

Amicus18
Companion Shield

Amicus18 Companion Shield

 1
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield ...2
Companion Shield Options ..3
Building the Companion Shield ..4

First Program... 7
2 LED Flasher ...11
4 LED Sequencer...13
8 LED Sequencer...16
Traffic Light Sequencer..19

Sensing the Outside World..21
Switch Input (Pulled-Up)..21
Switch Input (Pulled-Down) ...24
Switch Debounce ..27

Analogue Meets Digital ...30
Light Level Switch (Cockroach Mode) ..32
Light Level Switch (Moth Mode)..35
Temperature Sensor..36
Thermostat (increase in temperature)...38
Thermostat (decrease in temperature) ..39
Thermostat (increase and decrease of temperature) ..40

Digital Meets Analogue... 42
Pulse Width Modulation (PWM)...42
Channel 1 PWM ..43
Channel 2 PWM ..45
Two channels of PWM simultaneously (Pulsing Light) ...47

Amicus18 Companion Shield

 2
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Amicus18 Companion Shield
A shield is a PCB that fits over the Amicus18 board and provides extra functionality, such as Ethernet,
Motor control, LCD, Smartcard, GPS, GSM etc…

All Arduino shields will physically fit on the Amicus18, however, Arduino source code is not compatible
with Amicus18, as they differ in two very crucial aspects. First, the Amicus uses a Microchip PICmicrotm
for it’s microcontroller, while the Arduino uses an Atmel AVR microcontroller. The Arduino uses a subset
of the language C, where as the Amicus18’s supplied language is BASIC. However, there is no reason
that any PICmicrotm language cannot be used with Amicus18, in fact, it’s encouraged.

The entry level shield, and in the authors opinion, the most useful, is the Companion shield. This is a
PCB laid out in the pattern of a solderless breadboard. The holes are single sided, which means that
components can easily be removed using solder mop braid, or a solder vacuum tool, if a mistake is
made, or components need to be re-used.

Another solution is to add a solderless breadboard to the Companion shield, thus allowing the full re-use
of components without the need for a soldering iron. Notice the use of header sockets instead of header
pins.

Amicus18 Companion Shield

 3
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Companion Shield Options
The companion shield is available as a blank PCB or ready built. However, there are two flavours of the
ready built boards, one with header sockets, and one with header pins. It all depends on what you need
to do with the companion shield. The illustrations below show the various flavours:

Blank Companion Shield

Companion Shield with Header Sockets

Companion Shield with Header Pins

Amicus18 Companion Shield

 4
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

The two flavours of the shield allow the boards to be stackable or at the top of the stack:

The illustration above shows the Amicus18 board at the bottom of the stack, then a socketed shield,
then a pinned shield. A pinned shield could carry an LCD or other user interfacing device that would not
suit being stacked between other PCBs. The socket and pin headers used for the companion shield have
long legs, thus allowing plenty of clearance between the stacked PCBs, 12mm for the pinned header,
and 14mm for the socketed header.

Building the Companion Shield
If you are going to choose the blank companion shield, it must be pointed out that it contains surface
mount components (not supplied with it). These components are purely optional, but if you are consid-
ering using them, make sure you have the required skills to solder surface mount devices. It’s not diffi-
cult, and there are plenty of SMT soldering tutorials on the internet.

Start by soldering the decoupling capacitors C5 and C9 on the board, both are 100nF 50 Volt ceramic
capacitors with an 0805 casing:

Amicus18 Companion Shield

 5
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Next solder on the resistor R6 which is a 1KΩ 1% 0805 casing type:

Next to solder is the power indicator LED, this is a red type 0805 casing, but any colour will do. Note
that resistor R6 is not required if the LED is omitted:

Take note of the orientation of the LED, make sure the Anode is located as in the above diagram. Re-
versing the LED won’t harm it, it just won’t illuminate.

Amicus18 Companion Shield

 6
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

The next component is the reset button, this is a standard PCB push to make type:

Then place either the header pins or the header sockets as the earlier diagram illustrate. These are
standard 2.54 (0.1”) spacing Single Inline types (SIL).

You will require 5 of these:

1 x 4 way
1 x 6 way
3 x 8 way

Amicus18 Companion Shield

 7
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

First Program
We’ll jump straight in at this point and produce our very first program that does something, but not us-
ing the companion shield just yet.

Open the AmicusIDE and type in the following code. Note that it is not required to type in the com-
mented texts. i.e. blue texts:

' Flash an LED connected to RB0
' Make sure the Amicus18 board’s jumper Q3 is set to the GND position
 While 1 = 1 ' Create an infinite loop

High RB0 ' Bring the LED pin high (illuminate the LED)
DelayMs 500 ' Wait 500ms (half a second)
Low RB0 ' Pull the LED pin low (Extinguish the LED)
DelayMs 500 ' Wait 500ms (half a second)

 Wend ' Close the loop

Move jumper Q3 to the Gnd position, and place an LED into PortB pins RB0 and RB1, with the Cathode
connected to RB1, and the Anode connected to RB0. The Cathode is identified by being the shorter of
the two wires, and also the body of the LED has a flattened side.

Connect the USB cable to the Amicus18 board, and make sure its red Power LED is illuminated. Press
the Compile and Program button on the toolbar, or press F10. The code will then be compiled, and the
bootloader will open to place the compiled code into the Amicus18’s microcontroller. The LED will then
start flashing.

The above layout works as expected, however, some rules have been broken in so much as the LED
does not have a current limiting resistor in series with it. This means that the LED is seeing the full 3.3
Volts instead of it’s working voltage of approx 2 Volts, and is pulling too much current from the micro-
controller’s IO pin. We can alleviate this situation by using the Companion Shield with a solderless
breadboard.

The correct method for connecting an LED is shown overleaf.

Amicus18 Companion Shield

 8
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

The circuit for the layout above is shown below:

The same program may be used with the layout above, but this time the LED is protected from over
voltage and over current.

' Flash an LED connected to RB0
' Make sure the Amicus18 board’s jumper Q3 is set to the GND position
 While 1 = 1 ' Create an infinite loop

High RB0 ' Bring the LED pin high (illuminate the LED)
DelayMs 500 ' Wait 500ms (half a second)
Low RB0 ' Pull the LED pin low (Extinguish the LED)
DelayMs 500 ' Wait 500ms (half a second)

 Wend ' Close the loop

Remember that you do not need to type in the comments. i.e. the blue text following the ' character.

Once the program is typed into the IDE, press the toolbar’s Compile and Program button to compile the
code and place it into the Amicus18’s microcontroller. As long as no typing errors have been made, the
LED will then begin to flash. If any errors are found the offending line will be highlighted and an error
message will be displayed on the bottom of the IDE.

Power
GND

Red LED

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0

PortB

47Ω

Amicus18 Companion Shield

 9
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

How to choose the resistor value
A resistor is a device designed to cause resistance to an electric current and therefore cause a drop in
voltage across its terminals. If you imagine a resistor to be like a water pipe that is a lot thinner than
the pipe connected to it. As the water (the electric current) comes into the resistor, the pipe gets thin-
ner and the current coming out of the other end is therefore reduced. We use resistors to decrease
voltage or current to other devices. The value of resistance is known as an Ohm and its symbol is a
Greek Omega symbol Ω.

In this case Digital Pin RB0 is outputting 3.3 volts DC at 25mA (milliamps), and our LED requires a volt-
age of 2v and a current of 20mA. We therefore need to put in a resistor that will reduce the 3.3 volts to
2.2 volts, and the current from 25mA to 20mA if we want to display the LED at its maximum brightness.
If we want the LED to be dimmer we could use a higher value of resistance.

