocol is a
form of asynchronous serial communication developed by Dallas Semiconductor. It requires only one I/O
pin which may be shared between multiple 1-wire devices.

Operators

 Pin is a Port-Bit combination that specifies which I/O pin to use. 1-wire devices require only one
I/O pin (normally called DQ) to communicate. This I/O pin will be toggled between output and
input mode during the Oread command and will be set to input mode by the end of the Oread
command.

 Mode is a numeric constant (0 - 7) indicating the mode of data transfer. The Mode argument
control's the placement of Reset pulses and detection of presence pulses, as well as Byte or bit
input. See notes below.

 Inputdata is a list of variables or arrays to store the incoming data into.

Example

Dim Result as Byte
Symbol DQ = PortA.0
Oread DQ, 1, [Result]

The above example code will transmit a 'reset' pulse to a 1-wire device (connected to bit 0 of PortA) and
will then detect the device's 'presence' pulse and receive one byte and store it in the variable Result.

Notes
The Mode operator is used to control placement of Reset pulses (and detection of presence pulses) and
to designate byte or bit input. The table below shows the meaning of each of the 8 possible value com-
binations for Mode.

The correct value for Mode depends on the 1-wire device and the portion of the communication that is
being dealt with. Consult the data sheet for the device in question to determine the correct value for
Mode. In many cases, however, when using the Oread command, Mode should be set for either No Re-
set (to receive data from a transaction already started by an Owrite

Mode Value Effect
0 No Reset, Byte mode
1 Reset before data, Byte mode
2 Reset after data, Byte mode
3 Reset before and after data, Byte mode
4 No Reset, Bit mode
5 Reset before data, Bit mode
6 Reset after data, Bit mode
7 Reset before and after data, Bit mode

Proton Amicus18 Compiler

 226
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

command) or a Reset after data (to terminate the session after data is received). However, this may
vary due to device and application requirements.

When using the Bit (rather than Byte) mode of data transfer, all variables in the InputData argument
will only receive one bit. For example, the following code could be used to receive two bits using this
mode:

Dim BitVar1 as Bit
Dim BitVar2 as Bit
Oread PortA.0, 6, [BitVar1, BitVar2]

In the example code shown, a value of 6 was chosen for Mode. This sets Bit transfer and Reset after
data mode.

We could also have chosen to make the BitVar1 and BitVar2 variables each a Byte type, however, they
would still only have received one bit each in the Oread command, due to the Mode that was chosen.

The compiler also has a modifier for handling a string of data, named Str.

The Str modifier is used for receiving data and placing it directly into a byte array variable.

A string is a set of bytes that are arranged or accessed in a certain order. The values 1, 2, 3 would be
stored in a string with the value 1 first, followed by 2 then followed by the value 3. A byte array is a
similar concept to a string; it contains data that is arranged in a certain order. Each of the elements in
an array is the same size. The string 1 2 3 would be stored in a byte array containing three bytes (ele-
ments).

Below is an example that receives ten bytes through a 1-wire interface and stores them in the 10-byte
array, MyArray:

Dim MyArray[10] as Byte ' Create a 10-byte array.
Oread DQ, 1, [Str MyArray]
Print Dec Str MyArray ' Display the values.

If the amount of received characters is not enough to fill the entire array, then a formatter may be
placed after the array's name, which will only receive characters until the specified length is reached.
For example:

Dim MyArray[10] as Byte ' Create a 10-byte array.
Oread DQ, 1, [Str MyArray\5] ' Fill the first 5-bytes of array with data.
Print Str MyArray\5 ' Display the 5-value string.

The example above illustrates how to fill only the first n bytes of an array, and then how to display only
the first n bytes of the array. n refers to the value placed after the backslash.

Proton Amicus18 Compiler

 227
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Dallas 1-Wire Protocol.
The 1-wire protocol has a well defined standard for transaction sequences. Every transaction sequence
consists of four parts:

 Initialisation.
 ROM Function Command.
 Memory Function Command.
 Transaction / Data.

Additionally, the ROM Function Command and Memory Function Command are always 8 bits wide and
are sent least-significant-bit first (LSB).

The Initialisation consists of a Reset pulse (generated by the master) that is followed by a presence
pulse (generated by all slave devices).

The Reset pulse is controlled by the lowest two bits of the Mode argument in the Oread command. It
can be made to appear before the ROM Function Command (Mode = 1), after the Transaction / Data
portion (Mode = 2), before and after the entire transaction (Mode = 3) or not at all (Mode = 0).

Following the Initialisation, comes the ROM Function Command. The ROM Function Command is used to
address the desired 1-wire device. The above table shows a few common ROM Function Commands. If
only a single 1 wire device is connected, the Match ROM command can be used to address it. If more
than one 1-wire device is attached, the microcontroller will ultimately have to address them individually
using the Match ROM command.

The third part, the Memory Function Command, allows the microcontroller to address specific memory
locations, or features, of the 1-wire device. Refer to the 1-wire device's data sheet for a list of the avail-
able Memory Function Commands.

Finally, the Transaction / Data section is used to read or write data to the 1-wire device. The Oread
command will read data at this point in the transac-
tion. A read is accomplished by generating a brief
low-pulse and sampling the line within 15us of the
falling edge of the pulse. This is called a 'Read Slot'.

The following program demonstrates interfacing to a
Dallas Semiconductor DS1820 1-wire digital ther-
mometer device using the compiler's 1-wire commands, and connections as per the diagram to the
right.

Command Value Action

Read ROM $33 Reads the 64-bit ID of the 1-wire device. This command can only
be used if there is a single 1-wire device on the line.

Match ROM $55 This command, followed by a 64-bit ID, allows the PICmicro to
address a specific 1-wire device.

Skip ROM $CC Address a 1-wire device without its 64-bit ID. This command can
only be used if there is a single 1-wire device on the line.

Search ROM $F0 Reads the 64-bit IDs of all the 1-wire devices on the line. A proc-
ess of elimination is used to distinguish each unique device.

DS1820
VDD

DQ

GND

3

1

2

R1
4.7k

+5 Volts

0v

To RB0
1 2 3

DS1820

1..GND
2..DQ
3..VCC

Proton Amicus18 Compiler

 228
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The code reads the Counts Remaining and Counts per Degree Centigrade registers within the DS1820
device in order to provide a more accurate temperature (down to 1/10th of a degree).

Symbol DQ = RB0 ' Place the DS1820 on bit-0 of PortB
Dim Temp as Word ' Holds the temperature value
Dim C as Byte ' Holds the counts remaining value
Dim CPerD as Byte ' Holds the Counts per degree C value

Again:
Owrite DQ, 1, [$CC, $44] ' Send Calculate Temperature command
Repeat

DelayMs 25 ' Wait until conversion is complete
Oread DQ, 4, [C] ' Keep reading low pulses until

Until C <> 0 ' the DS1820 is finished.
Owrite DQ, 1, [$CC, $BE] ' Send Read ScratchPad command
Oread DQ, 2,[Temp.LowByte,Temp.HighByte, C, C, C, C, C, CPerD]

' Calculate the temperature in degrees Centigrade
Temp = (((Temp >> 1) * 100) - 25) + (((CPerD - C) * 100) / CPerD)
Hrsout Dec Temp / 100, ".", Dec2 Temp, " Degrees Centigrade\r"
GoTo Again

Note.
The equation used in the program above will not work correctly with negative temperatures. Also note
that the 4.7kΩ pull-up resistor (R1) is required for correct operation.

Inline Oread Command.
The standard structure of the Oread command is:

Oread Pin, Mode, [Inputdata]

However, this did not allow it to be used in conditions such as If-Then, While-Wend etc. Therefore,
there is now an additional structure to the Oread command:

Var = Oread Pin, Mode

Operands Pin and Mode have not changed their function, but the result from the 1-wire read is now
placed directly into the assignment variable.

Proton Amicus18 Compiler

 229
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Oread - Owrite Presence Detection.
Another important feature to both the Oread and Owrite commands is the ability to jump to a section
of the program if a presence is not detected on the 1-wire bus.

Owrite Pin, Mode, Label, [Outputdata]

Oread Pin, Mode, Label, [Inputdata]

Var = Oread Pin, Mode, Label

The Label parameter is an optional condition, but if used, it must reference a valid BASIC label.

' Skip ROM search and do temp conversion

Owrite DQ, 1, NoPresence, [$CC, $44]
While Oread DQ, 4, NoPresence <> 0 : Wend ' Read busy-bit, Still busy..?

' Skip ROM search and read scratchpad memory
Owrite DQ, 1, NoPresence, [$CC, $BE]
Oread DQ, 2, NoPresence, [Temp.Lowbyte, Temp.Highbyte] ' Read two bytes
Return

NoPresence:

Print "No Presence"
Stop

See also : Owrite.

Proton Amicus18 Compiler

 230
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Owrite

Syntax
Owrite Pin, Mode, [Outputdata]

Overview
Send data to a device using the Dallas Semiconductor 1-wire protocol. The 1-wire protocol is a form of
asynchronous serial communication developed by Dallas Semiconductor. It requires only one I/O pin
which may be shared between multiple 1-wire d vices.

Operators

 Pin is a Port-Bit combination that specifies which I/O pin to use. 1-wire devices require only one
I/O pin (normally called DQ) to communicate. This I/O pin will be toggled between output and
input mode during the Owrite command and will be set to input mode by the end of the Ow-
rite command.

 Mode is a numeric constant (0 - 7) indicating the mode of data transfer. The Mode operator
control's the placement of Reset pulses and detection of presence pulses, as well as Byte or bit
input. See notes below.

 Outputdata is a list of variables or arrays transmit individual or repeating bytes.

Example

Symbol DQ = PortA.0
Owrite DQ, 1, [$4E]

The above example will transmit a 'reset' pulse to a 1-wire device (connected to bit 0 of PortA) and will
then detect the device's 'presence' pulse and transmit one byte (the value $4E).

Notes
The Mode operator is used to control placement of Reset pulses (and detection of presence pulses) and
to designate byte or bit input. The table below shows the meaning of each of the 8 possible value com-
binations for Mode.

The correct value for Mode depends on the 1-wire device and the portion of the communication you're
dealing with. Consult the data sheet for the device in question to determine the correct value for Mode.
In many cases, however, when using the Owrite command, Mode should be set for a Reset before data
(to initialise the transaction). However, this may vary due to device and application requirements.

Mode Value Effect
0 No Reset, Byte mode
1 Reset before data, Byte mode
2 Reset after data, Byte mode
3 Reset before and after data, Byte mode
4 No Reset, Bit mode
5 Reset before data, Bit mode
6 Reset after data, Bit mode
7 Reset before and after data, Bit mode

Proton Amicus18 Compiler

 231
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

When using the Bit (rather than Byte) mode of data transfer, all variables in the InputData argument
will only receive one bit. For example, the following code could be used to receive two bits using this
mode:

Dim BitVar1 as Bit
Dim BitVar2 as Bit
Owrite PortA.0, 6, [BitVar1, BitVar2]

In the example code shown, a value of 6 was chosen for Mode. This sets Bit transfer and Reset after
data mode. We could also have chosen to make the BitVar1 and BitVar2 variables each a Byte type,
however, they would still only use their lowest bit (Bit0) as the value to transmit in the Owrite com-
mand, due to the Mode value chosen.

The Str Modifier
The Str modifier is used for transmitting a string of bytes from a byte array variable. A string is a set of
bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3 would be stored
in a string with the value 1 first, followed by 2 then followed by the value 3. A byte array is a similar
concept to a string; it contains data that is arranged in a certain order. Each of the elements in an array
is the same size. The string 1,2,3 would be stored in a byte array containing three bytes (elements).

Below is an example that sends four bytes (from a byte array) through bit-0 of PortA:

Dim MyArray[10] as Byte ' Create a 10-byte array.
MyArray[0] = $CC ' Load the first 4 bytes of the array
MyArray[1] = $44 ' With the data to send
MyArray[2] = $CC
MyArray[3] = $4E
Owrite PortA.0, 1, [Str MyArray\4] ' Send 4-byte string.

Note that we use the optional \n argument of Str. If we didn't specify this, the microcontroller would try
to keep sending characters until all 10 bytes of the array were transmitted. Since we do not wish all 10
bytes to be transmitted, we chose to tell it explicitly to only send the first 4 bytes.

The above example may also be written as:

Dim MyArray[10] as Byte ' Create a 10-byte array.
Str MyArray = $CC,$44,$CC,$4E ' Load the first 4 bytes of the array
Owrite PortA.0, 1, [Str MyArray\4] ' Send 4-byte string.

The above example, has exactly the same function as the previous one. The only difference is that the
string is now constructed using the Str as a command instead of a modifier.

See also : Oread for example code, and 1-wire protocol.

Proton Amicus18 Compiler

 232
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Pixel

Syntax
Variable = Pixel Ypos, Xpos

Overview
Read the condition of an individual pixel from a graphic LCD. The returned value will be 1 if the pixel is
set, and 0 if the pixel is clear.

Operators

 Variable is a user defined variable.
 Xpos can be a constant, variable, or expression, pointing to the X-axis location of the pixel to

examine. This must be a value of 0 to the X resolution of the LCD. Where 0 is the far left row of
pixels.

 Ypos can be a constant, variable, or expression, pointing to the Y-axis location of the pixel to
examine. This must be a value of 0 to the Y resolution of the LCD. Where 0 is the top column of
pixels.

Example
' Read a line of pixels from a Samsung KS0108 graphic LCD
 Declare LCD_Type = Graphic ' Use a Graphic LCD
 Declare Internal_Font = Off ' Use an external chr set
 Declare Font_Addr = 0 ' Eeprom's address is 0

' Graphic LCD Pin Assignments
 Declare LCD_DTPort = PortB
 Declare LCD_RSPin = PortA.2
 Declare LCD_RWPin = PortA.0
 Declare LCD_ENPin = PortA.5
 Declare LCD_CS1Pin = PortC.0
 Declare LCD_CS2Pin = PortC.2

' Character set eeprom Pin Assignments
 Declare SDA_Pin = PortC.4
 Declare SCL_Pin = PortC.3

 Dim Xpos as Byte
 Dim Ypos as Byte
 Dim Result as Byte

 Cls
 Print At 0, 0, "Testing 1-2-3"
' Read the top row and display the result
 For Xpos = 0 to 127
 Result = Pixel 0, Xpos ' Read the top row
 Print At 1, 0, Dec Result
 DelayMs 400
 Next
 Stop

See also : LCDread, LCDwrite, Plot, UnPlot. See Print for circuit.

Proton Amicus18 Compiler

 233
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Plot

Syntax
Plot Ypos, Xpos

Overview
Set an individual pixel on a graphic LCD.

Operators

 Xpos can be a constant, variable, or expression, pointing to the X-axis location of the pixel to
set. This must be a value of 0 to the X resolution of the LCD. Where 0 is the far left row of pix-
els.

 Ypos can be a constant, variable, or expression, pointing to the Y-axis location of the pixel to
set. This must be a value of 0 to the Y resolution of the LCD. Where 0 is the top column of pix-
els.

Example
 Declare LCD_Type = Graphic ' Use a Samsung Graphic LCD

' Graphic LCD Pin Assignments
 Declare LCD_DTPort = PortB
 Declare LCD_RSPin = PortA.2
 Declare LCD_RWPin = PortA.0
 Declare LCD_ENPin = PortC.5
 Declare LCD_CS1Pin = PortC.0
 Declare LCD_CS2Pin = PortC.2

 Dim Xpos as Byte
' Draw a line across the LCD
 While 1 = 1 ' Create an infinite loop
 For Xpos = 0 to 127
 Plot 20, Xpos
 DelayMs 10
 Next
' Now erase the line
 For Xpos = 0 to 127
 UnPlot 20, Xpos
 DelayMs 10
 Next
 Wend

 See also : LCDread, LCDwrite, Pixel, UnPlot. See Print for circuit.

Proton Amicus18 Compiler

 234
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Graphic LCD pixel configuration for a 128x64 resolution display.

Xp
os

 0
 -

12
7

Ypos 0 - 630
0

63
0

12
7630

12
7

Li
ne

 0

Li
ne

 1

Li
ne

 2

Li
ne

 3

Li
ne

 4

Li
ne

 5

Li
ne

 6

Li
ne

 7

Proton Amicus18 Compiler

 235
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Pop

Syntax
Pop Variable, {Variable, Variable etc}

Overview
Pull a single variable or multiple variables from a software stack.
If the Pop command is issued without a following variable, it will implement the assembler mnemonic
Pop, which manipulates the microcontroller’s call stack.

Operator

 Variable is a user defined variable of type Bit, Byte, Byte Array, Word, Word Array, Dword,
Float, or String.

The amount of bytes pushed on to the stack varies with the variable type used. The list below shows
how many bytes are pushed for a particular variable type, and their order.

 Bit 1 Byte is popped containing the value of the bit pushed.
 Byte 1 Byte is popped containing the value of the byte pushed.
 Byte Array 1 Byte is popped containing the value of the byte pushed.
 Word 2 Bytes are popped. Low Byte then High Byte containing

 the value of the word pushed.
 Word Array 2 Bytes are popped. Low Byte then High Byte containing

 the value of the word pushed.
 Dword 4 Bytes are popped. Low Byte, Mid1 Byte, Mid2 Byte then High Byte

 containing the value of the dword pushed.
 Float 4 Bytes are popped. Low Byte, Mid1 Byte, Mid2 Byte then High Byte

 containing the value of the float pushed.
 String 2 Bytes are popped. Low Byte then High Byte that point to the

 start address of the string previously pushed.

Example 1
' Push two variables on to the stack then retrieve them
 Declare Stack_Size = 20 ' Create a stack capable of holding 20 bytes

 Dim WordVar as Word ' Create a Word variable
 Dim DwordVar as Dword ' Create a Dword variable

 WordVar = 1234 ' Load the Word variable with a value
 DwordVar = 567890 ' Load the Dword variable with a value
 Push WordVar, DwordVar ' Push the Word variable then the Dword variable

 Clear WordVar ' Clear the Word variable
 Clear DwordVar ' Clear the Dword variable

 Pop DwordVar, WordVar ' Pop the Dword variable then the Word variable
 Hrsout Dec WordVar, " ", Dec DwordVar, 13 ' Display the variables
 Stop

Proton Amicus18 Compiler

 236
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Example 2
' Push a String on to the stack then retrieve it
 Declare Stack_Size = 10 ' Create a stack capable of holding 10 bytes

 Dim SourceString as String * 20 ' Create a String variable
 Dim DestString as String * 20 ' Create another String variable

 SourceString = "HELLO WORLD" ' Load the String variable with characters

 Push SourceString ' Push the String variable's address

 Pop DestString ' Pop the previously pushed String into DestString
 Hrsout DestString, 13 ' Display the string, which will be "HELLO WORLD"
 Stop

Example 3
' Push a Quoted character string on to the stack then retrieve it
 Declare Stack_Size = 10 ' Create a stack capable of holding 10 bytes

 Dim DestString as String * 20 ' Create a String variable

 Push "HELLO WORLD" ' Push the Quoted String of Characters on to the stack

 Pop DestString ' Pop the previously pushed String into DestString
 Hrsout DestString, 13 ' Display the string, which will be "HELLO WORLD"
 Stop

See also : Push, GoSub, Return, See Push for technical details of stack manipulation.

Proton Amicus18 Compiler

 237
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Pot

Syntax
Variable = Pot Pin, Scale

Overview
Read a potentiometer, thermistor, photocell, or other variable resistance.

Operators

 Variable is a user defined variable.
 Pin is a Port.Pin constant that specifies the I/O pin to use.
 Scale is a constant, variable, or expression, used to scale the instruction's internal 16-bit result.

The 16- bit reading is multiplied by (scale/ 256), so a scale value of 128 would reduce the range
by approximately 50%, a scale of 64 would reduce to 25%, and so on.

Example
 Dim Var1 as Byte
Loop:
 Var1 = Pot PortB.0, 100 ' Read potentiometer on pin-0 of PortB.
 Hrsout Dec Var1, 13 ' Transmit the potentiometer reading
 DelayMs 500 ' Wait to 500ms

GoTo Loop ' Repeat the process.

Notes
Internally, the Pot instruction calculates a 16-bit value, which is scaled down to an 8-bit value. The
amount by which the internal value must be scaled varies with the size of the resistor being used.

The pin specified by Pot must be connected to one side of a resistor, whose other side is connected
through a capacitor to ground. A resistance measurement is taken by timing how long it takes to dis-
charge the capacitor through the resistor.

The value of scale must be determined by experimentation, however, this is easily accomplished as fol-
lows:

Set the device under measure, the pot in this instance, to maximum resistance and read it with scale set
to 255. The value returned in Var1 can now be used as scale:

 Var1 = Pot PortB.0, 255

See also : Adin, RCin.

To
I/O Pin

5-50k

0.1uF

Proton Amicus18 Compiler

 238
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Print

Syntax
Print Item {, Item... }

Overview
Send Text to an LCD module using the Hitachi 44780 controller or a graphic LCD based on the Samsung
KS0108, or Toshiba T6963 chipsets.

Operators

 Item may be a constant, variable, expression, modifier, or string.

There are no operators as such, instead there are modifiers. For example, if the word Dec precedes an
item, the ASCII representation for each digit is sent to the LCD.

The modifiers are listed below:

Modifier Operation
At ypos,xpos Position the cursor on a serial LCD
Cls Clear a serial LCD (also creates a 30ms delay)

Bin{1..32} Send binary digits
Dec{1..10} Send decimal digits
Hex{1..8} Send hexadecimal digits
Sbin{1..32} Send signed binary digits
Sdec{1..10} Send signed decimal digits
Shex{1..8} Send signed hexadecimal digits
Ibin{1..32} Send binary digits with a preceding '%' identifier
Idec{1..10} Send decimal digits with a preceding '#' identifier
Ihex{1..8} Send hexadecimal digits with a preceding '$' identifier
ISbin{1..32} Send signed binary digits with a preceding '%' identifier
ISdec{1..10} Send signed decimal digits with a preceding '#' identifier
IShex{1..8} Send signed hexadecimal digits with a preceding '$' identifier

Rep c\n Send character c repeated n times
Str array\n Send all or part of an array
Cstr cdata Send string data defined in a Cdata statement.

The numbers after the Bin, Dec, and Hex modifiers are optional. If they are omitted, then the default
is all the digits that make up the value will be displayed.

If a floating point variable is to be displayed, then the digits after the Dec modifier determine how many
remainder digits are printed. i.e. numbers after the decimal point.

 Dim FloatVar as Float
 FloatVar = 3.145
 Print Dec2 FloatVar ' Display 2 values after the decimal point

The above program will display 3.14

If the digit after the Dec modifier is omitted, then 3 values will be displayed after the decimal point.

Proton Amicus18 Compiler

 239
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

 Dim FloatVar as Float
 FloatVar = 3.1456
 Print Dec FloatVar ' Display 3 values after the decimal point

The above program will display 3.145

There is no need to use the Sdec modifier for signed floating point values, as the compiler's Dec modi-
fier will automatically display a minus result:

 Dim FloatVar as Float
 FloatVar = -3.1456
 Print Dec FloatVar ' Display 3 values after the decimal point

The above program will display -3.145

Hex or Bin modifiers cannot be used with floating point values or variables.

The Xpos and Ypos values in the At modifier both start at 1. For example, to place the text "HELLO
WORLD" on line 1, position 1, the code would be:

 Print At 1, 1, "HELLO WORLD"

Example 1
 Dim Var1 as Byte
 Dim WordVar as Word
 Dim DwordVar as Dword

 Print "Hello World" ' Display the text "Hello World"
 Print "Var1= ", Dec Var1 ' Display the decimal value of Var1
 Print "Var1= ", Hex Var1 ' Display the hexadecimal value of Var1
 Print "Var1= ", Bin Var1 ' Display the binary value of Var1
 Print "DwordVar= ", Hex6 DwordVar ' Display 6 hex chars of Dword variable

Example 2
' Display a negative value on the LCD.
 Symbol Negative = -200
 Print At 1, 1, Sdec Negative

Example 3
' Display a negative value on the LCD with a preceding identifier.
 Print At 1, 1, IShex -$1234

Example 3 will produce the text "$-1234" on the LCD.

The microcontroller used on the Amicus18 board has the ability to read and write to its own flash mem-
ory. And although writing to this memory too many times is unhealthy for the microcontroller, reading
this memory is both fast, and harmless. Which offers a unique form of data storage and retrieval, the
Cdata command proves this, as it uses the mechanism of reading and storing in the microcontroller’s
flash memory.

Proton Amicus18 Compiler

 240
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Combining the unique features of the ‘self modifying microcontroller’s' with a string format, the compiler
is capable of reducing the overhead of printing, or transmitting large amounts of text data. The Cstr
modifier may be used in commands that deal with text processing i.e. Serout, HRsout, and RSOUT
etc.

The Cstr modifier is used in conjunction with the Cdata command. The Cdata command is used for
initially creating the string of characters:

String1: Cdata "Hello World", 0

The above line of case will create, in flash memory, the values that make up the ASCII text "HELLO
WORLD", at address String1. Note the null terminator after the ASCII text.

null terminated means that a zero (null) is placed at the end of the string of ASCII characters to signal
that the string has finished.

To display this string of characters, the following command structure could be used:

 Print Cstr String1

The label that declared the address where the list of Cdata values resided, now becomes the string's
name. In a large program with lots of text formatting, this type of structure can save quite literally hun-
dreds of bytes of valuable code space.

Try both these small programs, and you'll see that using Cstr saves a few bytes of code:

First the standard way of displaying text:

 Cls
 Print "Hello World"
 Print "How are you?"
 Print "I am fine!"
 Stop

Now using the Cstr modifier:

 Cls
 Print Cstr Text1
 Print Cstr Text2
 Print Cstr Text3
 Stop

Text1: Cdata "Hello World", 0
Text2: Cdata "How are you?", 0
Text3: Cdata "I am fine!", 0

Again, note the null terminators after the ASCII text in the Cdata commands. Without these, the micro-
controller will continue to transmit data in an endless loop.

The term 'virtual string' relates to the fact that a string formed from the Cdata command cannot be
written too, but only read from.

Proton Amicus18 Compiler

 241
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The Str modifier is used for sending a string of bytes from a byte array variable. A string is a set of
bytes sized values that are arranged or accessed in a certain order. The values 1, 2, 3 would be stored
in a string with the value 1 first, followed by 2 then followed by the value 3. A byte array is a similar
concept to a string; it contains data that is arranged in a certain order. Each of the elements in an array
is the same size. The string 1,2,3 would be stored in a byte array containing three bytes (elements).

Below is an example that displays four bytes (from a byte array):

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 MyArray[0] = "H" ' Load the first 5 bytes of the array
 MyArray[1] = "E" ' With the data to send
 MyArray[2] = "L"
 MyArray[3] = "L"
 MyArray[4] = "O"
 Print Str MyArray\5 ' Display a 5-byte string.

Note that we use the optional \n argument of Str. If we didn't specify this, the microcontroller would try
to keep sending characters until all 10 bytes of the array were transmitted. Since we do not wish all 10
bytes to be transmitted, we chose to tell it explicitly to only send the first 5 bytes.

The above example may also be written as:

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 Str MyArray = "HELLO" ' Load the first 5 bytes of the array
 Print Str MyArray\5 ' Send 5-byte string.

The above example, has exactly the same function as the previous one. The only difference is that the
string is now constructed using Str as a command instead of a modifier.

Declares
There are several Declares for use with an alphanumeric LCD and Print:

Declare LCD_Type 0 or 1 or 2, Alpha or Graphic or Samsung or Toshiba
Inform the compiler as to the type of LCD that the Print command will output to. If Graphic, Samsung
or 1 is chosen then any output by the Print command will be directed to a graphic LCD based on the
Samsung KS0108 chipset. A value of 2, or the text Toshiba, will direct the output to a graphic LCD
based on the Toshiba T6963 chipset. A value of 0 or Alpha, or if the Declare is not issued, will target
the standard Hitachi alphanumeric LCD type

Targeting the graphic LCD will also enable commands such as Plot, UnPlot, LCDread, LCDwrite,
Pixel, Box, Circle and Line.

Declare LCD_DTPin Port . Pin
Assigns the Port and Pins that the LCD's DT (data) lines will attach to.
The LCD may be connected to the microcontroller using either a 4-bit bus or an 8-bit bus. If an 8-bit bus
is used, all 8 bits must be on one port. If a 4-bit bus is used, it must be connected to either the bottom
4 or top 4 bits of one port. For example:

 Declare LCD_DTPin PortB.4 ' Used for 4-line interface.

 Declare LCD_DTPin PortB.0 ' Used for 8-line interface.

Proton Amicus18 Compiler

 242
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

In the previous examples, PortB is only a personal preference. The LCD's DT lines may be attached to
any valid port on the microcontroller. If the Declare is not used in the program, then the default Port
and Pin is PortB.4, which assumes a 4-line interface.

Declare LCD_ENPin Port . Pin
Assigns the Port and Pin that the LCD's EN line will attach to.

If the Declare is not used in the program, then the default Port and Pin is PortB.3.

Declare LCD_RSPin Port . Pin
Assigns the Port and Pins that the LCD's RS line will attach to.

If the Declare is not used in the program, then the default Port and Pin is PortB.2.

Declare LCD_Interface 4 or 8
Inform the compiler as to whether a 4-line or 8-line interface is required by the LCD.

If the Declare is not used in the program, then the default interface is a 4-line type.

Declare LCD_Lines 1, 2, or 4
Inform the compiler as to how many lines the LCD has.

LCD's come in a range of sizes, the most popular being the 2 line by 16 character types. However, there
are 4 line types as well. Simply place the number of lines that the particular LCD has, into the declare.

If the Declare is not used in the program, then the default number of lines is 2.

Notes
If no modifier precedes an item in a Print command, then the character’s value is sent to the LCD. This
is useful for sending control codes to the LCD. For example:

 Print $FE, 128

Will move the cursor to line 1, position 1 (Home).

Below is a list of some useful control commands:

 Control Command Operation

 $FE, 1 Clear display
 $FE, 2 Return home (beginning of first line)
 $FE, $0C Cursor off
 $FE, $0E Underline cursor on
 $FE, $0F Blinking cursor on
 $FE, $10 Move cursor left one position
 $FE, $14 Move cursor right one position
 $FE, $C0 Move cursor to beginning of second line
 $FE, $94 Move cursor to beginning of third line (if applicable)
 $FE, $D4 Move cursor to beginning of fourth line (if applicable)

Proton Amicus18 Compiler

 243
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Note that if the command for clearing the LCD is used, then a small delay should follow it:

 Print $FE, 1 : DelayMs 30

The above diagram shows the default connections for an alphanumeric LCD module connected to the
Amicus18 board.

And below is the same circuit built on an Amicus18 Companion Shield.

220Ω
Contrast

+5
 V

ol
ts

2 lines x 16 characters
Alphanumeric LCD

D
B7

D
B6

D
B5

D
B4

D
B3

D
B2

D
B1

D
B0

EN R
/W

R
S Vo Vd

d
Vs

s

To
 R

B
7

To
 R

B
6

To
 R

B
5

To
 R

B
4

To
 R

B
3

To
 R

B
2

Proton Amicus18 Compiler

 244
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Using a Samsung KS0108 Graphic LCD
Once a Samsung graphic LCD has been chosen using the Declare LCD_Type directive, all Print out-
puts will be directed to that LCD.