To calculate what resistor we need to do this we use what is called “Ohms law” which is I = V/R where I
is current, V is voltage and R is resistance. Therefore to work out the resistance we arrange the formula
to be R = V/ I which is R = 1.1/0.02 which is 55 Ohms. V is 1.1 because we need the Voltage Drop,
which is the supply voltage (3.3 volts) minus the Forward Voltage (2.2 volts) of the LED (found in the
LED datasheet) which is 1.1 volts. We therefore need to find a 55Ω resistor. However, 55Ω resistors are
not easily found, so we’ll find a one close to it, 47 Ohms will do.

A resistor is too small to put writing onto that could be readable by most people so instead resistors use
a colour code. Around the resistor you will typically find 4 coloured bands and by using the colour code
in the chart on the next page you can find out the value of a resistor or what colour codes a particular
resistance will be.

Colour 1st Band 2nd Band 3rd Band (multiplier) 4th Band (tolerance)

Black 0 0 x100

Brown 1 1 x101 ±1%

Red 2 2 x102 ±2%

Orange 3 3 x103

Yellow 4 4 x104

Green 5 5 x105 ±0.5%

Blue 6 6 x106 ±0.25%

Violet 7 7 x107 ±0.1%

Grey 8 8 x108 ±0.05%

White 9 9 x109

Gold x10-1 ±5%

Silver x10-2 ±10%

None ±20%

Amicus18 Companion Shield

 10
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

We need a 47Ω resistor, so if we look at the colour table we see that we need 4 in the first band, which
is Yellow, followed by a 7 in the next band which is Violet and we then need to multiply this by 100
which is Black in the 3rd band. The final band is irrelevant for our purposes as this is the tolerance. Our
resistor has a gold band and therefore has a tolerance of ±5% which means the actual value of the re-
sistor can vary between 46.5Ω and 47.5Ω. We therefore need a resistor with a Yellow, Violet, Black,
Gold colour band combination which looks like this:

If we needed a 1K (or 1 kilo-ohm) resistor we would need a Brown, Black, Red combination (1, 0, +2
zeros). If we needed a 570K resistor the colours would be Green, Violet and Yellow.

In the same way, if you found a resistor and wanted to know what value it is you would do the same in
reverse. So if you found this resistor and wanted to find out what value it was so you could store it
away in your nicely labelled resistor storage box, we could look at the table to see it has a value of
220Ω.

The LED
The final component is an LED, which stands for Light Emitting Diode. A Diode is a device that permits
current to flow in only one direction. So, it is just like a valve in a water system, but in this case it’s let-
ting electrical current to go in one direction, but if the current tried to reverse and go back in the oppo-
site direction the diode would stop it from doing so. Diodes can be useful to prevent accidental connec-
tion of a Power supply in a circuit, and damaging the components.

An LED is the same thing, but it also emits light. LEDs come in all kinds of different colours and bright-
ness’s and can also emit light in the ultraviolet and infrared part of the spectrum (like in the LEDs within
a TV remote control).

If you look carefully at the LED you will notice two things. One is that the legs are of different lengths
and also that on one side of the LED, instead of it being cylindrical, it is flattened. These are indicators
to show you which leg is the Anode (Positive) and which is the Cathode (Negative). The longer leg gets
connected to the Positive Supply (3.3 volts) and the leg with the flattened side goes to Ground (Gnd).

If you connect the LED the wrong way, it will not damage it,
but it is essential that you always place a resistor in series
with the LED to ensure that the correct current gets to the
LED. You can permanently damage the LED if you fail to do
this.

As well as single colour LEDs you can also obtain bi-colour
and tricolour LEDs. These will have several legs coming out of
them with one of them being common (i.e. common anode or
common cathode).

Amicus18 Companion Shield

 11
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

2 LED Flasher
Adding a second LED is simple, and the code for driving them is not too difficult either:

Amicus18 Companion Shield

 12
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

The circuit for the two LED flasher layout is shown below:

The code for driving the LEDs is shown below:

' Flash 2 LEDs connected to RB2 and RB3

Symbol LED1 = RB2 ' LED 1 is placed on pin-2 of PortB
Symbol LED2 = RB3 ' LED 2 is placed on pin-3 of PortB
While 1 = 1 ' Create an infinite loop

High LED1 ' Illuminate LED1
DelayMS 500 ' Wait for half a second
Low LED1 ' Extinguish LED1
High LED2 ' Illuminate LED2
DelayMS 500 ' Wait for half a second
Low LED2 ' Extinguish LED2

Wend ' Do it forever

Power
GND

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0

PortB

47Ω

LEDCathode

Anode

47Ω

LED

Amicus18 Companion Shield

 13
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

4 LED Sequencer
Adding, and using, extra LEDs is also very simple, as illustrated below:

Amicus18 Companion Shield

 14
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

The two extra LEDs are connected to RB0 and RB1 of PortB, as the circuit shows below:

A suitable program for the 4 LED sequencer is shown below:
' Illuminate 4 LEDs attached to PortB in sequence
' Make sure the Amicus18 board’s jumper Q3 is set to the RB1 position
'

Low PORTB ' Make PortB output low (Extinguish all four LEDs)
While 1 = 1 ' Create an infinite loop

PORTB = %00000001 ' Illuminate the first LED
DelayMS 300 ' Delay a pre-determined amount of time
PORTB = %00000010 ' Illuminate the second LED
DelayMS 300 ' Delay a pre-determined amount of time
PORTB = %00000100 ' Illuminate the third LED
DelayMS 300 ' Delay a pre-determined amount of time
PORTB = %00001000 ' Illuminate the fourth LED
DelayMS 300 ' Delay a pre-determined amount of time

Wend ' Do it forever

The above program will illuminate each LED in turn.

Power
GND

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0

PortB

LED

47Ω

LED

47Ω

LED

47Ω

LED

47Ω

Cathode

Anode

Amicus18 Companion Shield

 15
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

A more advanced program to do the same thing is shown below:

' Illuminate 4 LEDs attached to PortB in sequence
' Using a more advanced method
' Make sure the Amicus18 board’s jumper Q3 is set to the RB1 position
'

Dim bPortShadow As Byte ' Create a variable to hold the state of PortB
Dim bLoop As Byte ' Create a variable for the bit counting loop

Low PORTB ' Make PortB output low (Extinguish all four LEDs)
While 1 = 1 ' Create an infinite loop

bPortShadow = 1 ' Set the initial state of PortB
PORTB = bPortShadow ' Transfer the shadow variable to PortB
DelayMS 300 ' Wait a pre-determined amount of time
For bLoop = 0 To 3 ' Create a loop from 0 to 3

bPortShadow = bPortShadow << 1 ' Shift a bit left one position
PORTB = bPortShadow ' Transfer the shadow variable to PortB
DelayMS 300 ' Wait a pre-determined amount of time

Next ' Close the loop
Wend ' Do it forever

There are many variations of the programs that can be used with the four LED circuit. The program be-
low sequences the LED’s up then down the line.