The standard modifiers used by an alphanumeric LCD may also be used with the graphics LCD. Most of
the above modifiers still work in the expected manner, however, the At modifier now starts at Ypos 0
and Xpos 0, where values 0,0 will be the top left corner of the LCD.

There are also four new modifiers. These are:

 Font 0 to n Choose the nth font, if available
 Inverse 0-1 Invert the characters sent to the LCD
 Or 0-1 Or the new character with the original
 Xor 0-1 Xor the new character with the original

Once one of the four new modifiers has been enabled, all future Print commands will use that particular
feature until the modifier is disabled. For example:

' Enable inverted characters from this point
 Print At 0, 0, Inverse 1, "HELLO WORLD"
 Print At 1, 0, "STILL INVERTED"
' Now use normal characters
 Print At 2, 0, Inverse 0, "NORMAL CHARACTERS"

If no modifiers are present, then the character's ASCII representation will be displayed:

' Print characters A and B
 Print At 0, 0, 65, 66

Declares
There are nine declares associated with a Samsung graphic LCD.

Declare LCD_DTPort Port
Assign the port that will output the 8-bit data to the graphic LCD.

If the Declare is not used, then the default port is PortD.

Declare LCD_RWPin Port . Pin
Assigns the Port and Pin that the graphic LCD's RW line will attach to.

If the Declare is not used in the program, then the default Port and Pin is PortE.0.

Declare LCD_CS1Pin Port . Pin
Assigns the Port and Pin that the graphic LCD's CS1 line will attach to.

If the Declare is not used in the program, then the default Port and Pin is PortC.0.

Declare LCD_CS2Pin Port . Pin
Assigns the Port and Pin that the graphic LCD's CS2 line will attach to.

If the Declare is not used in the program, then the default Port and Pin is PortC.2.

Note
Along with the new declares, two of the existing LCD declares must also be used. Namely, RS_Pin and
EN_Pin.

Proton Amicus18 Compiler

 245
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Declare Internal_Font On - Off, 1 or 0
The graphic LCDs that are compatible with Proton Amicus18 are non-intelligent types, therefore, a sepa-
rate character set is required. This may be in one of two places, either externally, in an I2C eeprom, or
internally in a Cdata table.

If the Declare is omitted from the program, then an external font is the default setting.

If an external font is chosen, the I2C eeprom must be connected to the specified SDA and SCL pins (as
dictated by Declare SDA and Declare SCL).

If an internal font is chosen, it must be on a microcontroller device that has self modifying code fea-
tures, such as the 16F87X range.

The Cdata table that contains the font must have a label, named Font: preceding it. For example:

Font: { data for characters 0 to 64 }
 Cdata $7E, $11, $11, $11, $7E, $0 ' Chr 65 "A"
 Cdata $7F, $49, $49, $49, $36, $0 ' Chr 66 "B"
 { rest of font table }

Notice the dash after the font's label, this disables any bank switching code that may otherwise disturb
the location in memory of the Cdata table.

The font table may be anywhere in memory, however, it is best placed after the main program code.

The font is built up of an 8x6 cell, with only 5 of the 6 rows, and 7 of the 8 columns being used for al-
phanumeric characters. See the diagram below.

If a graphic character is chosen (chr 0 to 31), the whole of the 8x6 cell is used. In this way, large fonts
and graphics may be easily constructed.

$
7
E

$
0
0

$
1
1

$
1
1

$
1
1

$
7
E

Proton Amicus18 Compiler

 246
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The character set itself is 128 characters long (0 -127). Which means that all the ASCII characters are
present, including $, %, &, # etc.

Declare Font_Addr 0 to 7
Set the slave address for the I2C eeprom that contains the font.

When an external source for the font is used, it may be on any one of 8 eeproms attached to the I2C
bus. So as not to interfere with any other eeproms attached, the slave address of the eeprom carrying
the font code may be chosen.

If the Declare is omitted from the program, then address 0 is the default slave address of the font
eeprom.

Declare GLCD_CS_Invert On - Off, 1 or 0
Some graphic LCD types have inverters on the CS lines. Which means that the LCD displays left-hand
data on the right side, and vice-versa. The GLCD_CS_Invert Declare, adjusts the library LCD handling
subroutines to take this into account.

Declare GLCD_Strobe_Delay 0 to 65535 microseconds (us).
If a noisy circuit layout is unavoidable when using a graphic LCD, then the above Declare may be used.
This will create a delay between the Enable line being strobed. This can ease random data being pro-
duced on the LCD's screen. See below for more details on circuit layout for graphic LCDs.

If the Declare is not used in the program, then no delay is created between strobes, and the LCD is
accessed at full efficiency.

Declare GLCD_Read_Delay 0 to 65535 microseconds (us).
Create a delay of n microseconds between strobing the EN line of the graphic LCD, when reading from
the GLCD. This can help noisy, or badly decoupled circuits overcome random bits being examined. The
default if the Declare is not used in the BASIC program is a delay of 0.

If an internal font is implemented on a Samsung graphic LCD, then only four stack levels are used.

The diagram above shows a typical pin arrangement for a Samsung KS0108 graphic LCD.

KS0108
64 x 128

Dot Matrix
Graphic LCD

D
B7

D
B6

D
B5

D
B4

D
B3

D
B2

D
B1

D
B0

EN R
/W

R
S Vo Vc
c

G
nd C
S1

C
S2

R
ST

-V
ou

t

120

LE
D

A
LE

D
K

R2
10kΩ

R3
100kΩ

R1
10Ω To
 R

B
7

To
 R

B
6

To
 R

B
5

To
 R

B
4

To
 R

B
3

To
 R

B
2

To
 R

B
1

To
 R

B
0

To
 R

A
5

To
 R

A
3

To
 R

A
2

+5
 V

ol
ts

To
 R

C
5

To
 R

C
4

+5
 V

ol
ts

+5
 V

ol
ts

Proton Amicus18 Compiler

 247
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The layouts below illustrate how a Samsung graphic LCD can be built on the Amicus companion board.

A top down view of the layout is shown below.

Proton Amicus18 Compiler

 248
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Using a Toshiba T6963 Graphic LCD
Once a Toshiba graphic LCD has been chosen using the Declare LCD_Type directive, all Print outputs
will be directed to that LCD.

The standard modifiers used by an alphanumeric LCD may also be used with the graphics LCD. Most of
the modifiers still work in the expected manner, however, the At modifier now starts at Ypos 0 and
Xpos 0, where values 0,0 correspond to the top left corner of the LCD.

The Samsung modifiers Font, Inverse, or, and xor are not supported because of the method Toshiba
LCD’s using the T6963 chipset implement text and graphics.

There are several Declares for use with a Toshiba graphic LCD, some optional and some mandatory.

Declare LCD_DTPort Port
Assign the port that will output the 8-bit data to the graphic LCD.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_WRPin Port . Pin
Assigns the Port and Pin that the graphic LCD's WR line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_RDPin Port . Pin
Assigns the Port and Pin that the graphic LCD's RD line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_CEPin Port . Pin
Assigns the Port and Pin that the graphic LCD's CE line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_CDPin Port . Pin
Assigns the Port and Pin that the graphic LCD's CD line will attach to.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_RSTPin Port . Pin
Assigns the Port and Pin that the graphic LCD's RST line will attach to.

The LCD’s RST (Reset) Declare is optional and if omitted from the BASIC code the compiler will not
manipulate it. However, if not used as part of the interface, you must set the LCD’s RST pin high for
normal operation.

Declare LCD_X_Res 0 to 255
LCD displays using the T6963 chipset come in varied screen sizes (resolutions). The compiler must know
how many horizontal pixels the display consists of before it can build its library subroutines.

There is no default setting for this Declare and it must be used within the BASIC program.

Proton Amicus18 Compiler

 249
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Declare LCD_Y_Res 0 to 255
LCD displays using the T6963 chipset come in varied screen sizes (resolutions). The compiler must know
how many vertical pixels the display consists of before it can build its library subroutines.

There is no default setting for this Declare and it must be used within the BASIC program.

Declare LCD_Font_Width 6 or 8
The Toshiba T6963 graphic LCDs have two internal font sizes, 6 pixels wide by eight high, or 8 pixels
wide by 8 high. The particular font size is chosen by the LCD’s FS pin. Leaving the FS pin floating or
bringing it high will choose the 6 pixel font, while pulling the FS pin low will choose the 8 pixel font. The
compiler must know what size font is required so that it can calculate screen and RAM boundaries.

Note that the compiler does not control the FS pin and it is down to the circuit layout whether or not it
is pulled high or low. There is no default setting for this Declare and it must be used within the BASIC
program.

Declare LCD_RAM_Size 1024 to 65535
Toshiba graphic LCDs contain internal RAM used for Text, Graphic or Character Generation. The amount
of RAM is usually dictated by the display’s resolution. The larger the display, the more RAM is normally
present. Standard displays with a resolution of 128x64 typically contain 4096 bytes of RAM, while larger
types such as 240x64 or 190x128 typically contain 8192 bytes or RAM. The display’s datasheet will in-
form you of the amount of RAM present.

If this Declare is not issued within the BASIC program, the default setting is 8192 bytes.

Declare LCD_Text_Pages 1 to n
As mentioned above, Toshiba graphic LCDs contain RAM that is set aside for text, graphics or characters
generation. In normal use, only one page of text is all that is required, however, the compiler can re-
arrange its library subroutines to allow several pages of text that is continuous. The amount of pages
obtainable is directly proportional to the RAM available within the LCD itself. Larger displays require
more RAM per page, therefore always limit the amount of pages to only the amount actually required or
unexpected results may be observed as text, graphic and character generator RAM areas merge.

This Declare is purely optional and is usually not required. The default is 3 text pages if this Declare is
not issued within the BASIC program.

Declare LCD_Graphic_Pages 1 to n
Just as with text, the Toshiba graphic LCDs contain RAM that is set aside for graphics. In normal use,
only one page of graphics is all that is required, however, the compiler can re-arrange its library subrou-
tines to allow several pages of graphics that is continuous. The amount of pages obtainable is directly
proportional to the RAM available within the LCD itself. Larger displays require more RAM per page,
therefore always limit the amount of pages to only the amount actually required or unexpected results
may be observed as text, graphic and character generator RAM areas merge.

This Declare is purely optional and is usually not required. The default is 1 graphics page if this De-
clare is not issued within the BASIC program.

Proton Amicus18 Compiler

 250
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Declare LCD_Text_Home_Address 0 to n
The RAM within a Toshiba graphic LCD is split into three distinct uses, text, graphics and character gen-
eration. Each area of RAM must not overlap or corruption will appear on the display as one uses the
other’s assigned space. The compiler’s library subroutines calculate each area of RAM based upon where
the text RAM starts. Normally the text RAM starts at address 0, however, there may be occasions when
it needs to be set a little higher in RAM. The order of RAM is; Text, Graphic, then Character Generation.

This Declare is purely optional and is usually not required. The default is the text RAM staring at ad-
dress 0 if this Declare is not issued within the BASIC program.

The diagram below shows a typical circuit for an interface with a Toshiba T6963 graphic LCD.

Toshiba T6963
Graphic LCD

W
R

R
D

C
E

C
\D

R
ST D
0 D
1

D
2

D
3

D
4

D
5

D
6

D
7 FSVe
e

Vd
d

1

V
ssFG

3 42 5 6 7 8 9 10 11 12 13 14 15 16 17 18

-9 to 0 Volts
Contrast

Font
Selection
Closed - 8
Open - 6

+5
 V

ol
ts

To
 R

B
0

To
 R

B
1

To
 R

B
2

To
 R

B
3

To
 R

B
4

To
 R

B
5

To
 R

B
6

To
 R

B
7

To
 R

A
0

To
 R

A
1

To
 R

A
2

To
 R

A
3

To
 R

C
0

Proton Amicus18 Compiler

 251
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

PulsIn

Syntax
Variable = PulsIn Pin, State

Overview
Change the specified pin to input and measure an input pulse.

Operators

 Variable is a user defined variable. This may be a word variable with a range of 1 to 65535, or
a byte variable with a range of 1 to 255.

 Pin is a Port.Pin constant that specifies the I/O pin to use.
 State is a constant (0 or 1) or name High or Low that specifies which edge must occur before

beginning the measurement.

Example
 Dim Var1 as Byte
Loop:
 Var1 = PulsIn PortB.0, 1 ' Measure a pulse on pin 0 of PortB.
 Hrsout Dec Var1, 13 ' Display the reading
 GoTo Loop ' Repeat the process.

Notes
PulsIn acts as a fast clock that is triggered by a change in state (0 or 1) on the specified pin. When the
state on the pin changes to the state specified, the clock starts counting. When the state on the pin
changes again, the clock stops. If the state of the pin doesn't change (even if it is already in the state
specified in the PulsIn instruction), the clock won't trigger. PulsIn waits a maximum of 0.65535 sec-
onds for a trigger, then returns with 0 in variable.

The variable can be either a Word or a Byte . If the variable is a word, the value returned by PulsIn
can range from 1 to 65535 units.

The units are dependant on the frequency of the crystal used. If a 4MHz crystal is used, then each unit
is 10us, while a 20MHz or greater crystal produces a unit length of 2us.

If the variable is a byte and the crystal is 4MHz, the value returned can range from 1 to 255 units of
10µs. Internally, PulsIn always uses a 16-bit timer. When your program specifies a byte, PulsIn stores
the lower 8 bits of the internal counter into it. Pulse widths longer than 2550µs will give false, low read-
ings with a byte variable. For example, a 2560µs pulse returns a reading of 256 with a word variable
and 0 with a byte variable.

See also : Counter, PulseOut, RCin.

Proton Amicus18 Compiler

 252
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

PulseOut

Syntax
PulseOut Pin, Period, { Initial State }

Overview
Generate a pulse on Pin of specified Period. The pulse is generated by toggling the pin twice, thus the
initial state of the pin determines the polarity of the pulse. Or alternatively, the initial state may be set
by using High-Low or 1-0 after the Period. Pin is automatically made an output.

Operators

 Pin is a Port.Pin constant that specifies the I/O pin to use.
 Period can be a constant of user defined variable. See notes.
 State is an optional constant (0 or 1) or name High or Low that specifies the state of the out-

going pulse.

Example
' Send a high pulse 1ms long to PortB Pin5
 Low PortB.5
 PulseOut PortB.5, 1000

' Send a high pulse 1ms long to PortB Pin5
 PulseOut PortB.5, 1000, High

Notes
The resolution of PulseOut is dependent upon the oscillator frequency. If a 4MHz oscillator is used, the
Period of the generated pulse will be in 10us increments. If a 20MHz or greater oscillator is used, Period
will have a 2us resolution. Declaring an Xtal value has no effect on PulseOut. The resolution always
changes with the actual oscillator speed.

See also : Counter, PulsIn, RCin.

Proton Amicus18 Compiler

 253
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Push

Syntax
Push Variable, {Variable, Variable etc}

Overview
Place a single variable or multiple variables onto a software stack.
If the Push command is issued without a following variable, it will implement the assembler mnemonic
Push, which manipulates the microcontroller’s call stack.

Operator

 Variable is a user defined variable of type Bit, Byte, Byte Array, Word, Word Array, Dword,
Float, or String, or constant value.

The amount of bytes pushed on to the stack varies with the variable type used. The list below shows
how many bytes are pushed for a particular variable type, and their order.

 Bit 1 Byte is pushed that holds the condition of the bit.
 Byte 1 Byte is pushed.
 Byte Array 1 Byte is pushed.
 Word 2 Bytes are pushed. High Byte then Low Byte.
 Word Array 2 Bytes are pushed. High Byte then Low Byte.
 Dword 4 Bytes are pushed. High Byte, Mid2 Byte, Mid1 Byte then Low Byte.
 Float 4 Bytes are pushed. High Byte, Mid2 Byte, Mid1 Byte then Low Byte.
 String 2 Bytes are pushed. High Byte then Low Byte that point to the

 start address of the string in memory.
 Constant Amount of bytes varies according to the value pushed. High Byte first.

Example 1
' Push two variables on to the stack then retrieve them
 Declare Stack_Size = 20 ' Create a small stack capable of holding 20 bytes

 Dim WordVar as Word ' Create a Word variable
 Dim DwordVar as Dword ' Create a Dword variable

 WordVar = 1234 ' Load the Word variable with a value
 DwordVar = 567890 ' Load the Dword variable with a value
 Push WordVar, DwordVar ' Push the Word variable then the Dword variable

 Clear WordVar ' Clear the Word variable
 Clear DwordVar ' Clear the Dword variable

 Pop DwordVar, WordVar ' Pop the Dword variable then the Word variable
 Hrsout Dec WordVar, " ", Dec DwordVar, 13 ' Display the variables
 Stop

Proton Amicus18 Compiler

 254
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Example 2
' Push a String on to the stack then retrieve it
 Declare Stack_Size = 10 ' Create a stack capable of holding 10 bytes

 Dim SourceString as String * 20 ' Create a String variable
 Dim DestString as String * 20 ' Create another String variable

 SourceString = "HELLO WORLD" ' Load the String variable with characters

 Push SourceString ' Push the String variable's address

 Pop DestString ' Pop the previously pushed String into DestString
 Hrsout DestString, 13 ' Display the string, which will be "HELLO WORLD"
 Stop

Formatting a Push.
Each variable type, and more so, constant value, will push a different amount of bytes on to the stack.
This can be a problem where values are concerned because it will not be known what size variable is
required in order to Pop the required amount of bytes from the stack. For example, the code below will
push a constant value of 200 on to the stack, which requires 1 byte.

 Push 200

All well and good, but what if the recipient popped variable is of a Word or Dword type.

Pop WordVar

Popping from the stack into a Word variable will actually pull 2 bytes from the stack, however, the code
above has only pushed on byte, so the stack will become out of phase with the values or variables pre-
viously pushed. This is not really a problem where variables are concerned, as each variable has a
known byte count and the user knows if a Word is pushed, a Word should be popped.

The answer lies in using a formatter preceding the value or variable pushed, that will force the amount
of bytes loaded on to the stack. The formatters are Byte, Word, Dword or Float.

The Byte formatter will force any variable or value following it to push only 1 byte to the stack.

 Push Byte 12345

The Word formatter will force any variable or value following it to push only 2 bytes to the stack:

 Push Word 123

The Dword formatter will force any variable or value following it to push only 4 bytes to the stack:

 Push Dword 123

The Float formatter will force any variable or value following it to push only 4 bytes to the stack, and will
convert a constant value into the 4-byte floating point format:

 Push Float 123

So for the Push of 200 code above, you would use:

 Push Word 200

Proton Amicus18 Compiler

 255
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

In order for it to be popped back into a Word variable, because the push would be the high byte of 200,
then the low byte.

If using the multiple variable Push, each parameter can have a different formatter preceding it.

 Push Word 200, Dword 1234, Float 1234

Note that if a floating point value is pushed, 4 bytes will be placed on the stack because this is a known
format.

What is a Stack?
All microprocessors and most microcontrollers have access to a Stack, which is an area of RAM allocated
for temporary data storage. But this is sadly lacking on a microcontroller device. However, the 18F de-
vices have an architecture and low-level mnemonics that allow a Stack to be created and used very effi-
ciently.

A stack is first created in high memory by issuing the Stack_Size Declare.

 Declare Stack_Size = 40

The above line of code will reserve 40 bytes at the top of RAM that cannot be touched by any BASIC
command, other than Push and Pop. This means that it is a safe place for temporary variable storage.

Taking the above line of code as an example, we can examine what happens when a variable is pushed
on to the 40 byte stack, and then popped off again.

First the RAM is allocated. 18F25K20 has 1536 bytes of RAM that stretches linearly from address 0 to
1535. Reserving a stack of 40 bytes will reduce the top of memory so that the compiler will only see
1495 bytes (1535 - 40). This will ensure that it will not inadvertently try and use it for normal variable
storage.

Pushing.
When a Word variable is pushed onto the stack, the memory map would look like the diagram below:

Start of Stack

Top of MemoryEmpty RAM...................
~ ~
~ ~

...................Empty RAM...................

...................Empty RAM...................
Low Byte Address of Word Variable
High Byte Address of Word Variable

Address 1535

Address 1502
Address 1501
Address 1496
Address 1495

Proton Amicus18 Compiler

 256
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The high byte of the variable is first pushed on to the stack, then the low byte. And as you can see, the
stack grows in an upward direction whenever a Push is implemented, which means it shrinks back
down whenever a Pop is implemented.

If we were to Push a Dword variable on to the stack as well as the Word variable, the stack memory
would look like:

Popping.
When using the Pop command, the same variable type that was pushed last must be popped first, or
the stack will become out of phase and any variables that are subsequently popped will contain invalid
data. For example, using the above analogy, we need to Pop a Dword variable first. The Dword variable
will be popped Low Byte first, then Mid1 Byte, then Mid2 Byte, then lastly the High Byte. This will ensure
that the same value pushed will be reconstructed correctly when placed into its recipient variable. After
the Pop, the stack memory map will look like:

If a Word variable was then popped, the stack will be empty, however, what if we popped a Byte vari-
able instead? the stack would contain the remnants of the Word variable previously pushed. Now what if
we popped a Dword variable instead of the required Word variable? the stack would underflow by two
bytes and corrupt any variables using those address's . The compiler cannot warn you of this occurring,
so it is up to you, the programmer, to ensure that proper stack management is carried out. The same is
true if the stack overflows. i.e. goes beyond the top of RAM. The compiler cannot give a warning.

Start of Stack

Top of MemoryEmpty RAM...................
~ ~
~ ~

....................Empty RAM...................

....................Empty RAM...................
Low Byte Address of Dword Variable
Mid1 Byte Address of Dword Variable

Address 1535

Address 1502
Address 1501
Address 1500
Address 1499

Mid2 Byte Address of Dword Variable
High Byte Address of Dword Variable
Low Byte Address of Word Variable
High Byte Address of Word Variable

Address 1498
Address 1497
Address 1496
Address 1495

Start of Stack

Top of MemoryEmpty RAM...................
~ ~
~ ~

...................Empty RAM...................

...................Empty RAM...................
Low Byte Address of Word Variable
High Byte Address of Word Variable

Address 1535

Address 1502
Address 1501
Address 1496
Address 1495

Proton Amicus18 Compiler

 257
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Technical Details of Stack implementation.
The stack implemented by the compiler is known as an Incrementing Last-In First-Out Stack. Increment-
ing because it grows upwards in memory. Last-In First-Out because the last variable pushed, will be the
first variable popped.

The stack is not circular in operation, so that a stack overflow will rollover into the microcontroller’s
hardware register, and an underflow will simply overwrite RAM immediately below the Start of Stack
memory. If a circular operating stack is required, it will need to be coded in the main BASIC program, by
examination and manipulation of the stack pointer (see below).

Indirect register pair FSR2L and FSR2H are used as a 16-bit stack pointer, and are incremented for
every Byte pushed, and decremented for every Byte popped. Therefore checking the FSR2 registers in
the BASIC program will give an indication of the stack's condition if required. This also means that the
BASIC program cannot use the FSR2 register pair as part of its code, unless for manipulating the stack.
Note that none of the compiler's commands, other than Push and Pop, use FSR2.

Whenever a variable is popped from the stack, the stack's memory is not actually cleared, only the stack
pointer is moved. Therefore, the above diagrams are not quite true when they show empty RAM, but
unless you have use of the remnants of the variable, it should be considered as empty, and will be
overwritten by the next Push command.

See also : Pop, GoSub, Return.

Proton Amicus18 Compiler

 258
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Pwm

Syntax
Pwm Pin, Duty, Cycles

Overview
Output pulse-width-modulation on a pin, then return the pin to input state.

Operators

 Pin is a Port.Pin constant that specifies the I/O pin to use.
 Duty is a variable, constant (0-255), or expression, which specifies the analogue level desired (0

to 3.3 volts).
 Cycles is a variable or constant (0-255) which specifies the number of cycles to output. Larger

capacitors require multiple cycles to fully charge. Cycle time is dependant on Xtal frequency. If a
4MHz crystal is used, then cycle takes approx 5 ms. If a 20MHz or greater crystal is used, then
cycle takes approx 1 ms.

Notes
Pwm can be used to generate analogue voltages (0 to 3.3V) through a pin connected to a resistor and
capacitor to ground; the resistor-capacitor junction is the analogue output (see circuit). Since the ca-
pacitor gradually discharges, Pwm should be executed periodically to refresh the analogue voltage.

Pwm emits a burst of 1s and 0s whose ratio is proportional to the duty value you specify. If duty is 0,
then the pin is continuously low (0); if duty is 255, then the pin is continuously high. For values in be-
tween, the proportion is duty/255. For example, if duty is 100, the ratio of 1s to 0s is 100/255 = 0.392,
approximately 39 percent.

When such a burst is used to charge a capacitor arranged, the voltage across the capacitor is equal to:

 (duty / 255) * 3.3.

So if duty is 100, the capacitor voltage is

 (100 / 255) * 3.3 = 1.29 volts.

This voltage will drop as the capacitor discharges through whatever load it is driving. The rate of dis-
charge is proportional to the current drawn by the load; more current = faster discharge. You can re-
duce this effect in software by refreshing the capacitor's charge with frequent use of the Pwm com-
mand, or you can buffer the output using an op-amp to greatly reduce the need for frequent Pwm cy-
cles.

See also : Hpwm, PulseOut, Servo.

To
I/O Pin

Analogue
Voltage
Output

10k

10uF

Proton Amicus18 Compiler

 259
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Random

Syntax
Variable = Random

or

Random Variable

Overview
Generate a pseudo-randomised value.

Operator

 Variable is a user defined variable that will hold the pseudo-random value. The pseudo-random
algorithm used has a working length of 1 to 65535 (only zero is not produced).

Example
' Create and display a pseudo random number
 Dim Rnd as Word

 Seed $0345 ' Create a starting point for the random number generator
 While 1 = 1 ' Create an infinite loop
 Rnd = Random ' Get a pseudo random value
 Hrsout Dec Rnd, 13 ' Display the result on the serial terminal
 DelayMs 500 ' Delay to the results can be viewed
 Wend ' Do it forever

See also: Seed.

Proton Amicus18 Compiler

 260
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

RC5in

Syntax
Variable = RC5in

Overview
Receive Philips RC5 infrared data from a predetermined pin. The pin is automatically made an input.

Operator

 Variable can be a bit, byte, word, dword, or float variable, that will be loaded by RC5in. The
return data from the RC5in command consists of two bytes, the System byte containing the
type of remote used. i.e. TV, Video etc, and the Command byte containing the actual button
value. The order of the bytes is Command (low byte) then System (high byte). If a byte variable
is used to receive data from the infrared sensor then only the Command byte will be received.

Example
' Receive Philips RC5 data from an infrared sensor attached to PortC.0
 RC5in_Pin = RC0 ' Choose the port and pin for the infrared sensor
 Dim RC5_Word as Word ' Create a Word variable to receive the data
' Alias the Command byte to RC5_Word low byte
 Dim RC5_Command as RC5_Word.Lowbyte
' Alias the Command byte to RC5_Word high byte
 Dim RC5_System as RC5_Word.Highbyte
 While 1 = 1 ' Create an infinite loop
 Repeat
 RC5_Word = RC5In ' Receive a signal from the infrared sensor
 Until RC5_Command <> 255 ' Keep looking until a valid header found

Hrsout "System ", Dec RC5_System,13 ' Display the System value
Hrsout "Command ", Dec RC5_Command,13 ' Display the Command value

Wend

There is a single Declare for use with RC5in:

Declare RC5in_Pin Port . Pin
Assigns the Port and Pin that will be used to input infrared data by the RC5in command. This may be
any valid port on the microcontroller.

If the Declare is not used in the program, then the default Port and Pin is PortB.0.

Notes
The RC5in command will return with both Command and System bytes containing 255 if a valid header
was not received. The CARRY (STATUS.0) flag will also be set if an invalid header was received. This is
an ideal method of determining if the signal received is of the correct type.

Proton Amicus18 Compiler

 261
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

RCin

Syntax
Variable = RCin Pin, State

Overview
Count time while pin remains in state, usually used to measure the charge/ discharge time of resis-
tor/capacitor (RC) circuit.

Operators

 Pin is a Port.Pin constant that specifies the I/O pin to use. This pin will be placed into input
mode and left in that state when the instruction finishes.

 State is a variable or constant (1 or 0) that will end the Rcin period. Text, High or Low may also
be used instead of 1 or 0.

 Variable is a variable in which the time measurement will be stored.

Example
 Dim Result as Word ' Word variable to hold result.
 High PortB.0 ' Discharge the capacitor
 DelayMs 1 ' Wait for 1 ms.
 Result = RCin PortB.0, High ' Measure RC charge time.
 Hrsout Dec Result, 13 ' Display the value on the serial terminal.

Notes
The resolution of RCin is dependent upon the oscillator frequency. If a 4MHz oscillator is used, the time
in state is returned in 10us increments. If a 20MHz, or greater, oscillator is used, the time in state will
have a 2us resolution. Declaring an Xtal value has no effect on RCin. The resolution always changes
with the actual oscillator speed. If the pin never changes state 0 is returned.

When RCin executes, it starts a counter. The counter stops as soon as the specified pin is no longer in
State (0 or 1). If pin is not in State when the instruction executes, RCin will return 1 in Variable, since
the instruction requires one timing cycle to discover this fact. If pin remains in State longer than 65535
timing cycles RCin returns 0.

 Figure A Figure B

The diagrams above show two suitable RC circuits for use with RCin. The circuit in figure B is preferred,
because the microcontroller’s logic threshold is approximately 1.5 volts. This means that the voltage
seen by the pin will start at 5V then fall to 1.5V (a span of 3.5V) before RCin stops. With the circuit in
figure A, the voltage will start at 0V and rise to 1.5V (spanning only 1.5V) before RCin stops.

To
I/O Pin

R

C 220Ω

+5 Volts

To
I/O PinR

C 220Ω

+5 Volts

Proton Amicus18 Compiler

 262
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

For the same combination of R and C, the circuit shown in figure A will produce a higher result, and
therefore more resolution than figure B.

Before RCin executes, the capacitor must be put into the state specified in the RCin command. For ex-
ample, with figure B, the capacitor must be discharged until both plates (sides of the capacitor) are at
5V. It may seem strange that discharging the capacitor makes the input high, but you must remember
that a capacitor is charged when there is a voltage difference between its plates. When both sides are at
+5 Volts, the capacitor is considered discharged. Below is a typical sequence of instructions for the cir-
cuit in figure A.

Dim Result as Word ' Word variable to hold result.
High PortB.0 ' Discharge the capacitor
DelayMs 1 ' Wait for 1 ms.
Result = RCin PortB.0, High ' Measure RC charge time.
Hrsout Dec Result, 13 ' Display the value on the serial terminal.

Using RCin is very straightforward, except for one detail: For a given R and C, what value will RCin re-
turn? It’s actually rather easy to calculate, based on a value called the RC time constant, or tau (τ) for
short. Tau represents the time required for a given RC combination to charge or discharge by 63 per-
cent of the total change in voltage that they will undergo. More importantly, the value τ is used in the
generalized RC timing calculation. Tau’s formula is just R multiplied by C:

τ = R x C

The general RC timing formula uses τ to tell us the time required for an RC circuit to change from one
voltage to another:

time = -τ * (ln (Vfinal / Vinitial))

In this formula ln is the natural logarithm. Assume we’re interested in a 10kΩ resistor and 0.1µF cap.
Calculate τ:

τ = (10 x 103) x (0.1 x 10-6) = 1 x 10-3

The RC time constant is 1 x 10-3 or 1 millisecond. Now calculate the time required for this RC circuit to
go from 5V to 1.5V (as in figure B):

Time = -1 x 10-3* (ln(5.0v / 1.5v)) = 1.204 x 10-3

Using a 20MHz crystal, the unit of time is 2µs, that time (1.204 x 10-3) works out to 602 units. With a
10kΩ resistor and 0.1µF capacitor, RCin would return a value of approximately 600. Since Vinitial and
Vfinal don't change, we can use a simplified rule of thumb to estimate RCin results for circuits similar to
figure A:

RCin units = 600 x R (in kΩ) x C (in µF)

Another useful rule of thumb can help calculate how long to charge/discharge the capacitor before
RCin. In the example shown, that’s the purpose of the High and DelayMs commands. A given RC
charges or discharges 98 percent of the way in 4 time constants (4 x R x C).