' Illuminate 4 LEDs attached to PortB in sequence
' Make sure the Amicus18 board’s jumper Q3 is set to the RB1 position
'

Dim bPortShadow As Byte ' Create a variable to hold the state of PortB
Dim bLoop As Byte ' Create a variable for the bit counting loop

bPortShadow = 1 ' Set the initial state of PortB
Low PORTB ' Make PortB output low (Extinguish all four LEDs)
PORTB = bPortShadow ' Transfer the shadow variable to PortB
DelayMS 300 ' Wait a pre-determined amount of time
While 1 = 1 ' Create an infinite loop

For bLoop = 0 To 3 ' Create a loop from 0 to 3
bPortShadow = bPortShadow << 1 ' Shift a bit left one position
PORTB = bPortShadow ' Transfer the shadow variable to PortB
DelayMS 300 ' Wait a pre-determined amount of time

Next ' Close the loop
For bLoop = 3 To 0 Step -1 ' Create a loop from 3 to 0

bPortShadow = bPortShadow >> 1 ' Shift a bit right one position
PORTB = bPortShadow ' Transfer the shadow variable to PortB
DelayMS 300 ' Wait a pre-determined amount of time

Next ' Close the loop
Wend ' Do it forever

Amicus18 Companion Shield

 16
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

8 LED Sequencer
A more sophisticated layout is shown below, in which eight LEDs are used. Notice how the use of differ-
ent colour LEDs adds a new twist:

A top down view of the above layout is shown below for extra clarity:

Note. Make sure the Amicus18’s Q3 jumper is set to the RB1 position.

Amicus18 Companion Shield

 17
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

The circuit for the eight LED layout is shown below:

A suitable program for the 8 LED sequencer is shown below:

' Illuminate 8 LEDs attached to PortB in sequence
' Using discrete commands
' Make sure the Amicus18 board’s jumper Q3 is set to the RB1 position
'

Low PORTB ' Make PortB output low (Extinguish all the LEDs)
While 1 = 1 ' Create an infinite loop

PORTB = %00000001 ' Illuminate the first LED
DelayMS 300 ' Delay a pre-determined amount of time
PORTB = %00000010 ' Illuminate the second LED
DelayMS 300 ' Delay a pre-determined amount of time
PORTB = %00000100 ' Illuminate the third LED
DelayMS 300 ' Delay a pre-determined amount of time
PORTB = %00001000 ' Illuminate the fourth LED
DelayMS 300 ' Delay a pre-determined amount of time
PORTB = %00010000 ' Illuminate the fifth LED
DelayMS 300 ' Delay a pre-determined amount of time
PORTB = %00100000 ' Illuminate the sixth LED
DelayMS 300 ' Delay a pre-determined amount of time
PORTB = %01000000 ' Illuminate the seventh LED
DelayMS 300 ' Delay a pre-determined amount of time
PORTB = %10000000 ' Illuminate the eighth LED
DelayMS 300 ' Delay a pre-determined amount of time

Wend ' Close the loop

The above program will illuminate each LED in turn.

Power
GND

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0

PortB

LED

47Ω

LED

47Ω

LED

47Ω

LED

47Ω

LED

47Ω

LED

47Ω

LED

47Ω

LED

47Ω

Cathode

Anode

Amicus18 Companion Shield

 18
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

A more advanced program to do the same thing is shown below:

' Illuminate 8 LEDs attached to PortB in sequence
' Using a more advanced method
' Make sure the Amicus18 board’s jumper Q3 is set to the RB1 position
'

Dim bPortShadow As Byte ' Create a variable to hold the state of PortB
Dim bLoop As Byte ' Create a variable for the bit counting loop

Low PORTB ' Make PortB output low (Extinguish all the LEDs)
While 1 = 1 ' Create an infinite loop

bPortShadow = 1 ' Set the initial state of PortB
PORTB = bPortShadow ' Transfer the shadow variable to PortB
DelayMS 300 ' Wait a pre-determined amount of time
For bLoop = 0 To 6 ' Create a loop from 0 to 6

bPortShadow = bPortShadow << 1 ' Shift a bit left one position
PORTB = bPortShadow ' Transfer the shadow variable to PortB
DelayMS 300 ' Wait a pre-determined amount of time

Next ' Close the loop
Wend ' Do it forever

There are many variations of the programs that can be used with the eight LED circuit. The program
below sequences the LED’s up then down the line.

' Illuminate 8 LEDs attached to PortB in sequence
' Make sure the Amicus18 board’s jumper Q3 is set to the RB1 position
'

Dim bPortShadow As Byte ' Create a variable to hold the state of PortB
Dim bLoop As Byte ' Create a variable for the bit counting loop

bPortShadow = 1 ' Set the initial state of PortB
Low PORTB ' Make PortB output low (Extinguish all the LEDs)
PORTB = bPortShadow ' Transfer the shadow variable to PortB
DelayMS 300 ' Wait a pre-determined amount of time
While 1 = 1 ' Create an infinite loop

For bLoop = 0 To 6 ' Create a loop from 0 to 6
bPortShadow = bPortShadow << 1 ' Shift a bit left one position
PORTB = bPortShadow ' Transfer the shadow variable to PortB
DelayMS 300 ' Wait a pre-determined amount of time

Next ' Close the loop
For bLoop = 6 To 0 Step -1 ' Create a loop from 6 to 0

bPortShadow = bPortShadow >> 1 ' Shift a bit right one position
PORTB = bPortShadow ' Transfer the shadow variable to PortB
DelayMS 300 ' Wait a pre-determined amount of time

Next ' Close the loop
Wend ' Do it forever

Amicus18 Companion Shield

 19
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Traffic Light Sequencer
Using an adaptation of the 8 multi-coloured LED layout, we can create the sequence for a UK traffic
light. The layout is shown below, notice that the only difference is the removal of four LEDs and four
resistors:

Amicus18 Companion Shield

 20
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

The circuit for the traffic light sequencer is shown below:

The sequence of traffic lights in the UK is shown below:

The program below shows the steps required to reproduce the sequence of lights shown above:

' Simulate a single traffic light using Red, Yellow, and Green LEDs
'

Symbol Red = RB0 ' Red LED is attached to RB0
Symbol Amber = RB1 ' Amber LED is attached to RB1
Symbol Green = RB2 ' Green LED is attached To RB2
Symbol RedInterval = 4000 ' Time that the Red light will stay on

' Time that the Red and Amber lights will stay on
Symbol AmberRedInterval = RedInterval / 4

' Time that the Amber light will stay on
Symbol AmberInterval = RedInterval - AmberRedInterval
Symbol GreenInterval = 6000 ' Time that the Green light will stay on

While 1 = 1 ' Create an infinite loop

High Red ' Illuminate the Red LED
DelayMS RedInterval ' Wait for the appropriate length of time
High Amber ' Illuminate the Amber LED
DelayMS AmberRedInterval ' Wait for the appropriate length of time
Low Red ' Extinguish the Red LED
DelayMS AmberInterval ' Wait for the appropriate length of time
High Green ' Illuminate the Green LED
Low Amber ' Extinguish the Amber LED
DelayMS GreenInterval ' Wait for the appropriate length of time
Low Green ' Extinguish the Green LED
High Amber ' Illuminate the Amber LED
DelayMS AmberInterval ' Wait for the appropriate length of time
Low Amber ' Extinguish the Amber LED

Wend ' Do it forever

Type in the program above, remembering that you do not need to type in the comments. Click on the
toolbar Compiler and Program button or press F10 to compile the code and load it into the Amicus18’s
microcontroller. The three LEDs will then start sequencing.

Power
GND

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0

PortB

LED

47Ω

LED

47Ω

LED

47Ω

Cathode

Anode

Amicus18 Companion Shield

 21
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Sensing the Outside World
Interacting with the outside world is always desirable when using a microcontroller, whether it’s choos-
ing a drink in a vending machine or deciding which way a pacman will move. The easiest method of out-
side influence is through the use of a switch or button.