In both circuits, the charge/discharge current passes through a 220Ω series resistor and the capacitor.
So if the capacitor were 0.1µF, the minimum charge/discharge time should be:

Charge time = 4 x 220 x (0.1 x 10-6) = 88 x 10-6

Proton Amicus18 Compiler

 263
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

So it takes only 88µs for the cap to charge/discharge, which means that the 1ms charge/discharge time
of the example is more than adequate.

You may be wondering why the 220Ω resistor is necessary at all. Consider what would happen if resistor
R in figure A were a pot, and was adjusted to 0Ω. When the I/O pin went high to discharge the cap, it
would see a short direct to ground. The 220Ω series resistor would limit the short circuit current to
5V/220Ω = 23mA and protect the microcontroller from any possible damage.

See also : Adin, Counter, Pot, PulsIn.

Proton Amicus18 Compiler

 264
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Repeat...Until

Syntax
Repeat Condition
Instructions
Instructions
Until Condition

or

Repeat { Instructions : } Until Condition

Overview
Execute a block of instructions until a condition is true.

Example
 Var1 = 1
 Repeat
 Hrsout Dec Var1, 13
 DelayMs 200
 Inc Var1
 Until Var1 > 10

or

 Repeat High LED : Until PortB.0 = 1 ' Wait for a Port change

Notes
The Repeat-Until loop differs from the While-Wend type in that, the Repeat loop will carry out the
instructions within the loop at least once, then continuously until the condition is true, but the While
loop only carries out the instructions if the condition is true.

The Repeat-Until loop is an ideal replacement to a For-Next loop, and actually takes less code space,
thus performing the loop faster.

Two commands have been added especially for a Repeat loop, these are Inc and Dec.

 Inc. Increment a variable i.e. Var1 = Var1 + 1

 Dec. Decrement a variable i.e. Var1 = Var1 - 1

The above example shows the equivalent to the For-Next loop:

 For Var1 = 1 to 10 : Next

See also : While...Wend, For...Next...Step.

Proton Amicus18 Compiler

 265
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Return

Syntax
Return

or

Return Variable

Overview
Return from a subroutine.

Operator

 Variable is an optional user defined variable of type Bit, Byte, Byte Array, Word, Word Array,
Dword, Float, or String, or Constant value, that will be pushed onto the stack before the subrou-
tine is exited.

Example
' Call a subroutine with parameters
 Declare Stack_Size = 20 ' Create a small stack capable of holding 20 bytes

 Dim WordVar1 as Word ' Create a Word variable
 Dim WordVar2 as Word ' Create another Word variable
 Dim Receipt as Word ' Create a variable to hold result

 WordVar1 = 1234 ' Load the Word variable with a value
 WordVar2 = 567 ' Load the other Word variable with a value
' Call the subroutine and return a value
 GoSub AddThem[WordVar1, WordVar2], Receipt
 Print Dec Receipt ' Display the result as decimal
 Stop

' Subroutine starts here. Add two parameters passed and return the result
AddThem:
 Dim AddWordVar1 as Word ' Create two uniquely named variables
 Dim AddWordVar2 as Word

 Pop AddWordVar2 ' Pop the last variable pushed
 Pop AddWordVar1 ' Pop the first variable pushed
 AddWordVar1 = AddWordVar1 + AddWordVar2 ' Add the values together
 Return AddWordVar1 ' Return the result of the addition

Proton Amicus18 Compiler

 266
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

In reality, what's happening with the Return in the above program is simple, if we break it into its con-
stituent events:

 Push AddWordVar1
 Return

Notes
The same rules apply for the variable returned as they do for Pop, which is after all, what is happening
when a variable is returned.

Return resumes execution at the statement following the GoSub which called the subroutine.

See also : Call, GoSub, Push, Pop .

Proton Amicus18 Compiler

 267
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Right$

Syntax
Destination String = Right$ (Source String, Amount of characters)

Overview
Extract n amount of characters from the right of a source string and copy them into a destination string.

Operators

 Destination String can only be a String variable, and should be large enough to hold the cor-
rect amount of characters extracted from the Source String.

 Source String can be a String variable, or a Quoted String of Characters. See below for more
variable types that can be used for Source String.

 Amount of characters can be any valid variable type, expression or constant value, that signi-
fies the amount of characters to extract from the right of the Source String. Values start at 1 for
the rightmost part of the string and should not exceed 255 which is the maximum allowable
length of a String variable.

Example 1
' Copy 5 characters from the right of SourceString into DestString

 Dim SourceString as String * 20 ' Create a String of 20 characters
 Dim DestString as String * 20 ' Create another String

 SourceString = "HELLO WORLD" ' Load the source string with characters
' Copy 5 characters from the source string into the destination string
 DestString = Right$ (SourceString, 5)
 Hrsout DestString,13 ' Display the result, which will be "WORLD"
 Stop

Example 2
' Copy 5 characters from right of a Quoted Character String to DestString
 Dim DestString as String * 20 ' Create a String of 20 characters

' Copy 5 characters from the quoted string into the destination string
 DestString = Right$ ("HELLO WORLD", 5)
 Hrsout DestString, 13 ' Display the result, which will be "WORLD"
 Stop

The Source String can also be a Byte, Word, Byte Array, Word Array or Float variable, in which case the
value contained within the variable is used as a pointer to the start of the Source String's address in
RAM.

Proton Amicus18 Compiler

 268
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Example 3
' Copy 5 characters from the right of SourceString into DestString using a
' pointer to SourceString

 Dim SourceString as String * 20 ' Create a String of 20 characters
 Dim DestString as String * 20 ' Create another String
' Create a Word variable to hold the address of SourceString
 Dim StringAddr as Word

 SourceString = "HELLO WORLD" ' Load the source string with characters
' Locate the start address of SourceString in RAM
 StringAddr = VarPtr (SourceString)
' Copy 5 characters from the source string into the destination string
 DestString = Right$ (StringAddr, 5)
 Hrsout DestString, 13 ' Display the result, which will be "WORLD"
 Stop

A third possibility for Source String is a Label name, in which case a null terminated Quoted String of
Characters is read from a Cdata table.

Example 4
' Copy 5 characters from the right of a Cdata table into DestString

 Dim DestString as String * 20 ' Create a String of 20 characters

' Copy 5 characters from label Source into the destination string
 DestString = Right$ (Source, 5)
 Hrsout DestString, 13 ' Display the result, which will be "WORLD"
 Stop

' Create a null terminated string of characters in code memory
Source:
 Cdata "HELLO WORLD", 0

See also : Creating and using Strings, Creating and using Virtual Strings with Cdata, Cdata,
 Len, Left$, Mid$, Str$, ToLower, ToUpper, VarPtr.

Proton Amicus18 Compiler

 269
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Rsin

Syntax
Variable = Rsin, { Timeout Label }

 or

Rsin { Timeout Label }, Modifier..Variable {, Modifier.. Variable...}

Overview
Receive one or more bytes from a predetermined pin at a predetermined baud rate in standard asyn-
chronous format using 8 data bits, no parity and 1 stop bit (8N1). The pin is automatically made an in-
put.

Operators

 Modifiers may be one of the serial data modifiers explained below.
 Variable can be any user defined variable.
 An optional Timeout Label may be included to allow the program to continue if a character is

not received within a certain amount of time. Timeout is specified in units of 1 millisecond and is
specified by using a Declare directive.

Example
 Declare Rsin_Timeout = 2000 ' Timeout after 2 seconds
 Dim Var1 as Byte
 Dim WordVar as Word
 Var1 = Rsin, { TimeoutLabel } ' Receive with a timeout
 Rsin Var1, WordVar
 Rsin { Label }, Var1, WordVar

TimeoutLabel:

{ do something when timed out }

Declares
There are four Declares for use with Rsin. These are :

Declare Rsin_Pin Port . Pin
Assigns the Port and Pin that will be used to input serial data by the Rsin command. This may be any
valid port on the microcontroller.

If the Declare is not used in the program, then the default Port and Pin is PortB.1.

Declare Rsin_Mode Inverted, True or 1, 0
Sets the serial mode for the data received by Rsin. This may be inverted or true. Alternatively, a value
of 1 may be substituted to represent inverted, and 0 for true.

If the Declare is not used in the program, then the default mode is Inverted.

Declare Serial_Baud 0 to 65535 bps (baud)
Informs the Rsin and Rsout routines as to what baud rate to receive and transmit data.

Virtually any baud rate may be transmitted and received, but there are standard bauds:

 300, 600, 1200, 2400, 4800, 9600, and 19200.

Proton Amicus18 Compiler

 270
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

When using a 4MHz crystal, the highest baud rate that is reliably achievable is 9600. However, an in-
crease in the oscillator speed allows higher baud rates to be achieved, including 38400 baud.

If the Declare is not used in the program, then the default baud is 9600.

Declare Rsin_Timeout 0 to 65535 milliseconds (ms)
Sets the time, in milliseconds, that Rsin will wait for a start bit to occur.

Rsin waits in a tight loop for the presence of a start bit. If no timeout value is used, then it will wait
forever. The Rsin command has the option of jumping out of the loop if no start bit is detected within
the time allocated by timeout.

If the Declare is not used in the program, then the default timeout value is 10000ms or 10 seconds.

Rsin Modifiers.
As we already know, Rsin will wait for and receive a single byte of data, and store it in a variable . If
the microcontroller were connected to a PC running a terminal program and the user pressed the "A"
key on the keyboard, after the Rsin command executed, the variable would contain 65, which is the
ASCII code for the letter "A"

What would happen if the user pressed the "1" key? The result would be that the variable would contain
the value 49 (the ASCII code for the character "1"). This is an important point to remember: every time
you press a character on the keyboard, the computer receives the ASCII value of that character. It is up
to the receiving side to interpret the values as necessary. In this case, perhaps we actually wanted the
variable to end up with the value 1, rather than the ASCII code 49.

The Rsin command provides a modifier, called the decimal modifier, which will interpret this for us.
Look at the following code:

 Dim SerData as Byte
 Rsin Dec SerData

Notice the decimal modifier in the Rsin command that appears just to the left of the SerData variable.
This tells Rsin to convert incoming text representing decimal numbers into true decimal form and store
the result in SerData. If the user running the terminal software pressed the "1", "2" and then "3" keys
followed by a space or other non-numeric text, the value 123 will be stored in the variable SerData, al-
lowing the rest of the program to perform any numeric operation on the variable.

Without the decimal modifier, however, you would have been forced to receive each character ("1", "2"
and "3") separately, and then would still have to do some manual conversion to arrive at the number
123 (one hundred twenty three) before you can do the desired calculations on it.

The decimal modifier is designed to seek out text that represents decimal numbers. The characters that
represent decimal numbers are the characters "0" through "9". Once the Rsin command is asked to use
the decimal modifier for a particular variable, it monitors the incoming serial data, looking for the first
decimal character. Once it finds the first decimal character, it will continue looking for more (accumulat-
ing the entire multi-digit number) until is finds a non-decimal numeric character. Remember that it will
not finish until it finds at least one decimal character followed by at least one non-decimal character.

Proton Amicus18 Compiler

 271
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

To illustrate this further, examine the following examples (assuming we're using the same code example
as above):

Serial input: "ABC"
Result: The program halts at the Rsin command, continuously waiting for decimal text.

Serial input: "123" (with no characters following it)
Result: The program halts at the Rsin command. It recognises the characters "1", "2" and "3" as the
number one hundred twenty three, but since no characters follow the "3", it waits continuously, since
there's no way to tell whether 123 is the entire number or not.

Serial input: "123" (followed by a space character)
Result: Similar to the above example, except once the space character is received, the program knows
the entire number is 123, and stores this value in SerData. The Rsin command then ends, allowing the
next line of code to run.

Serial input: "123A"
Result: Same as the example above. The "A" character, just like the space character, is the first non-
decimal text after the number 123, indicating to the program that it has received the entire number.

Serial input: "ABCD123EFGH"
Result: Similar to examples 3 and 4 above. The characters "ABCD" are ignored (since they're not deci-
mal text), the characters "123" are evaluated to be the number 123 and the following character, "E",
indicates to the program that it has received the entire number.

The final result of the Dec modifier is limited to 16 bits (up to the value 65535). If a value larger than
this is received by the decimal modifier, the end result will be incorrect because the result rolled-over
the maximum 16-bit value. Therefore, Rsin modifiers may not (at this time) be used to load Dword (32-
bit) variables.

The decimal modifier is only one of a family of conversion modifiers available with Rsin See below for a
list of available conversion modifiers. All of the conversion modifiers work similar to the decimal modifier
(as described above). The modifiers receive bytes of data, waiting for the first byte that falls within the
range of characters they accept (e.g., "0" or "1" for binary, "0" to "9" for decimal, "0" to "9" and "A" to
"F" for hex. Once they receive a numeric character, they keep accepting input until a non-numeric char-
acter arrives, or in the case of the fixed length modifiers, the maximum specified number of digits ar-
rives.

While very effective at filtering and converting input text, the modifiers aren't completely foolproof. As
mentioned before, many conversion modifiers will keep accepting text until the first non-numeric text
arrives, even if the resulting value exceeds the size of the variable. After Rsin, a Byte variable will con-
tain the lowest 8 bits of the value entered and a Word (16-bits) would contain the lowest 16 bits. You
can control this to some degree by using a modifier that specifies the number of digits, such as Dec2,
which would accept values only in the range of 0 to 99.

 Conversion Modifier Type of Number Numeric Characters Accepted
 Dec{1..10} Decimal, optionally limited 0 through 9
 to 1 - 10 digits
 Hex{1..8} Hexadecimal, optionally limited 0 through 9,
 to 1 - 8 digits A through F
 Bin{1..32} Binary, optionally limited 0, 1
 to 1 - 32 digits

Proton Amicus18 Compiler

 272
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

A variable preceded by Bin will receive the ASCII representation of its binary value.
For example, if Bin Var1 is specified and "1000" is received, Var1 will be set to 8.

A variable preceded by Dec will receive the ASCII representation of its decimal value.
For example, if Dec Var1 is specified and "123" is received, Var1 will be set to 123.

A variable preceded by Hex will receive the ASCII representation of its hexadecimal value.
For example, if Hex Var1 is specified and "FE" is received, Var1 will be set to 254.

SKIP followed by a count will skip that many characters in the input stream.
For example, SKIP 4 will skip 4 characters.

The Rsin command can be configured to wait for a specified sequence of characters before it retrieves
any additional input. For example, suppose a device attached to the microcontroller is known to send
many different sequences of data, but the only data you wish to observe happens to appear right after
the unique characters, "XYZ". A modifier named Wait can be used for this purpose:

 Rsin Wait("XYZ"), SerData

The above code waits for the characters "X", "Y" and "Z" to be received, in that order, then it receives
the next data byte and places it into variable SerData.

Str modifier.
The Rsin command also has a modifier for handling a string of characters, named Str.

The Str modifier is used for receiving a string of characters into a byte array variable.

A string is a set of characters that are arranged or accessed in a certain order. The characters "ABC"
would be stored in a string with the "A" first, followed by the "B" then followed by the "C". A byte array
is a similar concept to a string; it contains data that is arranged in a certain order. Each of the elements
in an array is the same size. The string "ABC" would be stored in a byte array containing three bytes
(elements).

Below is an example that receives ten bytes and stores them in the 10-byte array, SerString:

 Dim SerString[10] as Byte ' Create a 10-byte array.
 Rsin Str SerString ' Fill the array with received data.
 Print Str SerString ' Display the string.

If the amount of received characters is not enough to fill the entire array, then a formatter may be
placed after the array's name, which will only receive characters until the specified length is reached.
For example:

 Dim SerString[10] as Byte ' Create a 10-byte array.
 Rsin Str SerString\5 ' Fill the first 5-bytes of the array
 Print Str SerString\5 ' Display the 5-character string.

The example above illustrates how to fill only the first n bytes of an array, and then how to display only
the first n bytes of the array. n refers to the value placed after the backslash.

Proton Amicus18 Compiler

 273
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Because of its complexity, serial communication can be rather difficult to work with at times. Using the
guidelines below when developing a project using the Rsin and Rsout commands may help to eliminate
some obvious errors:

Always build your project in steps.
Start with small, manageable pieces of code, (that deal with serial communication) and test them, one
individually.
Add more and more small pieces, testing them each time, as you go.
Never write a large portion of code that works with serial communication without testing its smallest
workable pieces first.

Pay attention to timing.
Be careful to calculate and overestimate the amount of time, operations should take within the micro-
controller for a given oscillator frequency. Misunderstanding the timing constraints is the source of most
problems with code that communicate serially. If the serial communication in your project is bi-
directional, the above statement is even more critical.

Pay attention to wiring.
Take extra time to study and verify serial communication wiring diagrams. A mistake in wiring can cause
strange problems in communication, or no communication at all. Make sure to connect the ground pins
(Vss) between the devices that are communicating serially.

Verify port setting on the PC and in the Rsin / Rsout commands.
Unmatched settings on the sender and receiver side will cause garbled data transfers or no data trans-
fers. This is never more critical than when a line transceiver is used(i.e. MAX232). Always remember
that a line transceiver inverts the serial polarity.
If the serial data received is unreadable, it is most likely caused by a baud rate setting error, or a polar-
ity error.

If receiving data from another device that is not a microcontroller, try to use baud rates of 9600 and
below.

Because of additional overheads in the microcontroller, and the fact that the Rsin command offers no
hardware receive buffer for serial communication, received data may sometimes be missed or garbled.
If this occurs, try lowering the baud rate, or increasing the crystal frequency. Using simple variables (not
arrays) will also increase the chance that the microcontroller will receive the data properly.

See also : Declare, Rsout, Serin, Serout, HRsin, HRsout, Hserin, Hserout.

Proton Amicus18 Compiler

 274
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Rsout

Syntax
Rsout Item {, Item... }

Overview
Send one or more Items to a predetermined pin at a predetermined baud rate in standard asynchronous
format using 8 data bits, no parity and 1 stop bit (8N1). The pin is automatically made an output.

Operators

 Item may be a constant, variable, expression, or string.

There are no operators as such, instead there are modifiers. For example, if the text Dec precedes an
item, the ASCII representation for each digit is transmitted.

The modifiers are listed below:

Modifier Operation
At ypos,xpos Position the cursor on a suitable serial LCD
Cls Clear a suitable serial LCD (also creates a 30ms delay)

Bin{1..32} Send binary digits
Dec{1..10} Send decimal digits
Hex{1..8} Send hexadecimal digits
Sbin{1..32} Send signed binary digits
Sdec{1..10} Send signed decimal digits
Shex{1..8} Send signed hexadecimal digits
Ibin{1..32} Send binary digits with a preceding '%' identifier
Idec{1..10} Send decimal digits with a preceding '#' identifier
Ihex{1..8} Send hexadecimal digits with a preceding '$' identifier
ISbin{1..32} Send signed binary digits with a preceding '%' identifier
ISdec{1..10} Send signed decimal digits with a preceding '#' identifier
IShex{1..8} Send signed hexadecimal digits with a preceding '$' identifier

Rep c\n Send character c repeated n times
Str array\n Send all or part of an array
Cstr cdata Send string data defined in a Cdata statement.

The numbers after the Bin, Dec, and Hex modifiers are optional. If they are omitted, then the default
is all the digits that make up the value will be displayed.

If a floating point variable is to be displayed, then the digits after the Dec modifier determine how many
remainder digits are send. i.e. numbers after the decimal point.

 Dim FloatVar as Float
 FloatVar = 3.145
 Rsout Dec2 FloatVar,13 ' Send 2 values after the decimal point

The above program will transmit 3.14

If the digit after the Dec modifier is omitted, then 3 values will be displayed after the decimal point.

Proton Amicus18 Compiler

 275
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

 Dim FloatVar as Float
 FloatVar = 3.1456
 Rsout Dec FloatVar,13 ' Send 3 values after the decimal point

The above program will send 3.145

There is no need to use the Sdec modifier for signed floating point values, as the compiler's Dec modi-
fier will automatically display a minus result:

 Dim FloatVar as Float
 FloatVar = -3.1456
 Rsout Dec FloatVar,13 ' Send 3 values after the decimal point

The above program will send -3.145

Hex or Bin modifiers cannot be used with floating point values or variables.

The Xpos and Ypos values in the At modifier both start at 1. For example, to place the text "HELLO
WORLD" on line 1, position 1, the code would be:

 Rsout At 1, 1, "Hello World\r"

Example 1
 Dim Var1 as Byte
 Dim WordVar as Word
 Dim DwordVar as Dword

 Rsout "Hello World", 13 ' Display the text "Hello World"
 Rsout "Var1= ", Dec Var1, 13 ' Display the decimal value of Var1
 Rsout "Var1= ", Hex Var1, 13 ' Display the hexadecimal value of Var1
 Rsout "Var1= ", Bin Var1, 13 ' Display the binary value of Var1
 Rsout "DwordVar= ", Hex6 DwordVar, 13 ' Display 6 hex chars of DwordVar

Example 2
' Display a negative value on a serial terminal.
 Symbol Negative = -200
 Rsout At 1,1, Sdec Negative

Example 3
' Display a negative value on a serial terminal with a preceding identifier.
 Rsout At 1,1, IShex -$1234

Example 3 will produce the text "$-1234" on the serial terminal.

Combining the unique features of the self modifying microcontroller’s with a string format, the compiler
is capable of reducing the overhead of printing, or transmitting large amounts of text data.

Proton Amicus18 Compiler

 276
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The Cstr modifier may be used in commands that deal with text processing i.e. Serout, HRsout, and
Print etc.

The Cstr modifier is used in conjunction with the Cdata command. The Cdata command is used for
initially creating the string of characters:

String1: Cdata "Hello World", 0

The above line of case will create, in flash memory, the values that make up the ASCII text "HELLO
WORLD", at address String1. Note the null terminator after the ASCII text.

null terminated means that a zero (null) is placed at the end of the string of ASCII characters to signal
that the string has finished.

To display, or transmit this string of characters, the following command structure could be used:

 Rsout Cstr String1

The label that declared the address where the list of Cdata values resided, now becomes the string's
name. In a large program with lots of text formatting, this type of structure can save quite literally hun-
dreds of bytes of valuable code space.

Try both these small programs, and you'll see that using Cstr saves a few bytes of code:

First the standard way of displaying text:

 Rsout "Hello World\r"
 Rsout "How are you?\r"
 Rsout "I am fine!\r"
 Stop

Now using the Cstr modifier:

 Rsout Cstr Text1
 Rsout Cstr Text2
 Rsout Cstr Text3
 Stop

Text1: Cdata "Hello World", 13, 0
Text2: Cdata "How are you?", 13, 0
Text3: Cdata "I am fine!", 13, 0

Again, note the null terminators after the ASCII text in the Cdata commands. Without these, the micro-
controller will continue to transmit data in an endless loop.

The term 'virtual string' relates to the fact that a string formed from the Cdata command cannot be
written too, but only read from.

The Str modifier is used for sending a string of bytes from a byte array variable. A string is a set of
bytes sized values that are arranged or accessed in a certain order.

Proton Amicus18 Compiler

 277
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The values 1, 2, 3 would be stored in a string with the value 1 first, followed by 2 then followed by the
value 3. A byte array is a similar concept to a string; it contains data that is arranged in a certain order.
Each of the elements in an array is the same size. The string 1,2,3 would be stored in a byte array con-
taining three bytes (elements).

Below is an example that displays four bytes (from a byte array):

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 MyArray[0] = "H" ' Load the first 5 bytes of the array
 MyArray[1] = "E" ' With the data to send
 MyArray[2] = "L"
 MyArray[3] = "L"
 MyArray[4] = "O"
 Rsout Str MyArray\5 ' Display a 5-byte string.

Note that we use the optional \n argument of Str. If we didn't specify this, the microcontroller would try
to keep sending characters until all 10 bytes of the array were transmitted. Since we do not wish all 10
bytes to be transmitted, we chose to tell it explicitly to only send the first 5 bytes.

The above example may also be written as:

 Dim MyArray[10] as Byte ' Create a 10-byte array.
 Str MyArray = "HELLO" ' Load the first 5 bytes of the array
 Rsout Str MyArray\5 ' Send 5-byte string.

The above example, has exactly the same function as the previous one. The only difference is that the
string is now constructed using Str as a command instead of a modifier.

Declares
There are four Declares for use with Rsout. These are :

Declare Rsout_Pin Port . Pin
Assigns the Port and Pin that will be used to output serial data from the Rsout command. This may be
any valid port on the microcontroller.

If the Declare is not used in the program, then the default Port and Pin is PortB.0.

Declare Rsout_Mode Inverted, True or 1, 0
Sets the serial mode for the data transmitted by Rsout. This may be inverted or true. Alternatively, a
value of 1 may be substituted to represent inverted, and 0 for true.

If the Declare is not used in the program, then the default mode is INVERTED.

Declare Serial_Baud 0 to 65535 bps (baud)
Informs the Rsin and Rsout routines as to what baud rate to receive and transmit data.

Virtually any baud rate may be transmitted and received, but there are standard bauds:

300, 600, 1200, 2400, 4800, 9600, and 19200.

Proton Amicus18 Compiler

 278
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

When using a 4MHz crystal, the highest baud rate that is reliably achievable is 9600. However, an in-
crease in the oscillator speed allows higher baud rates to be achieved, including 38400 baud.

If the Declare is not used in the program, then the default baud is 9600.

Declare Rsout_Pace 0 to 65535 microseconds (us)
Implements a delay between characters transmitted by the Rsout command.

On occasion, the characters transmitted serially are in a stream that is too fast for the receiver to catch,
this results in missed characters. To alleviate this, a delay may be implemented between each individual
character transmitted by Rsout.

If the Declare is not used in the program, then the default is no delay between characters.

Notes
Rsout is oscillator independent as long as the crystal frequency is declared at the top of the program. If
no declare is used, then Rsout defaults to a 64MHz crystal frequency for its bit timing.

The At and Cls modifiers are primarily intended for use with suitable serial LCD modules. Using the fol-
lowing command sequence will first clear the LCD, then display text at position 5 of line 2:

 Rsout Cls, At 2, 5, "Hello World"

The values after the At modifier may also be variables.

See also : Declare, Rsin , Serin, Serout, HRsin, HRsout, Hserin, Hserout.

Proton Amicus18 Compiler

 279
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Seed

Syntax
Seed Value

Overview
Seed the random number generator, in order to obtain a more random result.

Operator

 Value can be a variable, constant or expression, with a value from 1 to 65535. A value of $0345
is a good starting point.

Example
' Create and display a Random number

 Dim Rnd as Word

 Seed $0345 ' Create a starting point for the random number generator
 While 1 = 1 ' Create an infinite loop
 Rnd = Random ' Get a pseudo random value
 Hrsout Dec Rnd, 13 ' Display the result on the serial terminal
 DelayMs 500 ' Delay to the results can be viewed
 Wend ' Do it forever

See also: Random.

Proton Amicus18 Compiler

 280
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Select..Case..EndSelect

Syntax
Select Expression
 Case Condition(s)
 Instructions
 {
 Case Condition(s)
 Instructions

 Case Else
 Statement(s)
 }
EndSelect

The curly braces signify optional conditions.

Overview
Evaluate an Expression then continually execute a block of BASIC code based upon comparisons to
Condition(s). After executing a block of code, the program continues at the line following the EndSe-
lect. If no conditions are found to be True and a Case Else block is included, the code after the Case
Else leading to the EndSelect will be executed.

Operators

 Expression can be any valid variable, constant, expression or inline command that will be com-
pared to the Conditions.

 Condition(s) is a statement that can evaluate as True or False. The Condition can be a simple
or complex relationship, as described below. Multiple conditions within the same Case can be
separated by commas.

 Instructions can be any valid BASIC command that will be operated on if the Case condition
produces a True result.

Example
' Load variable Result according to the contents of variable Var1
' Result will return a value of 255 if no valid condition was met

 Dim Var1 as Byte
 Dim Result as Byte
 Result = 0 ' Clear the result variable before we start
 Var1 = 1 ' Variable to base the conditions upon
 Select Var1
 Case 1 ' Is Var1 equal to 1 ?

Result = 1 ' Load Result with 1 if yes
Case 2 ' Is Var1 equal to 2 ?

 Result = 2 ' Load Result with 2 if yes
 Case 3 ' Is Var1 equal to 3 ?
 Result = 3 ' Load Result with 3 if yes
 Case Else ' Otherwise...
 Result = 255 ' Load Result with 255
 EndSelect
 Hrsout Dec Result, 13 ' Display the result on the serial terminal

Proton Amicus18 Compiler

 281
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Notes
Select..Case is simply an advanced form of the If..Then..ElseIf..Else construct, in which multiple El-
seIf statements are executed by the use of the Case command.

Taking a closer look at the Case command:

 Case Conditional_Op Expression

Where Conditional_Op can be an = operator (which is implied if absent), or one of the standard com-
parison operators <>, <, >, >= or <=. Multiple conditions within the same Case can be separated by
commas. If, for example, you wanted to run a Case block based on a value being less than one or
greater than nine, the syntax would look like:

 Case <1, >9

Another way to implement Case is:

 Case value1 to value2

In this form, the valid range is from Value1 to Value2, inclusive. So if you wished to run a Case block on
a value being between the values 1 and 9 inclusive, the syntax would look like:

 Case 1 to 9

For those of you that are familiar with C or Java, you will know that in those languages the statements
in a Case block fall through to the next Case block unless the keyword break is encountered. In BASIC
however, the code under an executed Case block jumps to the code immediately after EndSelect.

Shown below is a typical Select Case structure with its corresponding If..Then equivalent code along-
side.

 Select Var1
 Case 6, 9, 99, 66
 ' If Var1 = 6 or Var1 = 9 or Var1 = 99 or Var1 = 66 Then
 Hrsout "OR Values\r"
 Case 110 to 200
 ' ElseIf Var1 >= 110 and Var1 <= 200 Then
 Hrsout "AND Values\r"
 Case 100
 ' ElseIf Var1 = 100 Then
 Print "Equal Value\r"
 Case >300
 ' ElseIf Var1 > 300 Then
 Hrsout "Greater Value\r"
 Case Else
 ' Else
 Hrsout "Default Value\r"
 EndSelect
 ' EndIf

See also : If..Then..ElseIf..Else..EndIf.

Proton Amicus18 Compiler

 282
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Serin

Syntax
Serin Rpin { \ Fpin }, Baudmode, { Plabel, } { Timeout, Tlabel, } [InputData]

Overview
Receive asynchronous serial data (i.e. RS232 data).

Operators

 Rpin is a Port.Bit constant that specifies the I/O pin through which the serial data will be re-
ceived. This pin will be set to input mode.

 Fpin is an optional Port.Bit constant that specifies the I/O pin to indicate flow control status on.
This pin will be set to output mode.