However, there are certain rules that must be observed when adding a switch to a microcontroller’s pin.
When the pin is configured as an input, it can be brought high to 3.3 Volts or pulled low to ground,
however if neither of these states is performed, the pin is neither high or low and this is termed floating.
Even if a switch was placed from the microcontroller’s input pin to ground, when the switch is not being
operated the input pin can be high or low (floating).

What’s required is a pull-up resistor or a pull-down resistor in order to force a single state when not in
use. A pull-up resistor is a weak resistance from the input pin to the 3.3 Volt line, while a pull-down re-
sistor is a weak resistance from the input pin to ground.

Switch Input (Pulled-Up)
The layout below shows a pull-up resistance:

Amicus18 Companion Shield

 22
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

The circuit for the pulled-up switch input is shown below:

Open the Amicus IDE and type in the following program, or copy and paste from here:

' Demonstrate a switch input using a pull-up resistor
' Display state of the input pin RB4 when a push-button switch is operated
'
 Symbol Switch = RB4 ' Button is connected to RB4 (PortB.4)

 Input Switch ' Make the button pin an input
 While 1 = 1 ' Create an infinite loop
 HRSOut "Button = ", Bin1 Switch, 13 ' Display the input state
 DelayMS 500 ' Delay for half a second
 Wend ' Do it forever

Click the toolbar icon Compile and Program or press F10 to build the code and place it into the
Amicus18’s microcontroller.

Open the Serial Terminal by clicking on the toolbar, and open a connection to the Amicus18. Use the
default baud of 9600. The serial terminal’s window should show the text “Button = 1”. This is dis-
playing the state of the pin where the button is attached. Press the button and the test will change to
“Button = 0”:

Button Pressed

Button Released

Power
GND

LED

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0

PortB

Push
Button

Power
Vin
GND
GND
5V
3V3
RstPull-Up

Resistor

22KΩ

47Ω

Amicus18 Companion Shield

 23
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Notice how the state of the pin is 0 when the button is pressed. This is because the weak pull-up resis-
tor (22KΩ) holds the pin to 3.3 Volts when it’s not being operated, and the button pulls the pin to
ground when it’s operated.

Now that we know that the pin’s state is 0 when the button is operated, decisions can be made upon it.

The program below will flash the LED 10 times when the button is pressed:

' Demonstrate a switch input using a pull-up resistor
' Flash an LED based upon a button press
'
 Dim Flash As Byte ' Holds the amount of flashes
 Symbol Switch = RB4 ' Button is connected to RB4 (PortB.4)
 Symbol LED = RB0 ' LED attached to RB0

 GoTo Main ' Jump over the subroutine
'------------------------------------
' Subroutine to flash the LED
FlashLED:
 For Flash = 0 To 9 ' Create a loop of 10 iterations
 High LED ' Illuminate the LED
 DelayMS 100 ' Wait 100 milliseconds
 Low LED ' Extinguish the LED
 DelayMS 100 ' Wait 100 milliseconds
 Next ' Close the loop
 Return ' Exit the subroutine
'------------------------------------
' Main program starts here
Main:
 Input Switch ' Make the button pin an input
 While 1 = 1 ' Create an infinite loop
 If Switch = 0 Then ' Is the button pressed ?
 GoSub FlashLED ' Yes. So flash the LED
 EndIf
 Wend ' Do it forever

Amicus18 Companion Shield

 24
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Switch Input (Pulled-Down)
The layout below shows a pull-down resistance:

Amicus18 Companion Shield

 25
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

The circuit for the above layout is shown below:

Open the Amicus IDE and type in the following program, or copy and paste from here:

' Demonstrate a switch input using a pull-down resistor
' Display state of the input pin RB4 when a push-button switch is operated
'
 Symbol Switch = RB4 ' Button is connected to RB4 (PortB.4)

 Input Switch ' Make the button pin an input
 While 1 = 1 ' Create an infinite loop
 HRSOut "Button = ", Bin1 Switch, 13 ' Display the input state
 DelayMS 500 ' Delay for half a second
 Wend ' Do it forever

Click the toolbar icon Compile and Program or press F10 to build the code and place it into the
Amicus18’s microcontroller.

Open the Serial Terminal by clicking on the toolbar, and open a connection to the Amicus18. Use the
default baud of 9600. The serial terminal’s window should show the text “Button = 0”. This is dis-
playing the state of the pin where the button is attached. Press the button and the test will change to
“Button = 1”:

Button Pressed

Button Released

Power
GND

LED

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0

PortB

Push
Button

Power
Vin
GND
GND
5V
3V3
Rst

22KΩ

Pull-Down
Resistor

47Ω

Amicus18 Companion Shield

 26
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Notice how the state of the pin is 1 when the button is pressed. This is because the weak pull-up resis-
tor (22KΩ) holds the pin to ground when it’s not being operated, and the button pulls the pin to 3.3
Volts when it’s operated. This is the exact opposite of using a pull-up resistor.

Now that we know that the pin’s state is 1 (high) when the button is operated, decisions can be made
upon it.

The program below will flash the LED 10 times when the button is pressed:

' Demonstrate a switch input using a pull-down resistor
' Flash an LED based upon a button press
'
 Dim Flash As Byte ' Holds the amount of flashes
 Symbol Switch = RB4 ' Button is connected to RB4 (PortB.4)
 Symbol LED = RB0 ' LED attached to RB0

 GoTo Main ' Jump over the subroutine
'------------------------------------
' Subroutine to flash the LED
FlashLED:
 For Flash = 0 To 9 ' Create a loop of 10 iterations
 High LED ' Illuminate the LED
 DelayMS 100 ' Wait 100 milliseconds
 Low LED ' Extinguish the LED
 DelayMS 100 ' Wait 100 milliseconds
 Next ' Close the loop
 Return ' Exit the subroutine
'------------------------------------
' Main program starts here
Main:
 Input Switch ' Make the button pin an input
 While 1 = 1 ' Create an infinite loop
 If Switch = 1 Then ' Is the button pressed ?
 GoSub FlashLED ' Yes. So flash the LED
 EndIf
 Wend ' Do it forever

Amicus18 Companion Shield

 27
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Switch Debounce
Mechanical switches are frequently encountered in embedded processor applications, and are inexpen-
sive, simple, and reliable. However, such switches are also often very electrically noisy. This noise is
known as switch bounce, whereby the connection between the switch contacts makes and breaks sev-
eral, perhaps even hundreds, of times before settling to the final switch state. This can cause a single
switch push to be detected as several distinct switch pushes by the fast microcontroller used in the
Amicus18 board, especially with an edge-sensitive input. Think of advancing the TV channel, but instead
of getting the next channel, the selection skips ahead two or three.

Classic solutions to switch bounce involved low pass filtering out of the fast switch bounce transitions
with a resistor-capacitor circuit, or using re-settable logic shift registers. While effective, these methods
add additional cost and increase circuit board complexity. Debouncing a switch in software eliminates
these issues.

A simple way to debounce a switch is to sample the switch until the signal is stable. How long to sample
requires some investigation of the switch characteristics, but usually 5ms is sufficiently long.

The following code demonstrates sampling the switch input every 1mS, waiting for 5 consecutive sam-
ples of the same value before determining that the switch was pressed. Note that the tactile switches
used for the layouts don’t bounce much, but it is good practice to debounce all system switches.

' Debounce a switch input (Pulled-Up)
' The LED will toggle On and Off whenever the switch is pressed
'

Dim Switch_Count As Byte ' Holds the switch counter amounts
Symbol DetectsInARow = 5 ' The amount of counts to perform

Symbol Switch_Pin = PORTB.4 ' Pin where the switch is connected
Symbol LED = PORTB.0 ' Pin where the LED is connected

Main:

Low LED ' Extinguish the LED
Input Switch_Pin ' Make the switch pin a input

While 1 = 1 ' Create an infinite loop

While Switch_Pin <> 1 : Wend ' Wait for switch to be released (Pulled-Up)

Switch_Count = 5
Repeat ' Monitor switch input for 5 lows in a row to debounce

If Switch_Pin == 0 Then ' Pressed state detected ?
Inc Switch_Count ' Yes. So increment the counter

Else ' Otherwise...
Switch_Count = 0 ' Reset the counter

EndIf
DelayMS 1 ' Wait for 1ms

Until Switch_Count >= DetectsInARow ' Exit when 5 iterations have been performed

Toggle LED ' Toggle the LED On/Off
Wend ' Do it forever

Amicus18 Companion Shield

 28
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

The same layout as the pulled-up switch demonstration can be used:

The circuit for the debounced pulled-up switch input is shown below:

Power
GND

LED

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0

PortB

Push
Button

Power
Vin
GND
GND
5V
3V3
RstPull-Up

Resistor

22KΩ

47Ω

Amicus18 Companion Shield

 29
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

In order to detect and debounce a switch that is pulled down to ground through a resistor, the following
code can be used. It’s essentially the same program as the pulled up version, but references to 0 now
reference 1, and vice-versa:

' Debounce a switch input (Pulled-Down)
' The LED will toggle On and Off whenever the switch is pressed
'

Dim Switch_Count As Byte ' Holds the switch counter amounts
Symbol DetectsInARow = 5 ' The amount of counts to perform

Symbol Switch_Pin = PORTB.4 ' Pin where the switch is connected
Symbol LED = PORTB.0 ' Pin where the LED is connected

Main:

Low LED ' Extinguish the LED
Input Switch_Pin ' Make the switch pin a input

While 1 = 1 ' Create an infinite loop

While Switch_Pin <> 0 : Wend ' Wait for switch to be released (Pulled Down)

Switch_Count = 5
Repeat ' Monitor switch input for 5 highs in a row to debounce

If Switch_Pin == 1 Then ' Pressed state detected ?
Inc Switch_Count ' Yes. So increment the counter

Else ' Otherwise...
Switch_Count = 0 ' Reset the counter

EndIf
DelayMS 1 ' Wait for 1ms

Until Switch_Count >= DetectsInARow ' Exit when 5 iterations have been performed

Toggle LED ' Toggle the LED On/Off
Wend ' Do it forever

Amicus18 Companion Shield

 30
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Analogue Meets Digital
Not everything in the microcontroller world is made up of ons or offs, sometimes the input required is of
an analogue nature i.e. a voltage. This is where an Analogue to Digital Converter (ADC) comes into it’s
own. An ADC samples the incoming voltage and converts it to a binary representation. The Amicus18
has nine ADC inputs, each capable of producing a 10-bit sample (0 to 1023). The ADC can measure re-
sistance, current, sound, in fact anything that has a voltage.

To illustrate the use of the ADC peripheral, use the layout below:

The circuit for the above layout is shown below:

Power
Vin

100KΩ
Potentiometer

GND
GND

5V
3V3
Rst

AN4/AN5
RA4

AN3/RA3
AN2/RA2
AN1/RA1
AN0/RA0

PortA

Amicus18 Companion Shield

 31
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

The program for the ADC demonstration is shown below:

' Demonstrate an ADC (Analogue to Digital Converter) input
' Display the state of AN0 (Channel 0 of the ADC) on the serial terminal
'

Dim ADC_Input As Word ' Create a variable to hold the 10-bit ADC result
Include "ADC.inc" ' Load the ADC macros into the program

'
' Open the ADC:
' Fosc set for Fosc/32
' Right justified for 10-bit operation
' Tad value of 2
' Vref+ at Vcc : Vref- at Gnd
' Make AN0 an analogue input
'

OpenADC(ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_2_TAD, ADC_REF_VDD_VSS, ADC_1ANA)

While 1 = 1 ' Create an infinite loop
ADC_Input = ReadADC(0) ' Read the ADC from channel AN0
HRSOut "ADC = ", Dec ADC_Input, 13 ' Display the ADC value

 DelayMS 500 ' Delay for half a second
Wend ' Do it forever

Once the program is compiled and loaded into the Amicus18 board by clicking on the toolbar Compile
and Program or pressing F10, open the serial terminal and connect to the Amicus18 board’s com port:

Turning the potentiometer anti-clockwise will increase the voltage to the ADC, therefore increasing the
ADC’s value. Turning the potentiometer clockwise will decrease the voltage to the ADC, and decrease
the ADC’s value, as can be seen from the screenshot above.

Don’t worry too much is the ADC value isn’t exactly 1023 for 3.3 Volts, as it’s only a tiny fraction of the
actual value, and this will make very little difference, if any, to most programs. This can be caused by
many things, wrong Tad being used, wrong Fosc, losses in the wiring etc…

Pot Fully Clockwise (0 Volts)

Pot Mid Way (Approx 1.6 Volts)

Pot Fully Anti-Clockwise (3.3 Volts)

Amicus18 Companion Shield

 32
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Light Level Switch (Cockroach Mode)
We can use the ADC for a more practical example now that we know it works. We’ll use an LDR (Light
Dependant Resistor) as the input to the ADC, and turn on an LED when the light level drops beyond a
certain level.

An LDR, as it’s name suggests, alters it’s resistance depending on the amount of light falling upon it. It’s
one of the oldest methods of light detection, and one of the simplest of all light level detectors to use,
and one of least expensive.

And LDR layout is shown below:

Amicus18 Companion Shield

 33
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Don’t worry if the LDR you use doesn’t look like the one used in the layout as LDRs come in all shapes
and sizes, but they all perform the same task. However, their light level resistance may vary. But again,
this doesn’t actually matter, as we’ll be detecting changes in light level, not the level itself .

The circuit for the LDR layout is shown below:

The program for the Light Level Detector is shown below. The code will activate the LED when the LDR
sees a certain level of darkness, just like a cockroach:

' Illuminate an LED when an LDR connected to AN0 sees darkness
'
' Altering the value within the If-Then condition will set the light level threshold
' Any value from 0 to 1023 is valid, however, larger values indicate darkness
'

Dim LDR_Value As Word ' Holds the 10-bit ADC value from the LDR
Symbol LED = RB0 ' Pin where the LED is connected. i.e. bit-0 of PortB

Include "ADC.inc" ' Load the ADC macros into the program

'
' Open the ADC:
' Fosc set for Fosc / 32
' Right justified for 10-bit operation
' Tad value of 2
' Vref+ at Vcc : Vref- at Gnd
' Make AN0 an analogue input
'

OpenADC(ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_2_TAD, ADC_REF_VDD_VSS, ADC_1ANA)

While 1 = 1 ' Create an infinite loop
LDR_Value = ReadADC(0) ' Read the ADC value from AN0
If LDR_Value > 400 Then ' Is the ADC value above 400. i.e. getting darker

High LED ' Yes. So illuminate the LED
Else ' Otherwise...