 Baudmode may be a variable, constant, or expression (0 - 65535) that specifies serial timing
and configuration.

 Plabel is an optional label indicating where the program should jump to in the event of a parity
error. This argument should only be provided if Baudmode indicates that parity is required.

 Timeout is an optional constant (0 - 65535) that informs Serin how long to wait for incoming
data. If data does not arrive in time, the program will jump to the address specified by Tlable.

 Tlabel is an optional label that must be provided along with Timeout, indicating where the pro-
gram should go in the event that data does not arrive within the period specified by Timeout.

 InputData is list of variables and modifiers that informs Serin what to do with incoming data.
Serin may store data in a variable, array, or an array string using the Str modifier.

Notes
One of the most popular forms of communication between electronic devices is serial communication.
There are two major types of serial communication; asynchronous and synchronous. The Rsin, Rsout,
Serin and Serout commands are all used to send and receive asynchronous serial data. While the Shin
and Shout commands are for use with synchronous communications.

The term asynchronous means ‘no clock.’ More specifically, ‘asynchronous serial communication’ means
data is transmitted and received without the use of a separate ‘clock’ line. Data can be sent using as few
as two wires; one for data and one for ground. The PC's serial ports (also called COM ports or RS232
ports) use asynchronous serial communication. Note: the other kind of serial communication, synchro-
nous, uses at least three wires; one for clock, one for data and one for ground.

RS232 is the electrical specification for the signals that PC serial ports use. Unlike standard TTL logic,
where 5 volts is a logic 1 and 0 volts is logic 0, RS232 uses -12 volts for logic 1 and +12 volts for logic
0. This specification allows communication over longer wire lengths without amplification.

Most circuits that work with RS232 use a line driver / receiver (transceiver). This component does two
things:

 Convert the ±12 volts of RS-232 to TTL compatible 0 to 5 volt levels.
 Invert the voltage levels, so that 5 volts = logic 1 and 0 volts = logic 0.

By far, the most common line driver device is the MAX232 from Maxim semiconductor. With the addition
of a few capacitors, a complete 2-way level converter is realised. Figure 1 shows a typical circuit for one
of these devices. The MAX232 is not the only device available, there are

Proton Amicus18 Compiler

 283
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

other types that do not require any external capacitors at all. Visit Maxim’s excellent web site at
www.maxim.com, and download one of their many detailed datasheets.

Typical MAX232 RS232 line-transceiver circuit.

Because of the excellent IO capabilities of the microcontroller, and the adoption of TTL levels on most
modern PC serial ports, a line driver is often unnecessary unless long distances are involved between
the transmitter and the receiver. Instead a simple current limiting resistor is all that’s required. As
shown below:

Directly connected RS232 circuit.

You should remember that when using a line transceiver such as the MAX232, the serial mode (polarity)
is inverted in the process of converting the signal levels, however, if using the direct connection, the
mode is untouched. This is the single most common cause of errors when connecting serial devices,
therefore you must make allowances for this within your software.

Asynchronous serial communication relies on precise timing. Both the sender and receiver must be set
for identical timing, this is commonly expressed in bits per second (bps) called baud. Serin requires a
value called Baudmode that informs it of the relevant characteristics of the incoming serial data; the bit
period, number of data and parity bits, and polarity.

The Baudmode argument for Serin accepts a 16-bit value that determines its characteristics: 1-stop bit,
8-data bits/no-parity or 7-data bits/even-parity and most speeds from as low as 300 baud to 38400
baud (depending on the crystal frequency used). The following table shows how Baudmode is calcu-
lated, while table 1 shows some common baudmodes for standard serial baud rates.

C1
1uF

5 Volts

V+

V+VCC

GND

MAX232

10

9

12

11 14

15

13

8

7

6

5

4

3

21

16

C1+
C1-
C2+
C2-

V-

T1in
T2in
R1out
R2out

T1out
T2out
R1in
R2in

C2
1uF

C3
1uF

C4
1uF

6
21 53

7
4

8 9

RX TX GND

9-way
D-Socket

0V

From PIC
Serial Output

To PIC
Serial Input

C5
1uF

To PC
Serial Port

6
21 53

7
4

8 9

RX TX GND

9-way
D-Socket

From PIC
Serial Output

To PIC
Serial Input

To PC's
Serial Port

To PIC
Circuit's GND

R1
1K

R2
1K

Proton Amicus18 Compiler

 284
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Step 1. Determine the bit period. (bits 0 – 11) (1,000,000 / baud rate) – 20
Step 2. data bits and parity. (bit 13) 8-bit/no-parity = step 1 + 0

7-bit/even-parity = step 1 + 8192
Step 3. Select polarity. (bit 14) True (noninverted) = step 2 + 0

Inverted = step 2 + 16384
Baudmode calculation.

Add the results of steps 1, 2 and 3 to determine the correct value for the Baudmode operator.

BaudRate 8-bit no-parity
inverted

8-bit no-parity
true

7-bit even-parity
inverted

7-bit even-parity
true

300 19697 3313 27889 11505
600 18030 1646 26222 9838
1200 17197 813 25389 9005
2400 16780 396 24972 8588
4800 16572 188 24764 8380
9600 16468 84 24660 8276

Table 1. Common baud rates and corresponding Baudmodes.

If communications are with existing software or hardware, its speed and mode will determine the choice
of baud rate and mode. In general, 7-bit/even-parity (7E) mode is used for text, and 8-bit/no-parity
(8N) for byte-oriented data. Note: the most common mode is 8-bit/no-parity, even when the data
transmitted is just text. Most devices that use a 7-bit data mode do so in order to take advantage of the
parity feature. Parity can detect some communication errors, but to use it you lose one data bit. This
means that incoming data bytes transferred in 7E (even-parity) mode can only represent values from 0
to 127, rather than the 0 to 255 of 8N (no-parity) mode.

The compiler’s serial commands Serin and Serout, have the option of still using a parity bit with 4 to 8
data bits. This is through the use of a Declare:

With parity disabled (the default setting):

Declare Serial_Data 4 ' Set Serin and Serout data bits to 4
Declare Serial_Data 5 ' Set Serin and Serout data bits to 5
Declare Serial_Data 6 ' Set Serin and Serout data bits to 6
Declare Serial_Data 7 ' Set Serin and Serout data bits to 7
Declare Serial_Data 8 ' Set Serin and Serout data bits to 8 (default)

With parity enabled:

Declare Serial_Data 5 ' Set Serin and Serout data bits to 4
Declare Serial_Data 6 ' Set Serin and Serout data bits to 5
Declare Serial_Data 7 ' Set Serin and Serout data bits to 6
Declare Serial_Data 8 ' Set Serin and Serout data bits to 7 (default)
Declare Serial_Data 9 ' Set Serin and Serout data bits to 8

Serial_Data data bits may range from 4 bits to 8 (the default if no Declare is issued). Enabling parity
uses one of the number of bits specified.

Proton Amicus18 Compiler

 285
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Declaring Serial_Data as 9 allows 8 bits to be read and written along with a 9th parity bit.

Parity is a simple error-checking feature. When a serial sender is set for even parity (the mode the com-
piler supports) it counts the number of 1s in an outgoing byte and uses the parity bit to make that num-
ber even. For example, if it is sending the 7-bit value: %0011010, it sets the parity bit to 1 in order to
make an even number of 1s (four).

The receiver also counts the data bits to calculate what the parity bit should be. If it matches the parity
bit received, the serial receiver assumes that the data was received correctly. Of course, this is not nec-
essarily true, since two incorrectly received bits could make parity seem correct when the data was
wrong, or the parity bit itself could be bad when the rest of the data was correct.

Many systems that work exclusively with text use 7-bit/ even-parity mode. For example, to receive one
data byte through bit-0 of PortA at 9600 baud, 7E, inverted:

Serin PortA.0, 24660, [SerData]

The above example will work correctly, however it doesn’t inform the program what to do in the event
of a parity error.

Below, is an improved version that uses the optional Plabel argument:

Serin PortA.0, 24660, ParityError, [SerData]
Print Dec SerData
Stop

ParityError:
Print "Parity Error"
Stop

If the parity matches, the program continues at the Print instruction after Serin. If the parity doesn’t
match, the program jumps to the label ParityError. Note that a parity error takes precedence over other
InputData specifications (as soon as an error is detected, Serin aborts and jumps to the Plabel routine).

In the examples above, the only way to end the Serin instruction (other than Reset or power-off) is to
give Serin the serial data it needs. If no serial data arrives, the program is stuck in an endless loop.
However, you can force Serin to abort if it doesn’t receive data within a specified number of millisec-
onds.

For example, to receive a value through bit-0 of PortA at 9600 baud, 8N, inverted and abort Serin after
2 seconds (2000 ms) if no data arrives:

Serin PortA.0, 16468, 2000, TimeoutError, [SerData]
Print Cls, Dec Result
Stop

TimeoutError:
Print Cls, "Timed Out"

 Stop

If no serial data arrives within 2 seconds, Serin aborts and continues at the label TimeoutError.

Both Parity and Serial Timeouts may be combined. Below is an example to receive a value through bit-0
of PortA at 2400 baud, 7E, inverted with a 10-second timeout:

Proton Amicus18 Compiler

 286
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Dim SerData as Byte

Again:
Serin PortA.0, 24660, ParityError, 10000, TimeoutError, [SerData]
Print Cls, Dec SerData
GoTo Again

TimeoutError:
Print Cls, "Timed Out"
GoTo Again

ParityError:
Print Cls, "Parity Error"
GoTo Again

When designing an application that requires serial communication between microcontrollers, you should
remember to work within these limitations:

When the microcontroller is sending or receiving data, it cannot execute other instructions.

When the microcontroller is executing other instructions, it cannot send or receive data.
The compiler does not offer a serial buffer as there is in PCs. At lower crystal frequencies, and higher
serial rates, the microcontroller cannot receive data via Serin, process it, and execute another Serin in
time to catch the next chunk of data, unless there are significant pauses between data transmissions.

These limitations can sometimes be addressed by using flow control; the Fpin option for Serin and Se-
rout. Through Fpin, Serin can inform another microcontroller sender when it is ready to receive data.
(Fpin flow control follows the rules of other serial handshaking schemes, however most computers other
than the microcontroller cannot start and stop serial transmission on a byte-by-byte basis.)

Below is an example using flow control with data through bit-0 of PortA, and flow control through bit-1
of PortA, 9600 baud, N8, noninverted:

Serin PortA.0\PortA.1, 84, [SerData]

When Serin executes, bit-0 of PortA (Rpin) is made an input in preparation for incoming data, and bit-1
of PortA (Fpin) is made an output low, to signal “go” to the sender. After Serin finishes receiving data,
bit-1 of PortA is brought high to notify the sender to stop. If an inverted BaudMode had been specified,
the Fpin’s responses would have been reversed. The table below illustrates the relationship of serial po-
larity to Fpin states.

Serial Polarity Ready to Receive
("Go")

Not Ready to Receive
("Stop")

Inverted Fpin is High (1) Fpin is Low (0)
Non-inverted Fpin is Low (0) Fpin is High (1)

See the following circuit for a flow control example using two 16F84 devices. In the demonstration pro-
gram example, the sender transmits the whole word “HELLO!” in approx 6 ms. The receiver catches the
first byte at most; by the time it got back from the first 1-second delay (DelayMs 1000), the rest of the
data would be long gone. With flow control, communication is flawless since the sender waits for the
receiver to catch up.

Proton Amicus18 Compiler

 287
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

' Sender Code. Program into the Sender microcontroller.
Loop:

Serout RA0\RA1, 16468, ["HELLO!"] ' Send the message
DelayMs 2500 ' Delay for 2.5 seconds
GoTo Loop ' Repeat the message forever

' Receiver Code. Program into the Receiver microcontroller.

Dim Message as Byte
Again:

Serin RA0\RA1, 16468, [Message] ' Get 1 byte
Print Message ' Display the byte on LCD.
DelayMs 1000 ' Delay for 1 second.
GoTo Again ' Repeat forever

Serin Modifiers.

The Serin command can be configured to wait for a specified sequence of characters before it retrieves
any additional input. For example, suppose a device attached to the microcontroller is known to send
many different sequences of data, but the only data you wish to observe happens to appear right after
the unique characters, “XYZ”. A modifier named Wait can be used for this purpose:

Serin PortA.0, 16468, [Wait("XYZ"), SerData]

The above code waits for the characters “X”, “Y” and “Z” to be received, in that order, then it receives
the next data byte and p[laces it into variable SerData.

The compiler also has a modifier for handling a string of characters, named Str.

The Str modifier is used for receiving a string of characters into a byte array variable.

A string is a set of characters that are arranged or accessed in a certain order. The characters "ABC"
would be stored in a string with the "A" first, followed by the "B" then followed by the "C". A byte array
is a similar concept to a string; it contains data that is arranged in a certain order. Each of the elements
in an array is the same size. The string "ABC" would be stored in a byte array containing three bytes
(elements).

Proton Amicus18 Compiler

 288
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Below is an example that receives ten bytes through bit-0 of PortA at 9600 bps, N81/inverted, and
stores them in the 10-byte array, SerString:

Dim SerString[10] as Byte ' Create a 10-byte array.
Serin PortA.0, 16468, [Str SerString] ' Fill the array with data.
Print Str SerString ' Display the string.

If the amount of received characters is not enough to fill the entire array, then a formatter may be
placed after the array’s name, which will only receive characters until the specified length is reached.
For example:

Dim SerString[10] as Byte ' Create a 10-byte array.
Serin PortA.0, 16468, [Str SerString\5] ' Fill first 5-bytes of array
Print Str SerString\5 ' Display the 5-character string.

The example above illustrates how to fill only the first n bytes of an array, and then how to display only
the first n bytes of the array. n refers to the value placed after the backslash.

Because of its complexity, serial communication can be rather difficult to work with at times. Using the
guidelines below when developing a project using the Serin and Serout commands may help to elimi-
nate some obvious errors:

Always build your project in steps.
Start with small, manageable pieces of code, (that deal with serial communication) and test them, one
individually.
Add more and more small pieces, testing them each time, as you go.
Never write a large portion of code that works with serial communication without testing its smallest
workable pieces first.
Pay attention to timing.
Be careful to calculate and overestimate the amount of time, operations should take within the micro-
controller for a given oscillator frequency. Misunderstanding the timing constraints is the source of most
problems with code that communicate serially. If the serial communication in your project is bi-
directional, the above statement is even more critical.
Pay attention to wiring.
Take extra time to study and verify serial communication wiring diagrams. A mistake in wiring can cause
strange problems in communication, or no communication at all. Make sure to connect the ground pins
(Vss) between the devices that are communicating serially.
Verify port setting on the PC and in the Serin / Serout commands.
Unmatched settings on the sender and receiver side will cause garbled data transfers or no data trans-
fers. This is never more critical than when a line transceiver is used(i.e. MAX232). Always remember
that a line transceiver inverts the serial polarity.

If the serial data received is unreadable, it is most likely caused by a baud rate setting error, or a polar-
ity error. If receiving data from another device that is not a microcontroller, try to use baud rates of
9600 and below, or alternatively, use a higher frequency crystal.

Because of additional overheads in the microcontroller, and the fact that the Serin command offers no
hardware receive buffer for serial communication, received data may sometimes be missed or garbled.
If this occurs, try lowering the baud rate, or increasing the crystal frequency. Using simple variables (not
arrays) will also increase the chance that the microcontroller will receive the data properly.

See also : HRsin, HRsout, Hserin, Hserout, Rsin, Rsout.

Proton Amicus18 Compiler

 289
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Serout

Syntax
Serout Tpin { \ Fpin }, Baudmode, { Pace, } { Timeout, Tlabel, } [OutputData]

Overview
Transmit asynchronous serial data (i.e. RS232 data).

Operators

 Tpin is a Port.Bit constant that specifies the I/O pin through which the serial data will be trans-
mitted. This pin will be set to output mode while operating. The state of this pin when finished is
determined by the driver bit in Baudmode.

 Fpin is an optional Port.Bit constant that specifies the I/O pin to monitor for flow control status.
This pin will be set to input mode. Note: Fpin must be specified in order to use the optional
Timeout and Tlabel operators in the Serout command.

 Baudmode may be a variable, constant, or expression (0 - 65535) that specifies serial timing
and configuration.

 Pace is an optional variable, constant, or expression (0 - 65535) that determines the length of
the delay between transmitted bytes. Note: Pace cannot be used simultaneously with Timeout.

 Timeout is an optional variable or constant (0 - 65535) that informs Serout how long to wait
for Fpin permission to send. If permission does not arrive in time, the program will jump to the
address specified by Tlable. Note: Fpin must be specified in order to use the optional Timeout
and Tlabel operators in the Serout command.

 Tlabel is an optional label that must be provided along with Timeout. Tlabel indicates where the
program should jump to in the event that permission to send data is not granted within the pe-
riod specified by Timeout.

 OutputData is list of variables, constants, expressions and modifiers that informs Serout how
to format outgoing data. Serout can transmit individual or repeating bytes, convert values into
decimal, hex or binary text representations, or transmit strings of bytes from variable arrays, and
Cdata constructs. These actions can be combined in any order in the OutputData list.

Notes
One of the most popular forms of communication between electronic devices is serial communication.
There are two major types of serial communication; asynchronous and synchronous. The Rsin, Rsout,
Serin and Serout commands are all used to send and receive asynchronous serial data. While the Shin
and Shout commands are for use with synchronous communications.

The term asynchronous means ‘no clock.' More specifically, ‘asynchronous serial communication' means
data is transmitted and received without the use of a separate ‘clock' line. Data can be sent using as few
as two wires; one for data and one for ground. The PC's serial ports (also called COM ports or RS232
ports) use asynchronous serial communication. Note: the other kind of serial communication, synchro-
nous, uses at least three wires; one for clock, one for data and one for ground.

RS232 is the electrical specification for the signals that PC serial ports use. Unlike standard TTL logic,
where 5 volts is a logic 1 and 0 volts is logic 0, RS232 uses -12 volts for logic 1 and +12 volts for logic
0. This specification allows communication over longer wire lengths without amplification.

Proton Amicus18 Compiler

 290
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Most circuits that work with RS232 use a line driver / receiver (transceiver). This component does two
things:

 Convert the ±12 volts of RS-232 to TTL compatible 0 to 5 volt levels.
 Invert the voltage levels, so that 5 volts = logic 1 and 0 volts = logic 0.

By far, the most common line driver device is the MAX232 from MAXIM semiconductor. With the addi-
tion of a few capacitors, a complete 2-way level converter is realised (see Serin for circuit).

The MAX232 is not the only device available, there are other types that do not require any external ca-
pacitors at all. Visit Maxim's excellent web site at www.maxim.com <http://www.maxim.com>, and
download one of their many detailed datasheets.

Because of the excellent IO capabilities of the microcontroller range of devices, and the adoption of TTL
levels on most modern PC serial ports, a line driver is often unnecessary unless long distances are in-
volved between the transmitter and the receiver. Instead a simple current limiting resistor is all that's
required (see Serin for circuit).

You should remember that when using a line transceiver such as the MAX232, the serial mode (polarity)
is inverted in the process of converting the signal levels, however, if using the direct connection, the
mode is untouched. This is the single most common cause of errors when connecting serial devices,
therefore you must make allowances for this within your software.

Asynchronous serial communication relies on precise timing. Both the sender and receiver must be set
for identical timing, this is commonly expressed in bits per second (bps) called baud. Serout requires a
value called Baudmode that informs it of the relevant characteristics of the incoming serial data; the bit
period, number of data and parity bits, and polarity.

The Baudmode argument for Serout accepts a 16-bit value that determines its characteristics: 1-stop
bit, 8-data bits/no-parity or 7-data bits/even-parity and virtually any speed from as low as 300 baud to
38400 baud (depending on the crystal frequency used). Table 2 below shows how Baudmode is calcu-
lated, while table 3 shows some common baudmodes for standard serial baud rates.

Step 1. Determine the bit period. (bits 0 – 11) (1,000,000 / baud rate) – 20
Step 2. data bits and parity. (bit 13) 8-bit/no-parity = step 1 + 0

7-bit/even-parity = step 1 + 8192
Step 3. Select polarity. (bit 14) True (noninverted) = step 2 + 0

Inverted = step 2 + 16384
Baudmode calculation.

Add the results of steps 1, 2 3, and 3 to determine the correct value for the Baudmode operator

BaudRate 8-bit no-parity
inverted

8-bit no-parity
true

7-bit even-parity
inverted

7-bit even-parity
true

300 19697 3313 27889 11505
600 18030 1646 26222 9838
1200 17197 813 25389 9005
2400 16780 396 24972 8588
4800 16572 188 24764 8380
9600 16468 84 24660 8276

Proton Amicus18 Compiler

 291
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Note
For 'open' baudmodes used in networking, add 32768 to the values from the previous table.

If communications are with existing software or hardware, its speed and mode will determine the choice
of baud rate and mode. In general, 7-bit/even-parity (7E) mode is used for text, and 8-bit/no-parity
(8N) for byte-oriented data. Note: the most common mode is 8-bit/no-parity, even when the data
transmitted is just text. Most devices that use a 7-bit data mode do so in order to take advantage of the
parity feature. Parity can detect some communication errors, but to use it you lose one data bit. This
means that incoming data bytes transferred in 7E (even-parity) mode can only represent values from 0
to 127, rather than the 0 to 255 of 8N (no-parity) mode.

The compiler's serial commands Serout and Serin, have the option of still using a parity bit with 4 to 8
data bits. This is through the use of a Declare:

With parity disabled (the default setting):

 Declare Serial_Data 4 ' Set Serout and Serin data bits to 4
 Declare Serial_Data 5 ' Set Serout and Serin data bits to 5
 Declare Serial_Data 6 ' Set Serout and Serin data bits to 6
 Declare Serial_Data 7 ' Set Serout and Serin data bits to 7
 Declare Serial_Data 8 ' Set Serout and Serin data bits to 8 (default)

With parity enabled:

 Declare Serial_Data 5 ' Set Serout and Serin data bits to 4
 Declare Serial_Data 6 ' Set Serout and Serin data bits to 5
 Declare Serial_Data 7 ' Set Serout and Serin data bits to 6
 Declare Serial_Data 8 ' Set Serout and Serin data bits to 7 (default)
 Declare Serial_Data 9 ' Set Serout and Serin data bits to 8

Serial_Data data bits may range from 4 bits to 8 (the default if no Declare is issued). Enabling parity
uses one of the number of bits specified.

Declaring Serial_Data as 9 allows 8 bits to be read and written along with a 9th parity bit.

Parity is a simple error-checking feature. When the Serout command's Baudmode is set for even parity
(compiler default) it counts the number of 1s in the outgoing byte and uses the parity bit to make that
number even. For example, if it is sending the 7-bit value: %0011010, it sets the parity bit to 1 in order
to make an even number of 1s (four).

The receiver also counts the data bits to calculate what the parity bit should be. If it matches the parity
bit received, the serial receiver assumes that the data was received correctly. Of course, this is not nec-
essarily true, since two incorrectly received bits could make parity seem correct when the data was
wrong, or the parity bit itself could be bad when the rest of the data was correct. Parity errors are only
detected on the receiver side.

Normally, the receiver determines how to handle an error. In a more robust application, the receiver
and transmitter might be set up in such that the receiver can request a re-send of data that was re-
ceived with a parity error.

Proton Amicus18 Compiler

 292
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Serout Modifiers.
The example below will transmit a single byte through bit-0 of PortA at 2400 baud, 8N1, inverted:

 Serout PortA.0, 16780, [65]

In the above example, Serout will transmit a byte equal to 65 (the ASCII value of the character "A")
through PortA.0. If the microcontroller was connected to a PC running a terminal program such as
HyperTerminal set to the same baud rate, the character "A" would appear on the screen. Always re-
membering that the polarity will differ if a line transceiver such as the MAX232 is used.

What if you wanted the value 65 to appear on the PC's screen? As was stated earlier, it is up to the re-
ceiving side (in serial communication) to interpret the values. In this case, the PC is interpreting the
byte-sized value to be the ASCII code for the character "A". Unless you're also writing the software for
the PC, you cannot change how the PC interprets the incoming serial data, therefore to solve this prob-
lem, the data needs to be translated before it is sent.

The Serout command provides a modifier which will translate the value 65 into two ASCII codes for the
characters "6" and "5" and then transmit them:

Serout PortA.0, 16780, [Dec 65]

Notice that the decimal modifier in the Serout command is the word Dec, this instructs the Serout to
convert the number into separate ASCII characters which represent the value in decimal form. If the
value 65 in the code were changed to 123, the Serout command would send three bytes (49, 50 and
51) corresponding to the characters "1", "2" and "3".

This is exactly the same modifier that is used in the Rsout and Print commands.

As well as the Dec modifier, Serout may use Hex, or Bin modifiers, again, these are the same as used
in the Rsout and Print commands. Therefore, please refer to the Rsout or Print command descrip-
tions for an explanation of these. The Serout command sends quoted text exactly as it appears in the
OutputData list:

 Serout PortA.0, 16780, ["HELLO WORLD", 13]
 Serout PortA.0, 16780, ["Num = ", Dec 100]

The above code will display "HELLO WORLD" on one line and "Num = 100" on the next line. Notice that
you can combine data to output in one Serout command, separated by commas. In the example above,
we could have written it as one line of code:

Serout PortA.0, 16780, ["HELLO WORLD", 13, "Num = ", Dec 100]

Proton Amicus18 Compiler

 293
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Serout also has some other modifiers. These are listed below:

Modifier Operation
Bin{1..32} Send binary digits
Dec{1..10} Send decimal digits
Hex{1..8} Send hexadecimal digits
Sbin{1..32} Send signed binary digits
Sdec{1..10} Send signed decimal digits
Shex{1..8} Send signed hexadecimal digits
Ibin{1..32} Send binary digits with a preceding '%' identifier
Idec{1..10} Send decimal digits with a preceding '#' identifier
Ihex{1..8} Send hexadecimal digits with a preceding '$' identifier
ISbin{1..32} Send signed binary digits with a preceding '%' identifier
ISdec{1..10} Send signed decimal digits with a preceding '#' identifier
IShex{1..8} Send signed hexadecimal digits with a preceding '$' identifier

Rep c\n Send character c repeated n times
Str array\n Send all or part of an array
Cstr cdata Send string data defined in a Cdata statement.

If a floating point variable is to be displayed, then the digits after the Dec modifier determine how many
remainder digits are printed. i.e. numbers after the decimal point.

 Dim FloatVar as Float
 FloatVar = 3.145
 Serout PortA.0, 16780, [Dec2 FloatVar] ' Send 2 values after decimal point

 The above program will send 3.14

If the digit after the Dec modifier is omitted, then 3 values will be displayed after the decimal point.

 Dim FloatVar as Float
 FloatVar = 3.1456
 Serout PortA.0, 16780, [Dec FloatVar] ' Send 3 values after decimal point

 The above program will send 3.145

There is no need to use the Sdec modifier for signed floating point values, as the compiler's Dec modi-
fier will automatically display a minus result:

 Dim FloatVar as Float
 FloatVar = -3.1456
 Serout PortA.0, 16780, [Dec FloatVar] ' Send 3 values after decimal point

 The above program will send -3.145

Hex or Bin modifiers cannot be used with floating point values or variables.

Proton Amicus18 Compiler

 294
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Using Strings with Serout.
The Str modifier is used for transmitting a string of characters from a byte array variable. A string is a
set of characters that are arranged or accessed in a certain order. The characters "ABC" would be stored
in a string with the "A" first, followed by the "B" then followed by the "C". A byte array is a similar con-
cept to a string; it contains data that is arranged in a certain order. Each of the elements in an array is
the same size. The string "ABC" would be stored in a byte array containing three bytes (elements).

Below is an example that transmits five bytes (from a byte array) through bit-0 of PortA at 9600 bps,
N81/inverted:

 Dim SerString[10] as Byte ' Create a 10-byte array.
 SerString[0] = "H" ' Load the first 5 bytes of the array
 SerString[1] = "E" ' With the word "HELLO"
 SerString[2] = "L"
 SerString[3] = "L"
 SerString[4] = "O"
 Serout PortA.0, 16468, [Str SerString\5] ' Send 5-byte string.

Note that we use the optional \n argument of Str. If we didn't specify this, the microcontroller would try
to keep sending characters until all 10 bytes of the array were transmitted, or it found a byte equal to 0
(a null terminator). Since we didn't specify a last byte of 0 in the array, and we do not wish the last five
bytes to be transmitted, we chose to tell it explicitly to only send the first 5 characters.

The above example may also be written as:

 Dim SerString[10] as Byte ' Create a 10-byte array.
 Str SerString = "HELLO" ,0 ' Load the first 6 bytes of the array
 Serout PortA.0, 16468, [Str SerString] ' Send first 5-bytes of string.

In the above example, we specifically added a null terminator to the end of the string (a zero). There-
fore, the Str modifier within the Serout command will output data until this is reached. An alternative
to this would be to create the array exactly the size of the text. In our example, the array would have
been 5 elements in length.

Another form of string is used by the Cstr modifier. Note: Because this uses the Cdata command to
create the individual elements it is only for use with PICs that support self-modifying features, such as
the 16F87X, and 18XXXX range of devices.

Below is an example of using the Cstr modifier. It's function is the same as the above examples, how-
ever, no RAM is used for creating arrays.

 Serout PortA.0, 16468, [Cstr SerString]

SerString: Cdata "HELLO", 0

The Cstr modifier will always be terminated by a null (i.e. zero at the end of the text or data). If the
null is omitted, then the Serout command will continue transmitting characters forever.

The Serout command can also be configured to pause between transmitted bytes. This is the purpose
of the optional Pace operator. For example (9600 baud N8, inverted):

Proton Amicus18 Compiler

 295
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

 Serout PortA.0, 16468, 1000, ["Send this message Slowly"]

Here, the microcontroller transmits the message "Send this message Slowly" with a 1 second delay be-
tween each character.

A good reason to use the Pace feature is to support devices that require more than one stop bit. Nor-
mally, the microcontroller sends data as fast as it can (with a minimum of 1 stop bit between bytes).
Since a stop bit is really just a resting state in the line (no data transmitted), using the Pace option will
effectively add multiple stop bits. Since the requirement for 2 or more stop bits (on some devices) is
really just a minimum requirement, the receiving side should receive this data correctly.

Serout Flow Control.
When designing an application that requires serial communication between PICs, you need to work
within these limitations:

When the microcontroller is sending or receiving data, it cannot execute other instructions.
When the microcontroller is executing other instructions, it cannot send or receive data.
The compiler does not offer a serial buffer as there is in PCs. At lower crystal frequencies, and higher
serial rates, the microcontroller cannot receive data via Serin, process it, and execute another Serin in
time to catch the next chunk of data, unless there are significant pauses between data transmissions.

These limitations can sometimes be addressed by using flow control; the Fpin option for Serout and
Serin. Through Fpin, Serin can inform another microcontroller sender when it is ready to receive data
and Serout (on the sender) will wait for permission to send. Fpin flow control follows the rules of other
serial handshaking schemes, however most computers other than the microcontroller cannot start and
stop serial transmission on a byte-by-byte basis. That is why this discussion is limited to communication
between PICmicros.

Below is an example using flow control with data through bit-0 of PortA, and flow control through bit-1
of PortA, 9600 baud, N8, noninverted:

 Serout PortA.0\PortA.1, 84, [SerData]

When Serin executes, bit-0 of PortA (Tpin) is made an output in preparation for sending data, and bit-1
of PortA (Fpin) is made an input, to wait for the "go" signal from the receiver. The table below illustrates
the relationship of serial polarity to Fpin states.