Low LED ' Extinguish the LED
EndIf
DelayUS 30 ' Allow the ADC to recover

Wend ' Do it forever

Power
Vin

10KΩ

LDR

GND
GND

5V
3V3
Rst

AN4/AN5
RA4

AN3/RA3
AN2/RA2
AN1/RA1
AN0/RA0

PortA

Power
GND

47Ω

LED

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0

PortB

Amicus18 Companion Shield

 34
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

In order to change the level of darkness that the LDR will react too is simply a matter of changing the
value within the line “If LDR_Value > 400 Then”. A larger value will illuminate the LED at darker
levels. The best way to calibrate the program is to examine the values produced by your particular LDR
in light an dark situations. The program below will display the LDR values on the serial terminal:

' Display the value produced from an LDR
'

Dim LDR_Value As Word ' Holds the 10-bit ADC value from the LDR
Include "ADC.inc" ' Load the ADC macros into the program

'
' Open the ADC:
' Fosc Set For internal RC Oscillator
' Right justified for 10-bit operation
' Tad value of 2
' Vref+ at Vcc : Vref- at Gnd
' Make AN0 an analogue input
'

OpenADC(ADC_FOSC_RC & ADC_RIGHT_JUST & ADC_2_TAD, ADC_REF_VDD_VSS, ADC_1ANA)

While 1 = 1 ' Create an infinite loop
LDR_Value = ReadADC(0) ' Read the ADC value from AN0
HRSOut Dec LDR_Value, 13 ' Display the value on the serial terminal
DelayMS 500 ' Wait half a second

Wend ' Do it forever

Once the code is compiled and loaded into the Amicus18, open the serial teminal:

As can be seen from the above screenshot, ambient light levels give an approximate value of 315, so
anything above this value will indicate a light level decrease. However, we don’t want to make it too
sensitive, so a value of 400 is ideal.

Light Level Dropped Here

Light Level Increased Here

Amicus18 Companion Shield

 35
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Light Level Switch (Moth Mode)
The same circuit and layout is used for the opposite reaction to light levels. The code below will illumi-
nate the LED when light levels increase, just like a moth to a flame.

' Illuminate an LED when an LDR connected to AN0 sees light
' Altering the value within the If-Then condition will set the dark level threshold
' Any value from 0 to 1023 is valid, however, smaller values indicate lightness
'

Dim LDR_Value As Word ' Holds the 10-bit ADC value from the LDR
Symbol LED = RB0 ' Pin where the LED is connected. i.e. bit-0 of PortB
Include "ADC.inc" ' Load the ADC macros into the program

' Open the ADC:
' Fosc set for Fosc / 32
' Right justified for 10-bit operation
' Tad value of 2
' Vref+ at Vcc : Vref- at Gnd
' Make AN0 an analogue input

OpenADC(ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_2_TAD, ADC_REF_VDD_VSS, ADC_1ANA)

While 1 = 1 ' Create an infinite loop
LDR_Value = ReadADC(0) ' Read the ADC value from AN0
If LDR_Value <= 400 Then ' Is the ADC value less than 400. i.e. getting lighter

High LED ' Yes. So illuminate the LED
Else ' Otherwise...

Low LED ' Extinguish the LED
EndIf
DelayUS 30 ' Allow the ADC to recover

Wend ' Do it forever

The code is essentially the same as cockroach mode, except the LED illuminates when the ADC value is
less that 400, instead of greater than 400.

Amicus18 Companion Shield

 36
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Temperature Sensor
One of the simplest, and least expensive, temperature sensors is a thermistor. This is a special type of
resistor that alters it’s resistance based upon it’s temperature. There are generally two types of thermis-
tor; an NTC type (Negative Temparature Coefficient), whose resistance drops as the temparature in-
creases, and a PTC type (Positive Temparature Coefficient), whose resistance increases as the tempara-
ture increases. For this demonstration, we’ll use an NTC thermistor.

Just like there fixed resistance cousins, thermistors come in different packages and resistance-per-
temperature values. These range anywhere from a few hundred Ohms to tens of thousands of Ohms.

The device used in this demonstration is a bead thermistor with a resistance of 10KΩ at a temperature
of 25o centigrade, but any thermistor will do with a few program code changes.

A thermistor layout is shown below:

Amicus18 Companion Shield

 37
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

The circuit for the temperature layout is shown below:

A program to display the the values produced from the thermistor on the serial terminal is shown below:
' Display the value of an NTC thermistor on the serial terminal
' The thermistor is connected To AN0 (Channel 0 of the ADC)
'

Include "ADC.inc" ' Load the ADC macros into the program
Dim ThermistorIn As Word ' Create a variable to hold the 10-bit ADC result

' Open the ADC:
' Fosc set for Fosc/32
' Right justified for 10-bit operation
' Tad value of 0
' Vref+ at Vcc : Vref- at Gnd
' Make AN0 an analogue input
'

OpenADC(ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_0_TAD, ADC_REF_VDD_VSS, ADC_1ANA)
While 1 = 1 ' Create an infinite loop

ThermistorIn = ReadADC(0) ' Read the ADC on AN0
HRSOut "Thermistor = ", Dec ThermistorIn, 13 ' Display the ADC value
DelayMS 500 ' Delay for half a second

Wend ' Do it forever

Once the program has been loaded into the Amicus18 board, open the serial terminal and connect to
the Amicus18’s com port:

The display shows the decrease in voltage with the increase in temperature when a finger covers the
thermistor, and is then removed. As can be seen, a thermistor is quite sensitive.

Room Temperature (Approx 21 degrees Centigrade)

Finger Covering Thermistor (Increase in Temperature)

Finger Removed from Thermistor (Decrease in Temperature)

Power
Vin

Thermistor

GND
GND

5V
3V3
Rst

AN4/AN5
RA4

AN3/RA3
AN2/RA2
AN1/RA1
AN0/RA0

PortA

Power
GND

LED

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0

PortB

-t

47Ω

10KΩ

Amicus18 Companion Shield

 38
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Thermostat (increase in temperature)
We can use the information we have to trigger an external device, in this case an LED, when the ther-
mistor reaches a pre-determined value. We know that room temperature give an ADC value of approx
701, and any value lower than this is an increase in temperature, and a lower value is a decrease in
temperature, so even without knowing the actual temperature we can write some code:

' Illuminate an LED when the temperature increases
' Also display the ADC value of the thermistor connected to AN0
'

Include "ADC.inc" ' Load the ADC macros into the program

Dim ThermistorIn As Word ' Create a variable to hold the 10-bit ADC result
Symbol LED = RB0 ' Alias the name LED to pin RB0

'
' Open the ADC:
' Fosc set for Fosc/32
' Right justified for 10-bit operation
' Tad value of 0
' Vref+ at Vcc : Vref- at Gnd
' Make AN0 an analogue input
'

OpenADC(ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_0_TAD, ADC_REF_VDD_VSS, ADC_1ANA)

While 1 = 1 ' Create an infinite loop
ThermistorIn = ReadADC(0) ' Read the value from the thermistor
HRSOut "Therm = ", Dec ThermistorIn, 13 ' Display the ADC value on the terminal
If ThermistorIn < 600 Then ' Has there been an increase in temperature?

High LED ' Yes. So illuminate the LED
Else ' Otherwise...

Low LED ' Extinguish the LED
EndIf

Wend ' Do it forever

Once the program is compiled and loaded into the Amicus18 board using the toolbar Compile and Pro-
gram or pressing F10, placing a finger over the thermistor, thus increasing the temperature, will illumi-
nate the LED. To adjust the threshold of the temperature trigger, alter the value within the code line:
“If ThermistorIn < 600 Then”. A lower value will illuminate the LED at higher temparatures.