Serial Polarity Ready to Receive ("Go") Not Ready to Receive ("Stop")
Inverted Fpin is High (1) Fpin is Low (0)
Non-inverted Fpin is Low (0) Fpin is High (1)

See Serin for a flow control circuit.

The Serout command supports open-drain and open-source output, which makes it possible to network
multiple PICs on a single pair of wires. These ‘open baudmodes' only actively drive the Tpin in one state
(for the other state, they simply disconnect the pin; setting it to an input mode). If two PICs in a net-
work had their Serout lines connected together (while a third device listened on that line) and the PICs
were using always-driven baudmodes, they could simultaneously output two opposite states (i.e. +5
volts and ground). This would create a short circuit. The heavy current flow would likely damage the I/O
pins or the PICs themselves.

Proton Amicus18 Compiler

 296
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Since the open baudmodes only drive in one state and float in the other, there's no chance of this kind
of short happening.

The polarity selected for Serout determines which state is driven and which is open as shown in the
table below.

Serial Polarity State(0) State(1) Resistor Pulled to:
Inverted Open Driven Gnd (Vss)
Non-inverted Driven Open +5V (Vdd)

Since open baudmodes only drive to one state, they need a resistor to pull the networked line into the
opposite state, as shown in the above table and in the circuits below. Open baudmodes allow the micro-
controller to share a line, however it is up to your program to resolve other networking issues such as
who talks when, and how to detect, prevent and fix data errors.

See also : Rsin, Rsout, HRsin, HRsout, Hserin, Hserout, Serin.

Proton Amicus18 Compiler

 297
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Servo

Syntax
Servo Pin, Rotation Value

Overview
Control a remote control type servo motor.

Operators

 Pin is a Port.Pin constant that specifies the I/O pin for the attachment of the motor's control
terminal.

 Rotation Value is a 16-bit (0-65535) constant or Word variable that dictates the position of the
motor. A value of approx 500 being a rotation to the farthest position in a direction and approx
2500 being the farthest rotation in the opposite direction. A value of 1500 would normally centre
the servo but this depends on the motor type.

Example
' Control a servo motor attached to pin 3 of PortA

 Dim Pos as Word ' Servo Position
 Symbol Pin = PortA.3 ' Alias the servo pin
 Pos = 1500 ' Centre the servo
 PortA = 0 ' PortA lines low to read buttons
 TrisA = %00000111 ' Enable the button pins as inputs

' Check any button pressed to move servo
Main:
 If PortA.0 = 0 And Pos < 3000 Then Pos = Pos + 1 ' Move servo left
 If PortA.1 = 0 Then Pos = 1500 ' Centre servo
 If PortA.2 = 0 And Pos > 0 Then Pos = Pos - 1 ' Move servo right
 Servo Pin, Pos
 DelayMs 5 ' Servo update rate
 Hrsout "Position=", Dec Pos, 13
 GoTo Main

Notes
Servos of the sort used in radio-controlled models are finding increasing applications in this robotics age
we live in. They simplify the job of moving objects in the real world by eliminating much of the me-
chanical design. For a given signal input, you get a predictable amount of motion as an output.

To enable a servo to move it must be connected to a 5 Volt power supply capable of delivering an am-
pere or more of peak current. It then needs to be supplied with a positioning signal. The signal is nor-
mally a 5 Volt, positive-going pulse between 1 and 2 milliseconds (ms) long, repeated approximately 50
times per second.

The width of the pulse determines the position of the servo. Since a servo's travel can vary from model
to model, there is not a definite correspondence between a given pulse width and a particular servo an-
gle, however most servos will move to the centre of their travel when receiving 1.5ms pulses.

Proton Amicus18 Compiler

 298
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Servos are closed-loop devices. This means that they are constantly comparing their commanded posi-
tion (proportional to the pulse width) to their actual position (proportional to the resistance of an inter-
nal potentiometer mechanically linked to the shaft). If there is more than a small difference between the
two, the servo's electronics will turn on the motor to eliminate the error. In addition to moving in re-
sponse to changing input signals, this active error correction means that servos will resist mechanical
forces that try to move them away from a commanded position. When the servo is unpowered or not
receiving positioning pulses, the output shaft may be easily turned by hand. However, when the servo is
powered and receiving signals, it won't move from its position.

Driving servos with the compiler is extremely easy. The Servo command generates a pulse in 1
microsecond (µs) units, so the following code would command a servo to its centred position and hold it
there:

Again:
 Servo PortA.0, 1500
 DelayMs 20
 GoTo Again

The 20ms delay ensures that the program sends the pulse at the standard 50 pulse-per-second rate.
However, this may be lengthened or shortened depending on individual motor characteristics.

The Servo command is oscillator independent and will always produce 1us pulses regardless of the
crystal frequency used.

See also : PulseOut.

Proton Amicus18 Compiler

 299
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

SetBit

Syntax
SetBit Variable, Index

Overview
Set a bit of a variable or register using a variable index to the bit of interest.

Operators

 Variable is a user defined variable, of type Byte, Word, or Dword.
 Index is a constant, variable, or expression that points to the bit within Variable that requires

setting.

Example
' Clear then Set each bit of variable ExVar
 Dim ExVar as Byte
 Dim Index as Byte
 ExVar = %11111111
 For Index = 0 to 7 ' Create a loop for 8 bits
 ClearBit ExVar,Index ' Clear each bit of ExVar
 Hrsout Bin8 ExVar , 13 ' Display the binary result
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 Hrsout 13

For Index = 7 to 0 Step -1 ' Create a loop for 8 bits
 SetBit ExVar,Index ' Set each bit of ExVar
 Hrsout Bin8 ExVar , 13 ' Display the binary result
 DelayMs 100 ' Slow things down to see what's happening
 Next ' Close the loop
 Hrsout 13

Notes
There are many ways to set a bit within a variable, however, each method requires a certain amount of
manipulation, either with rotates, or alternatively, the use of indirect addressing using the FSR, and
INDF registers. Each method has its merits, but requires a certain amount of knowledge to accomplish
the task correctly. The SetBit command makes this task extremely simple using a register rotate
method, however, this is not necessarily the quickest method, or the smallest, but it is the easiest. For
speed and size optimisation, there is no shortcut to experience.

To Set a known constant bit of a variable or register, then access the bit directly using Port.n.

PortA.1 = 1
or

Var1.4 = 1

If a Port is targeted by SetBit, the Tris register is not affected.

See also : ClearBit, GetBit, LoadBit.

Proton Amicus18 Compiler

 300
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Set

Syntax
Set Variable or Variable.Bit

Overview
Place a variable or bit in a high state. For a variable, this means setting all the bits to 1. For a bit this
means setting it to 1.

Operators

 Variable can be any variable or register.
 Variable.Bit can be any variable and bit combination.

Example
 Set Var1.3 ' Set bit 3 of Var1
 Set Var1 ' Load Var1 with the value of 255
 Set STATUS.0 ' Set the carry flag high
 Set Array ' Set all of an Array variable. i.e. set to 255 or 65535
 Set String1 ' Set all of a String variable. i.e. set to spaces (ASCII 32)
 Set ' Load all RAM with 255

Notes
Set does not alter the Tris register if a Port is targeted.
If no variable follows the Set command then all user RAM will be loaded with the value 255.

See also : Clear, High, Low.

Proton Amicus18 Compiler

 301
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Shin

Syntax
Shin dpin, cpin, mode, [result { \bits } { ,result { \bits }...}]

or

Var = Shin dpin, cpin, mode, shifts

Overview
Shift data in from a synchronous-serial device.

Operators

 Dpin is a Port.Pin constant that specifies the I/O pin that will be connected to the synchronous-
serial device's data output. This pin's I/O direction will be changed to input and will remain in
that state after the instruction is completed.

 Cpin is a Port.Pin constant that specifies the I/O pin that will be connected to the synchronous-
serial device's clock input. This pin's I/O direction will be changed to output.

 Mode is a constant that tells Shin the order in which data bits are to be arranged and the rela-
tionship of clock pulses to valid data. Below are the symbols, values, and their meanings:

Symbol Value Description
MSBPRE
MSBPRE_L

0 Shift data in highest bit first. Read data before sending
clock. Clock idles low

LSBPRE
LSBPRE_L

1 Shift data in lowest bit first. Read data before sending
clock. Clock idles low

MSBPOST
MSBPOST_L

2 Shift data in highest bit first. Read data after sending
clock. Clock idles low

LSBPOST
LSBPOST_L

3 Shift data in highest bit first. Read data after sending
clock. Clock idles low

MSBPRE_H 4 Shift data in highest bit first. Read data before sending
clock. Clock idles high

LSBPRE_H 5 Shift data in lowest bit first. Read data before sending
clock. Clock idles high

MSBPOST_H 6 Shift data in highest bit first. Read data after sending
clock. Clock idles high

LSBPOST_H 7 Shift data in lowest bit first. Read data after sending
clock. Clock idles high

Result is a bit, byte, or word variable in which incoming data bits will be stored.

Bits is an optional constant specifying how many bits (1-16) are to be input by Shin. If no bits entry is
given, Shin defaults to 8 bits.
Shifts informs the Shin command as to how many bit to shift in to the assignment variable, when used
in the inline format.

Notes
Shin provides a method of acquiring data from synchronous-serial devices, without resorting to the
hardware SPI modules resident on some microcontroller types. Data bits may be valid after the rising or
falling edge of the clock line. This kind of serial protocol is commonly used by controller peripherals such
as ADCs, DACs, clocks, memory devices, etc.

Proton Amicus18 Compiler

 302
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The Shin instruction causes the following sequence of events to occur:

 Makes the clock pin (cpin) output low.
 Makes the data pin (dpin) an input.
 Copies the state of the data bit into the msb (lsb-modes) or lsb (msb modes) either before (-pre

modes) or after (-post modes) the clock pulse.
 Pulses the clock pin high.
 Shifts the bits of the result left (msb- modes) or right (lsb-modes).
 Repeats the appropriate sequence of getting data bits, pulsing the clock pin, and shifting the re-

sult until the specified number of bits is shifted into the variable.

Making Shin work with a particular device is a matter of matching the mode and number of bits to that
device's protocol. Most manufacturers use a timing diagram to illustrate the relationship of clock and
data.

 Symbol CLK = PortB.0
 Symbol DTA = PortB.1
 Shin DTA, CLK, MSBPRE, [Var1] ' Shiftin msb-first, pre-clock.

In the above example, both Shin instructions are set up for msb-first operation, so the first bit they ac-
quire ends up in the msb (leftmost bit) of the variable.

The post-clock Shift in, acquires its bits after each clock pulse. The initial pulse changes the data line
from 1 to 0, so the post-clock Shiftin returns %01010101.

By default, Shin acquires eight bits, but you can set it to shift any number of bits from 1 to 16 with an
optional entry following the variable name. In the example above, substitute this for the first Shin in-
struction:

 Shin DTA, CLK, MSBPRE, [Var1\4] ' Shift in 4 bits.

Some devices return more than 16 bits. For example, most 8-bit shift registers can be daisy-chained to-
gether to form any multiple of 8 bits; 16, 24, 32, 40... You can use a single Shin instruction with multi-
ple variables.
Each variable can be assigned a particular number of bits with the
backslash (\) option. Modify the previous example:

' 5 bits into Var1; 8 bits into Var2.
 Shin DTA, CLK, MSBPRE, [Var1\5, Var2]
 Hrsout "1st variable: ", Bin8 Var1, 13
 Hrsout "2nd variable: ", Bin8 Var2, 13

Inline Shin Command.
The structure of the inline Shin command is:

Var = Shin dpin, cpin, mode, shifts

DPin, CPin, and Mode have not changed in any way, however, the inline structure has a new operand,
namely Shifts. This informs the Shin command as to how many bit to shift in to the assignment vari-
able. For example, to shift in an 8-bit value from a serial device, we would use:

 Var1 = Shin DT, CK, MSBPRE, 8

To shift 16-bits into a Word variable:

 WordVar = Shin DT, CK, MSBPRE, 16

Proton Amicus18 Compiler

 303
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Shout

Syntax
Shout Dpin, Cpin, Mode, [OutputData {\Bits} {,OutputData {\Bits}..}]

Overview
Shift data out to a synchronous serial device.

Operators

 Dpin is a Port.Pin constant that specifies the I/O pin that will be connected to the synchronous
serial device's data input. This pin will be set to output mode.

 Cpin is a Port.Pin constant that specifies the I/O pin that will be connected to the synchronous
serial device's clock input. This pin will be set to output mode.

 Mode is a constant that tells Shout the order in which data bits are to be arranged. Below are
the symbols, values, and their meanings:

Symbol Value Description
LSBFIRST
LSBFIRST _L 0 Shift data out lowest bit first.

Clock idles low
MSBFIRST
MSBFIRST_L 1 Shift data out highest bit first.

Clock idles low

LSBFIRST _H 4 Shift data out lowest bit first.
Clock idles high

MSBFIRST_H 5 Shift data out highest bit first.
Clock idles high

 OutputData is a variable, constant, or expression containing the data to be sent.
 Bits is an optional constant specifying how many bits are to be output by Shout. If no Bits entry

is given, Shout defaults to 8 bits.

Notes
Shin and Shout provide a method of acquiring data from synchronous serial devices. Data bits may be
valid after the rising or falling edge of the clock line. This kind of serial protocol is commonly used by
controller peripherals like ADCs, DACs, clocks, memory devices, etc.

At their heart, synchronous-serial devices are essentially shift-registers; trains of flip flops that receive
data bits in a bucket brigade fashion from a single data input pin. Another bit is input each time the ap-
propriate edge (rising or falling, depending on the device) appears on the clock line.

The Shout instruction first causes the clock pin to output low and the data pin to switch to output
mode. Then, Shout sets the data pin to the next bit state to be output and generates a clock pulse.
Shout continues to generate clock pulses and places the next data bit on the data pin for as many data
bits as are required for transmission.

Making Shout work with a particular device is a matter of matching the mode and number of bits to
that device's protocol. Most manufacturers use a timing diagram to illustrate the relationship of clock
and data. One of the most important items to look for is which bit of the data should be transmitted
first; most significant bit (MSB) or least significant bit (LSB).

Proton Amicus18 Compiler

 304
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Example

 Shout DTA, CLK, MSBFIRST, [250]

In the above example, the Shout command will write to I/O pin DTA (the Dpin) and will generate a
clock signal on I/O CLK (the Cpin). The Shout command will generate eight clock pulses while writing
each bit (of the 8-bit value 250) onto the data pin (Dpin). In this case, it will start with the most signifi-
cant bit first as indicated by the Mode value of MSBFIRST.

By default, Shout transmits eight bits, but you can set it to shift any number of bits from 1 to 16 with
the Bits argument. For example:

 Shout DTA, CLK, MSBFIRST, [250\4]

Will only output the lowest 4 bits (%0000 in this case). Some devices require more than 16 bits. To
solve this, you can use a single Shout command with multiple values. Each value can be assigned a
particular number of bits with the Bits argument. As in:

 Shout DTA, CLK, MSBFIRST, [250\4, 1045\16]

The above code will first shift out four bits of the number 250 (%1111) and then 16 bits of the number
1045 (%0000010000010101). The two values together make up a 20 bit value.

See also : Shin.

Proton Amicus18 Compiler

 305
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Snooze

Syntax
Snooze Period

Overview
Enter sleep mode for a short period. Power consumption is reduced to approx 50 µA assuming no loads
are being driven.

Operators

 Period is a variable or constant that determines the duration of the reduced power nap. The du-
ration is (2^period) * 18 ms. (Read as "2 raised to the power of ‘period', times 18 ms.") Period
can range from 0 to 7, resulting in the following snooze lengths:

Period Length of Snooze (approx)
0 - 1 18ms
1 - 2 36ms
2 - 4 72ms
3 - 8 144ms
4 - 16 288ms
5 - 32 576ms
6 - 64 1152ms (1.152 seconds)
7 - 128 2304ms (2.304 seconds

Example

 Snooze 6 ' Low power mode for approx 1.152 seconds

Notes
Snooze intervals are directly controlled by the watchdog timer without compensation. Variations in
temperature, supply voltage, and manufacturing tolerance of the microcontroller chip you are using can
cause the actual timing to vary by as much as -50, +100 percent

See also : Sleep.

Proton Amicus18 Compiler

 306
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Sleep

Syntax
Sleep { Length }

Overview
Places the microcontroller into low power mode for approx n seconds. i.e. power down but leaves the
port pins in their previous states.

Operator

 Length is an optional variable or constant (1-65535) that specifies the duration of sleep in sec-
onds. If length is omitted, then the Sleep command is assumed to be the assembler mne-
monic, which means the microcontroller will sleep continuously, or until an internal or external
event awakes it.

Example
 Symbol LED = RA0
Again:
 High LED ' Turn LED on.
 DelayMs 1000 ' Wait 1 second.
 Low LED ' Turn LED off.
 Sleep 60 ' Sleep for 1 minute.
 GoTo Again

Notes
Sleep will place the microcontroller into a low power mode for the specified period of seconds. Period is
16 bits, so delays of up to 65,535 seconds are the limit (a little over 18 hours) Sleep uses the Watch-
dog Timer so it is independent of the oscillator frequency. The smallest units is about 2.3 seconds and
may vary depending on specific environmental conditions and the device used.

The Sleep command is used to put the microcontroller in a low power mode without resetting the regis-
ters. Allowing continual program execution upon waking up from the Sleep period.

The microcontroller has the ability to be placed into a continual low power mode, consuming micro
Amps of current.

The command for doing this is Sleep. The compiler's Sleep command or the assembler's Sleep instruc-
tion may be used. The compiler's Sleep command differs somewhat to the assembler's in that the com-
piler's version will place the microcontroller into low power mode for n seconds (where n is a value from
0 to 65535). The assembler's version still places the microcontroller into low power mode, however, it
does this forever, or until an internal or external source wakes it. This same source also wakes the mi-
crocontroller when using the compiler's command.

Many things can wake the microcontroller from its sleep, the WatchDog Timer is the main cause and is
what the compiler's Sleep command uses.

Another method of waking the microcontroller is an external one, a change on one of the port pins. We
will examine more closely the use of an external source. There are two main ways of waking the micro-
controller using an external source. One is a change on bits 4..7 of PortB.

Proton Amicus18 Compiler

 307
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Four of the PortB pins (RB<7:4>) are individually configurable as interrupt-on-change pins. Control bits
in the IOCB register enable (when set) or disable (when clear) the interrupt function for each pin. When
set, the RBIE bit of the INTCON register enables interrupts on all pins which also have their correspond-
ing IOCB bit set. When clear, the RBIE bit disables all interrupt-on-changes. Only pins configured as in-
puts can cause this interrupt to occur (i.e., any RB<7:4> pin configured as an output is excluded from
the interrupt-on-change comparison).

For enabled interrupt-on-change pins, the values are compared with the old value latched on the last
read of PortB. The ‘mismatch’ outputs of the last read are OR’d together to set the PortB Change Inter-
rupt flag bit (RBIF) in the INTCON register.

This interrupt can wake the device from the Sleep mode, or any of the Idle modes. The user, in the In-
terrupt Service Routine, can clear the interrupt in the following manner:

 Any read or write of PortB to clear the mismatch condition (except when PortB is the source or
destination of a movff instruction).

 Clear the flag bit, RBIF.

A mismatch condition will continue to set the RBIF flag bit. Reading or writing PortB will end the mis-
match condition and allow the RBIF bit to be cleared. The latch holding the last read value is not af-
fected by a MCLR nor Brown-out Reset. After either one of these Resets, the RBIF flag will continue to
be set if a mismatch is present.

The interrupt-on-change feature is recommended for wake-up on key depression operation and opera-
tions where PortB is only used for the interrupt-on-change feature. Polling of PortB is not recommended
while using the interrupt-on-change feature.

 Symbol LED = RB0 ' Assign the LED's pin to bit-0 of PortB

INTCONbits_GIE = 0 ' Turn Off global interrupts
 Input RB4 ' Set bit-4 of PortB (RB4) as an Input
 PortB_Pullups = On ' Enable PortB Pull-up Resistors
 INTCONbits_RBIE = 1 ' Enable PortB[4..7] interrupt
 IOCBbits_IOCB4 = 1 ' Enable pin-4 of PortB for interrupt source

While 1 = 1 ' Create an infinite loop
DelayMs 100 ' Delay for 100ms

 Low LED ' Turn off the LED
 INTCONbits_RBIF = 0 ' Clear the PortB[4..7] interrupt flag
 Sleep ' Put the PICmicro to sleep
 DelayMs 100 ' When it wakes up, delay for 100ms
 High LED ' Then light the LED
 Wend ' Do it forever

Proton Amicus18 Compiler

 308
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

SonyIn

Syntax
Variable = SonyIn

Overview
Receive Sony SIRC (Sony Infrared Remote Control) data from a predetermined pin. The pin is automati-
cally made an input.

Operator

 Variable is a bit, byte, word, dword, or float variable, that will be loaded by SonyIn. The return
data from the SonyIn command consists of two bytes, the System byte containing the type of
remote used. i.e. TV, Video etc, and the Command byte containing the actual button value. The
order of the bytes is Command (low byte) then System (high byte). If a byte variable is used to
receive data from the infrared sensor then only the Command byte will be received.

Example
' Receive Sony SIRC data from an infrared sensor attached to PortC.0
 Declare SonyIn_Pin = PortC.0 ' Choose port and pin for infrared sensor
 Dim SonyIn_Word as Word ' Create a Word variable to receive the SIRC data
' Alias the Command byte to SonyIn_Word low byte
 Dim SonyCommand as SonyIn_Word.Lowbyte
' Alias the Command byte to SonyIn_Word high byte
 Dim SonySystem as SonyIn_Word.Highbyte

 While 1 = 1 ' Create an infinite loop
 Repeat
 SonyIn_Word = SonyIn ' Receive a signal from the infrared sensor
 Until SonyCommand <> 255 ' Keep looking until a valid header found
 Hrsout "System ", Dec SonySystem, 13 ' Display the System value
 Hrsout "Command ", Dec SonyCommand, 13 ' Display the Command value
 Wend

There is a single Declare for use with SonyIn:

Declare SonyIn_Pin Port . Pin
Assigns the Port and Pin that will be used to input infrared data by the SonyIn command. This may be
any valid port on the microcontroller.

If the Declare is not used in the program, then the default Port and Pin is PortB.0.

Notes
The SonyIn command will return with both Command and System bytes containing 255 if a valid
header was not received. The CARRY (STATUS.0) flag will also be set if an invalid header was received.
This is an ideal method of determining if the signal received is of the correct type.

Proton Amicus18 Compiler

 309
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Sound

Syntax
Sound Pin, [Note,Duration {,Note,Duration...}]

Overview
Generates tone and/or white noise on the specified Pin. Pin is automatically made an output.

Operators

 Pin is a Port.Pin constant that specifies the output pin on the microcontroller.
 Note can be an 8-bit variable or constant. 0 is silence. Notes 1-127 are tones. Notes 128-255

are white noise. Tones and white noises are in ascending order (i.e. 1 and 128 are the lowest
frequencies, 127 and 255 are the highest). Note 1 is approx 78.74Hz and Note 127 is approx
10,000Hz.

 Duration can be an 8-bit variable or constant that determines how long the Note is played in
approx 10ms increments.

Example
' Star Trek The Next Generation...Theme and ship take-off
 Dim Loop as Byte
 Symbol Pin = PortB.0

Theme:
 Sound Pin,_

[50,60,70,20,85,120,83,40,70,20,50,20,70,20,90,120,90,20,98,160]
 DelayMs 500
 For Loop = 128 to 255 ' Ascending white noises

Sound Pin, [Loop,2] ' For warp drive sound
 Next
 Sound Pin, [43,80,63,20,77,20,71,80,51,20,_
 90,20,85,140,77,20,80,20,85,20,_
 90,20,80,20,85,60,90,60,92,60,87,_
 60,96,70,0,10,96,10,0,10,96,10,0,_
 10,96,30,0,10,92,30,0,10,87,30,0,_
 10,96,40,0,20,63,10,0,10,63,10,0,_
 10,63,10,0,10,63,20]
 DelayMs 10000
 GoTo Theme

Notes
With the excellent I/O characteristics of the microcontroller, a speaker can be driven through a capacitor
directly from the pin of the microcontroller. The value of the capacitor should be determined based on
the frequencies of interest and the speaker load. Piezo speakers can be driven directly.

See also : FreqOut, DTMFout, Sound2.

Proton Amicus18 Compiler

 310
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Sound2

Syntax
Sound2 Pin2, Pin2, [Note1\Note2\Duration {,Note1,Note2\Duration...}]

Overview
Generate specific notes on each of the two defined pins. With the Sound2 command more complex
notes can be played by the microcontroller.

Operators

 Pin1 and Pin2 are Port.Pin constants that specify the output pins on the microcontroller.
 Note1 is a variable or constant specifying frequency in Hertz (Hz, 0 to 16000) of a tone.
 Note2 is a variable or constant specifying frequency in Hertz (Hz, 0 to 16000) of a tone.
 Duration can be a variable or constant that determines how long the Notes are played. In

approx 1ms increments (0 to 65535).

Example 1
' Generate a 2500Hz tone and a 3500Hz tone for 1 second.
' The 2500Hz note is played from the first pin specified (PortB.0),
' and the 3500Hz note is played from the second pin specified (PortB.1).
 Symbol Pin1 = PortB.0
 Symbol Pin2 = PortB.1
 Sound2 Pin1, Pin2, [2500\3500\1000]
 Stop

Example 2
' Play two sets of notes 2500Hz and 3500Hz for 1 second
' and the second two notes, 500Hz and 1500Hz for 2 seconds.
 Symbol Pin1 = PortB.0
 Symbol Pin2 = PortB.1
 Sound2 Pin1, Pin2, [2500\3500\1000, 500\1500\2000]
 Stop

Notes
Sound2 generates two pulses at the required frequency one on each pin specified. The Sound2 com-
mand can be used to play tones through a speaker or audio amplifier. Sound2 can also be used to play
more complicated notes. By generating two frequencies on separate pins, a more defined sound can be
produced. Sound2 is somewhat dependent on the crystal frequency used for its note frequency, and
duration.

Sound2 does not require any filtering on the output, and produces a cleaner note than FreqOut. How-
ever, unlike FreqOut, the note is not a Sine wave. See diagram:

See also : FreqOut, DTMFout, Sound.

R1
220

R2
220

PIN 1

PIN 2

Proton Amicus18 Compiler

 311
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Stop

Syntax
Stop

Overview
Stop halts program execution by sending the microcontroller into an infinite loop.

Example
 If A > 12 Then Stop
 { code data }

If variable A contains a value greater than 12 then stop program execution. code data will not be exe-
cuted.

See also : End, Sleep, Snooze.

Proton Amicus18 Compiler

 312
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Strn

Syntax
Strn Byte Array = Item

Overview
Load a Byte Array with null terminated data, which can be likened to creating a pseudo String variable.

Operators

 Byte Array is the variable that will be loaded with values.
 Item can be another Strn command, a Str command, Str$ command, a String variable, or a

quoted character string

Example
' Load the Byte Array String1 with null terminated characters

 Dim String1[21] as Byte ' Create a Byte array with 21 elements

 Strn String1 = "HELLO WORLD"
 ' Load String1 with characters and null terminate it
 Hrsout Str String1, 13 ' Display the string
 Stop

See also: Arrays as Strings, Str$.

Proton Amicus18 Compiler

 313
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Str$

Syntax
 Str Byte Array = Str$ (Modifier Variable)
or
 String = Str$ (Modifier Variable)

Overview
Convert a Decimal, Hexadecimal, Binary, or Floating Point value or variable into a null terminated string
held in a byte array, or a String variable. For use only with the Str and Strn commands, and real String
variables.

Operators

 Modifier is one of the standard modifiers used with Print, Rsout, Hserout etc. See list below.
 Variable is a variable that holds the value to convert. This may be a Bit, Byte, Word, Dword, or

Float.
 Byte Array must be of sufficient size to hold the resulting conversion and a terminating null

character (0).
 String must be of sufficient size to hold the resulting conversion.

Notice that there is no comma separating the Modifier from the Variable. This is because the compiler
borrows the format and subroutines used in Print. Which is why the modifiers are the same:

 Bin{1..32} Convert to binary digits
 Dec{1..10} Convert to decimal digits
 Hex{1..8} Convert to hexadecimal digits
 Sbin{1..32} Convert to signed binary digits
 Sdec{1..10} Convert to signed decimal digits
 Shex{1..8} Convert to signed hexadecimal digits
 Ibin{1..32} Convert to binary digits with a preceding '%' identifier
 Idec{1..10} Convert to decimal digits with a preceding '#' identifier
 Ihex{1..8} Convert to hexadecimal digits with a preceding '$' identifier
 ISbin{1..32} Convert to signed binary digits with a preceding '%' identifier
 ISdec{1..10} Convert to signed decimal digits with a preceding '#' identifier
 IShex{1..8} Convert to signed hexadecimal digits with a preceding '$' identifier

Example 1
' Convert a Word variable to a String of characters in a Byte array.
 Dim String1[11] as Byte ' Create byte array for converted value
 Dim WordVar1 as Word
 WordVar1 = 1234 ' Load the variable with a value
 Strn String1 = Str$(Dec WordVar1) ' Convert the Integer to a String
 Hrsout Str String1,13 ' Display the string
 Stop

Example 2
' Convert a Dword variable to a String of characters in a Byte array.
 Dim String1[11] as Byte ' Create byte array for converted value
 Dim DwordVar1 as Dword
 DwordVar1 = 1234 ' Load the variable with a value
 Strn String1 = Str$(Dec DwordVar1) ' Convert the Integer to a String
 Hrsout Str String1, 13 ' Display the string
 Stop

Proton Amicus18 Compiler

 314
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Example 3
' Convert a Float variable to a String of characters in a Byte array.
 Dim String1[11] as Byte ' Create byte array for converted value
 Dim Flt1 as Float
 Flt1 = 3.14 ' Load the variable with a value
 Strn String1 = Str$(Dec Flt1) ' Convert the Float to a String
 Hrsout Str String1, 13 ' Display the string
 Stop

Example 4
' Convert a Word variable to a Binary String of characters in an array.
 Dim String1[34] as Byte ' Create byte array for converted value
 Dim WordVar1 as Word
 WordVar1 = 1234 ' Load the variable with a value
 Strn String1 = Str$(Bin WordVar1) ' Convert the Integer to a String
 Hrsout Str String1, 13 ' Display the string
 Stop

If we examine the resulting string (Byte Array) converted with example 2, it will contain:

 character 1, character 2, character 3, character 4, 0

The zero is not character zero, but value zero. This is a null terminated string.

Notes
The Byte Array created to hold the resulting conversion, must be large enough to accommodate all the
resulting digits, including a possible minus sign and preceding identifying character. %, $, or # if the I
version modifiers are used. The compiler will try and warn you if it thinks the array may not be large
enough, but this is a rough guide, and you as the programmer must decide whether it is correct or not.
If the size is not correct, any adjacent variables will be overwritten, with potentially catastrophic results.

See also : Creating and using Strings, Strn, Arrays as Strings.

Proton Amicus18 Compiler

 315
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Swap

Syntax
Swap Variable, Variable

Overview
Swap any two variable's values with each other.

Operators

 Variable is the value to be swapped

Example
' If Dog = 2 and Cat = 10 then by using the swap command
' Dog will now equal 10 and Cat will equal 2.