Amicus18 Companion Shield

 39
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Thermostat (decrease in temperature)
In order to illuminate the LED at lower temperatures, use the program below:

' Illuminate an LED when the temperature decreases
' Also display the ADC value of the thermistor connected to AN0
'

Include "ADC.inc" ' Load the ADC macros into the program

Dim ThermistorIn As Word ' Create a variable to hold the 10-bit ADC result
Symbol LED = RB0 ' Alias the name LED to pin RB0

'
' Open the ADC:
' Fosc set for Fosc/32
' Right justified for 10-bit operation
' Tad value of 0
' Vref+ at Vcc : Vref- at Gnd
' Make AN0 an analogue input
'

OpenADC(ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_0_TAD, ADC_REF_VDD_VSS, ADC_1ANA)

While 1 = 1 ' Create an infinite loop
ThermistorIn = ReadADC(0) ' Read the value from the thermistor
HRSOut "Therm = ", Dec ThermistorIn, 13 ' Display the ADC value on the terminal
If ThermistorIn >= 750 Then ' Has there been a decrease in temperature?

High LED ' Yes. So illuminate the LED
Else ' Otherwise...

Low LED ' Extinguish the LED
EndIf

Wend ' Do it forever

Once the program is compiled and loaded into the Amicus18 board using the toolbar Compile and Pro-
gram or pressing F10, blowing over the thermistor, thus decreasing the temperature, will illuminate the
LED. To adjust the threshold of the temperature trigger, alter the value within the code line: “If
ThermistorIn >= 750 Then”. A higher value will illuminate the LED at lower temparatures.

Amicus18 Companion Shield

 40
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Thermostat (increase and decrease of temperature)
The layout and code below allows the demonstration of high, normal, and low temperature changes.
Both LEDs will be extinguished when the temperature is normal, the Red LED will illuminate when the
temperature rises above a pre-determined value, and the Green LED will illuminate when the tempera-
ture decreases beyond a pre-determined level:

Amicus18 Companion Shield

 41
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

The circuit for the thermistat layout is shown below:

The code for the two LED thermostat is shown below:

' Illuminate a Red LED when the temperature increases
' Illuminate a Green LED when the temperature decreases
' Also display the ADC value of the thermistor connected to AN0
'

Include "ADC.inc" ' Load the ADC macros into the program

Dim ThermistorIn As Word ' Create a variable to hold the 10-bit ADC result
Symbol GreenLED = RB0 ' Alias the name GreenLED to pin RB0
Symbol RedLED = RB1 ' Alias the name RedLED to pin RB1

'
' Open the ADC:
' Fosc set for Fosc/32
' Right justified for 10-bit operation
' Tad value of 0
' Vref+ at Vcc : Vref- at Gnd
' Make AN0 an analogue input
'

OpenADC(ADC_FOSC_32 & ADC_RIGHT_JUST & ADC_0_TAD, ADC_REF_VDD_VSS, ADC_1ANA)
While 1 = 1 ' Create an infinite loop

ThermistorIn = ReadADC(0) ' Read the value from the thermistor
HRSOut "Therm = ", Dec ThermistorIn, 13 ' Display the ADC value on the terminal
If ThermistorIn < 600 Then ' Has there been an increase in temperature ?

High RedLED ' Yes. So illuminate the Red LED
Low GreenLED ' Extinguish the Green LED

ElseIf ThermistorIn > 750 Then ' Has there been a decrease in temperature?
Low RedLED ' Yes. So Extinguish the Red LED
High GreenLED ' Illuminate the Green LED

Else ' Otherwise...
Low GreenLED ' Extinguish the Green LED
Low RedLED ' Extinguish the Red LED

EndIf
Wend ' Do it forever

Power
Vin

Thermistor

GND
GND

5V
3V3
Rst

AN4/AN5
RA4

AN3/RA3
AN2/RA2
AN1/RA1
AN0/RA0

PortA

-t

Power
GND

LED

RB7
RB6
RB5
RB4
RB3
RB2
RB1
RB0

PortB

LED

10KΩ

47Ω47Ω

Amicus18 Companion Shield

 42
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Digital Meets Analogue
Sometimes the microcontroller needs to interface back to the real world with an analogue result. This is
termed Digital to Analogue Conversion, or DAC. This can be performed several ways; by using a dedi-
cated DAC peripheral device, by using a digital resistor device, or by using Pulse Width Modulation
(PWM). PWM is the method that is built into the Amicus18’s microcontroller, and requires no specialised
devices to be used, so we’ll discuss this method here.

Pulse Width Modulation (PWM)
Pulse Width Modulation fakes a voltage by producing a series of pulses at regular intervals, and varying
the width of the pulses. The resulting average voltage is the result of the pulse widths. The Amicus18’s
microcontroller can produce a high voltage of 3.3 Volts and low of 0 Volts.

In the illustration below, the pin is pulsed high for the same length of time as it is pulsed low. The time
the pin is high (called the pulsewidth) is about half the total time it takes to go from low to high to low
again. This ratio is called the duty cycle. When the duty cycle is 50%, the average voltage is about half
the total voltage. i.e. 1.6 Volts.

If the duty cycle is made less than 50% by pulsing on for a shorter amount of time, a lower effective
voltage is produced:

If the duty cycle is made greater than 50% by pulsing on for a longer amount of time, a higher effective
voltage is produced:

In order to create a constant voltage instead of a series of pulses, we need a simple RC low pass filter.
As it’s name suggests this consists of a Resistor and a Capacitor.

A filter is a circuit that allows voltage changes of only a certain frequency range to pass. For example, a
low-pass filter would block frequencies above a certain range. This means that if the voltage is changing
more than a certain number of times per second, these changes would not make it past the filter, and
only an average voltage would be seen.

Effective Voltage

V
ol

ta
ge

Time

Effective VoltageV
ol

ta
ge

Time

Effective Voltage

V
ol

ta
ge

Time

Amicus18 Companion Shield

 43
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

There are calculations for the values of the resistor and capacitor used, but we won’t go into that here,
but a search for RC filter on the internet will produce a huge amount of information. Here’s two of them
that are valid at the time of writing:

http://www.cvs1.uklinux.net/cgi-bin/calculators/time_const.cgi
http://www.sengpielaudio.com/calculator-period.htm

Channel 1 PWM
In this discussion, we’ll be using the compiler’s WriteAnalog macros, which produce either an 8-bit (0
to 255) or 10-bit (0 to 1023) output. It’s important for further RC filter calculations to remember that
the 10-bit PWM macro’s operate at a frequency of 62.5KHz (62,500 Hertz), and the 8-bit PWM macros
operate at a frequency of 125KHz (125,000 Hertz), but only if the Amicus18 board is using it’s default
oscillator speed of 64MHz. If the crystal is replaced with another value type, these frequencies will
change. See section 16 in the PIC18F25K20 microcontroller’s data sheet for further information concern-
ing the PWM peripherals.

From the paragraph above, we know that if we use the 10-bit PWM macros, we will be operating at a
frequency of 62.5KHz. This relates to a duty cycle of 0.06 milliseconds (ms), or 16 microseconds (us).

If we choose a value of 47 Ohms for our resistor so that we don’t loose too much current, we need a
capacitance value of 340.425nF (0.34uF). There is no common capacitor of that value so we’ll choose a
close value, for example 330nF (0.33uF).

The circuit for a suitable RC low pass filter is shown below:

The Amicus18’s microcontroller has two PWM peripherals; PWM1 from PortC pin RC2, and PWM2 from
PortC pin RC1. Each pin can produce a differing duty cycle (average voltage), but each share the same
frequency.

A demo layout for channel 1 of the PWM is shown below:

PWM
Pulses In Voltage Out

330nF

47Ω

R

C

http://www.cvs1.uklinux.net/cgi-bin/calculators/time_const.cgi
http://www.sengpielaudio.com/calculator-period.htm

Amicus18 Companion Shield

 44
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

The circuit for the PWM1 layout is shown below:

The PWM peripherals operate in the background, which means that once a PWM duty cycle is set, it
does not block any other instructions from occurring.

Type in the following code and program it into the Amicus18 board by clicking on the toolbar Compile
and Program, or pressing F10:

Include "Hpwm10.inc"

WriteAnalog1(512)

The LED will now be glowing, but not at full brightness. What’s happening is that channel 1 of the PWM
has been instructed to set the duty cycle to 50%, which is half the full range of 1023, which is 512. Try
different values within the braces of the WriteAnalog1 command and see what it does to the LED’s
brightness.

A more sophisticated program is shown below that will cycle the LED to full brightness then back to off
repeatedly:

' Amicus18 10-bit Hardware PWM (Pulse Width Modulation) Demo Program
' An LED attached to Bit-2 of Portc (RC2) will increase illumination, then dim
'

Include "Hpwm10.inc" ' Load the 10-bit PWM macros into the program

Dim wDutyCycle As Word ' Create a variable to hold the Duty Cycle
OpenAnalog1() ' Enable and cofigure the CCP1 peripheral
While 1 = 1 ' Create an infinite loop

'
' Increase LED illumination
'
For wDutyCycle = 0 To 1023 ' Cycle the full range of 10-bits. i.e. 0 to 1023

WriteAnalog1(wDutyCycle) ' PWM on CCP1 (Bit-2 of PortC)
Next
'
' Decrease LED illumination
'
For wDutyCycle = 1023 To 0 Step -1 ' Cycle the full range of 10-bits in reverse

WriteAnalog1(wDutyCycle) ' PWM on CCP1 (Bit-2 of PortC)
Next

Wend ' Do it forever

RC7
RC6
RC5
RC4
RC3
RC2
RC1
RC0

PortC

LED

Power
Vin

GND
GND

5V
3V3
Rst

R

330nF

C

47Ω

Amicus18 Companion Shield

 45
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Channel 2 PWM
As has been mentioned, the Amicus18 has two hardware PWM channels, each can work independently
of each other when adjusting the duty cycle, but share a common operating frequency and resolution.
This is because they both operate from the microcontroller’s Timer 2 module.

Operating the second channel of the PWM peripheral uses exactly the same procedure as operating
channel 1, but uses a different pin of PortC (RC1).

A demo layout for channel 2 of the PWM is shown below:

The circuit for the above layout is shown below:

The PWM peripherals operate in the background, which means that once a PWM duty cycle is set, it
does not block any other instructions from occurring.

LED

RC7
RC6
RC5
RC4
RC3
RC2
RC1
RC0

PortC

Power
Vin

GND
GND

5V
3V3
Rst

330nF

C

R 47Ω

Amicus18 Companion Shield

 46
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Type in the following code and program it into the Amicus18 board by clicking on the toolbar Compile
and Program, or pressing F10:

Include "Hpwm10.inc"

WriteAnalog2(512)

The LED will now be glowing, but not at full brightness. What’s happening is that channel 2 of the PWM
has been instructed to set the duty cycle to 50%, which is half the full range of 1023, which is 512. Try
different values within the braces of the WriteAnalog2 command and see what it does to the LED’s
brightness.

A more sophisticated program is shown below that will cycle the LED to full brightness then back to off
repeatedly:

' Amicus18 10-bit Hardware PWM (Pulse Width Modulation) Demo Program
' An LED attached to Bit-1 of Portc (RC1) will increase illumination, then dim
'

Include "Hpwm10.inc" ' Load the 10-bit PWM macros into the program

Dim wDutyCycle As Word ' Create a variable to hold the Duty Cycle
OpenAnalog2() ' Enable and cofigure the CCP2 peripheral
While 1 = 1 ' Create an infinite loop

'
' Increase LED illumination
'
For wDutyCycle = 0 To 1023 ' Cycle the full range of 10-bits. i.e. 0 to 1023

WriteAnalog2(wDutyCycle) ' PWM on CCP2 (Bit-1 of PortC)
Next
'
' Decrease LED illumination
'
For wDutyCycle = 1023 To 0 Step -1 ' Cycle the full range of 10-bits in reverse

WriteAnalog2(wDutyCycle) ' PWM on CCP2 (Bit-1 of PortC)
Next

Wend ' Do it forever

Amicus18 Companion Shield

 47
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

Two channels of PWM simultaneously (Pulsing Light)
The layout below demonstrates both PWM channels operating simultaneously:

Amicus18 Companion Shield

 48
Crownhill AssociatesLimited 2009 - All Rights Reserved Version 1.0 06-10-2009

The circuit for the 2 PWMs layout is shown below:

The capacitors normally associated with PWM output have been dispensed with because the operating
frequency of the PWM channels is so high (62.5KHz) that no noticeable flicker from the pulses will be
observed on the LEDs.

The code to produce the pulsing of the LEDs is shown below:

' Pulse both LEDs, one decreases while the other increases brightness
'

Include "Hpwm10.inc" ' Load the 10-bit PWM macros into the program

Dim wDutyCycle As Word ' Holds the duty cycle of the PWM pulses
OpenAnalog1() ' Enable and cofigure the CCP1 peripheral
OpenAnalog2() ' Enable and cofigure the CCP2 peripheral
While 1 = 1 ' Create an infinite loop
'
' Increase LED1 illumation, while decreasing LED2 illumination
'

For wDutyCycle = 0 To 1023 ' Cycle the full range of 10-bits
WriteAnalog1(wDutyCycle) ' PWM on CCP1 (Bit-2 of PortC) (0 to 1023)
WriteAnalog2(1023 - wDutyCycle) ' PWM on CCP2 (Bit-1 of PortC) (1023 to 0)
DelayMS 5 ' A small delay between duty cycle changes

Next ' Close the loop
DelayMS 5
'
' Decrease LED1 illumation, while increasing LED2 illumination
'
For wDutyCycle = 1023 To 0 Step -1 ' Cycle the full 10-bit range (reversed)

WriteAnalog1(wDutyCycle) ' PWM on CCP1 (Bit-2 of PortC) (1023 to 0)
WriteAnalog2(1023 - wDutyCycle) ' PWM on CCP2 (Bit-1 of PortC) (0 to 1023)
DelayMS 5 ' A small delay between duty cycle changes

Next ' Close the loop
Wend ' Do it forever

LED

RC7
RC6
RC5
RC4
RC3
RC2
RC1
RC0

PortC

LED

Power
Vin

GND
GND

5V
3V3
Rst

47Ω 47Ω

	Amicus18 Companion Shield
	Companion Shield Options
	Building the Companion Shield
	First Program
	2 LED Flasher
	4 LED Sequencer
	8 LED Sequencer
	 Traffic Light Sequencer

	Sensing the Outside World
	Switch Input (Pulled-Up)
	Switch Input (Pulled-Down)
	Switch Debounce

	Analogue Meets Digital
	Light Level Switch (Moth Mode)
	Light Level Switch (Cockroach Mode)
	Temperature Sensor
	Thermostat (increase in temperature)
	Thermostat (increase and decrease of temperature)
	Thermostat (decrease in temperature)

	Digital Meets Analogue
	Pulse Width Modulation (PWM)
	Channel 1 PWM
	Channel 2 PWM
	Two channels of PWM simultaneously (Pulsing Light)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