 Var1 = 10 ' Var1 equals 10
 Var2 = 20 ' Var2 equals 20
 Swap Var1, Var2 ' Var2 now equals 20 and Var1 now equals 10

Proton Amicus18 Compiler

 316
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Symbol

Syntax
Symbol Name { = } Value

Overview
Assign an alias to a register, variable, or constant value

Operators

 Name can be any valid identifier.
 Value can be any previously declared variable, system register, or a Register.Bit combination.

The equals '=' character is optional, and may be omitted if desired.

When creating a program it can be beneficial to use identifiers for certain values that don't change:

 Symbol Meter = 1
 Symbol Centimetre = 100
 Symbol Millimetre = 1000

This way you can keep your program very readable and if for some reason a constant changes later,
you only have to make one change to the program to change all the values. Another good use of the
constant is when you have values that are based on other values.

 Symbol Meter = 1
 Symbol Centimetre = Meter / 100
 Symbol Millimetre = Centimetre / 10

In the example above you can see how the centimetre and millimetre were derived from the Meter.

Another use of the Symbol command is for assigning Port.Bit constants:

 Symbol LED = PortA.0
 High LED

In the above example, whenever the text LED is encountered, Bit-0 of PortA is actually referenced.

Floating point constants may also be created using Symbol by simply adding a decimal point to a value.

 Symbol PI = 3.14 ' Create a floating point constant named PI
 Symbol FlNum = 5.0 ' Create a floating point constant with the value 5

Floating point constant can also be created using expressions.

' Create a floating point constant holding the result of the expression
 Symbol Quanta = 5.0 / 1024

Notes
Symbol cannot create new variables, it simply aliases an identifier to a previously assigned variable, or
assigns a constant to an identifier.

Proton Amicus18 Compiler

 317
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Toggle

Syntax
Toggle Port.Bit

Overview
Sets a pin to output mode and reverses the output state of the pin, changing 0 to 1 and 1 to 0.

Operators

 Port.Bit can be any valid Port and Bit combination.

Example
 Low RB0 ' Make bit-0 of PortB an output an pull low
 While 1 = 1 ' Create an infinite loop
 Toggle RB0 ' And now reverse the pin
 DelayMs 500 ' Wait for 500 ms
 Wend

See also : Clear, High, Low, Set.

Proton Amicus18 Compiler

 318
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

ToLower

Syntax
Destination String = ToLower Source String

Overview
Convert the characters from a source string to lower case.

Overview

 Destination String can only be a String variable, and should be large enough to hold the cor-
rect amount of characters extracted from the Source String.

 Source String can be a String variable, or a Quoted String of Characters. The Source String can
also be a Byte, Word, Byte Array, Word Array or Float variable, in which case the value contained
within the variable is used as a pointer to the start of the Source String's address in RAM. A third
possibility for Source String is a LABEL name, in which case a null terminated Quoted String of
Characters is read from a Cdata table.

Example 1
' Convert the characters from SourceString to lowercase into DestString

 Dim SourceString as String * 20 ' Create a String of 20 characters
 Dim DestString as String * 20 ' Create another String

 SourceString = "HELLO WORLD" ' Load the source string with characters
 DestString = ToLower SourceString ' Convert to lowercase
 Hrsout DestString , 13 ' Display the result, which will be "hello world"

Example 2
' Convert the characters from a Quoted Character String to lowercase
' into DestString

 Dim DestString as String * 20 ' Create a String of 20 characters

 DestString = ToLower "HELLO WORLD" ' Convert to lowercase
 Hrsout DestString, 13 ' Display the result, which will be "hello world"

Example 3
' Convert to lowercase from SourceString into DestString using a pointer to
' SourceString

 Dim SourceString as String * 20 ' Create a String of 20 characters
 Dim DestString as String * 20 ' Create another String
 ' Create a Word variable to hold the address of SourceString
 Dim StringAddr as Word
 SourceString = "HELLO WORLD" ' Load the source string with characters
 ' Locate the start address of SourceString in RAM
 StringAddr = VarPtr SourceString
 DestString = ToLower StringAddr ' Convert to lowercase
 Hrsout DestString ,13 ' Display the result, which will be "hello world"

Proton Amicus18 Compiler

 319
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Example 4
' Convert chars from a Cdata table to lowercase and place into DestString

 Dim DestString as String * 20 ' Create a String of 20 characters

 DestString = ToLower Source ' Convert to lowercase
 Hrsout DestString, 13 ' Display the result, which will be "hello world"
 Stop

' Create a null terminated string of characters in code memory
Source:
 Cdata "HELLO WORLD", 0

See also : Creating and using Strings, Creating and using Virtual Strings with Cdata, Cdata,

Len, Left$, Mid$, Right$, Str$, ToUpper, VarPtr.

Proton Amicus18 Compiler

 320
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

ToUpper

Syntax
Destination String = ToUpper (Source String)

Overview
Convert the characters from a source string to UPPER case.

Overview

 Destination String can only be a String variable, and should be large enough to hold the cor-
rect amount of characters extracted from the Source String.

 Source String can be a String variable, or a Quoted String of Characters . The Source String
can also be a Byte, Word, Byte Array, Word Array or Float variable, in which case the value con-
tained within the variable is used as a pointer to the start of the Source String's address in RAM.
A third possibility for Source String is a LABEL name, in which case a null terminated Quoted
String of Characters is read from a Cdata table.

Example 1
' Convert the characters from SourceString to UpperCase and place into
' DestString

 Dim SourceString as String * 20 ' Create a String of 20 characters
 Dim DestString as String * 20 ' Create another String

 SourceString = "hello world" ' Load the source string with characters
 DestString = ToUpper SourceString ' Convert to uppercase
 Hrsout DestString , 13 ' Display the result, which will be "HELLO WORLD"
 Stop

Example 2
' Convert the chars from a Quoted Character String to UpperCase
' and place into DestString

 Dim DestString as String * 20 ' Create a String of 20 characters

 DestString = ToUpper "hello world" ' Convert to uppercase
 Hrsout DestString, 13 ' Display the result, which will be "HELLO WORLD
 Stop

Example 3
' Convert to UpperCase from SourceString into DestString using a pointer to
' SourceString
 Dim SourceString as String * 20 ' Create a String of 20 characters
 Dim DestString as String * 20 ' Create another String
 ' Create a Word variable to hold the address of SourceString
 Dim StringAddr as Word
 ' Load the source string with characters
 SourceString = "hello world"
 ' Locate the start address of SourceString in RAM
 StringAddr = VarPtr SourceString
 DestString = ToUpper StringAddr ' Convert to uppercase
 Hrsout DestString, 13 ' Display the result, which will be "HELLO WORLD"
 Stop

Proton Amicus18 Compiler

 321
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Example 4
' Convert chars from Cdata table to uppercase and place into DestString

 Dim DestString as String * 20 ' Create a String of 20 characters

 DestString = ToUpper Source ' Convert to uppercase
 Hrsout DestString, 13 ' Display the result, which will be "HELLO WORLD"
 Stop

' Create a null terminated string of characters in code memory
Source:
 Cdata "hello world", 0

See also : Creating and using Strings, Creating and using Virtual Strings with Cdata, Cdata,
 Len, Left$, Mid$, Right$, Str$, ToLower, VarPtr .

Proton Amicus18 Compiler

 322
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Toshiba_Command

Syntax
Toshiba_Command Command, Value

Overview
Send a command with or without parameters to a Toshiba T6963 graphic LCD.

Operators

 Command can be a constant, variable, or expression, that contains the command to send to the
LCD. This will always be an 8-bit value.

 Value can be a constant, variable, or expression, that contains an 8-bit or 16-bit parameter as-
sociated with the command. An 8-bit value will be sent as a single parameter, while a 16-bit
value will be sent as two parameters. Parameters are optional as some commands do not require
any. Therefore if no parameters are included, only a command is sent to the LCD.

Because the size of the parameter is vital to the correct operation of specific commands, you can force
the size of the parameter sent by issuing either the text “Byte” or “Word” prior to the parameter’s value.

Toshiba_Command $C0, Byte $FF01 ' Send the low byte of the 16-bit value.
Toshiba_Command $C0, Word $01 ' Send a 16-bit value regardless.

The explanation of each command is too lengthy for this document, however they can be found in the
Toshiba T6963 datasheet. The example program shown below contains a condensed list of commands.

Example
' Pan two pages of text left and right on a 128x64 Toshiba T6963 graphic LCD
 Declare LCD_Type = Toshiba ' Use a Toshiba T6963 graphic LCD
'
' LCD interface pin assignments
'
 Declare LCD_DTPort = PortB ' LCD’s Data port
 Declare LCD_WRPin = PortC.2 ' LCD’s WR line
 Declare LCD_RDPin = PortC.1 ' LCD’s RD line
 Declare LCD_CEPin = PortC.0 ' LCD’s CE line
 Declare LCD_CDPin = PortA.1 ' LCD’s CD line
 Declare LCD_RSTPin = PortA.0 ' LCD’s Reset line (Optional)
'
' LCD characteristics
'
 Declare LCD_Text_Pages = 2 ' Choose two text pages
 Declare LCD_RAM_Size = 8192 ' Amount of RAM the LCD contains
 Declare LCD_X_Res = 128 ' LCD’s X Resolution
 Declare LCD_Y_Res = 64 ' LCD’s Y Resolution
 Declare LCD_Font_Width = 6 ' The width of the LCD’s font
 Declare LCD_Text_Home_Address = 0 ' Ensure text RAM starts at address 0

Proton Amicus18 Compiler

 323
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

' LCD Display Constants:
' Register set commands:
 Symbol T_Cursor_POINTER_Set = $21 ' Cursor Pointer Set
' Offset Register Set (CGRAM start address offset)

Symbol T_OFFset_REG_Set = $22
 Symbol T_Addr_POINTER_Set = $24 ' Address Pointer Set
' Control Word Set commands:

Symbol T_Text_Home_Set = $40 ' Text Home Address Set
 Symbol T_Text_AREA_Set = $41 ' Text Area Set
 Symbol T_GRAPH_Home_Set = $42 ' Graphics Home address Set
 Symbol T_GRAPH_AREA_Set = $43 ' Graphics Area Set
' Mode Set commands:
 Symbol T_or_MODE = $80 ' or mode
 Symbol T_xor_MODE = $81 ' xor mode
 Symbol T_and_MODE = $83 ' and mode

Symbol T_Text_ATTR_MODE = $84 ' Text Attribute mode
Symbol T_INT_CG_MODE = $80 ' Internal CG ROM mode
Symbol T_EXT_CG_MODE = $88 ' External CG RAM mode

' Display Mode commands (or together required bits):
Symbol T_DISPLAY_OFF = $90 ' Display off
Symbol T_BLINK_ON = $91 ' Cursor Blink on
Symbol T_Cursor_ON = $92 ' Cursor on
Symbol T_Text_ON = $94 ' Text mode on
Symbol T_Graphic_ON = $98 ' Graphic mode on
Symbol T_Text_and_GRAPH_ON = $9C ' Text and graphic mode on

' Cursor Pattern Select:
Symbol T_Cursor_1LINE = $A0 ' 1 line cursor
Symbol T_Cursor_2LINE = $A1 ' 2 line cursor
Symbol T_Cursor_3LINE = $A2 ' 3 line cursor
Symbol T_Cursor_4LINE = $A3 ' 4 line cursor
Symbol T_Cursor_5LINE = $A4 ' 5 line cursor
Symbol T_Cursor_6LINE = $A5 ' 6 line cursor
Symbol T_Cursor_7LINE = $A6 ' 7 line cursor
Symbol T_Cursor_8LINE = $A7 ' 8 line cursor

' Data Auto Read/Write:
Symbol T_Data_AUTO_WR = $B0 ' Data write with auto increment of address
Symbol T_Data_AUTO_RD = $B1 ' Data read with auto increment of address
Symbol T_AUTO_Data_Reset = $B2 ' Disable auto read/write

' Data Read/Write:
Symbol T_Data_WR_Inc = $C0 ' Data write and increment address
Symbol T_Data_RD_Inc = $C1 ' Data read and increment address
Symbol T_Data_WR_Dec = $C2 ' Data write and decrement address
Symbol T_Data_RD_Dec = $C3 ' Data read and decrement address
Symbol T_Data_WR = $C4 ' Data write with no address change
Symbol T_Data_RD = $C5 ' Data read with no address change

' Screen Peek:
Symbol T_SCREEN_Peek = $E0 ' Read the display

' Screen Copy:
Symbol T_SCREEN_COPY = $E8 ' Copy a line of the display

' Bit Set/Reset (or with bit number 0-7):
Symbol T_Bit_Reset = $F0 ' Pixel clear
Symbol T_Bit_Set = $F8 ' Pixel set

Proton Amicus18 Compiler

 324
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

' Create two variables for the demonstration

Dim PAN_Loop as Byte ' Holds the amount of pans to perform
Dim Ypos as Byte ' Holds the Y position of the displayed text

'
' The Main program loop starts here
'

DelayMs 200 ' Wait for things to stabilise
 Cls ' Clear and initialise the LCD
' Place text on two screen pages

For Ypos = 1 to 6
Print At Ypos, 0, " THIS IS PAGE ONE THIS IS PAGE TWO"

Next
' Draw a box around the display

Line 1, 0, 0, 127, 0 ' Top line
LineTo 1, 127, 63 ' Right line
LineTo 1, 0, 63 ' Bottom line
LineTo 1, 0, 0 ' Left line

' Pan from one screen to the next then back
While 1 = 1 ' Create an infinite loop

For PAN_Loop = 0 to 22
 ' Increment the Text home address
 Toshiba_Command T_Text_Home_Set, Word PAN_Loop
 DelayMs 200
 Next

DelayMs 200
 For PAN_Loop = 22 to 0 Step –1

' Decrement the Text home address
 Toshiba_Command T_Text_Home_Set, Word PAN_Loop
 DelayMs 200
 Next

DelayMs 200
Wend ' Do it forever

Notes
When the Toshiba LCD’s Declares are issued within the BASIC program, several internal variables and
constants are automatically created that contain the Port and Bits used by the actual interface and also
some constant values holding valuable information concerning the LCD’s RAM boundaries and setup.
These variables and constants can be used within the BASIC or Assembler environment. The internal
variables and constants are:

Variables.
_ _LCD_DTPort The Port where the LCD’s data lines are attached.
_ _LCD_WRPort The Port where the LCD’s WR pin is attached.
_ _LCD_RDPort The Port where the LCD’s RD pin is attached.
_ _LCD_CEPort The Port where the LCD’s CE pin is attached.
_ _LCD_CDPort The Port where the LCD’s CD pin is attached.
_ _LCD_RSTPort The Port where the LCD’s RST pin is attached.

Proton Amicus18 Compiler

 325
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Constants.
_ _LCD_Type The type of LCD targeted. 0 = Alphanumeric, 1 = Samsung, 2 = Toshiba.
_ _LCD_WRPin The Pin where the LCD’s WR line is attached.
_ _LCD_RDPin The Pin where the LCD’s RD line is attached.
_ _LCD_CEPin The Pin where the LCD’s CE line is attached.
_ _LCD_CDPin The Pin where the LCD’s CD line is attached.
_ _LCD_RSTPin The Pin where the LCD’s RST line is attached.
_ _LCD_Text_Pages The amount of TEXT pages chosen.
_ _LCD_Graphic_Pages The amount of Graphic pages chosen.
_ _LCD_RAM_Size The amount of RAM that the LCD contains.
_ _LCD_X_Res The X resolution of the LCD. i.e. Horizontal pixels.
_ _LCD_Y_Res The Y resolution of the LCD. i.e. Vertical pixels.
_ _LCD_Font_Width The width of the font. i.e. 6 or 8.
_ _LCD_Text_AREA The amount of characters on a single line of TEXT RAM.
_ _LCD_Graphic_AREA The amount of characters on a single line of Graphic RAM.
_ _LCD_Text_Home_Address The Starting address of the TEXT RAM.
_ _LCD_Graphic_Home_Address The Starting address of the Graphic RAM.
_ _LCD_CGRAM_Home_Address The Starting address of the CG RAM.
_ _LCD_End_OF_Graphic_RAM The Ending address of Graphic RAM.
_ _LCD_CGRAM_OFFset The Offset value for use with CG RAM.

Notice that each name has two underscores preceding it. This should ensure that duplicate names are
not defined within the BASIC environment.

It may not be apparent straight away why the variables and constants are required, however, the To-
shiba LCDs are capable of many tricks such as panning, page flipping, text manipulation etc, and all
these require some knowledge of RAM boundaries and specific values relating to the resolution of the
LCD used.

See also : LCDRead, LCDWrite, Pixel, Plot, Toshiba_UDG,UnPlot. See Print for circuit.

Proton Amicus18 Compiler

 326
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Toshiba_UDG

Syntax
Toshiba_UDG Character, [Value {, Values }]

Overview
Create User Defined Graphics for a Toshiba T6963 graphic LCD.

Operators

 Character can be a constant, variable, or expression, that contains the character to define. User
defined characters start from 160 to 255.

 Value\s is a list of constants, variables, or expressions, that contain the information to build the
User Defined character. There are also some modifiers that can be used in order to access UDG
data from various tables.

Example
' Create four User Defined Characters using four different methods
 Declare LCD_Type = Toshiba ' Use a Toshiba T6963 graphic LCD
'
' LCD interface pin assignments
'
 Declare LCD_DTPort = PortB ' LCD’s Data port
 Declare LCD_WRPin = PortC.2 ' LCD’s WR line
 Declare LCD_RDPin = PortC.1 ' LCD’s RD line
 Declare LCD_CEPin = PortC.0 ' LCD’s CE line
 Declare LCD_CDPin = PortA.1 ' LCD’s CD line
 Declare LCD_RSTPin = PortA.0 ' LCD’s Reset line (Optional)
'
' LCD characteristics
'
 Declare LCD_X_Res = 128 ' LCD’s X Resolution
 Declare LCD_Y_Res = 64 ' LCD’s Y Resolution
 Declare LCD_Font_Width = 8 ' The width of the LCD’s font
 Dim UDG_3[8] as Byte ' Create a byte array to hold UDG data
 Dim DemoChar as Byte ' Create a variable for the demo loop
' Create some User Defined Graphic data in eeprom memory
UDG_1 Edata $18, $18, $3C, $7E, $DB, $99, $18, $18
'
' The main demo loop starts here
 DelayMs 200 ' Wait for things to stabilise
 Cls ' Clear both text and graphics of the LCD
' Load the array with UDG data
 Str UDG_3 = $18, $18, $99, $DB, $7E, $3C, $18, $18
'
' Print user defined graphic chars 160, 161, 162, and 162 on the LCD
'
 Print At 1, 0, "Char 160 = ", 160
 Print At 2, 0, "Char 161 = ", 161
 Print At 3, 0, "Char 162 = ", 162
 Print At 4, 0, "Char 163 = ", 163

Proton Amicus18 Compiler

 327
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Toshiba_UDG 160, [Estr UDG_1] ' Place UDG edata into character 160
Toshiba_UDG 161, [UDG_2] ' Place UDG cdata into character 161
Toshiba_UDG 162, [Str UDG_3\8] ' Place UDG array into character 162
' Place values into character 163
Toshiba_UDG 163, $0C, $18, $30, $FF, $FF, $30, $18, $0C]
While 1 = 1 ' Create an infinite loop
 For DemoChar = 160 to 163 ' Cycle through characters 160 to 163
 Print At 0, 0, DemoChar ' Display the character
 DelayMs 200 ' A small delay
 Next ' Close the loop
Wend ' Do it forever
'
' Create some User Defined Graphic data in code memory
UDG_2: Cdata $30, $18, $0C, $FF, $FF, $0C, $18, $30

Notes
User Defined Graphic values can be stored in on-board eeprom memory by the use of Edata tables, and
retrieved by the use of the Estr modifier. Eight, and only Eight, values will be read with a single Estr:

UDG_1 Edata $18, $18, $3C, $7E, $DB, $99, $18, $18
 Toshiba_UDG 160, [Estr UDG_1]

User Defined Graphic values can also be stored in code memory, on devices that can access their own
code memory, and retrieved by the use of a label name associated with a Cdata table. Eight, and only
Eight, values will be read with a single label name:

 Toshiba_UDG 161, [UDG_2]
UDG_2:

Cdata $30, $18, $0C, $FF, $FF, $0C, $18, $30

The use of the Str modifier will retrieve values stored in an array, however, this is not recommended as
it will waste precious RAM.

The Toshiba LCD’s font is designed in an 8x8 grid or a 6x8 grid depending on the font size chosen. The
diagram below shows a designed character and its associated values.

See also : LCDRead, LCDWrite, Pixel, Plot, Toshiba_Command, UnPlot.
 See Print for circuit.

msb
%00000000 = $18

lsb

6 x 8 Font

%00011000 = $18
%00111100 = $3C
%01111110 = $7E
%11011011 = $DB
%10011001 = $99
%00011000 = $18
%00000000 = $18

8 x 8 Font

Proton Amicus18 Compiler

 328
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

UnPlot

Syntax
UnPlot Ypos, Xpos

Overview
Clear an individual pixel on a graphic LCD.

Operators

 Xpos can be a constant, variable, or expression, pointing to the X-axis location of the pixel to
clear. This must be a value of 0 to the X resolution of the LCD. Where 0 is the far left row of pix-
els.

 Ypos can be a constant, variable, or expression, pointing to the Y-axis location of the pixel to
clear. This must be a value of 0 to the Y resolution of the LCD. Where 0 is the top column of pix-
els.

Example
 Declare LCD_Type = Graphic ' Use a Graphic LCD

' Graphic LCD Pin Assignments
 Declare LCD_DTPort = PortB
 Declare LCD_RSPin = PortC.2
 Declare LCD_RWPin = PortA.0
 Declare LCD_ENPin = PortA.5
 Declare LCD_CS1Pin = PortA.1
 Declare LCD_CS2Pin = PortA.2

 Dim Xpos as Byte
 Cls ' Clear the LCD
' Draw a line across the LCD
 While 1 = 1 ' Create an infinite loop
 For Xpos = 0 to 127
 Plot 20, Xpos
 DelayMs 10
 Next
' Now erase the line
 For Xpos = 0 to 127
 UnPlot 20, Xpos
 DelayMs 10
 Next
Wend

See also : LCDRead, LCDWrite, Pixel, Plot. See Print for circuit.

Proton Amicus18 Compiler

 329
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Val

Syntax
Variable = Val (Array Variable, Modifier)

Overview
Convert a Byte Array or String containing Decimal, Hexadecimal, or Binary numeric text into it's integer
equivalent.

Operators

 Array Variable is a byte array or string containing the alphanumeric digits to convert and ter-
minated by a null (i.e. value 0).

 Modifier can be Hex, Dec, or Bin. To convert a Hexadecimal string, use the Hex modifier, for
Binary, use the Bin modifier, for Decimal use the Dec modifier.

 Variable is a variable that will contain the converted value. Floating point characters and vari-
ables cannot be converted, and will be rounded down to the nearest integer value.

Example 1
' Convert a string of hexadecimal characters to an integer
 Dim String1 as String * 10 ' Create a String
 Dim WordVar as Word ' Create a variable to hold result
 String1 = "12AF" ' Load the String with Hex digits
 WordVar1 = Val(String1,Hex) ' Convert the String into an integer
 Hrsout Hex WordVar, 13 ' Display the integer as Hex

Example 2
' Convert a string of decimal characters to an integer
 Dim String1 as String * 10 ' Create a String
 Dim WordVar as Word ' Create a variable to hold result
 String1 = "1234" ' Load the String with Decimal digits
 WordVar1 = Val(String1,Dec) ' Convert the String into an integer
 Hrsout Dec WordVar, 13 ' Display the integer as Decimal

Example 3
' Convert a string of binary characters to an integer
 Dim String1 as String * 17 ' Create a String
 Dim WordVar1 as Word ' Create a variable to hold result
 String1 = "1010101010000000" ' Load the String with Binary
 WordVar1 = Val(String1,Bin) ' Convert the String into an integer
 Hrsout Bin WordVar1, 13 ' Display the integer as Binary

Proton Amicus18 Compiler

 330
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Notes
The Val command is not recommended inside an expression, as the results are not predictable. How-
ever, the Val command can be used within an If-Then, While-Wend, or Repeat-Until construct, but
the code produced is not as efficient as using it outside a construct, because the compiler must assume
a worst case scenario, and use Dword comparisons.

 Dim String1 as String * 17 ' Create a String

String1 = "123" ' Load the String with Dec digits
 If Val(String1,Hex) = 123 Then ' Compare the result
 Hrsout Dec Val(String1,Hex), 13
 Else
 Hrsout "Not Equal\r"
 EndIf

See also: Str, Strn, Str$.

Proton Amicus18 Compiler

 331
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

VarPtr

Syntax
Assignment Variable = VarPtr Variable

Overview
Returns the address of the variable in RAM. Commonly known as a pointer to a variable.

Operators

 Assignment Variable can be any of the compiler's variable types, and will receive the pointer
to the variable's address.

 Variable can be any variable name used in the BASIC program.

Proton Amicus18 Compiler

 332
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

While...Wend

Syntax
While Condition
Instructions
Instructions
Wend

or

While Condition { Instructions : } Wend

Overview
Execute a block of instructions while a condition is true.

Example

Var1 = 1
 While Var1 <= 10
 Hrsout Dec Var1, 13
 Var1 = Var1 + 1
 Wend

or

 While PortA.0 = 1: Wend ' Wait for a change on the Port

Notes
While-Wend, repeatedly executes Instructions While Condition is true. When the Condition is no longer
true, execution continues at the statement following the Wend. Condition may be any comparison ex-
pression.

See also : If-Then, Repeat-Until, For-Next.

Proton Amicus18 Compiler

 333
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Xin

Syntax
Xin DataPin, ZeroPin, {Timeout, Timeout Label}, [Variable{,...}]

Overview
Receive X-10 data and store the House Code and Key Code in a variable.

Operators

 DataPin is a constant (0 - 15), Port.Bit, or variable, that receives the data from an X-10 inter-
face. This pin is automatically made an input to receive data, and should be pulled up to 5 Volts
with a 4.7KΩ resistor.

 ZeroPin is a constant (0 - 15), Port.Bit, or variable, that is used to synchronise to a zero-cross
event. This pin is automatically made an input to received the zero crossing timing, and should
also be pulled up to 5 Volts with a 4.7KΩ resistor.

 Timeout is an optional value that allows program continuation if X-10 data is not received within
a certain length of time. Timeout is specified in AC power line half-cycles (approximately 8.33
milliseconds).

 Timeout Label is where the program will jump to upon a timeout.

Example
 Dim HouseKey as Word
Loop:
' Receive X-10 data, go to NoData if none
 Xin PortA.2, PortA.0, 10, NoData, [HouseKey]
' Display X-10 data on the serial terminal
 Hrsout "House=", Dec HouseKey.Byte1, "Key=", Dec HouseKey.Byte0, 13
 GoTo Loop ' Do it forever
NoData:
 Hrsout "No Data", 13
 Stop

Xout and Xin Declares
In order to make the Xin command's results more in keeping with the BASIC Stamp interpreter, two
declares have been included for both Xin and Xout These are.

Declare Xout_Translate = On/Off, True/False or 1/0

and

Declare Xin_Translate = On/Off, True/False or 1/0

Notes
Xin processes data at each zero crossing of the AC power line as received on ZeroPin. If there are no
transitions on this line, Xin will effectively wait forever.

Xin is used to receive information from X-10 devices that can transmit the appropriate data. X-10 mod-
ules are available from a wide variety of sources under several trade names. An interface is required to
connect the microcontroller to the AC power line. The TW-523 for two-way X-10 communications is re-
quired by Xin. This device contains the power line interface and isolates the microcontroller from the AC
line.

Proton Amicus18 Compiler

 334
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

If Variable is a Word sized variable, then each House Code received will be stored in the upper 8-bits of
the Word And each received Key Code will be stored in the lower 8-bits of the Word variable. If Variable
is a Byte sized variable, then only the Key Code will be stored.

The House Code is a number between 0 and 15 that corresponds to the House Code set on the X-10
module A through P.

The Key Code can be either the number of a specific X-10 module or the function that is to be per-
formed by a module. In normal operation, a command is first sent, specifying the X-10 module number,
followed by a command specifying the desired function. Some functions operate on all modules at once
so the module number is unnecessary. Key Code numbers 0-15 correspond to module numbers 1-16.

Warning. Under no circumstances should the microcontroller be connected directly to the AC power
line. Voltage potentials carried by the power line will not only instantly destroy the microcontroller, but
could also pose a serious health hazard.

See also : Xout.

Proton Amicus18 Compiler

 335
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Xout

Syntax
Xout DataPin, ZeroPin, [HouseCode\KeyCode {\Repeat} {, ...}]

Overview
Transmit a HouseCode followed by a KeyCode in X-10 format.

Operators

 DataPin is a constant (0 - 15), Port.Bit, or variable, that transmits the data to an X-10 interface.
This pin is automatically made an output.

 ZeroPin is a constant (0 - 15), Port.Bit, or variable, that is used to synchronise to a zero-cross
event. This pin is automatically made an input to received the zero crossing timing, and should
also be pulled up to 5 Volts with a 4.7KΩ resistor.

 HouseCode is a number between 0 and 15 that corresponds to the House Code set on the X-10
module A through P. The proper HouseCode must be sent as part of each command.

 KeyCode can be either the number of a specific X-10 module, or the function that is to be per-
formed by a module. In normal use, a command is first sent specifying the X-10 module number,
followed by a command specifying the function required. Some functions operate on all modules
at once so the module number is unnecessary. KeyCode numbers 0-15 correspond to module
numbers 1-16.

 Repeat is an optional operator, and if it is not included, then a repeat of 2 times (the minimum)
is assumed. Repeat is normally reserved for use with the X-10 Bright and Dim commands.

Example
 Dim House as Byte
 Dim Unit as Byte
' Create some aliases of the keycodes
 Symbol UnitOn = %10010 ' Turn module on
 Symbol UnitOff = %11010 ' Turn module off
 Symbol UnitsOff = %11100 ' Turn all modules off
 Symbol LightsOn = %10100 ' Turn all light modules on
 Symbol LightsOff = %10000 ' Turn all light modules off
 Symbol Bright = %10110 ' Brighten light module
 Symbol DimIt = %11110 ' Dim light module
' Create aliases for the pins used
 Symbol DataPin = PortA.1
 Symbol ZeroC = PortA.0
 House = 0 ' Set house to 0 (A)
 Unit = 8 ' Set unit to 8 (9)
' Turn on unit 8 in house 0
 Xout DataPin ,ZeroC,[House \ Unit,House \ UnitOn]
' Turn off all the lights in house 0
 Xout DataPin ,ZeroC,[House \ LightsOff]
 Xout DataPin ,ZeroC,[House \ 0]
' Blink light 0 on and off every 10 seconds
Loop:
 Xout DataPin ,ZeroC,[House \ UnitOn]
 DelayMs 10000 ' Wait 10 seconds
 Xout DataPin ,ZeroC,[House \ UnitOff]
 DelayMs 10000 ' Wait 10 seconds
 GoTo Loop

Proton Amicus18 Compiler

 336
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Xout and Xin Declares
In order to make the Xout command's results more in keeping with the BASIC Stamp interpreter, two
declares have been included for both Xin and Xout. These are.

Declare Xout_Translate = On/Off, True/False or 1/0
and
Declare Xin_Translate = On/Off, True/False or 1/0

Notes
Xout only transmits data at each zero crossing of the AC power line, as received on ZeroPin. If there
are no transitions on this line, Xout will effectively wait forever.

Xout is used to transmit information from X-10 devices that can receive the appropriate data. X-10
modules are available from a wide variety of sources under several trade names. An interface is required
to connect the microcontroller to the AC power line. Either the PL-513 for send only, or the TW-523 for
two-way X-10 communications are required. These devices contain the power line interface and isolate
the microcontroller from the AC line.

The KeyCode numbers and their corresponding operations are listed below:

 KeyCode KeyCode No. Operation
 UnitOn %10010 Turn module on
 UnitOff %11010 Turn module off
 UnitsOff %11100 Turn all modules off
 LightsOn %10100 Turn all light modules on
 LightsOff %10000 Turn all light modules off
 Bright %10110 Brighten light module
 Dim %11110 Dim light module

Wiring to the X-10 interfaces requires 4 connections. Output from the X-10 interface (zero crossing and
receive data) are open-collector, which is the reason for the pull-up resistors on the microcontroller.

Wiring for each type of interface is shown below:

PL-513 Wiring
 Wire No. Wire Colour Connection
 1 Black Zero crossing output
 2 Red Zero crossing common
 3 Green X-10 transmit common
 4 Yellow X-10 transmit input

TW-523 Wiring
 Wire No. Wire Colour Connection
 1 Black Zero crossing output
 2 Red Common
 3 Green X-10 receive output
 4 Yellow X-10 transmit input

Warning. Under no circumstances should the microcontroller be connected directly to the AC power
line. Voltage potentials carried by the power line will not only instantly destroy the microcontroller, but
could also pose a serious health hazard.

See also : Xin.

Proton Amicus18 Compiler

 337
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Using the Optimiser
The underlying assembler code produced by the compiler is the single most important element to a
good language, because compact assembler not only means more can be squeezed into the tight con-
fines of the microcontroller, but also the code runs faster which allows more complex operations to be
performed. This is why the compiler now has a “dead code removal” pass as standard which will remove
redundant mnemonics, and replace certain combinations of mnemonics with a single mnemonic. WREG
tracking is also implemented as standard which helps eliminate unnecessary loading of a constant value
into the WREG.

And even though the compiler already produces good underlying assembler mnemonics, there is always
room for improvement, and that improvement is achieved by a separate optimising pass.

The optimiser is enabled by issuing the Declare:

Declare Optimiser_Level = n

Where n is the level of optimisation required.

The Declare should be placed at the top of the BASIC program, but anywhere in the code is actually
acceptable because once the optimiser is enabled it cannot be disabled later in the same program.

The optimiser has 3 levels, 4 if you include Off as a level.

 Level 0 disables the optimiser.
 Level 1 (Compiler Default) Chooses the appropriate branching mnemonics and will replace

Call with RCall and GoTo with Bra whenever appropriate, saving 1 byte of code space every
time.

 Level 2 Further re-arranging of branching operations.
 Level 3 Re-arranges conditional branching operations. This is an important optimising pass

because a single program can implement many decision making mnemonics.

You must be aware that optimising code further that value 1, can, in some circumstances, have a detri-
mental effect on a program, this is true of all optimisation on all compilers and is something that you
should take into account. Therefore, always try to write and test your program without the optimiser
pass. Then once it’s working as expected, enable the optimiser a level at a time. However, this is not
always possible with larger programs that will not fit within the microcontroller without optimisation. In
this circumstance, choose level 1 optimisation whenever the code is reaching the limits of the microcon-
troller, testing the code as you go along.

Proton Amicus18 Compiler

 338
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Caveats
Of course there’s no such thing as a free lunch, and there are some features that cannot be used when
implementing the optimiser.

Do not use the Movfw macro as this will cause problems withing the Asm listing, use the correct mne-
monic of Movf Var, W.

Do not use the assembler LIST and NOLIST directives, as the optimiser uses these to sculpt the final
Asm used.

Declare Dead_Code_Remove = On/Off

The above declare removes some redundant op-codes from the underlying Asm code.

 Removal of redundant Bank Switching mnemonics.
 Removal of redundant Movwf mnemonics if preceded by a Movf Var,W mnemonic.
 Removal of redundant Movf Var,W mnemonics if preceded by a Movwf mnemonic.
 Removal of redundant Andlw mnemomics if preceded by another Andlw mnemonic.
 Replaced a Call-Return mnemonic pair with a single GoTo mnemonic.

Proton Amicus18 Compiler

 339
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Using the Preprocessor
A preprocessor directive is a non executable statement that informs the compiler how to compile. For
example, some microcontroller devices have certain hardware features that others don’t. A pre-
processor directive can be used to inform the compiler to add or remove source code, based on that
particular devices ability to support that hardware.

It’s important to note that the preprocessor works with directives on a line by line basis. It is therefore
important to ensure that each directive is on a line of its own. Don’t place directives and source code on
the same line.

It’s also important not to mistake the compiler’s preprocessor with the assembler’s preprocessor. Any
directive that starts with a dollar “$” is the compiler’s preprocessor, and any directive that starts with a
hash “#” is the assembler’s preprocessor. They cannot be mixed, as each has no knowledge of the
other.

Preprocessor directives can be nested in the same way as source code statements. For example:

$ifdef MyValue
 $if MyValue = 10
 Symbol CodeConst = 10
 $else
 Symbol CodeConst = 0
 $endif
$endif

Preprocessor directives are lines included in the code of the program that are not BASIC language
statements but directives for the preprocessor itself. The preprocessor is actually a separate entity to
the compiler, and, as the name suggests, preprocesses the BASIC code before the actual compiler sees
it. Preprocessor directives are always preceded by a dollar sign “$”.

Preprocessor Directives
To define preprocessor macros the directive $define is used. Its format is:

$define identifier replacement

When the preprocessor encounters this directive, it replaces any occurrence of identifier in the rest of
the code by replacement. This replacement can be an expression, a statement, a block, or simply any-
thing. The preprocessor does not understand BASIC, it simply replaces any occurrence of identifier by
replacement.

$define TableSize 100

Dim Table1[TableSize] as Byte
Dim Table2[TableSize] as Byte

After the preprocessor has replaced TableSize, the code becomes equivalent to:

Dim Table1[100] as Byte
Dim Table2[100] as Byte

Proton Amicus18 Compiler

 340
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The use of $define as a constant definer is only one aspect of the preprocessor, and $define can also
work with parameters to define pseudo function macros. The syntax then is:

$define identifier (parameter list) replacement

A simple example of a function-like macro is:

$define RadToDeg(x) ((x) * 57.29578)

This defines a radians to degrees conversion which can be used as:

Var1 = RadToDeg(34)

This is expanded in-place, so the caller does not need to clutter copies of the multiplication constant
throughout the code.

Precedence
Note that the example macro RadToDeg(x) given above uses normally unnecessary parentheses both
around the argument and around the entire expression. Omitting either of these can lead to unexpected
results. For example:

Macro defined as:
$define RadToDeg(x) (x * 57.29578)
will expand
RadToDeg(a + b)
to
(a + b * 57.29578)

Macro defined as
$define RadToDeg(x) (x) * 57.29578
will expand
1 / RadToDeg(a)
to
1 / (a) * 57.29578

neither of which give the intended result.

Not all replacement tokens can be passed back to an assignment using the equals operator. If this is the
case, the code needs to be similar to BASIC Stamp syntax, where the assignment variable is the last pa-
rameter:

 $define GetMax(x,y,z) If x > y Then z = x : Else : z = y

This would replace any occurrence of GetMax followed by three parameter (argument) by the replace-
ment expression, but also replacing each parameter by its identifier, exactly as would be expected of a
function.

Dim Var1 as Byte
Dim Var2 as Byte
Dim Var3 as Byte

Var1 = 100
Var2 = 99
GetMax(Var1, Var2, Var3)

Proton Amicus18 Compiler

 341
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

The previous would be placed within the BASIC program as:

Dim Var1 as Byte
Dim Var2 as Byte
Dim Var3 as Byte

Var1 = 100
Var2 = 99
If Var1 > Var2 Then Var3 = Var1 : Else : Var3 = Var2

Notice that the third parameter “Var3” is loaded with the result.

A macro lasts until it is undefined with the $undef preprocessor directive:

$define TableSize 100

Dim Table1[TableSize] as Byte
$undef TableSize
$define TableSize 200

Dim Table2[TableSize] as Byte

This would generate the same code as:

Dim Table1[100] as Byte
Dim Table2[200] as Byte

Because preprocessor replacements happen before any BASIC syntax check, macro definitions can be a
tricky feature, so be careful. Code that relies heavily on complicated macros may be difficult to under-
stand, since the syntax they expect is, on many occasions, different from the regular expressions pro-
grammers expect in Proton Amicus18 BASIC.

Preprocessor directives only extend across a single line of code. As soon as a newline character is found
(end of line), the preprocessor directive is considered to end. The only way a preprocessor directive can
extend through more than one line is by preceding the newline character at the end of the line by a
comment character (‘) followed by a new line. No comment text can follow the comment character. For
example:

$define GetMax(x,y,z) If x > y Then '
 z = x '
 Else '
 z = y '
 EndIf

GetMax(Var1, Var2, Var3)

The compiler will see:

If Var1 > Var2 Then
Var3 = Var1

Else
Var3 = Var2

EndIf

Note that parenthesis is always required around the $define declaration and its use within the pro-
gram. Parenthesis for $define can be either round or square brackets.

Proton Amicus18 Compiler

 342
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

If the replacement argument is not included within the $define directive, the identifier argument will
output nothing. However, it can be used as an identifier for conditional code:

$define DoThis

$ifdef DoThis
{Rest of Code here}
$endif

$undef identifier
This removes any existing definition of the user macro identifier.

$eval Expression
In normal operation, the $define directive simply replaces text, however, using the $eval directive al-
lows constant value expressions to be evaluated before replacement within the BASIC code. For exam-
ple:

$define Expression(Prm1) $eval Prm1 << 1

The above will evaluate the constant parameter Prm1, shifting it left one position.

Var1 = Expression(1)

Will be added to the BASIC code as:

Var1 = 2

Because 1 shifted left one position is 2.

Several operators are available for use with an expression. These are +, -, *, -, ~, <<, >>, =, >, <,
>=, <=, <>, And, Or, Xor.

Conditional Directives ($ifdef, $ifndef, $if, $endif, $else and $elseif)
Conditional directives allow parts of the code to be included or discarded if a certain condition is met.

$ifdef allows a section of a program to be compiled only if the macro that is specified as the parameter
has been defined, no matter what its value is. For example:

$ifdef TableSize

Dim Table[TableSize] as Byte
$endif

In the above condition, the line of code Dim Table[TableSize] as Byte is only compiled if TableSize was
previously defined with $define, independent of its value. If it was not defined, the line will not be in-
cluded in the program compilation.

$ifndef serves for the exact opposite: the code between $ifndef and $endif directives is only com-
piled if the specified identifier has not been previously defined. For example:

$ifndef TableSize
$define TableSize 100
$endif

Dim Table[TableSize] as Byte

Proton Amicus18 Compiler

 343
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

In the previous code, when arriving at this piece of code, the TableSize directive has not been defined
yet. If it already existed it would keep its previous value since the $define directive would not be exe-
cuted.

A valuable use for $ifdef is that of a code guard with include files. This allows multiple insertions of a
file, but only the first will be used.

A typical code guard looks like:

$ifndef IncludeFileName
$define IncludeFileName
{ BASIC Code goes Here }
$endif

The logic of the above snippet is that if the include file has not previously been loaded into the program,
the $define IncludeFileName will not have been created, thus allowing the inclusion of the code be-
tween $ifndef and $endif. However, if the include file has been previously loaded, the $define will
have already been created, and the condition will be false, thus not allowing the code to be included.

IncludeFileName must be unique to each file. Therefore, it is recommended that a derivative of the In-
clude File’s name is used, or a preceding and following underscore surround it.

$if expression
This directive invokes the arithmetic evaluator and compares the result in order to begin a conditional
block. In particular, note that the logical value of expression is always true when it cannot be evaluated
to a number.

Proton Amicus18 Compiler

 344
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

$else
This toggles the logical value of the current conditional block. What follows is evaluated if the preceding
$if evaluated as false.

$endif
This ends a conditional block started by the $if directive.

$elseif expression
This directive can be used to avoid nested $if conditions. $if..$elseif..$endif is equivalent to
$if..$else $if ..$endif $endif.

The $if, $else and $elseif directives serve to specify some condition to be met in order for the portion
of code they surround to be compiled. The condition that follows $if or $elseif can only evaluate con-
stant expressions, including macro expressions. For example:

$if TableSize > 200
$undef TableSize
$define TableSize 200

$elseif TableSize < 50
$undef TableSize
$define TableSize 50

$else
$undef TableSize
$define TableSize 100
$endif

Dim Table[TableSize] as Byte

Notice how the whole structure of $if, $elseif and $else chained directives ends with $endif.

The behaviour of $ifdef and $ifndef can also be achieved by using the special built-in user directive
_defined and ! _defined respectively, in any $if or $elseif condition. These allow more flexibility than
$ifdef and $ifndef. For example:

$if _defined(MyDefine) and _defined(AnotherDefine)
{ BASIC Code Here }
$endif

The argument for the _defined user directive must be surrounded by parenthesis. The preceding char-
acter “!” means “not”.

$error message
This directive causes an error message with the current filename and line number. Subsequent process-
ing of the code is then aborted.

$error Error Message Here

Proton Amicus18 Compiler

 345
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Definition File

The Amicus18 microcontroller has an associated .Def file containing $define directives of all the SFRs,
SFR bit names and device information. These are invaluable for conditional compilation, or keeping con-
sistent register.bit names with differing devices.

The definition file is located within the compiler’s “Includes\Sources” directory, and the appropriate one
is added to the program automatically.

Each defined SFR name is preceded by an underscore, so that they don’t get confused with the actual
SFR’s used by the compiler and assembler:

$define _SSPADD 4040

The SFR’s address is the replacement text, and is also invaluable for conditional compilation.

$ifdef _SSPADD
SSPADD = 0

$endif

or

 $if _defined(_SSPADD) and _SSPADD > 128
 { Do some Conditional Code Here }
 $endif

Notice that the defined name is not used, and cannot be used, as the actual SFR.

Each bit associated with an SFR is also defined, and is extremely useful for code clarity and consistency.
Each bit name has the format:

SFR Namebits_Bit Name SFR.bit

So the bit GO_DONE bit of the ADCON0 SFR looks like:

$define ADCON0bits_GO_DONE ADCON0.2

Proton Amicus18 Compiler

 346
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Built in Peripheral Macros
The compiler has several built-in macros for configuring the most popular peripheral modules contained
with the microcontroller, these are the ADC (Analogue to Digital Converter), Timers, SPI (Serial Periph-
eral Interface),

Proton Amicus18 Compiler

 347
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

ADC macro introduction
The ADC (Analogue to Digital Converter) peripheral on the Amicus18 is supported with the following
macros. The macros are a mixture of compiler types and preprocessor types, and can be found in “In-
cludes\Sources\ADC.inc”

A/D Converter Macros

 BusyADC Is A/D converter currently performing a conversion?
 CloseADC Disable the A/D converter.
 ConvertADC Start an A/D conversion.
 OpenADC Configure the A/D converter.
 ReadADC Read the results of an A/D conversion.
 SetChanADC Select A/D channel to be used.
 SelChanConvADC Select A/D channel to be used and start an A/D conversion.

BusyADC

Syntax
Variable = BusyADC()

Include file
ADC.inc

Overview
This macro indicates if the A/D peripheral is in the process of converting a value.

Return Value

 1 if the A/D peripheral is performing a conversion.
 0 if the A/D peripheral isn’t performing a conversion.

CloseADC

Syntax
CloseADC()

Include file
ADC.inc

Overview
This macro disables the A/D converter and A/D interrupt mechanism.

ConvertADC

Syntax
ConvertADC()

Include file
ADC.inc

Overview
This macro starts an A/D conversion. The BusyADC() macro or A/D interrupt may be used to detect
completion of the conversion. The result is held in registers ADRESL and ADRESH.

Proton Amicus18 Compiler

 348
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

OpenADC

Syntax
OpenADC(pConfig, pConfig2, pPortConfig)

Include file
ADC.inc

Overview
This macro resets the A/D-related registers to the POR state and then Configures the clock, result for-
mat, voltage reference, port and channel.

Operators

 Pconfig A bitmask that is created by performing a bitwise AND operation (‘&’) with a value from
each of the categories listed below. These values are defined in the file adcdefs.inc.

A/D clock source:

ADC_FOSC_2 Fosc / 2
ADC_FOSC_4 Fosc / 4
ADC_FOSC_8 Fosc / 8
ADC_FOSC_16 Fosc / 16
ADC_FOSC_32 Fosc / 32
ADC_FOSC_64 Fosc / 64
ADC_FOSC_RC Internal RC Oscillator

A/D result justification:
ADC_RIGHT_JUST Result in Least Significant bits (Used for 10-bit ADC result)
ADC_LEFT_JUST Result in Most Significant bits (Used for 8-bit ADC result)

A/D acquisition time select:
ADC_0_TAD 0 Tad
ADC_2_TAD 2 Tad
ADC_4_TAD 4 Tad
ADC_6_TAD 6 Tad
ADC_8_TAD 8 Tad
ADC_12_TAD 12 Tad
ADC_16_TAD 16 Tad
ADC_20_TAD 20 Tad

 pConfig2 A bitmask that is created by performing a bitwise AND operation (‘&’), as shown in the

example at the end of this document, with a value from each of the categories listed below.
These values are defined in the file adcdefs.inc.

Channel:

ADC_CH0 Channel 0
ADC_CH1 Channel 1
ADC_CH2 Channel 2
ADC_CH3 Channel 3
ADC_CH4 Channel 4
ADC_CH5 Channel 5
ADC_CH6 Channel 6
ADC_CH7 Channel 7
ADC_CH8 Channel 8
ADC_CH9 Channel 9
ADC_CH10 Channel 10
ADC_CH11 Channel 11
ADC_CH12 Channel 12

Proton Amicus18 Compiler

 349
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

A/D Vref+ and Vref- Configuration:
ADC_REF_VDD_VREFMINUS VREF+ = VDD & VREF- = Ext.
ADC_REF_VREFPLUS_VREFMINUS VREF+ = Ext. & VREF- = Ext.
ADC_REF_VREFPLUS_VSS VREF+ = Ext. & VREF- = VSS
ADC_REF_VDD_VSS VREF+ = VDD & VREF- = VSS

 pPortConfig The pPortConfig can have 8192 different combination, few are defined below:

ADC_0ANA All digital
ADC_1ANA analogue: AN0
ADC_2ANA analogue: AN0-AN1
ADC_3ANA analogue: AN0-AN2
ADC_4ANA analogue: AN0-AN3
ADC_5ANA analogue: AN0-AN4
ADC_6ANA analogue: AN0-AN5
ADC_7ANA analogue: AN0-AN6
ADC_8ANA analogue: AN0-AN7
ADC_9ANA analogue: AN0-AN8
ADC_10ANA analogue: AN0-AN9
ADC_11ANA analogue: AN0-AN10
ADC_12ANA analogue: AN0-AN11

Example
'
' Open the ADC :
' Fosc/32
' Right justified for 10-bit operation
' Tad value of 2
' Vref+ at Vcc : Vref- at Gnd
' Make AN0 an analogue input
'

OpenADC(ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_2_TAD, ADC_REF_VDD_VSS, ADC_1ANA)

ReadADC
Syntax
Variable = ReadADC(pChannel)

Include file
ADC.inc

Overview
This macro returns the Word (10 bit) result of the A/D conversion. Based on the configuration of the
A/D converter (e.g., using the OpenADC() macro).

Operators
pChannel is an optional ADC channel to take the reading from

Proton Amicus18 Compiler

 350
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

SetChanADC

Syntax
SetChanADC(pChannel)

Include file
ADC.inc

Overview
Selects the pin that will be used as input to the A/D Converter.

Operator

 pChannel One of the following values (defined in adcdefs.inc):

ADC_CH0 Channel 0
ADC_CH1 Channel 1
ADC_CH2 Channel 2
ADC_CH3 Channel 3
ADC_CH4 Channel 4
ADC_CH5 Channel 5
ADC_CH6 Channel 6
ADC_CH7 Channel 7
ADC_CH8 Channel 8
ADC_CH9 Channel 9
ADC_CH10 Channel 10
ADC_CH11 Channel 11
ADC_CH12 Channel 12
ADC_CH13 Channel 13
ADC_CH14 Channel 14
ADC_CH15 Channel 15
ADC_CH_CTMU Channel 13
ADC_CH_VDDCORE Channel 14
ADC_CH_VBG Channel 15

SelChanConvADC

Syntax
SelChanConvADC(pChannel)

Include file
ADC.inc

Overview
Selects the pin that will be used as input to the A/D converter. And starts an A/D conversion. The
BusyADC() macro or A/D interrupt may be used to detect completion of the conversion.

Operator
pChannel One of the values used for the SetChanADC macro.

Example
 SelChanConvADC(ADC_CH0)

Proton Amicus18 Compiler

 351
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

ADC_IntEnable() Enables the ADC interrupt i.e. sets PEIE and ADIE bits.
ADC_IntDisable() Disables the ADC interrupt i.e. clears ADIE bit.

Example use of the A/D Converter Macros:
 Include "ADC.inc" ' Load the ADC macros into the program

 Dim Result as Word
'
' Open the ADC:
' Fosc / 32
' Right justified for 10-bit operation
' Tad value of 2
' Vref+ at Vcc : Vref- at Gnd
' Make AN0 an analogue input
'
 OpenADC(ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_2_TAD, ADC_REF_VDD_VSS, ADC_1ANA)
 DelayUs 2 ' Delay for 2 microSeconds
 Result = ReadADC(0) ' Read result of AN0
 CloseADC() ' Disable A/D converter

Proton Amicus18 Compiler

 352
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Timer macros Introduction
The timer peripherals are supported with the following macros. The macros are a mixture of compiler
types and preprocessor types, and can be found in “Includes\Sources\Timers.inc”

 CloseTimerx Disable timer x.
 OpenTimerx Configure and enable timer x.
 ReadTimerx Read the value of timer x.
 WriteTimerx Write a value into timer x.
 SetTmrCCPSrc Configure the timer as a clock source to CCP module.

CloseTimer0

Syntax
CloseTimer0()

Include file
Timers.inc

Overview
This macro disables timer0 and it’s interrupt.

CloseTimer1

Syntax
CloseTimer1()

Include file
Timers.inc

Overview
This macro disables timer1 and it’s interrupt.

CloseTimer2

Syntax
CloseTimer2()

Include file
Timers.inc

Overview
This macro disables timer2 and it’s interrupt.

CloseTimer3

Syntax
CloseTimer3()

Include file
Timers.inc

Overview
This macro disables timer3 and it’s interrupt.

Proton Amicus18 Compiler

 353
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

OpenTimer0

Syntax
OpenTimer0(pConfig)

Include file
Timers.inc

Overview
This macro configures timer0 according to the options specified and then enables it.

Operator
pConfig A bitmask that is created by performing either a bitwise AND operation (‘&’), which is user con-
figurable, with a value from each of the categories listed below. These values are defined in the file
TimerDefs.inc.

Enable Timer0 Interrupt:
 TIMER_INT_ON Interrupt enabled
 TIMER_INT_OFF Interrupt disabled

Timer Width:
 T0_8BIT 8-bit mode
 T0_16BIT 16-bit mode

Clock Source:
 T0_SOURCE_EXT External clock source (I/O pin)
 T0_SOURCE_INT Internal clock source (Tosc)

External Clock Trigger (for T0_SOURCE_EXT):
 T0_EDGE_FALL External clock on falling edge
 T0_EDGE_RISE External clock on rising edge

Prescale Value:
 T0_PS_1_1 1:1 prescale
 T0_PS_1_2 1:2 prescale
 T0_PS_1_4 1:4 prescale
 T0_PS_1_8 1:8 prescale
 T0_PS_1_16 1:16 prescale
 T0_PS_1_32 1:32 prescale
 T0_PS_1_64 1:64 prescale
 T0_PS_1_128 1:128 prescale
 T0_PS_1_256 1:256 prescale

Example

OpenTimer0(TIMER_INT_OFF & T0_8BIT & T0_SOURCE_INT & T0_PS_1_32)

Proton Amicus18 Compiler

 354
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

OpenTimer1

Syntax
OpenTimer1(pConfig)

Include file
Timers.inc

Overview
This macro configures timer1 according to the options specified and then enables it.

Operator
pConfig A bitmask that is created by performing either a bitwise AND operation (‘&’), which is user con-
figurable, with a value from each of the categories listed below. These values are defined in the file
TimerDefs.inc.

Enable Timer1 Interrupt:
 TIMER_INT_ON Interrupt enabled
 TIMER_INT_OFF Interrupt disabled

Timer Width:
 T1_8BIT_RW 8-bit mode
 T1_16BIT_RW 16-bit mode
Clock Source:
 T1_SOURCE_EXT External clock source (I/O pin)
 T1_SOURCE_INT Internal clock source (Tosc)

Prescaler:
 T1_PS_1_1 1:1 prescale
 T1_PS_1_2 1:2 prescale
 T1_PS_1_4 1:4 prescale
 T1_PS_1_8 1:8 prescale

Oscillator Use:
 T1_OSC1EN_ON Enable Timer1 oscillator
 T1_OSC1EN_OFF Disable Timer1 oscillator

Synchronise Clock Input:
 T1_SYNC_EXT_ON Sync external clock input
 T1_SYNC_EXT_OFF Don’t sync external clock input

Example

OpenTimer1(TIMER_INT_ON & T1_8BIT_RW & T1_SOURCE_EXT & T1_PS_1_1)

Proton Amicus18 Compiler

 355
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

OpenTimer2

Syntax
OpenTimer2(pConfig)

Include file
Timers.inc

Overview
This macro configures timer2 according to the options specified and then enables it.

Operator
pConfig A bitmask that is created by performing either a bitwise AND operation (‘&’), which is user con-
figurable, with a value from each of the categories listed below. These values are defined in the file
TimerDefs.inc.

Enable Timer2 Interrupt:
 TIMER_INT_ON Interrupt enabled
 TIMER_INT_OFF Interrupt disabled

Prescale Value:
 T2_PS_1_1 1:1 prescale
 T2_PS_1_4 1:4 prescale
 T2_PS_1_16 1:16 prescale

Postscale Value:
 T2_POST_1_1 1:1 postscale
 T2_POST_1_2 1:2 postscale
 T2_POST_1_3 1:3 postscale
 T2_POST_1_4 1:4 postscale
 T2_POST_1_5 1:5 postscale
 T2_POST_1_6 1:6 postscale
 T2_POST_1_7 1:7 postscale
 T2_POST_1_8 1:8 postscale
 T2_POST_1_9 1:9 postscale
 T2_POST_1_10 1:10 postscale
 T2_POST_1_11 1:11 postscale
 T2_POST_1_12 1:12 postscale
 T2_POST_1_13 1:13 postscale
 T2_POST_1_14 1:14 postscale
 T2_POST_1_15 1:15 postscale
 T2_POST_1_16 1:16 postscale

Example

OpenTimer2(TIMER_INT_OFF & T2_PS_1_1 & T2_POST_1_8)

Proton Amicus18 Compiler

 356
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

OpenTimer3

Syntax
OpenTimer3(pConfig)

Include file
Timers.inc

Overview
This macro configures timer3 according to the options specified and then enables it.

Operator
pConfig A bitmask that is created by performing either a bitwise AND operation (‘&’), which is user con-
figurable, with a value from each of the categories listed below. These values are defined in the file
TimerDefs.inc.

Enable Timer3 Interrupt:
 TIMER_INT_ON Interrupt enabled
 TIMER_INT_OFF Interrupt disabled

Timer Width:
 T3_8BIT_RW 8-bit mode
 T3_16BIT_RW 16-bit mode

Clock Source:
 T3_SOURCE_EXT External clock source (I/O pin)
 T3_SOURCE_INT Internal clock source (Tosc)

Prescale Value:
 T3_PS_1_1 1:1 prescale
 T3_PS_1_2 1:2 prescale
 T3_PS_1_4 1:4 prescale
 T3_PS_1_8 1:8 prescale

Synchronise Clock Input:
 T3_SYNC_EXT_ON Sync external clock input
 T3_SYNC_EXT_OFF Don’t sync external clock input

Example

OpenTimer3(T3_8BIT_RW & T3_SOURCE_EXT & T3_PS_1_1 & T3_SYNC_EXT_OFF)

Proton Amicus18 Compiler

 357
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

ReadTimer0

Syntax
Variable = ReadTimer0()

Include file
Timers.inc

Overview
This macro reads the value of the timer0 register pair.
Timer0: TMR0L,TMR0H

ReadTimer1

Syntax
Variable = ReadTimer1()

Include file
Timers.inc

Overview
This macro reads the value of the timer1 register pair.
Timer1: TMR1L,TMR1H

ReadTimer2

Syntax
Var = ReadTimer2()

Include file
Timers.inc

Overview
This macro reads the value of the timer2 register.
Timer2: TMR2

ReadTimer3

Syntax
Variable = ReadTimer3()

Include file
Timers.inc

Overview
This macro reads the value of the timer3 register pair.
Timer3: TMR3L,TMR3H

Proton Amicus18 Compiler

 358
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

WriteTimer0

Syntax
WriteTimer0(pTimer)

Include file
Timers.inc

Overview
This macro writes a value to the timer0 register pair:
Timer0: TMR0L,TMR0H

Operator
pTimer The value that will be loaded into timer0.

Example

WriteTimer0(10000)

WriteTimer1

Syntax
WriteTimer1(pTimer)

Include file
Timers.inc

Overview
This macro writes a value to the timer1 register pair:
Timer1: TMR1L,TMR1H

Operator
pTimer The value that will be loaded into timer1.

Example

WriteTimer1(10000)

WriteTimer2

Syntax
WriteTimer2(pTimer)

Include file
Timers.inc

Overview
This macro writes a value to the timer1 register:
Timer2: TMR2

Operator
pTimer The value that will be loaded into timer2.

Example

WriteTimer2(100)

Proton Amicus18 Compiler

 359
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

WriteTimer3

Syntax
WriteTimer3(pTimer)

Include file
Timers.inc

Overview
This macro writes a value to the timer1 register pair:
Timer3: TMR3L,TMR3H

Operator
pTimer The value that will be loaded into timer3.

Example

WriteTimer3(10000)

SetTmrCCPSrc

Syntax
SetTmrCCPSrc(pConfig)

Include file
Timers.inc

Overview
This macro configures a timer as a clock source for the CCP module.

Operator
pConfig A constant value from the list below. The values are defined in the file TimerDefs.inc.

 T3_SOURCE_CCP Timer3 source for both CCP’s
 T1_CCP1_T3_CCP2 Timer1 source for CCP1 and Timer3 source for CCP2
 T1_SOURCE_CCP Timer1 source for both CCP’s

Example

SetTmrCCPSrc(T34_SOURCE_CCP12)

Proton Amicus18 Compiler

 360
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

T3_OSC1EN_ON

Syntax
T3_OSC1EN_ON()

Include file
Timers.inc

Overview
This Macro enables the oscillator associated with Timer1 as source of external clock input for Timer3.

T3_OSC1EN_OFF

Syntax
T3_OSC1EN_OFF()

Include file
Timers.inc

Overview
This Macro disables the oscillator associated with Timer1 and selects the signal on pin T13CKI as source
of external clock input for Timer3.

Example Use of the Timer0 Macro:

Include "Timers.Inc" ' Load the Timer Macros into the program

Dim Result As Word

' Configure Timer0

OpenTimer0(TIMER_INT_OFF & T0_SOURCE_INT & T0_PS_1_32 & T0_16BIT)

HRSOut "Press a Key\r"
While 1 = 1

While InKey = 16 : Wend ' Wait for a Keypress on the keypad
Result = ReadTimer0() ' Read Timer0
WriteTimer0(0) ' Reset Timer0
HRSOut "Timer0 Value = ", Dec Result,13 ' Display the value of Timer0
While InKey <> 16 : Wend ' Wait for the key to released
DelayMS 50

Wend
CloseTimer0() ' Close timer0

Proton Amicus18 Compiler

 361
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

SPI macros Introduction
The following macros are provided for the SPI™ peripheral:

 CloseSPI Disable the SSP module used for SPI™ communications.
 DataReadySPI Determine if a new value is available from the SPI buffer.
 OpenSPI Initialise the SSP module used for SPI communications.
 ReadSPI Read a byte from the SPI bus.
 WriteSPI Write a byte to the SPI bus.

CloseSPI

Syntax
CloseSPI()

Include file
SPI.inc

Overview
This Macro disables the SSP module. Pin I/O returns under the control of the appropriate TRIS and LAT
registers.

DataReadySPI

Syntax
Variable = DataReadySPI()

Include file
SPI.inc

Overview
This Macro determines if there is a byte to be read from the SSPBUF register.

Return Values
0 if there is no data in the SSPBUF register
1 if there is data in the SSPBUF register

Example
While DataReadySPI() = 0 : Wend

Proton Amicus18 Compiler

 362
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

OpenSPI

Syntax
OpenSPI(pSyncMode, pBusMode, pSmpPhase)

Include file
SPI.inc

Overview
This Macro sets up the SSPx module for use with a SPIx bus device.

Operators
pSyncMode One of the following values, defined in SPIdefs.inc:

SPI_FOSC_4 SPI Master mode, clock = Fosc / 4
SPI_FOSC_16 SPI Master mode, clock = Fosc / 16
SPI_FOSC_64 SPI Master mode, clock = Fosc / 64
SPI_FOSC_TMR2 SPI Master mode, clock = TMR2 output / 2
SLV_SSON SPI Slave mode, /SS pin control enabled
SLV_SSOFF SPI Slave mode, /SS pin control disabled

pBusMode One of the following values, defined in SPIdefs.inc:

MODE_00 Setting for SPI bus Mode 0,0
MODE_01 Setting for SPI bus Mode 0,1
MODE_10 Setting for SPI bus Mode 1,0
MODE_11 Setting for SPI bus Mode 1,1

pSmpPhase One of the following values, defined in SPIdefs.inc:

SMPEND Input data sample at end of data out
SMPMID Input data sample at middle of data out

Example

OpenSPI(SPI_FOSC_16, MODE_00, SMPEND)

Proton Amicus18 Compiler

 363
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

ReadSPI

Syntax
Variable = ReadSPI()

Include file
SPI.inc

Overview
This Macro initiates a SPIx bus cycle for the acquisition of a byte of data.

WriteSPI

Syntax
WriteSPI(pDataOut)

Include file
SPI.inc

Overview
This Macro writes a single data byte out.

Operator
pDataOut Value to be written to the SPI bus.

Example of SPI macros

Include "SPI.inc"

Dim SPI_data as Byte

OpenSPI(SPI_FOSC_64 , MODE_01 , SMPMID)
WriteSPI($55)
SPI_data = ReadSPI()
DataReadySPI()
CloseSPI()

Proton Amicus18 Compiler

 364
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Analogue Comparator macro Introduction
The Analogue comparator peripheral is supported with the following macros:

 CloseComp1 Disable the Analogue comparator1.
 CloseComp2 Disable the Analogue comparator2.
 OpenComp1 Configure and Enable the Analogue comparator1.
 OpenComp2 Configure and Enable the Analogue comparator2.

CloseComp1
Syntax
CloseComp1()

Include file
AnComp.inc

Overview
This macro disables the Analogue comparator1 and its interrupt mechanism.

CloseComp2
Syntax
CloseComp2()

Include File
AnComp.inc

Overview
This macro disables the Analogue comparator2 and its interrupt mechanism.

Comp1_IntEnable
Comp2_IntEnable
Syntax
Comp1_IntEnable()
Comp2_IntEnable()

Include File
AnComp.inc

Overview
These macros enable the comparator1 or comparator2 interrupt mechanism.

Comp1_IntDisable
Comp2_IntDisable
Syntax
Comp1_IntDisable()
Comp2_IntDisable()

Include File
AnComp.inc

Overview
These macros disable the comparator1 or comparator2 interrupt mechanism.

Proton Amicus18 Compiler

 365
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

OpenComp1

Syntax
OpenComp1(pConfig)

Inlcude file
AnComp.inc

Overview
This macro resets the Analogue comparator peripheral to the POR (Power On Reset) state and config-
ures the Analogue comparator related SFRs (Special Function Registers) according to the options speci-
fied, also configures the inputs and outputs for the specified options.

Operator
pConfig A constant bitmask that is created by performing a bitwise AND operation (‘&’), user configur-
able, with a value from each of the categories listed below. These values are defined in the file An-
Comp.inc.

Comparator1 Output enable:

COMP_OP_EN C1OUT is present on C1OUT pin (PortA.4)
COMP_OP_DIS C1OUT is Internal only

Comparator1 output polarity select:

COMP_OP_INV Comparator1 output logic is Inverted
COMP_OP_NINV Comparator1 output logic is not Inverted

Comparator1 Ref (C1VREF)select:

COMP_REF_FVR C1VREF input connects to FVR (fixed 1.2V)
COMP_REF_CVREF C1VREF input connects to CVREF

Comparator1 Speed/Power select:

COMP_HSPEED Comparator1 operates at normal power higher speed mode
COMP_LSPEED Comparator1 operates at low power low speed mode

Comparator1 Ref (C1VIN+) select:

COMP_VINP_PIN C1VIN+ connects to C1VIN+ pin
COMP_VINP_VREF C1VIN+ connects to C1VREF output

Comparator1 channel select:

COMP_VINM_IN0 C12IN0- pin connects to C1VIN-
COMP_VINM_IN1 C12IN1- pin connects to C1VIN-
COMP_VINM_IN2 C12IN2- pin connects to C1VIN-
COMP_VINM_IN3 C12IN3- pin connects to C1VIN-

Example

OpenComp1(COMP_OP_NINV & COMP_OP_EN & COMP_REF_CVREF & COMP_VINM_IN0)

Proton Amicus18 Compiler

 366
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

OpenComp2

Syntax
OpenComp2(pConfig)

Inlcude file
AnComp.inc

Overview
This macro resets the analogue comparator 2 peripheral to the POR (Power On Reset) state and config-
ures the analogue comparator 2 related SFRs (Special Function Registers) according to the options
specified, also configures the inputs and outputs for the specified options.

Operator
pConfig A constant bitmask that is created by performing a bitwise AND operation (‘&’), user configur-
able, with a value from each of the categories listed below. These values are defined in the file An-
Comp.inc.

Comparator2 Output enable:

COMP_OP_EN C2OUT is present on C2OUT pin (PortA.5)
COMP_OP_DIS C2OUT is Internal only

Comparator2 output polarity select:

COMP_OP_INV Comparator2 output logic is Inverted
COMP_OP_NINV Comparator2 output logic is not Inverted

Comparator2 Ref (C2VREF)select:

COMP_REF_FVR C2VREF input connects to FVR (fixed 1.2V)
COMP_REF_CVREF C2VREF input connects to CVREF

Comparator2 Speed/Power select:

COMP_HSPEED Comparator2 operates at normal power higher speed mode
COMP_LSPEED Comparator2 operates at low power low speed mode

Comparator2 Ref (C2VIN+) select:

COMP_VINP_PIN C2VIN+ connects to C2VIN+ pin
COMP_VINP_VREF C2VIN+ connects to C2VREF output

Comparator2 channel select:

COMP_VINM_IN0 C12IN0- pin connects to C2VIN-
COMP_VINM_IN1 C12IN1- pin connects to C2VIN-
COMP_VINM_IN2 C12IN2- pin connects to C2VIN-
COMP_VINM_IN3 C12IN3- pin connects to C2VIN-

Example

OpenComp2(COMP_OP_NINV & COMP_OP_EN & COMP_REF_CVREF & COMP_VINM_CIN0)

Proton Amicus18 Compiler

 367
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Hardware PWM macro Introduction
The PWM peripheral is supported with the following macros:

 CloseAnalog1 Disable the CCP1 peripheral
 CloseAnalog2 Disable the CCP2 peripheral
 OpenAnalog1 Enable and configure the CCP1 peripheral
 OpenAnalog2 Enable and configure the CCP2 peripheral
 WriteAnalog1 Output an 8-bit or 10-bit Pulse Width Modulated waveform from CCP1
 WriteAnalog2 Output an 8-bit or 10-bit Pulse Width Modulated waveform from CCP2

CloseAnalog1

Syntax
CloseAnalog1()

Include file
hpwm8.inc for 8-bit PWM
or
hpwm10.inc for 10-bit PWM

Overview
Disable the CCP1 peripheral and set it’s appropriate pin as an input.

CloseAnalog2

Syntax
CloseAnalog2()

Include file
hpwm8.inc for 8-bit PWM
or
hpwm10.inc for 10-bit PWM

Overview
Disable the CCP2 peripheral and set it’s appropriate pin as an input.

OpenAnalog1

Syntax
OpenAnalog1()

Include file
hpwm8.inc for 8-bit PWM
or
hpwm10.inc for 10-bit PWM

Overview
Enable and configure the CCP1 peripheral and set it’s appropriate pin as an output.

Proton Amicus18 Compiler

 368
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

OpenAnalog2

Syntax
OpenAnalog2()

Include file
hpwm8.inc for 8-bit PWM
or
hpwm10.inc for 10-bit PWM

Overview
Enable and configure the CCP2 peripheral and set it’s appropriate pin as an output.

WriteAnalog1

Syntax
WriteAnalog1(pValue)

Include file
hpwm8.inc for 8-bit PWM
or
hpwm10.inc for 10-bit PWM

Note. The CCP1 peripheral will be operating at the highest frequency possible for 8-bit (0 to 255) or 10-
bit (0 to 1023). With the default 64MHz oscillator this will be 62.5KHz for 10-bit and 250KHz for 8-bit.

Only one of the above include files may be used within a program an any one time.

Overview
Output an 8-bit or 10-bit PWM waveform from the CCP1 peripheral’s pin (RC2).

Operator
pValue a constant, variable, or expression that will alter the duty cycle of the PWM Waveform.

Proton Amicus18 Compiler

 369
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Example
' An LED attached to RC2 will increase illumination, then dim, repeatedly
' The voltage produced by the PWM signal is displayed on the serial terminal
'

Include "Hpwm10.inc" ' Load the 10-bit PWM macros into the program
Float_Display_Type = fast ' Faster, more accurate float display
Dim Volts As Float ' Holds the Voltage calculation
Dim WordVar As Word ' Holds the duty cycle value for the PWM

'
' Quantasise the Voltage. i.e. Volts per-bit, based upon 3.3 Volts at 10-bits
'

Symbol Quanta = 3.3 / 1023
OpenAnalog1() ' Enable and configure the CCP1 peripheral
While 1 = 1 ' Create an infinite loop

'
' Increase LED illumation
' Cycle the full range of 10-bits. i.e. 0 to 1023
For WordVar = 0 To 1023

WriteAnalog1(WordVar) ' PWM on CCP1 (Bit-2 of PortC)
Volts = WordVar * Quanta ' Calculate the Voltage
HRSOut Dec WordVar, " = ", Dec Volts, " Volts", 13 ' Display Voltage

Next
'
' Decrease LED illumination
' Cycle the full range of 10-bits (reversed). i.e. 1023 to 0
For WordVar = 1023 To 0 Step -1

WriteAnalog1 (WordVar) ' PWM on CCP1 (Bit-2 of PortC)
Volts = WordVar * Quanta ' Calculate the Voltage
HRSOut Dec WordVar, " = ", Dec Volts, " Volts", 13 ' Display Voltage

Next
Wend ' Do it forever

A suitable layout for the above program built on the Companion Shield using a solderless breadboard is
shown below:

Proton Amicus18 Compiler

 370
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

WriteAnalog2

Syntax
WriteAnalog2(pValue)

Include file
hpwm8.inc for 8-bit PWM
or
hpwm10.inc for 10-bit PWM

Note. The CCPx peripherals will be operating at the highest frequency possible for 8-bit (0 to 255) or
10-bit (0 to 1023). With the default 64MHz oscillator this will be 62.5KHz for 10-bit and 250KHz for 8-bit.

Only one of the above include files may be used within a program an any one time.

Overview
Output an 8-bit or 10-bit PWM waveform from the CCP2 peripheral’s pin (RC1).

Operator
pValue a constant, variable, or expression that will alter the duty cycle of the PWM Waveform.

Example
' An LED attached to RC1 will increase illumination, then dim, repeatedly
' The voltage produced by the PWM signal is displayed on the serial terminal
'

Include "Hpwm10.inc" ' Load the 10-bit PWM macros into the program
Float_Display_Type = fast ' Faster, more accurate float display
Dim Volts As Float ' Holds the Voltage calculation
Dim WordVar As Word ' Holds the duty cycle value for the PWM

' Quantasise the Voltage. i.e. Volts per-bit, based upon 3.3 Volts at 10-bits
Symbol Quanta = 3.3 / 1023
OpenAnalog2() ' Enable and configure the CCP2 peripheral
While 1 = 1 ' Create an infinite loop

'
' Increase LED illumation
' Cycle the full range of 10-bits. i.e. 0 to 1023
For WordVar = 0 To 1023

WriteAnalog2(WordVar) ' PWM on CCP2 (Bit-1 of PortC)
Volts = WordVar * Quanta ' Calculate the Voltage
HRSOut Dec WordVar, " = ", Dec Volts, " Volts", 13 ' Display Voltage

Next
'
' Decrease LED illumination
' Cycle the full range of 10-bits (reversed). i.e. 1023 to 0
For WordVar = 1023 To 0 Step -1

WriteAnalog2 (WordVar) ' PWM on CCP1 (Bit-1 of PortC)
Volts = WordVar * Quanta ' Calculate the Voltage
HRSOut Dec WordVar, " = ", Dec Volts, " Volts", 13 ' Display Voltage

Next
Wend ' Do it forever

Proton Amicus18 Compiler

 371
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

A suitable layout for the previous program built on the Companion Shield using a solderless breadboard
is shown below:

Proton Amicus18 Compiler

 372
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Protected Compiler Words

Below is a list of protected words that the compiler or the Mpasm assembler uses internally. Be sure not
to use any of these words as variable or label names, otherwise errors will be produced.

(A)
Abs, Acos, Actual_Banks, ADC_Resolution, AdcIn, Addlw, Addwf, Addwfc, Adin, Adin_Delay, Adin_Res,
Adin_Stime, Adin_Tad, All_Digital, Amicus18_Start_Address, Andlw, Asin, Asm, Atan,
Auto_Context_Save, Available_RAM
(B)
Bank0_End, Bank0_Start, Bank10_End, Bank10_Start, Bank11_End, Bank11_Start, Bank12_End,
Bank12_Start, Bank13_End, Bank13_Start, Bank14_End, Bank14_Start, Bank15_End, Bank15_Start,
Bank1_End, Bank1_Start, Bank2_End, Bank2_Start, Bank3_End, Bank3_Start, Bank4_End, Bank4_Start,
Bank5_End, Bank5_Start, Bank6_End, Bank6_Start, Bank7_End, Bank7_Start, Bank8_End, Bank8_Start,
Bank9_End, Bank9_Start, Bank_Select_Switch, BankiSel, BankSel, Bc, Bcf, Bin, Bin1, Bin10, Bin11,
Bin12, Bin13, Bin14, Bin15, Bin16, Bin17, Bin18, Bin19, Bin2, Bin20, Bin21, Bin22, Bin23, Bin24, Bin25,
Bin26, Bin27, Bin28, Bin29, Bin3, Bin30, Bin31, Bin32, Bin4, Bin5, Bin6, Bin7, Bin8, Bin9, Bit, Bn, Bnc,
Bnn, Bnov, Bnz, Bootloader, Bov, Box, Bra, Branch, Branchl, Break, Brestart, Bsf, Bstart, Bstop, Btfsc,
Btfss, Btg, Bus_DelayMs, Bus_SCL, BusAck, Busin, Busout, Button, Button_Delay, Byte, Byte_Math, BZ,
Bit_Bit, Bit_Byte, Bit_Dword, Bit_Float, Bit_Word, Bit_Wreg, Byte_Bit, Byte_Byte, Byte_Dword,
Byte_Float, Byte_Word, Byte_Wreg
(C)
Call, Case, Cblock, CCP1_Pin, CCP2_Pin, CCP3_Pin, CCP4_Pin, CCP5_Pin, Cdata, Cerase, CF_ADPort,
CF_ADPort_Mask, CF_CD1Pin, CF_CE1Pin, CF_DTPort, CF_Init, CF_OEPin, CF_RDYPin, CF_Read,
CF_Read_Write_Inline, CF_RSTPin, CF_Sector, CF_WEPin, CF_Write, Chr$, Circle, Clear, ClearBit, Clrf,
Clrw, Cls, Code, Comf, Config, Constant, Context, Core, Cos, Count, Counter, Cpfseq, Cpfsgt, Cpfslt,
Cread, Cursor, Cwrite
(D)
Da, Data, Daw, Db, Dc, Dcd, Dcfsnz, De, Dead_Code_Remove, Dword_Bit, Dword_Byte, Dword_Dword,
Dword_Float, Dword_Word, Dword_Wreg, Debug_Req, Debugin, Dec, Dec, Dec1, Dec1, Dec10, Dec2,
Dec2, Dec3, Dec3, Dec4, Dec4, Dec5, Dec5, Dec6, Dec6, Dec7, Dec7, Dec8, Dec8, Dec9, Decf, Decfsz,
Declare, Decrement, Define, DelayMs, DelayUs, Device, Dig, Dim, Disable, Div32, Djc, Djnc, Djnz, Djz,
Dt, DTMFout, Dw, Dword
(E)
Edata, Eeprom_Size, Else, ElseIf, Enable, End, EndAsm, EndIf, EndM, EndSelect, Equ, Eread, Error,
ErrorLevel, Ewrite, ExitM, Exp, Expand
(F)
Fill, Fix16_8Add, Fix16_8Div, Fix16_8Greater, Fix16_8GreaterEqual, Fix16_8Less, Fix16_8LessEqual,
Fix16_8Mul, Fix16_8Sub, Fix16_8ToFloat, Fix16_8ToInt, Fix8_8Add, Fix8_8Div, Fix8_8Greater
Fix8_8GreaterEqual, Fix8_8Less, Fix8_8LessEqual, Fix8_8Mul, Fix8_8Sub, Fix8_8ToFloat, Fix8_8ToInt,
Flash_Capable, Float, Float_Display_Type, Float_Rounding, Float_Rounding_Code, FloatToFix16_8,
FloatToFix8_8, Font_Addr, For, FreqOut, Float_Bit, Float_Byte, Float_Dword, Float_Float, Float_Word,
Float_Wreg
 (G)
GetBit, GLCD_CS_Invert, GLCD_Fast_Strobe, GLCD_Read_Delay, GLCD_Strobe_Delay, GoSub, GoTo
(H)
HbRestart, HbStart, HbStop, Hbus_Bitrate, HbusAck, Hbusin, Hbusout, Hex, Hex1, Hex2, Hex3, Hex4,
Hex4, Hex5, Hex6, Hex7, Hex8, High, High_Int_Sub_End, High_Int_Sub_Start, HighLow_Tris_Reverse,
Hpwm, HRsin, Hrsin2, HRsout, HRsout2, Hserial2_Baud, Hserial2_Clear, Hserial2_Parity,
Hserial2_RCSTA, Hserial2_SPBRG, Hserial2_TXSTA, Hserial_Baud, Hserial_Clear, Hserial_Parity,
Hserial_RCSTA, Hserial_SPBRG, Hserial_TXSTA, Hserin, Hserin2, Hserout, Hserout2

Proton Amicus18 Compiler

 373
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

(I)
I2C_Bus_SCL, I2C_Slow_Bus, I2Cin, I2Cout, I2CWrite, I2CRead, ICD_Req, Icos, Idata, If, Ijc, Ijnc, Ijnz,
Ijz, Inc, Incf, Incfsz, Include, Increment, Infsnz, Inkey, Input, Int_Sub_End, Int_Sub_Start,
Internal_Bus, Internal_Font, IntToFix16_8, IntToFix8_8, Iorlw, Iorwf, IrIn, IrIn_Pin, Isin, ISqr
(K)
Keep_Hex_File, Keyboard_CLK_Pin, Keyboard_DTA_Pin, Keyboard_In, Keypad_Port
(L)
Label_Word, Label_Bank_Resets, LCD_CDPin, LCD_CEPin, LCD_CommandUS, LCD_CS1Pin, LCD_CS2Pin,
LCD_DataUs, LCD_DTPin, LCD_DTPort, LCD_ENPin, LCD_Font_HEIGHT, LCD_Font_Width,
LCD_Graphic_Pages, LCD_Interface, LCD_Lines, LCD_RAM_Size, LCD_RDPin, LCD_RSPin, LCD_RSTPin,
LCD_RWPin, LCD_Text_Home_Address, LCD_Text_Pages, LCD_Type, LCD_WRPin, LCD_X_Res,
LCD_Y_Res, LCDread, LCDwrite, Cdata, Left$, Len, Let, Lfsr,
Library_Core, Line, LineTo, LoadBit, Local, Log, Log10, LookDown,
LookDownL, LookUp, LookUpL, Low, Low_Int_Sub_End, Low_Int_Sub_Start, Lread, Lread16, Lread32,
Lread8
(M)
Macro_Params, Max, Mid$, Min, Mouse_CLK_Pin, Mouse _Data_Pin, Mouse _In, Movf, Movff, Movlw,
Movwf, MSSP_Type, Mullw, Mulwf
(N)
Ncd, Negf, Next, Nop, Num _Bit, Num _Byte, Num_Dword, Num _Float, Num _FSR,
Num _FSR0, Num _FSR2, Num _Word, Num _Wreg, Num_SFR
(O)
On_Hard_Interrupt, On_Hardware_Interrupt, On_Interrupt, On_Low_Interrupt, On_Soft_Interrupt,
On_Software_Interrupt,
Onboard_Adc, Onboard_Uart, Onboard_Usb, Optimise_Bit_Test,
Optimiser_Level, Oread, Org, Output, Owin, Owout, Owrite
(P)
Page, PageSel, Pause, Pauseus, Peek, PIC_Pages, Pixel, PLL_Req, Plot, Poke, Pop, Portb_Pullups, Pot,
Pow, Print, Prm_1, Prm_10, Prm_11, Prm_12, Prm_13, Prm_14, Prm_15, Prm_2, Prm_3, Prm_4, Prm_5,
Prm_6, Prm_7, Prm_8, Prm_9, Prm_Count, PulsIn, PulsIn_Maximun, PulseOut, Push, Pwm
(R)
RAM_Bank, RAM_Banks, Random, RC5in, RC5in_Extended, RC5in_Pin, RCall, RCin, RcTime, Read, Rem,
Remarks, Reminders, Rep, Repeat, RES, Reserve_RAM, Reset_Bank, Restore, Resume, Retfie, Retlw,
Return, Return_Type, Return_Var, Rev, Right$, Rlcf, Rlf, Rlncf, Rol, Ror, Rrcf, Rrf, Rrncf, Rsin,
Rsin_Mode, Rsin_Pin, Rsin_Timeout, Rsout, Rsout_Baud, Rsout_Mode, Rsout_Pace, Rsout_Pin,
Return_Bit, Return_Byte, Return_Dword, Return_Float,
Return_Word, Return_Wreg
(S)
SBreak, SCL_Pin, SDA_Pin, Seed, Select, Serial_Baud, Serial_Data, Serial_Parity, Serin, Serout, Servo,
Set, Set_Bank, Set_Defaults, Set_OSCCAL, SetBit, SetF, Shift_DelayUs, ShiftIn, Shin, Shout,
Show_Expression_Parts, Show_System_Variables, Signed_Dword_Terms, Sin, Single_Page_Model,
SizeOf, Sleep, Slow_Bus, Small_Micro_Model, Snooze, SonyIn, SonyIn_Pin, Sound, Sound2, Sqr,
Stack_Size, Stamp _Cos, Stamp_Sin, Stamp _Sqr, Step, Stop, Str, Str$, Str$, StrCmp, String, Strn,
Subfwb, Sublw, Subwf, Subwfb, Swap, Swapf, Symbol
(T)
Tan, Tblrd, Tblwt, TCase, Then, to, Toggle, ToLower, Toshiba_Command, Toshiba_UDG, ToUpper,
Tstfsz
(U)
Udata, UnPlot, Unsigned_Dwords, Until, Upper
(V)
Val, Var, Variable, VarPtr

Proton Amicus18 Compiler

 374
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

(W)
Wait, Warnings, WatchDog, Wend, While, Word, Write, Word_Bit, Word_Byte, Word_Dword,
Word_Float, Word_Word, Word_Wreg, Wreg_Bit, Wreg_Byte, Wreg_Dword, Wreg_Float, Wreg_Word
(X)
Xin, Xorlw, Xorwf, Xout, Xtal

_adc, _adcres, _code, _core, _defined, _device, _eeprom, _flash, _mssp, _ports, _ram, _uart
_usb, _xtal

Proton Amicus18 Compiler

 375
Crownhill AssociatesLimited 2010 - All Rights Reserved Version 1.0 25-01-2010

Notes.

	Language Overview
	Identifiers
	Line Labels
	Variables
	Intuitive Variable Handling.
	RAM space required.
	Floating Point Math
	Floating Point Format
	Variables Used by the Floating Point Libraries.
	Floating Point Rounding

	Aliases
	Finer points for variable handling.

	Constants
	Numeric Representations
	Quoted String of Characters
	Ports and other Registers
	General Format
	A Typical basic Program Layout
	Inline Commands within Comparisons
	Creating and using Arrays
	Using Arrays in Expressions.
	Arrays as Strings
	Creating and using Strings
	Loading a String Indirectly
	Slicing a String

	Creating and using Virtual Strings with Cdata
	Creating and using Virtual Strings with Edata
	String Comparisons
	Relational Operators
	Boolean Logic Operators
	Math Operators
	Add '+'.
	Subtract '-'.
	Multiply '*'.
	Multiply High '**'.
	Multiply Middle '*/'.
	Divide '/'.
	Modulus '//'.
	Logical and '&'.
	Logical or '|'.
	Logical xor '^'.
	BitWise Shift Left '<<'.
	BitWise Shift Right '>>'.
	BitWise Complement ‘~’
	Abs
	Acos
	Asin
	Atan
	Cos
	Dcd
	Dig (BASIC Stamp version)
	Exp
	ISqr
	Log
	Log10
	Max
	Min
	Ncd
	Pow
	Rev
	Sin
	Sqr
	Tan
	Div32

	Commands and Directives
	Adin
	Asm..EndAsm
	Box
	Branch
	Break
	Bstart
	Bstop
	Brestart
	BusAck
	BusNack
	Busin
	Busout
	Button
	Call
	Cdata
	Cerase
	Circle
	Clear
	ClearBit
	Cls
	Config_Start – Config_End
	Counter
	Cread
	Cursor
	Cwrite
	Dec
	Declare
	Misc Declares.
	Trigonometry Declares.
	Adin Declares.
	Busin - Busout Declares.
	Hbusin - Hbusout Declare.
	Hserin, Hserout, HRsin and HRsout Declares.
	Hpwm Declares.
	Alphanumeric (Hitachi) LCD Print Declares.
	Graphic LCD Declares.
	Samsung KS0108 Graphic LCD specific Declares.
	Toshiba T6963 Graphic LCD specific Declares.
	Keypad Declare.
	Rsin - Rsout Declares.
	Serin - Serout Declare.
	Shin - Shout Declare.
	Crystal Frequency Declare.

	DelayCs
	DelayMs
	DelayUs
	Dig
	Dim
	DTMFout
	Edata
	End
	Eread
	Ewrite
	For...Next...Step
	FreqOut
	GetBit
	GoSub
	What is a Stack?
	Popping.

	GoTo
	HbStart
	HbStop
	HbRestart
	HbusAck
	HbusNack
	Hbusin
	Hbusout
	High
	Hpwm
	HRsin
	HRsout
	Hserin
	Hserout
	I2Cin
	I2Cout
	If..Then..ElseIf..Else..EndIf
	Include
	Inc
	Inkey
	Input
	LCDread
	LCDwrite
	Len
	Left$
	Line
	LineTo
	LoadBit
	LookDown
	LookDownL
	LookUp
	LookUpL
	Low
	Lread
	Lread8, Lread16, Lread32
	Mid$
	On GoTo
	On GoSub
	On_Hardware_Interrupt
	Context Save
	Context Restore
	Managed Hardware Interrupts

	On_Low_Interrupt
	Context Save
	Context Restore
	Managed Low-Priority Hardware Interrupts.

	Output
	Org
	Oread
	Owrite
	Pixel
	Plot
	Pop
	Pot
	Print
	Using a Samsung KS0108 Graphic LCD
	Using a Toshiba T6963 Graphic LCD

	PulsIn
	PulseOut
	Push
	Pwm
	Random
	RC5in
	RCin
	Repeat...Until
	Return
	Right$
	Rsin
	Rsout
	Seed
	Select..Case..EndSelect
	Serin
	Serout
	Servo
	SetBit
	Set
	Shin
	Shout
	Snooze
	Sleep
	SonyIn
	Sound
	Sound2
	Stop
	Strn
	Str$
	Swap
	Symbol
	Toggle
	ToLower
	ToUpper
	Toshiba_Command
	Toshiba_UDG
	UnPlot
	Val
	VarPtr
	While...Wend
	Xin
	Xout

	Using the Optimiser
	Using the Preprocessor
	Preprocessor Directives
	Definition File

	 Built in Peripheral Macros
	ADC macro introduction
	BusyADC
	CloseADC
	ConvertADC
	 OpenADC
	ReadADC
	SetChanADC
	SelChanConvADC

	 Timer macros Introduction
	CloseTimer0
	CloseTimer1
	CloseTimer2
	CloseTimer3
	OpenTimer0
	OpenTimer1
	OpenTimer2
	OpenTimer3
	ReadTimer0
	ReadTimer1
	ReadTimer2
	ReadTimer3
	WriteTimer0
	WriteTimer1
	WriteTimer2
	WriteTimer3
	SetTmrCCPSrc
	T3_OSC1EN_ON
	T3_OSC1EN_OFF

	SPI macros Introduction
	CloseSPI
	DataReadySPI
	OpenSPI
	ReadSPI
	WriteSPI

	Analogue Comparator macro Introduction
	CloseComp1
	CloseComp2
	Comp1_IntEnable
	Comp2_IntEnable
	Comp1_IntDisable
	Comp2_IntDisable
	OpenComp1
	OpenComp2

	 Hardware PWM macro Introduction
	CloseAnalog1
	CloseAnalog2
	OpenAnalog1
	OpenAnalog2
	WriteAnalog1
	WriteAnalog2

	Protected Compiler Words

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

